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Inférence

Un moteur d’inférence est un algorithme qui trouve des
conséquences logiques q d’un ensemble de prémisses {P}:

{P} ⊢ q

Par exemple:
Premisses {P}:

1 lapin ⇒ animal

2 animal ⇒ bouge

Résultat q:
lapin ⇒ bouge

Algorithme central à un système à base de connaissances!
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Inférence avec variables

Applications
Resumé
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Proprietés

L’algorithme est:

fondé si q est toujours une conséquence de {P}
complet s’il trouve tous les q

aucun algorithme n’est fondé et complet!

Nous allons voir la résolution, qui est complète pour la
réfutation: est garanti de trouver toutes les contradictions qui
découlent de {P}.
La résolution permet de trouver des preuves par contradiction.
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Châınage avant

Proprietés

L’algorithme est:
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Etapes de l’inférence

1 transformation des expressions en forme normale.

2 application itérative de la résolution.

3 extraction du résultat.
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Forme Normale

Premier pas: standardiser le format des données.
Pour un moteur d’inférence, il convient d’utiliser la forme normale
conjonctive:

{P} = a1 ∧ a2 ∧ ...

On appelle les ai des clauses; ils sont soit:

une proposition simple, ou

une disjonction de propositions simples (ai = b1 ∨ b2 ∨ ...).

Exemple: a1 ∧ (a2 ∨ (a3 ∧ a4)) ⇒ a1 ∧ (a2 ∨ a3) ∧ (a2 ∨ a4)
Base de connaissances = ensemble de clauses
{1.a1, 2.(a2 ∨ a3), 3.(a2 ∨ a4), 4., ....}
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Représentation informatique

Proposition simple: liste (prédicat, arg1, ...)

Exemple: (oncle, Jacques, Charles)

Proposition composée:
liste imbriquée (<connecteur>, exp1, ...)

Exemple:
(AND, (jeune, Jacques), (OR, exp1, exp2))
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Exemple: Forme Normale

1 v∧(d∨(y∧b))
⇒ v ∧ (d∨y) ∧ (d∨b)
⇒ (AND, v, (OR, d, y), (OR, d, b))

2 m∨(d∨(y∧b))
⇒ (m∨d∨y) ∧ (m∨d∨b)
⇒ (AND, (OR, m, d, y), (OR, m, d, b))

3 (e∧y) ∨ (¬ e ∧(d∨y))

⇒ (e∨¬ e) ∧ (e∨d∨y) ∧ (y∨¬ e) ∧ (y ∨ d ∨ y)

⇒ (AND, (OR, e, d, y), (OR, y, (NOT, e)), (OR, y, d))
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Inférence par châınage
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Inférence par résolution

1 Base de données BD ← {P}
2 sélectionner deux clauses ∈ BD:

p1 : a1 ∨ ... ∨ an ∨ X

p2 : b1 ∨ ... ∨ bm ∨ ¬ X

3 règle de résolution ⇒ Resolvent

q : a1 ∨ ... ∨ an ∨ b1 ∨ ... ∨ bm

4 si q ̸∈ BD, ajouter q à BD ;

5 si q correspond à une solution, imprimer q
(et arrêter) ;

6 répéter depuis 2.
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Exemple

Premisses {P}:

1. ¬lapin ∨ animal (= lapin ⇒ animal)

2. ¬animal ∨ bouge (= animal ⇒ bouge)

Résolution:

¬lapin ∨ bouge (= lapin ⇒ bouge)
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Inférence par résolution
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Procédure complète

L’inférence par résolution est:

fondée
complète pour la réfutation

⇒ procédure complète pour preuves par contradiction:
({P} ∪ ¬q) ⊢ ⊥

prouve que q est une conséquence de {P}.
q doit être fournie à l’entrée

La procédure peut ne pas s’arrêter si q n’est pas une
conséquence de {P}.
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Exemple de preuve

Prémisses {P}:

1. ¬lapin ∨ animal (= lapin ⇒ animal)

2. ¬animal ∨ bouge (= animal ⇒ bouge)

A prouver: q = ¬lapin ∨ bouge (= lapin ⇒ bouge)
Transformation en négation ⇒ lapin ∧ ¬bouge:

3. lapin

4. ¬bouge

Résolutions binaires (1.+2., 4.+5.):

5. ¬lapin ∨ bouge

6. ¬lapin

Résolution entre 3. et 6. ⇒ ⊥ Contradiction
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Un autre exemple...

