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Raisonnement abductif

Exemple: diagnostic d'un circuit électrique

@ interrupteur connecté a une ampoule:
enclenché(int) A — défectueux(amp) =- allumé(amp)

= Reégle diagnostic "expert”:
enclenché(int) A éteint(amp) = défectueux(amp)

@ Supposons qu’'on découvre que l'interrupteur peut également
tomber en panne = nouvelle regle:
enclenché(int) A éteint(amp) = défectueux(int)

@ Probleme:
enclenché(int) A éteint(amp) +

défectueux(amp) et défectueux(int)
mais juste une des deux doit &tre vraiel

@ Contredit la monotonicité de la déduction!
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Raisonnement abductif

Monotonicité de la déduction

@ Une inférence ne peut pas étre falsifiée par de nouvelles
connaissances.
= la déduction est monotone: on augmente continuellement la
base de connaissances.
@ Ne convient pas pour modéliser le diagnostic: une fois que la
cause est trouvée, tous les autres candidats ne sont plus
valables.
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Raisonnement abductif

Inférences logiques

Considérez:

a) (prémisse) oiseau(Tweety)

b) (conclusion) vole(Tweety)

c) (modele) (V x) oiseau(x) = vole(x)
3 Types d'inférences:

e déduction: a), c) — b)

e induction: a), b) — ¢)

e abduction: b), c) — a)

L'abduction n'est valable que sous I'"hypothése d'un monde clos:
Il n’existe pas de régles qui n'ont pas été considérées par
I'algorithme.
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Raisonnement abductif

Meilleure formulation: diagnostic = abduction

Modele du circuit:

© enclenché(int) A—défectueux(amp) A—défectueux(int)
= allumé (amp)

@ défectueux(amp) = éteint(amp)
© défectueux(int) = éteint(amp)

Diagnostic: expliquer éteint (amp) par abduction utilisant 2. et 3.
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Raisonnement abductif

Autres problemes abductifs

L'abduction construit des hypothéses des causes qui produisent un
certain effet:

@ diagnostic: observations = éléments défectueux

@ configuration: spécifications = composants

@ ordonnancement: contraintes = horaire

@ planification: buts a atteindre = opérations a effectuer

Element central de I'abduction: recherche d'une solution.
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Algorithmes de Recherche

Résolution de problemes par recherche

But d'un algorithme de recherche:

trouver une solution dont I'évaluation remplit des critéres
de succés

Par exemple:
@ diagnostic: trouver un diagnostic qui explique les observations.

@ planification: trouver un plan qui est faisable et arrive au but.

@ mais aussi déduction en chalnage arriere: trouver une
séquence d'inférences qui finit par les conditions initiales.
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Algorithmes de Recherche

Formalisation d'algorithmes de recherche

3 élements qui caractérisent le probléme:
@ Noeuds de recherche
@ Fonction de successeur

@ Critére de succes
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Algorithmes de Recherche

Graphe de recherche

succ(n)
— Noeud
/N final (but)

Noeud
initial

N
= algorithmes généraux pour trouver le noeud final dans un temps
minimal
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Algorithmes de Recherche

Noeud de recherche

Décrit I'état courant
Exemples:

@ solution abstraite: diagnostic partiellement détaillée.
@ solution partielle: état intermédiaire dans un plan.

@ ensemble des buts dans un systéme a chainage arriere.
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Algorithmes de Recherche

Fonction de génération de successeurs

succ(n) = liste des noeuds atteignables de n
Exemples:

@ diagnostic: affiner les candidats.

@ planification: génération des situations atteignables par
application des actions disponibles.

@ inférence logique: application des régles dans un moteur
d'inférence.
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Algorithmes de Recherche

Critére de succes

@ La recherche commence avec un ou plusieurs noeuds initiaux,
et se termine avec un noeud qui remplit la condition de
terminaison, appelée le noeud final.

@ Le noeud initial et la fonction de successeurs succ(n)
définissent un espace de recherche. |l s'agit d'un graphe
orienté dont les arcs représentent les noeuds atteignables par
la fonction succ(n).

@ Un algorithme de recherche effectue une exploration locale du
graphe de maniére a trouver la solution avec un temps de
calcul minimal.

@ Normalement, on cherche une seule solution.
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Algorithmes de Recherche

Exemple: simplification algebrique
w noeud initial

X(7+y) = (x+y)z 7X+XY = XZ+YZ

7x+xy—xz yz

fx-i N
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Algorithmes de Recherche

L'optimalité dans la recherche

La solution peut étre:

a) le noeud final: par exemple, dans un systeme d’inférence ou
de conception.

b) le chemin au noeud final: par exemple, dans un systeme de
planification.

