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Limites de la logique

Le monde ne suit pas exactement la logique:

informations insuffisantes.

imprécision de la modélisation.

conclusions disjonctives non modélisable par des clauses de
Horn.

⇒ le raisonnement est incertain.
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Représentation de l’Incertitude

Principe:
associer à chaque proposition une représentation
numérique de l’incertitude: plausibilité.

Raisonnement Bayesien:

la plausibilité tient compte de l’ensemble des évidences.

⇒ mise à jour pendant le raisonnement:
plausibilité à-priori ⇒ plausibilité à-posteriori.
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Desiderata

Associer une plausibilité à chaque prémisse.

Pour chaque déduction, calculer la plausibilité de la conclusion
sur la base des plausibilités des prémisses et des règles.

Nécessite que la plausibilité doit être indépendent se sa
dérivation.
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Formalismes pour l’incertitude

Logique floue:
facile à appliquer mais sans base théorique solide.

Raisonnement probabiliste:
très bien fondée, mais difficile à appliquer.

Réseaux Bayesiens: facile à appliquer et théoriquement bien
fondées, mais applicables uniquement dans une interprétation
causale.
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Exemple: système d’alarme

3 détecteurs: M(ouvement), E(ntrée), V(itre).

Déclenchées soit par le propriétaire soit par un cambrioleur.

On aimerait trouver une fonction d’alarme qui détecte les
cambrioleurs, mais pas les propriétaires.
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Modélisation avec des facteurs de certitude

A⇒ B : CF (B) = CF (A) ∗ CF (Règle)

M = ”Détecteur de mouvement”, CF = 1.0
R1: M ⇒ C = ”Cambrioleur présent”, CF=0.1
R2: M ⇒ P = ”Proprietaire présent”, CF=0.9

⇒
C, CF = 0.1
P, CF = 0.9
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Lacune 1: influence du context

Suppons que le propriétaire est enregistré à un autre endroit.

⇒ ¬P avec certitude.

⇒ seul un cambrioleur peut déclencher le détecteur:
M ⇒ C avec CF >> 0.1 (par exemple, 0.99).

Il faut modéliser l’interdépendence de P et C !
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Lacune 2: chainages inadmissibles

Supposons que nous savons qu’un cambrioleur est présent.

⇒ le détecteur de mouvement sera sûrement déclenché.

⇒ le propriétaire est également présent, par la règle R2!

Problème: nous avons negligé l’interdépendance: les cas où le
détecteur est declenché par le cambrioleur est justement pas
celui où il est declenché par le propriétaire!
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Logique probabiliste

Caractériser l’incertitude par la probabilité:

p(A) = probabilité que la proposition A est vraie
p(¬A) = 1− p(A) = probabilité que A est fausse

A devient une variable aléatoire avec valeurs {vrai , faux}:
P(A) = distribution [p(A), p(¬A)].
Majuscule = distribution, minuscule = probabilité.

P(A,B) = [p(A,B), p(A,¬B), p(¬A,B), p(¬A,¬B)].
P(X1,X2, ..,Xn) = [p(X1, ..,Xn), p(¬X1, ..,Xn)...]
(2n valeurs).

p(X |Y ) = p(X ,Y )/p(Y ) = probabilité que X est vrai étant
donnée que Y est egalement vrai

p(X |Y ) + p(¬X |Y ) = 1
(mais p(X |Y ) + p(X |¬Y ) n’est pas toujours = 1)
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Signification de la probabilité

normalement, probabilité ≃ fréquence.

mais le raisonnement n’a lieu qu’une seule fois.

Probabilité ≃ lotterie:

p(A) = x ⇔ dans un pari qui paie 1 Fr. si A est
vrai, je suis prêt à mettre ≤ x Fr.
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Réseaux Bayesiens
Résolution stochastique

Logique probabiliste
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Raisonnement Bayesien

Observation ⇒ la probabilité attribuée à une proposition change:

Proposition Prob. à priori Observation Prob. à postériori

C p0(C ) = 0.01

M p(C |M) = 0.18
¬M p(C |¬M) = 0.0036

P p0(P) = 0.5 M p(P|M) = 0.95
¬M p(P|¬M) = 0.15

p0(P) = 0.01 M p(P|M) = 0.019
¬M p(P|¬M) = 0.003

Règle de Bayes:

p(P|M) = p0(P)p(M|P)/p(M)

p(M|P)/p(M) caractérise l’incertitude de l’inférence.
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Réseaux Bayesiens
Résolution stochastique

Logique probabiliste
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Boi Faltings Raisonnement Incertain 12/53



Introduction
Raisonnement probabiliste
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Inférence probabiliste