Prémisses {P}:

1. (A⇒ B)⇒ (C ⇒ D)

2. ¬C ⇒ A

A prouver: q = ¬A⇒ D donc A ∨ D:

3. ¬A
4. ¬D

Résolutions binaires:
1.′′ + 3.: 5. ¬C ∨ D
4.+ 5.: 6. ¬C
2.+ 3.: 7. C
6.+ 7.: Contradiction
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Un autre exemple...

Prémisses {P}: Sous forme de clauses:

1.(A⇒ B)⇒ (C ⇒ D) : 1.′ (A ∧ ¬B) ∨ (¬C ∨ D)

1.′′ A ∨ ¬C ∨ D

1.′′′ ¬B ∨ ¬C ∨ D

2.¬C ⇒ A : 2. C ∨ A

A prouver: q = ¬A⇒ D donc A ∨ D:

3. ¬A
4. ¬D

Résolutions binaires:
1.′′ + 3.: 5. ¬C ∨ D
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Inférence avec variables

Applications
Resumé
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Prémisses {P}: Sous forme de clauses:

1.(A⇒ B)⇒ (C ⇒ D) : 1.′ (A ∧ ¬B) ∨ (¬C ∨ D)

1.′′ A ∨ ¬C ∨ D

1.′′′ ¬B ∨ ¬C ∨ D

2.¬C ⇒ A : 2. C ∨ A

A prouver: q = ¬A⇒ D donc A ∨ D:

3. ¬A
4. ¬D

Résolutions binaires:
1.′′ + 3.: 5. ¬C ∨ D
4.+ 5.: 6. ¬C
2.+ 3.: 7. C
6.+ 7.: Contradiction

Boi Faltings Moteurs d’inférence 12/52
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Demandons à ChatGPT (version 3.5, 2024)

Sur la base des premisses:

1 (A⇒ B)⇒ (C ⇒ D)

2 ¬C ⇒ A
peut on conclure que:

3 ¬A⇒ D

ChatGPT:
Pour résoudre cette question en utilisant les prémisses
données, nous pouvons procéder par déduction logique.
Commençons par utiliser la deuxième prémisse, ¬C ⇒ A,
et appliquons la contraposée. La contraposée de cette
prémisse est A⇒ C .
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Inférence sans variables
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Demandons à ChatGPT

ChatGPT:
Maintenant, puisque nous avons A ⇒ C et (A ⇒ B) ⇒
(C ⇒ D), nous pouvons conclure A ⇒ B, car si A im-
plique C, et si C implique D, alors A implique D.
....
Maintenant, nous avons A ⇒ B, et si A est vrai, alors B
doit être vrai. Puisque B est vrai, et que A implique
B, nous avons que A est vrai.
Finalement, si A est vrai, alors C est vrai (en utilisant la
contraposée de la deuxième prémisse).
Si C est vrai, alors D doit être vrai (en utilisant la première
prémisse).
Donc, nous pouvons conclure que ¬A⇒ D est vrai.
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Inférence sans variables
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Demandons à ChatGPT

Sur la base des premisses:
Si, quand c’est le matin il y a cours, alors quand c’est l’après-midi il y a des exercices.
Si ce n’est pas l’après-midi, alors c’est le matin.
peut on conclure que:
Si ce n’est pas le matin, alors il y a des exercices.
ChatGPT (3.5, 2024):

