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Introduction

Limites de la logique

Le monde ne suit pas exactement la logique:
@ informations insuffisantes.
@ imprécision de la modélisation.

@ conclusions disjonctives non modélisable par des clauses de
Horn.

= le raisonnement est incertain.
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Introduction

Représentation de I'Incertitude

Principe:
associer a chaque proposition une représentation
numérique de l'incertitude: plausibilité.
Raisonnement Bayesien:
@ la plausibilité tient compte de I'ensemble des évidences.

=- mise a jour pendant le raisonnement:
plausibilité a-priori = plausibilité a-posteriori.
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Introduction

Desiderata

@ Associer une plausibilité a chaque prémisse.

@ Pour chaque déduction, calculer la plausibilité de la conclusion
sur la base des plausibilités des prémisses et des regles.

@ Nécessite que la plausibilité doit étre indépendent se sa
dérivation.
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Introduction

Formalismes pour |'incertitude

o Logique floue:
facile a appliquer mais sans base théorique solide.

@ Raisonnement probabiliste:
trés bien fondée, mais difficile a appliquer.

@ Réseaux Bayesiens: facile a appliquer et théoriquement bien
fondées, mais applicables uniquement dans une interprétation
causale.
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Introduction

Exemple: systeme d'alarme

o 3 détecteurs: M(ouvement), E(ntrée), V(itre).
@ Déclenchées soit par le propriétaire soit par un cambrioleur.

@ On aimerait trouver une fonction d'alarme qui détecte les
cambrioleurs, mais pas les propriétaires.
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Introduction

Modélisation avec des facteurs de certitude

A= B: CF(B) = CF(A) x CF(Regle)

M = "Détecteur de mouvement”, CF = 1.0
R1: M = C = "Cambrioleur présent”, CF=0.1
R2: M = P = "Proprietaire présent”, CF=0.9

C, CF=0.1
P, CF=0.9
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Introduction

Lacune 1: influence du context

@ Suppons que le propriétaire est enregistré a un autre endroit.
= —P avec certitude.

= seul un cambrioleur peut déclencher le détecteur:
M = C avec CF >> 0.1 (par exemple, 0.99).

o |l faut modéliser I'interdépendence de P et C!
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Introduction

Lacune 2: chainages inadmissibles

@ Supposons que nous savons qu'un cambrioleur est présent.
= le détecteur de mouvement sera siirement déclenché.
= le propriétaire est également présent, par la regle R2!

@ Probleme: nous avons negligé I'interdépendance: les cas ou le
détecteur est declenché par le cambrioleur est justement pas
celui ou il est declenché par le propriétaire!
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Raisonnement probabiliste Logique probabiliste
Inférence

Logique probabiliste

Caractériser I'incertitude par la probabilité:
p(A) = probabilité que la proposition A est vraie
p(—A) =1 — p(A) = probabilité que A est fausse
A devient une variable aléatoire avec valeurs {vrai, faux}:
e P(A) = distribution [p(A), p(—A)].
@ Majuscule = distribution, minuscule = probabilité.
o P(A,B) = [p(A, B), p(A,—~B), p(—A, B), p(=A, =B)].
o P(Xl, XQ, ey Xn) = [p(Xl, ey Xn), p(—|X1, ooy Xn)]
(2" valeurs).
e p(X|Y) = p(X,Y)/p(Y) = probabilité que X est vrai étant
donnée que Y est egalement vrai
o p(X|Y)+p(=X]Y) =1
(mais p(X|Y) + p(X|=Y) n'est pas toujours = 1)
I o o —



Raisonnement probabiliste Logique probabiliste
Inférence

Signification de la probabilité

@ normalement, probabilité ~ fréquence.
@ mais le raisonnement n'a lieu qu'une seule fois.

