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Inférence sans variables P 3 A
Inférence par résolution

Inférence par cha
Chaina

Inférence

Un moteur d’inférence est un algorithme qui trouve des
conséquences logiques g d'un ensemble de prémisses {P}:

{PtFq
Par exemple:
Premisses {P}:
©Q lapin = animal
@ animal = bouge

Résultat g:
lapin = bouge

Algorithme central a un systeme a base de connaissances!
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Inférence sans variables P 3 A
Inférence par résolution

Inférence pa ainage
Chaina it

Proprietés

L'algorithme est:
@ fondé si q est toujours une conséquence de {P}

@ complet s'il trouve tous les g
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L'algorithme est:
@ fondé si q est toujours une conséquence de {P}
@ complet s'il trouve tous les g

@ aucun algorithme n’est fondé et complet!
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Proprietés

L'algorithme est:
@ fondé si q est toujours une conséquence de {P}
@ complet s'il trouve tous les g
@ aucun algorithme n’est fondé et complet!

@ Nous allons voir la résolution, qui est compléte pour la
réfutation: est garanti de trouver toutes les contradictions qui
découlent de {P}.
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Chaina

Proprietés

L'algorithme est:
@ fondé si q est toujours une conséquence de {P}
@ complet s'il trouve tous les g
@ aucun algorithme n’est fondé et complet!
°

Nous allons voir la résolution, qui est compléte pour la
réfutation: est garanti de trouver toutes les contradictions qui
découlent de {P}.

La résolution permet de trouver des preuves par contradiction.
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Inférence sans variables P 3 A
Inférence par résolution

Inférence pa ainage
Chaina it

Etapes de |'inférence

@ transformation des expressions en forme normale.
@ application itérative de la résolution.

© extraction du résultat.
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Inférence sans variables P 3 A
Inférence par résolution

Inférence par cha
Chaina

Forme Normale

Premier pas: standardiser le format des données.
Pour un moteur d'inférence, il convient d'utiliser la forme normale
conjonctive:
{P} =aiNay ..

On appelle les a; des clauses; ils sont soit:

@ une proposition simple, ou

@ une disjonction de propositions simples (a; = by V by VV ...).
Exemple: a; A (32 V (33 VAN 34)) = a1 A (32 V 33) VAN (32 V 34)
Base de connaissances = ensemble de clauses
{1.31, 2.(32 V 83), 3.(32 V 34), 4., }
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Inférence sans variables P 3 A
Inférence par résolution

e pa nage

Représentation informatique

@ Proposition simple: liste (prédicat, argl, ...)
Exemple: (oncle, Jacques, Charles)

@ Proposition composée:
liste imbriquée (<connecteur>, expl, ...)
Exemple:
(AND, (jeune, Jacques), (OR, expl, exp2))
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Inférence sans variables P 3 A
Inférence par résolution

Inférence par

Exemple: Forme Normale

Q vAdV(yAD))
= v A (dVy) A (dVb)
= (AND, v, (OR, d, y), (OR, d, b))

@ mv(dV(yAb))
= (mvdvy) A (mVdvb)
= (AND, (OR, m, d, y), (OR, m, d, b))

@ (eny) V (= e A(AVY))
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Inférence par résolution

Inférence par

Exemple: Forme Normale

@ vAdV(yAb))
= v A (@vy) A (avb)
= (AND, v, (OR, d, y), (OR, d, b))

Q mVv(dV(yAb))
= (mvdVvy) A (mVdVb)
= (AND, (OR, m, d, y), (OR, m, d, b))

©Q (eAy) V (= e A(dVY))
= (evV— e) A (evdvy) A (y V-e) A (y VAV iy
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Exemple: Forme Normale

Q vAdV(yAD))
= v A (dVy) A (dVb)
= (AND, v, (OR, d, y), (OR, d, b))

@ mv(dV(yAb))
= (mvdvy) A (mVdvb)
= (AND, (OR, m, d, y), (OR, m, d, b))