La première prémisse dit: ”Si, quand c’est le matin il y a cours, alors quand
c’est l’après-midi il y a des exercices.” Cela signifie que s’il y a cours le
matin, alors il y aura des exercices l’après-midi.
La deuxième prémisse dit: ”Si ce n’est pas l’après-midi, alors c’est le matin.”
Cela signifie que si ce n’est pas l’après-midi, alors c’est le matin.
En combinant ces deux prémisses, si ce n’est pas l’après-midi (c’est-à-dire
que c’est le matin), alors il y a cours, ce qui selon la première prémisse
signifie qu’il y aura des exercices l’après-midi.
Donc, si ce n’est pas le matin (c’est-à-dire que c’est l’après-midi), alors il
y a des exercices, car la première prémisse nous dit que s’il y a cours le
matin, il y aura des exercices l’après-midi.
En conclusion, en utilisant ces deux prémisses, on peut déduire que si ce
n’est pas le matin, alors il y a des exercices.
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Inférence sans variables
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Demandons à ChatGPT

Sur la base des premisses:
Si, quand c’est le matin il y a cours, alors quand c’est l’après-midi il y a des exercices.
Si ce n’est pas l’après-midi, alors c’est le matin.
peut on conclure que:
Si ce n’est pas le matin, alors il y a des exercices.
ChatGPT (4o, 2025):

Traduction des prémisses en logique formelle:
Si, quand c’est le matin il y a cours, alors quand c’est l’après-midi il y a
des exercices.
M : ”C’est le matin” A : ”C’est l’après-midi”
C : ”Il y a cours” E : ”Il y a des exercices”

Cette prémisse peut s’écrire sous forme de deux implications:
M ⇒ C
A⇒ E
Deuxième prémisse : Si ce n’est pas l’après-midi, alors c’est le matin.
Cette préemisse s’écrit : ¬A⇒ M
La contraposée de cette implication est : ¬M ⇒ A
... D’après la première prémisse : A⇒ E ...
En combinant ces deux implications ...nous obtenons, par transitivité :
¬M ⇒ E
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Demandons à ChatGPT

Est-ce que ce raisonnement est correct; Ce n’est pas le matin, alors ”Si c’est le matin,
alors il y a cours” est toujours vrai. Donc la conclusion de la premiere prémisse, ”Si
c’est l’après-midi, alors il y a exercices” est vrai. Par la contraposée de la deuxième
prémisse, c’est l’après-midi. Donc il y a exercices.
ChatGPT (3.5, 2024):

Oui, votre raisonnement est correct. Permettez-moi de le reprendre étape
par étape pour clarifier :
Première prémisse : ”Si c’est le matin, alors il y a cours.”
Seconde prémisse : ”Si ce n’est pas l’après-midi, alors c’est le matin.”
En partant du fait que ce n’est pas le matin, nous pouvons conclure que :
”Si c’est le matin, alors il y a cours” est toujours vrai (car la condition n’est
pas remplie). Par conséquent, selon la première prémisse, si ce n’est pas
le matin, alors il y a exercices. En utilisant la contraposée de la deuxième
prémisse, si ce n’est pas le matin, alors c’est l’après-midi. Donc, puisque
c’est l’après-midi, selon la première prémisse, il y a exercices. Donc, votre
conclusion est correcte : il y a des exercices.
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Moteurs d’inférence pratiques

La résolution fonctionne pour n’importe quelle proposition
logique, mais essayer toutes les combinaisons de clauses est
très coûteux.

On peut souvent limiter les connaissances à:

un ensemble de faits F qui sont des propositions simples
un ensemble de règles R de la forme:

cond1 ∧ cond2 ∧ ...⇒ consequence

et les solutions à des propositions simples (sans négation).

⇒ l’inférence par modus ponens.