@ Probabilité ~ lotterie:
p(A) = x = dans un pari qui paie 1 Fr. si A est

vrai, je suis prét a mettre < x Fr.
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Raisonnement probabiliste ogique probabiliste
Inférence

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition ‘ Prob. a priori ‘ Observation | Prob. a postériori
C | po(C) =0.01 |
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Raisonnement probabiliste Logique probabiliste
Inférence

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition ‘ Prob. a priori ‘ Observation ‘ Prob. a postériori
C po(C) =0.01 | M | p(C|M) =0.18
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Raisonnement probabiliste Logique probabiliste
Inférence

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition | Prob. a priori | Observation | Prob. a postériori
C po(C)=0.01 | M p(C|M) =0.18
-M p(C|-M) = 0.0036
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Raisonnement probabiliste Logique probabiliste
Inférence

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition | Prob. a priori | Observation | Prob. a postériori
C po(C)=0.01 | M p(C|M) =0.18

-M p(C|-M) = 0.0036
P po(P) =0.5
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Raisonnement probabiliste Logique probabiliste
Inférence

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition | Prob. a priori | Observation | Prob. a postériori
C po(C)=0.01 | M p(C|M) =0.18

-M p(C|-M) = 0.0036
P po(P) =0.5 M p(P|M) = 0.95
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Raisonnement probabiliste Logique probabiliste
Inférence

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition | Prob. a priori | Observation | Prob. a postériori

C po(C)=0.01 | M p(C|M) =0.18
-M p(C|-M) = 0.0036

P po(P) =0.5 M p(P|M) = 0.95
-M p(P|-M) = 0.15
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Raisonnement probabiliste Logique probabiliste
Inférence

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition | Prob. a priori | Observation | Prob. a postériori
C po(C)=0.01 | M p(C|M) =0.18
-M p(C|-M) = 0.0036
P po(P) =0.5 M p(P|M) = 0.95
-M p(P|-M) =0.15
po(P)=0.01 | M p(P|M) = 0.019
-M p(P|—~M) = 0.003
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Raisonnement probabiliste

Inférence

Logique probabiliste

Raisonnement Bayesien

Observation = la probabilité attribuée a une proposition change:

Proposition | Prob. a priori | Observation | Prob. a postériori
C po(C)=0.01 | M p(C|M) =0.18
-M p(C|-M) = 0.0036
P po(P) =0.5 M p(P|M) = 0.95
-M p(P|-M) =0.15
po(P)=0.01 | M p(P|M) = 0.019
-M p(P|—~M) = 0.003

Regle de Bayes:

p(PIM) = po(P)p(M|P)/p(M)

p(M|P)/p(M) caractérise I'incertitude de I'inférence.
i e ————



Raisonnement probabiliste Logique probabiliste
Inférence

Inférence probabiliste

Déduction:
p(M), régle M = C

Probabilité a-posteriori p(C) se calcule comme suit:

p(C) = p(CIM) - p(M) + p(C|=M)(1 — p(M))

ou p(M) caractérise la certitude de la condition et
p(CIM) = p(C, M)/p(M) = po(C)p(M|C)/p(M)

ou p(M|C)/p(M) caractérise I'incertitude de la regle.
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Raisonnement probabiliste ogique probabiliste
Inférence

Contre-factuels

Différence par rapport aux CF:
le calcul prend en compte p(C|-M)

Permet de modéliser la probabilité a-priori:

e elevée: p(P|—M) est elevée, P reste probable méme si M
n'est pas vrai.

o faible: p(C|—M) est petit, alors il faut que M soit assez
certain pour rendre C une conclusion probable.
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Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 1:
P(roprietaire) = M(ouvement) = A(larme)
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Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 1:
P(roprietaire) = M(ouvement) = A(larme)
o P(P)=[0.9,0.1],
P(M|P) = [0.84,0.16],
P(M|-P) = [0.06,0.94]
= p(M)=0.9-0.84 + 0.1 -0.06 = 0.762
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Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 1:
P(roprietaire) = M(ouvement) = A(larme)
o P(P)=1[0.9,0.1],
P(M|P) = [0.84,0.16],
P(M|-P) = [0.06,0.94]
= p(M)=0.9-0.84 + 0.1 -0.06 = 0.762
o P(AM)=[1,0],
P(A|-M) = [0.01,0.99]
= p(A) = 0.762 -1+ 0.238 - 0.01 = 0.764

Boi Faltings Raisonnement Incertain 15/53



Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 1:
P(roprietaire) = M(ouvement) = A(larme)
o P(P)=1[0.9,0.1],
P(M|P) = [0.84,0.16],
P(M|-P) = [0.06,0.94]
= p(M)=0.9-0.84 + 0.1 -0.06 = 0.762
o P(AM)=[1,0],
P(A|-M) = [0.01,0.99]
= p(A) = 0.762 -1+ 0.238 - 0.01 = 0.764

@ inférence correcte.

