Satisfaction de Contraintes

Boi Faltings

Laboratoire d'Intelligence Artificielle
boi.faltings@epfl.ch
http://moodle.epfl.ch/

Boi Faltings Satisfaction de Contraintes 1/50

Faiblesse des algorithmes de recherche

@ Algorithmes de recherche tres généraux, mais...
@ ...conduisent a une explosion combinatoire.

@ Peut-on définir une cadre restreint qui permet des méthodes
plus efficaces?

@ Oui: la satisfaction de contraintes/satisfiabilité.

Boi Faltings Satisfaction de Contraintes 2/50

Satisfaction de Contraintes

Satisfaction de contraintes

Un grand nombre de problemes pratiques s’expriment en terme
d’'une satisfaction de contraintes, par exemple dans les domaines
de:

@ |'ordonnancement et la planification de taches: le but est de
trouver un ensemble d’actions qui respecte les contraintes
décrivant le but a atteindre et les moyens a disposition.

@ la conception ou la configuration: le but est de trouver un
ensemble de composants et de connections respectant toutes
les contraintes de fonctionnalité.

@ la vision: le but est de trouver une interprétation consistante
avec les observations.

Boi Faltings Satisfaction de Contraintes 3/50

Formulation

Formulation d'un probleme de satisfaction de contraintes

Etant donné:

@ Variables X = {x1,x2, ..., xn}

@ Domaines Dy, Dy, ..., D, des variables

e Contraintes C = {c1(Xk, X/, ---)s €2y -y Cm },

chacune n'admettant que certaines combinaisons de valeurs

Trouver:
Des solutions: {x1 = vk, X2 = V}, ..., Xp = Vo }
de sorte que toutes les contraintes soient satisfaites.

Nous considérons des variables discrétes: les domaines Dy, ..., D,
sont finis.

Boi Faltings Satisfaction de Contraintes 4/50

Formulation

Exemple d'un PSC: allocation de ressources

But: effectuer les tiches T1 a T4 avec 3 ressources:

1] D1 ={B,C}

D2 ={A,C}

2] D3 ={B.C}

=11 XA] D4={AB}
temps

Formulation comme PSC:

@ Variables x1, x2, ..., X4 correspondants aux taches
(valeur = une ressource)

e Domaines = ressources D; = {B, C}, ...

@ Contraintes = deux taches se chevauchant dans le temps ne
peuvent étre effectuées par la méme ressource.

Boi Faltings Satisfaction de Contraintes 5/50

Formulation

Réseaux de contraintes

Un probleme de satisfaction de contraintes binaires peut &tre
représenté comme un graphe:

@ noeuds ~ variables
@ arcs ~ contraintes

Exemple: allocation de ressources
x3={B,C}

&

x1

{B,C}<—> x2={A,C

£ /
x4={A,B}

Boi Faltings Satisfaction de Contraintes

6/50

Formulation

Contraintes non-binaires

@ La plupart des travaux traitent des contraintes binaires
s'avérant plus adaptées a la propagation.

@ Pour traiter des problemes avec des contraintes non-binaires,
on les transforme en contraintes binaires par une des
méthodes suivantes:

@ projection
@ variables supplémentaires
© graphe dual

Boi Faltings Satisfaction de Contraintes 7/50

Algorithmes systematiques

Solution de PSC

o L’algorithme le plus général et le plus simple pour la résolution
de PSC discrets est celui de generate-and-test: essayer toutes
les combinaisons des valeurs admissibles pour les variables en
retenant celles qui respectent toutes les contraintes.

e Exemple: allocation de ressources: (x1, x2, X3, Xa)

(BABA) (BABB) (BACA) (BACB)
(BCBA) (BCBB) (BCCA) (BCCB)
(CABA) [(CABB)| (CACA) (CACB)
(CCBA) (CCBB) (CCCA) (CCCB)

Boi Faltings Satisfaction de Contraintes 8/50

en profondeur d'abord

Algorithmes systematiques es DFS

Espace des nceuds de recherche

Boi Faltings Satisfaction de Contraintes 9/50

. X n profondeur d'abord
Algorithmes systematiques

Complexité de la solution

@ La complexité d'une solution fournie par generate-and-test est
en général exponentielle par rapport au nombre de variables.
Or, un PSC typique implique un grand nombre de variables.

e Exemple: si |D| = 4,|X]| = 20:
1'099'511'627'776 combinaisons a examiner!