Surtout dans le cas b), on cherche le chemin a moindre coiit:
@ chaque transition d'un noeud a son successeur a un cofit
@ le coiit d’'un noeud est la somme des colits du chemin

@ certains algorithmes garantissent que la solution trouvée a un
colit minimal.
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Profondeur d'abord

Recherche sans colits

La recherche en profondeur d'abord (DFS)

Espace de recherche consideré comme arbre inversé:
1

Profondeur d'abord (Depth-first):

@ expansion du premier noeud
trouvé jusqu'a ce qu'il n'y a plus
de successeurs.

@ retour en arriere (backtrack):
retour a un niveau supérieur et
essai de la prochaine possibilité.

4 5 7

Avantage: peu de mémoire requise: liste des noeuds "ouverts” et
de leurs successeurs encore non explorés.
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Profondeur d'abord
Largeur d'abord
p

Recherche sans colits
deur lim

Recherche de graphes

La recherche en largeur d'abord (BFS)

Couche 0

Couche 1

Couche 2

@ Largeur d’abord (breadth-first): génération de I'arbre de
recherche couche par couche.

@ Trouve toujours le chemin le plus court.

@ Exige beaucoup de mémoire pour stocker toutes les
alternatives a toutes les couches.
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Profondeur d'abord
" Largeur d'abord
Recherche sans colits 3
Profondeur limitée

1e de graphes

Algorithmes

Profondeur d'abord:
1. Function DFS (Noeud-initial)
2: Q < (Noeud-initial)
3. repeat
4: n <+ first(Q), Q + rest(Q)
5. if n est un noeud but, return n
6: S < succ(n)
7. Q « append(S, Q)
8: until Q est vide
9: return ECHEC
Largeur d'abord: échanger I'ordre dans le pas 7:
7. Q + append(Q, S)
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Larg
Profondeur lim
Recherche de g

Recherche sans colits

Recherche en profondeur limitée (DLS)

o Faiblesse de la recheche en largeur d'abord: exige une
quantité de mémoire exponentielle.
pas corrigeable!
@ Faiblesse de la recherche en profondeur d'abord: peut
descendre tres loin dans un chemin inutile.
@ = limiter a une profondeur maximale /:
pour tout noeud a profondeur |, on ne considére pas ses
successeurs.
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Profondeur d'abord
Largeur d'abord
Profondeur limitée
Recherche de graphes

Recherche sans colits

Profondeur d'abord:

sy

e
= O

Function DLS (Noeud-initial,l)
depth-limit(noeud-initial) < |
Q < (Noeud-initial)
repeat
n « first(Q), Q «+ rest(Q)
if n est un noeud but, return n
S < succ(n)
for nn € S do
depth-limit(nn) < depth-limit(n)-1
if depth-limit(nn) > 0 then Q « append(nn,Q)

- until Q est vide
12:

return ECHEC

Comment choisir la limite /?

Boi Faltings
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abord
Recherche sans colits

Recherche de graphes

Approfondissement itérative

Incrémenter la limite:
Function Iterative-deepening(Noeud-initial)
/2
repeat
solution <— DLS(Noeud — initial, I)
I~ 1+1
until solution # {}
Chaque étape refait tout le travail de la précedente...
est-ce que c'est coliteux?
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abord
Recherche sans colits

Recherche de graphes

Complexité

Si solution a profondeur /, I'algorithme a exploré tous les espaces
de profondeur /, I — 1, ..., 2.
Pour un nombre de noeuds c(i) = b'*! — 1, la complexité totale

est:
I 1+1 )
doeliy = D (b -1)
i=2 i=3
b’“Zb (1-1)
< (bt L —(I=1)<2¢())
b—1 =

sib>21>3

= complexité pas plus que doublée.
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ur d'abord
a r d’abol
B deur limitée
Recherche de graphes

Recherche sans colits

La recherche de graphes

Un méme noeud peut étre atteint par plusieurs chemins =

duplication du travail:
x=a(b+c)-x-ab

x=ab+ac-x-ab 2x=a(b+c)-ab

X=ac-x

2x=ab+ac-ab

2x=ac 2x=ac
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Profondeur d'abord
Recherche sans colits

Recherche de graphes

Recherche avec détection de cycles

1. Function DFS-cycle(Noeud-initial)
2: Q < (Noeud initial)

3: C « vide

4: repeat

5. n <« first(Q), Q « rest(Q)

6: if n n'est pas membre de C then
7: if n est un noeud but, return n
8: ajouter na C

9: S <« succ(n)

10: Q «+ append(S, Q)

11: until Q est vide

. return ECHEC

[ary
N
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e abord
"abord
deur limitée
Recherche de graphes