Boi Faltings Raisonnement Incertain 15/53



Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 2:
P(roprietaire) = M(ouvement) = C(ambrioleur)
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Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 2:
P(roprietaire) = M(ouvement) = C(ambrioleur)
e P(P)=10.9,0.1],
P(M|P) = [0.84,0.16],
P(M|-P) = [0.06,0.94]
= p(M)=0.9-0.84 + 0.1 -0.06 = 0.762
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Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 2:
P(roprietaire) = M(ouvement) = C(ambrioleur)
e P(P)=10.9,0.1],
P(M|P) = [0.84,0.16],
P(M|~P) = [0.06,0.94]
= p(M)=0.9-0.84 + 0.1 -0.06 = 0.762
o P(C|M) = [0.18,0.82],
P(C|-M) = [0.0036,0.99]
= p(C) = 0.762 - 0.18 + 0.238 - 0.0036 ~ 0.138
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Raisonnement probabiliste Logique probabiliste
Inférence

Chainage des inférences

Exemple 2:
P(roprietaire) = M(ouvement) = C(ambrioleur)
e P(P)=10.9,0.1],
P(M|P) = [0.84,0.16],
P(M|-P) = [0.06, 0.94]
= p(M)=10.9-0.8440.1-0.06 = 0.762
e P(C|M) =10.18,0.82],
P(C|-M) = [0.0036,0.99]
= p(C) =0.762-0.18 + 0.238 - 0.0036 ~ 0.138
@ pas juste: la probabilité de C ne devrait pas augmenter
(prob. a priori = 0.01).
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Raisonnement probabiliste Logique probabiliste
Inférence

Exemple 2 (suite)

P(C, M|P) # p(CIM)P(M|P)!
Calcul correct tient compte des dépendances entre P, M et C:

p(C) = p(CIM,P)p(M,P)
=0 =0.76
+p(C|—\M, 'D)p(_‘Mv ’D)

=0 =0.14
+p(CIM,=P) p(M,—P)

/

=0.99 =0.006
+ p(C|=M, =P) p(~M, ~P)

v

=0.01 =0.094
= 0.9-0.006 4 0.01-0.094 = 0.00634
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Raisonnement probabiliste ogique probabiliste
Inférence

Complexité

Pour étre sur de faire le bon calcul, on devrait tenir compte des
dépendances partout.
Exemple:

@ 20 propositions (variables aléatoires) Vi, .., Voo

e calculer p(X) demande la distribution P(X]|V4, .., Vao)
P(X[V1, .., Vao) = {p(X| V1, .., V20), p(X|= V1, .., Vo), ..}

e = 220 2~ 1/000’000 valeurs!

Q: Comment peut-on réduire les dépendances?
R: En se limitant aux causes directes.
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive

Chemins multiples

Causalité

o P(roprietaire) est une cause de M(ouvement), et
@ M(ouvement) est une cause de A(larme);

@ alors: P — M — A permet la propagation locale des
probabilités!
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Causalité

Réseaux Bayesiens érenc ductive
Chemins multiples

Causalité

o P(roprietaire) est une cause de M(ouvement), et
@ M(ouvement) est une cause de A(larme);

@ alors: P — M — A permet la propagation locale des
probabilités!

mais:

C(ambrioleur) est une cause de M(ouvement), et

@ P(roprietaire) est une cause de M(ouvement);

@ mais si C explique déja M, P n’est pas plus probable
]

donc: C — M + P n’admet pas la propagation locale des
probabilités!
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive

Chemins multiples

Graphe des influences causales

Formalisation comme graphe:

P(roprietaire)  C(ambrioleur)

X7

M(ouvement)  E(ntrée) V(itre)
A(larme)

X — y: x est une cause de y

Boi Faltings
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive
s multiples

Graphe des influences causales

Formalisation comme graphe:
P(roprietaire)  C(ambrioleur)

X7

M(ouvement) E(ntree) V(|tre)

A(Iarme)

X — y: x est une cause de y
Possible: CHEF A
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive
Chemins multiples

Graphe des influences causales

Formalisation comme graphe:

P(roprietaire)  C(ambrioleur)

X7

M(ouvement) E(ntree) V(|tre)

A(Iarme)

X — y: x est une cause de y

Possible: CHEF A

Impossible: CHME P, EFARV,

M, E, A sont bloquants. destination de plusieurs fleches.
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Causallte

Réseaux Bayesiens

Ordre Causale

La causalité implique un ordre des variables:
cause > effet < parent > descendant

P(roprietaire)  C(ambrioleur)

X7

M(ouvement) E(ntrée)  V(itre) noeud | parents descendants
/ P10 {M.E}
C {} {M,E,V}
A(Iarme) M {P’ C} {A}
E {P,C} {A}
4 {C} {A}
A {M,E,V}|{}
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Causalité
Indépendance
Réseaux Bayesiens In Abductive

Chemins multiples

Prix de Turing

En 2012, le prix de Turing a été decerné a Judea Pearl (UCLA):

et

For fundamental contributions to artificial intelligence

through the development of a calculus for probabilistic and
causal reasoning.

que nous allons voir maintenant.
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Réseaux Bayesiens ce Abductive
Chemins multiples

Indépendance conditionelle

0-0-0

Indépendance de A et C:
p(C|A) = p(C|-A) = p(C)

n'est pas donnée a cause de l'influence a travers B.
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Réseaux Bayesiens ce Abductive
Chemins multiples

Indépendance conditionelle

0-0-0

Indépendance de A et C:
p(C|A) = p(C|-A) = p(C)

n'est pas donnée a cause de l'influence a travers B.

Par contre, nous pouvons profiter de |'indépendance conditionelle
de A et C étant donné B:

p(CIA, B) = p(C|-A, B) = p(C|B)
et de méme pour —B.
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ance
Réseaux Bayesiens ce Abductive
Chemins multiples

Utilité pour I'inférence

Chafnage:
p(C|A) = p(C|A, B) - p(B|A) + p(C|A, =B) - p(—B|A)
A, C conditionellement indépendants étant donné B:

p(CIA) = p(C|B) - p(B|A) + p(C|=B) - (1 — p(B|A))
= > p(C|b)p(blA)

b=B,-B

= il suffit de connaitre P(C|B) et P(B|A) au lieu de P(C|A, B).
On appele ce chainage la marginalisation de B.
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive
Chemins multiples

Descendants multiples

Les descendants multiples ne mettent pas en cause |'indépendance
conditionelle:

P(A|B, C) = P(A|B), pas besoin de connaitre distribution jointe!
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Réseaux Bayesiens ce Abductive

Chemins multiples

Causes multiples = dépendance conditionelle

Inverse de I'indépendence: A et C sont indépendants, mais
deviennent dépendants si B est connu:

PAIC) = p(AI-C)(= p(A))
P(AIB.C) # p(AB,~C)

Verifiée si A et C sont les causes d'un effet commun B:

Intuition: Si A explique déja B, C devient moins probable.
= il faut la distribution jointe: p(B|A, C)
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive

Chemins multiples

Exemple

o A = Entrée

B = Alarme

C = Vitre
@ Normalement, aucune dépendence entre A et C.
@ Si B, alors A et C deviennent plus probable.

@ Si A est vrai, cela explique B et la probabilité de C redescend
a son niveau antérieur.

= dépendence entre A et C.
= besoin de connaitre p(B|A, C).
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©

Réseaux Bayesiens Ir ce Abductive

Chemins multiples

Resumé des Structures

cause cause cause effet
directe indirecte commune commun
P(BIA
(BIA) P(BIA) P(BIA) P(CIA,B)
P(CIB) P(CIA)
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Réseaux Bayesiens Inférence Abductive
Chemins multiples

Question

N . C \o

Pour chaque arc X — Y, on connait p(Y|X), mais rien d'autre.
Quels calculs sont possibles (par chainage):

Q@ p(D|A)
Q@ p(A[C)
Q p(E|C)
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive
Chemins multiples

Question

D
-0~ M@

Pour chaque arc X — Y, on connait p(Y|X), mais rien d'autre.
Quels calculs sont possibles (par chainage):

@ p(D|A) oui, car A— B — D est une chaine causale.