Q (eAy) V (= e A(AVy))
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Inférence sans variables P 3 A
Inférence par résolution

Inférence par

Exemple: Forme Normale

Q vAdV(yAD))
= v A (dVy) A (dVb)
= (AND, v, (OR, d, y), (OR, d, b))

@ mv(dV(yAb))
= (mvdvy) A (mVdvb)
= (AND, (OR, m, d, y), (OR, m, d, b))

@ (eny) V (= e A(AVY))
= Lev——e)—A— (eVdAVy) A (yV—-e) A (y V d N
= (AND, (OR, e, d, y), (OR, y, (NOT, e)), (OR, y, d))
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Inférence sans variables P 3 A
Inférence par résolution

e pa nage

Inférence par résolution

© Base de données BD «+ {P}
@ sélectionner deux clauses € BD:

pr: a1V ..Va VX
pp: b1V ...V b,V X

© regle de résolution = Resolvent
g:a1 VvV ... Va,V bV ..V by

Q si g ¢ BD, ajouter g a BD ;
© si g correspond a une solution, imprimer g
(et arréter) ;

Q répéter depuis 2.
/52



Inférence sans variables P 3 A
Inférence par résolution

Inférence par cha
Chaina

Exemple

Premisses {P}:

1. —lapinV animal (= lapin = animal)

2. —animal V bouge (= animal = bouge)
Résolution:

—lapin V bouge (= lapin = bouge)
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Inférence sans variables P 3 A
Inférence par résolution

Inférence par cha
Chaina

Procédure compléete

@ L'inférence par résolution est:

e fondée
e compléte pour la réfutation

@ = procédure compléte pour preuves par contradiction:
({PU—qg) L

prouve que g est une conséquence de {P}.

g doit étre fournie a 'entrée

La procédure peut ne pas s'arréter si g n'est pas une
conséquence de {P}.
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Inférence sans variables P 3 A
Inférence par résolution

Infé r chainage
Ch ant

Exemple de preuve

Prémisses {P}:

1. —lapinV animal (= lapin = animal)

2. -animal V bouge (= animal = bouge)

A prouver: g = —lapinV bouge (= lapin = bouge)
Transformation en négation = lapin A —bouge:

3. lapin
4. —bouge

Résolutions binaires (1.4-2., 4.+5.):

5. —lapinV bouge
6. —lapin

Résolution entre 3. et 6. = L Contradiction
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Inférence sans variables

Un autre exemple...

Prémisses {P}:

1. (A=B)=(C=D)
2. "C=A
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Inférence sans variables P 3 A
Inférence par résolution

e pa nage

Un autre exemple...

Prémisses {P}:  Sous forme de clauses:
1.(A=B)=(C=D): 1/ (AA=-B)VvV(=-CVD)
1.” Av-CvVD
1. =Bv-=CVD
2-C=A: 2. CVA
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A prouver: g = —-A = D donc AV D:

3. -A
4. =D
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Un autre exemple...

Prémisses {P}:  Sous forme de clauses:

1.(A=B)=(C=D): 1/ (AA-B)V(=-CVD)
1. Av-=CvD
1. -Bv-CVvD

2-C=A: 2. CVA

A prouver: g = —-A = D donc AV D:

3. -A
4. =D

Résolutions binaires:
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Un autre exemple...

Prémisses {P}:  Sous forme de clauses:

1.(A=B)=(C=D): 1/ (AA-B)V(=-CVD)
1./ Av-CVvD
1. -Bv-=CVvD
2-C=A: 2. CVA

A prouver: g = —-A = D donc AV D:

3. -A
4. =D

Résolutions binaires:
1./ 4+3.:5. -CVvD
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Un autre exemple...

Prémisses {P}:  Sous forme de clauses:
1.(A=B)=(C=D): 1/ (AA=-B)VvV(=-CVD)
1.” Av-CvVD
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Un autre exemple...