= on cherche des méthodes plus efficaces applicables a certaines
classes de PSC.

@ Ces méthodes sont en général basées sur le caractére local des
contraintes: chaque contrainte n'implique que trés peu de
variables.

Boi Faltings Satisfaction de Contraintes 10/50

. X n profondeur d'abord
Algorithmes systematiques

Algorithmes pour résoudre des PSC

Méthodes basées sur la recherche systematique:
@ backjumping
o forward checking
@ lookahead
Méthodes basées sur la recherche locale:
@ recuit simulé
o GSAT

@ min-conflicts

Boi Faltings Satisfaction de Contraintes 11/50

Recherche en profondeur d'abord

Algorithmes systematiques Hertes DI

Exploiter le caractére local d'un PSC

La recherche en profondeur d’abord permet d'effectuer des
retour-arrieres dés qu'une solution partielle ne respecte pas toutes

les contraintes:
)

/\

,/(&_ K A
BAL) B.S) Ch.) (o)
VAN ~

~+B;AB—)- (BAC,) —B,G;Bo) (B€;€6) (CAB,) +{CA€)-
A5G —B:A:€;B) <€ABA);- (C,A,B,B)

= permet une solution plus efficace, mais toujours de complexité
exponentielle.

Il existe des heuristiques qui réduisent la complexité de maniere
importante!

Boi Faltings Satisfaction de Contraintes 12/50

Recherche en profondeur d'abord

Algorithmes systematiques Hertes DI

Résolution d'un PSC par recherche

Formulation comme probleme de recherche:
@ noeud de recherche = instantiation de variables
X1 = V1,X2 = Vo, ..., XKk = V|
@ fonction de successeur = instantation de la variable
Xk+1 = Vk+1 de maniére a respecter
toutes les contraintes avec xi, ..., Xx.

@ noeud initial = instantiation vide

@ noeud but = instantiation de toutes les variables xi, ..., X,

Boi Faltings Satisfaction de Contraintes 13/50

Recherche en profondeur d'abord
Heuristiques DFS

Algorithmes systematiques

Résolution d'un PSC par recherche systématique

Z2 X2 X2 X2
e o6 o o : [) e o6 o o [) O o o
[] [N J [] [] [) [] [) [] [] [N J []
[] [3K J i [) [] [) [3K J
[] o o [] [] - (] [) [] ® [) o o [] O []
[) [) i [)
[) [) L [) [) e o o ID. [] e o o o * [)
o O [ST o ® Lo ®
» @ - H >
° ® .I.E ° *—>0 o o o '.% e o o o '5:
. 3 ¥ 3 ¥ 3
.................. " ‘. < .. . - ,. ‘
1

Boi Faltings Satisfaction de Contraintes 14/50

Algorith " t Recherche en profondeur d'abord
gorithmes systematiques MenrieEames DI

Depth-First Search: DFS

= tableau de n variables, rempli jusqu'a k
d = domaines des variables
Function DFS(x,d,k)
if k > n then
return x
else
for v € d[k+1] do
consistent <- true
for i + 1 to k do

if = consistent(v,x[i],C(i,k+1)) then consistent <
false

if consistent then
x[k+1] + v
rest < DFS(x,d,k+1)

if rest # :echec then return rest
return :echec

Boi Faltings Satisfaction de Contraintes 15/50

Recherche en profondeur d'abord

Algorithmes systematiques Hertes DI

Exemple: allocation de ressources

Variables:
X1 € {B, C}
Xp € {A, C}
X3 € {B, C}
X4 € {A, B}

Contraintes:
C(X17X2) : {(87 A)v (Bv C)? (C7A)}
C(X17X3) . {(87 C)’ (C7 B)}
C(x1,xa) : {(B,A),(C,B),(C,A)}
C(X27X3) : {(Aa B)a (A7 C)? (C7 B)}
C(x2, xa) : {(A, B),(C,A),(C, B)}

Boi Faltings Satisfaction de Contraintes 16/50

Algorithmes systematiques

Solution par DFS

Recherche en profondeur d'abord
Heuristiques DFS

d = [(B,C),(A,0),(B,C),(A,B)]
inégalité entre toutes les x sauf x3/xa

Etape | k | x[1] | x[2] | x[3] | x[4]

1 1 B - - -

2 2 B A - -

3 3 B A C -

4 4 B A C * retour-arriere!
5 3 B A * - retour-arriére!
6 2 B C - -

7 3 B C - retour-arriére!
8 2 B * - - retour-arriere!
9 1 C - - -

10 2 C A - -

11 3 C A B -

12 4 C A B B solution!