Recherche sans colits

Exemple d'une recherche

Recherche en profondeur d'abord: a = b= f=g=h
Recherche en largeur d'abord: a = {b,c,d} = {f,g,h,i,l.k}
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and-bound
ithme A*
Recherche avec coiits La fonction heuristique

Optimisation de colfits

@ Supposons qu'on cherche a minimiser le coiit de la solution.

o Modele: chaque génération de successeurs rajoute un cofiit
c(n’,n): si n est successeur de n', alors le colit g(n):

g(n)=c(n'.n)+g(n)=c(n',n)+ > c(n,n")
n’,n’’ €ancetres(n)

@ Exemple: planification:

e chaque expansion correspond a une action
e coiit du plan = somme des coiits des actions
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Branch-and-bound
L
Recherche avec coiits L tion heuristique

Optimisation par DFS

Quand un noeud but est trouvé:
@ mémoriser si son colit est meilleur que le meilleur trouvé
@ ne pas générer des successeurs

Continuer la recherche jusqu'a ce que la list Q devient vide.

1: Function DFS (Noeud-initial)
2: Q < (Noeud-initial); ¢ < oo; sol < ECHEC
3: repeat

4;  n <« first(Q), Q + rest(Q)

5. if n est un noeud but then

6: if colit(n) < c then c < coit(n); sol <— n
7. else

8: S + succ(n)

9: Q + append(S, Q)

10: until Q est vide
11: return sol
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Branch-and-bound

Recherche avec coiits

Branch-and-bound

Le colit d'un successeur n'est jamais inférieur a son ancetre.
= si le colit d'un noeud n dépasse la coiit d'un noeud but déja
trouvé (le bound), on peut l'ignorer.

1: Function DFS (Noeud-initial)

2: Q + (Noeud-initial); ¢ + oo; sol + ECHEC

3. repeat

4;  n <« first(Q), Q + rest(Q)

5. if n est un noeud but then

6: if colit(n) < c then c < colit(n); sol <— n
7. else

8: S + succ(n)

9: for m € S do
10: if colit(m) < c then Q < append(m, Q)
11: until Q est vide

12: return sol
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Branch-and-bound
L’algorithme A*
Recherche avec coiits La fonction heuristique

La recherche heuristique

@ Approche: guider la recherche pour explorer d’abord les
solutions les plus prometteuses.

o Cela peut étre exprimé par une fonction heuristique:
h(n) = estimation du colit minimal & partir du noeud n jusqua
un noeud but.

@ Si g(n) = coiit du chemin jusqu'au noeud n, alors la fonction
d'évaluation:

f(n) = g(n) + h(n)
est une estimation du colit du chemin optimal qui passe par n.

e = privilégier I'exploration des noeuds dont la valeur de f(n)
est basse: best-first (meilleur d’abord).
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Branch-and-bound
L’algorithme A*
Recherche avec coiits La fonction heuristique

L'algorithme A*

1: Function A*(Noeud-initial)
2: Q < (Noeud initial)

3: C < vide

4: repeat

5. n <« first(Q), Q < rest(Q)

6: ifn¢g C,oun=n"¢e Cmais g(n) < g(n') then
7: if n est un noeud but, return n

8: ajouter na C

0: S « succ(n)

10: S <« sort(S,f)

11: Q + merge(S, Q, f)
12: until Q est vide
13: return ECHEC
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Branch-and-bound
L’algorithme A*
Recherche avec coiits La fonction heuristique

Exemple d'une recherche heuristique

1. (a(10)) =

2. (d(8),¢(12),b(19)) =

3. (k(9).1(10),¢(12),i(14),b(19)) =

4. (1(9),m(10),c(12),i(14),e(16),b(19)) =
5. (m(10),n(11),c(12),i(14) e(16),b(19)) =
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and-bound
me A*
Recherche avec coiits on heuristique

L'optimalité de la solution de A*

@ Si toujours h(n) = 0, on explore les noeuds dans |'ordre de
leur colit: la solution optimale est garantie.

@ Lorsque I'algorithme doit choisir entre deux noeuds n et n’, si
h(n) surestime le vrai colit h*(n) restant, on peut avoir:
g(n’)+h(n’)<g(n)+h(n) (>g(n)+h*(n))
méme si le colit total du chemin par n est moins important
que celui par n":
g(n’)+h*(n’)>g(n)+h*(n)
= l'algorithme pourrait s'arréter avec la solution n’ qui est
sous-optimale!
@ On peut prouver que A* trouve toujours la solution optimale
tant que h(n) ne sur-estime pas le vrai coiit jusqu'au noeud
final.
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and-bound
ithme A*
Recherche avec coiits La fonction heuristique

Complexité polynomiale

La complexité de A* est meilleure que tout autre algorithme qui
garantit 'optimalité de la solution, mais toujours exponentielle
dans la longueur de la solution.