Prémisses {P}:  Sous forme de clauses:
1.(A=B)=(C=D): 1/ (AA=-B)VvV(=-CVD)
1.” Av-CvVD
1. =Bv-=CVD
2-C=A: 2. CVA

A prouver: g = —-A = D donc AV D:
3. —A
4. =D
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2.+3.:7. C
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Inférence sans variables P 3 A
Inférence par résolution

Infér chainage

Un autre exemple...

Prémisses {P}:  Sous forme de clauses:
1.(A=B)=(C=D): 1/ (AA=-B)VvV(=-CVD)
1.” Av-CvVD
1. =Bv-=CVD
2-C=A: 2. CVA

A prouver: g = —-A = D donc AV D:

3. -A
4. =D

Résolutions binaires:
1./ 4+3.:5. -CVvD
4.4+5.:6. -C
2.+3.:7. C

6. + 7.: Contradiction
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Inférence sans variables P 3 A
Inférence par résolution

Infé r chainage
Ch ant

Demandons a ChatGPT (version 3.5, 2024)

Sur la base des premisses:
Q@ (A= B)= (C=D)
Q@ C=A
peut on conclure que:
@ A=D
ChatGPT:
Pour résoudre cette question en utilisant les prémisses
données, nous pouvons procéder par déduction logique.
Commencons par utiliser la deuxieme prémisse, - C = A,
et appliquons la contraposée. La contraposée de cette
prémisse est A= C.
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Inférence sans variables P 3 A
Inférence par résolution

Infé r chainage
Cha ant

Demandons a ChatGPT

ChatGPT:
Maintenant, puisque nous avons A = C et (A = B) =

(C = D), nous pouvons conclure A = B, car si A im-
plique C, et si C implique D, alors A implique D.

Maintenant, nous avons A = B, et si A est vrai, alors B
doit étre vrai. Puisque B est vrai, et que A implique
B, nous avons que A est vrai.

Finalement, si A est vrai, alors C est vrai (en utilisant la
contraposée de la deuxiéme prémisse).

Si C est vrai, alors D doit &tre vrai (en utilisant la premiere
prémisse).

Donc, nous pouvons conclure que —A = D est vrai.
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Inférence sans variables P 3 A
Inférence par résolution

Inférence par chaina
Chai it

Demandons a ChatGPT

Sur la base des premisses:

Si, quand c’est le matin il y a cours, alors quand c’est I'aprés-midi il y a des exercices.
Si ce n'est pas |'aprés-midi, alors c’est le matin.

peut on conclure que:

Si ce n'est pas le matin, alors il y a des exercices.

ChatGPT (3.5, 2024):

La premiére prémisse dit: "Si, quand c'est le matin il y a cours, alors quand
c'est I'aprés-midi il y a des exercices.” Cela signifie que s'il y a cours le
matin, alors il y aura des exercices |'aprés-midi.

La deuxiéme prémisse dit: " Si ce n’est pas |'aprés-midi, alors c’est le matin.”
Cela signifie que si ce n'est pas I'apres-midi, alors c’est le matin.

En combinant ces deux prémisses, si ce n'est pas |'aprés-midi (c’est-a-dire
que c'est le matin), alors il y a cours, ce qui selon la premiére prémisse
signifie qu'il y aura des exercices |'aprés-midi.

Donc, si ce n'est pas le matin (c’est-a-dire que c'est |'aprés-midi), alors il
y a des exercices, car la premiére prémisse nous dit que s'il y a cours le
matin, il y aura des exercices |'aprés-midi.

En conclusion, en utilisant ces deux prémisses, on peut déduire que si ce
n'est pas le matin, alors il y a des exercices.
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Inférence sans variables P 3 A
Inférence par résolution

Demandons a ChatGPT

Sur la base des premisses:

Si, quand c'est le matin il y a cours, alors quand c’est I'aprés-midi il y a des exercices.
Si ce n'est pas I'aprés-midi, alors c’est le matin.

peut on conclure que:

Si ce n'est pas le matin, alors il y a des exercices.