Temps linéaire dans le nombre de règles et propositions
simples.
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Clauses de Horn

Clauses de HORN: au plus 1 proposition sans negation:

cond1 ∧ cond2 ∧ ...⇒ consequence

¬(cond1 ∧ cond2 ∧ ...) ∨ consequence

¬cond1 ∨ ¬cond2 ∨ ... ∨ consequence

Conjonction de conditions + 1 seule conclusion (Règles)
Peut avoir 0 conditions (Faits)
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Inférence avec variables

Applications
Resumé
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Modus Ponens = Résolution sur clauses de Horn

Résolution de clauses de Horn ⇒ clause de Horn:

¬... ∨ ¬...∨ ¬X ∨Y
¬... ∨ ¬...∨ X

¬... ∨ ¬... ∨ ¬... ∨ ¬...∨ Y

Seule contradiction possible entre clauses de Horn:
X et ¬X

⇒ procédure simplifée
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Inférence par châınage
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Résolution sur clauses de Horn = Modus Ponens

A

A ⇒ B

⊢ B

Le modus ponens est une application de la résolution:

A

¬A ∨B

B
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Inférence par Modus Ponens

L’application en châıne de plusieurs inférences s’appelle châınage:

F1
R1⇒ F2

R2⇒ ...
Rn⇒ Solution

Deux manières d’appliquer:

châınage ”avant”: à partir de tous les faits connus, produire
toutes les conséquences jusqu’à ce qu’une solution se trouve
parmi les inférences.

châınage ”arrière”: à partir d’une description de la solution
recherchée, produire les étapes intermédiaires hypothétiques
qui permettront de déduire la solution.

Boi Faltings Moteurs d’inférence 22/52
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Châınage sur clauses de Horn

Procédure complète: {P} ∪ {¬q} ⇒ ⊥
⇒ 2 procédures complètes sur clauses de Horn:

Châınage avant:
Appliquer le modus ponens pour produire q et ainsi avoir la
contradiction.

Châınage arrière:
Résolution de ¬q avec règle ou fait, ensuite application
récursive sur les conditions de la règle.

Boi Faltings Moteurs d’inférence 23/52
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Inférence par châınage
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Traduction en clauses de Horn

Disjonction des conditions:
A ∨ B ⇒ C ≃
A⇒ C, B ⇒ C

Conjonction des conclusions:
A⇒ B ∧ C ≃
A⇒ B, A⇒ C

Disjonction des conclusions:
A⇒ B ∨ C

pas de traduction possible!
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Spécification du but

Le but sera une conjonction de propositions positives:

q = a1 ∧ a2 ∧ ... ∧ an

et donc ¬q ne contient aucune proposition positive, et donc est
une clause de Horn.
Les propositions de q peuvent contenir des variables:

oncle(?x, Jacques)

(interêt = valeur de la variable ?x)

Permet l’utilisation de preuves pour faire du calcul.
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Exemples de châınage

Faits et règles de départ:
R1: vin ∧ <-2-litres ⇒ petite-quantite

R2. cognac ∧ <-1-litre ⇒ petite-quantite

R3. <-100-Frs ⇒ petite-quantite

R4. petite-quantite ∧ adulte ⇒ hors-taxe

F1. vin

F2. <-2-litres
F3. <-100-Frs
F4. adulte

But:
q = hors-taxe

Boi Faltings Moteurs d’inférence 26/52
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Solution par châınage avant

1 R1, F1, F2 → F5: petite-quantite

2 R3, F3 → F5: petite-quantite

3 R4, F5, F4 → F6: hors-taxe ⇒ but

Pour améliorer l’efficacité:
limiter les inférences inutiles (e.g., 2.)

Boi Faltings Moteurs d’inférence 27/52
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Architecture: châınage avant

Vérification des 

autres conditions

Règles

déclenchées

Correspondance

avec conditions
Base de

règles

(R)

Instantiation de

la conclusion
Base de

données

Nouvelles

données

Solution?