Si I'erreur de la fonction heuristique ne croit pas plus rapidement
que le logarithme de sa valeur:

[ (n) = h(n)| < O(logh™(n))

alors le nombre de noeuds exploré par A* est polynomial en
fonction de la longueur.
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and-bound
ithme A*
Recherche avec coiits La fonction heuristique

Trouver une fonction heuristique

Simplifier le probleme =
@ plus simple a optimiser.
@ colit réduit.
Exemples:
@ trouver un chemin dans un graphe = bouger en ligne droite.

@ ignorer les contraintes de précedence dans un
ordonnancement.
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and-bound
ithme A*
Recherche avec coiits La fonction heuristique

Limitations de mémoire

La queue Q de A* peut devenir trés longue.
Idées:

@ "“Beam Search”: garder les n meilleurs noeuds seulement,
jamais explorer les autres.

o lterative Deepening A*: effectuer un depth-first search jusqu'a
un certain seuil de la fonction d'évaluation. Attention: on ne
peut augmenter le seuil qu'en tres petits incréments!

@ Memory-bounded A*: techniques pour “oublier” et regénerer
des noeuds.
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and-bound
ithme A*
Recherche avec coiits La fonction heuristique

Chemins multiples

Quand on trouve un nouveau chemin a un noeud n, déja visité, il
se peut que le chemin soit meilleur:

@ si n n'avait pas encore été étendu:
mettre a jour son coiit, chemin et position dans Q.

@ si n avait déja été étendu (€ C): mettre a jour les successeurs
de n dans Q.

Exemple: chemin d — | remplacé pard — k — |
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Branch-and-bound
L'algorithme A*
Recherche avec coiits La fonction heuristique

Exemple

a(10)) =
d(8),c(12),b(19)) =
k(9).1(10),¢(12),i(14),b(19)) =
1(9),m(10),c(12),i(14),e(16),b(1 )) =
m(10),n(11),c(12),i(14),e(16),b
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and-bound
ithme A*
Recherche avec coiits La fonction heuristique

Le critéere de monotonicité

@ Si h(k) = 4, on aurait étendu le noeud | avant de trouver le
meilleur chemin par k = suite de la recherche doit étre
repetée.

o Cela peut étre evité par la restriction de

monotonicité:

h(nl) — h(n2) S c(nl, n2)

= la différence entre les fonctions heuristiques de deux noeuds
ne doit jamais dépasser le colit nécessaire pour passer de |'un
a l'autre.
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Branch-and-bound
L'algorithme A*
Recherche avec coiits La ction heuristique

Profondeur/Largeur d'abord...

e A* peut simuler I'algorithme de profondeur d’abord: g(n) = 0,
h(n) = < ordre dans succ(n) >

@ A* peut aussi simuler |'algorithme de largeur d'abord:
g(n) = < longueur du chemin > h(n) =0

@ = le comportement de A* se trouve entre les deux
algorithmes.
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Temps de calcul

Temps de calcul d'un algorithme de recherche

@ Temps minimal ~ longueur du chemin a la solution
@ Temps maximal ~ exploration de tout le graphe
@ Dépend uniquement de I'ordre de I'exploration!

@ = trés imprévisible
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Temps de calcul

Temps de calcul moyen

3 cas:

@ beaucoup d'options, beaucoup de noeuds finaux:
= probabilité elevée de tomber sur une solution
= temps de calcul faible

@ peu d'options, pas de noeuds finaux:
= graphe de recherche petit
= parcours complet en peu de temps

@ beaucoup d'options, un seul noeud final:
= parcourir la moitié du graphe
= temps de calcul élevé
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Temps de calcul

Transitions de phase

temps

loptionsl

= classification des algorithmes selon la forme de la courbe.
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Temps de calcul

Application: routage de véhicules autonomes

@ Les véhicules autonomes (Autonomous Guided Vehicle)
transportent des matériaux a |'intérieur d'usines.

@ Normalement, ils sont programmés par des regles de
comportement.

@ lIs ne tiennent pas compte de l'interaction entre vehicules, ni
de pannes
@ Systeme de recherche heuristique basé sur A* pour chercher

les meilleures mouvements a été mis au point par Lookahead
Decisions:

o améliore le débit de 83%
o réduit le temps moyen de parcours de 25%
o réduit le nombre d'arréts de 48%
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Temps de calcul

Résumé

@ Les algorithmes de recherche sont I'outil de base pour le
raisonnement abductif.

@ Recherche d'arbres: I'approfondissement iteratif combine les
avantages de la recherche en profondeur et largeur d'abord.

@ Recherche de graphes: la detection de cycles est important
mais consomme de la memoire.

@ Recherche heuristique: A* peut trouver la solution optimale
de maniére efficace.
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