ChatGPT (40, 2025):

Traduction des prémisses en logique formelle:
Si, quand c’est le matin il y a cours, alors quand c'est I'aprés-midi il y a
des exercices.

M : "C’est le matin” A : "C’est I'aprés-midi”

C:"ll'y a cours” E : "Il y a des exercices”
Cette prémisse peut s’écrire sous forme de deux implications:
M= C
A= E

Deuxieme prémisse : Si ce n'est pas |'aprés-midi, alors c’est le matin.
Cette préemisse s'écrit : =A== M

La contraposée de cette implication est : =M = A

... D’apres la premiére prémisse : A= E ...

En combinant ces deux implications ...nous obtenons, par transitivité :
-M=E
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Inférence sans variables P 3 A
Inférence par résolution

par chainage

Demandons a ChatGPT

Est-ce que ce raisonnement est correct; Ce n'est pas le matin, alors "Si c'est le matin,
alors il y a cours” est toujours vrai. Donc la conclusion de la premiere prémisse, "Si
c'est I'aprés-midi, alors il y a exercices” est vrai. Par la contraposée de la deuxieme
prémisse, c'est I'apres-midi. Donc il y a exercices.
ChatGPT (3.5, 2024):
Oui, votre raisonnement est correct. Permettez-moi de le reprendre étape
par étape pour clarifier :
Premiére prémisse : "Si c'est le matin, alors il y a cours.”
Seconde prémisse : "Si ce n'est pas |'aprés-midi, alors c'est le matin.”
En partant du fait que ce n’est pas le matin, nous pouvons conclure que :
"Si c'est le matin, alors il y a cours” est toujours vrai (car la condition n’est
pas remplie). Par conséquent, selon la premiére prémisse, si ce n'est pas
le matin, alors il y a exercices. En utilisant la contraposée de la deuxieéme
prémisse, si ce n'est pas le matin, alors c'est |'aprés-midi. Donc, puisque
c'est I'aprés-midi, selon la premiére prémisse, il y a exercices. Donc, votre
conclusion est correcte : il y a des exercices.
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chaf ant

Moteurs d'inférence pratiques

@ La résolution fonctionne pour n'importe quelle proposition
logique, mais essayer toutes les combinaisons de clauses est
trés coliteux.

@ On peut souvent limiter les connaissances a:

e un ensemble de faits F qui sont des propositions simples
e un ensemble de régles R de la forme:

condy A condr A ... = consequence

et les solutions a des propositions simples (sans négation).
@ = |'inférence par modus ponens.

@ Temps linéaire dans le nombre de regles et propositions
simples.
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chaf ant

Clauses de Horn

Clauses de HORN: au plus 1 proposition sans negation:

cond, N conds A ... = consequence
—(condy A condy A ...) V consequence

—condy V —condy V ... V consequence

Conjonction de conditions + 1 seule conclusion (Regles)
Peut avoir 0 conditions (Faits)
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chafnage avant

Modus Ponens = Résolution sur clauses de Horn

Résolution de clauses de Horn = clause de Horn:

S VoLV =X VY
-Vl X

VoL VooV ol Y

Seule contradiction possible entre clauses de Horn:
X et =X

= procédure simplifée
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chafnage avant

Résolution sur clauses de Horn = Modus Ponens

A
A =B
F B

Le modus ponens est une application de la résolution:

A
-A VB
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chaf ant

Inférence par Modus Ponens

L'application en chaine de plusieurs inférences s'appelle chainage:

Fi % F»> % iﬁ Solution

Deux manieres d'appliquer:

@ chalnage "avant”: a partir de tous les faits connus, produire
toutes les conséquences jusqu'a ce qu'une solution se trouve
parmi les inférences.

