Avant-propos

Le sujet de I'Intelligence Artificielle fait partie du plan d’études de la section
d’Informatique de 'EPFL depuis plus de 20 ans. Ce livre est le résultat d’une
évolution constante des notes de cours et des exercices pendant cette période.
Il contient donc a la fois des méthodes tres anciennes, comme les algorithmes
d’inférence et I’apprentissage de concepts, et des méthodes trés récentes, comme
la planification par contraintes et certaines techniques d’apprentissage. La sé-
lection a été réalisée selon trois criteres :

1) Utilité pratique : toutes les méthodes présentées dans ce livre trouvent
leur application dans de nombreux logiciels en application pratique au-
jourd’hui, et le livre couvre la majorité de telles techniques.

2) Couverture : I'ensemble des techniques donne un apergu équilibré des dif-
férents sujets traités en Intelligence Artificielle, a I’exclusion du traitement
de la langue naturelle et de la robotique qui sont considérés comme des
sujets propres.

3) Simplicité : les méthodes sont suffisamment simples pour étre comprises
et implémentées par un étudiant bachelor de derniére année. Aucune mé-
thode ne demande des connaissances mathématiques ou informatiques
particulierement élevées. Par contre, elles ouvrent le chemin vers des mé-
thodes plus sophistiquées.

Le contenu théorique est accompagné de nombreux exercices qui apprennent
au lecteur & programmer pas a pas la majorité des algorithmes. C’est certai-
nement 'une des fortes spécificités de 'ouvrage. Méme si les programmes re-
présentent des versions simples et en soi peu efficaces de 'implémentation des
techniques du livre, ils sont utiles pour bien les comprendre et constituent une
base pour des réalisations plus sophistiquées.
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CHAPITRE 1

Introduction

Deés le début de 'informatique, les chercheurs se sont tout particulierement
intéressés a la reproduction de l'intelligence humaine sur ordinateur. C’était la
motivation principale pour aller au-dela de la simple machine a calculer vers des
automates capables de traiter I'information en général. Dans les années 1940,
des chercheurs comme Turing, Von Neumann et Shannon ont tous apporté des
contributions importantes dans ce sens.

L’Intelligence Artificielle (IA) a donc longtemps été synonyme d’informa-
tique tout court. Elle se distinguait des mathématiques numériques qui voyaient
dans les ordinateurs plutot des machines a calculer. En 1956, I'TA est finalement
devenue une discipline en soi lors de la Conférence de Dartmouth qui réunissait
notamment McCarthy, Newell, Simon et Minsky, des personnages clés qui ont
fortement influencé le développement de la discipline.

Depuis ces débuts, I'Intelligence Artificielle a subi un développement fulgu-
rant et les techniques qui furent développés sont a la base de I'informatique telle
que nous la connaissons aujourd’hui : la programmation orientée objet et la pro-
grammation fonctionnelle en sont issues, de méme que les techniques d’analyse
de données et d’apprentissage automatiques, qui sont largement répandues. Les
progres de I'TA se sont signalés par des succes comme le systéeme WATSON qui a
battu en 2011 les meilleurs joueurs humains dans le jeu télévisé Jeopardy, ou
encore 'assistant personnel SIRI disponible sur certains téléphones mobiles ou
les voitures autonomes.

Avant toute discussion sur les techniques de I'TA, il est nécessaire de prendre
connaissance de ses principaux objectifs et raisons d’étre. Une définition intui-
tive est facile & donner : il s’agit de I’étude des programmes informatiques qui
simulent la pensée ou l'intelligence humaine. Mais comment définir exactement
en quoi cela consiste 7

Si les premiers ordinateurs symboliques ont effectivement été appelés des
cerveaux €électroniques, ’évolution des techniques informatiques n’a pas tardé a
démontrer le caractere trop péremptoire de cette vision des choses. Les défini-
tions précises, comme celle qui prétend qu’un étre intelligent est un étre capable
de réagir a son environnement, s’averent trop simplistes : un thermostat réagit
aux modifications de son environnement, tout comme un étre humain, mais
rares sont les personnes qui lui attribueront de 1’intelligence. Par contre, la
complexité des comportements semble jouer un role important dans la défini-
tion de 'intelligence. Aujourd’hui, il apparait clairement que la complexité de
la pensée humaine est sans commune mesure avec tout ce qu’un ordinateur
existant est a méme de réaliser.
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Fig. 1.1 Dessin d’une maison en 3-dimensions ou texture sur une feuille de papier ?

Une meilleure approche pour définir l'intelligence consisterait a étudier de
plus pres ce que nous, étres humains, considérons comme intelligent. Exami-
nons, par exemple, le dessin de la figure 1.1.

Imaginons ce qu'un robot équipé d’une caméra vidéo peut nous en dire. Une
réponse correcte serait : « Je vois un morceau de papier sur lequel est dessiné
un ensemble de lignes ». La réponse intelligente, « Je vois une maison », est
paradoxalement fausse en soi, mais c’est tres probablement celle qu’on aurait
espérée d’un ordinateur intelligent. Ce dernier point dégage le critére selon le-
quel nous décidons que la réponse est intelligente ou ne I’est pas. Le fait de voir
une maison sur la feuille de papier et non pas simplement un ensemble de lignes,
est basé sur un grand nombre de conventions et de connaissances : les humains
utilisent des dessins pour communiquer de 'information sur des objets tridi-
mensionnels, I’élaboration de ces dessins obéit a des regles et la forme du dessin
correspond & celle d’une maison. La plupart des programmes d’TA utilisent une
quantité significative de connaissances humaines et sont généralement connus
sous l'appellation de systémes basés sur la connaissance. L’exemple que nous
venons de voir nous permet de formuler une nouvelle définition de I'IA : un
programme intelligent est un programme qui résout des problemes en utilisant
les régles et conventions propres aux humains (ou du moins qui s’en inspirent).

Si ’élaboration de programmes intelligents est déja un objectif intéressant
en soi, le succes de 'TA comme discipline d’ingénierie provient largement du
fait qu’elle offre des solutions a des problemes d’intérét pratique. D’un point de
vue technologique, I'TA fournit des moyens plus souples et plus efficaces pour
produire du logiciel informatique. Par exemple, les techniques d’TA ont permis
la mise au point de programmes qui peuvent conduire des véhicules autonomes,
réagir a des pannes de circuits électriques, reconfigurer des réseaux de commu-
nication, ou traiter des rapports de sinistre d’une assurance. Un comportement
intelligent est important, car il permet d’éviter les obstacles rencontrés en pra-
tique plus facilement que les techniques algorithmiques classiques.

Dans les paragraphes suivants, nous verrons ce qui distingue actuellement
la résolution de probléemes par un étre humain de la maniere de procéder des
ordinateurs. Nous verrons aussi quels sont les problémes pour lesquels I'TA peut
étre d’un meilleur apport que les techniques classiques.



Introduction 3
1.1 Connaissances : données non structurées

Science et ingénierie sont toutes deux dominées par des principes, c’est-a-dire
par des regles générales dont 'application uniforme résout tous les problemes
d’une méme classe. Cela est particulierement apparent en mathématiques, ou
le but principal consiste a réduire des problemes, en apparence complexes, a
un ensemble minimal de principes. Les ordinateurs ont été développés par des
mathématiciens, il n’est donc pas étonnant que ce soient des machines parti-
culierement bien adaptées a la mise en ceuvre de principes. Les premiers or-
dinateurs n’étaient en fait que des calculateurs implémentant les principes les
plus généraux de l'algebre, et qui ne pouvaient résoudre que des problemes
se ramenant & un ensemble de calculs algébriques. Aujourd’hui, méme si les
ordinateurs peuvent traiter un ensemble plus vaste d’opérations, les notions
algorithmiques de base sous-jacentes aux programmes procéduraux refletent
toujours le concept de machines de calcul : les programmes sont des séquences
d’étapes opérant sur des données. Cet aspect a conduit au développement des
superordinateurs dans lesquels certains principes (par exemple le calcul de vec-
teurs) sont cablés (physiquement implémentés) afin d’étre exécutés de fagon
extrémement rapide.

En revanche, le comportement humain est régi par tres peu de principes. Un
adage bien connu affirme dans cet esprit qu’il n’y a pas de regle sans exceptions.
En fait, les principes s’accommodent mal d’exceptions et il est ainsi difficile
d’utiliser des ordinateurs dans des domaines ou peu de principes connus sont
clairement applicables.

En termes informatiques, on peut faire une distinction analogue entre le
traitement de données structurées et non structurées. L’informatique classique
est particulierement adaptée au traitement de données structurées, comme par
exemple des chiffres, des codes et d’autres contenus de bases de données. Par
contre, le comportement humain repose sur beaucoup de données non structu-
rées : des regles, des normes sociales ou encore des informations incertaines. Ces
données sont difficilement formalisables sous un format structuré. Elles sont en
général incompletes, ambigués et parfois aussi inconsistantes. En IA, elles sont
appelées des connaissances.

1.2 Modélisation du monde et des connaissances

Comme le montre la figure 1.2, le premier pas pour tout systéeme intelligent
est de modéliser le monde par une représentation logique qui identifie les objets,
propriétés et relations importants pour une tache donnée. Par exemple, si la
tache est de conduire un véhicule autonome, il faut reconnaitre les piétons,
les autres véhicules, les voies de circulation, etc. Cette reconnaissance se fait
par un systeme de vision ou par d’autres capteurs, et fournit une premiere
représentation du monde. Toute tache intelligente — comme le raisonnement, la
résolution de problemes ou 'apprentissage — repose sur une telle représentation,
car 'ordinateur n’a pas d’autre connexion avec le monde.
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Résolution de problémes Apprentissage
comment obtenir pos(moi,p5)? pos(p7,p6,t1), pos(p7,p5,t2)
=> Plan: vérifier(pl,vert) pos(p10,p6,t3), pos(pl10,p5,t4)
avancer(moi)

...... pos(x,p6,y) —> pos(x,p5,z)

Raisonnement
Pr(traverse(p2))=0.45 Pr(change(p8,p5))=0.01 Pr(change(p7,p5))=0.2
traverse(p1,p3) tourne-a- pos(p8,p6)
voie-opposée(p4) gauche(p6) pos(p7,p6)

Représentation .
marche(pl) reste(p2) freine(p7)

. voiture(p8) .
piéton(pl piéton(p2) . ‘ voiture(p7)
5 voie(pd) passage(pS\?Oie(p(a) voie(p5)

Fig. 1.2 Modélisation logique du monde pour un véhicule autonome et exemples de
raisonnement.

Pour exprimer ces données non structurées, la société se sert des langues
naturelles, telles que le frangais, I'anglais ou le chinois. Depuis le temps des
Grecs, on a cherché a formaliser la signification des expressions du langage
naturel. Le formalisme qui a été développé pour ce faire est la logique des
prédicats. Elle repose sur des prédicats qui peuvent étre vrais ou faux. Dans ce
livre, nous exprimerons toujours nos modeles du monde dans le formalisme de
la logique des prédicats. Méme si cette représentation n’est pas obligatoirement
présente de fagon explicite dans tout logiciel TA, elle est utile au moins comme
notation de base.

En général, il y a une correspondance entre prédicats et mots d’une langue.
Sur la base des prédicats, on construit des expressions utilisant des connecteurs
tels que et et ou. Ces expressions correspondent & des phrases. La signification
d’une phrase devient donc : si la phrase est vraie, I’expression correspondante
en calcul des prédicats 1’est aussi.

L’avantage de ce formalisme est que ’on peut maintenant définir des regles
qui permettent de juger si deux phrases sont consistantes entre elles, ou si une
phrase est la conséquence d’une autre. Par exemple, les trois phrases :

1) « Silenfant de Mme Dupont est une fille, ce n’est pas un garcon »
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2) « L’enfant de Mme Dupont est une fille »
3) « L’enfant de Mme Dupont est un gargon »

sont clairement inconsistantes, mais on ne peut pas s’imaginer un algorithme
qui permettrait de détecter une telle inconsistance avec une certaine généralité.
En formalisant :

e F = « L’enfant de Mme Dupont est une fille »
e G = « L’enfant de Mme Dupont est un garcon »
on obtient :
1) F=-G
2) F
3) G

On peut alors appliquer des algorithmes généraux pour détecter I'inconsistance,
ou encore faire l'inférence que G doit étre faux sur la base des deux premieres
expressions.

Dans cet exemple, nous avons inventé des prédicats qui eux-mémes corres-
pondent déja a beaucoup plus que des mots de la langue. Pour obtenir une tra-
duction plus générale, le calcul des prédicats admet également des variables et
des quantificateurs. Dans ce cas précis, nous pouvons utiliser le prédicat F'(x)
qui est vrai si 'argument x est une fille. Nous pouvons alors introduire une
constante E qui représente « I’enfant de Mme Dupont », et exprimer « ’enfant
de Mme Dupont est une fille » par F'(E). Mieux encore, nous pouvons introduire
un prédicat F(z,y) qui dit « x est enfant de y », et utiliser la quantification
existentielle 3z qui dit « il existe un x » pour écrire : (3z) E(x, Dupont) et F(z).
Cela nous permet d’avoir un formalisme plus général, que nous pouvons appli-
quer non seulement a I’enfant de Mme Dupont, mais aussi a d’autres enfants.

On peut ensuite songer a exprimer également une autre information, qui est
donnée par chacune des phrases, celle qu’il n’existe qu’un seul enfant de Mme
Dupont. Il n’existe donc pas une seule et unique fagon de traduire des phrases en
calcul des prédicats, surtout quand les phrases sont ambigués. En fait, souvent,
on souhaite conserver une certaine ambiguité, par exemple en diplomatie. La
traduction automatique de la langue en calcul des prédicats reste donc un réve
qui ne sera probablement jamais réalité — on aura toujours besoin d’un humain
pour résoudre les ambiguités.

C’est pour cette raison que I'TA ne permet pas de traiter directement les
connaissances non structurées, mais suppose un processus qui aura traduit préa-
lablement les connaissances en calcul des prédicats. Ces traductions existent de
plus en plus, par exemple dans le « text mining » ou le web sémantique. L uti-
lisation du calcul des prédicats permet ensuite de construire des programmes
capables de manipuler des connaissances non structurées telles que les expres-
sions en langue naturel. C’est 1a I'importance essentielle des techniques d’TA
dans l'informatique d’aujourd’hui.
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1.3 Inférence : manipuler les connaissances

Il n’est pas possible de manipuler des connaissances par des opérations arith-
métiques. Le mécanisme de base pour la manipulation de connaissances est le
raisonnement utilisant des principes d’inférence logique.

Il existe trois mécanismes de raisonnement : la déduction, l'induction et
Pabduction. Dans la déduction, un ensemble de propositions initiales (les pré-
misses) ainsi qu'un ensemble de regles sont utilisés pour inférer un ensemble
de conclusions. Dans 1’abduction par contre, ce sont les conclusions et les regles
qui sont utilisées pour retrouver les prémisses desquelles découlent les conclu-
sions. Dans 1’induction enfin, prémisses et conclusions sont utilisées pour inférer
I’ensemble des regles qui permettent de passer des premieres aux secondes.

L’exemple suivant illustre les trois types de raisonnement. A partir des trois
propositions suivantes :

Oiseau(Titi) : Titi est un oiseau
(V x) oiseau(x) = chante(x) : Les oiseaux chantent
chante(Titi) : Titi chante

on peut imaginer les inférences suivantes :

déduction :
oiseau(Titi)
(Vx) oiseau(x) = chante(x)
chante(Titi)

abduction :
chante(Titi)
(Vx) oiseau(x) = chante(x)
oiseau(Titi)

induction :
oiseau(Titi), oiseau(Fred)
chante(Titi), chante(Fred)
(V x) oiseau(x) = chante(x)

Ces trois modes de raisonnement définissent les trois grands domaines ap-
plicatifs de I'TA. La déduction s’applique surtout & la modélisation directe de
la pensée humaine, donc par exemple dans des programmes qui appliquent des
regles. L’abduction a un grand nombre d’applications dans des problemes de
diagnostic, de planification et de conception. Les applications de I'induction se
trouvent dans des systemes d’apprentissage a partir d’exemples.

Dans la figure 1.2, nous montrons des exemples des trois types de raisonne-
ment dans le cas de la conduite d’un véhicule autonome :

o Le raisonnement déductif est nécessaire pour établir les relations et pro-
priétés des objets reconnus dans le monde. Il peut aussi tirer des conclu-
sions incertaines avec une estimation de leur probabilité, par exemple pour
décider si un piéton va traverser la route ou pas.

e Le raisonnement abductif est utilisé pour la planification : quelles actions

faut-il accomplir pour se déplacer & un endroit voulu? A quoi faut-il faire
attention ?
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o L’induction sert a l'apprentissage afin de prévoir le comportement des
autres usagers de la route : comment se déplaceront-ils dans les différentes
situations ?

Les résultats de ’abduction et de I'induction sont en général ambigus et ne
sont pas tous nécessairement valides :

o L’abduction donne autant de résultats que de regles qui permettent 1’in-
férence de sa prémisse.

o Il existe plusieurs regles qui peuvent résulter d’'une induction sur le méme
ensemble de propositions. Par exemple, on aurait pu conclure par
(V x) chante(x) = oiseau(x).

Cependant, I’abduction et I'induction sont bien fondées sous I’hypothese
d’un monde clos. Cette hypothese s’explique comme suit :

o Pour ’abduction : toutes les regles sont connues, et on ne pourra donc
pas découvrir une autre explication.

e Pour I'induction : toutes les prémisses et conclusions sont connues, ce qui
signifie qu’on ne pourra jamais découvrir un contre-exemple a la regle
trouvée.

Comme on ne peut pas toujours assurer un monde clos, le seul mécanisme
d’inférence dont on peut garantir le bien-fondé inconditionnel est la déduc-
tion. Il est a la base de la grande majorité des systémes informatiques : les
algorithmes classiques sont basés sur une déduction du résultat a partir des en-
trées. Cependant, sous ’hypothese d’'un monde clos, I'abduction et I'induction
deviennent également fondées et peuvent étre implémentées par un programme
informatique. C’est ici que se trouve une grande partie de l'intérét de I'TA par
rapport a l'informatique classique.

1.4 Historique de I'TA

Le but des premiers ordinateurs était de réaliser de grands calculs, en particu-
lier de trajectoires d’obus d’artillerie. Leur premiere utilisation en dehors des
calculs numériques fut de casser des codes cryptographiques dans un projet
mené par le mathématicien Alan Turing. Il fut 'un des premiers & développer
une vision beaucoup plus large des ordinateurs et a formaliser cette vision dans
des modeles théoriques comme la machine de Turing. Il considérait les ordina-
teurs comme de véritables cerveaux électroniques, capables de beaucoup plus
que du simple calcul.

Pendant 1’été 1956, un groupe de chercheurs s’est réunit au college de Dart-
mouth (New Hampshire, USA) pour une conférence d’un mois. Il y avait la
des chercheurs qui allaient devenir tres influents, tels que l'organisateur John
McCarthy et Herbert Simon, qui allait recevoir plus tard le prix Nobel. A cette
époque, la puissance des ordinateurs progressait rapidement, et il paraissait
évident qu’ils allaient égaler ou dépasser 'intelligence humaine au bout de peu
de temps. La conférence a donc inventé le terme « Intelligence Artificielle ».
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En 1955 déja, Alan Newell et Herbert Simon avaient créé un programme inti-
tulé le Logic Theorist, qui pouvait trouver des preuves — parfois tres élégantes —
de certains théoremes mathématiques. Ils ont ensuite développé ce programme
en une théorie générale de la résolution de problemes, le General Problem Sol-
ver (GPS). En 1958, ils osérent deux prédictions pour les dix années suivantes :
un ordinateur serait le premier a trouver la démonstration d’un théoréme im-
portant et un ordinateur deviendrait champion du monde d’échec. La premiere
prédiction fut réalisée en 1974 avec le théoreme des quatre couleurs, mais il
fallut attendre beaucoup plus longtemps pour la deuxieme. Il semblait alors
qu’il n’y aurait aucune limite a ce qu'un ordinateur pourrait faire; les seules
limitations provenaient de leur capacité et de leur vitesse, et les deux faisaient
des progres rapides.

En méme temps, on faisait des progrés importants dans la quéte de deux
autres objectifs : la compréhension du langage humain et la vision par ordina-
teur. En 1964, Daniel Bobrow a développé un programme, du nom de STUDENT,
qui était capable de résoudre des exercices de mathématiques du niveau du ly-
cée. Un autre programme, appelé ELIZA et développé par Joe Weizenbaum en
1966, simulait la conversation d’un psychologue avec son patient. Il était tel-
lement convaincant que les gens oubliaient rapidement qu’ils étaient en train
de communiquer avec un ordinateur. Ce fut le premier « chatterbot ». Le cou-
ronnement des ces recherches fut le programme SHRDLU, construit par Terry
Winograd en 1970. Il permettait une conversation, raisonnait lui-méme et pla-
nifiait des actions dans un monde simulé de blocs. Ainsi, il apparaissait comme
un véritable collegue intelligent.

En vision, David Waltz développa des programmes qui pouvaient interpréter
des images faites de traits (line drawings) comme des structures tridimension-
nelles. Cette technique permettait aussi d’identifier dans des images des objets
par leurs contours. Cette technique reste le principe de base de pratiquement
toutes les techniques de vision par ordinateur utilisées aujourd’hui.

L’TIA créa donc des attentes immenses, suivant un schéma qui plus tard sera
identifié comme la courbe « hype » de Gartner (voir fig. 1.3) : certains suc-
cés impressionnants créerent des attentes qui ne purent jamais étre satisfaites.
L’TA rencontrait ainsi des difficultés de deux cotés. Tout d’abord, la critique
fondamentale la plus importante venait de Hubert Dreyfus, qui affirmait que
I'intelligence devrait impliquer plus que du raisonnement, car les symboles uti-
lisés en TA n’avaient pas de signification pour l'ordinateur qui les traite.

De plus, de sérieux problemes apparaissaient dans le développement de 1’al-
gorithmique. Il devenait de plus en plus clair qu’il existait une certaine classe
de problemes, appelés NP-durs, pour lesquels on n’arrivait pas a trouver des
algorithmes dont le temps de calcul n’explosait pas exponentiellement avec la
taille du probleme. En fait, presque tous les problémes que traitaient I'TA tom-
baient dans cette catégorie. On fut donc amené a douter que les succes, qui
avaient été obtenus sur des problemes de petite taille, pourraient se généraliser
a des problemes plus grands. Cette prise de conscience a eu pour effet un arrét
presque total des recherches en IA.

Heureusement, il y eut aussi certains succes sur des problemes d’intérét pra-
tique, en particulier ceux des systéemes experts. Le systéeme DENDRAL, dont la
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Fig. 1.3 La courbe hype.

mise au point avait commencé en 1965 déja, pouvait identifier des molécules
chimiques avec la méme précision qu’un spécialiste humain et donc automati-
ser une tache qui jusque-la nécessitait de tres hautes qualifications. Le systeme
MYCIN, dont le développement avait débuté en 1972, identifiait des maladies in-
fectieuses et arrivait a proposer des traitements. Des analyses des performances
du systeme ont montré qu’elles étaient supérieures a tout médecin humain. Cela
peut étre attribué au fait que le programme arrive & combiner les connaissances
d’un grand nombre d’experts. Un autre grand succes industriel fut le systeme
XCON, un systeme expert pour la configuration d’ordinateurs, développé par la
Digital Equipment Corporation : il aurait permis des économies de $40 millions
par an, une somme énorme pour ’époque. Les millieux industriels en prirent
note, et bientot les systemes experts furent & la base d’une industrie nais-
sante comportant de nombreuses entreprises comme Teknowledge, Inference,
ou Intellicorp. En méme temps on développa des ordinateurs spécialisés dans
le traitement de données symboliques, ainsi que le langage de programmation
LISP, produits par Symbolics et Texas Instruments. Presque chaque grande
entreprises avait un département d’IA, et les espoirs mises dans la révolution
des systemes experts étaient énormes.

Cependant, on découvrit bientot que les bases théoriques n’étaient pas en-
core assez miures pour réaliser toutes ces attentes. Pour réussir dans de vrais
probléemes de grande taille, il fallait résoudre des problemes de base comme la
logique non monotone et le raisonnement incertain. Or ces problémes n’étaient
pas tres bien compris. Par conséquence, vers la fin des années 1980, le grand
boom des systémes experts toucha a sa fin, et I'TA entra dans la phase du creux
de désillusion de la courbe de Gartner (voir fig. 1.3).
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Cette phase a conduit & '« hiver de I'TA », une période de déception qui
a duré jusqu’en 1995. Certains sous-domaines sont devenus indépendants de
I'TA. Le traitement du langage et celui de la parole ont adopté des approches
statistiques, ne reposant plus sur des grammaires formelles développées par des
linguistes, ce qui a conduit aux méthodes de recherche d’information utilisées
dans les moteurs de recherche d’aujourd’hui. La vision par ordinateur est de-
venue un domaine en soi et a développé ses connexions avec le traitement des
signaux et des images. L’accent a été mis plutot sur la reconnaissance d’objets
que sur la compréhension de ’environnement. La robotique s’est concentrée
sur des robots autonomes avec peu de capacités, ne possédant souvent aucune
connexion avec un raisonnement ou avec le langage. Méme ’apprentissage au-
tomatique, clairement un sujet central de I'TA et fortement connecté avec le
raisonnement symbolique, est souvent vu comme un domaine séparé. La aussi,
I’apparition des réseaux de neurones artificiels a eu tendance a démentir 'utilité
des connaissances explicites, en réalisant I’apprentissage de fagon implicite.

Cependant, le boom des années 1980 a produit de nombreux chercheurs en
IA, qui, pendant les années 1990, ont réalisé des progres importants sur les bases
théoriques qui posaient tant de problemes pour les systemes experts. Pour le
raisonnement, les techniques de satisfaction de contraintes ont permis le passage
a des techniques d’inférence beaucoup plus puissantes et & un traitement propre
des problemes de logique non monotone. Les techniques des réseaux bayésiens
ont fourni un cadre théorique solide pour le traitement des informations in-
certaines. Pour I'apprentissage, les support vector machines ont remplacé les
techniques simples d’induction et les réseaux de neurones. Par conséquent, au-
jourd’hui, on retrouve des techniques telles que la programmation par regles
(par exemple les business rules), I'inférence bayésienne, la programmation par
contraintes, les résolveurs SAT et Papprentissage automatique dans presque
toutes les applications informatiques. L’IA est devenue une des bases de I'in-
formatique et a finalement atteint le plateau de productivité de la courbe de
Gartner (fig. 1.3).

Les années 1990 ont connu également un développement important des
techniques de raisonnement probabilistes, notamment sur la base de modeles
graphiques, tels que les réseaux de Bayes. La capacité de raisonner avec des
informations incertaines a permis I'utilisation de connaissances qui ne sont pas
exacts & 100%, et donc d’échapper & la contrainte de cohérence absolue qu’im-
pose le cadre d’un raisonnement logique. Par exemple, dans le traitement du
langage naturel, ceci a permis de raisonner a partir d’informations textuelles
sans en avoir une compréhension parfaite. Dans des techniques de machine rea-
ding, la redondance des informations contenues dans des bases textuelles per-
met alors de tolérer un certain taux d’erreur dans la compréhension de textes
individuels et méme de corriger des erreurs par la suite en raisonnant sur la
cohérence. Des modeles probabilistes se sont également imposés pour I'induc-
tion : Papprentissage vise a apprendre des modeles probabilistes plutot que
strictement logiques. Ceci permet de construire les connaissances nécessaires a
I'inférence par des techniques d’apprentissage.

Avec larrivée de l'internet dans la vie de tous les jours, I'Intelligence Arti-
ficielle a quitté le monde des laboratoires et de 'industrie spécialisée. La dis-
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ponibilité de presque tout les textes en format numérisé via l'internet a fourni
le cadre pour de nombreuses applications qui traitent automatiquement ces in-
formations, un phénomene désormais connu sous le terme de Big Data. Citons
quelques exemples :

o La compagnie Google fournit des services de traduction automatique grace
a des modeles obtenus par I'analyse de grandes quantités de textes bi-
lingues trouvés sur le web.

o L’assistant SIRI, disponible sur les iphones de la compagnie Apple, par-
vient a désambiguiser les questions posées par son utilisateur, avant d’éta-
blir un plan de recherche des informations nécessaires a la réponse, de
I’exécuter et de synthétiser une réponse.

e Le programme WATSON, lors d’une démonstration organisée par IBM,
a battu les meilleurs joueurs humains du jeu télévisé Jeopardy, en cher-
chant en temps réel des informations spécialisées et en construisant un
raisonnement qui permet de trouver les réponses demandées.

L’intelligence artificielle a aussi trouvé son utilisation dans de nombreux autres
domaines, tels que des voitures auto-conductrices ou le négoce automatisé d’ac-
tions en bourse. Et, pour ne pas 'oublier : le 11 novembre 1997, avec presque
30 ans de retard sur la prédiction, le programme Deep Blue devenait champion
du monde d’échec en battant le champion de 1’époque, Gary Kasparov, dans
un tournoi régulier.

Les techniques qui sont centrales a I'TA d’aujourd’hui, et qui font son suc-
ces dans les applications, sont basées sur l'inférence logique, les algorithmes de
recherche et d’optimisation et diverses techniques statistiques utiles pour 'ap-
prentissage automatique. Elles sont essentielles pour résoudre des problemes
tels que :

e le traitement d’informations non structurées, comme par exemple des

textes ou le contenu de pages Web ;

« 'opérationnalisation de données, par exemple la génération de regles qui
peuvent étre appliquées automatiquement pour implémenter une certaine
stratégie ;

e le calcul abductif, par exemple pour planifier ou ordonnancer des opéra-
tions afin d’atteindre certains buts;

o le calcul inductif, par exemple 'apprentissage des préférences d’un utilisa-
teur, la prévision des mouvements de la bourse, ou la détection d’anomalies
dans une grande base de données.

Ce livre présente une introduction a ces techniques, développées par une
communauté de milliers de chercheurs au cours des cinquante derniéres années.
1.5 Les domaines d’application de I’'Intelligence Artificielle

L’TIA est un domaine tres vaste qui a de nombreuses applications. Comme pre-
miere classification, on peut en distinguer trois types :
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o des programmes qui imitent des capacités cognitives et reproduisent un
raisonnement humain, par exemple un diagnostic médical, la configuration
d’un central téléphonique, la planification d’une mission spatiale ou la
recherche de régularités dans une grande base de données;

o des programmes qui imitent des capacités sensorielles et sont capables de
reconnaitre des formes ou des objets, ou bien de comprendre la parole en
langage naturel ;

o des programmes qui imitent des capacités sensomotrices et sont capables
de réagir de fagon autonome a leur environnement, par exemple des robots
ou agents autonomes.

Dans ce livre, nous traitons essentiellement d’applications du premier type,
bien qu'une grande partie des techniques s’appliquent également aux autres
applications. Les méthodes utilisées pour la vision et le traitement de la parole
s’inspirent de plus en plus de modeéles neuronaux du cerveau et de la statis-
tique qui ne sont pas facilement applicables a des taches de raisonnement et
sont devenus des domaines en soi. Les agents autonomes posent des problemes
supplémentaires, comme la réactivité en temps réel et I'optimisation du com-
portement par rapport a leur environnement. Ils dépassent le cadre de ce livre
et sont traités dans les domaines des agents autonomes et des systemes multi-
agents.

Pour illustrer les problemes auxquels s’appliquent les techniques décrites
dans ce livre, nous allons considérer quelques exemples.

1.5.1 Systémes a base de connaissances

Une des premieres applications de I'TA est 'automatisation de taches com-
plexes. Par exemple, des assurances pourraient souhaiter automatiser les déci-
sions sur des dossiers de sinistres, des fabricants d’imprimantes souhaiteraient
fournir des outils de diagnostic de pannes et on aimerait automatiser la confi-
guration et la reconfiguration d’installations informatiques. Quand ces taches
dépassent une certaine complexité, elles impliquent une quantité importante de
connaissances et il n’est plus rentable de les implémenter par des algorithmes.
Cela est le cas surtout quand les connaissances changent, comme par exemple
pour une assurance qui doit s’adapter a des reglements qui varient réguliere-
ment.

Pour de telles applications, on modélise les connaissances sous-jacentes di-
rectement sous forme logique, en calcul des prédicats ou dans un langage spécia-
lisé qui en est dérivé. Cela permet alors d’appliquer des algorithmes généraux,
appelés moteurs d’inférence, pour obtenir les raisonnements qui en découlent.
Un premier avantage est que le temps de développement se trouve fortement
raccourci. De plus, il devient facile d’adapter le systeme a des changements de
connaissances. On peut les changer directement au lieu de devoir développer a
nouveau un algorithme qui en découle.

La complexité des connaissances peut varier entre des systeémes tres simples
et trées complexes. Pour les applications dans les systemes d’information, les
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connaissances sont souvent des regles, lois ou policies qui doivent étre appli-
quées automatiquement. Pour ce faire, on utilise des techniques relativement
simples comme les business rules. A Tlautre extréme, on trouve des systemes
qui modélisent le comportement d’un expert, par exemple pour aider a établir
un diagnostic médical ou estimer des risques financiers. De tels systeémes, ap-
pelés aussi systémes experts, peuvent faire appel a des techniques parfois tres
sophistiquées telles que la logique non monotone et le raisonnement incertain.

Une autre application des systémes a base de connaissances se trouve dans
le web sémantique. Il se base sur des langages standardisés qui permettent
d’ajouter des connaissances logiques a des pages web. Il devient alors possible
de faire des raisonnements complexes utilisant les connaissances disponibles sur
le World Wide Web.

1.5.2 Raisonnement basé sur modéeles : systémes de planification

Un deuxieme type d’application est la résolution de problemes, tels que des
casse-tétes, ou des systéemes IA sont plus performants que les humains gréace
a leur capacité de comparer un grand nombre de possibilités et de choisir la
meilleure. Parmi les applications pratiques, le probleme de la planification se
pose de facon tres nette pour la gestion des procédures impliquant des humains
et des machines et dont le degré de complexité est tel qu’il est difficile d’en avoir
une vision d’ensemble. Prenons pour exemple le cas d’une mission spatiale. 11
existe des centaines de buts a réaliser pendant le laps de temps relativement
court que dure la mission. De plus, dans le cas ol les problemes rencontrés n’ont
jamais été étudiés auparavant, il faudra pouvoir trés vite modifier les plans
pour s’adapter aux imprévus. Les processus industriels de grande envergure,
comme la construction d’avions, impliquent souvent des millions d’opérations
différentes. Ils constituent un autre exemple typique de systémes nécessitant
une planification automatique par ordinateur.

Il est tres intéressant d’utiliser des systémes basés sur la connaissance dans
le domaine de la planification : d’'une part, parce que la tache en elle-méme
est compliquée, d’autre part parce que par nature, elle ne peut étre traitée
algorithmiquement. En pratique, les systemes de planification sont développés
sur la base de regles heuristiques établies par des experts.

Les applications des systemes de planification sont nombreuses. Par exemple,
les missions de la navette spatiale américaine ont été organisées par un systeme
de planification. Il en va de méme pour la logistique des opérations militaires
ameéricaines. On utilise des systemes d’TA pour planifier I'utilisation des instal-
lations d’usines chimiques ainsi que pour la production d’avions. Ils sont éga-
lement utilisés pour planifier les mouvements d’avions au sol dans les grands
aéroports.

Avec I’'avénement du raisonnement probabiliste, la planification a également
pu étre appliquée a des problemes peu structurés, tels que la planification d’ac-
teurs de synthese dans les jeux vidéo. Il est quasiment impossible d’imaginer
de programmer leurs mouvements d’'une facon réaliste sans faire appel aux
techniques de planification de I'Intelligence Artificielle.

L’ordonnancement est une version simplifiée de la planification, qui se trouve
a l'intersection de I'TA et de la recherche opérationnelle. On en trouve de nom-
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breuses applications dans des domaines divers, tels que les mouvements d’avions
sur un porte-avions, le placement de conteneurs dans un port ou encore la
confection d’horaires de cours.

1.5.3 Systemes d’apprentissage

Pour un grand nombre de personnes, c’est la capacité d’apprendre qui est le trait
caractéristique de l'intelligence. L’apprentissage de nouvelles connaissances a
donc été largement étudié en IA. Le processus qui est le mieux connu est ce-
lui de I'induction. Dans un systéme inductif, on présente & l'ordinateur des
exemples positifs et négatifs caractérisant un concept. A partir de ces exemples,
le programme construit une description compacte du concept.

On distingue deux types d’apprentissage : supervisé et non supervisé. Dans
un apprentissage supervisé, les exemples présentés a ’ordinateur sont classées
d’avance, et I’apprentissage construit un modele qui reproduit cette classifica-
tion. Comme ce type d’apprentissage a un but et une mesure de performance
clairs, il a été longtemps au centre des préoccupations et on connait aujour-
d’hui des techniques puissantes. La problématique inhérente a l’apprentissage
est d’apprendre un modele aussi fiable que possible avec aussi peu de données
que possibles. On constate en fait souvent que la quantité des données est in-
suffisante pour permettre 'apprentissage avec la qualité voulue, surtout quand
il faut fournir les classifications des exemples a I’entrée.

On s’est donc intéressé a exploiter la grande masse de données qu’on peut
trouver sur le web, mais qui a normalement pas de classification associée, le
Big Data. Apprendre néanmoins des modeles utilisables est le but des tech-
niques d’apprentissage non supervisée ou semi-supervisée, qui ont connu un
développement fulgurant ces derniéres années. Ces algorithmes d’apprentissage
permettent de tirer des legons inhérentes aux données qui sont collectées, de
les transformer en connaissances, et d’agir en conséquence. Le public ne voit
pas toujours d’un oeil positif ces techniques, qui sont pergues comme une sur-
veillance généralisée qui rappelle le Big Brother. Cependant, ils fournissent aussi
de nombreux services, comme la recommandation de produits, ’optimisation
de I'adaptation des ressources aux besoins de leurs utilisateurs ou la détection
d’épidémies et la mise au point de nouvelles hypotheses scientifiques.

1.6 Structure du livre

Le contenu de ce livre est structuré en trois parties selon les trois modes d’infé-
rences utilisés. La premiere partie traite des systeémes a base de connaissances
(knowledge-based systems). Ces systeémes utilisent des moteurs d’inférence dé-
ductifs basés sur les principes de la logique et s’appliquent surtout a automatiser
des taches qui exigent des connaissances complexes.

La deuxieme partie traite des systemes utilisant I’abduction, appelés sys-
témes de raisonnement & base de modéles (model-based reasoning). Ces sys-
temes sont utilisés afin de trouver des solutions a des problemes complexes tels
que la planification de missions spatiales ou de processus de production.
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La troisieme partie traite des systemes utilisant ’induction, appelés sys-
temes d’apprentissage automatique (machine learning). Ces systémes ont pour
but de trouver des nouvelles connaissances sur la base d’'une grande quantité
de données et s’utilisent par exemple dans la détection de fraudes.

Littérature

Le livre de référence de loin de plus cité sur 'Intelligence Artificielle est celui de
Russel et Norvig [1], qui existe également en version francaise. Le livre de Poole
et Mackworth [2] est plus compact et plus récent. Pour des synthéses avec une
perspective historique par un des plus anciens chercheurs du domaine, consulter
les livres de Nilsson [3, 4].

Les revues principales pour la publication des résultats de recherche en
Intelligence Artificielle sont les revues Artificial Intelligence (Elsevier), qui est
la plus prestigieuse, et le Journal of Artificial Intelligence Research (JAIR), qui
se trouve sur le web

http://www.cs.washington.edu/research/jair/home.html

La revue Intelligent Systems (IEEE Press) est une bonne revue focalisée surtout
sur les applications.

4 0
Application : Python

L’IA demande la possibilité de traiter des données symboliques et d’autres
structures dynamiques comme des listes. Pendant de nombreuses années,
c’est le langage de programmation LISP qui était le seul & fournir effica-
cement ces possibilités.

Récemment, Python a été développé comme une alternative. Ce langage
met a disposition des fonctionnalités similaires a LISP, mais dans une
syntaxe plus proche des langages de programmation courants.

De nombreuses sociétés basent leur logiciels sur Python, comme par exemple
Google (voir le site web www.python.org).







PREMIERE PARTIE

Systemes a base de connaissances






Les systéemes basés sur la connaissance sont des logiciels dont le comporte-
ment se base sur des connaissances qui sont généralement des informations
non-structurées. Ils sont particulierement utiles pour 'automatisation du rai-
sonnement d’un expert humain, comme par exemple pour définir un ensemble
de regles qui permettent de traiter des cas d’assurance ou qui aident au diag-
nostic de maladies.

Pour rendre des connaissances non structurées utilisables par un programme,
on les traduit généralement dans un formalisme logique équivalent & la logique
des prédicats. Nous supposons donc dans cette partie du livre que les connais-
sances sont exprimées sous cette forme, bien que certains outils puissent utili-
ser un autre format plus restreint. La représentation des connaissances est le
contenu du premier chapitre de cette partie.

Sur la base de cette formulation logique, les systemes a base de connaissances
appliquent en général une inférence déductive. Cette partie du livre, et plus
spécifiquement le deuxieme chapitre, est donc consacrée a 'inférence déductive
qui permet 'implémentation d’un raisonnement humain sur ordinateur.

Dans les cing chapitres suivants, nous considérons trois sujets qui sont im-
portants en relation avec des systemes a base de connaissances : la représen-
tation de connaissances par des regles et des représentations structurées, les
techniques d’inférence et leur utilisation, ainsi que le traitement de connais-
sances incertaines.






CHAPITRE 2

Connaissances et inférence

Afin d’assurer la flexibilité qui caractérise les programmes d’IA, il est nécessaire
de doter I'ordinateur de mécanismes lui permettant de représenter aussi bien
les problemes que leurs solutions. En effet, construire un systéme basé sur la
connaissance requiert avant tout de pouvoir représenter des connaissances sur
un ordinateur. Dans ce chapitre, nous nous intéresserons a ce qui distingue les
connaissances des données, puis nous présenterons le formalisme du calcul des
prédicats appliqué a la représentation des connaissances. Ensuite, nous mon-
trerons comment utiliser ce formalisme pour construire des moteurs d’inférence
automatiques.