@ p(A[C)

@ p(E|C)

Boi Faltings
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Causalité
Indépendance
Réseaux Bayesiens Inférence Abductive
Chemins multiples

Question

D
-0~ M@

Pour chaque arc X — Y, on connait p(Y|X), mais rien d'autre.
Quels calculs sont possibles (par chainage):
@ p(D|A) oui, car A— B — D est une chaine causale.

@ p(A|C) non, car D est un noeud bloquant.
@ p(E|C)

Boi Faltings
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Réseaux Bayesiens ce Abductive
Chemins multiples

Question

N . C \o

Pour chaque arc X — Y, on connait p(Y|X), mais rien d'autre.
Quels calculs sont possibles (par chainage):

@ p(D|A) oui, car A— B — D est une chaine causale.
@ p(A|C) non, car D est un noeud bloquant.
@ p(E|C) oui, car C — D — E est une chaine causale.
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Réseaux Bayesiens Inférence Abductive
Chemins multiples

Inférence abductive

Inférence causes I~ effets = déduction.

Inférence des causes sur la base des effets = abduction.

L'abduction est tres courant: diagnostic, vision, apprentissage,
etc.

Nécessite |'inférence dans le sens invers de la causalité.
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Réseaux Bayesiens
Chemins multiples

Abduction Bayesienne

Par la regle de Bayes:

plale) = 2020 — PEIREA) _ opeappa)

I'inférence dans le sens invers des arcs utilise:

e p(B|A): vraissemblance ("likelihood") de B
@ p(A): probabilité a priori.

e p(B): probabilité de I'observation B; difficile a connaitre et
souvent exprimé comme facteur «
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Causalité

Réseaux Bayesiens
Chemins multiples

Déterminer p(B)

Par la regle de Bayes:

p(-A.B) _ p(BI=A)p(-A)
p(B) p(B)

Comme p(A|B) + p(—A|B) = 1:

p(B) = p(B|A)p(A) + p(B|=A)p(—A)

p(-AIB) =

est obtenu par normalisation, et ainsi & = 1/p(B).
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Causalité

Indépendance
Réseaux Bayesiens Inférence Abductive

Chemins multiples

Chainage de I'Abduction

0-0-0

pAIC) = 3 plAlb) - p([C)

b=B,-~B

_ p(bIA)P(A) p(C|b)p(b)
Loy PD) p(C)

_ P(A) .

- 2 b_;Bp(bM) p(C|b)

= pas besoin de connaitre p(B)!
= déterminer p(C) par normalisation.
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endance
Réseaux Bayesiens Inférence Abductive
Chemins multiples

Abduction avec plusieurs conséquences

Probleme: il peut y avoir plusieurs effets d'une cause B, donc
plusieurs chatnes qui partent de B.

p(BIA,C) = p(AlC),,(A, B, C)

= ap(A|B,C)'p(B,C)
= ap(A|B) - p(C|B) - p(B)

(car A et C indépendants étant donné B)
En général, pour k conséquences Y1, .., Yk:

k

p(BIY1, .., i) = ap(B) [ p(Yi|B)
i=1
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Réseaux Bayesiens Inférence Abductive
Chemins multiples

Exemple

Déclencher I'alarme si p(C|obs) > p(P|obs).
Exemple: comparer p(C|M,—=E, V) et p(P|M,-E, V).
Formalisation comme graphe (pour p(C|M,—E, V)):

P(roprietaire)  C(ambrioleur)

e

M(ouvement) E(ntrée) V(itre)

A(larme)
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Réseaux Bayesiens ce Abductive
Chemins multiples

Exemple

p(CIM, —E. V) = a p(C) p(M|C)(L — p(E|C)) p(V|C) =210 %a
=0.01 =0.8 =0.5 =0.5

et

p(P|M,=E, V) = ap(P) p(M|P)(1 — p(E|P)) p(V|P) = 4.5 - 10 °a
—~— —— —— ——
=05 =09 =0.99  =0.001
avec a = 1/p(M,—E, V)
p(C|M,=E, V) >> p(P|M,-E, V): sonner |'alarme!