@ chalnage "arriere”: a partir d'une description de la solution
recherchée, produire les étapes intermédiaires hypothétiques
qui permettront de déduire la solution.
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chaf ant

Chainage sur clauses de Horn

Procédure complete: {P}U{—-q} = L
= 2 procédures complétes sur clauses de Horn:
@ Chafnage avant:
Appliquer le modus ponens pour produire g et ainsi avoir la
contradiction.

@ Chalnage arriere:
Résolution de —q avec régle ou fait, ensuite application
récursive sur les conditions de la regle.
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chafnage avant

Traduction en clauses de Horn

Disjonction des conditions:
AVB= C~
A=C, B=C

Conjonction des conclusions:
A=BANC~
A= B A= C

Disjonction des conclusions:
A=BvC
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chafnage avant

Traduction en clauses de Horn

Disjonction des conditions:
AVB= C~
A=C, B=C

Conjonction des conclusions:
A=BANC~
A= B A= C

Disjonction des conclusions:
A=BvC

pas de traduction possible!
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Inférence sans variables .
Inférence par résolution

Inférence par chainage
Chaf ant

Spécification du but

Le but sera une conjonction de propositions positives:
g=aiNaA..A\ap

et donc —q ne contient aucune proposition positive, et donc est
une clause de Horn.

Les propositions de g peuvent contenir des variables:
oncle(?x, Jacques)
(interét = valeur de la variable 7x)

Permet I'utilisation de preuves pour faire du calcul.
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Inférence sans variables

Chainage avant

Exemples de chainage

Faits et regles de départ:

Rl: vin A <-2-litres = petite—quantite
R2. cognac A <-1-litre = petite-quantite
R3. <-100-Frs = petite-quantite

R4. petite-quantite A adulte = hors-taxe
Fl1. wvin

F2. <-2-litres

F3. <-100-Frs

F4. adulte

But:
g = hors-taxe
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Inférence sans variables
lution

Chainage avant

Solution par chainage avant

O R1, F1, F2 — Fb: petite-quantite
@ R3, F3 — Fb: petite-quantite
© R4, F5, F4 — F6: hors-taxe = but

Pour améliorer I'efficacité:
limiter les inférences inutiles (e.g., 2.)

Boi Faltings Moteurs d'inférence 27/52



Inférence sans variables

Architecture: chainage avant

Vérification des Regles Correspondance
autres conditions déclenchées avec conditions

Instantiation de Base de Solution?
la conclusion données .
Donnéesde\ File d'attente Nouvelles Résultats
départ — " Q) données
(F)

@ Base de regles; connaissances
@ Base de données: prémisses et inférences

o File d’attente: important pour éviter que des boucles
empéchent d'atteindre la solution.
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Inférence sans variables
lution

Chainage avant

Algorithme: chainage avant

Procédure chainage-simple(F,R)
Q «+ {F}
while Q n’est pas vide do
q < first(Q); Q < rest(Q)
if g ¢ base de données then
ajouter q a la base de données
if g est un noeud but then imprimer g
forr € {R} do
if g € conditions(r)
and conditions(r) C base de données then
ajouter conclusion(r) a la queue Q
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Inférence sans variables

Chainage avant

Proprietés du chainage avant

@ On a déclenché une régle uniquement si on ajoute q a la base
de données

Le nombre de faits n est fini (toutes les conclusions des régles)
= pas plus que n itérations.

= |'algorithme s'arréte toujours.

= temps de calcul linéaire.
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Quantification
Inférence avec variables

La quantification

Pour exprimer des connaissances générales, les arguments des
prédicats peuvent étre des variables.
Toute variable doit étre "définie” par un quantificateur:
@ quantification universelle: (V x) = pour toutes les
substitutions de la variable x, I'expression qui suit est vraie.

@ quantification existentielle: (3 x) = il existe une substitution
pour la variable x qui rend |'expression qui suit vraie.