2.1 Modeles et représentations

Si un programme est avant tout destiné a tirer des conclusions sur des situations
du monde réel, il n’en reste pas moins incapable de dériver et de formuler ces
conclusions & partir du monde réel lui-méme. Il lui faudra d’abord disposer d’un
modeéle sur lequel il pourra travailler. Généralement, les programmes se basent
sur des modeles mathématiques décrivant le monde réel comme un ensemble
d’entités caractérisées par des propriétés et liées entre elles par des relations.
L’exemple de la masse accrochée & un ressort, décrit par la figure 2.1, illustre
ce type de modélisation.

Entités : m, s, g
propriétés : masse(m), ressort(s), fixé(g)
Relations : connecté(m,s), connecté(s,g)

Un tel modele au niveau des objets et des relations reste cependant insuffisant
pour effectuer des calculs sur le systeme. Si 'on désire par exemple simuler le

Fig. 2.1 Une masse attachée a un ressort.
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mouvement du bloc, il est nécessaire de modéliser également sa position, sa
vitesse, sa masse ainsi que la force agissant sur lui :

Entités : x, v, a, F, t
Relations : position(m, x), vitesse(m, v),
accélération(m, a) force(s, F), temps(t),

égal(v, dx/dt), égal(a, dv/dt), égal(F, -Dx), égal(F, ma)

Notons toutefois que ce modele présuppose que seul le mouvement de New-
ton de la masse sous I'influence de la force du ressort est intéressant. On pourrait
aussi tres bien modéliser les propriétés électriques du ressort et en particulier
ses propriétés en tant que bobine magnétique. Lorsque ’on modélise un sys-
teme physique, il est toujours nécessaire d’émettre des hypothéses limitant la
taille du modele. Pour élaborer un programme simulant ou analysant le sys-
téeme masse-ressort dans un langage de programmation algorithmique tel que
C ou Java, seule la seconde partie du modele, comportant les variables et les
équations, est utile. Il n’est pas nécessaire — ni possible — de représenter dans le
programme l'information concernant les objets et leurs relations. Nous verrons
dans ce qui suit les différences de base existant entre la représentation des don-
nées dans les programmes algorithmique et la représentation des connaissances
dans les systémes basés sur la connaissance.

2.1.1 Modélisation et représentation

Un programme travaille sur des données pour dériver des prédictions. Données
et prédictions sont toutes deux formulées dans les termes propres au modele
choisi. Pour réaliser cela, le programme manipule une représentation du mo-
dele stockée dans la mémoire de l'ordinateur. Dans les langages de program-
mation les plus conventionnels, cette représentation consiste en un ensemble
de wvariables, dont chacune représente une instance particuliere choisie pour un
élément du modele. Dans le cas de la masse accrochée au ressort de la figure 2.1,
un programme de simulation tiendra compte tout au plus de quatre variables,
une pour chacun des x, v, a et F. L’ensemble constituera le modele du systeme
a simuler (fig. 2.2). En fait, il suffit de représenter x et v ainsi que le temps t.

Il est important de noter que si nous considérons que le programme de
simulation modélise le systéeme masse-ressort, ce n’est qu'une simple question
d’interprétation. En effet, on pourrait utiliser exactement le méme programme
pour simuler, par exemple, un oscillateur électrique constitué d’un condensateur
et d’une inductance : tout ce qu’il sera nécessaire de faire sera d’interpréter a
nouveau la position de la masse comme une charge, sa vitesse comme le courant
et le ressort comme une tension. Cela est illustré par la figure 2.2.

Ce dernier exemple démontre en fait I'importante distinction existant entre
un modéle et sa représentation : le programme de simulation contient non
seulement la représentation d’'un modele du systeme masse-ressort mais aussi
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L —F C
AT T
Program Oscillator; Program Oscillator;
const s=3.452; m=7.342 const L-inv=3.452; C=7.342
var x,v,t: real; var i,q,t: real;
k:integer; k:integer;

begin begin
t:=0; v:=0; x:=-1.0; t:=0; i:=0; q:=!1.0;
for k:=1 to 100 do begin for k:=1 to 100 do begin

vi=v ! 0.1*s*x/m; i=i — 0.1*Llinv*q/C;

x:=x + 0.1*v; q:=q + 0.1%i;

t=t+0.1; t:=t +0.1;

print(t,x); end; print(t,q); end;
end. end.

Fig. 2.2 Le modéle d’un programme algorithmique s’applique de la méme maniére a
beaucoup de systémes en changeant les noms des variables.

celle de nombreux autres oscillateurs. L’interprétation de la représentation dans
les termes d’un modele particulier est strictement 'affaire de I'utilisateur. En
termes techniques, la sémantique du programme est fixée par I'utilisateur.

2.1.2 Les connaissances ont une interprétation unique

Les programmes d’Intelligence Artificielle, méme s’ils sous-tendent des idées
originales, n’en demeurent pas moins des programmes. Ils sont, par conséquent,
sujets aux mémes limitations que des programmes conventionnels. Les faits
du monde réel, quant a eux, doivent étre représentés conformément a un cer-
tain modele. Il faut cependant noter que les modeles liés a un programme
typique d’TA sont souvent beaucoup plus complexes que ceux utilisés par des
programmes conventionnels. Ainsi, si la sémantique de 'interprétation des don-
nées et des résultats devait toujours étre imposée par 'utilisateur, celui-ci se-
rait confronté a I’énorme tache de maitriser toutes les connaissances intégrées
dans le programme ainsi que leurs significations. La complexité du modele ren-
drait I'utilisation du programme beaucoup trop difficile”’. Un probléeme plus
complexe encore est celui de 'interprétation du monde réel par un systeme au-
tonome comme un robot : si la relation existant entre le modele informatique
et la réalité n’est pas unique, il n’est pas évident d’interpréter les observations
effectuées sur le monde réel.

1
¢ )Ce phénomeéne peut également étre observé dans les systéemes d’exploitation comme
UNIX : peu de personnes en connaissent toutes les fonctionnalités.
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L j—
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masse(m), ressort(s), fixe(g) inductance(L),condensateur(C)
connecte(m,s), connecte(s,g) connexion electrique(L,C)

Fig. 2.3 Les connaissances ne pewvent pas s’interpréter a nouveau en changeant de
noms de variables.

Une convention importante distingue les connaissances des données. Elle
consiste a considérer que la signification des symboles représentant la connais-
sance est non seulement fixe mais qu’elle est en plus proche de celle que les
étres humains lui attribuent : le symbole rouge se réfere a la couleur rouge et
le symbole voiture & une voiture. Ainsi les connaissances ne sont autres que
des données formulées selon un modele cognitif humain et pour lesquelles il n’y
a qu’une seule interprétation possible.

Le modele sous-jacent aux échanges d’informations entre étres humains par
le biais du langage ou de diagrammes est en fait un modele cognitif humain
dont les interprétations sont généralement connues. Comme éléments commu-
nément admis de ce modele cognitif figurent par exemple les objets liés a une
situation particuliere, leurs couleurs, formes et autres caractéristiques. Dans
un environnement tres spécifique, par exemple celui des échanges bancaires,
les objets manipulés comme les cheques et autres lettres de crédit auront une
interprétation bien précise. A 'inverse de ceux des modeéles numériques, les é1é-
ments d’'un modele cognitif sont en correspondance exacte avec la perception
que les humains en ont. En conséquence, ils ne peuvent étre librement réin-
terprétés : les modeles d’un oscillateur mécanique et électrique, décrits par la
figure 2.3, ne peuvent pas étre transformés I'un en l'autre en changeant des
noms de variables.

Cela nous permet d’affirmer qu’un programme dont la représentation incor-
pore par exemple des faits sur les ressorts connait ces faits : il sait comment les
interpréter puisque leur signification est connue et admise par tous les utilisa-
teurs. L’existence de cette interprétation unique et unanimement admise est le
principal aspect différenciant la connaissance des données”

La capacité de I'TA de représenter des connaissances est particuliérement
mise en valeur lorsque le modele sous-jacent au programme est identique a ce-
lui qui sous-tend la perception humaine. L’utilisateur d’un programme basé sur

2 . . . , .
¢ )Notons, cependant, que certains philosophes affirment que tant que 'interprétation reste
fixée par convention et non par nécessité, on ne peut toujours pas parler de connaissances.
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la connaissance n’a, en conséquence, nul besoin de connaitre quoi que ce soit sur
le programme pour en interpréter les résultats : cette interprétation est unique
et peut étre formulée en langue naturelle par exemple. Cela rend possible la
construction de systéemes basés sur la connaissance beaucoup plus complexes
que des logiciels conventionnels, mais néanmoins utilisables sans qu’il soit né-
cessaire de connaitre beaucoup de détails sur leur fonctionnement. Il devient
également possible au programme lui-méme de changer son propre modele en
cours d’exécution, par apprentissage ou en réponse aux modifications de son
environnement.

Il existe des bases de connaissances standardisées, appelées ontologies, qui
sont utilisées pour formaliser I’échange d’informations entre différents pro-
grammes et bases de données. Le consortium WWW a standardisé des langages
pour leur formalisation. Cela permet notamment d’organiser des symboles dans
des hiérarchies d’héritage caractérisées par des relations de classe et sous-classe
des objets que représentent les symboles. Ils permettent également de définir
les propriétés associées a ces objets. De nombreuses organisations mettent a
disposition des ontologies qui définissent des termes.

2.2 Représentation de la connaissance

Représenter un modele cognitif sur un ordinateur nécessite des structures de
données beaucoup plus riches que celles offertes par les langages de program-
mation classiques. Le formalisme communément admis pour représenter des
connaissances est celui de la logique, plus précisément le calcul des prédicats du
1°7 ordre.

En logique, I'unité d’information élémentaire est la proposition qui repré-
sente un fait particulier. Des exemples de propositions sont donnés ci-dessous :

Jacques pése 78 kilos.
Lausanne est situé en Amérique.

Une proposition peut-étre vraie ou fausse : le premier de nos deux exemples
peut aussi bien étre une proposition vraie que fausse, alors que le second est
stirement une proposition fausse. Néanmoins, ces propositions sont toutes deux
licites.

En calcul des prédicats, une proposition s’exprime par des formules bien
formées, c’est-a-dire des expressions qui respectent les regles d’écriture du calcul
des prédicats. Les formules bien formées sont en fait des expressions construites
au moyen des éléments suivants :

e instances : représentées par des symboles comme Jacques, Vert, Bloc;

o prédicats : symboles prenant un nombre fixe d’arguments, voire aucun ar-
gument. Exemples : I1-pleut, Etudiant (Jacques), Age(Jacques,25) ;

o fonctions : retournant les propriétés d’un symbole, par exemple
Oncle(Jacques) (— Pierre), Age(Jacques) (— 25);

e connecteurs : permettant les combinaisons de formules bien formées :

— N:et
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— V:ou
— = : implique
— - :non

« quantificateurs : comme V (pour tout) et 3 (il existe), qui sont introduits
ici mais ne seront expliqués que plus tard.

Des exemples de formules bien formées peuvent étre obtenus par combinai-
son de ces éléments, comme dans les exemples suivants :

1.Pése(Jacques,78)

« Jacques pése 78 (kilos). »
2. Ecrivain(Mozart)

« Mozart n’est pas un écrivain »
3.Cousin(Fils(Jean) ,Neveu(Jean))

« le fils et le neveu de Jean sont cousins »
4.Lit(Pierre,Candide) A Auteur(Voltaire,Candide)

« Pierre lit Candide dont lauteur est Voltaire »
5.Humain(Socrate) = Mortel(Socrate)

« Socrate est humain donc il est mortel »

Ces éléments sont combinés en formules bien formées selon les regles syn-
taxiques suivantes, F'BF' désignant une formule bien formée :

FBF ::=
Prédicat | FBFV FBF | FBF AN FBF | -FBF | FBF = FBF | (FBF)

Comme pour des expressions algébriques, des parentheéses peuvent étre uti-
lisées pour clarifier la priorité des opérateurs. En ’absence de parentheses, A
(et) correspond & la multiplication et est prioritaire par rapport & V (ou) qui
correspond & l’addition. — (non) correspond alors & la négation.

Il faut noter que cette définition du calcul des prédicats de 1° ordre n’est
pas minimale. On peut en effet trés bien remplacer Fy = Fy par —F; V F
et il n’est donc pas nécessaire d’introduire 'implication. L’objectif est plutot
de permettre une expression aussi confortable que possible : il y a des cas ou
F| = F5 est heuristiquement préférable a —F; V Fy et vice versa.

2.3 Regles d’équivalence

En général, le calcul des prédicats ne représente pas forcément un état du monde
réel de maniere unique. Il existe souvent plusieurs possibilités de formulation.
Cela est lié aux régles d’équivalence présentées dans ce qui suit :

o (—X7) est équivalent & X;
X1V X5 est équivalent a - X7 = X,

e les lois de Morgan :
—\(X1 A Xg) est équivalent a —\X1 \Y _‘X2
_\(X1 V XQ) est équivalent a _\X1 A _‘X2
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o les lois distributives :
X1 AN (X2 \Y Xg) est équivalent a (Xl A XQ) V (Xl A\ Xg)
X1V (X2 A X3) est équivalent & (X7 V Xo) A (X7 V X3)

e les lois commutatives :
X1 A Xg est équivalent a Xo A Xy
X1 V X2 est équivalent a X2 V X1

o les lois associatives :
(X1 A X2) A X3 est équivalent & X7 A (X2 A X3)
(X1 V Xs5)V X3 est équivalent a X7 V (X2 V X3)

« la loi de la contraposée :
X1 = X5 est équivalent a - Xo = Xy

Ces lois justifient en fait certaines simplifications d’écriture des formules
bien formées. Ainsi les lois d’associativité permettent d’écrire la conjonction
X1 ANXo A ... N\ Xy sans aucune parenthese.

2.4 Exemple de modélisation

Le pays de Lointainie veut automatiser le traitement des voyageurs a la douane.
Le reglement actuel prévoit entre autres :

o Tout voyageur adulte a le droit d’importer hors taxe une petite quantité
de marchandise.

o Sont considérées comme petites quantités :
— pour le cognac, moins d’un litre;
— pour le vin, moins de deux litres;

— pour toute marchandise, une valeur de moins de cent francs.

Le but est de mettre au point un programme permettant de décider si un
voyageur doit étre taxé ou non. Pour cela, il faut d’abord modéliser le probleme
formellement. Pour ce faire, on identifie les objets :

voyageur (v), marchandise (m)
et leurs propriétés :
adulte, hors-taxe, petite-quantité, cognac, <-1-litre, <-2-litres, <-
100-Frs.
Ensuite, on peut identifier des regles :
adulte(v) A petite-quantité(m) = hors-taxe(m,v)
cognac(m) A <-1-litre(m) = petite-quantité(m)
vin(m) A <-2-litres(m) = petite-quantité(m)
<-100-Frs.(m) = petite-quantité(m)

L’inférence permettra alors d’obtenir des conclusions sur la base du modele.
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2.5 Inférence

L’utilité de la représentation en calcul de prédicats est qu’elle permet de tirer
des inférences par un programme. Une inférence logique suit le schéma suivant :

Etant donné un ensemble P de propositions, trouver des propositions
z telles que si toutes les propositions de P sont vraies, x le sera aussi.

On écrit alors {P} - x.

Il existe des preuves que tout calcul algorithmique peut étre formulé sous
la forme d’un probléeme d’inférence logique. Il existe donc des langages de pro-
grammation généraux (par exemple PROLOG) qui sont basés uniquement sur
Iinférence logique.

Les possibilités d’inférence peuvent étre formalisées par des regles d’infé-
rence. Une regle d’inférence prend la forme suivante :

Pl/\PQ/\/\Pn:>Q

ouP,.,.P,ePFQ.

Si les regles d’inférence peuvent étre formulées sans grande difficulté, leur
utilisation sous forme de programme efficace est plus difficile. En fait, la plupart
des systémes pratiques se limitent a la regle du modus ponens sur la base de
laquelle on peut concevoir des programmes simples et efficaces.

La regle d’inférence du modus ponens se définit comme suit :

{p=a}rp=yq
On peut imaginer d’autres regles d’inférence :

pAqg = {pAq} (Introduction ET)
{p= 9t " {(g=r)} = {(p=r)} (Transitivité)

Une preuve logique d’une proposition @ est la trace d’inférence de @ a
partir d’un ensemble de faits P. Pour décrire des preuves, nous allons utiliser
la notation suivante :

Proposition ‘ Justification
p(A) prémisse
q(A) prémisse
p(A) Aq(A) [TE12

=W N

ou la justification correspond toujours & la maniere dont une proposition a
été déduite. Nous avons utilisé « IE 1 2 » pour « Introduction d’'un Et entre
propositions 1 et 2 ». D’autres abréviations sont par exemple « MP » pour
modus ponens, « IO » pour « Introduction d’'un Ou ».

Nous allons voir plus tard des algorithmes servant a construire automatique-
ment des preuves logiques. Une preuve est utile non seulement pour le résultat
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Proposition Justification
1. cognac prémisse
2. <-1-litre prémisse
3. adulte prémisse
4. (cognac A <-1-litre) prémisse
= petite-quantité
5. (adulte A petite-quantité) | prémisse
= hors-taxe
6. cognac A <-1-litre IE12
7. petite-quantité MP 6 4
8. adulte A petite-quantité IE37
9. hors-taxe MP 5 8

Fig. 2.4 Ezemple d’une preuve logique.

qu’elle fournit, mais également parce qu’elle permet de donner une explication
de ce résultat. Par exemple, on peut demander une explication de la conclusion
hors-taxe du raisonnement de la figure 2.4 :

« Pourquoi hors-taxe 7 »
La trace de la preuve peut alors étre reformatée pour donner ’explication :
parce-que :
1) petite-quantité
2) adulte
3) Reglement : adulte A petite-quantité = hors-taxe

L’interrogation pourrait se poursuivre récursivement par exemple en deman-
dant ensuite :

« Pourquoi petite-quantité ? »

La réponse peut également étre obtenue par simple reformulation de la preuve
logique. Cette facilité d’explication est souvent importante. Dans I’exemple du
reglement douanier, elle protege des erreurs ou des manipulations. Dans une
telle application, cette possibilité est indispensable pour une utilisation pra-
tique, car le systeme doit pouvoir prouver que sa réponse est juste. Il en va de
méme pour beaucoup d’autres applications de systemes a base de connaissances,
par exemple pour des décisions concernant les droits au dédommagement par
une assurance. Elles sont en général tres difficiles & donner dans un cadre de
programmation procédural ou des explications doivent étre explicitement pro-
grammeées.

Un autre avantage de systeémes & base de connaissances est la facilité d’adap-
tation a des changements. Par exemple, si le reglement change pour introduire
une nouvelle maniere de traiter des parfums, on pourra simplement ajouter une
regle, par exemple :

(parfum(m) A <-50-ml(m)) = petite-quantité

Dans un programme procédural, par contre, toute la structure logique doit étre
revue. Il en va de méme pour d’autres modifications. Par exemple, I'introduction
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d’une nouvelle condition de non-résidence conduit & un changement local d’'une
regle :

(petite—quantité(m) A non-résident(v)) = hors-taxe(m,v)

Son implémentation par un programme classique pourrait étre beaucoup plus
complexe.

Littérature

Il existe de nombreux livres sur la logique des prédicats, qui est plutét un sujet
de la philosophie et des mathématiques. Le livre de Kowalski [5] a été le premier
a évoquer son utilisation pour la programmation.

2.6 Exercice

Pour ce chapitre, nous ne vous proposons pas d’exercice particulier. Par contre,
nous vous suggérons, selon votre niveau, d’apprendre ou de réviser le langage de
programmation Python, puisque celui-ci est utilisé tout au long de ce livre. Vous
pouvez vous documenter si nécessaire au travers des nombreuses ressources en
ligne et par les livres existants.



CHAPITRE 3

Algorithmes d’inférence

Dans un systeme a base de connaissances, le « calcul » se fait par des moteurs
d’inférence, des programmes généraux qui permettent de trouver automatique-
ment des preuves logiques. En général, un moteur d’inférence construit des
implications :
{Pttq

La procédure est :

o fondée si q est toujours une conséquence de {P},

o compléte si elle trouve toutes les g fondées,

o compléte pour la réfutation si elle trouve toutes les contradictions de { P},
c’est-a-dire elle ne manquera jamais ¢ = L (contradiction).

L’idéal serait d’avoir un algorithme qui est a la fois fondé et complet. Hélas,
par le théoreme de Goédel, un tel algorithme ne peut pas exister. Par contre,
pour le calcul de prédicats de 1°* ordre, il existe une procédure d’inférence qui
est complete pour la réfutation. Il s’agit de la résolution. Une procédure qui
est compléte pour la réfutation peut étre utilisée pour construire des preuves
indirectes.

3.1 Forme normale

Les équivalences entre expressions ont pour conséquence qu’il y a de nom-
breuses manieres d’exprimer les mémes connaissances en calcul de prédicats.
Cela complique aussi enormément les algorithmes d’inférence qui doivent alors
étre capables de s’adapter a toutes les manieres d’expression. On adopte alors
une convention d’une unique forme normale.

Nous allons appeler une proposition formée par un prédicat appliqué a
des instances ou fonctions d’instances une proposition simple, et nous sup-
posons que deux propositions simples ne sont égales que s’elles sont iden-
tiques. Nous acceptons ainsi de ne pas considérer des équivalences comme
plus — grand(a, b) < plus — petit(b, a).

On distingue alors deux formes normales : dans la forme normale conjonc-
tive, expression est transformée en une conjonction de clauses :

citNca N\ ... \cy
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ou les clauses ¢; sont des disjonctions de propositions simples :

¢ =p1Vp2V..Vpy

En revanche, la forme disjonctive normale représente les expressions sous forme
d’une disjonction de conjonctions.

On utilise exclusivement la forme normale conjonctive car elle permet faci-
lement d’exprimer plusieurs expressions qui sont simultanément vraies comme
une seule conjonction de toutes les clauses qu’elles contiennent, en supprimant
les clauses qui apparaissent en double. Par contre, pour la forme disjonctive
cela demanderait une reécriture couteuse des expressions.

A cause de la commutativité, il reste une ambiguité quant a 'ordre des
expressions. On considere que les clauses forment un ensemble sans ordre par-
ticulier, appellé une base de connaissances. A lintérieur des clauses, on peut
trier les propositions simples par exemple par ordre lexique.

En appliquant les regles d’équivalence dans le bon sens, toute expression
logique peut étre transformée en forme conjonctive normale. Le plus important
est de transformer les implications (=) en disjonction, donc A = B devient
—AV B. Nous allons supposer que les premisses { P} sont représentés comme
un ensemble de clauses.

Par exemple, ’expression :

(AVvB)= (CAD)
sera réécrit comme :
-(AV B)V (CAD)

(wAAN-B)V(CAD)
(mAVC)AN(mAVD)A(=BVC)A(=BV D)

et donc I’ensemble des quatre clauses :

3.2 Inférence par résolution

La régle de résolution prend deux clauses qui contiennent la méme proposition
C une fois de fagon positive et une fois de fagon négative et en produit une
nouvelle clause qui est composée du reste des deux clauses :

c: C VX;X=aV..

¢ C VY,Y =bV..
= Cij : XVY
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Un moteur d’inférence basé sur la résolution applique cette regle de fagon
itérative pour ainsi compléter une base de données BD avec toutes les inférences
qui peuvent étre obtenues.

—_

: Fonction Résolution(P)
2: BD «+ {P}
3: repeat
4

sélectionner deux clauses € BD :

pr: a V ... Va, VC
P2 bl\/...\/bm\/—'C

5. appliquer la regle de résolution pour obtenir :

Pniar V .. Voan, V b1 V ...V by

6: if p, est une clause vide then

7 arréter : contradiction

8: else

9: éliminer de p,, toutes les propositions doublées;
10: if p, & BD then

11: ajouter p, a BD

12: until il ne reste plus de combinaisons de clauses qui n’ont pas
encore été utilisées

13: retourner BD

Si la fonction Résolution finit sans jamais trouver une clause vide, I’ensemble
fourni au départ doit étre consistant. Cela peut étre prouvé par le fait que
la procédure suivante ne manquera pas d’assigner un modele (vrai ou faux)
consistant & toutes les propositions élémentaires qui apparaissent dans {P} :

1) ordonner les propositions p1, ..., Pk

2) assigner toutes les propositions a faux

)

) BD < Résolution(P)
) for i<+ 1tok
)

if Iclausec € BD qui en plus de p; ne contient que des p;,j < ¢ qui
sont tous assignées & faux, (donc qui ne peut étre vrai que si p; = vrai),
assigner p; a vrai.

6) end for

La seule facon dont cette procédure pourrait échouer est s’il existe a la fois des
clauses qui demandent que p; soit vrai et d’autres qui demandent que p; soit
faux. Comme les premiers doivent contenir p; et les derniers —p;, la résolution
aurait été appliqué a toutes ces paires et aurait obtenu des clauses ne contenant
que des pj,j < ¢ et qui sont fausses. Donc, la procédure aurait du échouer a

T W
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une itération précédente déja. Pour ¢ = 1, soit il y a p; et —p1, ce qui aurait
donné une clause vide, soit la procédure trouve une assignation. Comme elle ne
peut pas échouer apres, elle fournira une assignation qui satisfait a toutes les
clauses.

Cette procédure peut étre exploitée pour trouver n’importe quelle preuve
en appliquant le principe de la preuve indirecte, c’est-a-dire on réduit la preuve
de {P} F ¢q & la preuve :

{Pr+-q) kL

ol L est le symbole de la contradiction qui est toujours faux. Si en fait {P}
q est vraie, la procédure de résolution est alors garantie de s’arréter avec la
contradiction qui fait preuve de cela. Lors de la résolution, cette contradiction
se manifestera dans la découverte d’une clause vide :

XAN-X=_1

Un moteur d’inférence pour le calcul de prédicats de 1°" ordre basé sur le
principe de la résolution est donc garanti de s’arréter quand cette contradiction
sera déduite.

Si la résolution est tres générale, elle est aussi tres peu efficace. En pratique,
on a donc tendance a baser l'inférence logique plutot sur des regles plus simples
dont la plus importante est le modus ponens :

{pp=4q}trq

Ce type de reégle est la base du chainage de regles, qui se retrouve dans
presque tous les moteurs d’inférence utilisés dans la pratique. Le chainage est
complet pour la réfutation de clauses de Horn. Une clause de Horn est une
implication de la forme :

condy A\ conds A ... = assertion

qui n’admet qu’une seule conclusion a la fois. En fait, pour des clauses de Horn
le modus ponens n’est rien d’autre que la regle de résolution! Il est important
que ’application de la régle de résolution a deux clauses de Horn donne toujours
comme résultat une autre clause de Horn. La classe des clauses de Horn est donc
fermée sous la regle de résolution.

Certaines formes de régles peuvent étre traduites en clauses de Horn équi-
valentes. Tel est le cas quand il y a des disjonctions de conditions :

pVg=>r~p=r,q=r
ou quand il y a une conjonction des conclusions :
P=qANTr>=p=q,p=>T
Une telle transformation n’est par contre pas possible quand il y a une
disjonction des conclusions :
p=>qVr

Cela signifie qu’une telle connaissance ne peut pas étre traitée par un moteur
d’inférence a chainage, mais seulement par la résolution.
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3.3 Inférence propositionnelle par chainage

La forme la plus classique d’une inférence logique est celle du modus ponens :

(V x) oiseau(x) = vole(x) « Tous les oiseaux volent »
oiseau(Tweety) « Tweety est un oiseau »
alors vole(Tweety) « Tweety vole »

La plupart des déductions logiques effectuées dans les systeémes basés sur
la connaissance s’appuie sur cette regle, qui s’appelle aussi le chainage. Elle
s’applique a des connaissances sous la forme de clauses de Horn.

Rappelons que 'on peut obtenir une procédure d’inférence complete sur
clauses de Horn en utilisant le modus ponens et des preuves indirectes. Comme
la seule maniere d’obtenir une contradiction entre clauses de Horn est de trouver
une proposition et sa négation, il suit que ’application du modus ponens en soi
est suffisante pour produire toutes les propositions qui découlent de I’ensemble
de prémisses et de regles. On n’a donc pas besoin de spécifier la conclusion
souhaitée pour obtenir une contradiction — il suffit d’attendre que la procédure
d’inférence produise la proposition souhaitée.

La résolution d’un probléme par chainage implique :

e Une base de données, qui contient des propositions jugées vraies. Au dé-
part, elle contient les prémisses du probleme.

e Une base de connaissances, qui contient les regles générales qui seront
utilisées pour trouver une solution.

o La spécification d’une solution, qui peut étre une proposition complete-
ment ou partiellement spécifiée, ou bien un critere quelconque qui permet
de vérifier si une proposition donnée est considérée comme solution.

Il existe alors deux manieres de trouver les solutions :

o En chainage « avant » : a partir des prémisses, appliquer les regles pour
produire toutes les conséquences jusqu’au moment ou une solution est
trouvée. Le chainage avant est la procédure naturelle d’inférence logique.

o En chainage « arriere » : a partir de la solution, produire toutes les étapes
intermédiaires hypothétiques (sous-buts) qui permettront de déduire une
solution jusqu’au moment ol un tel sous-but est satisfait par les prémisses.
Le chainage arriere a été proposé comme une procédure qui est plus proche
du raisonnement humain. Nous allons considérer le chainage arriere plus
tard dans ce livre.

3.4 Chainage avant sans variables

La procédure d’inférence a chalnage avant consiste a appliquer toutes les regles
possibles a ’ensemble des faits connus, en ajoutant chaque nouvelle conclusion
a cet ensemble. Par application itérative du processus, chaque conclusion peut
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elle-méme satisfaire les conditions d’une autre regle, ce qui conduit a un chai-
nage avant des regles. Le processus s’arréte lorsqu’aucune regle n’est applicable
a I’ensemble des faits, ou quand une solution satisfaisante est trouvée.

Nous considérons d’abord un moteur d’inférence pour la logique proposi-
tionnelle (sans variables) et nous allons y rajouter la possibilité d’utiliser des
variables par la suite.

Comme exemple d’inférences que notre moteur d’inférence sera capable de
faire, considérons I’exemple suivant ou ’on doit décider si une certaine mar-
chandise peut passer hors taxe ou non. On suppose qu’au départ on a les faits
et regles suivants :

Rl. vin A <-2-litres = petite-quantité
R2. cognac A <-1-litre = petite-quantité
R3. <-100-Euro = petite-quantité

R4. petite-quantité A adulte = hors-taxe
Fl1. vin

F2. <-2-litres

F3. <-100-Euro

F4. adulte

et que le but sera de prouver :
hors-taxe

La procédure de chainage avant résoudrait ce probléme par la suite d’infé-
rences suivante :

R1, F1, F2 — F5 : petite-quantité
R3, F3 — F5 : petite-quantité
R4, F5, F4 — F6 : hors-taxe = but

L’efficacité de la procédure dépend essentiellement du nombre de fois auquel
on arrive a éviter les inférences inutiles (par exemple, F5 a été trouvé deux fois).

Un moteur d’inférence a chainage avant est appelé avec un ensemble de
prémisses, F' et un ensemble de regles sous la forme de clauses de Horn. Il fait
appel aux structures de données suivantes :

o une base de régles constituée par les regles qui permettent de réaliser les
déductions,

e une base de données de faits, qui sont soit des prémisses soit des proposi-
tions déduites des prémisses,

o une file d’attente pour éviter les boucles.

Le flux d’informations entre ces divers éléments est décrit par la figure 3.1
et algorithme par la figure 3.2. La base de regles R est passée au moteur
d’inférence et ne change pas pendant I’exécution. Les prémisses F sont insérées
dans une file d’attente. L’état courant de 'inférence est représenté par une base
de données de faits, qui contient tous les faits qui sont connus comme étant vrais
par le moteur d’inférence. Avant son insertion dans cette base de données, tout
nouveau fait est d’abord comparé a la base de regles pour déterminer s’il permet
de nouvelles inférences. Pour éviter des boucles, chaque fait est examiné dans
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Vérification des Régles Correspondance
e [— P E— -
autres conditions déclenchées avec conditions

A

Instantiation de
Base de ion?
la conclusion données Solution?
Données de File d’attente Nouvelles Féeul
i J— 5
départ Q) données ésultats

(F)

Fig. 3.1 Fluz des informations entre composants d’un moteur d’inférence a chainage
avant.

[y

: Procédure chainage-simple(F R)
: Q {7}
while Q n’est pas vide do
q + first(Q) ; Q « rest(Q)
if q ¢ base de données then
ajouter q a la base de données
if q est un noeud but then imprimer q
forr € {R} do

if q € conditions(r)
and conditions(r) C base de données then

10: ajouter conclusion(r) a la queue Q

Fig. 3.2 Algorithme pour un moteur d’inférence en chainage avant, pour calcul pro-
positionnel, sans nécessité de substitution de variables.

I’ordre de sa découverte a ’aide d’une file d’attente Q. Les prémisses passent
elles aussi par le méme processus.

Si un nouveau fait correspond aux conditions d’une regle, le moteur d’infé-
rence vérifie que toutes les autres conditions font également partie de la base de
données. Si c’est le cas, la régle est applicable (on dit aussi qu’elle est déclen-
chée) et la conclusion est un nouveau fait, & condition qu’elle n’existe pas déja
dans la base de données ou la file d’attente Q. Le nouveau fait est alors inséré
dans la file d’attente pour étre traité lors d’une prochaine itération. Notons que
la file d’attente sert a éviter que des inférences se fassent en double.

Le processus s’arréte au moment ou un nouveau fait constitue une solution
satisfaisante au probleme, selon une spécification donnée par 'utilisateur. Cette
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spécification peut étre une proposition précise qui doit étre prouvée, une pro-
position contenant des variables dont on cherche les valeurs, ou des contraintes
qui permettent de vérifier qu'une proposition remplit les critéres d’une solution.
Le test se fait au moment de l'insertion dans la base de données, ce qui permet
également de traiter le cas ou la solution se trouve déja parmi les prémisses.

3.5 Expression de connaissances générales grace aux
quantificateurs

La logique propositionnelle nous permet uniquement d’exprimer des connais-
sances relatives a des situations particuliéres. Elle est insuffisante pour décrire
des connaissances générales s’appliquant a plusieurs situations. Cela est di a
I’absence de variables. L’utilisation de variables permet d’exprimer qu'une pro-
position est vraie pour toutes les substitutions possibles d’une variable donnée.

En calcul des prédicats, il est possible d’utiliser des variables comme sub-
stitut des instances. Chaque variable doit alors étre définie au moyen d’un
quantificateur. En général, le calcul des prédicats du 1°" ordre permet les deux
quantificateurs suivants :

o V : Clest le quantificateur universel. Placé devant une formule P(z), il
donne une proposition vraie pour toute interprétation vérifiant P, quelles
que soient les instances du domaine de x.

e J: Clest le quantificateur existentiel. Placé devant une formule P(x), il
donne une proposition vraie pour toutes les interprétations pour lesquelles
il existe au moins une instance du domaine de x vérifiant P.

Grace a la quantification, on peut maintenant exprimer des connaissances
générales comme :

(Vv x) [Eléphant (x) = Couleur (x, Gris)]
« Tous les €léphants sont gris »
ou encore
(3 x) [Eléphant (x) A Fait-des-numéros-de-cirque(x)]
« Il existe au moins un €léphant qui fait des numéros de cirque »

Le calcul des prédicats avec quantification permet de distinguer des ambi-
guités qui existent dans la langue naturelle. La phrase : « Tout le monde parle
une langue » peut étre traduite par deux alternatives :

a.(V x) personne(x) = (3 y) (langue(y) A parle(x,y))

b.(3 y) langue(y) A (V x) (personne(x) = parle(x,y))

qui distinguent les cas (a) ou tout le monde parle une langue quelconque et (b)
ou il existe une langue précise que tout le monde parle.
Selon le type de quantification admis, on distingue le calcul de prédicats de

« ordre 0 : aucune quantification possible;
e 1°" ordre : quantification sur les individus;

e 2° ordre : quantification sur les individus et les prédicats.



Algorithmes d’inférence 39

Des algorithmes d’inférence existent uniquement pour la logique d’ordre 0
et du 1°7 ordre. Par conséquent, le calcul des prédicats de 2° ordre n’est presque
jamais utilisé. Il serait cependant nécessaire pour exprimer des connaissances
telles que :

« Toutes les propriétés des liquides sont également valables sur la
lune. »

Heureusement, on n’a que rarement besoin de formuler de telles connais-
sances.

Le logicien Skolem a montré qu’on peut éliminer tout quantificateur exis-
tentiel en introduisant une fonction, appelée fonction de Skolem. Considérons
un quantificateur existentiel qui se trouve a l'intérieur du domaine d’un autre
quantificateur universel, comme dans le schéma général suivant :

V=x [ @y pl,y) ]

On introduit une fonction de Skolem £, (x) qui retournera pour tout x un
y tant que p(x,y) est vrai. Par la suite, on écrit alors :

vV x) plx,f,(x))

On utilisera une fonction de Skolem différente pour chaque quantificateur
existentiel et toutes les variables a quantification universelle dont le domaine
s’intersecte avec celui du quantificateur existentiel seront des arguments de la
fonction. Si le quantificateur existentiel se trouve en dehors de tout quantifica-
teur universel, la fonction de Skolem sera une constante.

Une fois que les quantificateurs existentiels sont éliminés, toutes les va-
riables restantes seront soumises & une quantification universelle et il n’y aura
plus d’interdépendance entre elles. On peut donc laisser tomber tous les quan-
tificateurs universels en introduisant la convention que toute variable libre est
toujours quantifiée de maniere universelle. On arrive ainsi & une formulation
plus compacte et plus lisible.

Par exemple, ’expression
(V x) personne(x) = (3 y) (langue(y) A parle(x,y))
peut ainsi étre transformée d’abord en :
(V x) personne(x) = (langue(fianguc(x)) A parle(x,fiangue (%))
et ensuite en :
personne(x) = (langue(fignguc (x)) A parle(x,fiangue (X))

D’apres la signification des quantificateurs, il est également possible de for-
muler les lois d’équivalences suivantes :

(x) est équivalent a — (Vz)[~P(x)]
(x) est équivalent & — (Fz)[-P(x)]

(Jz)P

(Va)P

(V2)[P(x) A Q(x)] est équivalent & (V) P(x) A (Vy)Q(y)
(Fz)[P(z) V Q(x)] est équivalent & (Fz)P(z) V (Fy)Q(y)
va; (z) est équivalent & (Vy)P(y)

Jz) P(x) est équivalent a (Jy)P(y)
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3.5.1 Appliquer des connaissances quantifiées : unification

Pour que de nouvelles propositions puissent étre déduites d’un ensemble donné
d’autres propositions, il faut qu’il existe des connaissances quantifiées, généra-
lement valides, applicables au probleme.

Pour cela, un moteur d’inférence doit d’abord trouver des correspondances
entre une représentation des données quantifiées et la représentation d’une pro-
position. Ces correspondances seront exprimées par des valeurs attribuées aux
variables qui apparaissent dans les formules quantifiées. La détermination de
ces correspondances fait ’'objet du mécanisme de filtrage (pattern matching) et
plus généralement de celui de 'unification.

3.5.2 Filtrage (pattern matching)

Le mécanisme de filtrage consiste, comme son nom l'indique, a filtrer une donnée
avec une expression contenant éventuellement des variables (cette expression
jouant le role de filtre). Cela permet de dégager les correspondances existant
entre la donnée et le filtre. Dans I'exemple suivant, il s’agit de filtrer la don-
née Paul regarde Pierre avec le filtre (7X regarde ?Y) contenant les deux
variables 7X et 7Y :

(filtrer ’(Paul regarde Pierre) ’(7X regarde 7Y))
— ((7?X Paul) (7Y Pierre))

Le résultat obtenu consiste en une liste d’associations indiquant pour quelles
substitutions des variables le filtre correspond a la donnée. Si le filtre ne conte-
nait aucune variable, la fonction filtrer se contenterait de retourner une liste
vide lorsque le filtre et la donnée sont identiques et ECHEC dans le cas contraire.

Un algorithme de filtrage récursif est donné a la figure 3.3. La notation
{E;/V;} signifie que l'on construit une association de la variable V; avec le
terme E;.

3.5.3 Unification

L’unification correspond en fait a un mécanisme de filtrage pour lequel on
admet que la donnée elle-méme contient également des variables (et non pas
seulement le filtre comme c’est le cas pour le filtrage). En d’autres termes,
il s’agit d’unifier deux filtres pour y déceler des correspondances. L’exemple
suivant décrit ce que l'on entend par unification :

(unifier ’(7?X est un éléphant) ’(?7Y est un 7ANIMAL))
— ((7?X7?Y) (7ANIMAL éléphant))

L’écriture d’un unificateur pose un peu plus de problemes que celle d’un mé-
canisme de filtrage. En effet, étant donné que des variables peuvent apparaitre
dans les deux arguments a filtrer, des phénomenes de circularité indésirables
peuvent se produire, ainsi que le démontrent les exemples suivants (circularités
directe et indirecte) :

(unifier ’ 7x ’ (£ 7x))
ou

(unifier ’(?x7?z) ’(?z (f7?x))
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: Function Filtrer(datum,pattern)
: if pattern est un symbol then
if datum et pattern sont identiques then return {}
if pattern est une variable then return {pattern/datum}
return ECHEC
if datum est un symbol then return ECHEC
F1 < premier élément de datum, T; < reste de datum
F2 < premier élément de pattern, T2 < reste de pattern
: Z1 + FILTRER(F,F2)
. if Z; = ECHEC then return ECHEC
G+« T
: Gg < remplacer les variables de T2 par les unifications Z;
: Zg + FILTRER(G1,G2)
. if Zo = ECHEC then return ECHEC
: return { Z, U Zs }

© P TS T @

P e T T o S =t
Tl W NN = O

Fig. 3.3 Algorithme récursif de filtrage.

Il est par conséquent nécessaire de tester ce genre de configurations circu-
laires avant d’engager le mécanisme d’unification & proprement parler.

La figure 3.4 présente un algorithme d’unification récursif. Cet algorithme
n’est autre que celui de la figure 3.3 auquel ont été ajoutés des tests détectant
la circularité.