Boi Faltings Satisfaction de Contraintes 17/50

R en profondeur d'abord

Algorithmes systematiques ey
g Y 1 Heuristiques DFS

Améliorer la performance

La recherche peut étre rendue plus efficace en optimisant:
@ la maniére de revenir en arriere d'un conflit.
@ les valeurs considérées.

@ |'ordre d'instantiation des variables.

Boi Faltings Satisfaction de Contraintes 18/50

Re e en profondeur d'abord

Algorithmes systematiques S
g Y 1 Heuristiques DFS

Backjumping

Si I'assignation a xx1 échoue, il faut changer au moins une
variable qui y est liée par une contrainte.
X

@ backjumping: revenir a la derniére
variable qui a une contrainte avec
Xkr1- (ex: x4 — x2)

(évite le pas 5).

@ Conflict-directed backjumping: revenir
a la derniere variable qui avait un
conflit avec xx4+1. (ex: x4 — x1)

X

Boi Faltings Satisfaction de Contraintes 19/50

Algorithmes systematiques Re e en profondeur d'abord
g Y 1 Heuristiques DFS

Forward checking

Eviter des valeurs qui ne laissent plus aucune possibilité
d’'instantiation consistante pour d'autres variables.

@ Ajouter un label 1[i] a chaque variable.

@ Initialement: label = domaine

@ Forward checking:

a chaque instantiation, éliminer du label des variables
non-instantiées toutes les valeurs inconsistantes avec
'instantiation.
Label vide = instantiation non admise, backtrack
@ Lookahead:

Processus itératif: vérifier aussi entre toute paire de vari-
ables non-instantiés.

Boi Faltings Satisfaction de Contraintes 20/50

Recherche en profondeur d'abord

Algorithmes systematiques ey
g Y 1 Heuristiques DFS

Exemple: Forward Checking

d = [(B,C),(A,C),(B,C),(A,B)]
inégalité entre tous les x sauf x3/xa

k| x[1] | x[2] | x[3] | x[4] | M[1] | N[2] | I[3] | I[4]

1| B - - - C |AC| C A

2| B A - - C C C - retour-arriere!
2| B C - - C - - A | retour-arriere!
1| C - - - - A B | AB

21 C A - - - - B B

3] C A B - - - - B

4| C A B B - - - - solution

Boi Faltings Satisfaction de Contraintes 21/50

Recherche en profondeur d'abord

Algorithmes systematiques ey
g Y 1 Heuristiques DFS

Exemple: Lookahead

d = [(B,C),(A,C),(B,C),(A,B)]
inégalité entre toutes les x sauf x3 /x4

k| x[1] | x[2] | x[3] | x[4] | '[1] | N[2] | 1[3] | I[4]

1 B - - - - A C - retour-arriere!
1| C - - - - A B B

21 C A - - - - B B

3] C A B - - - - B

4| C A B B - - - - | solution

Boi Faltings Satisfaction de Contraintes 22/50

Re e en profondeur d'abord

Algorithmes systematiques S
g Y 1 Heuristiques DFS

Ordonner les variables

Influencer la recherche par |'ordre d'assignation des variables.
Heuristiques d'ordre:

e dynamic variable ordering (DVO): prendre la variable dont le
label est le plus petit (combinaison avec forward
checking/lookahead)

@ min-width ordering: prendre la variable qui a des contraintes
avec le plus petit nombre de variables encore ouvertes.

@ max-degree ordering: prendre la variable la plus connectée
dans le PSC original.

Boi Faltings Satisfaction de Contraintes 23/50

Rect e en profondeur d'abord

Algorithmes systematiques Yo sdlees BES

Justification (DVO)

DVO réduit I'espace de recherche:

T 4

arbre plus petit en évitant de créer beaucoup de branches!