Boi Faltings Moteurs d'inférence 31/52



Inférence avec variables

Types de quantification

Oeme ordre: aucune quantification
vole(Titi)

ler ordre: quantification sur les symboles
(Vx) oiseau(x) = vole(x)

2eme ordre: quantification sur les symboles et les prédicats
(Vp) p(Charles) = p(Pierre)

Des algorithmes d'inférence existent uniquement pour les 0éme et
ler ordres = 2eéme ordre non utilisé en IA.
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Quantification

Inférence avec variables Résolution a

Exemples (1)

@ “Tous mes livres sont intéressants.”
(V x) [(livre(x) A posséde(moi,x)) =
intéressant (x)]

@ "Je n'ai aucun livre mince.”
- (3 x) [livre(x) A posséde(moi,x) A mince(x)]
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Inférence avec variables

Exemples (2)

© 'Tout le monde parle une langue.”
a. (¥ x) personne(x) =
(3 y) (langue(y) A parle(x,y))
b. (3 y) langue(y) A
(V x) (personne(x) = parle(x,y))
@ "ll y a exactement une langue que tout le monde parle.”
(3 y) langue(y) A
[(V x) (personne(x) = parle(x,y))]
A (V z) [langue(z) A
(V x) (personne(x) = parle(x,z))] = (z=y)
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Equivalence d'expressions quantifiées

(Vx)P(x) < (Vy)P(y)
(3x)P(x) < (3y)P(y)
~(I)P(x) & (VX)[-P(x)]
=(Vx)P(x) & (3x)[=P(x)]
(M)P(x) A Q(x)] = (vx)P(x) A (Vy)Q(y)
(3¥)[P(x) v Q( )P

x)] = (3X)P(x) Vv (3y)Q(y)
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Inférence avec variables

Les fonctions de Skolem

Les quantificateurs génent les procédures d'inférence.

Si (3x)p(x): p(A) doit étre vrai pour un certain A

Considérons le schéma suivant:
v x) [(Fy) px,y)]
= "pour tout x, il existe un y tel que p(x,y)"

On peut remplacer y par la fonction de Skolem
f (x) retournant toujours un y qui remplit la condition p(x,y):

vV x) p(x,f(x))

Arguments = toutes les variables avec quantification
universelles dont la portée inclut la variable remplacée.

Boi Faltings Moteurs d'inférence 36/52



Quantification
Inférence avec variables

La forme normale

@ Remplacer variables avec quantifications existentielles par des
fonctions de Skolem.
= élimination des quantificateurs existentiels

@ Pour les variables qui restent:
quantification universelle sous-entendue
e Notation pour distinguer variables/constantes:

e minuscules/majuscules: FRERE (x,CHARLES)
e point d'interrogation: frere(7x,Charles)
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Inférence avec variables

Exemple (forme normale)

(V x) personne(x) = (3 y) (langue(y) A parle(x,y))

@ Eliminer les quantificateurs existentiels:
(V x) personne(x) =
(langue(1(x)) A parle(x,1(x))

@ Laisser tomber les quantificateurs universels:
personne(?x) = langue(1l(?x)) A parle(?7x,1(?7x))

Identifier les variables par un " ?”
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Quantification
Inférence avec variables Résolution avec variables

Résolution avec variables

Unification:
U(X,Y) = substitution de variables pour rendre U(X) = U(Y).
Pour adapter la résolution a des expressions quantifiées, il faut les
deux regles d'inférence:
@ résolution binaire:
(L1 V A), (—|L2 V B), Unify(Ll, L2) =U
= (U(A) v U(B))
@ factorisation (nouveau):
(L1 V La vV A), Unify(L1, L) =U
= (U(L2) v U(A))
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Quantification
Inférence avec variables Résolution avec variables

(Vx)a(x) Vv b(x): 1. a(?x)V b(?x)
(Vx)a(x) = c(x): 2. =a(?y)Vc(?y)
(Vx)e(x) = d(x): 3. —c(?z) v d(?z)
(vx)b(x) = d(x): 4. —=b(?w)V d(?w)
A prouver: d(?x): 5.-d(?x)