3.5.4 Chainage avant avec variables

Le moteur d’inférence en chainage avant peut maintenant étre étendu pour
admettre également des regles qui contiennent des variables. L’introduction de
variables changera peu le schéma de la figure 3.1. La mise en correspondance
d’un nouveau fait avec la base de regles est remplacée par 'application de
I’algorithme de filtrage et il se peut qu’il en résulte plusieurs correspondances
avec des substitutions de variables différentes. Chacune de ces substitutions est
utilisée pour une instanciation différente de la conclusion. Le schéma modifié est
donné par la figure 3.5. La figure 3.6 donne la version modifiée de 1’algorithme
simple de la figure 3.2.

Comme exemple pour illustrer le processus, considérons les prémisses sui-
vantes :

F1 : pere(Jacques,Charles),
F2 : frére(Charles,Frangois),
F3 : fréere(Jacques,Pierre)

une base de connaissances qui consiste en deux regles :

R1 : pere(?x, 7y) A frére(?y, ?7z) = pére(?x, 7z)
R2 : pere(?x, ?7y) A frére(7?x,?7z) = oncle(7z, 7y)
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1: Function Unifier(Eq,E2)
2: if Eq1 ou E2 est un symbole then

3: Interchanger les arguments de Eq et de Ea (si nécessaire) de sorte que Eq soit
un atome

4 if E; et E2 sont identiques then return {}

5 if E1 est une variable then

6: if E; apparait dans Eo then return ECHEC

7 return {E; / Eo}

8 if Eo est une variable then return {E; / E1}

9 return ECHEC

10: Fy1 < premier élément de Eq, T1 < reste de E;

11: Fo < premier élément de Ez, Ty + reste de E»

12: Z1 + UNIFIER(F1,F2)

13: if Z; = ECHEC then return ECHEC

14: G < remplacer les variables de T par les substitutions Z
15: Go < remplacer les variables de T2 par les substitutions Z
16: Zs + UNIFIER(G1,G2)

17: if Zo = ECHEC then return ECHEC

18: return { Z; U Z }

Fig. 3.4 Algorithme récursif d’unification.

Vérification des Regles + Filtrage
autres conditions Unificateurs avec conditions

A

Instantiation de Base de Solution?
la conclusion données .
Données de File d’attente Nouvelles Résultats
— —>
de(lp;:):lrt Q) données

Fig. 3.5 Fluz des informations entre composants d’un moteur d’inférence a chainage
avant avec variables.
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et le but de l'inférence :
oncle( ?x,Frangois)

La procédure de chainage avant résoudrait le probleme décrit ci-dessus par
les inférences suivantes :

R1, F1, F2 — F4 : pere(Jacques,Frangois))
R2, F1, F3 — F5 : oncle(Pierre,Charles)
R2, F4, F3 — F6 : oncle(Pierre,Francois) = but

L’efficacité de la procédure dépend essentiellement du degré auquel on arrive
a limiter les inférences inutiles (par exemple F5 dans 'exemple ci-dessus).

L’algorithme d’inférence, décrit en détail dans la figure 3.6, consiste princi-
palement a filtrer les faits avec les déclencheurs des regles de la base de connais-
sances. Chaque paire de (fait, regle) ou le fait correspond & une condition de
la regle (par filtrage), est placée avec ses substitutions dans la file. Lorsque
tous les filtrages sont opérés, 'algorithme construit itérativement les conclu-
sions des éléments de la file, en commengant par le premier élément. Chaque
nouvelle conclusion est immédiatement comparée a la base de connaissances
pour voir si elle correspond & 'une des regles (c’est-a-dire si elle est susceptible
de la déclencher). Toutes les correspondances sont insérées en fin de file. Le pro-
cessus s’arréte si une nouvelle conclusion constitue une solution satisfaisante au
probléme.

1: Procédure Chainage-Avant-Variables(F,R)
2: Q <« faits de départ F
3: while Q n’est pas vide do
4:  q + premier(Q), Q + reste(Q)
if q ¢ base de données then

imprimer q and ajouter q a la base de données

if 3 ¢ € conditions(r) FILTRER(q,c) # ECHEC then

for toute combinaison C d’éléments de la base de données tel que FIL-
TRER(C,conditions(r)) # ECHEC do

10: n < instanciation de conclusion(r) avec les substitutions de FIL-
TRER(C,conditions(r))

11: if n ¢ base de données then ajouter n en queue de Q

5
6
7 for chaque reégle r de la base de regles R do
8
9

Fig. 3.6 Algorithme pour un moteur d’inférence en chainage avant avec variables.

3.6 Inférence par résolution avec variables

Si la regle du modus ponens, qui est a la base du moteur d’inférence & chainage-
avant, constitue un moyen tres naturel de faire des déductions, elle reste ce-
pendant limitée a des clauses de Horn. La regle de la résolution, quant a elle,
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permet une procédure de preuve complete. Elle s’utilise dans le contexte d’une
preuve indirecte : une proposition but G se déduit d’un ensemble de prémisses
{P} et d’un ensemble de regles {R} si et seulement si I’ensemble

{PtU{R}U{-G}
est contradictoire. Avant d’appliquer une telle procédure, les regles d’inférence
seront traduites en leurs équivalents conformément a la regle suivante :
(A=B)e (-AVB)

Toute expression est alors simplifiée en une forme canonique selon les étapes
suivantes : élimination des quantificateurs, rendre les noms uniques, transformer
en conjonction de disjonctions. Ensuite, chaque disjonction dans la conjonction
devient une clause et toutes les clauses sont valables simultanément.

Un moteur d’inférence basé sur la résolution ajoute la négation d’un but
donné a ’ensemble des faits existants et utilise I’algorithme pour déduire une
contradiction dans cet ensemble. Du fait que la proposition but doit étre préci-
sément spécifiée a la procédure de résolution, de tels moteurs d’inférences sont
aussi appelés démonstrateurs de théorémes.

La résolution se base sur les deux regles d’inférence suivantes :

1) résolution binaire :
(L1 V A),(=Ls V B), Unificateur(Ly, Ly) = U
= (UA)VU(B))
2) factorisation :
(L1 V Ly Vv A), Unificateur(Ly, Ly) =U
= (U(Ly) VA)

La regle de résolution binaire est appliquée a toute paire de clauses qui
contient des parties Ly et — Lo telles que Ly et Lo peuvent s’unifier. La regle
de factorisation s’applique quand une clause contient deux parties L1 et Ly qui
peuvent s’unifier entre elles et sont donc redondantes.

Un moteur d’inférence par résolution applique ces deux regles de fagon itéra-
tive a tous les endroits possibles jusqu’a ce qu’il n’y ait plus aucune possibilité
d’application. Cette procédure est garantie de trouver une contradiction (p et
—p) si elle existe. Par contre, elle peut étre tres inefficace.

Pour illustrer le fonctionnement de la résolution, considérons I’exemple sui-
vant. En partant des faits initiaux :

1. =lapin(z) V animal(x)

(= lapin(x) = animal(x))
2. —animal(y) V bouge(y)

(= animal(y) = bouge(y))

on veut prouver :

=lapin(z) V bouge(z)
(= lapin(z) = bouge(z))
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La transformation de ce but en sa négation donne :
lapin(z) A\ —bouge(z)

ce qui se traduit en deux clauses élémentaires qui sont ajoutées & la base de
faits initiale :

3. lapin(z)
4. —bouge(z)

En appliquant la régle de résolution binaire deux fois (1.42., 4.45.), on
trouve :

5. =lapin(x) V bouge(x)
6. —lapin(z)

et donc une contradiction entre 6. et 3. qui sert comme preuve de ’hypothese.
Comme dans cet exemple il n’y avait aucun conflit entre les noms des va-
riables, la factorisation n’était pas nécessaire.

Littérature

Robinson a publié la régle de résolution en 1965 dans [6]. Les clauses de Horn
ont été introduites dans [7], et [8] a décrit pour la premiére fois leur utilisation
dans un moteur d’inférence. Le livre de Gallier [9] donne un apergu plus complet
des méthodes d’inférence.

Outils - domaine public

Il y a plusieurs moteurs d’inférence pour les business rules, notamment Drools :
http ://www.drools.org

et OpenRules (disponible aussi en version commerciale) :
http ://www.openrules.com

L’outil CLIPS, également en domaine public, existe depuis longtemps mais est

toujours mise a jour et utilisé dans de nombreuses projets :
http://clipsrules.net/

Il existe plusieurs logiciels de démonstration automatique de théorémes qui sont

disponibles dans le domaine public. Un des premiers était le systeme Otter et
son successeur Prover9, qui utilisent le principe de la résolution :

http://en.wikipedia.org/wiki/Otter_theorem_prover
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Plus récent, on peut considérer E, developpé depuis 1998 et parmi les plus
puissants aujourd’hui :

http://wwwlehre.dhbw-stuttgart.de/ sschulz/E/E.html
Une autre méthode est de prouver des théoremes par réduction a SAT, comme
le systeme KODKOD issu du MIT :

http://alloy.mit.edu/kodkod/

Ce type de logiciel ne se base cependant pas sur I'inférence explicite, mais sur
la satisfaction de contraintes que nous allons voir plus tard dans ce livre au
chapitre 8.

Outils - commercial

Les moteurs d’inférence sont le plus souvent integrés dans des outils de business
rules. Ils sont commercialisés par presque toute les grandes fournisseurs de
logiciel, parmi eux IBM Business Rules Management System :

http://www-01.1ibm.com/software/websphere/products/business—
rule-management/

Microsoft Business Rules Engine :
https://msdn.microsoft.com/en-us/library/aab61216.aspx

ou encore SAP Business Rule Framework :
https://en.wikipedia.org/wiki/BRFplus

Plus généralement, on trouve des moteurs d’inférence dans de nombreuses outils
pour I'implémentation de systémes intelligents. Le fournisseur de logiciel le plus
engagé est IBM avec sa division de cognitive computing.

p
Application : Traitement de requétes de transfert par business

rules

La société Thames Water s’occupe de I'approvisionnement d’eau de toute
la région de Londres. Elle doit traiter chaque année 250 000 demandes de
transfert concernant la tarification de ’approvisionnent d’eau pour des
constructions ou rénovations de la région.

Auparavant, ces demandes étaient traitées par une équipe de trente per-
sonnes. Vu la complexité des situations et des regles appliquées, il parais-
sait impossible d’automatiser leur traitement. A partir de ’an 2000, la
société a néanmoins réussi a le faire par des business rules, des regles a
chainage-avant.

Le nouveau systeme a permis aux employés de se concentrer sur la réalisa-
tion des changements demandés et a ainsi diminué les délais de réponse de
50%. Les cotits ont été réduits de trois millions de livres par an. De plus,
on a pu corriger des calculs erronés et ainsi identifier un découvert de 1.4
million de livres qui a pu étre récupéré.
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On observe la un résultat typique de I'introduction de business rules pour
automatiser des processus administratifs.

(Source : "Britain’s Thames Water Delivers Millions in Cost Benefits Using ILOG
JRules.” The Free Library, 31 May 2005. http ://www.thefreelibrary.com/)

3.7 Exercices

Exercice 3.1 Premieére partie - sans variable

L’inférence a chalnage avant est a la base de la plupart des systemes de rai-
sonnement automatiques utilisés aujourd’hui. Cette série d’exercices a pour but
d’introduire cette technique. La réalisation d’un tel systeme se fera en plusieurs
étapes, la premiere se limitant & des regles sans variables. Dans les étapes sui-
vantes, vous implémenterez un moteur d’inférence qui utilisera des regles avec
variables.

Modules squelettes

Les modules de cette section fournissent le squelette du programme que nous
allons développer. Le module exemple_impots_sans_variables.py représente le
code d’un fichier test.

Module .../moteur_sans_variables/regle_sans_variables.py :

class RegleSansVariables:
def _init_ (self, conditions, conclusion):
self . conditions = set(conditions)
self .conclusion = conclusion

def depend_de(self, fait ):
print('a compléter')

def satisfaite_par ( self, faits ):
print('a compléter')

def _repr_ (self ):
print('a compléter')

Module .../moteur_sans_variables/connaissance.py :

class BaseConnaissances:
def _init_ (self, constructeur_de regle ):
self . faits = |]
self . regles = ||
self . constructeur_de_regle = constructeur_de_regle

def ajoute_un_fait ( self, fait ):
self . faits .append(fait)

def ajoute_faits ( self , faits ):
self . faits .extend(faits)
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def ajoute_une_regle( self , description ):
regle = self. constructeur_de_regle (description)
self . regles . append(regle)

def ajoute_regles (self , descriptions ):
for description in descriptions:
self . ajoute_une_regle (description)

Module .../moteur_sans_variables/chainage.py :

class Chainage:
_indentation =4 x ' '
def _init_ (self, connaissances):
self .trace = [
self . solutions = ]
self .connaissances = connaissances

def reinitialise (self ):
self . trace = [
self . solutions = ]

def chaine(self ):
# Nous retournons un ensemble vide dans ce cas.
return self. solutions

def affiche_trace (self , indent=None):
if indent is None:
indent = Chainage.__indentation

print('Trace:")
for evenement in self. trace:
print('{}{}'.format(indent, evenement))

def affiche_solutions ( self, indent=None):
if indent is None:
indent = Chainage.__indentation

if len(self . solutions) > 0:
print('Faits d\'eduits: ")
for fait in self .solutions:
print('{}{}'.format(indent, fait))
else:
print('Aucun fait trouv\'e.")

Module .. ./moteur_sans_variables/chainage_avant_sans_variables .py -
from .chainage import Chainage
class ChainageAvantSansVariables(Chainage):

def chaine(self ):
print('a compléter')
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Module .../exemple_impots_sans_variables.py :

from sys import argv, exit

from moteur_sans_variables.regle_sans_variables import RegleSansVariables

from moteur_sans_variables.connaissance import BaseConnaissances

from moteur_sans_variables.chainage_avant_sans_variables import ChainageAvantSansVariables

# La description d'une régle est une liste de deux éléments:
# une liste de conditions et une conclusion.
regles = [
[['pas—d—enfants'], 'réduc—enfant—0'],
[['enfants'], 'réduc—enfant—100'],
[[ 'bas—salaire'], 'réduc—loyer—200'],
[[ 'moyen—salaire'], 'réduc—loyer—100'],
[[ '"haut—salaire'], 'réduc—loyer—0'],
[['pas—de—loyer'], 'réduc—loyer—0'],
[ ' petit —trajet'], 'réduc—trajet—0'],
[ 'réduc—enfant—0', 'long—trajet'], 'réduc—trajet—100'],
[ 'réduc—loyer—0', 'long—trajet'], 'réduc—trajet—100'],
[['réduc—enfant—100', 'réduc—loyer—100', 'long—trajet'],
'réduc—trajet—50'],
[['réduc—enfant—100'", 'réduc—loyer—200', 'long—trajet'],
'réduc—trajet—0'],
[ 'réduc—enfant—0', 'réduc—loyer—0', 'réduc—trajet—0'],

'réduc—0'],

[ 'réduc—enfant—100', 'réduc—loyer—0', 'réduc—trajet—0'],
'réduc—100'],

[['réduc—enfant—0', 'réduc—loyer—100', 'réduc—trajet—0'],
'réduc—100'],

[['réduc—enfant—100', 'réduc—loyer—100', 'réduc—trajet—0'],
'réduc—200"],

[['réduc—enfant—0', 'réduc—loyer—200', 'réduc—trajet—0'],
'réduc—200"],

[ 'réduc—enfant—100', 'réduc—loyer—200', 'réduc—trajet—0'],
"'réduc—300'],

[ 'réduc—enfant—0', 'réduc—loyer—0', 'réduc—trajet—50'],
'réduc—>50'],

[ 'réduc—enfant—100', 'réduc—loyer—0', 'réduc—trajet—50'],
'réduc—150'],

[ 'réduc—enfant—0', 'réduc—loyer—100', 'réduc—trajet—50'],
'réduc—150'],

[ 'réduc—enfant—100', 'réduc—loyer—100', 'réduc—trajet—50'],
'réduc—250'],

[ 'réduc—enfant—0', 'réduc—loyer—200', 'réduc—trajet—50'],
'réduc—250'],

[['réduc—enfant—0', 'réduc—loyer—200', 'réduc—trajet—50'],
'réduc—250"],

[ 'réduc—enfant—100', 'réduc—loyer—200', 'réduc—trajet—50'],
'réduc—350"],

[ 'réduc—enfant—0', 'réduc—loyer—0', 'réduc—trajet—100'],
'réduc—100'],

[ 'réduc—enfant—100', 'réduc—loyer—0', 'réduc—trajet—100'],
"réduc—200'],

[ 'réduc—enfant—0', 'réduc—loyer—100', 'réduc—trajet—100'],
"'réduc—200'],

[ 'réduc—enfant—100', 'réduc—loyer—100', 'réduc—trajet—100'],
'réduc—300'],

[ 'réduc—enfant—0', 'réduc—loyer—200', 'réduc—trajet—100'],
'réduc—300'],
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[ 'réduc—enfant—100', 'réduc—loyer—200', 'réduc—trajet—100'],
"'réduc—400'],
]

if len(argv) < 2 or argv([l].lower() not in ('a', 'b'):
print('On attend au moins un arguments: A ou B')

exit (1)
if argv [1]. lower() == "a"

faits_initiaux = ['bas—salaire', 'loyer', 'enfants', 'long—trajet']
elif argv [1].lower() == 'b"

faits_initiaux = ['pas—d—enfants', 'pas—de—loyer',

'haut—salaire', 'long—trajet']

bc = BaseConnaissances(lambda descr: RegleSansVariables(descr[0], descr[1]))
be. ajoute_faits ( faits_initiaux )
bc. ajoute_regles (regles)

moteur = ChainageAvantSansVariables(bc)
moteur.chaine()

moteur. affiche_solutions ()

if len(argv) > 2 and argv[2].lower() == 'trace':
# Utile durant le déboggage.
moteur. affiche_trace ()

Idée de base

L’idée de base d’un moteur d’inférence & chainage avant est de déduire toutes
les faits possibles a partir d’'un ensemble de regles et de faits initiaux, c’est-a-
dire de propositions qui sont tenues pour vraies des le départ. Chaque fois qu’un
nouveau fait est déduit, I’ensemble des regles doit étre appliqué a nouveau a la
base des faits : il est en effet possible que le fait nouvellement déduit permette
le déclenchement d’une regle qui a déja été essayée auparavant sans succes. Le
processus d’inférence se termine lorsque plus aucun fait nouveau ne peut étre
déduit.

Exercice 3.1.1 Les faits et les regles

Dans cette série, les propositions ne contiendront pas de variables et seront
représentées par des chaines de caractéres (string) contenant leur description
en langage naturel. Les faits seront donc des propositions. En outre, les regles
seront des clauses de Horn, et donc composées de deux parties :

o Un ensemble de conditions (des propositions qui doivent étre toutes satis-
faites pour que la regle se déclenche);

 Une seule conclusion (une proposition qui pourra le cas échéant étre inséré
dans la base des faits).

Les regles seront ainsi représentées par la classe RegleSansVariables du mo-
dule regle_sans_variables.py. Cette classe possede deux attributs : une liste de
propositions, qui représentent les conditions, et une proposition, qui représente
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la conclusion. Pour utiliser RegleSansVariables, vous devez donc compléter les
méthodes :

o depend_de(self, fait), qui doit retourner True si le fait passé en argument
fait partie des conditions

e satisfaite_par(self, faits), qui doit retourner True si toutes les condi-
tions de déclenchement de la regle sont présentes dans la liste de faits
passée en argument ;

e __repr__, qui retourne une représentation d’une regle sous forme de string.
Cela nous permettra d’afficher les regles de maniére plus pratique en
utilisant la syntaxe print(régle), au lieu de print(régle.conditions) et
print(régle.conclusion).

Pensez a utilisez 'opérateur in pour écrire depend_de et la méthode issubset
de la classe set pour implémenter satisfaite_par.

Les faits et les regles pertinents pour un probleme seront collectés dans la
classe BaseConnaissances, qui est décrite dans le module connaissance.py.

Exercice 3.1.2 Le moteur d’inférence a chalnage avant sans variables

Vous disposez maintenant du code nécessaire pour implémenter le moteur a
chainage avant sans variables. Ce code est a implémenter dans chainage_avant_
sans_variables.py, en complétant la classe ChainageAvantSansVariables. Notez
que cette derniere est une sous-classe de la classe Chainage du module chai-
nage.py et qu’elle hérite par conséquent des deux méthodes affiche_solutions
et affiche_trace, qui servent & afficher les résultats et le parcours de ’algo-
rithme. La classe ChainageAvantSansVariables doit recevoir une instance de
BaseConnaissances en tant que parametre de son constructeur. C’est & partir
du contenu de cette base de connaissance qu’elle recherchera des faits nouveaux.

Votre tache consiste & implémenter la méthode chaine dans la classe Chai-
nageAvantSansVariables. N’oubliez pas de placer les faits déduits dans la va-
riable self.solutions au moment ou ils sont découverts. Vous pouvez également
ajouter les regles et les faits & self.trace a mesure qu’ils interviennent dans
Iinférence.

Pour rappel, 'algorithme a implémenter est le suivant :

ChainageAvantSansVariables(faits_depart, regles)
1. solutions <— liste vide

2. Q <— faits_depart

3. WHILE Q n'est pas vide DO

4. q <— premier(Q)

5. Q <— reste(Q)

6. IF g n'est pas dans solutions THEN

7. ajouter q a solutions

8. FOR EACH régle r de regles DO

9. IF r.depend_de(q) et r. satisfaite_par (solutions) THEN
10. ajouter la conclusion de r en queue de Q
11. END IF

12. END FOR

13. END IF

14. END WHILE
15. RETURN solutions
END ChainageAvantSansVariables
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Rappelez-vous qu’en Python, les listes peuvent s’employer comme des queues
graces aux méthodes append et pop.

Test du programme

exemple_impots_sans_variables.py contient les regles et les faits nécessaires
pour le calcul du montant d’une réduction d’impdts. Apres avoir écrit votre
programme, testez-le sur un premier exemple en ajoutant ’option A et vérifiez
que le fait *réduc-300’ est correctement déduit. Vous pouvez afficher la trace
en utilisant 1’option trace.

python3 exemple_impots_sans_variables.py A
python3 exemple_impots_sans_variables.py A trace

Le module contient un deuxieme exemple. Quelle devrait étre alors la ré-
duction d’impdts ?

python3 exemple_impots_sans_variables.py B
python3 exemple_impots_sans_variables.py B trace

Solutions a la page 343

Exercice 3.2 Deuxiéme partie - avec variables

Le but de cette série est de développer un moteur d’inférence a chainage avant
capable de manipuler des regles comportant des variables. Dans un premier
temps, vous devrez étendre I'implémentation des regles en complétant quelques
fonctions utilitaires. Puis vous construirez un filtre, qui permettra de comparer
deux propositions dont 'une pourra contenir des variables. Ensuite, en utilisant
votre filtre, vous implémenterez un moteur d’inférence avec variables.

Vous aurez également la possibilité d’implémenter un unificateur et de le
tester sur votre moteur a chainage avant avec variables. Un unificateur permet
aussi de comparer deux propositions. La différence fondamentale avec le filtre
est que I'unificateur accepte la présence de variables dans les deux expressions,
ce qui rend possible de 'utiliser dans le chainage arriere.

Modules squelettes

Les modules qui suivent constituent le squelette du programme que nous allons
développer. Le dernier, exemple_impots_avec_variables.py, est un module de
test.

Module .../moteur_avec_variables/proposition_avec_variables.py :
def est_atomique(proposition):

print('a compléter')

def est_une_variable (proposition, marqueur='7"):
print('a compléter')



Algorithmes d’inférence

def tete(proposition ):
if est_atomique(proposition):
raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:
return proposition[0]
else:
raise Exception(”Proposition vide: Impossible de la segmenter.”)

def corps(proposition ):
if est_atomique(proposition):
raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:
return proposition[1:]
else:
raise Exception(”Proposition vide: Impossible de la segmenter.”)

def lister_variables (proposition):
variables = set()
if est_atomique(proposition):
if est_une_variable (proposition ):
variables .add(proposition)
else:
for sous_prop in proposition:
variables . update( lister_variables (sous_prop))
return variables

Module .../moteur_avec_variables/regle_avec_variables.py :

class RegleAvecVariables:
def _init_ (self, conditions, conclusion):
self . conditions = conditions
self .conclusion = conclusion

def depend_de(self, fait, methode):
print('a compléter')

def satisfaite_par ( self , faits, cond, env, methode):
print('a compléter')

def _repr_ (self ):
return '{} => {}'.format(str(self.conditions), str(self .conclusion))

Module .../moteur_avec_variables/chainage_avant_avec_variables.py :

from moteur_sans_variables.chainage import Chainage
from . filtre import Filtre

class ChainageAvantAvecVariables(Chainage):
def _init_ (self, connaissances, methode=None):
Chainage. _init_ ( self , connaissances)

if methode is None:

self .methode = Filtre()
else:

self .methode = methode

53
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def instancie_conclusion ( self , regle, envs):
print('a compléter')

def chaine( self ):
print('a compléter')

Module .../moteur_avec_variables/filtre.py :

from .proposition_avec_variables import est_atomique, est_une_variable, tete, corps

class Filtre:
echec = 'échec’

def substitue( self , pattern, env):
print('a compléter')

def filtre (self , datum, pattern):
print('a compléter')

def pattern_match(self, datum, pattern, env=None):
print('a compléter')

Module .../moteur_avec_variables/unificateur.py :

from .proposition_avec_variables import est_atomique, est_une_variable, tete, corps

class Unificateur:
echec = 'échec’

def substitue( self , pattern, env):
print('a compléter')

def unifie ( self , propl, prop2):
print('a compléter')

def pattern_match(self, propl, prop2, env=None):
print('a compléter')

Module .../exemple_impots_avec_variables.py :

from sys import argv, exit

from moteur_avec_variables.regle_avec_variables import RegleAvecVariables

from moteur_sans_variables.connaissance import BaseConnaissances

from moteur_avec_variables. filtre import Filtre

from moteur_avec_variables.unificateur import Unificateur

from moteur_avec_variables.chainage_avant_avec_variables import
ChainageAvantAvecVariables

faits_initiaux = [
(‘add', 10|7 lol7 |0l, 10|),
('add', '100', '100', '0', '0'),
(‘add', '100', '0', '100', '0"),
('add', '200', '100', '100', '0"),
('add', '200', '0', '200', '0'),
('add', '300', '100', '200', '0"),
(ladd'7 '5()'7 '()‘7 '0'7 |50')7
('add', '150', '100', '0', '50'),
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('add', '150', '0', '100', '50'),
('add', '250', '100', '100', '50"),
('add', '250', '0', '200', '50'),
('add', '350', '100', '200', '50'),
(‘add’, '100', '0', '0', '100'),
('add', '200', '100', '0', '100'),
(‘add’, '200', '0', '100', '100'),
('add', '300', '100', '100', '100"),
('add', '300', '0', '200', '100'),
('add', '400', '100', '200', '100'),
# Paul

('bas—salaire', 'Paul'),

('loyer', 'Paul'),

('enfants', 'Paul'),
('long—trajet', 'Paul'),

# Marc

'moyen—salaire', 'Marc'),
"loyer', 'Marc'),
'enfants', 'Marc'),
'long—trajet', 'Marc'),

('haut—salaire', 'Jean'),
('pas—de—loyer', 'Jean'),
('pas—d—enfants', 'Jean'),
('long—trajet', 'Jean'),

]

regles = [
# Reduction enfants

[[( 'pas—d—enfants', '?x')], ('réduc—enfant', '0', '?x')],
[[( 'enfants', '?x')], ('réduc—enfant', '100', '?x')],

# Reduction loyer

[[( "bas—salaire', '?x"), ('loyer', '?x')],
[[( 'moyen—salaire', '?x'), ('loyer', '?x')
[[( "haut—salaire', '?x'), ('loyer', '?x')]

]

('réduc—loyer', '200', '7x')],
, ('réduc—loyer', '100', '?x')],
('réduc—loyer', '0', '?x')],

[[( 'pas—de—loyer', '?x' )], ('réduc—loyer', '0', '?x')],

# Reduction transport

[[( ' petit—trajet', '?x")], ('réduc—trajet', '0', '?x')],
[[( 'réduc—enfant', '0', '?x'), ('long—trajet', '?x')],

('réduc—trajet', '100', '?x')],

[[( 'réduc—loyer', '0', '?x'), ('long—trajet', '?x')],

('réduc—trajet', '100', '?x')],

[[( 'réduc—enfant', '100", '?x'), ('réduc—loyer', '100', '?x'),
('long—trajet', '?x')], ('réduc—trajet', '50', '?x')],
[[( 'réduc—enfant', '100", '?x'), ('réduc—loyer', '200', '?x'),
('long—trajet', '?x')], ('réduc—trajet', '0', '?x')],

# Reduction totale

[[( 'réduc—enfant', '?7a', '?x'), ('réduc—loyer', '?b', '?x'),
('réduc—trajet', '?c', '?x'), ('add', '?res', '?7a', '?b', '?c')],

('réduc', '?res', '?x')],

]

if len(argv) < 2 or argv([l].lower() not in (' filtre

', 'unificateur ' ):

print('On attend un argument: Filtre ou Unificateur')

exit (1)

if argv [1]. lower() == "filtre':
methode = Filtre()
elif argv [1].lower() == 'unificateur':
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methode = Unificateur()

bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr[0], descr[1]))
be. ajoute_faits ( faits_initiaux )
bc. ajoute_regles (regles)

moteur = ChainageAvantAvecVariables(connaissances=bc, methode=methode)
moteur.chaine()

moteur. affiche_solutions ()

if len(argv) > 2 and argv[2].lower() == 'trace':
moteur. affiche_trace ()

Le code de cette série d’exercices s’appuie sur le code développé pour 1’infé-
rence sans variables. Il est donc important de respecter strictement la structure
des dossiers que nous vous fournissons. Sinon, Python ne pourra pas importer
correctement les modules.

Les faits et les regles

Au cours des exercices précédents, vous avez manipulé des faits simples et des
regles sans variables. Dans cette série, les faits pourront étre composés et les
regles pourront contenir des variables. Nous parlerons plus généralement de
propositions qui sont définies récursivement comme étant :

e un atome, présenté sous la forme d’une string et représentant soit une
variable, soit une valeur

e OU un tuple contenant des propositions.

Vous trouverez ici' des informations détaillées sur la syntaxe des tuples en
Python. L’essentiel a retenir pour cet exercice est qu’un tuple est une séquence
de valeurs construite en alignant plusieurs éléments séparés par des virgules :
t3 = ’str’, 0, [1. Pour plus de clarté, on entoure généralement ces valeurs de
parentheses : t3 = (’str’, 0, [1). Notez enfin qu'un tuple composé d’un seul
élément doit contenir une virgule finale. Ici aussi, il est préférable d’utiliser des
parentheses : t1 = (Punique’,).

Par convention, une variable sera un atome qui commence par un point
d’interrogation. Exemple :

I?Xl

'?7qui’
Les faits seront des propositions sans variables. Voici par exemple deux
descriptions de faits :

'Paul’'
('réduc—loyer', '200', 'Michel")

W https ://docs.python.org/3.5/tutorial/datastructures.html#tuples-and-sequences
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En général cependant, une proposition pourra contenir des variables, comme
dans ces exemples :

('réduc—loyer', '200', '?x")

('bas—salaire', '7z")

('réduc—trajet', '?x', '?y")

Comme dans la série précédente, les regles seront constituées d’une liste de
conditions et d’une conclusion. Voici les descriptions de deux regles possibles :

[('pas—d—enfants', '?x')], ('réduc—enfant', '0','?x")
[[( 'bas—salaire', '?x'), ('loyer', '?x')], ('réduc—loyer', '200', '?x')

La classe RegleSansVariables de la série précédente doit ainsi étre adaptée a
I'utilisation de variables. Nous créerons donc une nouvelle classe RegleAvecVa-
riables qui devra redéfinir les méthodes depend_de et satisfaite_par en faisant
appel aux méthodes de pattern matching (filtrage ou unification). Vous devrez
compléter ces méthodes une fois le pattern matching implémenté.

Exercice 3.2.1 Le filtre

La technique du filtrage permet d’établir des correspondances entre deux propo-
sitions. Plus précisément, un filtre détermine les substitutions variables-valeurs
qui permettent de retrouver une proposition sans variables (le datum) a partir
d’une autre (le pattern) qui peut contenir des variables.

Pour commencer, vous devrez coder deux fonctions utilitaires dans le module
proposition_avec_variables.py, afin de faciliter I'implémentation du filtrage :
La fonction est_atomique (prop), qui doit retourner True si la proposition prop
est une string et la fonction est_une_variable(prop), qui doit retourner True
si prop est un atome et si le premier caractere de sa description indique une
variable (* 7).

La méthode Filtre.substitue

Vous pouvez maintenant vous attaquer a la classe Filtre du module filtre.py
et implémenter sa méthode substitue. Cette méthode doit retourner un pattern
dont les variables auront été remplacées par les valeurs disponibles dans ’envi-
ronnement env qui est passé en parametre. env est un dictionnaire qui contient
des substitutions variable-valeur. N’oubliez pas que le pattern est une proposi-
tion, donc soit un atome, soit un tuple pouvant contenir d’autres propositions.
Pensez donc a utiliser une méthode récursive pour traiter ces cas.

Pour vous guider, voici quelques exemples du fonctionnement de la mé-
thode :

substitue('doctorant', {'?z': 'Paolo', '?y': 'Michel', '?x': 'Vincent'})
—> 'doctorant'

substitue('?x', {'?z': 'Paolo', '?y': 'Michel', '?x': 'Vincent'})
—> 'Vincent'

substitue (('?x', 'est un', 'doctorant'), {})
—> ("?x', 'est un', 'doctorant')
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substitue (('?x', 'est un', 'doctorant'), {'?x': 'Vincent'})
—> ('"Vincent', 'est un', 'doctorant')

substitue (('?x', 'est un', 'doctorant'), {'?y':'Michel'})
—> ("?x', 'est un', 'doctorant')

substitue (('?x', 'est un', ('?a')), {'?y': 'Michel', '?a': 'Vincent'})
—> ("?x", 'est un', ('Vincent'))

La méthode Filtre.filtre

Nous allons maintenant écrire la méthode filtre de la classe Filtre, qui im-
plémente ’algorithme de filtrage. La méthode retournera :

e Un environnement, {’ 7x’ :’toto’, ..., ’?y’ :’titi’}, dans le cas oule
processus aboutit a des substitutions;

e Un environnement vide, {}, si le processus réussit sans aucune substitu-
tion, c’est-a-dire lorsque les deux propositions sont identiques;

o La constante Filtre.echec, en cas d’erreur de filtrage (si datum et pattern
sont incompatibles).

La méthode possede la signature filtre(datum, pattern), ou datum est une
proposition sans variables, et pattern une proposition pouvant contenir des
variables.

Voici son pseudo-code :

Filtre (datum, pattern)
1. IF pattern == () AND datum == () THEN RETURN {}

2. ELSE IF pattern == () OR datum == () THEN RETURN échec
3. ELSE IF pattern est un atome THEN

4. IF pattern et datum sont identiques THEN RETURN {}

5. ELSE IF pattern est une variable THEN RETURN {pattern: datum}
6. ELSE RETURN échec

7. END IF

8. ELSE IF datum est un atome THEN RETURN échec

9. ELSE

10. F1 <— premier (datum)

11. T1 <— reste (datum)

12. F2 <— premier(pattern)

13. T2 <— reste(pattern)

14. 71 <— Filtre(F1, F2)

15. IF Z1 == échec THEN RETURN échec END IF

16. Gl <-Ti1

17. G2 <— remplacer les variables de T2 selon les substitutions de Z1
18. 72 <— Filtre(G1, G2)

19. IF Z2 == échec THEN RETURN échec END IF

20. RETURN {Z1 UNION Z2}

21. END IF

END Filtre

Et voici quelques exemples de son usage :

filtre ('Vincent', '?x")
—> {'?x": 'Vincent'}

filtre (('Vincent', 'est un', 'doctorant'), ('?x', 'est un', 'doctorant'))
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—> {'?x": 'Vincent'}

filtre (('Vincent', 'est un', 'doctorant') , ('Vincent', 'est un', 'doctorant'))

—>{}

filtre (('Vincent', 'est un', 'doctorant'), ('?x', 'est un', '?x'))
—> échec

filtre (('Vincent', 'est un', ('doctorant')) , ('Vincent', 'est un', ('?y')))
—> {'?y": 'doctorant'}

Vous trouverez ici@)quelques fonctions utiles pour manipuler des diction-
naires. La méthode update est particulierement commode pour obtenir I'union
de deux dictionnaires. Une fagon breve et élégante pour retourner un diction-
naire a un élément est : return {key : value}.

La vraie fonction d’interface : Filtre.pattern_match

La fonction filtre n’est pas tres pratique pour un programme hote car il n’est
pas possible de lui fournir en entrée un environnement. Dans le processus de
chainage avant que vous allez écrire, chaque condition d’une regle doit étre
vérifiée avant de pouvoir étre utilisée. Cela implique que chaque condition soit
filtrée avec succes par un fait existant. Comme plusieurs conditions peuvent
étre présentes, il est nécessaire de tester chacune en respectant ’environnement
obtenu lors des filtrages précédents. Il faut donc pouvoir fournir a la fonction
de filtrage un environnement déja établi.

Vous devez ainsi compléter la méthode pattern_match de la classe Filtre,
qui permettra de prendre en compte un environnement de substitutions déja
existantes. Cette méthode prend en parametres deux propositions, un datum et
un pattern, accompagnés d’un environnement sous forme d’argument optionnel,
et retourne un nouvel environnement. Elle s’appuiera bien évidemment sur les
méthodes filtre et substitue.

Voici une liste d’exemples qui prennent en compte des environnements pré-
existants :

pattern_match(('Vincent', 'est un', 'doctorant'), ('?x', 'est un', 'doctorant') ,
{'?y':'doctorant'})
—> {'?y": 'doctorant', '?x': 'Vincent'}

pattern_match(('Vincent', 'est un', 'doctorant'), ('?x', 'est un', '?y'),
{'?y"':'doctorant'})
—> {'?y": 'doctorant', '?x': 'Vincent'}

pattern match('Vincent', '?x', {})
—> {'?x": 'Vincent'}

Les arguments optionnels d’une fonction Python obéissent a la syntaxe ar-
gument=valeur. A cause de problemes de mutabilité, il est déconseillé d’utiliser

(2) . .
http://docs.python.org/py3k/library/stdtypes.html\#typesmapping
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{} comme valeur par défaut. Il est préférable d’utiliser la valeur None et d’assi-
gner un dictionnaire vide a la variable a 'intérieur de la méthode. Vous pouvez

) ) .
consulter cet article ~ pour plus d’informations.

Exercice 3.2.2 De retour aux regles
La méthode RegleAvecVariables.depend_de

La classe RegleAvecVariables, qui est a implémenter dans le module regle_avec_
variables.py, reprend les noms des méthodes de la classe RegleSansVariables
que nous avons utilisée dans I'exercice précédent, mais avec une implémenta-
tion passablement différente. La méthode dépend_de doit ainsi vérifier qu’un
fait passé en parametre est un déclencheur des conditions de la regle, et doit
retourner un dictionnaire associant a chaque condition de la regle ’environne-
ment résultant du pattern match entre cette condition et le fait. Si la recherche
de substitutions aboutit a un échec pour une condition, il n’est pas nécessaire
de la mentionner dans le dictionnaire. Il faudra donc comparer chaque condi-
tion de la regle avec le fait a ’aide de la méthode pattern_match du filtre et
recueillir les environnements résultants.

La méthode dépend_de prend en entrée deux parametres : fait, un fait a
tester, et methode, I'objet de pattern matching utilisé, soit un filtre soit un
unificateur (filtre par défaut). N’oubliez pas que cette fonction doit vérifier
toutes les conditions de la regle. Pour vous aider, voici quelques exemples :

régle = RegleAvecVariables([('pere', '?x', '?y'), ('pere', '?y', '?z')],
('grand—pere, '?x', '?z'))

# Le fait ('pere', 'Jean', 'Paul') peut satisfaire la premiére ou la seconde condition :
methode.pattern_match(('pere', 'Jean', 'Paul'), ('pere', '?x', '?y'))
—> {'?x": 'Jean', '?y': 'Paul'}

methode.pattern_match(('pere', 'Jean', 'Paul'), ('pere', '?y', '?7z'))
—> {'?y": 'Jean', '?z': 'Paul'}

# La méthode depend_de renvoie donc un dictionnaire avec ces deux conditions associées
# aleurs environnements respectives :
depend_de(('pere', 'Jean', 'Paul'), Filtre ())
—> {('pere', "?x', "?7y"): {'?x': 'Jean', '?y': 'Paul'},
("pere', '?y', '?z'): {'?y": 'Jean', '?z': 'Paul'}}

La méthode RegleAvecVariables.satisfaite_par

La méthode satisfaite_par de la classe RegleAvecVariables vérifie que les faits
passés en parametres satisfont toutes les conditions de la reégle tout en res-
pectant 'environnement de départ inféré par dépend_de. La méthode prend en
entrée quatre parametres :

e faits : une liste de faits;

e cond : la condition qui a servi a découvrir I'environnement env;

© http ://www.deadlybloodyserious.com/2008/05/default-argument-blunders/
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e env : 'environnement déja établi par depend_de;

o methode : I'objet de pattern matching utilisé, soit un filtre soit un unifica-
teur (filtre par défaut).