Boi Faltings Satisfaction de Contraintes 24/50

Recherche en profondeur d'abord

Algorithmes systematiques ey
g Y 1 Heuristiques DFS

Exemple: ordonnancement de variables par DVO

e. | x[1] | x[2] | x[3] | x[4] | 1[1] | W2] | N3] | ![4]

1 B - - - C | AC A

2 B - C - - A - A

3 B A C - - - - - retour-arriere!
4 C - - - - A B | AB

5 C A - - - - B B

6 C A B - - - - B

7 C A B B - - - - solution

Boi Faltings Satisfaction de Contraintes 25/50

Recherche en profondeur d'abord

Algorithmes systematiques ey
g Y 1 Heuristiques DFS

Combinaison DVO -+ tiebreaking avec min-width

e | x[1] | x[2] | x[3] | x[4] | /1] | 1[2] | V3] | (4] |

1] - - B - C |[AC| C |AB

2| C - B - - A | - |AB

3/ C| A | B - - - . B

4 C A B B - - - - solution

= on ne peut pas faire mieux!

Boi Faltings Satisfaction de Contraintes 26/50

Recherche en profondeur d'abord

Algorithmes systematiques ey
g Y 1 Heuristiques DFS

Comparaison des heuristiques

DFS tres peu efficace

Backjumping mieux, mais visite au moins autant de noeuds
que forward checking

Forward checking/lookahead plus fort

Forward checking 4+ ordonnancement des variables
= toute forme de backjumping est inutile

Boi Faltings Satisfaction de Contraintes 27/50

Consistance

Algorithmes de consistance

En pratique, il est important de connaitre d'avance le temps requis
pour la solution d'un PSC
Possible dans le cas de:

@ certaines topologies du graphe de contraintes
@ certaines topologies des contraintes mémes

Pour cela, on applique des algorithmes de consistance.

Boi Faltings Satisfaction de Contraintes 28/50

Consistance

Algorithmes de consistance partielle

Idée de la consistance = solution en 2 temps:

@ éliminer des valeurs ou combinaisons de valeurs ne pouvant
respecter toutes les contraintes.

@ effectuer la recherche dans I'espace réduit

Exemple:
x1 = B ne peut jamais faire partie d'une solution!
= I"éliminer d'avance de la recherche

Boi Faltings Satisfaction de Contraintes 29/50

Consistance des arcs

. Complexité de recherche
Consistance

La consistance des noeuds et arcs

@ Considérez deux variables x; et x» ainsi que la contrainte
C(x1,x2) les liant.

@ Une valeur de v; € l; ne peut faire partie d'une solution du
PSC que s'il existe au moins une valeur v» € | telle que
C(v1, v2) soit respectée.
=> on peut donc éliminer toutes les valeurs de / et / qui ne
respectent pas la contrainte.

@ Par application itérative sur toutes les contraintes, on obtient
un réseau qui satisfait la consistance des arcs.

Boi Faltings Satisfaction de Contraintes 30/50

Consistance des arcs

. Complexité de recherche
Consistance

Propagation locale

e Contraintes binaires (2 variables) et domaines discrets

@ Chaque x; porte un label I; = ensemble de valeurs
= algorithme de Waltz:

@ appliquer un opérateur de raffinement a chaque contrainte
jusqu'a ce qu'il n'y ait plus de changement

@ Garantit la consistance des arcs

Boi Faltings Satisfaction de Contraintes 31/50

Consistance des arcs

. Complexité de recherche
Consistance

L'opérateur de raffinement

Pour réviser la contrainte entre x; et x;:
Function REVISER (ij)
modifiée < faux
for chaque x € /; do
if aucun y € /; tel que C(x,y) then
/,' — /,' \X
modifiée < vrai
return modifiée
Appliquer REVISER(1, j) a tous les combinaisons de variables i et
j jusqu'a ce que le résultat soit faux pour tous les combinaisons.

Boi Faltings Satisfaction de Contraintes 32/50

Consistance des arcs
Complexité de recherche

Consistance

Exemple: algorithme de Waltz

x1=(1,2,3}

x2=(2,3,4}

opération h h h
c(1,2) {1,2,3} {2,3,4} {1,2,3}
c(21) | {4,2,3} | {2,3,4} | {1,2,3}
c(23) | {4,2,3} | {2,3, A} | {1,2,3}
c(32) | {4,2,3} [{28, A} | {123}
o(13) | {4,2,3} | {2,8,A} | {4, 23}
c(31) | {4,2, 8} | {28 A | {1 23}

Boi Faltings Satisfaction de Contraintes 33/50

Consistance des arcs

. Complexité de recherche
Consistance

La complexité de I'algorithme de Waltz

@ Considérons e contraintes, n variables dont les domaines ont
la taille maximale d.

