
Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Algorithmes de Recherche

Boi Faltings

Laboratoire d’Intelligence Artificielle
boi.faltings@epfl.ch

http://moodle.epfl.ch/

Boi Faltings Algorithmes de Recherche 1/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Exemple: diagnostic d’un circuit électrique

interrupteur connecté à une ampoule:
enclenché(int) ∧ ¬ défectueux(amp) ⇒ allumé(amp)

⇒ Règle diagnostic ”expert”:
enclenché(int) ∧ éteint(amp) ⇒ défectueux(amp)

Supposons qu’on découvre que l’interrupteur peut également
tomber en panne ⇒ nouvelle règle:
enclenché(int) ∧ éteint(amp) ⇒ défectueux(int)

Problème:
enclenché(int) ∧ éteint(amp) ⊢
défectueux(amp) et défectueux(int)

mais juste une des deux doit être vraie!

Contredit la monotonicité de la déduction!

Boi Faltings Algorithmes de Recherche 2/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Monotonicité de la déduction

Une inférence ne peut pas être falsifiée par de nouvelles
connaissances.

⇒ la déduction est monotone: on augmente continuellement la
base de connaissances.

Ne convient pas pour modéliser le diagnostic: une fois que la
cause est trouvée, tous les autres candidats ne sont plus
valables.

Boi Faltings Algorithmes de Recherche 3/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Inférences logiques

Considérez:

a) (prémisse) oiseau(Tweety)

b) (conclusion) vole(Tweety)

c) (modèle) (∀ x) oiseau(x) ⇒ vole(x)

3 Types d’inférences:

déduction: a), c) → b)

induction: a), b) → c)

abduction: b), c) → a)

L’abduction n’est valable que sous l’hypothèse d’un monde clos:
Il n’existe pas de règles qui n’ont pas été considérées par
l’algorithme.

Boi Faltings Algorithmes de Recherche 4/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Meilleure formulation: diagnostic = abduction

Modèle du circuit:

1 enclenché(int)∧¬défectueux(amp)∧¬défectueux(int)
⇒ allumé(amp)

2 défectueux(amp) ⇒ éteint(amp)

3 défectueux(int) ⇒ éteint(amp)

Diagnostic: expliquer éteint(amp) par abduction utilisant 2. et 3.

Boi Faltings Algorithmes de Recherche 5/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Autres problèmes abductifs

L’abduction construit des hypothèses des causes qui produisent un
certain effet:

diagnostic: observations ⇒ éléments défectueux

configuration: spécifications ⇒ composants

ordonnancement: contraintes ⇒ horaire

planification: buts à atteindre ⇒ opérations à effectuer

Element central de l’abduction: recherche d’une solution.

Boi Faltings Algorithmes de Recherche 6/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Résolution de problèmes par recherche

But d’un algorithme de recherche:
trouver une solution dont l’évaluation remplit des critères
de succès

Par exemple:

diagnostic: trouver un diagnostic qui explique les observations.

planification: trouver un plan qui est faisable et arrive au but.

mais aussi déduction en châınage arrière: trouver une
séquence d’inférences qui finit par les conditions initiales.

Boi Faltings Algorithmes de Recherche 7/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Formalisation d’algorithmes de recherche

3 élements qui caractérisent le problème:

Noeuds de recherche

Fonction de successeur

Critère de succès

Boi Faltings Algorithmes de Recherche 8/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Graphe de recherche

succ(n)

n

Noeud
initial

Noeud
final (but)

⇒ algorithmes généraux pour trouver le noeud final dans un temps
minimal

Boi Faltings Algorithmes de Recherche 9/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Noeud de recherche

Décrit l’état courant
Exemples:

solution abstraite: diagnostic partiellement détaillée.

solution partielle: état intermédiaire dans un plan.

ensemble des buts dans un systéme à châınage arrière.

Boi Faltings Algorithmes de Recherche 10/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Fonction de génération de successeurs

succ(n) = liste des noeuds atteignables de n
Exemples:

diagnostic: affiner les candidats.

planification: génération des situations atteignables par
application des actions disponibles.

inférence logique: application des règles dans un moteur
d’inférence.