La méthode satisfaite_par retourne une liste d’environnements qui cor-
respondent a toutes les substitutions possibles entre les conditions de la regle
et les faits. Il s’agit donc de trouver les environnements qui satisfont chacun
toutes les conditions. Si ce n’est pas possible, la méthode doit retourner une
liste vide. En outre, chaque nouvel environnement construit devra étre testé
lors de la vérification de la prochaine condition. Voici un petit exemple pour
clarifier les choses :

faits = [('pere', 'Jean', 'Paul'),

('pere', 'Florent', 'Paul'),
("pere', 'Paul', 'Michel')]

regle = RegleAvecVariables([('pere', '?x', '?y'), ('pere', '?y', '?z')],
('grand—pere, '?x', '?z'))

satisfaite_par (faits, ('pere', '?x', '?y'), {'?x': 'Jean', '?y': 'Paul'})
—> [{'?x": 'Jean', '?y': 'Paul', '?z': 'Michel'}]

satisfaite_par (faits, ('pere', '?y', '?z'), {'?y': 'Jean', '?z': 'Paul'})
—>

Et voici le pseudo-code de la méthode :

SatisfaitePar (regle, faits, cond, env)

1. conditions_a_tester <— conditions de regle sauf cond

2. environnements_satisfaisants <— [env]

3. FOR EACH condition condl de conditions_a_tester DO

4. environnements_nouveaux <— liste vide

5. FOR EACH fait de faits DO

6 FOR EACH environnement envl de environnements_satisfaisants DO

7 envl <— nouvel environnement déterminé par pattern match(fait, cond1, envl)
8 IF NOT envl == échec THEN

9. ajouter envl a environnements nouveaux

10. END IF

11. END FOR

12. END FOR

13. IF environnements_nouveaux est vide THEN

14. RETURN liste vide

15. END IF

16. environnements_satisfaisants <— environnements_nouveaux
17. END FOR

18. RETURN environnements_satisfaisants
END SatisfaitePar

Exercice 3.2.3 Le moteur d’inférence & chalnage avant avec variables

La méthode ChainageAvantAvecVariables.instancie_conclusion

Une fois que les conditions d’une regle ont été validées, il faut instancier la
conclusion en accord avec la liste des environnements ainsi obtenus afin de dé-
duire de nouvelles propositions. La fonction instancie_conclusion de la classe
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ChainageAvantAvecVariables prend comme parametres une regle et une liste
d’environnements, et retourne une liste de nouveaux faits (un par environne-
ment). Exemples :

régle = RegleAvecVariables(liste_de_conditions, ('?x', '?y'))

instancie_conclusion (régle, [{'?x': 'X'",'?y': 'Y'}])

—> [('X', 'Y")]

Vous pouvez implémenter cette méthode de fagon simple avec une boucle
for itérant sur les environnements, mais il est aussi possible de I’écrire en une
ligne sous forme de ’list comprehension’(4) (un peu plus complexe mais plus
élégant). Pensez en outre & utiliser la fonction substitue de la classe de pattern
match.

La méthode ChainageAvantAvecVariables.chaine

Grace aux changements apportés aux regles, grace a la méthode instancie_
conclusion et au module de filtrage que nous avons développé, nous pouvons
maintenant réaliser une nouvelle version de notre moteur d’inférence a chainage
avant, avec la capacité de manipuler des regles comportant des variables.

Implémentez 'algorithme de chainage avant dans la méthode chaine de la
classe ChainageAvantAvecVariables. Pour rappel, 'algorithme a implémenter est
le suivant :

ChainageAvantAvecVariables(faits_depart, regles)
1. solutions <— liste vide

2. Q <— faits_depart

3. WHILE Q n'est pas vide DO

4. q <— premier(Q)

5. Q <— reste(Q)

6. IF q n'est pas dans solutions THEN

7. ajouter q a solutions

8. FOR EACH régle r de regles DO

9. IF une condition de r dépend de ¢ THEN

10. FOR EACH condition cond et environnement env déduits de
r.depend_de(q) DO

11. envs <— r.satisfaite_par (solutions, cond, env)

12. instances <— instancier la conclusion de r selon envs

13. ajouter instances en queue de Q

14. END FOR

15. END IF

16. END FOR

17. END IF

18. END WHILE
19. RETURN solutions
END ChainageAvantAvecVariables

Test du programme : Chainage avant avec filtre

Le module exemple_impots_avec_variables.py contient les regles et les faits
nécessaires pour le calcul du montant d’une réduction d’impots. Apres avoir

4
“ Introduction a la list comprehension de Python : https://docs.python.org/3/tutorial/
datastructures.html\#list-comprehensions.
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écrit votre programme, testez-le en exécutant dans le terminal avec ’option
filtre. Vous pouvez afficher la trace en ajoutant 'option trace. Quelle devrait
étre la réduction d’impots ?

python3 exemple_impots_avec_variables.py filtre
python3 exemple_impots_avec_variables.py filtre trace

Exercice 3.2.4 L’unificateur
Nous allons maintenant construire un unificateur. C’est un outil analogue a
un filtre mais bien plus puissant. A la différence du filtre, qui compare deux
expressions dont I'une seulement peut comporter des variables, ’objectif d’un
unificateur est de comparer deux expressions pouvant toutes deux contenir des
variables. L’unificateur est donc une version généralisée du filtre. I fournit
comme résultat les correspondances entre les deux propositions sous la forme
de substitutions variable-proposition (lorsqu’il en existe).

Pour mieux comprendre I'utilité de I'unificateur, voyons quelques exemples :

unifie (('Vincent', 'est un', 'doctorant'), ('Vincent', 'est un', 'doctorant'))

> {}

unifie ((' Vincent', 'est un', 'doctorant'), ('Michel', 'est un', 'doctorant'))
—> échec

unifie (('foo', "?x', ('?y', 'bar', 'Jean')), ('foo', 'Jean', ('Marc', 'bar', '?x')))
—> {'?y": 'Marc', '?x': 'Jean'}

unifie (('p', '7x', ('f', '?7y"), ('p', ('f','a'), '?x"))
—> {"7y" ta', "x': ('f', 'a")}

Nous utiliserons des conventions analogues a celles que nous avons appli-
quées dans le cas du filtrage. Désormais cependant un environnement pourra
associer des propositions, pas nécessairement des valeurs, a des variables.
Le résultat final de 'unification contiendra plutot des substitutions variable-
proposition sans variables, mais les étapes intermédiaires pourront aussi ren-
voyer des environnements qui associent des propositions contenant des variables
a d’autres variables.

La méthode Unificateur.substitue

La fonction substitue de la classe Unificateur doit permettre d’instancier
une proposition étant donné un ensemble de substitutions variable-proposition.
Exemples :

substitue (('?x', 'est un', 'doctorant') , {})
—> ("?x", 'est un', 'doctorant')

substitue (('p', '?x") , {'?y': ('g','?z"), "?x': ("f', "?y'), '?z': ('a')})
=>('p', ("f', ('g', ("a'))))
substitue (('p', '?x"), {'?y": ('g','?2z"), '?x': ("f','?y'), '?z': ('7q")})
=>('p!, ("f', ("g", ('7d'))))
Lorsque vous rédigerez le code de cette méthodes, rappelez-vous qu’une va-
riable doit parfois étre remplacée par une définition de substitution qui contient
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elle-méme des variables. Il faut donc veiller & aussi remplacer toutes les va-
riables qui figurent dans la proposition associée a une autre variable. Pensez a
implémenter une solution récursive.

La méthode Unificateur.unifie

Vous avez maintenant tout ce qu’il faut pour implémenter la fonction Unifi-
cateur.unifie. L’algorithme d’unification est trés proche de I’algorithme de
filtrage :

Unifie (propl, prop2)
1. IF propl ou prop2 est un atome THEN
si nécessaire, échanger propl et prop2 pour que propl soit un atome
IF propl et prop2 sont identiques THEN RETURN {}
ELSE IF propl est une variable THEN
IF propl apparait dans prop2 THEN RETURN échec
ELSE RETURN {propl: prop2}
END IF
ELSE IF prop2 est une variable THEN RETURN {prop2: propl}
9. ELSE RETURN échec
10. END IF

XN O W

11. ELSE

12. F1 <— premier(propl)

13. T1 <— reste(propl)

14. F2 <— premier(prop2)

15. T2 <— reste(prop2)

16. 71 <— Unifie(F1, F2)

17. IF Z1 == échec THEN RETURN échec END IF

18. G1 <— remplacer les variables de T1 selon les substitutions de Z1
19. G2 <— remplacer les variables de T2 selon les substitutions de Z1
20. Z2 <— Unifie(G1, G2)

21. IF 72 == échec THEN RETURN échec END IF

22. RETURN {Z1 UNION Z2}

23. END IF

END Unifie

La vraie fonction d’interface : Unificateur.pattern_match

Comme dans le cas de la méthode filtre, unifie n’est pas tres pratique pour un
programme hote. Il faut donc aussi coder une fonction Unificateur.pattern_match
qui permette de prendre en compte un environnement de substitutions déja
existantes. Cette fonction prendra en parametres deux expressions pouvant
contenir des variables et un environnement a titre d’argument optionnel. Elle
doit retourner un nouvel environnement ou la constante Unificateur.echec, se-
lon que le pattern matching a réussi ou échoué. La méthode s’appuiera bien
évidemment sur unifie et substitue.

Voici une liste d’exemples qui prennent en compte des environnements pré-
existants :

pattern_match(('foo', '?x', ('?y', 'bar', 'Jean')), ('foo', 'Jean', ('Marc',

'bar', '?x')), {'?y': 'Marc'})
—> {'?y": 'Marc', '?x': 'Jean'}

pattern_match(('foo', '?x', ('?y', 'bar', 'Paul')), ('foo', 'Jean', ('Marc',
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'bar', '7x')), {})
—> échec

Pour coder cette méthode, il convient donc de s’assurer que ’environnement est
valide, puis de remplacer les variables des deux propositions par les définitions
de I'environnement, et enfin de procéder a 'unification.

Test du programme : Chainage avant avec unificateur

Essayez d’utiliser I'unificateur a la place du filtre, en lancant exemple_impots_
avec_variables.py avec I'option ‘unificateur’. Que constatez-vous et pourquoi ?

python3 exemple_impots_avec_variables.py unificateur
python3 exemple_impots_avec_variables.py unificateur trace

Est-il vraiment nécessaire d’utiliser un unificateur dans le chainage avant 7

Solutions a la page 343






CHAPITRE 4

Représentation structurée des
connaissances

Au-dela de la logique des prédicats, on peut imaginer une structuration des
connaissances qui permet de plus facilement gérer des bases de connaissances.
Des objets du monde comme chien, livre, personne, montagne ou couleur sont
des instances de concepts. Etant donné les objectifs fondamentaux de l'intel-
ligence artificielle, il va de soi que cette notion peut étre représentée au sein
d’un programme. Savoir ce qui définit exactement un concept est une question
philosophique. Ce probléeme est d’ailleurs troublé par I’existence d’exceptions :
par exemple, un oiseau est en général capable de voler, mais cette propriété
ne s’applique pas aux autruches. Dans le cadre de l'intelligence artificielle, on
s’'intéresse toujours a des applications spécifiques, ce qui permet une définition
pragmatique des concepts (qui ne satisfait évidemment pas nécessairement les
philosophes). En général, un concept est défini comme étant une combinaison
de propriétés de définition : les oiseaux ont des ailes, ils volent, ils chantent,
etc. Une combinaison de propriétés définit une classe d’individus et si 1’'on
ajoute davantage de propriétés de définition, il est aussi possible de définir des
sous-classes : la classe des oiseaux est ainsi une sous-classe des animaux qui se
distingue par des propriétés telles que peut-voler ou a-des-ailes.

Dans le cadre du calcul des prédicats, il n’existe qu’un seule type d’objets :
les entités. Comme la plupart des regles ne s’appliquent qu’a des concepts
particuliers, le champ d’une entité doit étre restreint en précisant les propriétés
définissant le concept. C’est en fait un moyen extrémement lourd de définir des
connaissances, principalement parce que qu’on ne tire pas parti des relations
existant entre concepts : une grande partie des propriétés d’une entité peuvent
étre héritées des concepts englobant dont elle est I'instance. Des techniques
particulieres de structuration de la connaissance, représentées par les résequx
a héritage structuré, ont été développées en vue de profiter de la structuration
conceptuelle des classes.

Les entités qui se conforment a la définition d’une classe sont nommées ses
instances. Si dans une représentation des connaissances toutes les entités sont
structurées en classes, on peut alors les distinguer en représentant uniquement
les propriétés spécifiques les différenciant des autres membres de la méme classe.
Par exemple, une instance du concept table peut désormais étre identifiée
par un ensemble limité de propriétés : sa hauteur, sa taille, le matériau qui la
compose et sa position dans I’espace. Pour chaque concept, on peut ainsi définir
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. Zones Batiment
résidentielles

Situee
A Batiments
Occupe-la-nuit Résidentiels

Surface

Bureaux Situee

Maison-Jacques

i Nom : EPFL Nom : Prefecture
/’\\‘grgs'sléé %i?‘gzge£§u|es Adresse : Ecublens, Adresse : Av. Confrerie
1510 Moudon 1015 Lausanne 1008 I;rllly
Surface : 150 m? Surface : 0.2 km? Surface : 500 m

Fig. 4.1 Structuration utilisant des réseaux a héritage et cadres. Les propriétés com-
munes sont représentées par le réseau, les instances distinguées par les cadres.

un ensemble de propriétés distinctives qui définissent une instance du concept.
C’est I'idée des cadres (frames) : pour chaque classe, on regroupe l’ensemble
des propriétés distinctives, appelées des slots, sous forme d’un cadre.

La structuration des connaissances qui résulte de 'utilisation parallele de
réseaux a héritage et de cadres est décrite dans la figure 4.1. Elle permet de
définir les concepts avec un maximum d’économie. Cette structuration a no-
tamment inspiré la programmation orientée objet, pour laquelle la plupart des
langages integrent une méthodologie analogue.

La notion des réseaux a héritage structurés peut étre généralisée en per-
mettant non seulement des liens entre sous-classes, mais également d’autres
relations entre concepts. De tels types de réseaux sont connus sous le nom de
réseauxr sémantiques.

4.1 Cadres

Un cadre est une structure de données qui regroupe un ensemble de propriétés
et correspond ainsi a un enregistrement, notion connue des langages de pro-
grammation classiques. Un cadre décrit un objet, qui peut étre :

o une classe, dont les propriétés communes a toutes les instances sont re-
groupées dans le cadre;

o une instance d’une classe, dont les propriétés qui la distinguent des autres
instances sont représentées par le cadre.

La figure 4.2 donne un exemple de cette notion pour la représentation d’un
étudiant.
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Frame : ETUDIANT

Slots : NOM
DATE DE NAISSANCE
ANNEE
SECTION

Fig. 4.2 Ezemple d’un cadre. A chaque slot doit étre attribuée une propriété, qui
peut étre une référence a un autre cadre. Des valeurs par défaut peuvent remplir les
propriétés indéfinies.

rue-du-centre:

Maison-Jacques:
Maison:
Rue:
Proprietaire:
Chambres:(. . ...

jacques:
personne: ...,

chambre-a-coucher-1:
chambre: ....

Fig. 4.3 Les slots qui contiennent des pointeurs a d’autres cadres créent une struc-
ture de mémotre associative.

Si un cadre ressemble beaucoup a un enregistrement, il existe néanmoins
des différences importantes. Les propriétés que regroupe un cadre, appelées des
slots, peuvent en effet contenir des valeurs qui sont d’autres cadres, créant ainsi
une structure de mémoire associative. La figure 4.3 montre un exemple d’une
telle structure.

Cette structure associative permet de reproduire dans un programme la
nature associative de la mémoire humaine : le cadre qui représente la maison
de Jacques peut susciter les cadres qui représentent la personne ou des détails
de cette maison. Une telle structuration permet de simplifier considérablement
des bases de connaissances car les objets importants peuvent étre rapidement
retrouvés par les liens associatifs.

La notion de cadre a été développée dans le contexte de systemes de vision
artificielle afin de mieux permettre la reconnaissance d’objets. La reconnais-
sance proprement dite d’un objet se base alors sur la vérification des propriétés
de la classe a laquelle appartient le cadre. Une fois reconnue, 'information que le
systeme doit obtenir sur ’objet est définie par les slots du cadre correspondant.
Les cadres définissent alors quelle est I'information importante que le systeme
doit avoir concernant un objet, un probleme qui est difficile a résoudre autre-
ment. Les cadres définissent un contexte de la structure de mémoire dont le
choix d’objets est limité : la tache de reconnaissance est alors considérablement
simplifiée.
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4.2 Réseaux a héritage structurés

Pour de nombreux domaines, les relations de définition liant les éléments de la
représentation des connaissances sont en quantité non négligeable. L’exemple
le plus important est celui des classifications hiérarchiques : un moineau est
un type d’oiseau, un oiseau est un type d’animal, etc. Chaque membre d’une
certaine classe partage des propriétés avec les autres membres de cette classe :
par exemple, les oiseaux volent et les animaux ont besoin de nourriture. Au
lieu d’écrire des ensembles de regles exprimant cette connaissance, il est alors
préférable d’utiliser un mode structuré de représentation permettant une ex-
pression directe de ce type de connaissances. L’exemple de la figure 4.1 illustre
la notion de réseau a héritage structuré.

La plupart des représentations structurées de la connaissance utilisent la
notion de graphes ou réseauxr sémantiques. L’idée sur laquelle se basent les ré-
seaux sémantiques puise ses sources de certaines théories psychologiques de la
mémoire humaine. Les noeuds correspondent aux concepts, et les arcs aux rela-
tions entre concepts. Un concept est une classe d’entités partageant certaines
propriétés, comme les animaux, les oiseaux ou les pingouins. Selon des théo-
ries psychologiques, la mémoire humaine s’articule et se structure autour de
concepts.

Un concept est défini par ’ensemble des prédicats définissant les propriétés
communes & toutes ses entités. Comme le montre la figure 4.1, des propriétés
sont attachées aux nceuds du réseau. Les concepts sont hiérarchisés afin d’ex-
primer 'héritage des propriétés. Le réseau de la figure 4.1 donne un exemple de
telles hiérarchies. Les concepts sont par ailleurs liés & des sous-concepts via des
liens EST-UN, et c’est grace a ces liens qu’ils héritent des propriétés englobantes.
Les réseaux sémantiques qui ne contiennent que des liens EST-UN sont désignés
sous le nom de réseau a héritage structuré et sont de loin les plus fréquemment
utilisés.

Dans les classifications hiérarchiques réelles, il existe de nombreuses excep-
tions aux propriétés générales. Ces exceptions nécessitent un mécanisme par-
ticulier afin de construire efficacement les hiérarchies : il s’agit de considérer
que les propriétés définies sur les niveaux les plus bas ont la précédence sur
celles spécifiées sur les niveaux les plus hauts. Par exemple, la propriété d’étre
située en centre ville, généralement propre a la classe des bureaux, ne s’étend
pas & 'Ecole polytechnique fédérale de Lausanne (EPFL) qui fait pourtant
bien partie de cette classe. Ceci s’exprime dans le réseau de la figure 4.1 par
I’adjonction au nceud représentant ’EPFL d’une propriété explicite spécifiant
qu’elle se situe en banlieue.

Une autre complication est donnée par le fait que de nombreux concepts
partagent des liens d’héritage avec plusieurs classes. Par exemple, un hotel
partage a la fois des caractéristiques d’un batiment résidentiel — il est occupé
la nuit — et des caractéristiques d’un batiment commercial : il est normalement
situé en centre ville. Une telle situation exige 1'utilisation de I’héritage multiple
de plusieurs classes.
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Les regles d’héritage qui tiennent compte des exceptions et de I'héritage
multiple sont les suivantes :

o Les propriétés d’une instance x de la classe C sont données par I'union des
propriétés du cadre et les propriétés de la classe C.

o Les propriétés d’une classe C sont données par les propriétés de C et de
toutes les classes avec lesquelles C partage un lien EST-UN. Des conflits
entre propriétés sont résolus suivant les regles de précédence suivantes :

— les propriétés de C ont la précédence sur toutes les super-classes ;

— entre les super-classes de la classe C, la précédence est fixée par une
liste.

Les réseaux a héritage font partie intégrante de la plupart des outils de sys-
temes experts actuels. Ils sont particulierement utiles pour exprimer, de maniere
compacte, les connaissances de définition liées aux concepts d’un domaine. La
notion d’héritage hiérarchique a également été adoptée dans de nombreux lan-
gages de programmation orientée-objets, dans le but de structurer les classes
d’objets.

4.3 Logiques descriptives

Les logiques descriptives (description logics) sont une formalisation des cadres
et de leurs relations d’héritage. Elles permettent en particulier de faire des
inférences sur les propriétés de concepts et les relations entre classes.

Dans une logique descriptive, les cadres sont représentés par des concepts,
généralement décrits par des lettres majuscules comme C ou D. Les propriétés
(slots) sont décrites par des relations. Pour une relation R, la notation C.R
donne les concepts D tels que R(C, D). On s’intéresse ensuite a ’héritage, qui
est une relation de sous-ensemble : C' hérite les propriétés de D si les instances
de C sont un sous-ensemble des instances de D et on écrit : C' C D. Finalement,
on peut construire la conjonction de concepts C et D par l'intersection des
instances (C' M D) et la disjonction par 'union (C U D).

Par rapport aux réseaux d’héritage, les logiques descriptives ajoutent no-
tamment des possibilités de quantification et de restrictions sur les valeurs. On
décrit par VR.C' les concepts dont toutes les instances qui sont en relation R
sont des instances de C :

VR.C = z|Vy : R(z,y) = C(y)

De maniere analogue, on écrit AR.C' pour celles pour lesquelles il existe une
instance de C en relation R, :

3R.C = z|3y : R(z,y) A C(y)

Parmi les restrictions, notons des restrictions de nombre ; par exemple (< nR)
donne toutes les instances qui sont en relation R avec au plus n autres instances.
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Considérons comme exemples les expressions suivantes :

1) pére C personne M Jenfant
le concept pére est un sous-ensemble des personnes qui ont des enfants.

2) pére = personne [ masculin 1 Jenfant
le concept pére est défini comme une personne masculine qui a des enfants.

3) V enfant.masculin
toutes les instances dont tous les enfants sont masculins.

4) J enfant.masculin Ll 3 enfant.feminin
toutes les instances qui ont un fils ou une fille.

5) 3 enfant (sans qualification)
toutes les instances qui ont un enfant.

L’importance des logiques descriptives se retrouve dans le fait qu’elles ad-
mettent des procédures de raisonnement spécialisées et efficaces. Le raisonne-
ment peut avoir différents buts :
o Satisfiabilité de concepts : ¥ = C = L
Est-ce que C est compatible avec la base de connaissances ?

e Subsumption : X =ECC D?
Est-ce que C est une sous-classe de D ?
Une telle inférence est utile pour la classification de concepts : trouver les
concepts D tel que C' C D. Elle a par exemple les applications suivantes :
— intégrer un concept dans une base de connaissances;
— lier une requéte a une classification d’informations;
— traduire des informations entre différentes représentations.

» Consistance : ¥ j= L
Elle est utile pour vérifier la cohérence : est-ce qu’une base de connais-
sances est contradictoire ?

o Vérification d’instances : ¥ = C(a)

Est-ce que a est une instance de C'? Cette inférence est utile pour retrouver
les propriétés d’'une instance. Les applications sont par exemple de trouver
les propriétés d’un objet (base de données) ou de filtrer les objets pour
trouver ceux qui répondent a certains criteres.

Il existe d’ailleurs les réductions suivantes :

o Subsumption = Satisfiabilité :
Y=CCDssiXE=(CN-D)=1

o Vérification d’instances = Consistance :
YEC()ssixU{-C(a)} E L

La figure 4.4 montre les constructeurs admis par une logique descriptive
simple, la logique FL~. Considérons donc, a titre d’exemple, 'algorithme de
subsumption (C' = D ?) pour la logique FL™ . Supposons d’abord que la T-Box
(voir ci-apres) est vide, c’est-a-dire qu’il n’y a pas d’autres connaissances sur
les classes que celles des expressions mémes. L’inférence progresse alors en deux
pas :
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1) Transformation en forme canonique :
« AN(BNC)=ANBNC
e« YR.CNMVR.D = VR.(CND)

=C=CnNCynCs...MC,,
:>D:D1HD2|_|D3...T|Dn

2) Vérification de chaque facteur D, :
o si D; est un atome, ou de la forme 3P, alors il doit y avoir un C; = Dy,
e si D; a la forme VP.D’, alors il doit y avoir un C; = VP.C’ tel que
c’'CD.
La complexité est quadratique dans la taille des descriptions : O(|C| x | D).

Nom ‘ Syntaxe ‘ Exemple
Conjonction AMB | personne 1 jeune
Quantification Universelle VR.C V enfant.mile
Quantification Existentielle dR. T J enfant

Fig. 4.4 Les constructeurs admis par la logique descriptive FL™ .

Considérons un exemple d’une inférence en FL™ : prouver que la classe C'
de toutes les personnes qui ont un garcon mineur est une sous-classe de la classe

D des personnes qui ont un enfant mineur. Il s’agit donc d’une subsumption
cCCD:

C = personne M 3 enfant M

V enfant.mineur MV enfant.masculin
= (' = personne M J enfant I

V enfant. (mineur M masculin)
D = D' = personne M 3 enfant I

V enfant.mineur

et la subsumption est donc vérifiée.

La puissance des logiques descriptives est 'utilisation de bases de connais-
sances, notamment des définitions de concepts. On distingue deux bases de
connaissances :

e La T-box, qui contient les connaissances terminologiques concernant les
classes et qui fait I'objet de mécanismes d’inférence spécifiques.

o La A-Box, qui contient des assertions quelconques concernant les instances
et fait 'objet d’un raisonnement logique classique. Elle correspond a la
base de connaissances classique.

On distingue plusieurs types de T-box :

o primitive : admet des spécifications de concepts :
A C C, A =nom, C = expression
Exemple :
professeur C personne 1 3 enseigne
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o simple : admet en plus des définitions de concepts :
A=C
Exemple :
parent = personne 1 3 enfant

o libre : admet en plus des relations entre concepts :
CCD,C=D
Exemple :
personne [1 jeune L étudiant Ll écolier

Nous allons nous limiter a des T-boxes simples et acycliques. Pour des
T-boxes libres, le test de subsumption est trés complexe (EXPTIME) ; elles sont
donc peu étudiées. Pour les T-boxes cycliques, la subsumption est PSPACE-
complete; en plus, il y a peu de raison d’avoir des définitions cycliques dans la
pratique.

Sous ’hypothese d’une T-box simple et acyclique, on peut réduire le test de
subsumption a un test entre concepts en appliquant itérativement les regles de
transformation :

« T(CND)—T(C)NT(D)

e T(VR.C) = VR.T(C)

e T(3R) — 3R

o T(A) — définition de A

S’il y a plusieurs spécifications de concepts, il peut y avoir plusieurs résultats
de réécriture, et il faut considérer leur union dans ’algorithme de subsumption.
Cela fait que la réécriture peut engendrer une explosion combinatoire, selon la
terminologie.

Comme exemple, considérons la T-Box :

¥ ={ femme = personnelfeminin
ecolier L personne [Mmineur

ecolier L personne [ curieux}}

On peut alors prouver la subsumption C' T D entre :
C = femme N 3 enfant [
V enfant.écolier MV enfant.masculin
et

D = personne N 3 enfant [
V enfant.mineur

en tenant compte de la T-box ¥ par les inférences suivantes :
C = femme M 3 enfant [
V enfant.écolier MV enfant.masculin

= ('’ = personne I féminin M J enfant M
V enfant . (personne M mineur M masculin)
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= (" = personne M féminin M 3 enfant I

V enfant . (personne [N curieux N masculin)
D = D' = personne M 3 enfant I

V enfant.mineur

Subsumption C' C D!

La réécriture des concepts suivant les définitions de la T-box peut produire
une explosion combinatoire surtout dans le cas ou les définitions contiennent
des quantifications, par exemple :

pauvre = Vcompte.vide

Dans ce cas, il faut créer une version pour toutes les substitutions des quan-
tificateurs possibles, par exemple pour chaque compte. Quand il y a plusieurs
quantificateurs, il faut générer toutes les combinaisons, conduisant ainsi & une
explosion exponentielle.

La logique FL ™ n’est pas trés puissante. Il existe d’autres logiques des-
criptives qui sont plus expressives. La figure 4.5 montre la logique AL, et la
figure 4.6 montre la complexité du raisonnement (subsumption) pour différentes
extensions.

Une autre classe tres expressive de logiques descriptives est donnée par les
logiques SHZQ et SHIN. La figure 4.7 montre les expressions qui sont pos-
sibles dans ces logiques. Ces logiques sont surtout importantes car elles sont

Nom Syntaxe Exemple
Conjonction AM B | personne 1 jeune
Quantification Universelle VR.C V enfant.mile
Quantification Existentielle dR. T J enfant
Tautologie T
Contradiction uE
Négation d’atomes -A — personne

Fig. 4.5 Opérateurs et exemples d’expressions de la logique AL.

Expressivité ECCD| EC()
cTD
VR.C FL™ P P
iR

-A AL P P

JR.C ALE NP PSPACE

-C ALC PSPACE

a1, ALCO PSPACE
SHIQ EXPTIME

Fig. 4.6 Complexité de l'opération de subsumption pour différents degrés d’expres-
SVité.
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Nom Syntaxe Exemple
Conjonction ANB personne 1 jeune
Disjonction AUB vieux LI jeune

Négation -C — (personne M jeune) | S

Q.U. VR.C V enfant.méle

Q.E. JR.C J enfant.mile

Role transitif R.R soeur.enfant
Roles hiérarchiques RCS mére C parent H
Inversion de roles R~ enfant < parent A
Restriction de nombre >nR > 2 enfant N
Restriction qualifiée >nR.C > 2 enfant.mile Q

Fig. 4.7 Ezpressivités des logiques SHIQ et SHIN. .

la base du langage OWL (ontology web language) de formalisation de connais-
sances, standardisé par le consortium du World Wide Web (W3C). Ce langage
est destiné a la formalisation d’ontologies, des bases de connaissances taxono-
miques utilisées pour la classification d’information sur le Web. Une ontologie
permet par exemple d’automatiser l'intégration de l'information provenant de
différents sites web et de construire des moteurs de recherche plus puissants et
permettant par exemple 'utilisation de synonymes.

Par exemple, en utilisant une ontologie qui précise que pomme C fruit,
un site qui offre des pommes peut étre trouvé comme résultat d’'une requéte
qui cherche des fruits. En plus, 'inférence peut étre faite au niveau de la
requéte méme au lieu de chaque instance, ce qui la rend efficace. Une ontologie
permettrait également d’exprimer des équivalences entre différentes langues
ainsi qu’entre différentes classifications.

A part leur utilisation dans le web, les logiques descriptives ont trouvé de
nombreuses autres applications dans la formalisation et la fédération de bases
de données, des outils de configuration, et d’autres outils d’aide a la décision.
Citons par exemple LOOM, outil du ISI (University of Southern California), in-
complet, existe depuis 1987 et disponible sous :
http://www.isi.edu/isd/LO0OM/LOOM-HOME. html

Littérature

Le concept des frames et de la représentation structurée des connaissances a
été introduite par Marvin Minsky dans [10]. John Sowa a été I'un des moteurs
du développement dans ce domaine [11]. La collection [12] donne un apercu des
recherches sur les réseaux sémantiques. Le domaine des logiques de descriptions,
bien que trés vaste, est bien résumé dans [13]. Le World Wide Web Consortium
publie des standards pour la représentation des connaissances ontologiques, en
particulier le langage OWL [14].
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Outils - domaine public

De nombreuses outils pour les langages du world wide web ont été développés
par des universités, comme par exemple :
KAON2, pour OWL, de I'Université de Karlsruhe, distribué sous :

http://kaon2.semanticweb.org/
FaCT++, pour OWL, de 'Université de Manchester, distribué sous :
http://owl.man.ac.uk/factplusplus/
La page
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

donne une liste d’outils disponibles pour les logiques descriptives.

4.4 Exercices

Nous souhaitons mettre a disposition des contribuables un systeme informa-
tique qui leur permette de connaitre les déductions auxquelles ils ont droit
dans leur déclaration d’impots. Le code d’imposition fixe les déductions par
classes de contribuables.

Exercice 4.1 Modélisation

Il existe des personnes et des contribuables. Parmi les contribuables, il y a des
salariés et des indépendants. Chaque contribuable déclare :

o ses enfants (des personnes)

o ’age de chaque enfant (<12,12—18)
« son revenu (faible, moyen, élevé)

« son loyer (faible, moyen, élevé)

« son trajet au travail (faible, moyen, élevé)

Modélisez le probleme par des concepts et relations en logique descriptive.
Quels sont les concepts et quelles sont les relations ?

Solution a la page 349

Exercice 4.2 Déductions
On admet les déductions suivantes :

1) enfants : lorsque le contribuable a au moins un enfant ;

w N

)

) loyer : lorsque le contribuable a un loyer élevé et un revenu faible ;
) trajet : lorsque le contribuable est un salarié qui a un trajet élevé;
)

4) pension : lorsque le contribuable est un indépendant, ou salarié a revenu

élevé.
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Formalisez les classes qui ont droit aux déductions comme expressions en
logique descriptive.

Solution a la page 349

Exercice 4.3 Raisonnement(1)
Calculez les déductions de Charles étant donné :

salarié(Charles)

enfant (Charles, Jacques)
trajet(Charles,élevé)
loyer(Charles,élevé)
revenu(Charles,faible)

Solution a la page 349

Exercice 4.4 Raisonnement(2)

Le gouvernement veut changer la loi en adaptant les déductions pour loyer de
fagon a ce qu’elles s’appliquent a quelqu’un qui a un loyer élevé et qui a :

e version a) au moins un enfant 4gé entre 12-18 ans, ou

e version b) au moins deux enfants.

Pour les deux versions, caractérisez les groupes de personnes qui perdent le
droit a la déduction et ceux qui gagnent le droit a la déduction. Quelle puissance
de la logique faut-il pour exprimer ces classes ?

Solution a la page 350



CHAPITRE 5

Raisonnement basé sur des regles

et systéemes experts

Parmi toutes les méthodes de résolution de problemes, la préférence doit sans
doute aller a celles se rapprochant le plus du raisonnement humain. Cela se
justifie a plus d’un titre : d’abord un tel type de procédé facilite 'interaction
entre utilisateur et programme, puisque l'utilisateur comprend ce que fait le
programme. Un second point, non négligeable, est 1lié au fait qu’il est souvent
important de savoir pourquoi un résultat a pu étre obtenu. Par une explication,
on se réfere & la maniere par laquelle un probleme a pu étre résolu. Elle n’est par
conséquent compréhensible que si elle se conforme au raisonnement humain.
La derniére raison (et peut-étre la plus importante) est liée & des questions
d’efficacité : grace a leurs expériences, les humains ont développé des stratégies
de résolution remarquablement efficaces. Il est intéressant de s’inspirer de ces
stratégies pour obtenir des algorithmes performants.

5.1 Systemes experts

Inspirés par le succes de systemes d’inférence a base de regles tel que le General
Problem Solver (GPS) [15], les chercheurs ont tenté de modéliser le raisonne-
ment humain dans des problemes d’intérét pratique. GPS a introduit le principe
de 'analyse moyens-buts, ou le raisonnement est motivé par un but a atteindre
au lieu d’enchainer aveuglement des inférences. Ce principe a été repris sous
la forme de déduction en chainage arriére, qui a permis des systemes tres ef-
ficaces. Le chalnage arriere peut ainsi étre vu comme une stratégie d’inférence
qui est tres proche du raisonnement humain.

L’un des premiers programmes s’inspirant d’une telle démarche fut DEN-
DRAL, un systeme analysant automatiquement des données sur la spectrosco-
pie de masse. L’analyse de spectroscopies de masse est habituellement effectuée
par des experts ayant une solide expérience en la matiere. DENDRAL a modé-
lisé le raisonnement des experts en utilisant un formalisme basé sur des regles,
similaire a celui utilisé par GPS. C’est ainsi que fut créé le premier systéme
expert (méme si Pappellation n’existait pas encore a 1’époque) de compétence
comparable a celle des humains.

Les premieres recherches sur les systemes experts ont révélé que la modéli-
sation du raisonnement d’un expert pouvait étre d’une surprenante simplicité.
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En général, quelques centaines de regles suffisent a reproduire la résolution de
problemes par des experts! Cela a conduit aux nombreux succes de 'TA dans
les années 1970 et au début des années 1980. Les systemes experts sont jusqu’a
ce jour utilisés en industrie. De plus, la technologie des systémes experts a dé-
montré clairement que c’est la connaissance et non pas les algorithmes qui est
garante du comportement intelligent d'un programme.

Les systémes experts sont généralement utilisés comme outils de résolution
dans les applications ou la conclusion est unique et bien définie, comme le
diagnostic ou encore 'interprétation de données. Des exemples bien connus de
systemes experts aux résultats concluants, sont donnés ci-dessous :

e DENDRAL, le premier systeme expert, utilisé pour 'interprétation de spec-
troscopies de masse.

e MYCIN, pour diagnostiquer des infections et recommander des antibio-
tiques, est le systéme expert le mieux documenté dans la littérature.

e PROSPECTOR, utilisé pour l'interprétation de données géologiques en vue
de détecter des gisements miniers.

e XCON, un des plus grands systémes experts (plus de 10000 regles), utilisé
en son temps pour configurer des systemes d’ordinateurs VAX.

5.1.1 Inférence a chainage arriére

La procédure d’inférence a chainage arriere commence par le but et consiste
a appliquer toutes les regles possibles dans un sens “arriere” pour le réduire a
des environnements consistant en sous-buts. Par sa construction, chaque envi-
ronnement permet alors l'inférence du but donné. Par application itérative du
processus, chaque sous-but sera a nouveau réduit, ce qui conduit a un chainage
arriere des regles. Le processus s’arréte lorsqu’aucune regle n’est applicable a
I’ensemble des sous-buts, ou quand un environnement de sous-buts est entiere-
ment satisfait par la base de données. Par exemple, la procédure de chainage
arriere résoudrait le probleme exemple du paragraphe 3.5.4 de la maniére sui-
vante.
Le premier pas consiste a réduire successivement les buts & des environne-
ments de sous-buts :
R2, But — { SB1 = pere( ?y,Frangois),
SB2 = frére(?y, 7x) }
R1,SB1 — { SB2 = frere( 7y, 7x),
SB3 = frére(?w, Francgois),
SB4 = pere(?y, ?w) }

Ensuite, comme les sous-buts de ce dernier environnement peuvent tous
étre satisfaits par la base de données, on les remplace par les substitutions de
variables qu’ils impliquent :

El : { ?y=Charles, ?x=Francois } ,
SB2 = E2 : {?y=Jacques, ?x=Pierre }
SB3 — { ?w=Charles }

SB4 — {?y=Jacques, ?w=Charles }
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Par combinaison des substitutions possibles, on obtient deux enwvironne-
ments qui permettent la déduction de la solution voulue :
El: { (?y=Charles, ?x=Francois) A (?7w=Charles) A
(?y=Jacques, 7w=Charles) }
E2: { (?y=Jacques, ?x=Pierre) A (7w=Charles) A
(?y=Jacques, ?w=Charles) }

Cependant, le premier de ces deux environnements est contradictoire, et
par conséquent ne peut pas servir comme solution. La procédure rend donc le
résultat 7x=Pierre.

Les structures de données utilisées par une procédure de chainage arriere
sont essentiellement les mémes que celles utilisées pour le chalnage avant. Ce-
pendant, le flux d’informations, décrit par la figure 5.1, est différent.

regles
N
Paires but/régle »| Pattern match/

Ty
v/ou but/proposition unification
Base de \

données
F) But courant

Substitutions
des variables

,

Instantiation d'un
| Solution? | | Sélection | nouvel environnement

Buts im Environnement . /
E— File d'attente
(B) courant

Fig. 5.1 Fluz des informations entre composants d’un moteur d’inférence a chainage
arriere.

Résultats

En fait, un algorithme de chainage arriere est beaucoup plus compliqué a
implémenter de maniére efficace, car il faut tenir compte des liens entre sous-
buts et environnements pour empécher une duplication du travail :

« Si on traite chaque sous-but de fagon isolée, on risque d’en résoudre plus
que nécessaire : il faut uniquement satisfaire un des environnements géné-
rés.

e Si on traite chaque environnement de fagon isolée, on répete le méme
travail pour chaque sous-but qui apparait dans plus d’un environnement.

La figure 5.2 décrit une version simplifiée de 'algorithme d’inférence. Elle
parcourt tous les environnements courants et vérifie d’abord si I’environnement
ne contient que des substitutions de variables, c¢’est-a-dire si la procédure peut
étre arrétée. Sinon, elle parcourt tous les buts de I'environnement pour soit les
unifier avec une proposition de la base de données, soit les réduire encore a
d’autres sous-buts. Notons que la procédure est simplifiée, car elle ne tient pas
compte d’occurrences multiples d’un méme sous-but : le travail est alors répété.
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: Fonction Chainage-Arriere (R,F,B)
: envs < { buts-initiaux } = B
: repeat

e < premier(envs), envs < reste(envs)

return instancier(buts(e),unificateurs(e))

for tout but b € e do

1

2

3

4

5. if tous les buts de e sont résolus then

6

7

8 for toute proposition p de la base de données F do
9

if U < UNIFIER(p,b) # ECHEC then

10: ajouter (e \ b) U U a la file envs

11: for toute regle r de la base de regles R do

12: if U + UNIFIER(droit(r),b) # ECHEC then

13: ajouter (e \ b) U instancier(gauche(r),U) & la file envs

14: until envs = vide

Fig. 5.2 Algorithme pour un moteur d’inférence en chainage arriére.

5.1.2 Critéres de choix

Le choix entre le chainage avant et arriere peut étre fait sur la base du type de
regles :

e le-plus-cher(?x) = plus-cher(7?x, 7y) :
utilisation en chainage arriere uniquement, car le chainage avant exige
P'unification avec un nombre infini d’individus.

e pére(?x, ?7y) = masculin(?x) :
analogue, mais doit étre utilisée en chainage avant.

En général, le chainage arriere est plus efficace pour des problemes bien
ciblés tels que le planification ou le diagnostic. Par contre, le chainage avant
est plus adapté aux problemes d’interprétation des données et est d’ailleurs
beaucoup plus simple a implémenter.

Notons qu'il est envisageable de combiner les deux stratégies en déclarant
certaines regles comme étant du type avant et d’autres du type arriére. Les
regles de chalnage avant pourront alors étre appliquées chaque fois qu'un but a
été résolu par chainage arriere. Les résultats du chainage avant seront déposés
dans la base de données et pourront servir a une vérification plus rapide des
sous-buts par chainage arriere.

Lorsque plusieurs regles concourent au méme but, chaque alternative doit
étre explorée séparément. Ceci aboutit a une recherche des ensembles de sous-
buts qu’il est possible d’obtenir par application des différentes regles. Cette
recherche peut s’effectuer au moyen d’algorithmes de recherche que nous verrons
plus tard dans ce livre. Dans certains systemes experts, des méta-regles sont
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employées pour guider la recherche vers les regles a privilégier. Par exemple,
une méta-regle de MYCIN pourrait suggérer :

Si le but est de ..... , essayer les reéegles 15, 27, 45
ne pas essayer les régles 7, 98, 162

En plus de sa fonction principale qui consiste a trouver des solutions, un
systeme expert peut étre doté des trois fonctionnalités suivantes :

o il peut poser des questions a l'utilisateur lorsque les informations dispo-
nibles sont insuffisantes pour résoudre le probleme,

e il peut fournir des explications sur les raisons permettant d’aboutir & une
conclusion,

e il est souvent doté de mécanismes lui permettant de traiter de I’informa-
tion incertaine.

