
Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Satisfaction de Contraintes

Boi Faltings

Laboratoire d’Intelligence Artificielle
boi.faltings@epfl.ch

http://moodle.epfl.ch/

Boi Faltings Satisfaction de Contraintes 1/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Faiblesse des algorithmes de recherche

Algorithmes de recherche très généraux, mais...

...conduisent à une explosion combinatoire.

Peut-on définir une cadre restreint qui permet des méthodes
plus efficaces?

Oui: la satisfaction de contraintes/satisfiabilité.

Boi Faltings Satisfaction de Contraintes 2/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Satisfaction de contraintes

Un grand nombre de problèmes pratiques s’expriment en terme
d’une satisfaction de contraintes, par exemple dans les domaines
de:

l’ordonnancement et la planification de tâches: le but est de
trouver un ensemble d’actions qui respecte les contraintes
décrivant le but à atteindre et les moyens à disposition.

la conception ou la configuration: le but est de trouver un
ensemble de composants et de connections respectant toutes
les contraintes de fonctionnalité.

la vision: le but est de trouver une interprétation consistante
avec les observations.

Boi Faltings Satisfaction de Contraintes 3/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Formulation d’un problème de satisfaction de contraintes

Etant donné:

Variables X = {x1, x2, ..., xn}
Domaines D1,D2, ...,Dn des variables

Contraintes C = {c1(xk , xl , ...), c2, ..., cm},
chacune n’admettant que certaines combinaisons de valeurs

Trouver:
Des solutions: {x1 = vk , x2 = vl , ..., xn = vo}
de sorte que toutes les contraintes soient satisfaites.

Nous considérons des variables discrètes: les domaines D1, ...,Dn

sont finis.

Boi Faltings Satisfaction de Contraintes 4/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Exemple d’un PSC: allocation de ressources

But: effectuer les tâches T1 à T4 avec 3 ressources:

temps

x1

x2

x3 x4

D1 = {B,C}
D2 = {A,C}
D3 = {B,C}
D4 = {A,B}

Formulation comme PSC:

Variables x1, x2, ..., x4 correspondants aux tâches
(valeur = une ressource)

Domaines = ressources D1 = {B,C}, ...
Contraintes = deux tâches se chevauchant dans le temps ne
peuvent être effectuées par la même ressource.

Boi Faltings Satisfaction de Contraintes 5/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Réseaux de contraintes

Un problème de satisfaction de contraintes binaires peut être
représenté comme un graphe:

noeuds ≃ variables

arcs ≃ contraintes

Exemple: allocation de ressources

=

==

=

=

x1={B,C} x2={A,C}

x3={B,C}

x4={A,B}

Boi Faltings Satisfaction de Contraintes 6/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Contraintes non-binaires

La plupart des travaux traitent des contraintes binaires
s’avérant plus adaptées à la propagation.

Pour traiter des problèmes avec des contraintes non-binaires,
on les transforme en contraintes binaires par une des
méthodes suivantes:

1 projection
2 variables supplémentaires
3 graphe dual

Boi Faltings Satisfaction de Contraintes 7/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Solution de PSC

L’algorithme le plus général et le plus simple pour la résolution
de PSC discrets est celui de generate-and-test: essayer toutes
les combinaisons des valeurs admissibles pour les variables en
retenant celles qui respectent toutes les contraintes.

Exemple: allocation de ressources: (x1, x2, x3, x4)

(BABA) (BABB) (BACA) (BACB)
(BCBA) (BCBB) (BCCA) (BCCB)

(CABA) (CABB) (CACA) (CACB)

(CCBA) (CCBB) (CCCA) (CCCB)

Boi Faltings Satisfaction de Contraintes 8/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Espace des nœuds de recherche

x1

x2

x3

Boi Faltings Satisfaction de Contraintes 9/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Complexité de la solution

La complexité d’une solution fournie par generate-and-test est
en général exponentielle par rapport au nombre de variables.
Or, un PSC typique implique un grand nombre de variables.