Déduction:
p(M), régle M ⇒ C

Probabilité à-posteriori p(C ) se calcule comme suit:

p(C ) = p(C |M) · p(M) + p(C |¬M)(1− p(M))

où p(M) caractérise la certitude de la condition et

p(C |M) = p(C ,M)/p(M) = p0(C )p(M|C )/p(M)

ou p(M|C )/p(M) caractérise l’incertitude de la règle.
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Contre-factuels

Différence par rapport aux CF:
le calcul prend en compte p(C |¬M)

Permet de modéliser la probabilité à-priori:

elevée: p(P|¬M) est elevée, P reste probable même si M
n’est pas vrai.

faible: p(C |¬M) est petit, alors il faut que M soit assez
certain pour rendre C une conclusion probable.
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Châınage des inférences

Exemple 1:
P(roprietaire) ⇒ M(ouvement) ⇒ A(larme)

P(P) = [0.9, 0.1],
P(M|P) = [0.84, 0.16],
P(M|¬P) = [0.06, 0.94]
⇒ p(M) = 0.9 · 0.84 + 0.1 · 0.06 = 0.762

P(A|M) = [1, 0],
P(A|¬M) = [0.01, 0.99]
⇒ p(A) = 0.762 · 1 + 0.238 · 0.01 = 0.764

inférence correcte.
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Châınage des inférences
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Châınage des inférences

Exemple 2:
P(roprietaire) ⇒ M(ouvement) ⇒ C(ambrioleur)

P(P) = [0.9, 0.1],
P(M|P) = [0.84, 0.16],
P(M|¬P) = [0.06, 0.94]
⇒ p(M) = 0.9 · 0.84 + 0.1 · 0.06 = 0.762

P(C |M) = [0.18, 0.82],
P(C |¬M) = [0.0036, 0.99]
⇒ p(C ) = 0.762 · 0.18 + 0.238 · 0.0036 ≃ 0.138

pas juste: la probabilité de C ne devrait pas augmenter
(prob. à priori = 0.01).
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Exemple 2 (suite)

P(C ,M|P) ̸= p(C |M)P(M|P)!
Calcul correct tient compte des dépendances entre P, M et C:

p(C ) = p(C |M,P)︸ ︷︷ ︸
=0

p(M,P)︸ ︷︷ ︸
=0.76

+ p(C |¬M,P)︸ ︷︷ ︸
=0

p(¬M,P)︸ ︷︷ ︸
=0.14

+ p(C |M,¬P)︸ ︷︷ ︸
=0.99

p(M,¬P)︸ ︷︷ ︸
=0.006

+ p(C |¬M,¬P)︸ ︷︷ ︸
=0.01

p(¬M,¬P)︸ ︷︷ ︸
=0.094

= 0.9 · 0.006 + 0.01 · 0.094 = 0.00634
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Complexité

Pour être sur de faire le bon calcul, on devrait tenir compte des
dépendances partout.
Exemple:

20 propositions (variables aléatoires) V1, ..,V20

calculer p(X ) demande la distribution P(X |V1, ..,V20)
P(X |V1, ..,V20) = {p(X |V1, ..,V20), p(X |¬V1, ..,V20), ..}
⇒ 220 ≈ 1′000′000 valeurs!

Q: Comment peut-on réduire les dépendances?
R: En se limitant aux causes directes.
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Causalité
Indépendance
Inférence Abductive
Chemins multiples

Causalité

P(roprietaire) est une cause de M(ouvement), et

M(ouvement) est une cause de A(larme);

alors: P → M → A permet la propagation locale des
probabilités!

mais:

C(ambrioleur) est une cause de M(ouvement), et

P(roprietaire) est une cause de M(ouvement);

mais si C explique déjà M, P n’est pas plus probable

donc: C → M ← P n’admet pas la propagation locale des
probabilités!
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Indépendance
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Graphe des influences causales

Formalisation comme graphe:

E(ntrée)

P(roprietaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)

x → y : x est une cause de y

Possible: C ⊢ E ⊢ A
Impossible: C ⊢ M ⊢ P, E ⊢ A ⊢ V , ...
M,E ,A sont bloquants: destination de plusieurs flèches.
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Inférence Abductive
Chemins multiples

Graphe des influences causales

Formalisation comme graphe:

E(ntrée)

P(roprietaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)

x → y : x est une cause de y
Possible: C ⊢ E ⊢ A

Impossible: C ⊢ M ⊢ P, E ⊢ A ⊢ V , ...
M,E ,A sont bloquants: destination de plusieurs flèches.
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Ordre Causale

La causalité implique un ordre des variables:
cause > effet ⇔ parent > descendant

E(ntrée)

P(roprietaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)

noeud parents descendants

P {} {M,E}
C {} {M,E ,V }
M {P,C} {A}
E {P,C} {A}
V {C} {A}
A {M,E ,V } {}
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Prix de Turing

En 2012, le prix de Turing a été decerné à Judea Pearl (UCLA):

For fundamental contributions to artificial intelligence
through the development of a calculus for probabilistic and
causal reasoning.

que nous allons voir maintenant.
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Indépendance conditionelle

A B C

Indépendance de A et C :

p(C |A) = p(C |¬A) = p(C )

n’est pas donnée à cause de l’influence à travers B.