Ces fonctionnalités supplémentaires se justifient pour un type d’utilisation
du systeme visant a en faire une aide a la décision plutét qu'un résolveur de
problémes indépendant.

5.1.3 Formulation de questions

De nombreuses taches résolues par les systemes experts s’apparentent au diag-
nostic ou a linterprétation de données. Dans de telles applications, il arrive
souvent que l'information ne puisse étre obtenue que par des mesures coii-
teuses. Aussi, par souci d’économie, un systeme expert ne devrait nécessiter de
telles informations que lorsqu’elles sont indispensables au traitement. Cela peut
étre réalisé en dotant le systeme de mécanismes lui permettant de demander
explicitement un complément d’informations lorsque le besoin s’en fait sentir.

A titre d’exemple, considérons MYCIN, le systeme diagnostiquant les infec-
tions bactériennes. La session de diagnostic démarre au moyen de plusieurs
informations initiales concernant le patient : son nom, son age, son poids et les
symptomes visibles. Sur la base de ces informations initiales, MYCIN élabore
des hypotheses quant aux infections possibles et propose des tests addition-
nels pour confirmer ou infirmer ces hypotheses. Ces tests additionnels peuvent
étre extrémement cotiteux et MYCIN dispose d’heuristiques lui permettant de
privilégier ceux qui sont les plus économiques ou encore de grouper les tests
pouvant s’exécuter ensemble. Notons au passage que cela reflete exactement le
comportement d’un praticien.

En pratique, il n’est généralement pas tres aisé d’obtenir une grande quantité
d’informations en se basant exclusivement sur les questions posées a l'utilisa-
teur : le systéme question-réponse est en effet un moyen de communication tres
inefficace. Une meilleure solution consiste bien siir & donner au départ toutes les
informations nécessaires a la résolution du probléme par le biais d’une interface
graphique.

5.1.4 Explication du raisonnement

Les systemes experts sont souvent utilisés comme moyen d’aide dans les cas ou
les décisions a prendre peuvent avoir des conséquences tres importantes. Dans
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MYCIN par exemple, on pourrait envisager qu’un diagnostic erroné engendre des
répercussions catastrophiques sur un patient. Il n’est pas d’usage de faire une
confiance aveugle aux recommandations données par un ordinateur dans des cas
aux implications si graves. Il est important qu'un systéme expert puisse justifier
ses conclusions en faisant explicitement état des raisons qui lui ont permis d’y
aboutir. Cela fournit & 'utilisateur un moyen de valider les recommandations
de 'ordinateur avant de les appliquer.

Dans les systemes basés sur des regles, chaque conclusion se base sur 'appli-
cation d’une chaine de regles a 'information initialement fournie par 'usager.
Cette chaine de regles, exprimées en langage naturel, est utilisée comme ex-
plication des résultats obtenus. Dans la plupart des cas, elles sont données a
I'utilisateur sous la forme d’un dialogue dans lequel les résultats intermédiaires
sont expliqués les uns apres les autres. Les dialogues de la figure 5.3 ainsi que
ceux de la figure 5.4 illustrent les différents types d’explications fournies par le
systeme MYCIN.

En plus des explications relatives au résultat final, il est parfois intéressant
de connaitre les raisons pour lesquelles le systéeme pose certaines questions a

Question WHY

In this series, how many of the cultures for the e-coli (ORGANISM-1)?
(question typique posée par MYCIN)

* WHY (Requéte de I'utilisateur pour déterminer ce qui a motivé la question)

[i.e. Why is it important to determine the number of culture which were
positive for the organism?]

(Mycin reformule la question en langue naturelle)

[1.0] This will help to determine whether there is a significant disease associated
with the occurence of the organism.

It has already been established that

[1.1] the culture was taken from a sterile source
[1.2] the number of cultures in the series is greater than 2

Therefore, if
fi.3] the number of cultures which were positive for
ORGANISM-1 is greater than 2

Then
there is a suggestive evidence (.5) that there is a significant disease associated with
this occurence of the e-coli (ORGANISM-1)
[RULE 049]

(Répétition de la question WHY pour tester le bien-fondé
des explications fournies)

** WHY

[ie Why is it important to determine if there is a significant disease associated with the
occurence of the organism]

[2.0] This will help to determine a diagnosis for which the infection should be treated

Fig. 5.3 Eaxplications données par MYCIN a la suite d’une requéte WHY.
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Question HOW

**HOWI[1.1] (Requéte de I'utilisateur se rapportant a I'information [1.1] donnée
pour la question WHY (voir figure sur la question WHY))

[ie How was it determined that the culture was taken from a sterile source?]

(Mycin reformule la question en langue naturelle)

[3.1] RULE 001 was used to conclude that there is a suggestive evidence (.7) that
the culture was taken from a sterile source

**HOWI[3.1] (Autre requéte de I'utilisateur)

[ie How was RULEOQO1 used]
It has already been established that

[4.1] the site of the culture is one of: those sites from which the sterility of the
cultures depend upon the method of collection

[4.2] the method of collection of the culture is one of: the recognized
methods of collection associated with the site of the culture,

[4.3] it is not known whether the cade was taken in collecting the culture
Therefore

there is strongly suggestive evidence (.8) that the culture was taken

from a sterile source

[RULE022]

Fig. 5.4 FEzplications données par MYCIN a la suite d’une requéte HOW.

I'usager. Un mécanisme similaire a celui précédemment vu permet de fournir
ce genre d’explications car chaque question est engendrée par une regle que
le systéeme aimerait appliquer. Dans un systeme de diagnostic comme MYCIN,
ces regles correspondent aux hypotheses de diagnostic que le systeme essaie de
vérifier. Elles donnent par conséquent une bonne explication des raisons pour
lesquelles un test donné est nécessaire.

5.2 Problemes spécifiques liés a I'inférence

5.2.1 La négation

Dans la pratique, il peut aussi arriver qu'une conclusion soit conditionnée par
le fait qu’une proposition soit fausse. Par exemple, on pourrait imaginer une
regle :

petite-quantité A — frontalier = hors-taxe
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Cette regle n’est pas une clause de Horn, car son équivalent logique contient
plus d’une proposition positive :

- petite-quantité V frontalier V hors-taxe

On pourrait corriger ce probleme en introduisant une proposition non-
frontalier qui serait vraie exactement dans les cas ou frontalier est fausse.
Cependant, si aucune regle ne permet I’assertion explicite de = frontalier ou
non-frontalier, comment pourra-t-on satisfaire cette condition? Du point
de vue de la logique, cela ne pourrait jamais arriver, car aucune inférence ne
permet de conclure la condition.

Cependant, dans la pratique, on voudrait probablement quand méme dé-
clencher la régle si on n’arrive pas a prouver l'inverse. Ceci s’appelle le principe
de Negation as failure :

Si le moteur d’inférence n’arrive pas a prouver p, alors il faut sup-
poser que —p est vrai.

Cette regle semble correcte sous 'hypotheése d’une procédure d’inférence
complete qui garantit que le moteur d’inférence permettra de prouver p.
Cependant, ce raisonnement pose un deuxieme probleme : on n’a pas un
moyen de savoir quand il ne faut plus s’attendre a une preuve d’une hypothese
p- On pourrait penser qu’on doive attendre que la procédure ne trouve plus
aucune inférence. Mais que fera-t-on si :
“pP=4q
" q=Pp
Si on déclenche d’abord la premiere regle, la deuxiéme ne sera jamais dé-
clenchée ; on aura donc = p et gq. Si par contre, on commence par la deuxieme,
on finira avec p et = q, 'inverse du premier cas! Ce probléme est en fait plus
profond et est 1ié au fait que la négation introduit un caractére non monotone
qui n’était pas prévu dans la logique classique : une proposition qui était vraie
peut devenir fausse par la suite.

5.2.2 Inférences non monotones

L’application des regles d’inférence fait que I’ensemble des propositions consi-
dérées vraies est toujours en croissance monotone. On parle alors de logique
monotone. Or, il est connu que le raisonnement humain est souvent non mo-
notone : des inférences sont souvent révisées au moment ot de nouvelles in-
formations deviennent disponibles. Par exemple, étant donné que Tweety est
un oiseau, la conclusion vole(Tweety) semble justifiée. Mais au moment ot on
découvre que Tweety est en fait une autruche, I'inférence doit étre révisée. En
fait, le probleme est que la regle :

oiseau = vole
n’est pas correcte et devrait étre remplacée par la regle :

oiseau N\ —autruche A —ailes — coupées N —... = vole
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Mais de telles regles ne peuvent étre appliquées que si un grand nombre
de faits sont connus. Elles sont donc peu utiles dans un systeme pratique! Une
formulation utile est celle de la logique des défauts, ou des regles peuvent inclure
des conditions négatives :

otseau N\ —anormal = vole

et ou l'inférence sera faite méme en absence de la connaissance explicite des
conditions négatives. Si par la suite on découvre qu'une telle condition n’est
effectivement pas satisfaite, le systeme d’inférence doit retirer la conclusion et
toutes ses conséquences pour que la validité du raisonnement soit maintenue.

On ne peut cependant pas se contenter de retirer simplement une assertion
qui s’est avérée invalide. En effet, cette dernieére constitue peut-étre la base
d’une chaine complete de déductions ultérieures qui deviennent, de ce fait, elles
aussi invalides. Lorsqu’on découvre qu’en réalité I'oiseau ne vole pas, une asser-
tion affirmant qu’il peut construire son nid sur un toit devient discutable. Le
processus de rétraction doit par conséquent pouvoir remonter toute la chaine
d’inférences établies a partir d'un certain fait. L’automatisation de ce traite-
ment fait 'objet de ce qu’il est convenu d’appeler des systémes de maintenance
de la cohérence (RMS : Reason Maintenance Systems).

Dans le cas de déductions logiques classiques, le nombre de faits déduits
croit toujours de maniere monotone. On parle alors d’inférence monotone. Par
opposition, les moteurs d’inférence permettant la rétraction de faits sont dits
non monotones.

5.2.3 Systemes de maintenance de la cohérence

Un systeme de maintenance de la cohérence comporte deux aspects importants.
Le premier est la représentation des faits, qui permettra aussi d’exprimer 'in-
certitude quant a la validité d’une proposition. Le deuxieme est la maniere
d’ajouter et d’enlever des assertions dans la base de données ; celle-ci doit main-
tenir la cohérence de I’ensemble.

Représentation

Dans un systéme de maintenance de la cohérence (SMC), chaque proposition
devient un neeud qui est doté d'un état explicite, traduisant sa crédibilité : IN
ou OUT. IN veut dire que le moteur d’inférence peut prouver la proposition,
soit comme prémisse ou comme conséquence d’'une prémisse. Par contre, OUT
veut dire que le moteur d’inférence n’a pas d’informations sur la véracité de la
proposition. Un SMC opte pour différentes attitudes selon la nature du nceud
qu’il traite :

e (OUT n), (OUT (NOT n)) : le systeme ne sait rien quant a la véracité de

n

e (IN n), (OUT (NOT n)) : le systéeme croit que n est vrai
e (OUT n), (IN (NOT n)) : le systeéme croit que n est faux
e (IN n), (IN (NOT n)) : contradiction
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Lorsqu’un nceud marqué par IN est retiré, c.a.d. qu’il devient OUT, un al-
gorithme de maintenance de la cohérence doit assurer que toutes les assertions
qui en découlent sont également retirées. Si on découvre qu’un nceud marqué
par IN est contradictoire, cela indique également qu’il y a une contradiction
dans les antécédents qui ont permis de déduire ce noeud.

Pour qu’on puisse retrouver ces antécédents, chaque noeud d’'un SMC contient
des justifications qui indiquent tous les chemins d’inférence par lesquels le nceud
a été déduit. Une justification contient :

o la régle qui a donné la proposition associée au nceud comme conclusion,

o les nceuds qui ont été utilisés pour satisfaire les conditions de la regle.

Afin d’améliorer I'efficacité de traitement, un SMC maintient en plus explici-
tement des pointeurs entre tout nceud et ses conséquences. On peut représenter
un noeud par une liste :

(IN/OQUT < proposition > < justification >)

On peut ainsi aussi admettre plusieurs justifications qui seront ajoutées a
la fin de la liste, par exemple quand la méme proposition a été déduite par
plusieurs inférences.

Par exemple, en utilisant les notations d’'un SMC, la regle qui permet de
déduire qu'un oiseau peut voler peut étre formulée par une regle LES-0ISEAUX-
VOLENT comme suit :

(IN oiseau(?x) ?j1) A (0OUT anormal(?x) ?j2 =
(IN vole(?x) (LES-OISEAUX-VOLENT ?7j1 (OUT?7j2)))

Si A et B sont les justifications des deux conditions,
(LES-0ISEAUX-VOLENT A (OUT B))

sera la justification de la conclusion construite par 'application de la regle.

Algorithme d’assertion/rétraction

Un systeme de maintenance de la cohérence est 1lié a un moteur d’inférence de
sorte que toute assertion dans la base de données s’opere via le SMC, de méme
que pour les requétes concernant 1’état des propositions existantes. Le SMC
peut étre appelé dans deux fonctions :

1) Si une proposition est déduite par le moteur d’inférence, le SMC doit
I'ajouter comme nceud a la base de données s’il n’existe pas déja. Ensuite,
il doit mettre ’état du nceud a IN et installer la justification qui correspond
au nouveau chemin de raisonnement.

2) Si on découvre une contradiction et on veut donc retirer un fait, le nceud
correspondant doit étre mis a OUT.

Chaque opération déclenche ' algorithme de maintenance de la cohérence qui en
propage les effets sur la base de données. L'implémentation détaillée dépendra
beaucoup du contexte de l'application, donc nous nous contentons ici d’un
schéma de ’algorithme :
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1) Siun neeud existe déja pour la proposition, ajouter la nouvelle justification
sinon créer un nouveau nceud N en lui associant la justification. Mettre
I’état du nceud a IN ou OUT selon ’assertion effectuée.

2) Construire une liste L contenant toutes les conséquences de N.

3) Pour tout nceud de L, réévaluer les justifications pour voir s’il en existe
une valide indépendamment de N. Si elles sont toutes invalides, mettre le
neeud & OUT et appliquer récursivement la procédure de maintenance de la
cohérence. Si, par contre, une justification valide existe, marquer le noeud
avec un IN. Si le nceud est marqué IN, réévaluer les justifications de toutes
ses conséquences (qui peuvent alors étre devenues valides).

4) Controler s’il y a une contradiction. Si un noeud permet de déduire un
neeud nogood, il y a une contradiction. Le systéme détecte une contra-
diction lorsqu’un noeud nogood devient IN, ce qui est signalé au moteur
d’inférence qui doit alors retirer des nceuds de sorte a lui restituer un état
OUT.

Le fait que l'on propage toute modification de I’état d’un noeud sur ses
conséquences constitue la principale caractéristique de 'algorithme de mainte-
nance de la cohérence. Comme chaque nceud peut avoir été dérivé de différentes
manieres, il est nécessaire de réévaluer ses justifications pour voir si elles sont
toujours valables. Le processus de propagation peut devenir trés coliteux car
il est possible qu'un noeud puisse avoir un nombre important de conséquences.
Les systemes de maintenance de la cohérence doivent, pour cela, étre utilisés
avec précaution.

Lorsque des contradictions sont découvertes, il est utile de les mémoriser afin
que les déductions qui les ont engendrées puissent étre évitées par la suite. Cela
peut étre réalisé en marquant explicitement les noecuds contradictoires comme
nogood.

Le nogood classique est une contradiction logique forte, telle que (P et —P).
Il peut cependant étre utile d’introduire d’autres types de contradictions. Par
exemple, si une variable x ne peut prendre qu'une valeur unique, une contra-
diction peut étre déduite a partir de (x = a, © = b et a # b).

Lorsqu’une contradiction se produit dans le processus de raisonnement, cela
signifie qu'une des valeurs conflictuelles doit étre retirée. Comme il n’existe pas
de regles générales permettant de décider laquelle des valeurs il faut retirer,
le choix est délégué au moteur d’inférence qui peut s’aider d’heuristiques pour
I’accomplir.

Preuves conditionnelles

Les systemes de maintenance de la cohérence permettent de définir des hy-
potheses pour construire des argumentations générales. Par exemple, un SMC
peut étre utilisé pour démontrer la transitivité de la regle d’implication :

(1) A = B (prémisse)
(2) B = C (prémisse)
(3) A (hypothese)
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(4) B (modus ponens (1) (3))
(5) C (modus ponens (2) (4))
(6) A = C (preuve conditiomnelle (5) (3) (1) (2))

En tracant la structure de justification associée a la dérivation de C, il
est possible de vérifier que, pour conclure C, I’hypotheése A et deux prémisses
suffisent. Une stratégie générale de preuve conditionnelle produit ainsi une regle
explicite pour déduire la transitivité. Un processus similaire aurait pu étre
appliqué, méme si les dérivations opérées étaient beaucoup plus complexes.

Une seconde forme de raisonnement basé sur des hypotheses est donnée par
les démonstrations indirectes : le contraire du but est supposé, et il s’agit de
détecter une contradiction. L’exemple suivant illustre cette forme de preuve
indirecte :

(1) A = B (Prémisse)

(2) B = C (Prémisse)

(3) (NOT (A = C)) (Hypothése preuve indirecte)
(4) (AND A (NOT C)) (Equivalence 3)

(5) A (élimination-et (4))

(6) B (modus ponens (5) (1))

(7) C (modus ponens (6) (2))

(8) (NOT C) (élimination-et (4))

(9) CONTRADICTION ((7) (8))

(10) (A = C) (preuve indirecte (1) (2) (9))

Littérature

Le systeme GPS qui était I'ancétre des systemes experts est décrit dans l’ar-
ticle [15], paru en 1963. De nombreux ouvrages ont été publiés sur les systemes
experts. [16] est une bonne référence générale. Le premier systéme expert DEN-
DRAL et ses développements font ’'objet du livre [17]. Le livre [18] contient une
description de MYCIN, un systeme expert pour le diagnostic d’infections qui a
été beaucoup analysé. Les business rules sont un développement plus récent,
dont [19] donne une bonne introduction.

Outils - domaine public

Parmi de nombreux outils de systéemes experts disponibles dans le domaine
public, Ioutil CLIPS est le mieux développé et est toujours mis a jour par ses
auteurs :

http://clipsrules.sourceforge.net/

Il existe d’ailleurs un livre édité par deux des auteurs de cLIPS [20].
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Outils - commercial

Comme les moteurs d’inférence, les outils pour les systémes experts sont de plus
en plus integrés dans des systemes intelligents de plus grande envergure. La divi-
sion de cognitive computing de IBM, par exemple, integre souvent des systemes
experts en combinaison avec d’autres techniques tels que la compréhension du
langage naturel et 'apprentissage des connaissances. Cependant, il reste des
entreprises de plus petite envergure tels que Exsys qui a mis au point de nom-
breux systémes avec des démonstrations en ligne (http://www.exsys.com).

p
Application : Prédiction de toxicité par le systeme DEREK

Lors de la synthese d’une nouvelle substance, il est important de savoir
si elle est toxique. Comme la toxicité est un phénomene complexe, sa
prédiction nécessite beaucoup de connaissances.

Le systeme DEREK constitue une des ressources les plus utilisées par des
chimistes pour la prédiction de la toxicité. Il s’agit d’un systéme expert qui
a été d’abord développé par la compagnie Schering Agrochemical et en-
suite donné a une organisation a but non lucratif (Lhasa Limited). DEREK
est constamment mis a jour et integre ainsi les connaissances cumulées
d’innombrables experts du domaine.

(source : http://www.lhasalimited.org/)

5.3 Exercices

Exercice 5.1 Comparaison du chalnage avant et arriere

Le but de cet exercice est de comparer les avantages et les inconvénients des
deux différents types de chainage utilisés dans les systémes experts, c’est-a-dire
les chainages avant et arriere. Nous allons explorer cette question a ’aide d’un
exemple.

Un négociant en vin s’est constitué un mini-systeme expert pour l'aider
a gérer sa cave. Ce systeme permet de déclasser et de bonifier des vins de
différentes régions viticoles selon leur ancienneté. Un vin devient bon a partir
d’un certain nombre d’années. Passé un second seuil, le vin sera déclassé. Ces
seuils varient en fonction de la provenance. Voici la liste des faits :
Stock—Vin(Bordeaux, 1997)
. Stock—Vin(Bordeaux, 1990)
Stock—Vin(Bordeaux, 1961)
Stock—Vin(Bordeaux, 1965)
Stock—Vin(Bordeaux, 1977)
Stock—Vin(Bordeaux, 1978)

Stock—Vin(Bordeaux, 1981)
Stock—Vin(Bourgogne, 1995)

QN3O LN
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9. Stock—Vin(Bourgogne, 1986)

10. Stock—Vin(Bourgogne, 1990)

11. Stock—Vin(Bourgogne, 2002)

12. Probléme—de—Bouchon(Bordeaux, 1986)
13. Probléme—de—Bouchon(Bourgogne, 1998)
14. Année—Courante = 2007

Nous définissons des regles associées. Nous supposons que le nom d’une
variable commence toujours par un point d’interrogation ; par exemple : ?vin.

1.

2.

3.

Stock—Vin(Bordeaux, ?Année—Vin)

=> Déclasser(Bordeaux, ?Année—Vin, ?Année—Vin+40)
Stock—Vin(Bourgogne, ?Année—Vin)

=> Déclasser(Bourgogne, ?Année—Vin, ?Année—Vin+20)
Stock—Vin(Bordeaux, ?Année—Vin)

=> Bonifier(Bordeaux, ?Année—Vin, ?Année—Vin+20)

. Stock—Vin(Bourgogne, ?Année—Vin)

=> Bonifier(Bourgogne, ?Année—Vin, ?Année—Vin+10)

. Déclasser(?Vin, ?Année—Vin, ?Année) AND ?Année > 1900 AND ?Année < 2020

=> Déclasser(?Vin, ?Année—Vin, ?Année+1)

. Bonifier (?Vin, ?Année—Vin, ?Année) AND ?Année > 1900

AND ?Année < 2020 AND NOT Déclasser(?Vin, ?Année—Vin, ?Année+1)
=> Bonifier(?Vin, ?Année—Vin, ?Année+1)

. Déclasser(?Vin, ?Année—Vin, ?Année) AND ?Année = Année—Courante

=> Eliminer(?Vin, ?Année—Vin)

. Probléeme—de—Bouchon(?Vin, ?Année—Vin)

=> Eliminer(?Vin, ?Année—Vin)

Nous supposons ici que le moteur d’inférence est capable d’accomplir des
calculs arithmétiques et que la négation fonctionne (“not A” est vrai s’il n’est
pas possible de déduire “A” & partir des faits contenus dans la base de données).

Le négociant voudrait savoir que répondre aux deux requétes suivantes :

Quels sont les stocks de bon Bourgogne pour 'année courante (2007) ?

Quels vins faut-il éliminer de la cave?

Répondez aux questions suivantes :

D

2)

Comment exprimer ces requétes dans le langage de notre systeme expert
(en chainage avant, puis en chainage arriere) ?

Si ’on utilise le chainage arriere, quel est, en détail, le comportement du
systeme pour la premiere requéte, sachant que le Bourgogne auquel on
s’'intéresse est celui de 19957 C’est-a-dire, est-ce que le Bourgogne 1995
est encore bon en 2007 ?

Comment se comporte le systéme pour la seconde requéte, en supposant
cette fois que le mécanisme d’inférence est le chalnage avant 7 Quel est le
probléeme ?

Quel est le sous-ensemble de regles qui nous permet de répondre & cette
requéte par chainage avant 7

A quoi sert la condition 7Année > 1900 dans la regle 6 7 Peut-on trouver
un exemple de requéte pour laquelle I’absence de cette condition pose un
probleme ?
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6) Quel est 'inconvénient d’utiliser toutes les régles en chainage arriere pour
la premieére requéte ?

7) Que peut-on conclure de tout ce qui précede ?

Solution a la page 351

Exercice 5.2 Programmation du chainage arriere

Vous allez maintenant programmer un moteur d’inférence a chainage arriere.
Le principe est simple. Sachant que I’on dispose d’une base de faits et de regles,
I'idée consiste a poser des questions au moteur d’inférence. Une question est
une proposition, contenant éventuellement des variables, qui est interprétée
comme un but a satisfaire. Le moteur d’inférence tente de satisfaire ce but en
trouvant un ou plusieurs faits qui y correspondent, c’est-a-dire qui peuvent lui
étre unifiés. Ces faits peuvent soit exister directement dans la base de faits, soit
étre déduits par une combinaison de regles et d’autres faits.

Dans le premier cas, le moteur d’inférence retourne le ou les faits correspon-
dants. Dans le second cas, il cherche ’ensemble des regles dont la conséquence
correspond au but. Lorsqu’il en trouve, il applique & nouveau récursivement le
méme raisonnement en considérant ’ensemble des conditions de la regle comme
de nouveaux sous-buts qu’il faut atteindre. Ce processus peut étre interprété
comme une recherche dans un espace de solutions, I'idée étant de trouver les
faits unifiables avec le but.

Chaque étape de l'algorithme dépend d’un environnement, c’est-a-dire d’un
ensemble de valeurs possibles pour les variables, et construit une liste de buts
qui restent a satisfaire pour obtenir une preuve du but initial. Nous appelons la
structure de données qui contient cette liste de buts un neud. L’unification d’un
but avec un fait ou avec la conclusion d’une reégle donne lieu & un ou plusieurs
neeuds successeurs, traités a leur tour dans les étapes ultérieures. Chaque noeud
contient en outre une instanciation du but initial, laquelle constitue une solution
lorsqu’il ne reste plus aucun sous-but a satisfaire.

Modules squelettes

Les modules suivants fournissent le squelette du programme que nous allons dé-
velopper. Les modules exemple_classification_animale.py, exemple_genealogie.py
et exemple_cycle.py permettront de le tester :

Module .../moteur_chainage_arriere/connaissance.py :

from moteur_avec_variables.proposition_avec_variables import *

class BaseConnaissances:
def _init_ (self, constructeur_de_regle):
self . faits = {}
self . regles = {}
self . constructeur_de_regle = constructeur_de_regle
self .sym = 0
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def ajoute_un_fait ( self , fait ):
clef = tete(fait)
if clef in self . faits :
self . faits [ clef ]. append(fait)
else:
self . faits [ clef] = [fait ]

def ajoute_faits ( self , faits ):
for fait in faits:
self . ajoute_un_fait (fait )

def ajoute_une_regle( self , description ):
regle = self. constructeur_de_regle (description)
clef = tete(regle.conclusion)
if clef in self.regles:
self . regles [ clef |. append(regle)
else:
self . regles [ clef ] = [regle]

def ajoute_regles (self , descriptions ):
for description in descriptions :
self . ajoute_une_regle(description)

def choisir_faits_interessants (self, pattern):
clef = tete(pattern)
faits = self. faits .get(clef, [])
return faits

def choisir_regles_interessantes ( self , pattern, unificateur ):

regles_interessantes = |]
clef = tete(pattern)
if clef in self.regles:

anciennes_regles = self . regles [ clef |

for regle in anciennes_regles:

regles_interessantes .append(self. nouvelle_instance (regle, unificateur ))

return regles_interessantes

def nouvelle_instance( self , regle, unificateur ):
env = {}
variables = set()
for cond in regle.conditions:
variables . update( lister_variables (cond))
variables .update( lister_variables (regle .conclusion))
for var in variables:
self .sym = self.sym + 1

nouvelle_var = '?{}'.format(self.sym)
env[var] = nouvelle_var
conditions = [unificateur . substitue(cond, env) for cond in regle.conditions]

conclusion = unificateur . substitue (regle .conclusion, env)

return self. constructeur_de_regle ((conditions, conclusion))

Module .../moteur_chainage_arriere/noeud.py :

from moteur_avec_variables.proposition_avec_variables import x
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class Noeud:
def _init_ (self, but, sous_but_courant, sous_buts_a_tester, profondeur):
self .but = but
self .sous_but_courant = sous_but_courant
self . sous_buts_a_tester = sous_buts_a_tester
self . profondeur = profondeur

def est_terminal ( self ):
print('a compléter')

def est_solution ( self ):
print('a compléter')

def successeur( self , env, nouveaux_sous_buts, unificateur ):
print('a compléter')

def description_standardisee (noeud):
sous_buts = [noeud.sous_but_courant] if len(noeud.sous_but_courant) > 0 else []
sous_buts.extend(noeud.sous_buts_a_tester)
sous_buts = sorted(sous_buts, key=lambda prop: prop)
but_et_sous_buts = [noeud.but] + sous_buts

return but_et_sous_buts

def _repr_ (self ):
return '<{},{},{},{}>' format(self.but,
self .sous_but_courant,
self . sous_buts_a_tester ,
self . profondeur)

Module .../moteur_chainage_arriere/noeuds_testes.py :

from moteur_avec_variables.proposition_avec_variables import *
from .noeud import Noeud

class NoeudsTestes:
echec = 'échec’

def _init_ (self ):
# Nous utiliserons une liste standard pour stocker les descriptions des\
# noeuds déja testés.
self . descriptions = ||

def ajoute(self , noeud):
description = noeud.description_standardisee()
self . descriptions . append(description)

def __contains__ ( self , noeud):
if not isinstance(noeud, Noeud):
raise ValueError(”Seul un noeud peut étre testé.”)

description = noeud.description _standardisee()
for descr in self . descriptions :
if self . inclut (descr, description ):
return True

return False
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def match(self, propl, prop2, env):
propl = propl[:]
prop2 = prop2|;]
env = env.copy|()

# Si les deux propositions sont vides, le processus est terminé.
if len(propl) == 0 and len(prop2) == 0:
return env

# Si une des propositions seulement est vide, les deux n'ont pas la méme
# longueur, donc elles sont bien diff érentes.
elif len(propl) == 0 or len(prop2) == 0:

return NoeudsTestes.echec

# Si les deuzx sont des variables,
elif est_une_variable (propl) and est_une_variable(prop2):
# on teste si la substitution a déja été trouvée
if propl in env:
if env[propl] == prop2:
return env

# sinon on l'ajoute a l'environnement courant.
else:
if propl != prop2:
env|propl] = prop2
return env

# Si l'une des propositions est un atome, on retourne l'environnement.
elif est_atomique(propl) or est_atomique(prop2):
if propl == prop2:
return env
else:
tetel = tete(propl)
restel = corps(propl)
tete2 = tete(prop2)
reste2 = corps(prop2)
env_tete = self.match(tetel, tete2, env)
if env_tete == NoeudsTestes.echec:
return NoeudsTestes.echec
env_reste = self.match(restel, reste2, env_tete)
if env_reste == NoeudsTestes.echec:
return NoeudsTestes.echec
return env_reste

# Aucune tentative n'a donné de résultat.
return NoeudsTestes.echec

def inclut_sous_buts ( self , sous_butsl, sous_buts2, env):
if len(sous_butsl) ==
return True

sbl = tete(sous_butsl)
sous_buts_restantsl = corps(sous_butsl)

for sb2 in sous_buts2:
nouvel env = self.match(sbl, sb2, env)
if nouvel env != NoeudsTestes.echec:
# On teste le match avec les sous—buts restants.
sous_buts_restants2 = [sb for sb in sous_buts2 if sb != sb2]
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if self . inclut_sous_buts (sous_buts_restantsl, sous_buts_restants2, nouvel env):
return True

return False

def inclut ( self , descrl, descr2):
env = self.match(tete(descrl), tete(descr2), {})
if env != NoeudsTestes.echec:
# On compare les sous—buts non—résolus.
return self. inclut_sous_buts (corps(descrl), corps(descr2), env)
return False

Module .../moteur_chainage_arriere/chainage_arriere.py :

from moteur_sans_variables.chainage import Chainage
from .noeud import Noeud
from .noeuds_testes import NoeudsTestes

class ChainageArriere(Chainage):
def _init_ (self, connaissances, unificateur ):
self .connaissances = connaissances
self . unificateur = unificateur

def successeurs( self , noeud):
print('a compléter')

def backchain(self, noeud_depart):
print('a compléter')

def chaine(self, pattern):
# Retourne les solutions par chainage arriére.
noeud_depart = Noeud(pattern, pattern, [], 0)
solutions = self . backchain(noeud_depart)

return solutions

Module .../exemple_classification_animale.py :

from sys import argv

from moteur_chainage_arriere.connaissance import BaseConnaissances
from moteur_chainage_arriere.chainage_arriere import ChainageArriere
from moteur_avec_variables.regle_avec_variables import RegleAvecVariables
from moteur_avec_variables.unificateur import Unificateur

'a—des—bébés—formes', 'blaireau’),
'température—stable', 'blaireau' ),
'a—des—poils', 'écureuil '),
a—des—bébés—formes', 'écureuil'),
température—stable', 'écureuil '),
chimpanzé', 'cheetah'),

1

' gorille ', 'bozo'),
'singe', 'babouin'),
'singe', 'paresseux'),

"chien', 'bill '),
'loup', 'loup—1'),
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'lycaon', 'lycaon—1'),

'chat', 'mistigri'),

'lion', 'minet'),

tigre —du—bengale', 'tigre—du—bengale—1'),
a—des—poils', 'kangourou'),
a—des—bébés—foetaux', 'kangourou'),
température—stable', 'kangourou'),
pond—des—oeufs', 'ornythorinque'),
pond—des—oeufs', 'nouveau—spécimen'),
a—des—poils', 'ornythorinque'),
température—stable', 'nouveau—spécimen'),
température—stable', 'ornythorinque'),

(
(
(
(
(
(
(
(
(
(
(
(

1
1
1
1
1
1
1
1
1

]

regles = |

[[( ' placentaire', '?x')], ('mammifere’, '?x")],

[[( '"marsupial', '?x')], ('mammifere’, '?x')],

[[( "'monotréme', '?x')], ('mammifere', '?7x')],

' placentaire —1', '?x')], ('placentaire', '?x')],

[l(

[[( 'genre—placentaire', '?x')], ('placentaire', '?x')],

[[( 'a—des—poils', '?x"), ('a—des—bébés—formes', '?x"),
("température—stable', '?7x' )],

(" placentaire—1', '?x')],

[[( 'a—des—poils', '?x"), ('a—des—bébés—foetaux', '7x'),
('température—stable', '?x' )],

("marsupial', '?7x')],

[[( 'pond—des—oeufs', '?x'), ('a—des—poils', '?x'),
('température—stable', '?x' )],

('monotreme', '7x')],

[[( 'singe', '?x')], ('genre—placentaire', '?x')],

[I( 'primate’, '7x')], ('singe’, '7x')],

[[( "lemurien', '?x")], ('singe', '?x')],

[[( 'chimpanzé', '?x')], ('primate', '?x')],

[[("gorille ', '?x')], ('primate', '?x')],

[[( 'canidé', '?x')], ('genre—placentaire', '?x')],

[[( 'chien', '?x")], ('canidé', '?x')],

[I( oup', 1 2x' )], ("canidé', 17x ],

[[( 'lycaon', '?x')], ('canidé', '?x")],

[[('félin', '?x')], ('genre—placentaire', '?x')],

[[( 'chat', "?x")], ('félin', '?x")],

(I('lion', '7x")], ('félin', '7x")],

[("tigre’, '2x)], (‘félin’, 17xi)

[[( ' tigre —du—bengale', '?x")], ('tigre', '?x')],

[[( ' tigre —de—1—himalaya', '?x")], (' tigre', '?x')],

]

questions = [
(' placentaire', '?quel—animal'),

('félin', '?quel—animal'),
("félin', 'mistigri'),
('mammifere', 'ornythorinque'),
('félin', 'ornythorinque'),

]

bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr([0], descr[1]))
bc. ajoute_faits ( faits )

be. ajoute_regles (regles)

moteur = ChainageArriere(bc, Unificateur())
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for question in questions:

print()
print('Question: ' 4 str(question))

moteur. reinitialise ()
moteur.chaine(question)

moteur. affiche_solutions ()

if len(argv) > 1 and argv[l].lower() == 'trace':
moteur. affiche_trace ()

Module .../exemple_genealogie.py :

from sys import argv

from moteur_chainage_arriere.connaissance import BaseConnaissances
from moteur_chainage_arriere.chainage_arriere import ChainageArriere
from moteur_avec_variables.regle_avec_variables import RegleAvecVariables
from moteur_avec_variables.unificateur import Unificateur

femmes = ['frangoise', 'julie', 'alphonsine', 'véronique',
'charlotte', ' brigitte ', 'constance']
hommes = ['jean', 'pierre', 'marc', 'philippe', 'gustave',

'octave', 'antoine', 'hyacynthe', 'rodolphe']
tous = femmes + hommes
faits =
faits .extend ([('femme', f) for f in femmes])
faits .extend ([('homme', f) for f in hommes])
faits .extend ([(' diff érent', x, y) for x in tous for y in tous if x |=y])

faits .extend(][

('parent', 'jean', 'pierre'),
('parent', 'frangoise', 'pierre'),
('parent', 'philippe', 'alphonsine'),
('parent', 'charlotte', 'alphonsine'),

('parent', 'pierre', 'julie'),
('parent', 'alphonsine', 'julie '),
('parent', 'antoine', 'véronique'),
('parent', 'constance', 'véronique'),
(

(

(

(

(

(

(

(

1
1

'parent', 'octave', 'marc'),
parent', 'brigitte ', 'marc'),
parent', 'marc', 'gustave'),
parent', 'véronique', 'gustave'),

'parent', 'gustave', 'hyacynthe'),
1

1
1

parent', 'julie', 'hyacynthe'),
parent', 'philippe', 'rodolphe'),
parent', 'brigitte ', 'rodolphe'),

1

1

)

regles = |
[[( 'parent', '?x', '?y"), ('femme', '?x')], ('mere', '?x', '?y')],
[( 'parent', '?x", '?y'), ('homme', '?x")], ('pere', '7x', '?7y')],
[[('parent’, "7’ 17y )], (‘enfant’, 7" 1)),
[ "parent’, '2x') 1231, (femme!, 2y )], (" flle |, 7y, 2x))),
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[[( 'parent', '?x', '?z'), ('parent', '?z', '?y')],

('grand—parent', '?x', '?7y')],

[[( 'parent', '?x', '?7z"), ('parent', '?z', '?y'), ('parent', '?y', '7u')],
(" arriére—grand—parent', '?x', '?u')],

[[( 'grand—parent', '?x', '?y'), ('femme', '?x')], ('grand—mere', '?x', '?y')],
[[( 'grand—parent', '?x', '?y'), ('homme', '?x")], ('grand—pere', '?7x', '?7y')],

[[( "arriéere—grand—parent', '?x', '?y'), ('femme', '?x')],
("arriere—grand—mere', '?7x', '?7y' )],

[[( ' arriére—grand—parent', '?x', '?y'), ('homme', '?x')],
(" arriere—grand—pere', '?7x', '?y')],

[[( 'parent', '?x', '?z'), ('parent', '?x', '7y ),
(" différent', '?z', '?y")], ('frere', '?y', '7z'

[[( 'parent', '?x', '?z'), ('parent', '7x "?7y'),
(" différent', '?z', '?y')], ('soeur', ‘. y', '?z'

]

questions = [

(" arriére—grand—mere', '?qui', '?qui—d—autre'),
('arrlere grand— parent' '"?qui', '?qui—d—autre'),
('soeur', '?qui', '?qui—d—autre'),

(' , '?qui', '?qui—d—autre'),
('fils', '?qui', '?qui—d—autre'),
(' fils ', 'gustave', 'marc'),
('
(!
('

homme', '?y'),

(l
)],
(' emme'7 |?y' )7
)

)

1

fils ', '?qui', 'marc'),
fils ', 'gustave', 'hyacynthe'),
fils ', 'gustave', 'ferdinand'),

]

bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr[0], descr[1]))
bc. ajoute_faits ( faits )
bc. ajoute_regles (regles)

moteur = ChainageArriere(bc, Unificateur())
for question in questions:

print()
print('Question: ' + str(question))

moteur. reinitialise ()
moteur.chaine(question)

moteur. affiche_solutions ()

if len(argv) > 1 and argv(l].lower() == 'trace':
moteur. affiche_trace ()

Module .../exemple_cycle.py.py :

from sys import argv

from moteur_chainage_arriere.connaissance import BaseConnaissances
from moteur_chainage_arriere.chainage_arriere import ChainageArriere
from moteur_avec_variables.regle_avec_variables import RegleAvecVariables
from moteur_avec_variables.unificateur import Unificateur

faits = [('r', 'd")]

regles = [[[('r", '7a')], ("q', "7b")L, [[('a', '7HY)], ('r', '7al)]
questions = [('r', '?qui')]
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bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr([0], descr[1]))
bc. ajoute_faits ( faits )
bec. ajoute_regles (regles)

moteur = ChainageArriere(bc, Unificateur())

for question in questions:

print()
print('Question: ' + str(question))

moteur. reinitialise ()
moteur.chaine(question)

moteur. affiche_solutions ()

if len(argv) > 1 and argv[l].lower() == 'trace':
moteur. affiche_trace ()

Etape initiale

Le premier noeud contiendra la méme proposition, la requéte initiale, comme
but et comme sous-but. Par exemple, si ’on recherche toutes les personnes dont
Jean est le grand-pere, on aura :

Base des faits :
('pere', 'Jean', 'Pierre'),
Base des regles :
R1: ('pere', '"?x', '?z) AND ('pere', '?z', '?y') => ('grand—pere', '7x', '?y")
R2: ('pere', '?x', ?z) AND ('mere', '?z', '?y') => ('grand—pere', '?x', '?y")
Requéte initiale :
('grand—pere', 'Jean', '?x")
Noeud initial : n1, avec

But : ('grand—pere', 'Jean', '?x')
Sous—buts : ('grand—pere', 'Jean', '7x')

Les antécédents

Pour gérer les nceuds au cours du processus, nous devons définir deux listes, qui
seront mises & jour au fur et & mesure du chainage arriere : i) Neeuds-a-Tester
est la liste des noeuds qui restent a visiter; ii) Neeuds-Testés est la liste des
nceuds qui ont déja été visités (elle sert a éviter les cycles). Nous aurons ainsi,
dans la premiére étape, Neeuds-a- Tester qui équivaut & [n1] (le premier nceud),
et Neeuds-Testés égale a [1. En explorant ni, nous trouvons deux nouveaux
nceuds (n2 et n3), que nous ajoutons aux nceuds a tester tandis que ni est
ajouté a Neeuds-Testés et ainsi de suite.
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Exploration de n1 : calcul des successeurs de n1 en tentant de satisfaire un de
ses sous-buts :

o Utilisation de la régle R1 : nouveau nceud n2, avec :
But : ('grand—pere', 'Jean', '7x')
Sous—buts : ('pere', 'Jean', '?z'), ('pere', '?z', '?x")
« Utilisation de la regle R2 : nouveau nceud n3, avec :

But : ('grand—pere', 'Jean', '?x')
Sous—buts : ('pere', 'Jean', '?z'), ('mere', '?z', '7x')

Noeuds-a-Tester : [n2, n3]
Noeuds-Testés : [nil]

Exploration de n2 : calcul des successeurs de n2 en tentant de satisfaire un de
ses sous-buts :

o Utilisation du fait (’pére’, ’Jean’, ’Pierre’) pour satisfaire le premier
sous-but de n2 : nouveau noeud n4, avec :

But : ('grand—pere', 'Jean', '7x')
Sous—buts : ('pere', 'Pierre', '?x')

« Utilisation d’autres faits, ou de régles qui ont “pére” comme conséquence...