1.+2.=6. b(?x)Vc(?x)
3.+6.=7. d(?z)V b(?z)
4.+7.=8. d(?w)Vd(?w)

Factorisation de 8.: 9.d(?w)
Résolution binaire entre 5. + 9. = Contradiction
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Quantificati

Inférence avec variables Résolution a variables
Filtrage et unification
Chaina VELELIES

Filtrage et unification

Probleme du filtrage (pattern match):
étant donné:

@ |'expression pattern avec variables

@ |'expression datum sans variables
trouver toutes les combinaisons de substitutions des variables de
pattern pour rendre datum = pattern.

filtrer((regarde, Paul, Pierre), (regarde, 7x, 7y))
(?x : Paul, 7y : Pierre)

Dans I'unification, les deux expressions peuvent contenir des
variables:

unifier((regarde, 7x, Pierre), (regarde, Paul, ?7y))
(?x : Paul, 7y : Pierre)

Algorithme central de tout systéeme a base de connaissances.
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Inférence avec variables

Algorithme de filtrage

Function Filtrer(pattern,datum)
if pattern est un symbol then
if datum et pattern sont identiques then return {}
if pattern est une variable then return {pattern/datum}
return ECHEC
if datum est un symbol then return ECHEC
F; < premier élément de pattern, T; < reste de pattern
Fy < premier élément de datum, T, < reste de datum
Z; + FILTRER(Fy,F5)
if Z; = ECHEC then return ECHEC
Gy < remplacer les variables de T par les unifications Z;
G2 — T2
Z, + FILTRER(Gy,G3)
if Z, = ECHEC then return ECHEC
return { Z; U Z, }
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Quantification

Inférence avec variables F ution a

Filtrage et unification
Cha

Exemple de filtrage

Appels récursifs:

filtrer:

E1 = (regarde, ?x, ?y)

E2 = (regarde, Paul, (frere, Charles))
F1 =regarde

F2 =regarde filtrer:
T1 = (2x, ?y) /

E1=(?x, ?y)
T2 = (Paul, (frere, Charles)) E2 = (Paul, (frere, Charles))

filtrer:
F1=2x
filtrer: F2 = Paul E1=(?y)
E1 =regarde E2 = ((frere, Charles))
E2 =regarde Ti=0) F1=2y
T2 =((frere, Charles))‘/ F2 = (frere, Charles)
" : T1=() : .
filtrer: filtrer: T2=( > filtrer:
E1=7x E1=7y E1=()
E2 = Paul E2 = (frere, Charles) E2=()
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Quantification

Inférence avec variables F ution a E
Filtrage et unification
Cha

Retour des appels

(?x:Paul, ?y:(frere, Charles))

(?x:Paul, ?y:(frere, Charles))

+<w

filtrer:
E1 = (regarde, ?x, ?y)
E2 = (regarde, Paul, (frere, Charles))

filtrer: +
(?x:Paul) E1=(?x, ?y) 0
E2 = (Paul, (frere, Charles)) filtrer:
filtrer: E1=(?%y)
E1 =regarde E2 = ((frere, Charles))
E2 =regarde

(?y:(frere, Charles)

filtrer:

E1=?x filtrer: filtrer:

E2 = Paul E1=?y E1=()
E2 = (frere, Charles) E2=()
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Quantificati

Inférence avec variables Résolution a variables
Filtrage et unification
Chaina VELELIES

Algorithme d'unification

Function Unifier(Eq,E2)
if E; ou Ep est un symbole then
Interchanger les arguments de E; et de E» (si nécessaire) de sorte que E; soit un
symbole
if E; et E> sont identiques then return {}
if E1 est une variable then
if E; apparait dans E, then return ECHEC
return {E; : Eb}
if Eo est une variable then return {E; : E;}
return ECHEC
F1 < premier élément de E;, T1 < reste de E;
Fo < premier élément de Ej, Ty < reste de Ej
Z1 < UNIFIER(F1,F2)
if Zy = ECHEC then return ECHEC
Gy < remplacer les variables de T1 par les substitutions Z;
G, < remplacer les variables de T, par les substitutions Z;
Z; + UNIFIER(G1,G2)
if Z, = ECHEC then return ECHEC
return { Z1y U Zy }
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Inférence avec variables

Chafnage avec variables

Intégration avec un systeme de regles

@ Possibilité de plusieurs unificateurs:
différents éléments de la base de données peuvent s’unifier
avec la méme regle

@ Procédure RETE pour optimiser I'unification de plusieurs faits
et regles.