Exemple: si |D| = 4, |X | = 20:
1’099’511’627’776 combinaisons à examiner!

⇒ on cherche des méthodes plus efficaces applicables à certaines
classes de PSC.

Ces méthodes sont en général basées sur le caractère local des
contraintes: chaque contrainte n’implique que très peu de
variables.

Boi Faltings Satisfaction de Contraintes 10/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Algorithmes pour résoudre des PSC

Méthodes basées sur la recherche systematique:

backjumping

forward checking

lookahead

Méthodes basées sur la recherche locale:

recuit simulé

GSAT

min-conflicts

Boi Faltings Satisfaction de Contraintes 11/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Exploiter le caractère local d’un PSC

La recherche en profondeur d’abord permet d’effectuer des
retour-arrières dès qu’une solution partielle ne respecte pas toutes
les contraintes:

(_._._._)

)_,_,_,C()_,_,_,B(

(B,A,_,_) (B,C,_,_) (C,A,_,_)

(B,A,C,_)

(C,C,_,_)

(B,A,B,_) (B,C,B,_) (B,C,C,_)

(B,A,C,A) (B,A,C,B)

(C,A,B,_) (C,A,C,_)

(C,A,B,B)(C,A,B,A)

⇒ permet une solution plus efficace, mais toujours de complexité
exponentielle.
Il existe des heuristiques qui réduisent la complexité de manière
importante!

Boi Faltings Satisfaction de Contraintes 12/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Résolution d’un PSC par recherche

Formulation comme problème de recherche:

noeud de recherche = instantiation de variables
x1 = v1, x2 = v2, ..., xk = vk

fonction de successeur = instantation de la variable
xk+1 = vk+1 de manière à respecter
toutes les contraintes avec x1, ..., xk .

noeud initial = instantiation vide

noeud but = instantiation de toutes les variables x1, ..., xn

Boi Faltings Satisfaction de Contraintes 13/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Résolution d’un PSC par recherche systématique

x1

x2

x3
x1

x2

x3
x1

x2

x3
x1

x2

x3

Boi Faltings Satisfaction de Contraintes 14/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Depth-First Search: DFS

x = tableau de n variables, rempli jusqu’à k

d = domaines des variables

Function DFS(x,d,k)

if k ≥ n then

return x

else

for v ∈ d[k+1] do

consistent ← true

for i ← 1 to k do

if ¬ consistent(v,x[i],C(i,k+1)) then consistent ←
false

if consistent then

x[k+1] ← v

rest ← DFS(x,d,k+1)

if rest ̸= :echec then return rest

return :echec

Boi Faltings Satisfaction de Contraintes 15/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Exemple: allocation de ressources

Variables:
x1 ∈ {B,C}
x2 ∈ {A,C}
x3 ∈ {B,C}
x4 ∈ {A,B}

Contraintes:
C (x1, x2) : {(B,A), (B,C), (C ,A)}
C (x1, x3) : {(B,C), (C ,B)}
C (x1, x4) : {(B,A), (C ,B), (C ,A)}
C (x2, x3) : {(A,B), (A,C), (C ,B)}
C (x2, x4) : {(A,B), (C ,A), (C ,B)}

Boi Faltings Satisfaction de Contraintes 16/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Solution par DFS

d = [(B,C),(A,C),(B,C),(A,B)]

inégalité entre toutes les x sauf x3/x4

Etape k x[1] x[2] x[3] x[4]

1 1 B - - -
2 2 B A - -
3 3 B A C -
4 4 B A C * retour-arrière!
5 3 B A * - retour-arrière!
6 2 B C - -
7 3 B C * - retour-arrière!
8 2 B * - - retour-arrière!
9 1 C - - -
10 2 C A - -
11 3 C A B -
12 4 C A B B solution!