Noeuds-a-Tester : [n3, n4]

Noeuds-Testés : [n1, n2]

Les classes utilitaires

Nous avons tout d’abord besoin d’un unificateur. Nous vous suggérons de re-
prendre celui que vous avez programmé vous-méme, ou d’utiliser la solution
que nous vous avons proposée.

La classe BaseConnaissances servira a contenir les faits et les regles. Elle pos-
sede des méthodes permettant d’ajouter de nouveaux faits et de nouvelles regles
lors de l'initialisation, ainsi que les deux méthodes choisir_faits_interessants
et choisir_regles_interessantes, qui méritent un commentaire. choisir_faits_
interessants permet d’éviter de vérifier des faits inutiles. Elle prend en para-
metre une proposition (contenant éventuellement des variables), et retourne la
liste de tous les faits dont le premier élément est identique au premier élément
de la proposition. Par exemple, si les faits enregistrés dans la base de connais-

sances sont (’pére’, ’Jean’, ’Paul’), (’mére’, ’Martina’, ’Marie’) et (’pé-
re’, ’Paul’, ’Martina’), on a:
choisir_faits_interessants (('pére', 'Marc', '?x"))

—> [('pere', 'Jean', 'Paul'), ('pere', 'Paul', 'Martina')]

choisir_faits_interessants (('pere', '?x', 'Jean'))
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—> [('pere', 'Jean', 'Paul'), ('pere', 'Paul', 'Martina')]

choisir_faits_interessants (('mere', '?x', '?y'))
—> [('mere', 'Martina', 'Marie')]

choisir_faits_interessants (('cousin', '?x', 'Jean'))
—>

choisir_regles_interessantes prend en parametre une proposition (la consé-
quence d’une regle), et retourne la liste de toutes les regles dont le premier
élément de la conséquence est identique au premier élément de la proposition.
Par exemple, si la base de connaissances contient les regles :

R1: ('pere', '?x', '?z') AND (pere', '?z', '?y') => (grand—pere', '?x', '?y")
R2: ('pere', '?z', '?y') AND (marié', '?z', '?x') => (mere', '?x', '?y")

on a :

choisir_regles_interessantes (('grand—pere', 'Marc', '7x'))
—> [('pere', '?745', '746') AND (pere', '746', '?47') => (grand—pere', '745', '747")]

choisir_regles_interessantes (('grand—pere', '?x', '?y"))
—> [('pere', '?71', '72') AND (pere', '72', '?73') => (grand—pere', '?1', '73')]

choisir_regles_interessantes (('mere', '?x', '?y'))
—> [('pere', '?75', '?74') AND (marié', '775', '?773') => (mere', '773', '?774')]

choisir_regles_interessantes (('cousin', '?x', 'Jean'))
—>

Comme vous pouvez le remarquer, choisir_regles_interessantes ne re-
tourne pas les regles avec leurs variables d’origine. Chaque invocation de cette
fonction doit générer des copies des regles originales dans lesquelles les variables
auront été remplacées par des variables uniques, jamais encore employées. Cette
précaution est absolument vitale dans un moteur d’inférence a chainage arriére.
Elle permet d’utiliser les mémes variables lors de la définition de regles diffé-
rentes, voire de définir des regles récursives, sans qu’il n’y ait de risque de
confusion. Nous pouvons illustrer ceci par un exemple en prenant le fait (’pe-
re’, ’Jean’, ’Marie’) et les regles suivantes :

R1: ('parent', '?y', '?x') => ('ancétre', '?7y', '?x')

R2: ('pere', '?x', '?y') => ('parent', '?x', '?y")

Si ’'on n’utilise pas des copies des regles avec variables uniques et que 1’on
veut connaitre tous les ancétres du systéme, on aura comme but (’ancétre’,
> 2y, 7 ?7x’) et comme sous-but par R1 (’parent’, ’?y’, ’?x’). Il faut alors
satisfaire le sous-but (’parent’, ’?y’, ’?x’). La regle R2 permet de pour-
suivre le chainage : il faut donc unifier le sous-but avec la conséquence de R2,
ce qui conduit & une circularité ’ ?x’> => 2> ?y’ et > 2y’ => ’ ?x’ et donc un échec.
Et méme si 'on s’assure que deux regles différentes n’ont jamais de variables
en commun, la génération de copies des regles avec des variables uniques reste
nécessaire a cause des regles récursives.

BaseConnaissances définit donc une variable sym, qui va nous permettre de
construire des symboles uniques. C’est la méthode nouvelle_instance qui est
chargée de créer de nouvelles instances de chaque regle en utilisant la valeur de
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sym (un entier) pour créer de nouveaux noms de variables et en I'incrémentant
en méme temps.
es faits sont enregistrés dans un dictionnaire faits, qui est une variable
Les fait t trés d dict faits, t bl
d’instance (self.faits = {}). Les valeurs de ce dictionnaire sont des listes, qui
regroupent les faits selon leur premier atome. Chaque clé d’acces du dictionnaire
est donc le premier atome de tous les faits de la liste associée. Par exemple,
avec les clés ’grand-pére’ et ’grand-mére’, nous pourrions avoir :
self . faits = {
'grand—peére': [
('grand—pere', 'Paul', 'Jacques'),
('grand—pere', 'Jean', 'Marc')
}7
'grand—mere': |
('grand—mere', 'Mathilde', 'Pierre'),
('grand—mere', 'Véronique', 'Frangoise')

}

Nous représenterons les regles au moyen de la classe RegleAvecVariables,
déja définie précédemment, et qui possede deux attributs : conditions, une liste
de propositions, et conclusion, qui est aussi une proposition. BaseConnaissances
possede également une variable regles, pour stocker les regles. regles est un
dictionnaire dont les clés sont des atomes et les valeurs des listes de regles,
classées de telle sorte que chaque liste est associée au premier atome de la
conclusion de tous ses éléments.

Par exemple, avec la clé d’acces ’grand-pére’, on pourrait avoir :

self . regles = {

' p 1.
grand—pere': |
RegleAvecVariables([('pere', '?7x', '7z'),
('pere', '7z', '?7y')],
('grand—pere', '7x', '?y")),
RegleAvecVariables([('pere', '?x', '?z'),
('mere', '?7z', '?7y')],
('grand—pere', '7x', '?y"))

Création et gestion des nocuds

Un nceud doit regrouper plusieurs informations. Nous définissons donc une
classe Noeud, qui contient les éléments suivants :

e but : le but principal (la requéte initiale) ;

¢ sous_but_courant : le sous-but courant ;

e sous_buts_a_tester : I’ensemble des sous-buts restants, qu’il faut encore
satisfaire pour répondre & la requéte initiale ;

e profondeur : la longueur du chemin exploré depuis le noeud initial.

Noeud possede la méthode description_standardisee, qui retourne une des-
cription univoque du nceud et qui nous sera utile pour le traitement de la liste
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des nocuds déja testés. Plus exactement, cette méthode retourne une liste for-
mée du but, puis des sous-buts du nceud (y compris le sous-but courant), les
sous-buts étant triés par ordre croissant selon le nom du prédicat (le premier
élément de chaque sous-but).

Un ncoeud est-il une solution ?

Un noeud est une solution lorsqu’il ne lui reste plus de sous-buts a satisfaire
et que son but principal ne contient plus de variables. Pour tester la premiere
condition, implémentez donc la méthode est_terminal, qui retournera la valeur
False si et seulement si le nceud contient encore des sous-buts a examiner.

class Noeud:

def est_terminal ( self ):

Vous pouvez ensuite utiliser cette méthode pour implémenter est_solution,
qui doit retourner True si le noeud courant correspond a une solution, et False
sinon. Dans le premier cas, le but du nceud constituera une solution, c’est-a-
dire une instance de la requéte initiale dont les variables éventuelles auront été
remplacées.

class Noeud:

def est_solution ( self ):

Extension d’un nceud

Lorsqu’un noeud est sélectionné pour exploration et qu’il n’est pas une solution,
il faut tenter de satisfaire ses sous-buts un par un. Il convient donc d’essayer
d’abord de satisfaire I’'un des sous-buts, dans notre cas le sous-but courant. Un
sous-but peut étre satisfait de deux manieres différentes :

CAs 1. Il est unifiable a un fait existant. Le sous-but est alors directement
satisfait et ’on peut se pencher sur les autres. Cela permet de créer un nouveau
neeud en tenant compte du résultat de 'unification qui vient d’étre réussie et de
Ienvironnement E qui en résulte. Ce nouveau noeud aura les caractéristiques
suivantes : i) le but principal reste le méme, sauf qu’il faut tenir compte de
I'unification, c’est-a-dire qu’il faut remplacer ses variables en accord avec F;
ii) les sous-buts & satisfaire sont les sous-buts restants du nceud pere, dont on
aura remplacé les variables selon F. Prenons un exemple :

Noeud examiné :

But : ('grand—pere', '?x', '?y')
Sous—buts : [('pere', '?x', '?z'), ('pere', '7z', '?7y')]
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Fait :

('pere', 'Jean', 'Marc')

Unification du fait avec le premier sous-but :
— environnement {’> ?x’ : ’Jean’, ’7?z’ : ’Marc’}

Nouveau nceud :

But : ('grand—pere', 'Jean', '?y')
Sous—buts : [('pere', 'Marc', '?y')]

CAs 2. Il est unifiable a la conséquence d’une regle : il faut alors satisfaire
les conditions de cette regle. Cela permet de créer un nouveau nceud, en tenant
compte des nouveaux sous-buts et du résultat de l'unification entre le sous-
but et la conséquence de la regle, c’est-a-dire de I’environnement résultant F.
(Cette unification est nécessaire puisque le sous-but et la conséquence n’ont
pas les mémes variables a priori). Ce nouveau nceud aura les caractéristiques
suivantes : i) le but principal reste le méme, sauf qu’il faut tenir compte de
l'unification en remplacant ses variables selon E'; ii) les sous-buts & satisfaire
sont les sous-buts restants du noeud pere, dont on aura remplacé les variables
selon FE, plus les conditions de la regle que 'on veut appliquer. Prenons un
exemple :

Noeeud examiné :
But : ('grand—oncle', '?x', '?y")
Sous—buts : [('grand—pere', '?z", '?y'), ('frére', '?x', '?z')]
Regle :
('pere', '7a', '?b"') AND ('pere', '?b', '?c¢') => ('grand—péere', '?a', '?c')

Unification de la conséquence de la régle avec le premier sous-but :
— environnement {’ 7z’ : ’?a’, ’?y’ : ’7?c’}

Nouveau nceud :
But : ('grand—oncle', '?x', '?c')

Sous—buts : [('pere', '?a', '?b'), ('pere', '?b', '?c¢'), ('frére', '?x', '7a')]

Dans les deux cas précités, la génération d’'un nouveau nceud est tres si-
milaire, mis a part les sous-buts supplémentaires qui sont introduits lorsqu’un
sous-but est remplacé par les conditions d’une regle. Ecrivez donc dans la classe
Noeud une méthode successeur, qui doit prendre comme parametres :

e le noeud pere (ici désigné par self);

 l'environnement résultant de I'unification du sous-but avec un fait ou avec

la conséquence d’une regle ;

« la liste des sous-buts supplémentaires (qui peut étre vide le cas échéant) ;

« lobjet unificateur nécessaire a la réalisation des substitutions (par sa mé-

thode substitue).

class Noeud:

def successeur( self , env, nouveaux_sous_buts, unificateur ):
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Noeuds testés

La liste des nocuds déja testés sera constituée par une instance de la classe
NoeudsTestes. Celle-ci définit la méthode __contains__, une méthode spéciale de
Pythonm, qui permet d’utiliser la syntaxe noeud in NoeudsTestes pour vérifier
si noeud est contenu dans NoeudsTestes, c’est-a-dire s’il a déja été exploré. De
fagon complémentaire, la méthode ajoute permet d’ajouter un nceud a la liste
chaque fois qu’il est examiné.

)

Un noeud sera donc considéré comme déja exploré, et pourra étre ignoré,
si et seulement s’il existe déja dans la liste un nceud ayant le méme but et les
mémes sous-buts, a des substitutions variable-variable pres. En d’autres termes,
s’il existe un ensemble de substitutions de variables par d’autres variables qui
permettent de retrouver la description d’un noeud déja enregistré a partir du
nceud en question. C’est cette vérification qu’accomplissent les méthodes de
NoeudsTestes.

La méthode inclut vérifie ainsi si deux descriptions de noeuds correspondent
aux variables pres. Elle s’appuie sur inclut_sous_buts, qui tente le filtrage spé-
cial (en s’appuyant sur match) de sous-buts en tenant compte d’un environ-
nement existant. match teste si deux expressions sont identiques a des substi-
tutions de variables prés. Elle retourne un environnement (un dictionnaire de
substitutions) si le matching a réussi, ou la constante NoeudsTestes.echec 8'il
a échoué.

Le chainage arriére

La classe ChainageArriere contiendra l’algorithme principal du chainage ar-
riere. Elle hérite de la classe Chainage, que nous connaissons déja. Sa méthode
successeurs continue le processus de génération des successeurs que nous avons
discuté plus haut. Elle doit trouver tous les successeurs possibles d’un nceud, en
s’appuyant sur les faits et les regles de la base de connaissances. Le processus
est décrit dans 'algorithme suivant :

Successeurs(noeud):

1. nouveaux_noeuds <— liste vide.

2. FOR EACH regle r de la base des régles DO

3. env <— unification du sous—but courant de noeud avec la conséquence de r
4 IF env n'est pas échec (unification réussie) THEN

5 ajouter & nouveaux_noeuds un nouveau noeud ou:

i) le but est celui de noeud, dont les variables ont été remplacées
selon env ;

ii) le sous—but courant est 1'un des sous—buts restants de noeud, dont
les variables ont été remplacées selon env ;

iii ) les sous—buts restants sont ceux de noeud, moins le sous—but
courant, augmentés des conditions de la régle r ; les variables
auront été remplacées selon env.

END IF
END FOR
FOR EACH fait f de la base des faits DO
env <— unification du sous—but courant de noeud avec f

© ® N

1
o http://docs.python.org/3/reference/datamodel.html#specialnames
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10. IF env n'est pas échec (unification réussie) THEN
11. ajouter a nouveaux_noeuds un nouveau noeud ou:
i) le but est celui de noeud, dont les variables ont été remplacées
selon env ;

ii) le sous—but courant est un des sous—buts restants de noeud, dont les
variables ont été remplacées selon env ;
iii ) les sous—buts restants sont ceux de noeud, moins le sous—but
courant, dont les variables auront été remplacées selon env.
12. END IF
13. END FOR
14. RETURN nouveaux_noeuds
END Successeurs

Ecrivez la méthode successeurs de ChainageArriere, qui doit prendre comme
parametre un noeud et qui retourne tous les successeurs possibles de celui-ci.
Nous vous suggérons d’utiliser les méthodes choisir_regles_interessantes et
choisir_faits_interessants décrites plus haut. Celles-ci sont disponibles dans
I’objet connaissances qui constitue un attribut de ChainageArriere. N’oubliez
pas non plus de faire appel a Noeud.successeur.

Nous pouvons maintenant passer & la méthode principale de ChainageAr-
riere, qui devra réaliser 'algorithme de chainage proprement dit. Ecrivez donc
une méthode backchain, qui prenne comme argument un noeud initial et re-
tourne la liste de toutes les solutions trouvées (sans doublons), ou une liste
vide s’il n’en existe pas. Nous vous suggérons ’algorithme suivant :

Backchain(noeud_initial)

1. noeuds_testes <— vide

2. solutions <— liste vide

3. noeuds_a_tester <— liste contenant noeud_initial

4. WHILE noeuds_a_tester n'est pas vide DO

5. n <— premier élément de noeuds_a_tester

6. noeuds_a_tester <— reste de noeuds_a_tester

7. IF n ne fait pas partie de noeuds_testes THEN

8. noeuds_testes <— ajouter n a noeuds_testes

9. IF n est une solution THEN

10. ajouter n & solutions

11. ELSE

12. nouveaux noeuds <— générer les successeurs de n
13. ajouter nouveaux noeuds en téte de noeuds_a_tester
14. END IF

15. END IF

16. END WHILE
17. RETURN solutions
END Backchain

class ChainageArriere:

def backchain(self, noeud_depart):

Interface

Il est temps d’écrire une méthode qui permette d’interroger le moteur. Soit
chaine cette méthode, qui prend comme argument une proposition a satisfaire,
nous aurons :
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e ChainageArriere.chaine((’grand-pére’, ’Jean’, ’Marc’)) demande si
Jean est bien le grand-pere de Marc.

e ChainageArriere.chaine((’grand-pére’, ’Jean’, ’ ?x’)) permet de recen-
ser tous les petits-enfants de Jean.

e ChainageArriere.chaine((’grand-pére’, ’?x’, ’?y’)) permet de connaitre
toutes les relations “grand-pere”.

Ecrivez cette méthode, qui retournera les résultats obtenus. Elle invoquera
backchain avec un nceud initial dont le but principal sera la proposition fournie
a titre de requéte, et dont les sous-buts seront réduits a un seul : la méme
proposition.

class ChainageArriere:

def chaine(self , pattern):

Test du programme

Vous pouvez finalement tester votre moteur d’inférence avec le module exemple_
classification_animale.py, qui contient un exemple de regles et de faits ins-
pirés de la classification animale. Essayez d’inventer différentes requétes, du
style :

o Quels sont les mammiferes connus du systeme ?
moteur.chaine(('mammifere', '?x'))
o L’ornithorynque est-il un mammifere ?
moteur.chaine(('mammifére', 'ornithorynque'))

e Quels animaux sont des félins ?

moteur.chaine(('félin', '?quels—animaux'))

Vous pouvez aussi utiliser le module exemple_genealogie.py, qui présente des
regles formalisant les relations de parenté et le module exemple_cycle.py, qui
offre un exemple de regles circulaires.

Solutions a la page 353






CHAPITRE 6

Traitement de ’information
incertaine

Les raisonnements logiques s’appuient sur une distinction nette entre des pro-
positions vraies et des propositions fausses. Dans la réalité cependant, nous
sommes souvent confrontés a des situations d’incertitude, dans lesquelles il est
difficile d’affirmer que telle ou telle proposition est absolument vraie ou abso-
lument fausse. Ceci arrive pour diverses raisons :

o manque de précision dans les données de départ,
o utilisation d’un raisonnement abductif, dont la conclusion est ambigué,

o présence de facteurs non-observables qui ont une influence sur la validité
du raisonnement.

Considérons comme exemple une maison intelligente. Elle dispose de nom-
breux capteurs, parmi lesquels un détecteur de mouvement dans le hal (M), un
détecteur d’ouverture de la porte d’entrée (E), et un détecteur de bris de vitre
(V). On aimerait construire un systéme qui permette d’interpréter ces capteurs
afin de contréler la maison, par exemple en déclenchant une alarme lors d’un
cambriolage ou en éteignant la lumiere lorsque personne n’est présent. Comme
chaque maison est différente, on souhaiterait en outre construire un seul sys-
teme de regles qui s’applique a toutes les maisons quel que soient les capteurs
et leur positionnement.

Pour modéliser logiquement la situation, on commence par élaborer une
déscription des éléments et des relations d’influence entre ces éléments. Pour la
fonction d’alarme, on peut ainsi établir le diagramme de la figure 6.1. Le but
est de construire un systeme de regles qui décide si une alarme est due a un
cambrioleur, ou s’il s’agit d’une fausse alerte. Par exemple, on peut utiliser le
fait que seul un cambrioleur briserait la vitre, mais qu’en absence de mouvement
dans la maison, il s’agit probablement d’une fausse alerte.

Bien qu'un tel systéme nécessite un raisonnement logique, il est difficile d’y
appliquer une distinction absolue entre propositions vraies et fausses, surtout
si la maison comporte de nombreux capteurs :

1) le capteur de mouvement donne des mesures continues et peut étre activé
a un degré variable.
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P(ropriétaire) = C(ambrioleur)

/X7

M(ouvement) E(ntrée) V(itre)

A(larme)

Fig. 6.1 Influence entre présence de personnes, capteurs et alarme.

2) on ne peut conclure a la présence d’un cambrioleur sur la base des si-
gnaux des capteurs qu’a travers un raisonnement abductif et ambigu : le
propriétaire pourrait également en étre la cause;

3) il manque des informations sur la présence de personnes ailleurs que dans
la zone couverte par le détecteur de mouvements.

Ces trois facteurs font qu’il est difficile d’implémenter une solution par raison-
nement purement logique. Une telle situation est en fait tres courante dans
presque toutes les applications de systémes intelligents et souligne le besoin de
pouvoir tirer des raisonnements en présence d’incertitude.

Une approche qui s’est largement imposée, dans des systéemes de diagnostic
médical, dans le moteur WATSON de IBM, comme dans des voitures auto-
nomes, peut se résumer comme suit :

1) par un moteur d’inférence logique, on construit différents chemins d’infé-
rence possibles,

2) on évalue la vraisemblance de chaque raisonnement sur la base des infor-
mations dont on dispose,

3) on choisit le ou les raisonnements qui semblent les plus vraisemblables.

Evidemment, on peut alterner les étapes 2 et 3 avec la premiere pour gagner
en efficacité et ne pas poursuivre des hypothéses invraisemblables.

Dans notre cas, un moteur d’inférence identifierait donc d’abord les hypo-
théses C(ambrioleur) et P(ropriétaire) comme conséquences possibles sur la
base des données A(larme), M(ouvement), E(ntrée) et V(itre). Par la suite, la
vraisemblance des deux hypotheses sera évaluée par les techniques que nous
allons voir dans ce chapitre.
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Il existe plusieurs formalismes qui permettent le calcul utilisant des infor-
mations incertaines :

e la logique floue et ses variantes, comme les facteurs de certitude, faciles a
appliquer mais sans bases théoriques solides et donc parfois incorrectes ;

o les calculs probabilistes, fondés sur la théorie des probabilités, mais qui
s’averent trop complexes a appliquer en pratique ;

o les réseaur bayésiens, bien fondés dans leur théorie et faciles a appliquer,
mais nécessitant un modele causal de la réalité.

Dans ce chapitre, nous allons exposer ces techniques en détail.

6.1 De la logique floue a une représentation de I’incertitude

L’idée principale de la logique floue (fuzzy logic) est de traduire des valeurs
numériques en prédicats dont la validité est « floue », comme dans ’exemple de
la figure 6.2. Cette distribution exprime le pourcentage de sujets qui jugeraient
une personne d’une certaine taille comme étant grande. Si cette personne est
un enfant d’un metre, seuls d’autres enfants pourraient peut-étre lui appliquer
ce prédicat. La plupart des gens placeraient plutot la limite entre 1,7 et 1,8
metre, et c’est donc ’endroit ou la courbe enregistre sa plus grande croissance.
Si I’on considere enfin une personne de deux metres ou plus, tout le monde sera
d’accord pour dire qu’elle est grande et la probabilité que le prédicat s’applique
sera donc proche de 1.

grand(x)
i

14

1m 1.5m 2m taille(x)

Fig. 6.2 FEzemple d’une distribution « floue » pour le prédicat grand.

La distribution modélise donc 'incertitude qui résulte de la traduction d’un
attribut continu en un prédicat qui ne connait que les valeurs vrai et faux.
En principe, chaque proposition qui figure dans un raisonnement peut faire
I’objet d’une telle incertitude. On associe donc & chaque proposition une mesure
numérique de vraisemblance, laquelle indique le degré auquel cette proposition
peut s’appliquer.
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L’incertitude pourra aussi se présenter en association avec des inférences.
Par exemple, un cambrioleur ne déclenchera pas forcément le détecteur de mou-
vement, puisqu’il pourrait prendre un autre chemin dans la maison. Méme si
I’on est str qu’un cambrioleur se trouve dans la maison, le résultat d’une telle
inférence restera incertain. Il faut donc prévoir que les regles d’inférence peuvent
aussi étre incertaines.

Finalement, une autre source d’incertitude résulte du fait que le raisonne-
ment souhaité est souvent de nature abductive. Par exemple, 'inférence que
le détecteur de mouvement indique la présence d’un cambrioleur est incertaine
non pas parce la relation est incertaine, mais parce qu’il existe une autre ex-
plication, qui est la présence du propriétaire. Si on modélise une telle inférence
abductive comme une inférence logique par clauses de Horn, elle doit fournir
une résultat incertain.

Pour faire face a ces besoins, nous souhaitons représenter 'incertitude par
des chiffres de sorte que que :

« l'incertitude de chaque proposition et de chaque inférence est caracterisée
par une tel chiffre,

¢ l'incertitude de la conclusion d’une inférence est une fonction des incerti-
tudes des prémisses et des regles utilisées,

e lincertitude peut étre adaptée quand de nouvelles informations appa-
raissent.

Nous allons d’abord examiner un formalisme simple, celui des facteurs de
certitude, qui remplit ces exigences mais ne fournit pas toujours un résultat
correct.

Partant de la reconnaissance des faiblesses de cette technique, nous discute-
rons ensuite de la méthode des réseaux bayesiens, qui permettent un vrai calcul
probabiliste mais avec certaines restrictions, notamment celle d’une reconnais-
sance explicite de la causalité.

6.2 Les facteurs de certitude

La plupart des systemes experts modélisent l'incertitude en attachant un
certain degré de confiance aux conclusions obtenues. Dans MYCIN par exemple,
on tient compte de facteurs de certitude (CF) représentés par des nombres réels
compris entre —1.0 et 1.0. Un facteur de certitude de 1.0 signifie qu’un fait est
absolument certain, une valeur de 0.5 signifie que le fait est vraisemblable, une
valeur de 0.0 implique que 'on ignore totalement s’il est vrai ou faux et enfin
un facteur de certitude de —1.0 indique que le fait est faux avec une certitude
absolue.

Les facteurs de certitude sont attachés aussi bien aux faits qu’aux regles.
Lorsqu’une regle donnée est appliquée pour déduire un nouveau fait, le facteur
de certitude de ce fait est calculé par combinaison des facteurs de certitude des
antécédents de la regle et de celui de la regle elle-méme. Ce calcul s’effectue
selon la formule suivante :
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CF(résultat) = max(min(CF(conditions)),0) - CF(régle)
En prenant le minimum des CF des conditions, on considere que les conditions
sont satisfaites au degré du maillon le plus faible. Si une des conditions n’est
plutét pas satisfaite, on utilise la valeur 0 et on n’attribue aucune certitude a la
conclusion. L’utilisation des opérateurs max et min pour effectuer la combinai-
son des certitudes des conditions est la caractéristique essentielle de la logique
floue qui est a la base des facteurs numériques de certitude.

Quand le méme résultat a été trouvé par application de plusieurs regles
différentes, il faut combinerleurs facteurs de certitude. Méme s’il est tres difficile
de formuler ce calcul d’une maniere telle que le résultat soit garanti correct,
il existe différentes formules qui donnent de bons résultats en pratique. Par
exemple, dans le systeme MYCIN, la combinaison de deux facteurs de certitude
x et y, attachés a la méme proposition, s’effectue comme suit :

T+y—xy si 2>0,y>0
CFCOMBINE(Iyy): #W siz<0,y>0

—CFcomBiNe(—z,—y) si2<0,y<0

Considérons maintenant ’application de ce formalisme a notre exemple.
Supposons que nous voulons détecter la présence d’un cambrioleur sur la base
des observations des capteurs, c’est-a-dire :

P1(CF=0.8) : M(ouvement)
P2(CF=0.7) : V(itre)
P3(CF=0.1) : E(ntrée)
et des regles :
R1(CF=0.9) : V(itre) A M(ouvement) = C(ambrioleur)
R2(CF=0.2) : E(ntrée) A M(ouvement) = C(ambrioleur)
ce qui permet 'inférence :
P4(CF=0.77) : C(ambrioleur)
La proposition P4 peut étre inférée soit par la regle R1, soit par la regle R2,
avec les facteurs de certitude suivants :
R1 : CF(P4)= max(min(0.7,0.8),0) * 0.9 0.63
R2 : CF(P4)= max(min(0.1,0.8),0) * 0.2 0.06
Les deux valeurs sont alors combinées par la formule de combinaison pour
arriver au résultat :
CF(P4) = CFcombine(0.63,0.02) = 0.6340.02—0.63-0.02 = 0.637

et il est donc assez probable qu’un cambrioleur soit présent, a cause du bris de
la vitre.

L’utilisation des facteurs de certitude pour « simuler » un raisonnement
abductif peut conduire & des résultats erronés, notamment dans le cas ou des
regles déductives sont mélangées avec des regles qui simulent ’abduction. Par
exemple, les regles :

R1(CF=0.9) : E(ntrée) A M(ouvement) = P(ropriétaire)
R2(CF=0.5) : C(ambrioleur) = E(ntrée)
R3(CT=0.99) : C(ambrioleur) = M(ouvement)
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permettent la chaine d’inférence :

C(ambrioleur) (CF=1.0) = E(ntrée) (CF=0.5), M(ouvement) (CF=0.99)
=
Propriétaire (CF=0.45)

Ce n’est pas du tout raisonnable : le fait qu'un cambrioleur soit présent ex-
plique déja le déclencement des détecteurs, et ne donne donc pas d’information
quant a la présence du propriétaire! Le probléeme de ce raisonnement, c’est que
les cas dans lesquels R1 est vrai sont justement ceux dans lesquels R2 est faux :
on n’a pas tenu compte de I'interdépendence entre les deux.

6.3 Réseaux bayésiens

Les interdépendances entre propositions sont donc le probleme principal du rai-
sonnement incertain. La logique floue et les facteurs de certitude n’en tiennent
simplement pas compte. Malheureusement, en pratique, on peut observer une
forte dépendance entre les régles. Les conclusions tirées sans tenir compte de
cette constatation sont donc le plus souvent fausses.

Une possibilité pour pallier ce probléeme consiste & utiliser explicitement des
probabilités. En fait, nous allons caractériser I'incertitude par une probabilité :

p(A) = probabilité que la proposition A soit vraie.
p(—A) =1 — p(A) = probabilité que la proposition A soit fausse.
P(A) = [p(A),p(—A)] = distribution de probabilité de A.

La définition classique des probabilités veut qu’une probabilité mesure la
fréquence a laquelle un événement se produit. Ceci ne permettrait pas qu'une
probabilité change au cours du raisonnement. On adopte alors une autre inter-
prétation, qu’on appelle bayésienne. Dans cette interprétation, la probabilité
est une croyance portant sur la fréquence de ’événement, croyance qui peut
évoluer en fonction de nouvelles informations.

On peut définir de telles probabilités par une expérience hypothétique :
supposons qu’on pose & un expert une question sous forme de pari :

Soit un pari dans lequel vous gagnerez 100 CHF'. si A est vrai. Quel
est la plus grande somme = que vous seriez prét a mettre pour y
participer ?

La réponse = indique alors la probabilité bayésienne que cet expert attribue a
A p(A) = 2/100.

On aimerait propager ces probabilités dans un raisonnement utilisant le
modus ponens. Ainsi, si nous avons la régle A = B, et que p(A) est connue,
p(B) pourrait se calculer comme suit :

p(B) = p(B|A) - p(A) + p(B|=A)(1 — p(A))

p(B|A) = p(4, B)/p(A)

est la probabilité conditionnelle de B étant donné A.
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Une différence importante par rapport aux facteurs de certitude est que
lincertitude de la régle s’exprime non seulement a travers p(B|A), mais aussi &
travers la probabilité p(B|—-A), appelée contrefactuelle (counterfactual). Cette
derniere est essentielle pour exprimer l'interdépendence entre les événements,
bien qu’elle rende les calculs plus complexes.

6.3.1 Chainage d’inférences

Considérons maintenant le chainage de plusieurs inférences, en rajoutant une
autre regle B = C. Le calcul le plus simple serait de simplement enchainer le
méme calcul deux fois. Considérons ’exemple de la maison intelligente. Soit :

P = « Propriétaire présent », p(C') = 0.9

M = « Mouvement détecté », p(M|P) = 0.9, p(M|-P) = 0.01

A = « Alarme déclenchée », p(A|M) = 1.0,p(A|-M) = 0.01

le chainage C' -+ M — A nous donne le résultat :
p(M) = p(M|P)-p(P)+p(M[=P)(1—p(P))
= 09-09+0.1-0.011=0.811
p(4) = p(AIM) - p(M) + p(A[-M)(1 - p(M))
= 0.811-140.189-0.01 ~ 0.811
ce qui semble étre correct.
Par contre, considérons le calcul analogue sur un autre exemple :
P = « Propriétaire présent », p(P) = 0.9
M = « Mouvement détecté », p(M|P) = 0.9, p(M|-P) = 0.01
C = « Cambrioleur présent »,p(C|M) = 0.1, p(C|-M) = 0.01

Pour le chainage P — M — C, le calcul des probabilités nous donne :

p(M) = 0.9-0.9+0.1-0.01 =0.811
p(C) = 0.811-0.1+0.189-0.01 ~ 0.0813

Cependant, si nous avons déja identifié la présence d’un cambrioleur comme la
raison pour laquelle un mouvement a été detecté, il semble peu probable que le
propriétaire soit présent en méme temps! Ici, nous avons une forte dépendance
entre les regles : la detection du mouvement s’explique par la présence d’un
cambrioleur justement dans les cas ou le propriétaire n’est pas présent! Le
calcul correct devrait donc tenir compte des dépendances :

p(M) = 0.811
p(C) = p(C|M,P)p(M,P)
=0
+p(C|—|M, P)p(—'M, P)
—_———

=0
+p(C|M,~P) p(M,-P)
—_———— — —

=0.9 =0.001
+p(C|=-M,—P)p(=M,—P)
—0.01 =0.5

= 0.001-0.940.01-0.5=10.0059
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Observons que ce calcul utilise la distribution jointe P(C|M, P), ce qui est plus
complexe que les distributions P(M|P) et P(C|M). Si on considérait aussi
toutes les autres causes imaginables de M, comme les mouvements du chat,
I’air chaud, la fille du propriétaire, etc., la probabilité conditionelle devrait
inclure toutes ces variables aussi. Avec 10 causes Y7,.., Y7o, on aurait besoin
de la distribution P(C|M, Y7, ..,Y10) qui compte 11 dimensions et 2048 valeurs
distinctes! Pire, si le raisonnement implique un chainage, on doit tenir compte
de toutes les variables qui y sont mentionnées.

Comment peut-on savoir quand il est nécessaire d’utiliser ce calcul plus
complexe ? Une issue a ce dilemme est de profiter de la structure du monde
pour identifier les endroits ou l'on peut s’attendre a des dépendances. Plus
précisement, il faut considérer la causalité entre les événements. La figure 6.1,
que nous avons montrée au début du chapitre, représente un graphe qui exprime
cette causalité sous forme d’arcs dirigés. En général, nous avons 1'habitude
d’attribuer des liens de causalité aux phénomenes du monde qui nous entoure ;
de tels modeles ne sont donc pas difficiles & concevoir.

6.3.2 Importance de la causalité

Nous pouvons constater que la premiere inférence :
P—-M-—A

correspond a une chaine causale, tandis que la deuxieme :
P—>M<+C

n’a pas de telle correspondance, puisque P et C' sont toutes les deux des causes
possibles de M. Nous pouvons donc formuler 'hypothese que le chainage des
probabilités est possible quand 'inférence suit un chemin causal dans une seule
direction consistante. Mais comment concrétiser cette observation ?

La théorie des réseauz bayésiens formalise cette observation en utilisant la
notion d’indépendance conditionnelle. Rappelons que deux événements A et C'
sont indépendants si :

p(Cl4) = p(C|=A) = p(C)

Nous définissons l'indépendance conditionnelle de A et C' étant donné B
comme suit :

p(ClA, B) = p(C|-A, B) = p(C|B)

et de méme pour —B :
p(C|A,~B) = p(C|-A4,-B) = p(C|=B)

L’indépendance conditionnelle est fortement liée a la causalité. En fait, on
peut définir la causalité comme suit :

Y1, ..., Y, sont les causes de X si X est conditionnellement indépen-
dant de tous les autres événements étant donné Y7, ..,Y,,.
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Donc, un graphe qui exprime les liens causaux entre événements nous révele
également leurs relations d’indépendance causale. Souvent, les regles utilisées
pour établir un raisonnement expriment déja des liens de causalité. Parfois
cependant les regles d’un systéme expert correspondent a un raisonnement
abductif, comme par exemple l'inférence M(ouvement) = P(ropriétaire). Dans
un tel cas, la regle suit la direction inverse de la causalité. On peut néanmoins
supposer que les inférences identifient correctement les paires de nceuds du
graphe qui doivent étre liées par un arc.

L’indépendance conditionnelle est fort utile, puisqu’elle permet d’ignorer
la plupart des dépendances lors du calcul des probabilités dans une chainage
d’inférences. Par exemple, dans une inférence A -+ B — C :

p(Cl|A) = p(C|A, B) - p(B|A) + p(C|A, -B) - p(—=B|A)
Si A et C sont conditionnellement indépendants étant donné B :
p(ClA) = p(C|B) - p(B|A) + p(C|=B) - (1 — p(B|A))

nous n’avons pas besoin de connaitre la distribution jointe P(A,C) ni celle
de P(C|A, B) pour calculer P(C), mais nous pouvons propager la probabilité
localement.

L’indépendance conditionelle permet de décomposer une distribution jointe
de probabilités en un produit de complexité réduite. En analogie avec des va-
riables indépendantes A et B, ou P(A,B) = P(A) - P(B), si A et B sont
conditionellement indépendants étant donnée C on a

P(A, B,C) = P(A|C)P(B|C)P(C).

On peut donc représenter la distribution jointe des variables dans la figure 6.1
comme :

P(P,C,M,E,V,A) = P(P)P(C)P(M|P,C)P(E|P,C)P(V|C)P(A|M, E,V)

donc, au lieu d’une distribution qui compte 26 = 64 valeurs, on peut faire avec
24+2+4+8+8+4+ 16 = 40 valeurs. Si la différence n’est pas impressionante,
supposons qu’on rajoute 3 autres variables dont A est la seule cause, et la
comparaison sera entre 2° = 512 et 40 + 4 + 4 + 4 = 56 valeurs.

L’indépendance conditionnelle apparait dans deux types de structures, soit
dans des chaines causales :

0-0-0

soit lorsque plusieurs événements ont une cause commune :
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Dans un graphe causal qui ne contient que ces deux structures comme sous-
graphes, il suffit de connaitre les distributions de probabilités conjointes de
toutes les paires d’événements pour propager les probabilités dans les deux
sens.

Par contre, dans une structure ou plusieurs causes conduisent au méme
événement B, comme :

on rencontre une dépendance conditionnelle qui bloque le chainage de la propa-
gation des probabilités. A et C sont indépendants, mais deviennent dépendants
quand B est connu :

p(AlC) = p(A]=C) = p(A)
p(A|B,C) # p(AlB)

et cela s’étend également aux descendants de B tels que D. La propagation
est néanmoins possible, mais il faut utiliser la distribution P(A|B,C) (ou bien
P(B|A,C) ou P(C|A, B), selon la direction de propagation - tous peuvent se
calculer a partir de P(A, B, (C)).

En combinant ces trois types de structures, nous pouvons propager les pro-
babilités dans n’importe quelle structure causale. Comme une structure causale
ne peut pas contenir de cycles, elle établit parmi les variables un ordre tel que
les effets suivent les causes. Voici 'ordre pour 'exemple de la figure 6.1 :

variable | noeud | parents descendants
Zo P {} {M7E}

T C {} {M7E7 V}
To M {P,C} {A}

T3 E {P,C} {4}

4 v {c} {A}

Ty A {M,E.,V} | {}

L’algorithme général consiste a prendre les variables dans l'ordre et a calculer
P(x;) comme suit : en supposant 'indépendence des variables dans {parents(z;)},
on obtient d’abord la distribution jointe p(z;, parents(z;)) :

p(zi, {parents(z:)}) - plail{parents(z)}) [  plur) (6.1)
yr Eparents(x;)
et ensuite on marginalise les y, € parents(z;) un par un dans une itération

d’opérations :

p(Ti, Y1, -, Ye—1) Z P(Tis Y1y Y)
yr€{vrai,faux}
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qui élimine la derniere variable de la distribution et va donc finalement laisser
que p(z;).

Pour appliquer cet algorithme, nous devons connaitre pour chaque variable
la distribution conditionelle p(z;|{parents(z;)}). En pratique, il faut donc que
la structure soit telle que chaque noeud n’ait que peu de parents, afin d’éviter
des calculs prohibitifs. En tout cas, ce calcul sera plus efficace qu’un calcul
réalisé sans utilisation de la causalité et dans lequel on devrait considérer la
probabilité conditionelle non seulement des parents directs, mais de tous les
antécédants.

La méthode ci-dessus nous permet de calculer la probabilité des effets a
partir des causes. Cependant, pour estimer la probabilité de la présence d’un
cambrioleur, nous devons procéder dans le sens inverse, c¢’est-a-dire trouver la
probabilité des causes a partir des conséquences. C’est la question que nous
allons aborder ci-dessous.