File d’attente

(Q)
Données de

départ

(F)

Résultats

Base de règles; connaissances

Base de données: prémisses et inférences

File d’attente: important pour éviter que des boucles
empêchent d’atteindre la solution.
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Algorithme: châınage avant

Procédure châınage-simple(F,R)
Q ← {F}
while Q n’est pas vide do
q ← first(Q); Q ← rest(Q)
if q ̸∈ base de données then

ajouter q à la base de données
if q est un noeud but then imprimer q
for r ∈ {R} do
if q ∈ conditions(r)
and conditions(r) ⊆ base de données then
ajouter conclusion(r) à la queue Q
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Proprietés du châınage avant

On a déclenché une règle uniquement si on ajoute q à la base
de données

Le nombre de faits n est fini (toutes les conclusions des règles)

⇒ pas plus que n itérations.

⇒ l’algorithme s’arrête toujours.

⇒ temps de calcul linéaire.
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Quantification
Résolution avec variables
Filtrage et unification
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La quantification

Pour exprimer des connaissances générales, les arguments des
prédicats peuvent être des variables.
Toute variable doit être ”définie” par un quantificateur:

quantification universelle: (∀ x) = pour toutes les
substitutions de la variable x, l’expression qui suit est vraie.

quantification existentielle: (∃ x) = il existe une substitution
pour la variable x qui rend l’expression qui suit vraie.
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Types de quantification

0ème ordre: aucune quantification
vole(Titi)

1er ordre: quantification sur les symboles
(∀x) oiseau(x) ⇒ vole(x)

2ème ordre: quantification sur les symboles et les prédicats
(∀p) p(Charles) ⇒ p(Pierre)

Des algorithmes d’inférence existent uniquement pour les 0ème et
1er ordres ⇒ 2ème ordre non utilisé en IA.
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Châınage avec variables

Exemples (1)

1 “Tous mes livres sont intéressants.”
(∀ x) [(livre(x) ∧ possède(moi,x)) ⇒
intéressant(x)]

2 “Je n’ai aucun livre mince.”
¬ (∃ x) [livre(x) ∧ possède(moi,x) ∧ mince(x)]
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Inférence sans variables
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Exemples (2)

1 “Tout le monde parle une langue.”

a. (∀ x) personne(x) ⇒
(∃ y) (langue(y) ∧ parle(x,y))

b. (∃ y) langue(y) ∧
(∀ x) (personne(x) ⇒ parle(x,y))

2 “Il y a exactement une langue que tout le monde parle.”
(∃ y) langue(y) ∧

[(∀ x) (personne(x) ⇒ parle(x,y))]

∧ (∀ z) [langue(z) ∧
(∀ x) (personne(x) ⇒ parle(x,z))] ⇒ (z=y)
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Equivalence d’expressions quantifiées

(∀x)P(x) ⇔ (∀y)P(y)
(∃x)P(x) ⇔ (∃y)P(y)
¬(∃x)P(x) ⇔ (∀x)[¬P(x)]
¬(∀x)P(x) ⇔ (∃x)[¬P(x)]
(∀x)[P(x) ∧ Q(x)] ⇔ (∀x)P(x) ∧ (∀y)Q(y)
(∃x)[P(x) ∨ Q(x)] ⇔ (∃x)P(x) ∨ (∃y)Q(y)
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Les fonctions de Skolem

Les quantificateurs gênent les procédures d’inférence.

Si (∃x)p(x): p(A) doit être vrai pour un certain A

Considérons le schéma suivant:
(∀ x) [(∃ y) p(x,y)]

= ”pour tout x, il existe un y tel que p(x,y)”

On peut remplacer y par la fonction de Skolem
f(x) retournant toujours un y qui remplit la condition p(x,y):

(∀ x) p(x,f(x))

Arguments = toutes les variables avec quantification
universelles dont la portée inclut la variable remplacée.
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La forme normale

Remplacer variables avec quantifications existentielles par des
fonctions de Skolem.
⇒ élimination des quantificateurs existentiels

Pour les variables qui restent:
quantification universelle sous-entendue

Notation pour distinguer variables/constantes:

minuscules/majuscules: FRERE(x,CHARLES)
point d’interrogation: frere(?x,Charles)
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Exemple (forme normale)