Boi Faltings Satisfaction de Contraintes 17/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Améliorer la performance

La recherche peut être rendue plus efficace en optimisant:

la manière de revenir en arrière d’un conflit.

les valeurs considérées.

l’ordre d’instantiation des variables.

Boi Faltings Satisfaction de Contraintes 18/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Backjumping

Si l’assignation à xk+1 échoue, il faut changer au moins une
variable qui y est liée par une contrainte.
x1

x2

x3

x4

backjumping: revenir à la dernière
variable qui a une contrainte avec
xk+1. (ex: x4 → x2)
(évite le pas 5).

Conflict-directed backjumping: revenir
à la dernière variable qui avait un
conflit avec xk+1. (ex: x4 → x1)

Boi Faltings Satisfaction de Contraintes 19/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Forward checking

Eviter des valeurs qui ne laissent plus aucune possibilité
d’instantiation consistante pour d’autres variables.

Ajouter un label l[i] à chaque variable.

Initialement: label = domaine

Forward checking:
à chaque instantiation, éliminer du label des variables
non-instantiées toutes les valeurs inconsistantes avec
l’instantiation.

Label vide ⇒ instantiation non admise, backtrack

Lookahead:
Processus itératif: vérifier aussi entre toute paire de vari-
ables non-instantiés.

Boi Faltings Satisfaction de Contraintes 20/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Exemple: Forward Checking

d = [(B,C),(A,C),(B,C),(A,B)]

inégalité entre tous les x sauf x3/x4

k x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]

1 B - - - C A,C C A
2 B A - - C C C - retour-arrière!
2 B C - - C - - A retour-arrière!
1 C - - - - A B A,B
2 C A - - - - B B
3 C A B - - - - B
4 C A B B - - - - solution

Boi Faltings Satisfaction de Contraintes 21/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Exemple: Lookahead

d = [(B,C),(A,C),(B,C),(A,B)]

inégalité entre toutes les x sauf x3/x4

k x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]

1 B - - - - A C - retour-arrière!
1 C - - - - A B B
2 C A - - - - B B
3 C A B - - - - B
4 C A B B - - - - solution

Boi Faltings Satisfaction de Contraintes 22/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Ordonner les variables

Influencer la recherche par l’ordre d’assignation des variables.
Heuristiques d’ordre:

dynamic variable ordering (DVO): prendre la variable dont le
label est le plus petit (combinaison avec forward
checking/lookahead)

min-width ordering: prendre la variable qui a des contraintes
avec le plus petit nombre de variables encore ouvertes.

max-degree ordering: prendre la variable la plus connectée
dans le PSC original.

Boi Faltings Satisfaction de Contraintes 23/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Justification (DVO)

DVO réduit l’espace de recherche:

First-fail:
arbre plus petit en évitant de créer beaucoup de branches!

Boi Faltings Satisfaction de Contraintes 24/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Exemple: ordonnancement de variables par DVO

e. x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]

1 B - - - C A,C C A
2 B - C - - A - A
3 B A C - - - - - retour-arrière!
4 C - - - - A B A,B
5 C A - - - - B B
6 C A B - - - - B
7 C A B B - - - - solution

Boi Faltings Satisfaction de Contraintes 25/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Combinaison DVO + tiebreaking avec min-width

e. x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]

1 - - B - C A,C C A,B
2 C - B - - A - A,B
3 C A B - - - - B
4 C A B B - - - - solution
⇒ on ne peut pas faire mieux!

Boi Faltings Satisfaction de Contraintes 26/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Recherche en profondeur d’abord
Heuristiques DFS

Comparaison des heuristiques

DFS très peu efficace

Backjumping mieux, mais visite au moins autant de noeuds
que forward checking

Forward checking/lookahead plus fort

Forward checking + ordonnancement des variables
⇒ toute forme de backjumping est inutile

Boi Faltings Satisfaction de Contraintes 27/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

Algorithmes de consistance

En pratique, il est important de connâıtre d’avance le temps requis
pour la solution d’un PSC
Possible dans le cas de:

1 certaines topologies du graphe de contraintes

2 certaines topologies des contraintes mêmes

Pour cela, on applique des algorithmes de consistance.