6.3.3 Inférence abductive

Considérons un lien causal A — B. Nous avons vu que l'inférence de P(B)
peut se faire par propagation :

p(B) = p(B|A) - p(A) + p(B|=A)(1 — p(A))

En supposant qu’on connaisse une probabilité & priori p(A), on peut aussi
renverser le sens de la propagation, en utilisant la regle de Bayes :
p(A, B p(B|A)p(A
sAp) — PUB) (Bl
p(B) p(B)
ap(B|A)p(A)

o on remplace p(B), qui n’est normalement pas connu, par 1/«, car « peut étre
trouvé apres coup en normalisant p(A|B)+p(—A|B) = 1. On peut ainsi calculer
p(A) étant donné n’importe quel nombre d’effets B en les intégrant ceux-ci
I'un apres I'autre. Par exemple, pour un événement Y qui a k conséquences
Xl...., Xk :
k
p(Y[X1, .. Xi) = ap(YV) [[ p(XilY) (6.2)
i=1

ou l'on obtient « simplement par le fait que la somme des probabilités pour
toutes les valeurs possibles de Y doit étre égale a 1 :

k k

alp() [[p(XilY) + (1 = p(V)) [[ p(Xil-Y)] = 1

i=1 i=1

C’est en raison de cette utilisation de la regle de Bayes qu’on appelle souvent
de tels réseaux des réseaux bayésiens (Bayesian networks).
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Reprenons notre exemple de la maison intelligente. La question la plus intéres-
sante est de distinguer entre la présence du propriétaire et celle du cambrioleur.
Supposons que les détecteurs M et V sont actifs, mais pas E. En utilisant le
modele causal, nous pouvons obtenir :

p(CIM,=E,V) = acp(C)p(M|C)(1 = p(E|C)) p(V|C)
M~ —— Y——
=0.01 =0.9 =0.5 =0.5

= 2.25-10%a,

et nous pouvons obtenir «.. :

p(=C|M,=E,V) = a.p(=C)p(M|-C)(1 - p(E|=C))p(V|=C)
—— ——— ——— ——
=0.99 =0.5 =0.5 =0.0005
1.2375 - 10 %,
=a. = 1/(0.00225+ 0.00012375) = 1/0.00237375 = 421.27

et donc conclure p(C|M,—E, V) = 0.948.
Par contre, le calcul analogue pour la présence du propriétaire :

p(P|M,-E,V) = a, p(P) p(M|P)(1 — p(E|P)) p(V|P) = 0.0000045c,
N —— —— N——

=0.5 =0.9 =0.99  =0.001
et
p(=P|M,-E,V) = app(ﬁP)p(M|—|P)(1 —p(E|=P))p(V|-P) = 0.0000248750y,
N N—— N N——
=0.5 =0.01 =0.005 =0.005
= aqp, = 1/(0.000045 + 0.0000495) = 1/0.000029375 = 34042.55

et donc p(P|M,—FE,V) = 0.153. Le systéme peut donc bien utiliser I'informa-
tion que seul le cambrioleur est susceptible de briser la vitre pour obtenir une
meilleure estimation. Il est évident qu’on peut ainsi construire des systemes
d’alarme qui intégrent de nombreux capteurs et évitent des fausses alertes en
utilisant le comportement habituel des habitants. Cette technique d’inférence,
qu’on appelle aussi « naive Bayes », est trés répandue dans la pratique.

Le raisonnement bayésien permet également de combiner des inférences dans
le sens de la causalité et dans le sens opposé. Par exemple, considérons une

chaine :

avec les propositions suivantes :
A = « il y a une épidémie de méningite »
B = « le patient a la méningite »
C = « le patient a mal a la téte »

t
’ p(B|A) = 1/100, p(B|~A) = 1/50000, p(C|B) = 0.5,p(C) = 1/20
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Dans le cas ou il n’y a pas d’épidémie, nous avons p(B) = p(B|—-A) = 1/50 000
et la regle de Bayes donne le résultat :

p(C|B)p(B)
p(C)

0.5/50 000
1/20

= 1/5000

p(B|C)

Donc, la méningite n’est pas facilement associée a un mal de téte. Par contre,
§'ll y a une épidémie, p(B) = 1/100 et le calcul donne p(B|C) = 0.1.

La propagation des probabilités peut se concevoir comme une propagation
de « messages » entre les nceuds du graphe causal : des message du type 7(B)
qui arrivent au noeud B depuis les parents (A), dans le sens de la causalité, et
des message du type A qui arrivent depuis les descendants (C'), dans le sens
inverse.

Considérons d’abord le cas ou A et C' sont observés avec certitude. On peut
alors calculer :

p(B) < ar(B)\(B) (6.3)
ou
m(B) = p(B|A)
A(B) = p(C|B)
« = constante de normalisation

Afin de pouvoir facilement calculer la constante de normalisation, il convient
de propager pour chaque événement une combinaison de valeurs (p(vrai), p(fauz)).
Cela permet a tout moment d’appliquer la normalisation pour obtenir des pro-
babilités.

Comme la chaine causale assure que A et C' sont conditionnellement indé-
pendants étant donné B, le calcul correspond & :

p(B) = p(BJAC)
p(BlA)
p(C|A)

1
= pBINCIB) o
SN————

«

= p(C|A, B)

™ A

d’ot1 on peut déja savoir que o = m. En général, on peut déterminer « par

une normalisation normalisation qui assure que p(B) +p(-B) =1:

p(B) + p(=B)

a(p(C|A, B)p(B|A) + p(C|A, ~B)p(—~B|A))
a(p(C, B|A) +p(C,~B|A))

ap(C|A)
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ce qui nous donne également « = 1/p(C|A), mais s’applique de maniere géné-
rale indépendamment de la complexité du calcul.

Si les valeus de A et C ne sont pas connues exactement, mais par des distri-
butions de probabilité P(A) et P(C), on peut appliquer le méme calcul dans
une propagation (belief propagation). On décompose 7(B) = P(BJA) - 7(A) =
S s (@) P(Bla) et A(B) = P(C|B)-NB) = Y. P(clB)p(c) et applique le
méme calcul de la formule 6.3.

La propagation s’applique également si il y a plusieurs déscendants. Consi-
dérons un nceud Y qui a un parent U et k descendants X;..Xj :

O -~

On calcule pour chaque valeur y de Y :

p(y) = a-m(y) - Ay)
oll
o m(y) =3, plylu)my (u),
ou my (U) est le message requ de U et contient une probabilité pour chaque
valeur u de U.
k
* )\(Y) = Hj:l >\Xj (y)v
olt Ay, (y) est le message requ de Xj;.

o « est un facteur de normalisation pour que la somme des p(y) pour toutes
les valeurs de Y soit = 1.

et on envoie les messages :
o au parent U : Ax(u) = > Az)p(z|u)
o aux descendants Y; : 7wy, (z) = am(x) [[;4; Ay, (2)

Si Y n’a aucun parent, alors 7(y) est la probabilité & priori de y. Si Y est
une feuille, ensemble X est vide, et donc le produit A(Y) = 1. Si Y est observé,
alors p(y) est la probabilité apres I'observation, et A(y) est la distribution de
probabilités de y.

Notons cependant qu'une structure ou un événement a plusieurs causes
possibles, comme suit :
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conduit & une dépendance conditionnelle qui bloque le chainage de la propaga-
tion des probabilités. A et C sont indépendants, mais deviennent dépendants
quand B est connu :

p(AlC) = p(A]=C) = p(4)
p(A|B,C)  # p(AlC)

L’intuition est la suivante : si A explique déja B, C devient moins probable
comme explication. Dong, il y a une dépendance entre A et C. Cette dépendance
s’étend aussi aux effets de B, comme par exemple D. On dit alors que B et ses
descendants sont des noeuds qui bloguent le chemin entre A et C, et il n’est en
général pas possible de propager des probabilités sur de telles structures.

Une propagation locale des influences a travers une telle structure, par
exemple pour le calcul de P(A) & partir de P(B), n’est possible que si toutes
les autres causes sont indépendantes dans le graphe, dans I’exemple que A et C'
sont indépendants tant que B n’est pas connu. Dans un tel cas, on peut calculer
P(A,B,C) = P(B|A,C)P(A)P(C) et P(A|B) par marginalisation des valeurs
de C': P(A|B) =3, P(A|B,C) = a} .o P(A B,C). Une telle indépen-
dance existe notamment aussi si les valeurs des autres causes sont connues
exactement, ou bien si on n’a aucune information (méme indirecte) sur leur
valeur.

Si une telle indépendance n’est pas donnée, par exemple parce qu’il existe
des chemins causaux entre une autre variable Z et A et entre Z et ', la solution
est plus complexe. Pour une solution exacte, un graphe causal qui contient une
telle structure doit étre transformé en un graphe qui ne la contient pas par des
méthodes de clustering. L’alternative est une solution approximative par une
simulation, ce que nous allons voir plus tard. La méthode du clustering consiste
en deux étapes :

1) Transformation du graphe en un graphe moral : pour tout nceud qui a
plusieurs parents, on « marie » les parents en ajoutant un arc.

2) On regroupe les cliques dans le graphe résultant en clusters et on construit
un supernceud pour chacun.

La propagation devra alors utiliser la distribution jointe de probabilités de
tous ces événements, et devient vite tres colteuse.

Dans I'exemple, de la figure 6.3, le clustering pourrait générer deux nceuds :

Nl = {Oa }/7 Z}

No ={X,Y,Z}
liés par un lien causal qui exprime les probabilités conjointes de ces combi-
naisons d’événements. Si les méthodes de clustering rendent la technique des
réseaux bayésiens parfaitement générale, ils augmentent considérablement la
complexité des réseaux et sont de ce fait difficiles a appliquer.

Une alternative au clustering est de calculer les probabilités par une simu-
lation des différents cas de figure qui peuvent se présenter dans le réseau et
de leurs fréquences d’occurrence. Cette méthode a eu beaucoup de succes en
pratique, bien qu’elle ne soit pas garantie de produire des résultats corrects.
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Chemin1

Chemin2

Fig. 6.3 Ezemple d’une partie d’un réseau qui contient un cycle.

6.3.4 Chemins de causalité multiples

Meéme si les réseaux bayesiens réduisent fortement la complexité de I'inférence
probabiliste, les distributions de probabilité conditionelle qu’on doit y formu-
ler demeurent parfois trés complexes. Considérons notre systeme d’alarme : si
I’on devait y ajouter une vingtaine d’autres capteurs, comme on le ferait dans
une grande maison, la distribution P(A|{capteurs}) serait beaucoup trop com-
plexe pour étre calculée explicitement lors de la propagation, comme l'exige
lopération 6.1. Une telle explosion survient chaque fois qu’il existe des chemins
causaux multiples entre les causes et leurs conséquences.

Comme le calcul explicite de la distribution de probabilité jointe n’est pas
un but en soi, mais un moyen pour le calcul, on peut utiliser d’autres méthodes.
Une méthode qui s’est largement imposée consiste a réaliser une simulation du
raisonnement sur un grand nombre de cas de figure précis. Pour estimer P(A|C)
dans un réseau Bayesien qui comporte plusieurs nceuds intermédiaires, on peut
utiliser I'algorithme de simulation suivant :

1) Ordonner les nceuds par ordre causal.

2) Générer des instances d’état du réseau en commencant par les noeuds sans
parents, et en suivant les chaines causales :

e générer une valeur pour chaque descendant X des que tous les pa-
rents ont obtenus une valeur, selon la distribution P(X|{parents}) du
réseau ;

e itérer jusqu'a ce que toutes les variables aient une valeur.

3) Enregistrer la fréquence des paires de valeurs pour C et A jusqua ce qu’un
nombre suffisant de valeurs aient été obtenu.

4) Estimer P(A,C), et donc P(A|C) = P(A,C)/P(C), par la fréquence ob-
servée.

Dans I'exemple du systeme d’alarme, on simulerait différents comportements
du propriétaire et du cambrioleur, selon les probabilités données. Rappelons la
structure du graphe :
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nceud | parents descendants
p {} {M,E}

C {} {M,E,V}
M {P,C} {4}

E {P,C} {4}

|4 {c} {A}

A {M,E,V} | {}

On commence par générer un échantillon pour P et C' selon leur distribution a
priori. Ensuite on génere aléatoirement des valeurs précises pour chaque variable
descendante, en accord avec les probabilités conditionelles telles qu’elles figurent
dans le réseau. On répete ensuite ce processus un grand nombre de fois pour que
les probabilités se stabilisent. Par exemple, on pourrait générer les échantillons :

[P C|(MEV)|A
T [1]0] (1,00 |1
2 100 |(000 |0

500 |1 ] (o1 |1

pour finalement estimer les probabilités selon les fréquences. Si parmi 10000
échantillons, on en trouve 53 dans lesquels le propriétaire a déclenché ’alarme
sur 754 dans lequels le propriétaire était présent, on peut estimer :

count(A,P) 53 —0.07

p(AIP) = count(P) ~ 754

Si on trouve 4 échantillons dans lesquels le cambrioleur a déclenché 'alarme
sur 5 ou il était présent, cela nous donne :
count(A,C) 4

- - =08

p(AlC) = count(C) 5

Le point faible est évidement que sur les 10 000 échantillons, on n’en a utilisé
que 5 pour estimer p(A|C)! En pratique, il convient donc de ne simuler que les
scénarios qui ont effectivement un intérét, ou en tout cas de surpondérer ces
événements. Ici, on aimerait surpondérer les événements ot le cambrioleur est
présent.

Dans un cas ou la variable dont nous voulons surpondérer la probabilité n’a
pas de parents, cela peut se faire facilement : on ne génere que les échantillons
avec les valeurs voulues, c’est-a-dire ici les échantillons ou le cambrioleur est
présent. Dans le cas présent, on peut se limiter aux cas ou le cambrioleur est
présent et générer un nombre d’échantillons beaucoup plus significatif que les
5 qu’on a obtenu par un échantillonage purement aléatoire.

Que faire, cependant, si on veut changer la pondération d’une variable dé-
pendante, comme M ? On devrait traduire cela en une condition sur les parents,
C et P, mais il n’y a pas de calcul systématique qui nous permet de générer
des échantillons de C' et P qui aboutissent sur la distribution voulue de M.
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Dans un tel cas, il convient de générer une séquence d’échantillons, dont
chacun est fonction du précédent. Comme les échantillons forment une chaine
de Markov (dans laquelle chaque élément dépend uniquement du précedent),
on parle alors de Markov Chain Monte Carlo (MCMC). La technique la plus
connue est celle de I’échantillonage de Gibbs (Gibbs sampling).

Dans cette méthode, on fixe les variables connues a leur valeur, et ne les
fait jamais varier. Pour toutes les autres variables, on géneére & chaque itéra-
tion de nouvelles valeurs en fonction des valeurs des variables voisines. Dans un
réseau bayésien, une variable z; est conditionellement indépendant de toutes
les autres variables étant donnée sa couverture de Markov (Markov blanket)
M B(z;), définie comme ses parents, descendants directs et parents de ces des-
cendants. Comme ces variables ont toutes des valeurs connues, on peut calculer
la distribution de x; étant donné I’état de toutes les variables du réseau :

P(x;|MB(x;)) = aP(z;|parents) 11 P(y;|parents(Y;))
Y; Edescendants(X;)

ou « est un facteur de normalisation qui reflete les probabilités des variables
de M B(x;) et qui sera calculé tel que ) ~P(x;|MB(x;)) = 1.

A chaque itération, on choisit donc une variable z; dont la valeur n’est pas
fixée par une pondération et génere I’état suivant en lui attribuant une nouvelle
valeur selon la distribution calculée ci-dessus. La mise a jour se déroule dans
un ordre tel que les parents prennent les valeurs de l'itération courante, tandis
que leurs descendants gardent les valeurs de l'itération précédente tant qu’ils ne
sont pas mis a jour. On appelle cette maniere de procéder [’échantillonage selon
Gibbs (Gibbs sampling). On peut montrer que la distribution des échantillons
générés par le Gibbs sampling converge vers celle qu’on pourrait observer dans
le sous-ensemble des échantillons d’une simulation complete dont les variables
fixes possedent les valeurs voulues.

On procede aussi parfois en deux phases : stabilisation des distributions,
puis échantillonage.

Dans notre exemple, supposons que nous voulons estimer p(A|C, M). On ne
génere alors que des échantillons ot les valeurs de C et M sont fixées a 1 :

CM) |P|E|V]A
11 (1) |01 1
2((1,1) [1]1]0]0
30(1,1) o011
4111 oo |11
50,1 |[1]0 |10

L’estimation de la probabilité p(A|C, M) se fait simplement en comptant la
fréquence de A; par exemple si on a observé A = 1 dans 55 échantillons sur

100 :
count(A) _ 55 055
nombre d’echantillons =~ 100

On peut appliquer ces techniques soit pour effectuer une inférence spécifique,
soit pour faire une sorte de compilation d’un réseau complexe, dont on élimine

= Pr(A|C, M) =
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les variables intermédiaires pour ne garder que la relation conditionelle entre
les variables dont la valeur est fixée a I’entrée et le résultat final. Par exemple,
pour un diagnostic médical, on pourrait extraire la distribution conditionelle
p(maladie|symptomes visibles) afin de pouvoir 'appliquer de maniere efficace
sans passer par toute la chalne causale.

6.3.5 Applications

Les réseaux bayésiens ont connu un fort succes pratique, notamment dans des
applications de diagnostic. Leur utilité repose sur deux observations. La pre-
miere est qu'il est tres facile pour un expert d’identifier les liens qui devraient
figurer dans le réseau. La deuxieme est que les résultats obtenus, c’est-a-dire
la proposition qui est jugée la plus probable, sont trés peu sensibles au choix
précis des probabilités : les performances du systéme sont acceptables méme si
les probabilités sont estimées de maniere grossiere.

Parmi de nombreuses applications, on trouve :

o des systemes de diagnostic médical,
o des systemes de diagnostic de réacteurs d’avions,
o la plupart des filtres anti-spam,

o les divers assistants dans les logiciels de Microsoft.

Littérature

La logique floue a été présentée dans [21] et a ensuite été mentionnée dans
de nombreuses autres publications. La modélisation et 'inférence dans les ré-
seaux probabilistes bayésiens sont décrites dans [22], qui est la référence la plus
connue, et aussi dans [23]. Le livre de Koller et Friedman [24] est une reférence
trées compléte sur les techniques d’inférence Bayesiens, et celui de Darwiche [25]
est un ouvrage plus compact et axé sur la pratique.

Les aspects liés a la modélisation de la causalité sont décrites dans un ex-
cellent livre de Pearl [26].

Outils - domaine public

Il existe de nombreux outils pour le raisonnement et la construction de réseaux
bayésiens. Citons par exemple les Bayesian Network tools in Java (BNJ) :

http://sourceforge.net/projects/bnj

On peut mentionner également les extensions pour des programmes comme
Maple.

Pour I'utilisation pratique de 'inférence probabiliste, il convient souvent de
compiler le modeéle pour permettre une inférence rapide. Le logiciel Ace est un
tel compilateur :

http://reasoning.cs.ucla.edu/ace/
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Outils - commercial

Les techniques de raisonnement incertain et surtout les méthodes des réseaux
bayésiens font partie de toutes les logiciels d’Intelligence Artificielle commercia-
lisés par les grands fournisseurs tels que IBM, Microsoft ou HP. Comme societé
qui commercialise un outil spécifique pour les réseaux Bayesiens, citons Hugin
Expert (http://www.hugin.com).

r

Application : voitures autonomes

Conduire une voiture peut étre un plaisir, mais aujourd’hui, pour beau-
coup, il s’agit plutdét d’une corvée dont on aimerait bien se passer. Qui
n’aimerait pas avoir son propre chauffeur et utiliser le temps du parcours
a travailler ou faire une sieste ?

Le progres de la technologie a été rapide : lors d’un premier concours de
I’agence de recherche US DARPA en 2004, aucun des véhicules n’a réussi
a traverser plus de 5% du parcours de 150 miles dans le désert. Déja
une année apres, une VW modifée par une équipe de Stanford a effectué
le trajet en moins de 7 heures. En 2009, la méme équipe, reprise par
Google, lancait les premieres voitures autonomes sur les routes publiques
en Californie. On parle d’'une commercialisation a large échelle avant 2020.
La technologie qui a rendu possible cette performance est celle des ré-
seaux bayésiennes. Les voitures reconnaissent leur position, les panneaux
et autres participants par des capteurs et systemes de vision. L’informa-
tion est assemblée dans un réseau bayésien pour donner une image précis
de la situation du vehicule et du traffic, et ainsi permettre la planification
du mouvement.

L’inférence bayésienne est essentielle pour réussir 'intégration cohérente
des informations des capteurs et la situation dynamique du traffic qui
nécessite une adaptation constante du modele par des inférences logiques.
Par des années d’essais, Google a construit une base de connaissances assez
complete des situations qui peuvent se produire dans le traffic habituel, ce
qui en fait un conducteur « systeme expert » chevronné!

(Source : Google Self-Driving Car Project : How it works

https ://www.google.com/selfdrivingcar/how/ (chargée le 26.5.2016))

J

6.4 Exercices

Exercice 6.1 Premiere partie - Réseaux Bayésiens

La premiere série d’exercices traitera des réseaux bayésiens, mais sans pro-
grammation. Le but est de passer en revue les principes du raisonnement pro-
babiliste, la modélisation des liens de causalité et I'inférence dans un réseau
bayésien.
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Dans la deuxieéme partie, vous modifierez le moteur d’inférence a chainage
avant avec variables que nous avons développé dans les exercices des chapitres
précédents afin de prendre en compte la possibilité d’incertitudes dans les faits
et les regles.

Exercice 6.1.1 Raisonnement probabiliste

Apres votre bilan de santé annuel, vous recevez par courrier les résultats de
vos examens : vous avez été testé positif a une maladie grave. Les taux de
faux positifs et négatifs sont de 1 %, c’est-a-dire que la probabilité que le test
classifie un patient sain comme étant malade ou un malade comme étant sain
est de 0.01. Par bonheur, cette maladie est extrémement rare : elle ne frappe
qu’une personne sur dix mille.

Question 1. A laide d’'un raisonnement probabiliste, expliquez pourquoi la
rareté de la maladie est une chance pour vous. Indication : utilisez la regle
d’inférence bayésienne, T = Test et M = Maladie constituant les événements
concernés.

Exercice 6.1.2 Causalité

Les liens de causalité expriment des relations du type st A = 1,alors B = 1,
c’est-a-dire, selon le formalisme de la logique propositionnelle, des regles du
type A = B, A et B étant deux prédicats booléens. Lorsque le raisonnement
est incertain, la causalité peut étre établie via un raisonnement probabiliste :

(A = B) devient (A = B avec probabilité P(B|A))

L’inférence bayésienne(l) consiste alors généralement & partir d’une obser-
vation sur B afin d’établir la probabilité selon laquelle A est vrai, c’est-a-dire
que ’on remonte la chaine de causalité. Cet exercice a pour but de vous donner
une idée de la raison pour laquelle cela est généralement le cas.

Considérons une petite histoire. L’inspecteur Smith se trouve a Priory School ™.
Il attend le détective Holmes et son ami, le docteur Watson, pour enquéter sur
la disparition d’un professeur. Mais ils sont en retard. Tous deux ont la répu-
tation d’étre mauvais conducteurs et 'inspecteur Smith se demande si la route
est gelée, ce qui leur causerait certainement de gros ennuis. Il téléphone a sa
secrétaire, Miss Lovelace, qui I'informe que le Dr Watson a effectivement eu un
accident. Voici leur conversation :

Smith — Un accident 7 Bien, la route étant probablement gelée, il
est probable que Holmes ait aussi eu un accident !

Lovelace — La route, gelée ? Non, certainement pas : il ne fait pas si
froid et les routes ont été sablées.

Smith — Pas de chance pour Watson alors. Attendons Holmes encore
dix minutes. ..

1
) http://www.ai.mit.edu/courses/6.825/fall02/pdf/6.825-1lecture-15.pdf

2
@ https://en.wikipedia.org/wiki/The_Adventure_of_the_Priory_School
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Le lendemain, 1’épouse de Watson, Mary, lit le journal. Elle découvre 'ac-
cident de son mari et apprend que le professeur de Priory School a été sauvé
et les ravisseurs arrétés. Voici ses pensées :

— Ils ont arrété les ravisseurs ? Alors, Holmes n’a probablement pas
eu d’accident, donc la route n’était probablement pas gelée.

Elle lit ensuite qu’il ne faisait pas si froid et que les routes avaient été sablées.
Elle se dit :

— Décidément, Holmes a évité ’accident.

Modélisation du probléme

Question 1. Formalisez les relations entre les événements de cette petite histoire
a I’aide d’un réseau bayésien a quatre nceuds :

o I=Route-Gelée
e H=Accident-Holmes
o W=Accident-Watson

e S=Professeur-Sauvé

Question 2 (Inférence déductive). Sil’on connait la probabilité de 1’événement
I, P(I) :

o Comment peut-on calculer les probabilités P(H) et P(W') des événements
H et W ? De quelles informations faut-il disposer quant aux relations entre
I, HetW?

o Comment peut-on calculer la probabilité P(S) de ’événement S ? Quelles
informations nous faut-il sur les relations entre I, H, W et S 7

Question 3 (Inférence abductive). Comment peut-on exprimer la probabilité de
Pévénement I lorsqu’on sait si I’événement W s’est produit ou pas (W =1 ou
W =0)? Si l'on connait P(I), quelles informations nous faut-il sur la relation
entre I et W pour calculer cette probabilité 7

Question 4 (Déduction et abduction). Si on connait P(I) :

o Comment peut-on exprimer la probabilité de I’événement H lorsqu’on sait
si 'événement W s’est produit ou pas? Quelles informations nous faut-il
sur les relations entre I, W et H pour calculer cette probabilité ?

o Comment peut-on exprimer la probabilité de H lorsqu’on sait si les événe-
ments W et S se sont produits ou pas? Quelles informations nous faut-il
sur les relations entre I, H, W et S pour calculer cette probabilité ?

e Comment peut-on exprimer la probabilité de H lorsqu’on sait si les évé-
nements I, W et S se sont produits ou pas? Quelles informations nous
faut-il sur les relations entre I, H, W et S pour calculer cette probabilité ?
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Calcul probabiliste

Ajoutons maintenant les informations sur les relations de ce réseau. Sachant
qu’il est probable que la route soit gelée et que Holmes et Watson soient de
mauvais conducteurs, nous considérerons que :

P(I=1)=0.7
P(H=1I=1)=09,P(W=1T=1)=0.7
P(H=1I=0)=01,P(W=1T=0)=05

Ensuite, sachant que la présence de Holmes est essentielle pour la résolution
d’une affaire, nous considérerons que :

P(S=1H=1,W=1)=0.1
P(S=1H=1,W =0)=0.2
P(S=1H=0,W=1)=0.8
P(S=1H=0,W=0)=1

Question 5. Complétez les tableaux des probabilités conditionnelles P(H|I) et
PW|I).

PHD [I=1]I=0]PW) |[I=1]1=0
=1 W =1
0= W =0

Question 6. A partir de ces tableaux, calculez les probabilités que Holmes et
Watson aient eu un accident, P(H =1) et P(W =1).

Question 7. Des que Miss Lovelace 'a informé que Watson a eu un accident,
Smith déduit que les routes sont probablement gelées. Calculez la probabilité
PI=1W=1).

Question 8 (Dépendance). Ensuite, il en déduit que Holmes a probablement eu
un accident aussi. Quelle est la probabilité P(H = 1|IW = 1)? Comparez-la
avec P(H =1) : H et W sont deux événements dépendants.

Question 9 (Indépendance conditionnelle). Dés que Miss Lovelace I'informe que
les routes ne sont pas gelées, Smith revient sur ses conclusions. Quelle est la
probabilité P(H = 1|W = 1,1 =0) ? Comparez-la avec P(H = 1|I =0) : H et
W sont deux événements indépendants, étant donné I.

Question 10. Complétez le tableau de la probabilité conditionnelle P(S|W, H) :

PSW,H) |[H=1,W=1 | H=1,W=0|H=0,W=1] H=0, W =0

S=1

S=0

Question 11 (Causes multiples). A partir de ce tableau, calculez la probabilité
que le professeur ait été sauvé, P(S = 1).

Question 12. En découvrant ’accident de son mari et le dénouement de ’affaire
de la Priory School, Mary conclut que Holmes a évité 'accident. Quelle est la
probabilité P(H =1|[W =1,5=1)7
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Question 13 (Abduction avec plusieurs conséquences). Ensuite, elle déduit que
les routes n’étaient pas gelées. Quelle est la probabilité P(I = 1|W =1,5=1)7

Question 14. Finalement, elle découvre 1’état des routes et déduit que Holmes
n’a certainement pas eu un accident. Quelle est la probabilité P(H = 1|I =
oLw=1,5=1)?

Question 15 (Dépendance conditionnelle). Et si Mary n’était pas au courant
de Taccident de Watson? Quelle est la probabilité P(H = 1|I = 0,5 = 1)?
Comparez-la avec P(H = 1[I =0,W = 1,5 = 1) : H et W sont deux événe-
ments dépendants, étant donnés I et S.

Question 16. Finalement, quelle cause pourrait expliquer ’accident de Watson ?
Peut-étre ses pneus sont-ils trop vieux 7 Modifiez le réseau en ajoutant le nceud
V =Vieux-Pneus-Watson.

Question 17. Comment peut-on exprimer la probabilité de I’événement V des
lors qu’on sait si les événements I et W se sont produits ou pas ? Si ’on connait
P(V), de quelles informations faut-il disposer sur les relations entre I, W et V
pour calculer cette probabilité ?

Solutions a la page 356

Exercice 6.2 Deuxiéme partie - Facteurs de Certitude

Dans cet exercice, nous allons modifier notre moteur d’inférence & chainage
avant de fagon a intégrer la notion d’incertitude dans les faits et les regles.
Les modules ci-dessous représentent le squelette du programme que nous allons
développer.

Notez que le code de cette série s’appuie sur des modules développés dans
les chapitres précédents. Nous ne les reproduisons pas ici, mais il est nécessaire
de pouvoir les importer. Veillez a organiser vos dossiers en conséquence.

Module .../moteur_avec_variables_fc/facteurs_certitude.py :
def fc_ou(fcl, fc2):
print('a compléter')

def fc_et (fcl, fc2):
print('a compléter')

Module .. ./moteur_avec_variables_fc/regle_avec_variables_fc .py -
from .facteurs_certitude import fc_et
class RegleAvecVariables_FC:

def _init_ (self, conditions, conclusion, fc=1.0):
print('a compléter')
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def depend_de(self, fait, methode):
envs = {}

for condition in self .conditions:
# Si au moins une des conditions retourne un environnement,
# nous savons que la proposition satisfait une des conditions.
env = methode.pattern match(fait, condition, {})
if env != methode.echec:
envs|[condition] = env

return envs

def satisfaite_par ( self, faits, cond, env, env_fc, methode):
print('a compléter')

def _repr_ (self ):
return '{} => {}, {}'.format(str(self.conditions),

str( self .conclusion ),
str(self . fc))

Module .. ./moteur_avec_variables_fc/connaissance_fc.py :

from .facteurs_certitude import fc_ou
from moteur_avec_variables_fc. regle_avec_variables_fc import RegleAvecVariables_ FC

class BaseConnaissances_FC:
def _init_ (self ):
self . faits = {}
self . regles = ||

def ajoute_un_fait ( self , fait ):
print('a compléter')

def ajoute_faits ( self , faits ):
for fait in faits:
self . ajoute_un_fait ( fait )

def ajoute_une_regle( self , description ):
print('a compléter')

def ajoute_regles (self , descriptions ):
for description in descriptions :
self . ajoute_une_regle (description)

Module . ../moteur_avec_variables_f c/chainage_avant_avec_variables_fc Py :

from moteur_sans_variables.chainage import Chainage
from moteur_avec_variables. filtre import Filtre

class ChainageAvantAvecVariables. FC(Chainage):
def _init_ (self, connaissances, methode=None):
Chainage. __init__ ( self , connaissances)

if methode is None:

self .methode = Filtre()
else:

self .methode = methode
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def instancie_conclusion ( self , regle, envs et_fcs ):
print('a compléter')

def chaine(self ):
print('a compléter')

Module .../exemple_animaux.py :

from sys import argv, exit

from moteur_avec_variables_fc. regle_avec_variables_fc import RegleAvecVariables_ FC

from moteur_avec_variables_fc.connaissance_fc import BaseConnaissances FC

from moteur_avec_variables.unificateur import Unificateur

from moteur_avec_variables. filtre import Filtre

from moteur_avec_variables_fc. chainage_avant_avec_variables_fc import
ChainageAvantAvecVariables_FC

regles = [
([( ' placentaire', '?x')], ('mammifere’, '?x')),
([( "marsupial', '"?x")], ('mammifere', '?x')),
([( 'monotreme', '?x")], ('mammifere', '?7x")),
([( ' placentaire—1', '?x')], ('placentaire', '?x')),
([( 'genre—placentaire', '?x')], ('placentaire', '?x")),
([( 'a—des—poils', '?x'), ('a—des—bébés—formes', '?x'),
'température—stable', '7x"' )],
placentaire—1', '?x'), 9.0/10.0),
'a—des—poils', '?x'), ('a—des—bébés—foetaux', '?x'),
'température—stable', '7x"' )],
marsupial', '?x'), 95.0/100.0),
'a—des—oeufs', '?7x'), ('a—des—poils', '?x"),
'température—stable', '?x" )],
monotréme', '7x")),
singe', '?x")], ('genre—placentaire', '?x')),
primate', '?x')], ('singe', '?x')),
'"lémurien', '?x')], ('singe', '?x")),
chimpanzé', '?x' )], ('primate', '?x")),
gorille ', '?x')], ('primate', '?x')),
canidé', '?x')], ('genre—placentaire', '?x')),
chien', '?x')], ('canidé', '7x')),
'loup', '?x")], ('canidé', '?x')),
'lycaon', '?x'")], ('canidé', '?x')),
"félin', '?x')], ('genre—placentaire', '?x")),
"chat', '?x')], ('félin', '?x')),
"lion', '?x")], ('félin', '?x")),
tigre', '?x')], ('félin', '?x')),
tigre —du—bengale', '?x")], ('tigre', '?x'")),
tigre —de—1—himalaya', '?x")], (' tigre', '?x")),
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if len(argv) < 2 or argv[l].lower() not in ('a', 'b'):
print('On attend au moins un arguments: A ou B')
exit (1)

if argv [1].lower() == "a"
faits_initiaux = [

(('a—des—poils', 'blaireau' ),),
(('a—des—bébés—formes', 'blaireau'),),
(('température—stable', 'blaireau' ),),



Traitement de 'information incertaine

a—des—poils',

température—stable',

1
1
'a—des—poils',
1

température—stable',
a—des—oeufs',
a—des—oeufs',
a—des—poils',
température—stable',

1
1
'température—stable',

('
('
('
('
('
('
('
('
((
((
('
((
((
((
((
('
('
('
((
((
((

J
elif argv [1]. lower() == 'b":
faits_initiaux = [
a—des—oeufs'

température—stable',

a—des—poils',
a—des—bébé—formes',
température— stable
a—des—poils',
a—des—bébé—formes'
température—stable',

("
('
('
('
('
('
('
("
('

J

bc = BaseConnaissances_FC()
be. ajoute_faits ( faits_initiaux )
bc. ajoute_regles (regles)

moteur =
moteur.chaine()

moteur. affiche_solutions ()

'écureuil ' ),),
a—des—bébés—formes',

'écureuil"),),
'écureuil ' ),),

chimpanzé', cheetah )s)s
gorllle ", 'bozo'),),
singe', 'babouin'),),
singe', 'paresseux'),),
chlen 'bill '),),
'loup', 'loup—l‘),),
'lycaon', 'lycaon—1'),),
chat', 'mistigri'),),
lion', 'minet'),),

tigre —du—bengale', 'tigre—du—bengale—1'),),
'kangourou'),),
a—des—bébés—foetaux', 'kangourou'),),

'kangourou ))),

ornythorinque' ),
'nouveau—spécimen'), 5.0/10.0),
'ornythorinque'),),

'nouveau—spécimen'), 9.0/10.0),
'ornythorinque'),),

, 'nouveau—spécimen'), 5.0/10.0),

'nouveau—spécimen'), 9.0/10.0),

a—des—poils', nouveau—spécimen'), 9.0/10.0),
'écureuil ' ),),

'écureuil’),),
'écureuil ' ),),

'un— specimenfqui7ressemb1e7afun7écureuil') , 0.9),
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, 'un—spécimen—qui—ressemble—a—un—écureuil'), 0.7),

'un—spécimen—qui—ressemble—a—un—écureuil'), 0.8),

ChainageAvantAvecVariables_FC(connaissances=bc, methode=Filtre())

if len(argv) > 2 and argv(2].lower() == 'trace':

moteur. affiche_trace ()

Exercice 6.2.1 Manipulation des facteurs de certitude

Dans cet exercice, nous aurons besoin de pouvoir combiner les facteurs de cer-
titude de faits entrant dans une relation logique les uns avec les autres. Com-
mencez donc par compléter la fonction fc_et de facteurs_certitude.py, qui
prend comme parametres deux facteurs de certitude devant exister conjointe-
ment et qui retourne le minimum des deux. Cette fonction sera utilisée par la
méthode RegleAvecVariables_FC.satisfaite_par, que nous verrons ci-dessous,
pour calculer le facteur de certitude associé a un ensemble de conditions.
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Dans le méme module, codez aussi une fonction fc_ou qui prend comme
parametres les facteurs de certitude de deux faits identiques par leur contenu
(méme proposition) et qui retourne le facteur de certitude résultant. Cette fonc-
tion sera utilisée par la méthode BaseConnaissances_FC.ajoute_un_fait pour
réaliser la mise a jour des facteurs de certitude.

Exercice 6.2.2 Le faits et les regles

Des facteurs de certitude doivent étre associés aux faits et aux regles. Le langage
Python ne permettant pas d’utiliser des structures au sens des struct du C,
nous ferons usage de tuples de la forme (fait, fc), ou fait est le fait que 'on
veut définir et fc un facteur de certitude. Nous aurons ainsi par exemple :

fait = (('pere', 'Jean', 'Paul'), 9/10)

D’une fagon analogue, la classe RegleAvecVariables_FC implémentera une
regle avec trois attributs :

o conditions : la liste des conditions de la regle;
o conséquence : la conséquence de la regle;

o fc : le facteur de certitude associé a la regle.

Nous aurons ainsi par exemple :

regle = RegleAvecVariables_ FC([('pere', '?x", '?z'), ('pere', '?z', '?y')],

('grand—pere', '?x', '?y'),

8/10)

RegleAvecVariables_FC s’inspire donc de la classe RegleAvecVariables du
moteur de chainage avant en lui ajoutant un attribut self.fc, qui contiendra
la valeur du facteur de certitude associé. Le constructeur de la regle, que vous
devez compléter, devra prendre trois arguments, en accord avec la définition
ci-dessus. Pour simplifier la création de nouvelles régles, vous pouvez stipuler
que l'argument correspondant au facteur de certitude soit optionnel, avec une
valeur par défaut de 1.0.

La méthode RegleAvecVariables.satisfaite_par : La méthode depend_de de
la classe RegleAvecVariables peut étre reprise telle quelle. Il faut en revanche
modifier la méthode satisfaite_par de sorte qu’elle prenne comme arguments :

o La liste des faits déja connus;

o La condition testée avec succes par depend_de;

o L’environnement résultant de ’appel & depend_de;

o Le facteur de certitude associé au fait qui a déclenché la regle;

» La classe de pattern matching (filtre ou unificateur) utilisée.

La valeur de retour doit étre une liste de pairs d’environnements, accom-
pagnés chacun par le facteur de certitude associé. Le facteur de certitude d’un
nouvel environnement est donné par le minimum des facteurs de cet environ-

nement et du fait passé en argument a ’appel de la fonction pattern_match qui
a conduit a la découverte du nouvel environnement.
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Prenons par exemple (par simplification, les faits et régles ne sont pas écrits
selon le format interne) :

regle = ([('vole', '?x', '?y"), ('est—découvert', '?7x')],
('en—prison', '?x', 'pour—vol—de', '?y'), 8/10)

faits = [
(('vole', 'Jean', 'bijoux'), 9/10),
(('vole', '"Paul', 'voiture'), 8/10),
(("est—découvert', "Paul"), 6/10),
(("est—découvert', 'Jean'), 8/10))

J

# Fait déclencheur :
fait_declencheur = (('est—découvert', 'Jean'), 8/10)

# Paires de conditions et environnements retournées par régle.depend_de :
envs = {('est—découvert', '?x') : {'?x': 'Jean'}}

# L'essai de la régle par le moteur achainage avant doit provoquer ' appel
# suivant de régle. satisfaite_par
satisfaite_par (faits, ('est—découvert', *?x'), {'?x': 'Jean'}, 8/10))

—> [({"?x": 'Jean', '?y': 'bijoux'}, 8/10)]

La base de connaissances : La base de connaissances BaseConnaissances_FC doit
aussi étre modifiée en adaptant les méthodes ajoute_un_fait et ajoute_une_regle
aux nouvelles définitions des faits et des regles :

e ajoute_un_fait(((’pére’, ’Jean’, ’Paul’), 9/10)) ajoute le fait (’pe-
re’, ’Jean’, ’Paul’) a la base de connaissances avec un facteur de cer-
titude de 9/10;

e ajoute_un_fait((’pére’, ‘Paul’, ’Marc’)) ajoute le fait (’pére’, ’Paul’,
"Marc’) a la base de connaissances avec une facteur de certitude de 1 (va-
leur par défaut) ;

e ajoute_une_regle(([(’pére’, ’>?x’, ’7z’), (’pére’, ’7z’, ’7y’)],
(’grand-pére’, ’7x’, ’?y’), 8/10)) ajoute une regle a la base de connais-
sances avec un facteur de certitude de 8/10;

e ajoute_une_regle(([(’pére’, ’>?x’, ’7z’), (’pére’, ’7z’, ’7y’)],
(’grand-pére’, ’7?x’, ’7y’))) ajoute une regle a la base de connaissances
avec un facteur de certitude de 1.