Boi Faltings Algorithmes de Recherche 11/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Critère de succès

La recherche commence avec un ou plusieurs noeuds initiaux,
et se termine avec un noeud qui remplit la condition de
terminaison, appelée le noeud final.

Le noeud initial et la fonction de successeurs succ(n)
définissent un espace de recherche. Il s’agit d’un graphe
orienté dont les arcs représentent les noeuds atteignables par
la fonction succ(n).

Un algorithme de recherche effectue une exploration locale du
graphe de manière à trouver la solution avec un temps de
calcul minimal.

Normalement, on cherche une seule solution.

Boi Faltings Algorithmes de Recherche 12/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Exemple: simplification algebrique

7x+xy = (x+y)z

x(7+y) = (x+y)z 7x+xy = xz+yz

x(7+y−z) = yz

x = yz/(7+y−z)

7x−xz = yz−yx

7x−xz = y(z−x)

noeud initial

noeud but

7x+xy−xz = yz

Boi Faltings Algorithmes de Recherche 13/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

L’optimalité dans la recherche

La solution peut être:

a) le noeud final: par exemple, dans un système d’inférence ou
de conception.

b) le chemin au noeud final: par exemple, dans un système de
planification.

Surtout dans le cas b), on cherche le chemin à moindre coût:

chaque transition d’un noeud à son successeur a un coût

le coût d’un noeud est la somme des coûts du chemin

certains algorithmes garantissent que la solution trouvée a un
coût minimal.

Boi Faltings Algorithmes de Recherche 14/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

La recherche en profondeur d’abord (DFS)

Espace de recherche consideré comme arbre inversé:
1

2

3

4 5

6

7

Profondeur d’abord (Depth-first):

expansion du premier noeud
trouvé jusqu’à ce qu’il n’y a plus
de successeurs.

retour en arrière (backtrack):
retour à un niveau supérieur et
essai de la prochaine possibilité.

Avantage: peu de mémoire requise: liste des noeuds ”ouverts” et
de leurs successeurs encore non explorés.

Boi Faltings Algorithmes de Recherche 15/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

La recherche en largeur d’abord (BFS)

1

2 3

4 5 6 7

Couche 0

Couche 1

Couche 2

Largeur d’abord (breadth-first): génération de l’arbre de
recherche couche par couche.

Trouve toujours le chemin le plus court.

Exige beaucoup de mémoire pour stocker toutes les
alternatives à toutes les couches.

Boi Faltings Algorithmes de Recherche 16/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

Algorithmes

Profondeur d’abord:

1: Function DFS (Noeud-initial)
2: Q ← (Noeud-initial)
3: repeat
4: n ← first(Q), Q ← rest(Q)
5: if n est un noeud but, return n
6: S ← succ(n)
7: Q ← append(S, Q)
8: until Q est vide
9: return ECHEC

Largeur d’abord: échanger l’ordre dans le pas 7:
7. Q ← append(Q, S)

Boi Faltings Algorithmes de Recherche 17/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

Recherche en profondeur limitée (DLS)

Faiblesse de la recheche en largeur d’abord: exige une
quantité de mémoire exponentielle.
pas corrigeable!

Faiblesse de la recherche en profondeur d’abord: peut
descendre très loin dans un chemin inutile.

⇒ limiter à une profondeur maximale l :
pour tout noeud à profondeur l , on ne considère pas ses
successeurs.

Boi Faltings Algorithmes de Recherche 18/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

DLS

Profondeur d’abord:

1: Function DLS (Noeud-initial,l)
2: depth-limit(noeud-initial) ← l
3: Q ← (Noeud-initial)
4: repeat
5: n ← first(Q), Q ← rest(Q)
6: if n est un noeud but, return n
7: S ← succ(n)
8: for nn ∈ S do
9: depth-limit(nn) ← depth-limit(n)-1

10: if depth-limit(nn) ≥ 0 then Q ← append(nn,Q)
11: until Q est vide
12: return ECHEC

Comment choisir la limite l?
Boi Faltings Algorithmes de Recherche 19/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

Approfondissement itérative

Incrémenter la limite:

Function Iterative-deepening(Noeud-initial)
l ← 2
repeat
solution← DLS(Noeud − initial , l)
l ← l + 1

until solution ̸= {}
Chaque étape refait tout le travail de la précedente...
est-ce que c’est coûteux?