Boi Faltings Satisfaction de Contraintes 28/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

Algorithmes de consistance partielle

Idée de la consistance = solution en 2 temps:

1 éliminer des valeurs ou combinaisons de valeurs ne pouvant
respecter toutes les contraintes.

2 effectuer la recherche dans l’espace réduit

Exemple:
x1 = B ne peut jamais faire partie d’une solution!
⇒ l’éliminer d’avance de la recherche

Boi Faltings Satisfaction de Contraintes 29/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

La consistance des noeuds et arcs

Considérez deux variables x1 et x2 ainsi que la contrainte
C (x1, x2) les liant.

Une valeur de v1 ∈ l1 ne peut faire partie d’une solution du
PSC que s’il existe au moins une valeur v2 ∈ l2 telle que
C (v1, v2) soit respectée.
⇒ on peut donc éliminer toutes les valeurs de l1 et l2 qui ne
respectent pas la contrainte.

Par application itérative sur toutes les contraintes, on obtient
un réseau qui satisfait la consistance des arcs.

Boi Faltings Satisfaction de Contraintes 30/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

Propagation locale

Contraintes binaires (2 variables) et domaines discrets

Chaque xi porte un label li = ensemble de valeurs
⇒ algorithme de Waltz:

appliquer un opérateur de raffinement à chaque contrainte
jusqu’à ce qu’il n’y ait plus de changement

Garantit la consistance des arcs

Boi Faltings Satisfaction de Contraintes 31/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

L’opérateur de raffinement

Pour réviser la contrainte entre xi et xj :

Function REVISER (i,j)
modifiée ← faux
for chaque x ∈ li do

if aucun y ∈ lj tel que C (x , y) then
li ← li \ x
modifiée ← vrai

return modifiée

Appliquer REVISER(i,j) à tous les combinaisons de variables i et
j jusqu’à ce que le résultat soit faux pour tous les combinaisons.

Boi Faltings Satisfaction de Contraintes 32/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

Exemple: algorithme de Waltz
x1={1,2,3}

x2={2,3,4}

x3={1,2,3}

>=

>

<>

opération l1 l2 l3
c(1,2) {1, 2, 3} {2, 3, 4} {1, 2, 3}
c(2,1) {̸ 1, 2, 3} {2, 3, 4} {1, 2, 3}
c(2,3) {̸ 1, 2, 3} {2, 3, ̸ 4} {1, 2, 3}
c(3,2) {̸ 1, 2, 3} {2, ̸ 3, ̸ 4} {1, 2, 3}
c(1,3) {̸ 1, 2, 3} {2, ̸ 3, ̸ 4} {̸ 1, ̸ 2, 3}
c(3,1) {̸ 1, 2, ̸ 3} {2, ̸ 3, ̸ 4} {̸ 1, ̸ 2, 3}

Boi Faltings Satisfaction de Contraintes 33/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

La complexité de l’algorithme de Waltz

Considérons e contraintes, n variables dont les domaines ont
la taille maximale d .

A chaque itération, REVISER est appliquée au plus 2e fois,
une fois dans chaque direction.

Pour que l’itération ne s’arrête pas, il faut enlever au moins
une valeur ⇒ au plus n · d itérations.
⇒ complexité = O(e · n · d)
Algorithme optimisé: O(n2d)

Boi Faltings Satisfaction de Contraintes 34/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

Solutions sans retour-arrière

Dans le cas où le réseau de contraintes est un arbre (pas de
cycles), la consistance des arcs garantit qu’une solution puisse être
trouvée de manière très efficace, sans retour-arrière:

x

y z

1 assigner n’importe quelle valeur à x.