@ A chaque itération, REVISER est appliquée au plus 2e fois,
une fois dans chaque direction.

@ Pour que l'itération ne s'arréte pas, il faut enlever au moins
une valeur = au plus n - d itérations.
= complexité = O(e - n-d)

o Algorithme optimisé: O(n’d)

Boi Faltings Satisfaction de Contraintes 34/50

Consistance s

. Complexité de recherche
Consistance

Solutions sans retour-arriére

Dans le cas ou le réseau de contraintes est un arbre (pas de
cycles), la consistance des arcs garantit qu'une solution puisse étre
trouvée de maniére trés efficace, sans retour-arriére:

X

y z

!

@ assigner n'importe quelle valeur a x.

@ la consistance des arcs garantit que I'on peut assigner des
valeurs consistantes a y et z.

© appliquer récursivement aux couches suivantes.

Boi Faltings Satisfaction de Contraintes 35/50

Consistance s
Complexité de recherche

Consistance

La présence de cycles rend la consistance des arcs beaucoup moins
utile. Par exemple, le réseau suivant satisfait la consistance des

arcs, mais n’'admet aucune solution:
{a,b}

*
{ap} —{a b}

= il faut définir des niveaux de consistance plus élevés.

Boi Faltings Satisfaction de Contraintes 36/50

Recherche Locale

Méthodes itératives (recherche locale)

Idée:
commencer par une assignation initiale, ensuite chercher des

modifications locales qui réduisent le nombre de contraintes violées.
L2

. e O

Boi Faltings Satisfaction de Contraintes 37/50

Recherche Locale

Hill-climbing

@ Correspond a un "hill-climbing”: continuellement augmenter
le nombre de contraintes satisfaites.
@ 2 versions:
o déterministe (min-conflicts/GSAT)
o probabiliste (recuit simulé)
@ La performance est souvent trés aléatoire: dépend du choix
des valeurs initiales et de la séquence de modifications.

Boi Faltings Satisfaction de Contraintes 38/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Min-conflicts

Idée:

changer l'assignation de la variable qui réduira le plus le
nombre total de conflits.

@ Descente dans la direction du plus fort changement: descente
du gradient.

@ La procédure tombera forcement dans des minima locaux,
mais souvent ce sont déja des solutions de bonne qualité.

@ Version heuristique pour la recherche incrémentale:
prendre la valeur qui aura le moins de possibilités de conflits
avec de futures instantiations.

Boi Faltings Satisfaction de Contraintes 39/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Algorithme (Min-conflicts)

X = variables
V = valeurs
C = contraintes
Function min-conflicts(X,V,C)
for i + 1 to max-tries do
V < assignation aléatoire
for j < 1 to max-steps do
nconf < check(V,C)
if nconf = 0 then
return V
else
trouver k tel que changer v[k] donne un nombre minimal de conflits
changer vlk]
retourner solution partielle V

Boi Faltings Satisfaction de Contraintes 40/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Exemple: min-conflicts

Assignation initiale: (x1 = B, x2 = A, x3 = B, x4 = A)
= 2 conflits: ¢(x1,x3) et c(x2,x4)

chang. conflits ‘ nconf
x1 = C c(x2,x4) 1
x2 = C c(x1,x3) 1
x3 = C c(x2,x4) 1

x4 — B | c(x1,x3),c(x1,x4) | 2
accepter (x1 — C): (x1 = C, x2 =A, x3 =B, x4 = A)
= 1 conflit: c(x2,x4)

chang. conflits ‘ nconf
x1 — B | ¢(x1,x3), c(x2,x4) | 2
x2 = C c(x1,x2) 1
x3 = C | c(x1,x3),c(x2,x4) | 2
x4 — B - 0

accepter (x4 — B) = solution:
(x1 =C,x2=A,x3 =B, x4 =B)

Boi Faltings Satisfaction de Contraintes 41/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Exemple 2: min-conflicts

Assignation initiale: (x1 = B, x2 = A, x3 = B, x4 = A)
= 2 conflits: ¢(x1,x3) et c(x2,x4)

chang. conflits nconf
x1 = C c(x2,x4) 1
x2 = C c(x1,x3) 1
x3 = C c(x2,x4) 1
x4 — B | c(x1,x3),c(x1,x4) | 2

accepter (x2 — C): (x1 = B, x

= 1 conflit: ¢(x1,x3)

chang. conflits nconf
x1 — C c(x1,x2) 1
x2 = A | c(x1,x3),c(x2,x4) | 2
x3 — C c(x2,x3) 1
x4 — B | c(x1,x3),c(x1,x4) | 2

aucune amélioration possible: minimum local!