Boi Faltings Algorithmes de Recherche 20/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

Complexité

Si solution à profondeur l , l’algorithme a exploré tous les espaces
de profondeur l , l − 1, ..., 2.
Pour un nombre de noeuds c(i) = bi+1 − 1, la complexité totale
est:

l∑
i=2

c(i) =
l+1∑
i=3

(bi − 1)

=

(
bl+1

l−2∑
i=0

b−i

)
− (l − 1)

<

(
bl+1 · b

b − 1

)
− (l − 1) ≤ 2c(l)

si b ≥ 2, l ≥ 3
⇒ complexité pas plus que doublée.

Boi Faltings Algorithmes de Recherche 21/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

La recherche de graphes

Un même noeud peut être atteint par plusieurs chemins ⇒
duplication du travail:

x=a(b+c)-x-ab

x=ab+ac-x-ab

x=ac-x

2x=ac

2x=a(b+c)-ab

2x=ab+ac-ab

2x=ac

=!

=cycle!

Boi Faltings Algorithmes de Recherche 22/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

Recherche avec détection de cycles

1: Function DFS-cycle(Noeud-initial)
2: Q ← (Noeud initial)
3: C ← vide
4: repeat
5: n ← first(Q), Q ← rest(Q)
6: if n n’est pas membre de C then
7: if n est un noeud but, return n
8: ajouter n à C
9: S ← succ(n)

10: Q ← append(S, Q)
11: until Q est vide
12: return ECHEC

Boi Faltings Algorithmes de Recherche 23/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Profondeur d’abord
Largeur d’abord
Profondeur limitée
Recherche de graphes

Exemple d’une recherche

a

b

c

d

e

f

g

h

i

k

l

m

n

Recherche en profondeur d’abord: a ⇒ b ⇒ f ⇒ g ⇒ h
Recherche en largeur d’abord: a ⇒ {b,c,d} ⇒ {f,g,h,i,l,k}

Boi Faltings Algorithmes de Recherche 24/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Optimisation de coûts

Supposons qu’on cherche à minimiser le coût de la solution.

Modèle: chaque génération de successeurs rajoute un coût
c(n′, n): si n est successeur de n′, alors le coût g(n):

g(n) = c(n′, n) + g(n′) = c(n′, n) +
∑

n′,n′′∈ancetres(n)

c(n′, n′′)

Exemple: planification:

chaque expansion correspond à une action
coût du plan = somme des coûts des actions

Boi Faltings Algorithmes de Recherche 25/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Optimisation par DFS

Quand un noeud but est trouvé:

mémoriser si son coût est meilleur que le meilleur trouvé
ne pas générer des successeurs

Continuer la recherche jusqu’à ce que la list Q devient vide.

1: Function DFS (Noeud-initial)
2: Q ← (Noeud-initial); c ←∞; sol ← ECHEC
3: repeat
4: n ← first(Q), Q ← rest(Q)
5: if n est un noeud but then
6: if coût(n) < c then c ← coût(n); sol ← n
7: else
8: S ← succ(n)
9: Q ← append(S, Q)

10: until Q est vide
11: return sol

Boi Faltings Algorithmes de Recherche 26/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Branch-and-bound

Le coût d’un successeur n’est jamais inférieur à son ancètre.
⇒ si le coût d’un noeud n dépasse la coût d’un noeud but déjà
trouvé (le bound), on peut l’ignorer.

1: Function DFS (Noeud-initial)
2: Q ← (Noeud-initial); c ←∞; sol ← ECHEC
3: repeat
4: n ← first(Q), Q ← rest(Q)
5: if n est un noeud but then
6: if coût(n) < c then c ← coût(n); sol ← n
7: else
8: S ← succ(n)
9: for m ∈ S do

10: if coût(m) < c then Q ← append(m, Q)
11: until Q est vide
12: return sol

Boi Faltings Algorithmes de Recherche 27/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

La recherche heuristique

Approche: guider la recherche pour explorer d’abord les
solutions les plus prometteuses.

Cela peut être exprimé par une fonction heuristique:
h(n) = estimation du coût minimal à partir du noeud n jusquà
un noeud but.