2 la consistance des arcs garantit que l’on peut assigner des
valeurs consistantes à y et z.

3 appliquer récursivement aux couches suivantes.

Boi Faltings Satisfaction de Contraintes 35/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Consistance des arcs
Complexité de recherche

Cycles

La présence de cycles rend la consistance des arcs beaucoup moins
utile. Par exemple, le réseau suivant satisfait la consistance des
arcs, mais n’admet aucune solution:

{a,b}

{a,b} {a,b}
=

==

⇒ il faut définir des niveaux de consistance plus élevés.

Boi Faltings Satisfaction de Contraintes 36/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Méthodes itératives (recherche locale)

Idée:
commencer par une assignation initiale, ensuite chercher des
modifications locales qui réduisent le nombre de contraintes violées.

x1

x2

x3

Boi Faltings Satisfaction de Contraintes 37/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Hill-climbing

Correspond à un ”hill-climbing”: continuellement augmenter
le nombre de contraintes satisfaites.

2 versions:

déterministe (min-conflicts/GSAT)
probabiliste (recuit simulé)

La performance est souvent très aléatoire: dépend du choix
des valeurs initiales et de la séquence de modifications.

Boi Faltings Satisfaction de Contraintes 38/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Min-conflicts

Idée:

changer l’assignation de la variable qui réduira le plus le
nombre total de conflits.

Descente dans la direction du plus fort changement: descente
du gradient.

La procédure tombera forcement dans des minima locaux,
mais souvent ce sont déjà des solutions de bonne qualité.

Version heuristique pour la recherche incrémentale:
prendre la valeur qui aura le moins de possibilités de conflits
avec de futures instantiations.

Boi Faltings Satisfaction de Contraintes 39/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Algorithme (Min-conflicts)

X = variables
V = valeurs
C = contraintes

Function min-conflicts(X,V,C)
for i ← 1 to max-tries do

V ← assignation aléatoire
for j ← 1 to max-steps do

nconf ← check(V,C)
if nconf = 0 then

return V
else

trouver k tel que changer v[k] donne un nombre minimal de conflits
changer v[k]

retourner solution partielle V

Boi Faltings Satisfaction de Contraintes 40/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Exemple: min-conflicts

Assignation initiale: (x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflits: c(x1,x3) et c(x2,x4)
chang. conflits nconf

x1 → C c(x2,x4) 1
x2 → C c(x1,x3) 1
x3 → C c(x2,x4) 1
x4 → B c(x1,x3),c(x1,x4) 2

accepter (x1 → C): (x1 = C, x2 = A, x3 = B, x4 = A)
⇒ 1 conflit: c(x2,x4)
chang. conflits nconf

x1 → B c(x1,x3), c(x2,x4) 2
x2 → C c(x1,x2) 1
x3 → C c(x1,x3),c(x2,x4) 2
x4 → B - 0

accepter (x4 → B) ⇒ solution:

(x1 = C, x2 = A, x3 = B, x4 = B)

Boi Faltings Satisfaction de Contraintes 41/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Exemple 2: min-conflicts

Assignation initiale: (x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflits: c(x1,x3) et c(x2,x4)
chang. conflits nconf

x1 → C c(x2,x4) 1
x2 → C c(x1,x3) 1
x3 → C c(x2,x4) 1
x4 → B c(x1,x3),c(x1,x4) 2

accepter (x2 → C): (x1 = B, x2 = C, x3 = B, x4 = A)
⇒ 1 conflit: c(x1,x3)
chang. conflits nconf

x1 → C c(x1,x2) 1
x2 → A c(x1,x3),c(x2,x4) 2
x3 → C c(x2,x3) 1
x4 → B c(x1,x3),c(x1,x4) 2

aucune amélioration possible: minimum local!