Pas besoin de calculer «
(o =473, p(C|M,—E, V) = 0.946, p(P|M,—-E, V) = 0.000213)
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Réseaux Bayesiens Inférence Abductive
Chemins multiples

Systeme d'alarme Bayesien

Déclencher I'alarme uniquement quand:

@ il y a une indication (M, E ou V), et

@ C est plus probable que P comme la cause.
Pour vérifier la deuxiéme condition: comparer p(C|-) a p(P|-):
pas besoin de calculer a.
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Réseaux Bayesiens
Chemins multiples

"Naive Bayes"

Souvent, on veut détecter une condition précise sur la base des
plusieurs conséquences

Exemple: détecter si un mail est spam a partir de mots contenus
dans un message

= pour chaque mot m € M, mésurer p(m|spam) sur un
échantillon de messages spam

Trier les messages par

ap(spam) [ p(mlspam)
meM
o, p(spam) sont toujours identiques =
11 p(mlspam)
meM

est suffisant comme critére.

Boi Faltings Raisonnement Incertain 38/53



Réseaux Bayesiens
Chemins multiples

Question

N . C \o

Pour chaque arc X — Y, on connait p(Y|X), et aussi p(X). Quels
calculs sont possibles:

Q p(A|D)
Q@ p(DIE, F)
@ p(BIC,E)
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Indépendance
Réseaux Bayesiens Inférence Abductive
Chemins multiples

Question

o
-0~ @

Pour chaque arc X — Y, on connait p(Y|X), et aussi p(X). Quels
calculs sont possibles:

@ p(A|D) oui, car A— B — D est une chaine causale.
@ p(DIEF)
@ p(B|C,E)
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Réseaux Bayesiens Inférence Abductive
Chemins multiples

N
N . C \o

Pour chaque arc X — Y, on connait p(Y|X), et aussi p(X). Quels
calculs sont possibles:

Question

@ p(A|D) oui, car A— B — D est une chaine causale.
@ p(D|E, F) oui, car E et F sont effets indépendants de D.
© p(B|C,E)
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Réseaux Bayesiens Inférence Abductive
Chemins multiples

N
N . C \o

Pour chaque arc X — Y, on connait p(Y|X), et aussi p(X). Quels
calculs sont possibles:

Question

@ p(A|D) oui, car A— B — D est une chaine causale.
@ p(D|E, F) oui, car E et F sont effets indépendants de D.
@ p(B|C,E) non, car D est un noeud bloquant.
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Réseaux Bayesiens ce Abductive
Chemins multiples

Vérifier la performance

Systeéme d’'alarme Bayesien: chaque capteur a une influence

causale sur I'alarme.
P(roprietaire)  C(ambrioleur)

/X7

M(ouvement) E(ntrée) V(itre)
A(larme)

Comment calculer la probabilité de détection p(A|C) d'une alarme
correct (et p(A|P) d'une fausse alarme)?
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©

Réseaux Bayesiens Ir ce Abductive
Chemins multiples

Inférence avec chemins multiples

@ 3chemins; C—+=M—-A C—oE—-A C—V A

@ d-séparateur de x et y: ensemble de noeuds S qui coupent
toutes les chemins d'inférence entre x et y.

@ d-séparateur rend x et y conditionellement indépendants
étant donnée S:

Pr(y|S) = Pr(y|S,; x)
et donc
p(y,SIx) = p(y|S, x)p(SIx) = p(y|S)p(S|x)

e calculer p(y|x) de p(y, S|x) en marginalisant sur toutes les
combinaisons de valeurs de I'ensemble S.
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Réseaux Bayesiens Ir c ductive
Chemins multiples

Obtenir P(A|C)

P(roprietaire)  C(ambrioleur)

A(larme)

o S={M,E,V} est d-séparateur entre x = C et y = A.
e calculer p(A|M,E, V) et p(M, E, V|C)

o P(A|M, E, V) doit étre connue: complexe!
o p(M,E,V|C)=p(M|C)p(E|C)p(V|C) peut &tre derivée.
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Réseaux Bayesiens érence Abductive
Chemins multiples

Complexité de |'inférence

En cas de chemins multiples:

@ l'inférence doit considérer toutes les combinaisons de causes
dans un d-separateur.

= complexité exponentielle dans sa taille.
@ donné par la largeur de I'ordre causal (proprieté du graphe).

@ complexité exponentielle non seulement en temps, mais aussi
en mémoire!