Si g(n) = coût du chemin jusqu’au noeud n, alors la fonction
d’évaluation:

f(n) = g(n) + h(n)
est une estimation du coût du chemin optimal qui passe par n.

⇒ privilégier l’exploration des noeuds dont la valeur de f(n)
est basse: best-first (meilleur d’abord).

Boi Faltings Algorithmes de Recherche 28/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

L’algorithme A*

1: Function A*(Noeud-initial)
2: Q ← (Noeud initial)
3: C ← vide
4: repeat
5: n ← first(Q), Q ← rest(Q)
6: if n ̸∈ C, ou n ≡ n’ ∈ C mais g(n) < g(n’) then
7: if n est un noeud but, return n
8: ajouter n à C
9: S ← succ(n)

10: S ← sort(S,f)
11: Q ← merge(S, Q, f)
12: until Q est vide
13: return ECHEC

Boi Faltings Algorithmes de Recherche 29/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Exemple d’une recherche heuristique
a(10)

b(12)

c(4)

d(5)

e(4)

f(7)

g(4)

h

i(4)

k(2)

l(1)

m(1)

n

3

6

3

4

2

1

1

5

2

7

8

5

8

10

3

5

7

4
3

1. (a(10)) ⇒
2. (d(8),c(12),b(19)) ⇒
3. (k(9),l(10),c(12),i(14),b(19)) ⇒
4. (l(9),m(10),c(12),i(14),e(16),b(19)) ⇒
5. (m(10),n(11),c(12),i(14),e(16),b(19)) ⇒
6. (n(10),c(12),i(14),e(16),b(19)) ⇒ solution!

Boi Faltings Algorithmes de Recherche 30/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

L’optimalité de la solution de A*

Si toujours h(n) = 0, on explore les noeuds dans l’ordre de
leur coût: la solution optimale est garantie.

Lorsque l’algorithme doit choisir entre deux noeuds n et n’, si
h(n) surestime le vrai coût h∗(n) restant, on peut avoir:
g(n’)+h(n’)<g(n)+h(n) (>g(n)+h∗(n))

même si le coût total du chemin par n est moins important
que celui par n’:
g(n’)+h∗(n’)>g(n)+h∗(n)

⇒ l’algorithme pourrait s’arrêter avec la solution n′ qui est
sous-optimale!

On peut prouver que A* trouve toujours la solution optimale
tant que h(n) ne sur-estime pas le vrai coût jusqu’au noeud
final.

Boi Faltings Algorithmes de Recherche 31/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Complexité polynomiale

La complexité de A∗ est meilleure que tout autre algorithme qui
garantit l’optimalité de la solution, mais toujours exponentielle
dans la longueur de la solution.
Si l’erreur de la fonction heuristique ne croit pas plus rapidement
que le logarithme de sa valeur:

|h∗(n)− h(n)| ≤ O(logh∗(n))

alors le nombre de noeuds exploré par A∗ est polynomial en
fonction de la longueur.

Boi Faltings Algorithmes de Recherche 32/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Trouver une fonction heuristique

Simplifier le problème ⇒
plus simple à optimiser.

coût réduit.

Exemples:

trouver un chemin dans un graphe ⇒ bouger en ligne droite.

ignorer les contraintes de précedence dans un
ordonnancement.

Boi Faltings Algorithmes de Recherche 33/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Limitations de mémoire

La queue Q de A* peut devenir très longue.
Idées:

“Beam Search”: garder les n meilleurs noeuds seulement,
jamais explorer les autres.

Iterative Deepening A∗: effectuer un depth-first search jusqu’à
un certain seuil de la fonction d’évaluation. Attention: on ne
peut augmenter le seuil qu’en très petits incréments!

Memory-bounded A∗: techniques pour “oublier” et regénerer
des noeuds.

Boi Faltings Algorithmes de Recherche 34/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Chemins multiples

Quand on trouve un nouveau chemin à un noeud n, déjà visité, il
se peut que le chemin soit meilleur:

1 si n n’avait pas encore été étendu:
mettre à jour son coût, chemin et position dans Q.

2 si n avait déjà été étendu (∈ C): mettre à jour les successeurs
de n dans Q.