Boi Faltings Satisfaction de Contraintes 42/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Recuit simulé

Problème:
le ”hill-climbing” conduit à des minima locaux

⇒ on peut manquer la solution
Idée:

parfois faire un changement non-optimal

Algorithme inspiré de la physique: solidification de verres

Boi Faltings Satisfaction de Contraintes 43/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Algorithme de recuit simulé

Function recuit(X,V,C)
V ← assignation aléatoire
T[max-steps] ← plan de réduction de ”température”
for j ← 1 to max-steps do

nconf ← check(V,C)
if nconf = 0 then return V
V’ ← V avec une valeur v[k] changée aléatoirement
if check(V’,C) < check(V,C) then

V ← V’
else

if random(0..1)<T[j] then V ← V’
return solution partielle V

Tableau T = liste de probabilités décroissantes

Boi Faltings Satisfaction de Contraintes 44/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Exemple: recuit simulé

Supposons T = (0.7,0.5,0.3,0.1,0.01,0.001)
Assignation initiale: (x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflits: c(x1,x3) et c(x2,x4)
chang. conflits mieux? accepter? assign.

x2 → C c(x1,x3) oui oui B,C,B,A

x4 → B
c(x1,x3),
c(x1,x4)

non oui B,C,B,B

x1 → C c(x1,x2) oui oui C,C,B,B

x3 → C
c(x1,x2),
c(x1,x3),
c(x2,x3)

non non C,C,B,B

x2 → A - oui oui C,A,B,B

Boi Faltings Satisfaction de Contraintes 45/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Satisfaction et Optimisation

Souvent, il faut trouver une solution optimale.

Optimalité = somme de critères:
⇒ détruit la localité
⇒ pas toutes les techniques sont applicables.

Optimalité = max/min de critères:
⇒ localité maintenue
⇒ pratiquement toutes les techniques s’appliquent.

Méthodes itératives plus simples à adapter.

Boi Faltings Satisfaction de Contraintes 46/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Satisfiabilité

Variante de la satisfaction de contraintes:

variables Booléennes, avec domaines vrai/faux.

contraintes = clauses (disjonctions) logiques.

solution = assignation qui rend toutes les clauses vrai (SAT)

solution = assignation qui maximise le nombre de clauses qui
sont vraies (Max-SAT).

il existe des solvers très efficaces.

Boi Faltings Satisfaction de Contraintes 47/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Application: Gestion de production d’automobiles

Usine Nissan de Sunderland (UK): deux chaines de production
pour deux types de voitures
Alternatives pour produire un troisième type de voiture:

construire une troisième chaine de production

intercaler la production sur les chaines existantes

Les méthodes classiques (R.O.) ne permettaient pas de modéliser
les contraintes relevant de la production de plusieurs modèles sur
une même chaine

Boi Faltings Satisfaction de Contraintes 48/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Solution par contraintes

La programmation par contraintes a permis de modéliser
correctement le problème
Résultats:

économie de la troisième ligne de production.

augmentée la production de 236’000 à 337’000 voitures sans
nouveaux équipements.

planification mieux respectée: le pourcentage de voitures
produites selon le plan a passé de 3% à 95%.

Boi Faltings Satisfaction de Contraintes 49/50

Satisfaction de Contraintes
Formulation

Algorithmes systematiques
Consistance

Recherche Locale

Méthode Déterministe
Méthode Probabiliste

Résumé

PSC = formalisme général de modèlisation de problèmes abductifs
Résolution de PSC par recherche:

Backjumping/forward checking/lookahead

Ordonnancement de variables

Solutions itératives

Techniques de consistance

Boi Faltings Satisfaction de Contraintes 50/50

	Satisfaction de Contraintes
	Formulation
	Algorithmes systematiques
	Recherche en profondeur d'abord
	Heuristiques DFS

	Consistance
	Consistance des arcs
	Complexité de recherche

	Recherche Locale
	Méthode Déterministe
	Méthode Probabiliste