= inférence exacte souvent pas faisable sauf si le graphe est
proche d'un arbre.
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Résolution stochastique

Résolution stochastique

Echantillonage: trouver les probabilités par simulation.
Pour estimer p(A|C):

@ ordonner les noeuds par ordre causale.

@ générer des instances d'états du réseau en commenceant par
les noeuds sans parents, et suivant les chaines causales:

e générer une valeur pour chaque descendant X suivant la
distribution de probabilité dés que toutes les parents ont
obtenus une valeur.

o selon la distribution P(X|parents) du réseau.

e itérer jusqu'a ce que toutes les variables ont une valeur.

© enregistrer la fréquence de paires de valeurs pour C et A
jusqua ce qu'un nombre suffisant de valeurs ont été obtenus.

@ estimer p(A, C) et donc p(A|C) = p(A, C)/p(C) par la
fréquence observée.
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Résolution stochastique

Exemple

P(roprietaire)  C(ambrioleur)

noeud | parents descendants
P {} {M,E}
M(ouvement) E(ntree) V(|tre) [fﬂ EL’ C} J{LQ\/I}, E, V}
E {P,C} {A}
4 {C} {A}
A(Iarme) A {/\/]7 E, \/} {}

@ Générer d'abord P et C selon leur distribution a priori.

@ Ensuite M, E et V suivant les probabilités conditionelles.

@ Ensuite A par simulation du raisonnement Bayesien.
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Résolution stochastique

Simulation

P|C|(MEV)|A
1 [1]0](1,00) |1
2 10/0|(000) |0

50|01 \”'(1,0,1) |1

Estimations des probabilités par la fréquence, par exemple:

count(A,C) 4
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Résolution stochastique

Faiblesses de |'échantillonage

o Les états avec faible probabilité (ex: présence du cambrioleur)
ont une fréquence tres faible.

@ Sion s'interesse a P(A|C), alors simuler que des situations ou
C est vrai.

@ Sous-pondérer les échantillons a haute probabilité, et corriger
les fréquences a la fin.

@ Utiliser Gibbs sampling: le prochain échantillon est obtenue
par modification du précedent (Markov Chain Monte Carlo).
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Résolution stochastique

Exemple

Estimations des probabilités par la fréquence, par exemple:

t(A, C 42
count(A, )——:0.84

= PAIC) = count(C) ~ 50
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Résolution stochastique

Echantillonage selon Gibbs

@ Initialiser les variables de facon arbitraire.

@ Fixer les variables connus, pour tous les autres variables x;
itérer:
@ selectionner une variable x;.
@ attribuer une nouvelle valeur selon la distribution
P(x;|parents, descendants)
© ajouter I'échantillon aux statistiques.

P(x;|parents, descendants) = P(x;|parents) H P(yilparents(Y;))
Y;Edescendants(X;)

Parfois en 2 phases: stabilisation des distributions, et
échantillonage par la suite.
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Résolution stochastique

Utilisation pour l'inférence

@ Application pour I'inférence directe peut étre trop inefficace.

@ Peut aussi s'utiliser pour " compiler” certains rélations a partir
du réseau causal.

@ Example pour un diagnostic médical: extraire la distribution
conditionelle p(maladie|symptdmes visibles) sans passer par
toute la chalne causale.

@ En général: élimination de variables cachées et de cycles pour
permettre I'inférence efficace.
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Résolution stochastique

Les réseaux Bayesiens en pratique

Utilisés dans des systemes experts pour:
@ diagnostic médical
@ diagnostic de réacteurs d'avion
@ preuve que fumer = cancer

Fondamental pour des voitures autonomes, filtres spam, etc.
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Résolution stochastique

Application: Diagnostic medical par Réseaux Bayesiens

@ Promedas: systeme général pour le diagnostic médical.

@ Utiilisé comme aide aux medecins dans des hopitaux aux
Pays-Bas.

@ Application pour un domaine tres général.

@ Améliore souvent le diagnostic du medecin.
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Résolution stochastique

Résumé

e Facteurs de certitude/logique floue: simple a implémenter,
mais ne tiennent pas compte des dépendances.

@ Raisonnement probabiliste: résultats corrects, mais problemes
de dépendences.

o Graphes causales pour I'identification des dépendances.
@ Limitation: graphes sans chemins multiples!

@ Méthode générale: simulation et échantillonage.
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