Par contre, nous pouvons profiter de l’indépendance conditionelle
de A et C étant donné B:

p(C |A,B) = p(C |¬A,B) = p(C |B)

et de même pour ¬B.
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Utilité pour l’inférence

Châınage:

p(C |A) = p(C |A,B) · p(B|A) + p(C |A,¬B) · p(¬B|A)

A, C conditionellement indépendants étant donné B:

p(C |A) = p(C |B) · p(B|A) + p(C |¬B) · (1− p(B|A))
=

∑
b=B,¬B

p(C |b)p(b|A)

⇒ il suffit de connâıtre P(C |B) et P(B|A) au lieu de P(C |A,B).
On appele ce châınage la marginalisation de B.
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Descendants multiples

Les descendants multiples ne mettent pas en cause l’indépendance
conditionelle:

B

A C

P(A|B,C ) = P(A|B), pas besoin de connaitre distribution jointe!
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Causes multiples ⇒ dépendance conditionelle

Inverse de l’indépendence: A et C sont indépendants, mais
deviennent dépendants si B est connu:

p(A|C ) = p(A|¬C )(= p(A))

p(A|B,C ) ̸= p(A|B,¬C )

Verifiée si A et C sont les causes d’un effet commun B:

B

A

C

D

Intuition: Si A explique déjà B, C devient moins probable.
⇒ il faut la distribution jointe: p(B|A,C )
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Exemple

A = Entrée
B = Alarme
C = Vitre

Normalement, aucune dépendence entre A et C .

Si B, alors A et C deviennent plus probable.

Si A est vrai, cela explique B et la probabilité de C redescend
à son niveau antérieur.

⇒ dépendence entre A et C .

⇒ besoin de connâıtre p(B|A,C ).

Boi Faltings Raisonnement Incertain 27/53



Introduction
Raisonnement probabiliste
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Resumé des Structures

A

B

P(B|A)

cause

directe

C

B

A

P(B|A)

P(C|B)

cause

indirecte

CB

A

P(B|A)

P(C|A)

cause

commune

C

BA

P(C|A,B)

effet

commun
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Question

A B

C

D

E

F

Pour chaque arc X → Y , on connait p(Y |X ), mais rien d’autre.
Quels calculs sont possibles (par châınage):

1 p(D|A)

oui, car A→ B → D est une châıne causale.

2 p(A|C )

non, car D est un noeud bloquant.

3 p(E |C )

oui, car C → D → E est une châıne causale.

Boi Faltings Raisonnement Incertain 29/53



Introduction
Raisonnement probabiliste
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Question
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Pour chaque arc X → Y , on connait p(Y |X ), mais rien d’autre.
Quels calculs sont possibles (par châınage):

1 p(D|A) oui, car A→ B → D est une châıne causale.

2 p(A|C ) non, car D est un noeud bloquant.

3 p(E |C ) oui, car C → D → E est une châıne causale.
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Inférence abductive

Inférence causes ⊢ effets = déduction.

Inférence des causes sur la base des effets = abduction.

L’abduction est très courant: diagnostic, vision, apprentissage,
etc.

Nécessite l’inférence dans le sens invers de la causalité.
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Abduction Bayesienne

A B

Par la règle de Bayes:

p(A|B) = p(A,B)

p(B)
=

p(B|A)p(A)
p(B)

= αp(B|A)p(A)

l’inférence dans le sens invers des arcs utilise:

p(B|A): vraissemblance (”likelihood”) de B

p(A): probabilité à priori.

p(B): probabilité de l’observation B; difficile à connaitre et
souvent exprimé comme facteur α
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Déterminer p(B)

A B

Par la règle de Bayes:

p(¬A|B) = p(¬A,B)
p(B)

=
p(B|¬A)p(¬A)

p(B)

Comme p(A|B) + p(¬A|B) = 1:

p(B) = p(B|A)p(A) + p(B|¬A)p(¬A)

est obtenu par normalisation, et ainsi α = 1/p(B).
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Châınage de l’Abduction

A B C

p(A|C ) =
∑

b=B,¬B
p(A|b) · p(b|C )

=
∑

b=B,¬B

p(b|A)p(A)
p(b)

· p(C |b)p(b)
p(C )

=
p(A)

p(C )

∑
b=B,¬B

p(b|A) · p(C |b)

⇒ pas besoin de connâıtre p(B)!
⇒ déterminer p(C ) par normalisation.
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Abduction avec plusieurs conséquences

Problème: il peut y avoir plusieurs effets d’une cause B, donc
plusieurs châınes qui partent de B.