Boi Faltings Satisfaction de Contraintes 42/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Recuit simulé

Probleme:
le "hill-climbing” conduit a des minima locaux

= on peut manquer la solution
Idée:
e parfois faire un changement non-optimal

@ Algorithme inspiré de la physique: solidification de verres

Boi Faltings Satisfaction de Contraintes 43/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Algorithme de recuit simulé

Function recuit(X,V,C)
V < assignation aléatoire
T[max-steps] < plan de réduction de "température”
for j + 1 to max-steps do
nconf < check(V,C)
if nconf = 0 then return V
V' + V avec une valeur v[k] changée aléatoirement
if check(V',C) < check(V,C) then
V+V
else
if random(0..1)<T[j] then V < V'
return solution partielle V

Tableau T = liste de probabilités décroissantes

Boi Faltings Satisfaction de Contraintes 44/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Exemple: recuit simulé

Supposons T = (0.7,0.5,0.3,0.1,0.01,0.001)
Assignation initiale: (x1 = B, xX2 = A, x3 =B, x4 = A)
= 2 conflits: ¢(x1,x3) et c(x2,x4)

chang. conflits mieux? | accepter? | assign.

x2 — C c(x1,x3) oui oui B,C,B,A

x4 — B i((’;llfi)) non oui B.C,B,B

x1 = C c(x1,x2) oui oui C,C,BB
c(x1,x2),

x3 = C c(x1,x3), non non C,C,BB
c(x2,x3)

x2 = A - oui oui CABB

Boi Faltings Satisfaction de Contraintes 45/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Satisfaction et Optimisation

Souvent, il faut trouver une solution optimale.

Optimalité = somme de critéres:
= détruit la localité
= pas toutes les techniques sont applicables.

Optimalité = max/min de criteres:
= localité maintenue
= pratiquement toutes les techniques s'appliquent.

o Méthodes itératives plus simples a adapter.

Boi Faltings Satisfaction de Contraintes 46/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Satisfiabilité

Variante de la satisfaction de contraintes:

variables Booléennes, avec domaines vrai/faux.
contraintes = clauses (disjonctions) logiques.
solution = assignation qui rend toutes les clauses vrai (SAT)

solution = assignation qui maximise le nombre de clauses qui
sont vraies (Max-SAT).

il existe des solvers trés efficaces.

Boi Faltings Satisfaction de Contraintes 47/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Application: Gestion de production d'automobiles

Usine Nissan de Sunderland (UK): deux chaines de production
pour deux types de voitures
Alternatives pour produire un troisieme type de voiture:

@ construire une troisieme chaine de production
@ intercaler la production sur les chaines existantes

Les méthodes classiques (R.O.) ne permettaient pas de modéliser
les contraintes relevant de la production de plusieurs modeles sur
une méme chaine

Boi Faltings Satisfaction de Contraintes 48/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Solution par contraintes

La programmation par contraintes a permis de modéliser
correctement le probleme
Résultats:

@ économie de la troisieme ligne de production.

@ augmentée la production de 236'000 a 337’000 voitures sans
nouveaux équipements.

@ planification mieux respectée: le pourcentage de voitures
produites selon le plan a passé de 3% a 95%.

Boi Faltings Satisfaction de Contraintes 49/50

Méthode Déterministe
Méthode Probabiliste

Recherche Locale

Résumé

PSC = formalisme général de modelisation de problemes abductifs
Résolution de PSC par recherche:

e Backjumping/forward checking/lookahead
@ Ordonnancement de variables
@ Solutions itératives

Techniques de consistance

Boi Faltings Satisfaction de Contraintes 50/50

	Satisfaction de Contraintes
	Formulation
	Algorithmes systematiques
	Recherche en profondeur d'abord
	Heuristiques DFS

	Consistance
	Consistance des arcs
	Complexité de recherche

	Recherche Locale
	Méthode Déterministe
	Méthode Probabiliste