(∀ x) personne(x) ⇒ (∃ y) (langue(y) ∧ parle(x,y))

1 Eliminer les quantificateurs existentiels:
(∀ x) personne(x) ⇒
(langue(l(x)) ∧ parle(x,l(x))

2 Laisser tomber les quantificateurs universels:
personne(?x) ⇒ langue(l(?x)) ∧ parle(?x,l(?x))

Identifier les variables par un ”?”
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Résolution avec variables

Unification:
U(X ,Y ) = substitution de variables pour rendre U(X ) = U(Y ).
Pour adapter la résolution à des expressions quantifiées, il faut les
deux règles d’inférence:

1 résolution binaire:
(L1 ∨ A), (¬L2 ∨ B),Unify(L1, L2) = U
⇒ (U(A) ∨ U(B))

2 factorisation (nouveau):
(L1 ∨ L2 ∨ A), Unify(L1, L2) = U
⇒ (U(L2) ∨ U(A))
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Résolution avec variables (exemple)

Prémisses {P}:

(∀x)a(x) ∨ b(x) : 1. a(?x) ∨ b(?x)

(∀x)a(x)⇒ c(x) : 2. ¬a(?y) ∨ c(?y)

(∀x)c(x)⇒ d(x) : 3. ¬c(?z) ∨ d(?z)

(∀x)b(x)⇒ d(x) : 4. ¬b(?w) ∨ d(?w)

A prouver: d(?x): 5.¬d(?x)

1.+ 2.⇒ 6. b(?x) ∨ c(?x)

3.+ 6.⇒ 7. d(?z) ∨ b(?z)

4.+ 7.⇒ 8. d(?w) ∨ d(?w)

Factorisation de 8.: 9.d(?w)

Résolution binaire entre 5. + 9. ⇒ Contradiction
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Filtrage et unification

Problème du filtrage (pattern match):
étant donné:

l’expression pattern avec variables

l’expression datum sans variables

trouver toutes les combinaisons de substitutions des variables de
pattern pour rendre datum = pattern.

filtrer((regarde, Paul, Pierre), (regarde, ?x, ?y))

(?x : Paul, ?y : Pierre)

Dans l’unification, les deux expressions peuvent contenir des
variables:

unifier((regarde, ?x, Pierre), (regarde, Paul, ?y))

(?x : Paul, ?y : Pierre)

Algorithme central de tout système à base de connaissances.
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Algorithme de filtrage

Function Filtrer(pattern,datum)
if pattern est un symbol then

if datum et pattern sont identiques then return {}
if pattern est une variable then return {pattern/datum}
return ECHEC

if datum est un symbol then return ECHEC
F1 ← premier élément de pattern, T1 ← reste de pattern
F2 ← premier élément de datum, T2 ← reste de datum
Z1 ← FILTRER(F1,F2)
if Z1 = ECHEC then return ECHEC
G1 ← remplacer les variables de T1 par les unifications Z1

G2 ← T2

Z2 ← FILTRER(G1,G2)
if Z2 = ECHEC then return ECHEC
return { Z1 ∪ Z2 }
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Exemple de filtrage

Appels récursifs:

E1 = (regarde, ?x, ?y)

E2 = (regarde, Paul, (frere, Charles))

F1 = regarde

F2 = regarde

T1 = (?x, ?y)

T2 = (Paul, (frere, Charles))

E1 = regarde

E2 = regarde

E1 = (?x, ?y)

E2 = (Paul, (frere, Charles))

F1 = ?x

F2 = Paul

T1 = (?y)

T2 = ((frere, Charles))

E1 = ?x

E2 = Paul

E1 = (?y)

E2 = ((frere, Charles))

F1 = ?y

F2 = (frere, Charles)

T1 = ()

T2 = ()
E1 = ?y

E2 = (frere, Charles)
E1 = ()

E2 = ()

filtrer:

filtrer:

filtrer:

filtrer:

filtrer: filtrer: filtrer:

Boi Faltings Moteurs d’inférence 43/52
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Retour des appels