B

A C

p(B|A,C ) =
1

p(A,C )
p(A,B,C )

= αp(A|B,C ) · p(B,C )

= αp(A|B) · p(C |B) · p(B)

(car A et C indépendants étant donné B)
En général, pour k conséquences Y1, ..,Yk :

p(B|Y1, ..,Yk) = αp(B)
k∏

i=1

p(Yi |B)
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Exemple

Déclencher l’alarme si p(C |obs) > p(P|obs).
Exemple: comparer p(C |M,¬E ,V ) et p(P|M,¬E ,V ).
Formalisation comme graphe (pour p(C |M,¬E ,V )):

E(ntrée)

P(roprietaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)
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Indépendance
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Exemple

p(C |M,¬E ,V ) = α p(C )︸ ︷︷ ︸
=0.01

p(M|C )︸ ︷︷ ︸
=0.8

(1− p(E |C )︸ ︷︷ ︸
=0.5

) p(V |C )︸ ︷︷ ︸
=0.5

= 2 · 10−3α

et

p(P|M,¬E ,V ) = α p(P)︸︷︷︸
=0.5

p(M|P)︸ ︷︷ ︸
=0.9

(1− p(E |P)︸ ︷︷ ︸
=0.99

) p(V |P)︸ ︷︷ ︸
=0.001

= 4.5 · 10−6α

avec α = 1/p(M,¬E ,V )
p(C |M,¬E ,V ) >> p(P|M,¬E ,V ): sonner l’alarme!
Pas besoin de calculer α
(α = 473, p(C |M,¬E ,V ) = 0.946, p(P|M,¬E ,V ) = 0.000213)
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Système d’alarme Bayesien

Déclencher l’alarme uniquement quand:

1 il y a une indication (M, E ou V ), et

2 C est plus probable que P comme la cause.

Pour vérifier la deuxième condition: comparer p(C |·) à p(P|·):
pas besoin de calculer α.
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”Naive Bayes”

Souvent, on veut détecter une condition précise sur la base des
plusieurs conséquences
Exemple: détecter si un mail est spam à partir de mots contenus
dans un message
⇒ pour chaque mot m ∈ M, mésurer p(m|spam) sur un
échantillon de messages spam
Trier les messages par

αp(spam)
∏
m∈M

p(m|spam)

α, p(spam) sont toujours identiques ⇒∏
m∈M

p(m|spam)

est suffisant comme critère.
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Question

A B

C

D

E

F

Pour chaque arc X → Y , on connait p(Y |X ), et aussi p(X ). Quels
calculs sont possibles:

1 p(A|D)

oui, car A→ B → D est une châıne causale.

2 p(D|E ,F )

oui, car E et F sont effets indépendants de D.

3 p(B|C ,E )

non, car D est un noeud bloquant.
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Vérifier la performance

Système d’alarme Bayesien: chaque capteur a une influence
causale sur l’alarme.

E(ntrée)

P(roprietaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)

Comment calculer la probabilité de détection p(A|C ) d’une alarme
correct (et p(A|P) d’une fausse alarme)?
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Inférence avec chemins multiples

3 chemins: C → M → A, C → E → A, C → V → A.

d-séparateur de x et y : ensemble de noeuds S qui coupent
toutes les chemins d’inférence entre x et y .

d-séparateur rend x et y conditionellement indépendants
étant donnée S :

Pr(y |S) = Pr(y |S , x)

et donc

p(y ,S |x) = p(y |S , x)p(S |x) = p(y |S)p(S |x)

calculer p(y |x) de p(y ,S |x) en marginalisant sur toutes les
combinaisons de valeurs de l’ensemble S .
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Obtenir P(A|C )

E(ntrée)

P(roprietaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)

S

S = {M,E ,V } est d-séparateur entre x = C et y = A.

calculer p(A|M,E ,V ) et p(M,E ,V |C )

P(A|M,E ,V ) doit être connue: complexe!
p(M,E ,V |C ) = p(M|C )p(E |C )p(V |C ) peut être derivée.
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Complexité de l’inférence

En cas de chemins multiples:

l’inférence doit considérer toutes les combinaisons de causes
dans un d-separateur.