Exemple: chemin d → l remplacé par d → k → l

Boi Faltings Algorithmes de Recherche 35/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Exemple
a(10)

b(12)

c(4)

d(5)

e(4)

f(7)

g(4)

h

i(4)

k(2)

l(1)

m(1)

n

3

6

3

4

2

1

1

5

2

7

8

5

8

10

3

5

7

4
3

1. (a(10)) ⇒
2. (d(8),c(12),b(19)) ⇒
3. (k(9),l(10),c(12),i(14),b(19)) ⇒
4. (l(9),m(10),c(12),i(14),e(16),b(19)) ⇒
5. (m(10),n(11),c(12),i(14),e(16),b(19)) ⇒
6. (n(10),c(12),i(14),e(16),b(19)) ⇒ solution!

Boi Faltings Algorithmes de Recherche 36/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Le critère de monotonicité

Si h(k) = 4, on aurait étendu le noeud l avant de trouver le
meilleur chemin par k ⇒ suite de la recherche doit être
repetée.

Cela peut être evité par la restriction de
monotonicité:

h(n1)− h(n2) ≤ c(n1, n2)

= la différence entre les fonctions heuristiques de deux noeuds
ne doit jamais dépasser le coût nécessaire pour passer de l’un
à l’autre.

Boi Faltings Algorithmes de Recherche 37/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Branch-and-bound
L’algorithme A*
La fonction heuristique

Profondeur/Largeur d’abord...

A* peut simuler l’algorithme de profondeur d’abord: g(n) = 0,
h(n) = < ordre dans succ(n) >

A* peut aussi simuler l’algorithme de largeur d’abord:
g(n) = < longueur du chemin > h(n) = 0

⇒ le comportement de A* se trouve entre les deux
algorithmes.

Boi Faltings Algorithmes de Recherche 38/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Temps de calcul d’un algorithme de recherche

Temps minimal ≃ longueur du chemin à la solution

Temps maximal ≃ exploration de tout le graphe

Dépend uniquement de l’ordre de l’exploration!

⇒ très imprévisible

Boi Faltings Algorithmes de Recherche 39/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Temps de calcul moyen

3 cas:

beaucoup d’options, beaucoup de noeuds finaux:
⇒ probabilité elevée de tomber sur une solution
⇒ temps de calcul faible

peu d’options, pas de noeuds finaux:
⇒ graphe de recherche petit
⇒ parcours complet en peu de temps

beaucoup d’options, un seul noeud final:
⇒ parcourir la moitié du graphe
⇒ temps de calcul élevé

Boi Faltings Algorithmes de Recherche 40/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Transitions de phase

|options|

temps

⇒ classification des algorithmes selon la forme de la courbe.

Boi Faltings Algorithmes de Recherche 41/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Application: routage de véhicules autonomes

Les véhicules autonomes (Autonomous Guided Vehicle)
transportent des matériaux à l’intérieur d’usines.

Normalement, ils sont programmés par des règles de
comportement.

Ils ne tiennent pas compte de l’interaction entre vehicules, ni
de pannes

Système de recherche heuristique basé sur A∗ pour chercher
les meilleures mouvements a été mis au point par Lookahead
Decisions:

améliore le débit de 83%
réduit le temps moyen de parcours de 25%
réduit le nombre d’arrêts de 48%

Boi Faltings Algorithmes de Recherche 42/43

Raisonnement abductif
Algorithmes de Recherche

Recherche sans coûts
Recherche avec coûts

Temps de calcul

Résumé

Les algorithmes de recherche sont l’outil de base pour le
raisonnement abductif.

Recherche d’arbres: l’approfondissement iteratif combine les
avantages de la recherche en profondeur et largeur d’abord.

Recherche de graphes: la detection de cycles est important
mais consomme de la memoire.

Recherche heuristique: A* peut trouver la solution optimale
de manière efficace.

Boi Faltings Algorithmes de Recherche 43/43

	Raisonnement abductif
	Algorithmes de Recherche
	Recherche sans coûts
	Profondeur d'abord
	Largeur d'abord
	Profondeur limitée
	Recherche de graphes

	Recherche avec coûts
	Branch-and-bound
	L'algorithme A*
	La fonction heuristique

	Temps de calcul