E1 = (regarde, ?x, ?y)

E2 = (regarde, Paul, (frere, Charles))

E1 = regarde

E2 = regarde

E1 = (?x, ?y)

E2 = (Paul, (frere, Charles))

E1 = ?x

E2 = Paul

E1 = (?y)

E2 = ((frere, Charles))

E1 = ?y

E2 = (frere, Charles)
E1 = ()

E2 = ()

(?x:Paul, ?y:(frere, Charles))

(?x:Paul)

(?y:(frere, Charles))

()

filtrer:

filtrer:

filtrer:

filtrer:

filtrer:

filtrer: filtrer:

()

(?y:(frere, Charles))

(?x:Paul, ?y:(frere, Charles))

+

+

+
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Quantification
Résolution avec variables
Filtrage et unification
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Algorithme d’unification

Function Unifier(E1,E2)
if E1 ou E2 est un symbole then

Interchanger les arguments de E1 et de E2 (si nécessaire) de sorte que E1 soit un
symbole
if E1 et E2 sont identiques then return {}
if E1 est une variable then

if E1 apparâıt dans E2 then return ECHEC
return {E1 : E2}

if E2 est une variable then return {E2 : E1}
return ECHEC

F1 ← premier élément de E1, T1 ← reste de E1

F2 ← premier élément de E2, T2 ← reste de E2

Z1 ← UNIFIER(F1,F2)
if Z1 = ECHEC then return ECHEC
G1 ← remplacer les variables de T1 par les substitutions Z1

G2 ← remplacer les variables de T2 par les substitutions Z1

Z2 ← UNIFIER(G1,G2)
if Z2 = ECHEC then return ECHEC
return { Z1 ∪ Z2 }
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Intégration avec un système de règles

Possibilité de plusieurs unificateurs:
différents éléments de la base de données peuvent s’unifier
avec la même règle

Procédure RETE pour optimiser l’unification de plusieurs faits
et règles.

Noms de variables uniques
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Architecture: châınage avant avec variables

Vérification des 

autres conditions

Règles +

Unificateurs

Filtrage

avec conditions
Base de

règles

(R)

Instantiation de

la conclusion
Base de

données

Nouvelles

données

Solution?

File d’attente

(Q)
Données de

départ

(F)

Résultats

Différence par rapport au moteur simple: le filtrage/unification des
différentes conditions doit être consistent!
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Exemple d’un châınage avec variables

Faits et règles de départ:
R1: père(?x,?y) ∧ frère(?y,?z) ⇒ père(?x,?z)

R2: père(?x,?y) ∧ frère(?x,?z) ⇒ oncle(?z,?y)

F1: père(Jacques,Charles),
F2: frère(Charles,Francois),
F3: frère(Jacques,Pierre)

But:
oncle(?x,Francois)
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Solution par châınage avant

R1: père(?x,?y) ∧ frère(?y,?z) ⇒ père(?x,?z)

R2: père(?x,?y) ∧ frère(?x,?z) ⇒ oncle(?z,?y)

F1: père(Jacques,Charles),
F2: frère(Charles,Francois),
F3: frère(Jacques,Pierre)

1 R1, F1, F2 → F4: père(Jacques,Francois))

2 R2, F1, F3 → F5: oncle(Pierre,Charles)

3 R2, F4, F3 → F6: oncle(Pierre,Francois) ⇒ but
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Application: Business rules/Thames Water

Thames Water fournit l’eau à la région de Londres

250’000 demandes de changement de raccordement/année

Difficile à automatiser à cause de la complexité des règlements
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Asset Data Services Decision Making Engine

Système de règles (Business Rules):

remplace une équipe de 30 personnes

diminué le temps de réponse de 50%

économise 3 millions de livres par an en coûts

évite 1.4 millions de livres d’erreurs par an

Application typique de business rules
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Resumé

Inférence par résolution

Inférence par châınage

Inférence avec variables

Filtrage et Unification
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