⇒ complexité exponentielle dans sa taille.

donné par la largeur de l’ordre causal (proprieté du graphe).

complexité exponentielle non seulement en temps, mais aussi
en mémoire!

⇒ inférence exacte souvent pas faisable sauf si le graphe est
proche d’un arbre.
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Résolution stochastique

Echantillonage: trouver les probabilités par simulation.
Pour estimer p(A|C ):

1 ordonner les noeuds par ordre causale.
2 générer des instances d’états du réseau en commençeant par

les noeuds sans parents, et suivant les châınes causales:

générer une valeur pour chaque descendant X suivant la
distribution de probabilité dès que toutes les parents ont
obtenus une valeur.
selon la distribution P(X |parents) du réseau.
itérer jusqu’à ce que toutes les variables ont une valeur.

3 enregistrer la fréquence de paires de valeurs pour C et A
jusquà ce qu’un nombre suffisant de valeurs ont été obtenus.

4 estimer p(A,C ) et donc p(A|C ) = p(A,C )/p(C ) par la
fréquence observée.
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Exemple

E(ntrée)

P(roprietaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)

noeud parents descendants

P {} {M,E}
C {} {M,E ,V }
M {P,C} {A}
E {P,C} {A}
V {C} {A}
A {M,E ,V } {}

Générer d’abord P et C selon leur distribution à priori.

Ensuite M, E et V suivant les probabilités conditionelles.

Ensuite A par simulation du raisonnement Bayesien.
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Simulation

P C (M,E,V) A

1 1 0 (1,0,0) 1
2 0 0 (0,0,0) 0

...
50 0 1 (1,0,1) 1

...

Estimations des probabilités par la fréquence, par exemple:

⇒ p(A|C ) =
count(A,C )

count(C )
=

4

5
= 0.8
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Faiblesses de l’échantillonage

Les états avec faible probabilité (ex: présence du cambrioleur)
ont une fréquence très faible.

Si on s’interesse à P(A|C ), alors simuler que des situations ou
C est vrai.

Sous-pondérer les échantillons à haute probabilité, et corriger
les fréquences à la fin.

Utiliser Gibbs sampling: le prochain échantillon est obtenue
par modification du précedent (Markov Chain Monte Carlo).
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Exemple

P C (M,E,V) A

1 1 1 (1,0,0) 0
2 0 1 (1,0,0) 1
3 0 1 (1,0,1) 1
4 0 1 (1,0,0) 0
5 1 1 (1,1,1) 1

...
50 0 1 (1,0,1) 1

...

Estimations des probabilités par la fréquence, par exemple:

⇒ p(A|C ) =
count(A,C )

count(C )
=

42

50
= 0.84
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Echantillonage selon Gibbs

Initialiser les variables de facon arbitraire.

Fixer les variables connus, pour tous les autres variables xi
itérer:

1 selectionner une variable xi .
2 attribuer une nouvelle valeur selon la distribution

P(xi |parents, descendants)
3 ajouter l’échantillon aux statistiques.

P(xi |parents, descendants) = P(xi |parents)
∏

Yi∈descendants(Xi )

P(yi |parents(Yi ))

Parfois en 2 phases: stabilisation des distributions, et
échantillonage par la suite.
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Utilisation pour l’inférence

Application pour l’inférence directe peut être trop inefficace.

Peut aussi s’utiliser pour ”compiler” certains rélations à partir
du réseau causal.

Example pour un diagnostic médical: extraire la distribution
conditionelle p(maladie|symptômes visibles) sans passer par
toute la châıne causale.

En général: élimination de variables cachées et de cycles pour
permettre l’inférence efficace.
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Les réseaux Bayesiens en pratique

Utilisés dans des systèmes experts pour:

diagnostic médical

diagnostic de réacteurs d’avion

preuve que fumer ⇒ cancer

Fondamental pour des voitures autonomes, filtres spam, etc.
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Application: Diagnostic medical par Réseaux Bayesiens

Promedas: système général pour le diagnostic médical.

Utiilisé comme aide aux medecins dans des hopitaux aux
Pays-Bas.

Application pour un domaine très général.

Améliore souvent le diagnostic du medecin.
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Résumé

Facteurs de certitude/loqique floue: simple à implémenter,
mais ne tiennent pas compte des dépendances.

Raisonnement probabiliste: résultats corrects, mais problèmes
de dépendences.

Graphes causales pour l’identification des dépendances.

Limitation: graphes sans chemins multiples!

Méthode générale: simulation et échantillonage.
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