@ Noms de variables uniques
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Inférence avec variables

Architecture: chainage avant avec variables

Base de
regles

(R)

Vérification des Regles + Filtrage
autres conditions Unificateurs avec conditions

Instantiation d i
nls an IaI ion de Base de Solution?
la conclusion données
Donn$ File d'attente Nouvelles Résultats
départ — Q) données
(F)

Différence par rapport au moteur simple: le filtrage/unification des
différentes conditions doit étre consistent!
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Inférence avec variables

Exemple d'un chalnage avec variables

Faits et regles de départ:
R1: pere(7x,7y) A frére(?y,?7z) = peére(?x,7z)
R2: pere(7x,7y) A frére(?x,7z) = oncle(?z,7?y)
F1: pere(Jacques,Charles),
F2: frére(Charles,Francois),
F3: frere(Jacques,Pierre)

But:

oncle(?x,Francois)
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Inférence avec variables

Solution par chainage avant

R1: pere(7x,7y) A frére(?7y,?7z) = peére(?x,7z)
R2: pere(7x,7y) A freére(?x,7z) = oncle(?z,7?y)
F1: pere(Jacques,Charles),

F2: frére(Charles,Francois),

F3: frere(Jacques,Pierre)
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Inférence avec variables

Solution par chainage avant

R1: pere(7x,7y) A frére(?7y,?7z) = peére(?x,7z)
R2: pere(7x,7y) A freére(?x,7z) = oncle(?z,7?y)
F1: pere(Jacques,Charles),

F2: frére(Charles,Francois),

F3: frere(Jacques,Pierre)

@ R1, F1, F2 — F4: pére(Jacques,Francois))
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Inférence avec variables

Solution par chainage avant

R1: pere(7x,7y) A frére(?7y,?7z) = peére(?x,7z)
R2: pere(7x,7y) A freére(?x,7z) = oncle(?z,7?y)
F1: pere(Jacques,Charles),

F2: frére(Charles,Francois),

F3: frere(Jacques,Pierre)

@ R1, F1, F2 — F4: pére(Jacques,Francois))
@ R2, F1, F3 — F5: oncle(Pierre,Charles)
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Inférence avec variables

Solution par chainage avant

R1: pere(7x,7y) A frére(?7y,?7z) = peére(?x,7z)
R2: pere(7x,7y) A freére(?x,7z) = oncle(?z,7?y)
F1: pere(Jacques,Charles),

F2: frére(Charles,Francois),

F3: frere(Jacques,Pierre)

@ R1, F1, F2 — F4: pére(Jacques,Francois))
@ R2, F1, F3 — F5: oncle(Pierre,Charles)
© R2, F4, F3 — F6: oncle(Pierre,Francois) = but
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Applications

Application: Business rules/ Thames Water

@ Thames Water fournit I'eau a la région de Londres
@ 250'000 demandes de changement de raccordement/année

o Difficile a automatiser a cause de la complexité des reglements
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Applications

Asset Data Services Decision Making Engine

Systéme de regles (Business Rules):
@ remplace une équipe de 30 personnes
@ diminué le temps de réponse de 50%
@ économise 3 millions de livres par an en cofits
@ évite 1.4 millions de livres d'erreurs par an

Application typique de business rules
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Resumé

Resumé

Inférence par résolution
Inférence par chainage
Inférence avec variables

Filtrage et Unification
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