La fonction ajoute_un_fait continue de jouer le méme réle que par le passé :
elle ajoute un fait a la base des faits si celui-ci n’est pas déja connu. Cependant,
elle doit étre modifiée pour tenir compte des facteurs de certitude. En effet, si
le fait & ajouter n’est pas nouveau (il a donc été démontré auparavant par
un chemin différent), il faut mettre & jour le facteur de certitude associé pour
refléter la nouvelle valeur de certitude. Utilisez la méthode fc_ou dans ce cas.
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Exercice 6.2.3 Le moteur d’inférence a chainage avant avec variables

La méthode ChainageAvantAvecVariables.instancie_conclusion Comme au-
paravant, la méthode instancie_conclusion de la classe ChainageAvantAvec-
Variables_FC doit instancier la conséquence d’une régle au moyen d’une liste
d’environnements. Cependant, les nouveaux faits doivent maintenant se voir
affecter un facteur de certitude, qui dépendra du facteur de certitude de la
regle et de celui qui résulte des conditions. Elle doit donc prendre en parametre
une liste de paire d’environnements associés a leurs facteurs de certitude, et
retourner les instanciations de la conclusion, munies chacune de leur facteur de
certitude.

Prenez bien en compte la formule de calcul du facteur de certitude résultant
de 'application d’une regle. Exemple :

reégle = ([('vole', '?x', '?y"), ('est—découvert', '?x')],

('en—prison', '?x', 'pour—vol—de', '?y'), 8/10)

instancie_conclusion (regle,
[({"?x" : "Jean', '?y' : 'bijoux'}, 8/10),
{'?x" : '"Paul', '?y' : 'voiture'}, 6/10)])
—> [(("en—prison', 'Jean', 'pour—vol—de', 'bijoux'), 16/25),
(('en—prison', 'Paul', 'pour—vol—de', 'voiture'), 12/25)]

La méthode ChainageAvantAvecVariables_FC.chaine :Les faits dont le facteur de
certitude est négatif ne doivent pas étre utilisés comme déclencheurs, méme s’ils
sont consignés dans la base des faits. Implémentez donc la méthode de chainage
avant chaine de ChainageAvantAvecVariables_FC en tenant compte des modifi-
cations apportées aux autres fonctions et en vous inspirant de l’algorithme
suivant :

ChainageAvantAvecVariables_FC(faits_depart, regles)
1. solutions <— liste vide

2. Q <— faits_depart
3. WHILE Q n'est pas vide DO
4. q <— premier(Q)
5. Q <— reste(Q)
6. IF q n'est pas dans solutions THEN
7. ajouter q a solutions
8. IF le facteur de certitude fc de q est plus grand que 0 THEN
9. FOR EACH regle r de regles DO
10. envs <— toute les paires de conditions et environnements issues
du pattern matching réussi entre q et les conditions de r
11. FOR chaque condition cond et environnement env de envs DO
12. envsl <— toutes les paires environnements et fcs établis
par le pattern matching des conditions restantes
de r étant donné env
13. FOR chaque environnement envl et facteur fcl de envsl DO
14. instances <— instanciation de la conclusion de r selon
envl et fcl
15. ajouter instances en queue de Q
16. END FOR
17. END FOR
18. END FOR
19. END IF

20. END IF
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21. END WHILE
22. RETURN solutions
END ChainageAvantAvecVariables FC

Test du programe

Le module exemple_animaux.py contient des regles et des faits modélisant une
petite partie d’'un arbre de classification des mammiferes. Apres avoir écrit
votre programme, testez-le sur le premier exemple en ajoutant 'option A. Vous
pouvez afficher la trace en utilisant ’option trace.

python3 exemple_animaux.py A
python3 exemple_animaux.py A trace

Le module contient un deuxieme exemple que vous pouvez exécuter avec la
commande :

python3 exemple_animaux.py B
python3 exemple_animaux.py B trace

Solutions a la page 361






DEUXIEME PARTIE

Le raisonnement basé sur
modeles






L’informatique classique procede selon le principe de la déduction : des en-
trées bien définies sont transformées en un ou plusieurs résultats. La transforma-
tion elle-méme s’effectue de manieére indépendante du contexte ; un programme
fonctionne de la méme maniére dans toutes les situations.

En Intelligence Artificielle, on consideére en plus la possibilité qu'un pro-
gramme déductif puisse étre appris en observant un grand nombre de paires
entrées-résultats. Par exemple, on peut programmer une voiture autonome par
un apprentissage a partir d’observations portant sur le comportement d’un
conducteur humain.

Cependant, le résultat souhaité dépendra souvent du contexte et des objec-
tifs ; souvent aussi, on ne possede pas d’expérience antérieure qui puisse servir
de modele. Une voiture autonome peut ainsi se retrouver rentrer dans des si-
tuations pour lesquelles aucune expérience n’est disponible, par exemple sur
des chantiers ou lors d’accidents de la route.

Dans de tels cas, il faut chercher une nouvelle solution en utilisant comme
modeéle les connaissances déductives programmeées ou apprises dans des situa-
tions analogues et plus fréquentes. Il s’agit d’imaginer des situations hypothé-
tiques dont on ne possede aucune experience préalable et d’en tirer la meilleure
solution du point de vue des objectifs que l'on s’est donnés. Cette capacité
d’imagination est une des caractéristiques qui expliquent la puissance de 'in-
telligence humaine.

En termes plus formels, on cherche alors un ensemble de parameétres qui,
associés a un modele, rendront possibles des conclusions qui répondent aux
exigences du probleme. Le raisonnement déductif part d’'un modele et de para-
metres pour trouver des conclusions :

modele A parametres - conclusions

Dans le cas qui nous intéresse, nous disposons d’un modele et de conclusions et
nous cherchons les parametres qui rendront valide la dérivation des conclusions :

modele A conclusions - parametres
Par exemple,

o Dans une tache de diagnostic portant sur un dispositif en panne, on pos-
sede un modele du fonctionnement du dispositif et, comme conclusions, les
observations de son comportement actuel. On cherche comme parametres
les composantes défectueuses qui expliquent ce comportement.

e Dans un probléeme de planification, le modele consiste en I’ensemble des
opérateurs plus la situation de départ. Les conclusions sont les objectifs &
atteindre. On cherche comme parameétres une séquence d’opérateurs qui
garantisse que les buts seront atteints.

Souvent, ce raisonnement implique aussi une optimisation : on cherche le diag-
nostic le plus probable, ou bien le plan le plus efficace.

Ce type de raisonnement logique s’appelle [’abduction; on parle aussi de
raisonnement basé sur des modéles ou de résolution de problémes. L’abduction
n’est correcte que si on fait 'hypothese d’'un monde clos, c’est-a-dire si toutes
les possibilités d’obtenir les conclusions sont supposées connues. Par exemple,
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si on découvre un nouveau type de défaut d’un dispositif, un diagnostic qui n’a
pas pris en compte cette possibilité ne sera plus correct. Toutes les méthodes
pour résoudre un probleme abductif font cette hypothése du monde clos, et il
existe des différences importantes entre les méthodes quant a la fagon de la
mettre en ocuvre.

Dans le raisonnement basé sur des modéles, qui donne son titre a cette par-
tie, I'hypothése d’un monde clos n’est prise en compte qu’au moment ou le pro-
bleme est résolu. L’abduction se fait donc directement sur la base du modéle, qui
pourrait également s’utiliser de fagon déductive. Cela veut dire que le modele
peut changer entre différentes applications du systeme sans qu’une reprogram-
mation soit nécessaire. Le prix a payer pour cette avantage est cependant que
I’abduction exige toujours une recherche entre les différentes valeurs possibles
des parametres. Les principaux algorithmes d’abduction reposent donc sur des
algorithmes de recherche.

Dans cette deuxieme partie, nous passerons d’abord en revue des algo-
rithmes de recherche généraux et ensuite des algorithmes adaptés a une classe
plus restreinte de problemes abductifs, celle des problemes de satisfaction de
contraintes. Enfin, nous examinerons deux applications, le diagnostic et la pla-
nification. Le diagnostic est le plus simple car dans ce cas, l’espace des solutions
possibles est clos : il se limite aux combinaisons des différentes composantes.
Par contre, la planification est un probleme ouvert, car il n’y a aucune limite
aux nombre d’opérations requises.



CHAPITRE 7

Résolution de problemes par
recherche

Comme nous 'avons déja souligné dans l'introduction, les systémes basés sur
la connaissance utilisent des méthodes de résolution différentes de celles pro-
posées par algorithmique classique. Ces méthodes s’appliquent aussi bien a
des problemes admettant plusieurs solutions qu’a ceux qui n’en ont aucune.
Dans les systemes algorithmiques par contre, pour tout probleme, c’est une
solution unique qui est atteinte par un traitement direct. Les systemes basés
sur la connaissance atteignent généralement un but en cherchant une solution
satisfaisante dans un espace d’alternatives. La recherche peut retourner une,
plusieurs ou méme aucune solution.
Un processus de recherche est constitué de deux parties : un générateur de
solutions et un évaluateur du progres effectué. Le moteur & chalnage-avant, vu
précédemment, constitue I’exemple le plus simple de systemes de recherche.
Il génere les solutions possibles en appliquant a la base de données la regle
d’inférence du modus ponens. L’évaluateur, pour sa part, controle si le but
désiré est atteint ou pas. Ce processus présente en fait deux inconvénients :
¢ Le mécanisme a chainage-avant est incapable de discerner des alternatives
mutuellement exclusives : tous les éléments de la base de faits se doivent
d’étre simultanément valides. Cela implique également qu’il est impossible
de formuler des regles disjonctives de la forme : C = A ou B.

o Les états intermédiaires sur le chemin menant a la solution ne sont pas
évalués. La recherche est donc completement aveugle jusqu’au moment o
la solution est effectivement atteinte.

Dans ce qui suit, nous verrons par quelles extensions il est possible d’éli-
miner ces deux problemes. Le premier probleme peut étre contourné par la
construction d’'un graphe de recherche explicite des différents environnements
d’alternatives, ce qui a déja été utilisé dans ’algorithme de chainage arriére.
La solution au second probleme consiste a utiliser des heuristiques d’évaluation
permettant de décider quelle partie du graphe il faut explorer.

7.1 Arbres et graphes de recherche

L’espace exploré par un processus de recherche est en fait un arbre constitué
de neeuds et d’arcs. Chaque noeud représente une étape d’inférence : un envi-
ronnement de buts dans un systeme a chalnage arriere, ou bien une solution
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abstraite ou partielle. Les arcs correspondent aux applications des regles qui
transforment une solution partielle en une autre.

L’arbre de recherche décrit par la figure 7.1 montre une partie de I’espace
exploré en vue de résoudre le probleme des quatre reines. Le but de ce probleme
est de placer les reines sur un échiquier de seize cases de telle sorte qu’elles ne
soient pas en conflit, selon les regles du jeu d’échec (deux reines ne peuvent
occuper la méme ligne, la méme colonne ou la méme diagonale). La recherche
de la figure 7.1 commence par une configuration alignant les 4 reines sur la
premiere ligne. Les regles sont des transformations d’équivalence déplagant une
reine jusqu’a une position voisine au sein de sa colonne. Pour générer tous les
successeurs d’un nceud dans 'arbre, il suffit de lui appliquer toutes les regles
possibles. Notons qu’une telle recherche ne peut se faire par simple chainage-
avant, car les états résultants sont mutuellement incompatibles (une méme reine
occupe plusieurs positions en méme temps).

MMMV
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S
W
Y
W Solution

Fig. 7.1 Partie d’un arbre de recherche pour le probleme des j reines.

Si deux regles s’appliquent dans un ordre différent & un nceud de l'arbre, la
situation résultante est identique. L’existence potentielle de tels cycles signifie
que I'espace de recherche n’est pas vraiment un arbre, mais plutot un graphe
d’alternatives. Une plus grande économie peut étre réalisée par détection ex-
plicite des cycles dans le graphe de recherche, ce qui évite d’explorer plusieurs
fois des noeuds identiques.

Le graphe de recherche peut étre représenté implicitement par une fonction
suce(n) qui retourne une liste des successeurs liés par un arc au noeud n. En gé-
néral, la fonction succ correspond a I’application de toutes les regles d’inférence
au noeud n.
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Un algorithme de recherche commence toujours avec un ou plusieurs neuds
initiauz. 11 se termine avec la génération d’'un neud final qui remplit une condi-
tion de terminaison qui l'identifie comme étant une solution au probleme. En
général, la recherche s’arréte dés qu’une solution est trouvée, et un algorithme
est optimal s’il trouve une solution dans un temps minimal.

La solution au probleme peut étre donnée par :

o la description du noeud final : par exemple un placement des quatre reines ;

e le chemin qui meéne d’un noeud initial au nceud final : par exemple, dans un

probleme de planification ou I’on désire connaitre la séquence d’opérations
a effectuer.

Dans le deuxieme cas, il existe un deuxieme critere d’optimalité, celui du
cott total des opérations sur le chemin trouvé. On n’admet alors que des algo-
rithmes qui trouvent effectivement la solution optimale au probleme.

7.2 Algorithmes de recherche en profondeur-d’abord (DFS)
et en largeur-d’abord (BFS)

Il existe deux techniques extrémes d’exploration d’un arbre de recherche : la re-
cherche en profondeur-d’abord (Depth First Search, ou DFS) et la recherche en
largeur-d’abord (Breadth First Search, ou BFS). La premiere tente d’atteindre
la solution le plus vite possible en explorant immédiatement les successeurs de
tout noeud généré, alors que la seconde étend l'arbre en générant les nceuds
couche par couche.

L’algorithme de recherche en profondeur-d’abord est décrit par la figure 7.2,
et la figure 7.3 met en évidence son fonctionnement sur un exemple.

A chaque étape, 'algorithme met a jour la file des nocuds non explorés.
C’est toujours le premier noeud de la file qui est étendu. Les noeuds résultants
sont ajoutés en téte de la file de sorte qu’ils soient explorés en premier dans les
étapes ultérieures. Dans l’exemple de la figure 7.3, I'algorithme explore donc

1: Function Recherche-DFS (Noeud-initial)
Q « (Noeud-initial)
repeat
n + first(Q), Q + rest(Q)
if n est un noeud but, return n
S + succ(n)
Q < append(S, Q)
until Q est vide
9: return ECHEC

1

Fig. 7.2 Algorithme de recherche en profondeur-d’abord.
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Fig. 7.3 FEzemple d’une recherche en profondeur-d’abord. La numérotation indique
la séquence d’exploration des neeuds.

tout d’abord les noeuds 1 a 4. Lorsqu’il n’existe aucun successeur, I’algorithme
poursuit son exploration en étendant le prochain nceud non encore visité. En
d’autres termes, il effectue un retour-arriére au niveau précédent. Les passages
des noeuds 4 & 5 et 5 & 6 sont des exemples de tels retours-arriere.

Les avantages de la stratégie profondeur-d’abord sont la simplicité de son
implémentation et le fait que I'algorithme ne requiert que tres peu de mémoire :
uniquement le chemin entre le nceud initial et le noeud courant ainsi que les
alternatives non explorées sur ce chemin doivent étre mémorisés.

L’un des problemes majeurs de cette méthode de recherche se pose lorsque
le graphe contient des cycles. Cette possibilité est donnée lorsque les opérateurs
permettent des opérations réversibles. Par exemple, s’il était possible de revenir
sur le placement d’une reine apres ’avoir posée, ’arbre de recherche pourrait
contenir, entre autres, le cycle décrit par la figure 7.4. L’algorithme peut alors
boucler a l'infini sans trouver de solutions. Il est toutefois possible de remédier
a cette situation en détectant les cycles et en évitant d’étendre des nceuds déja
visités lors d’une étape précédente. Cela risque cependant de faire exploser
le temps de calcul, car chaque nceud doit étre comparé a tous ceux qui l'ont
précédé.

Une alternative a la recherche en profondeur-d’abord est donnée par la mé-
thode de recherche en largeur-d’abord, dont ’algorithme est décrit par la fi-
gure 7.5, et la figure 7.6 donne un exemple de fonctionnement.

Du point de vue algorithmique, la seule différence entre les recherches en
largeur et en profondeur-d’abord réside dans le fait que les successeurs d’un
neeud sont placés en fin de file au lieu d’étre insérés en téte (ligne 7 de la
figure 7.5). Cette modification implique que l'algorithme ne visite un nceud
donné de la couche (n + 1) qu’apres avoir exploré tous ceux de la couche n,
comme le montre la numérotation de la figure 7.6. Cela signifie que la re-
cherche en largeur-d’abord nécessite beaucoup plus d’espace mémoire que celle
en profondeur-d’abord vu que I’ensemble des noeuds d’un niveau donné devient
rapidement important. En revanche, I’algorithme en largeur-d’abord trouvera
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Fig. 7.4 Une situation ou l’algorithme de recherche en profondeur-d’abord entre dans
une boucle infinie.

1: Function Recherche-BFS (Noeud-initial)
Q « (Noeud-initial)
repeat
n « first(Q), Q «+ rest(Q)
if n est un noeud but, return n
S « succ(n)
Q + append(Q, S)
until Q est vide
9: return ECHEC

®

Fig. 7.5 Algorithme de recherche en largeur-d’abord.

toujours une solution, s’il en existe une, et cette solution sera de surcroit op-
timale : ce sera la solution nécessitant le moins d’applications de regle. Par
contre, 'algorithme largeur-d’abord exige beaucoup de mémoire, car tous les
neeuds d’une méme couche doivent étre mémorisés.
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Couche 0

Couche 1

Couche 2

Fig. 7.6 Ezemple d’une recherche en largeur-d’abord. La numérotation indique
l’ordre dans lequel les neeuds sont explorés.

7.3 Recherche en profondeur limitée

La recherche en largeur-d’abord a le défaut qu’elle utilise beaucoup de mé-
moire. Pour cette raison, elle n’est presque jamais utilisée en pratique, et on
applique surtout la recherche en profondeur-d’abord. Celle-ci présente cepen-
dant le probleme que le chemin trouvé peut étre loin d’étre optimal. Méme si
une solution peut étre atteinte en générant peu de nceuds, si elle ne se trouve
pas sur le premier chemin visité, la recherche peut se perdre en examinant des
neeuds d’une grande profondeur sans trouver une solution.

On peut corriger ce probléme si on savait déja d’avance a quelle profondeur
[ va se situer la solution dans I'arbre de recherche. On peut alors limiter a [ la
profondeur d’un nceud pour la recherche en profondeur-d’abord a [. Dés qu’un
neeud atteint cette profondeur, on ne génere aucun successeur. On obligera ainsi
I’algorithme de revenir en arriere et d’examiner également les autres nceuds, un
peu comme le ferait la recherche en largeur d’abord. Cela nous donne I’algo-
rithme DLS (depth-limited search) qui prend comme parametre la profondeur
maximale [ :

1: Function DLS (Noeud-initial,l)
2: depth-limit(noeud-initial) «+ 1

3: Q < (Noeud-initial)

4: repeat

5. n < first(Q), Q < rest(Q)

6:  if n est un noeud but, return n

7. S « succ(n)

8 for nn € S do

9: depth-limit(nn) < depth-limit(n)-1

10: if depth-limit(nn) > 0 then Q + append(nn,Q)

11: until Q est vide
12: return ECHEC
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Malheureusement, en général on ne connait pas d’avance la bonne valeur
de [. Une valeur trop petite ferait que ’algorithme manque la solution, tandis
qu’une valeur trop élevée signifierait un cotut de recherche excessif.

On peut pallier cet inconvénient par la méthode appelée iterative deepening,
c’est-a~-dire en commencant avec une valeur petite pour [ qui sera augmentée si
on ne trouve pas de solution :

Function Iterative-deepening(Noeud-initial)
l+2
repeat

solution < DLS(1)

l«1+1
until solution # {}

Comme cet algorithme répete toujours la recherche de tous les niveaux pré-
cédents, on pourrait penser qu’il est peu efficace. Cependant, on peut montrer
que la complexité, exprimée en nombre de nceuds de l'espace exploré, ne dé-
passe pas le double de ce qu’on aurait obtenu si on avait commencé avec la
bonne valeur de la limite [. Cela est dii a la croissance exponentielle des nceuds
dans chaque couche de ’arbre de recherche. Supposons que chaque nceud a b

successeurs. Le nombre de noeuds dans un arbre de profondeur k est alors :
bk+1 -1
c(k)=1+b+4 ..+ = e —

Si la premiere solution se trouve a la profondeur [, 'algorithme a exploré

tous les espaces de profondeur [, [ — 1, ..., 1. Donc la complexité totale est :
1
. - - i+1 1
2_cli) 120 )
i=1 =1
1—

<

< cl)-2

pour autant que b > 2. Donc, on obtient une méthode qui utilise peu de mé-
moire, trouve la solution la moins profonde et dont la complexité n’est pas
plus que doublée par rapport a une méthode qui connait la bonne profondeur
d’avance. L’algorithme du iterative deepening est donc tres souvent appliquée
en pratique.

7.4 Détection explicite de cycles

Afin d’éviter la répétition de traitements précédemment effectués et de contour-
ner les boucles infinies de la recherche en profondeur-d’abord, il est utile de
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pouvoir détecter explicitement si un noeud donné a déja été visité plus tot.
Cette détection de cycles nécessite la maintenance d’une liste de noeuds déja
explorés. En ajoutant cette liste C a la structure de ’algorithme de recherche
en profondeur-d’abord, on obtient 1'algorithme modifié de la figure 7.7.

—

: Function DFS-cycle(Noeud-initial)
: Q + (Noeud initial)
: C « vide
repeat
n + first(Q), Q + rest(Q)
if n n’est pas membre de C then
if n est un noeud but, return n

ajouter n a C

© ® N D T R W

S « succ(n)

10: Q < append(S, Q)
11: until Q est vide

12: return ECHEC

Fig. 7.7 Algorithme de recherche en profondeur-d’abord avec détection de cycles.

Avant d’étendre un noeud donné, I'algorithme de recherche en profondeur-
d’abord modifié contrdle qu’il n’a jamais été visité. Si un nceud a fait 'objet
d’une précédente exploration, et que, par conséquent, ses successeurs ont déja
été générés, les expansions ultérieures de ce nceud sont simplement abandon-
nées. Méme s’il évite les cycles, ce traitement est sous-optimal. En effet, il se
peut tres bien que le nouveau chemin emprunté par ’algorithme pour atteindre
le nceud soit plus court que le chemin original. Une version plus efficace consis-
terait a n’abandonner I’exploration du noeud que si son cotit est plus élevé que
celui d’au moins une de ses précédentes explorations. Nous verrons plus loin
comment tenir compte de telles considérations.

7.5 Recherche d’une solution optimale

Souvent, on ne veut pas seulement trouver une solution, mais trouver la solution
qui a le moindre cout. Un modele de coiit couramment utilisé est de supposer
que chaque génération de successeurs rajoute un coiit ¢(n’,n). Done, si n est
successeur de n/, alors le cotit g(n) :

g(n) = c(n’,n) +g(n') = c(n’,n) + > c(n’,n")
n’,n'’ €ancetres(n)

Ce modele s’applique par exemple a la planification, en supposant que chaque
expansion correspond a une action au plan incomplet, et le cout du plan est
égal a la somme des cotits des actions.



Résolution de probléemes par recherche 155

Une maniere simple de trouver la solution optimale est de générer toutes les
solutions possibles et retenir celles qui ont le moindre cotit. On peut exploiter
le fait que le cout augmente avec la profondeur de recherche pour éliminer
des possibilités qui ne peuvent pas étre optimales avant de les générer : des
que le cout de la solution partielle dépasse le cotut d’une solution complete,
celle-ci ne pourra pas faire partie d’'une solution optimale car son colt sera
forcément plus élevé. Cette observation nous mene a la méthode branch-and-
bound, qui consiste a modifier I’algorithme DFS pour que chaque fois qu’un
neeud est trouvé, I’algorithme mémorise si son cott est meilleur que le meilleur
trouvé et ne génere plus de successeurs. On continue alors la recherche au-dela
du premier noeud but jusqu’a ce que la liste OPEN devienne vide. La figure 7.8
montre ’algorithme résultant.

: Function Recherche-DFS-BB (Noeud-initial)
: Q + (Noeud-initial); ¢ - 00; s « ECHEC
: repeat

1

2

3

4 n + first(Q), Q + rest(Q)

5.  if n est un noeud but then

6 if colit(n) < ¢ then ¢ + cotlit(n); sol < n

7 else

8 S < succ(n)

9 for m € S do

10: if colit(m) < c then Q «+ append(m, Q)

11: until Q est vide

12: return sol

Fig. 7.8 Algorithme DFS modifié pour optimisation par branch-and-bound.

L’algorithme DFS-BB s’avere pourtant toujours tres gourmand en temps de
calcul, car il génere une grande partie de tous les nceuds de recherche possibles
dont beaucoup sont loin de la solution optimale. Il serait bien de mieux guider
la recherche vers la meilleure solution par exemple en choisissant des opérateurs
de moindre cotut d’abord, ou en utilisant les opérateurs qui rapprochent le plus
rapidement du but. Ceci est I'idée de la recherche heuristique et notamment de
Palgorithme A*, décrit par la figure 7.9.

Le comportement de A* se trouve entre les deux extrémes de la recherche
en profondeur-d’abord et la recherche en largeur-d’abord. La seule différence
entre 'algorithme de recherche en profondeur-d’abord et celui de recherche en
largeur-d’abord est liée a I'ordre selon lequel les nouveaux nceuds sont ajoutés
a la file Q des nceuds & explorer. Pour A*, les nouveaux nceuds ne sont pas
simplement rajoutés a Q, mais ils sont fusionnés de telle sorte que Q soit tou-
jours ordonnée par ordre croissant d’une certaine fonction d’évaluation f. La
fonction d’évaluation f(n) se calcule en sommant deux facteurs : le cotit g(n) de
transformation du nceud initial en nceud n, et une estimation heuristique h(n)
du colit de la transformation de n en un noeud but. La fonction d’évaluation
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1: Function Recherche-A*(Noeud-initial)
2: Q < (Noeud initial)

3: C + vide

4: repeat

5. n < first(Q), Q « rest(Q)

6: ifn¢gC,oun=n’ € C mais g(n) < g(n’) then
7 if n est un noeud but, return n
8 ajouter n a C

9 S < succ(n)

10: S « sort(S,f)

11: Q « merge(S, Q, f)

12: until Q est vide

13: return ECHEC

Fig. 7.9 A* wun algorithme de recherche heuristique optimal.

donne une estimation du cott total d’un chemin menant du nceud initial & un
nceud but en passant par le nceud n. En explorant les noeuds par ordre croissant
de cette estimation, I’algorithme privilégie les noeuds les plus prometteurs, c’est
a dire ceux qui ont le plus de chance d’aboutir & une solution optimale.

Comme exemple d’une recherche heuristique, considérez le graphe de la fi-
gure 7.10. La figure montre entre parentheses I’estimation heuristique de chaque
neceud et sur les arcs le cout associé a 'opération.

a(10)

Fig. 7.10 Ezemple d’une recherche heuristique.
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La recherche par A* procédera alors dans comme suit (les valeurs d’évalua-
tion de chaque noeud sont indiquées entre parentheses) :

1. Q = (a(10)) =

2. Q = (d(8),c(12),b(19)) =

3. Q = (k(9),1(10),c(12),i(14),b(19)) =

4. Q = (1(9),m(10),c(12),i(14),e(16),b(19)) =
5. Q = (m(10),n(11),c(12),i(14),e(16),b(19)) =
6. Q = (n(10),c(12),1i(14),e(16),b(19)) =
solution !

Notons que I'algorithme A* admet qu’on puisse trouver un nouveau chemin
a un neeud n qui a déja été visité et se trouve donc sur la liste C. Si le noceud n
n’a pas encore été étendu, il suffit alors de mettre a jour son cofit, son chemin
et sa position dans Q. Cela se fait & ’étape 3 de la trace ci-dessus, ol le chemin
d — 1 est remplacé par d — k — 1, qui est moins couteux. Si la valeur
heuristique du nceud k avait été h(k) = 4 au lieu de 2, on aurait étendu 1 avant
k. Dans ce cas, on aurait dii également mettre a jour les évaluations de toutes
les conséquences de 1 au moment o1 ’on trouve le nouveau chemin par k.

Une caractéristique importante de A* apparait quand ’estimation heuris-
tique h(n) sous-estime toujours le cott de transformation de n en un nceud
but. Dans ce cas, on peut prouver que le premier nceud but trouvé par ’algo-
rithme sera toujours la solution optimale au probleme. La recherche peut donc
s’arréter, puisque ’on sait qu’aucune solution meilleure ne peut étre trouvée
lors d’explorations ultérieures.

Si la fonction h(n) remplit en plus la restriction de monotonicité :

|h(n1) — h(nz2)| < c(n1, n2)

ol ¢(ny,ny) est le coit de larc qui lie ny et mg, alors on peut garantir que
I’algorithme découvre chaque noeud par le chemin optimal, c’est-a-dire que les
chemins trouvés par 'algorithme ne doivent jamais étre révisés.

Le comportement de la recherche dépend fortement de la formulation des
fonctions h et c¢. Plus h se rapproche des cotits réels, plus ’algorithme converge
rapidement. En fait, si ’estimation fournie par h est totalement exacte, I’algo-
rithme n’explore aucun nceud inutile. Une bonne facon de trouver une heuris-
tique est de considérer une version simplifiée du probleme dont on peut facile-
ment trouver une solution. Par exemple, lors d’une recherche dans un graphe,
on peut ignorer la contrainte qu’on peut se déplacer uniquement a travers les
arcs du graphe et permettre aussi d’autres mouvements. Dans le probleme des
reines, on peut ignorer certaines possibilités qu’ils peuvent se capturer. Le cott
de la solution du probleme simplifié est alors une heuristique qui sous-estime
le cott de la solution au vrai probleme.

Dans les probléemes ou le cotit ¢ n’a pas grande importance, on peut choisir
¢(n) = 0. En revanche, I’estimation heuristique du nombre de transformations
a effectuer avant d’atteindre le but reste tres utile pour accélérer le processus de
recherche. Finalement, on peut remarquer que la recherche en largeur-d’abord
n’est autre que A* avec ¢(n) = nombre de transformations déja effectuées et
h(n) = 0.
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Comme pour la recherche en largeur-d’abord, 'algorithme A* peut devenir

trés gourmand en mémoire a cause de la liste Q. On peut alors appliquer des
techniques similaires a 'iterative deepening :

o dans le beam search, on garde seulement les n meilleurs noeuds de Q et
on écarte les autres. C’est la maniere la plus simple de limiter les besoins
en mémoire. Cette méthode ne garantit pas que la solution optimale soit
trouvée.

o lterative Deepening A* : on effectue une recherche en profondeur-d’abord
jusqu’a un certain seuil de la fonction d’évaluation. Si aucune solution
n’est trouvée, on augmente le seuil par petites incrémentations. La pre-
miere solution trouvée sera alors optimale.

e Memory-bounded A* : ces techniques sont plus complexes. Elles permettent
d’« oublier » et de régénérer des nceuds de Q.

Littérature

Les principaux algorithmes de recherche sont traités dans des introductions
a lalgorithmique. L’article [27] donne un résumé des techniques. La méthode
de Viterative deepening a été présentée pour la premiere fois dans [28]. L’algo-
rithme A* a été introduit dans [29] et Poptimalité de ’algorithme a été discutée
dans [30]. La référence [31] présente une version adaptée & un espace mémoire
limité.

-

Application : Routage de véhicules autonomes

Pour transporter des pieces et des matériaux entre les machines qui les
traitent, les usines modernes utilisent souvent des véhicules autonomes.
Ceux-ci sont habituellement programmés par des regles de comportement
qui définissent une facon de traiter les taches sans collisions. Les regles
doivent étre développées pour les situations spécifiques par des experts
hautement qualifiés. De plus, il est difficile de concevoir des regles qui
fonctionnent méme en présence d’imprévus comme des pannes de véhi-
cules.

L’entreprise Lookahead Decisions a remplacé un systeme a regles par une
méthode qui cherche les meilleures combinaisons de chemins par recherche
heuristique (A*). Par rapport aux comportements fixes, cette méthode a
amélioré le débit de 83%, le temps moyen pour réaliser des taches de 25%
et aussi le nombre d’arréts de véhicules (une mesure de leur usure) de
48%. En plus, le nouveau systéme résiste mieux aux changements et ne
demande pas d’expert pour la mise & jour des regles de comportement.

(Source : Lookahead Decisions Case Study : Real-time routing of automa-
ted guided vehicles, www.lookaheaddecisions.com, 2003.)
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7.6 Exercices

Exercice 7.1 Résolution de problemes par recherche

Dans cette série d’exercices, vous allez vous familiariser avec les trois principaux
algorithmes de recherche :

« en profondeur-d’abord (DFS),
e en largeur-d’abord (BFS),
o par A*.

A titre d’exemple, vous les utiliserez pour découvrir un chemin entre deux villes
étant donné leurs positions géographiques et les routes qui les connectent.

Modules squelettes

Les modules qui suivent constituent le squelette des programmes que vous allez
implémenter. Les deux derniers modules, exemple_carte_simple.py et exemple_
carte_suisse.py, permettront de les tester.

Module .../moteurs_recherche/element.py :

class Element:
def _init_ (self, nom="):
print('a compléter')

def distance( self , element):
return 1

def _eq_(self, autre):
print('a compléter')

def _hash (self ):
return hash(str(self))

def _repr_ (self ):
return '{}'.format(self.nom)

Module .../moteurs_recherche/ville.py :

from math import sqrt
from .element import Element

class Ville (Element):
def _init_ (self, x, y, nom=""):
Element. _init__ ( self , nom)
print('a compléter')

def distance( self , ville ):
print('a compléter')

def _eq_(self, autre):
print('a compléter')
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def _hash_(self ):
return hash(str(self))

def _repr_ (self ):
return '{}({}, {})'.format(self.nom, self.x, self.y)

Module .../moteurs_recherche/espace.py :

from copy import copy

class Espace:
def _init_ (self, elements=None, arcs=None):
self .elements = ]
if elements is not None:
self .elements = sorted(self.elements, key=lambda e: e.nom)

self .arcs = ||
if arcs is not None:
self . ajoute_arcs (arcs)

def ajoute_arcs( self , arcs):
print('a compléter')

def trouve_voisins ( self , element):
print('a compléter')

def _repr_ (self ):

rep — "

for element in self .elements:
rep += '{}, '.format(element)
rep += 'avec voisins: '
voisins = self. trouve_voisins (element)
rep +=", '. join (map(str, voisins))
rep +="\n'

return rep

Module .../moteurs_recherche/noeud.py :

from math import sqrt

class Noeud:
def _init_ (self, element, parent=None, cout=0, cout_f=0):
print('a compléter')

def _repr_ (self ):
rep = '<{}, {}, {}>' format(self.element,
round (self.cout),
round (self.cout_f))
return rep

Module .../moteurs_recherche/recherche.py :

from .noeud import Noeud

class Recherche:
echec = 'échec'
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def _init_ (self , espace, optimisee=False):
self .espace = espace
self .optimisee = optimisee

def recherche( self , depart, but):
# L'heuristique & wutiliser (utile uniquement pour A\x).
self .h = lambda e: e.distance(but)

noeud_depart = Noeud(depart, None, 0, self.h(depart))
noeud_but = Noeud(but)

return self.recherche_chemin(noeud_depart, noeud_but)

def recherche_chemin(self, noeud_depart, noeud_but):
print('a compléter')

def trouve_chemin(self, noeud):
chemin = ]
while noeud is not None:
chemin.insert (0, noeud.element)
noeud = noeud.parent

return chemin

def detecte_cycle (self , trace, noeud):
return noeud.element in trace

def trouve_successeurs( self , noeud):
print('a compléter')

def ajoute_successeurs( self , queue, successeurs ):
# Nous retournons une liste vide pour éviter de déclencher une exception,
# mais cette méthode doit étre surchargée dans les sous—classes.
return |

Module . ../moteurs_recherche/bfs .py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheBFS(Recherche):
def ajoute_successeurs( self , queue, successeurs ):
print('a compléter')

Module .../moteurs_recherche/dfs.py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheDFS(Recherche):
def ajoute_successeurs( self , queue, successeurs ):
print('a compléter')
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Module .../moteurs_recherche/astar.py :

from moteurs_recherche.recherche import Recherche
from moteurs_recherche.noeud import Noeud

class RechercheAStar(Recherche):
def detecte_cycle (self , trace, noeud):
print('a compléter')

def ajoute_successeurs( self , queue, successeurs ):
print('a compléter')

Module .../exemple_carte_simple.py :

from moteurs_recherche.element import Element
from moteurs_recherche.ville import Ville

from moteurs_recherche.espace import Espace

from moteurs_recherche.dfs import RechercheDFS
from moteurs_recherche.bfs import RechercheBFS
from moteurs_recherche.astar import RechercheAStar

# Les éléments dans l'espace de recherche (les willes ).

elements = {
"A': Ville (0, 16, 'A"),
'B': Ville (5, 13, 'B'),
'C': Ville (0, 10, 'C'"),
'D'": Ville (5, 8, 'D'),
'E': Ville (11, 18, 'E'),
'F': Ville (15, 13, 'F'),
'G'": Ville (29, 18, 'G"),
'H": Ville (26, 0, 'H'),
"' V111e(12 10, 'I'"),
'J' Ville (17, 7, 'J'"),
'K": V111e(11 3, 'K'"),
'L': Ville (22, 16, 'L'),
'M': Ville (25, 12, 'M'),
'N'": Ville (24, 6, 'N'),
'O": Ville (20, 0, 'O"),
'P': Ville (5, 0, 'P'),

}

# Les arcs liant les éléments (les routes).

arcs = |
(elements['A'], elements['B']),
(elements['A'], elements['E']),
(elements['B'], elements['C']),
(elements['B'], elements['E']),
(elements['B'], elements['D']),
(elements['C'], elements['D']),
(elements['C'], elements['P']),
(elements['D'], elements['I']),
(elements['D'], elements['K']),
(elements['E'], elements['F']),
elements , elements s
1 'E! it 'L
(elements['F'], elements['I']),
elements , elements s
1 'F! 1 'L
elements , elements s
it 'F! it 'M'
elements , elements s
1 'G'], el 'H'
(elements['G'], elements['L']),
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elements['M']),
elements['J']),
elements['K']),
elements['N']),
elements['O']),
elements['P']),
elements['N'])
elements['O']),
elements['I' ]),
elements['F']),
elements['O'])

)
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]

# L'espace de recherche.
espace = Espace(elements.values(), arcs)
print('L\'espace de recherche:\n{}'.format(espace))

print('Recherche DFS:")
dfs = RechercheDFS(espace, False)
chemin = dfs.recherche(elements['A'], elements|['P'])

print('Chemin: {}'.format(chemin))

HAHBPHRAHAHFHRAHAH AR HF A A HRHF A A H AR AA A HRHAAHAH

print("\nRecherche BFS:")
bfs = RechercheBFS(espace, False)

chemin = bfs.recherche(elements['A'], elements['P'])
print('Chemin: {}'.format(chemin))

b b b b b

print('\nRecherche Ax:')
astar = RechercheAStar(espace, False)
chemin = astar.recherche(elements['A'], elements['P'])

print('Chemin: {}'.format(chemin))

Module .../exemple_carte_suisse.py :

from moteurs_recherche.element import Element
from moteurs_recherche.ville import Ville

from moteurs_recherche.espace import Espace

from moteurs_recherche.dfs import RechercheDFS
from moteurs_recherche.bfs import RechercheBFS
from moteurs_recherche.astar import RechercheAStar

# Les éléments dans l'espace de recherche (les willes ).
elements = {

'Lausanne': Ville (110, 260, 'Lausanne'),

'Geneve': Ville (40, 300, 'Geneve'),

'Sion': Ville (200, 300, 'Sion'),

'Neuchatel': Ville (150, 170, 'Neuchéatel'),

'Bern': Ville (210, 280, 'Bern'),

'Basel': Ville (230, 65, 'Basel'),

'Fribourg': Ville (175, 200, 'Fribourg'),

'Ziirich': Ville (340, 90, 'Ziirich'),
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'Aarau': Ville (290, 95, 'Aarau'),
'Luzern': Ville (320, 155, 'Luzern'),
'St—Gallen': Ville (85, 455, 'St—Gallen'),
'Thun': Ville(235, 210, 'Thun'),

}

# Les arcs liant les éléments (les routes).
arcs = |
(elements[' Lausanne'], elements[' Genéve'l),
(elements['Sion'], elements['Lausanne']),

1 A ! 1 !

k] )
(elements['Neuchatel'], elements|' Lausanne'])
(elements['Fribourg'], elements['Lausanne']),
(elements['Fribourg'], elements|['Bern']),
(elements['Sion'], elements[' Thun']),
(elements['Neuchéatel'], elements['Bern']),
(elements['Basel' ], elements|['Bern']),
(elements['Ziirich' ], elements[' Aarau']),
(elements['Ziirich' ], elements['Luzern']),
(elements['Bern'], elements['Aarau']),
(elements['Bern'], elements['Luzern']),
(elements['Luzern'], elements[' Aarau'l),
(elements['St—Gallen'], elements|'Ziirich']),
(elements[' Thun'], elements['Bern']),
(elements['Basel' ], elements['Ziirich']),

]

# L'espace de recherche.
espace = Espace(elements.values(), arcs)
print('L\'espace de recherche:\n{}'.format(espace))

print('Recherche DFS:")
dfs = RechercheDFS(espace, False)
chemin = dfs.recherche(elements|'Lausanne'], elements['Ziirich'])

print('Chemin: {}'.format(chemin))

HHFHHFHHHAHH T HH A HH A AR AT A HA T HH T AA A HAFHH A HAS
print("\nRecherche BFS:")

bfs = RechercheBFS(espace, False)

chemin = bfs.recherche(elements|'Lausanne'], elements|' Ziirich'])

print('Chemin: {}'.format(chemin))

HHAPHAH AP HAH AP H A VAP HFHATPH A AP H A A A A A PH A A AP HAHAAH
print('\nRecherche Ax:')
astar = RechercheAStar(espace, False)

chemin = astar.recherche(elements|['Lausanne'], elements|'Ziirich'])

print('Chemin: {}'.format(chemin))
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Exercice 7.1.1 Classes de base
La classe Element

Dans cet exercice, vous devrez manipuler des éléments situés dans un espace
de recherche — plus précisément, des villes dans un espace a deux dimensions.
L’espace de recherche est muni d’une notion de distance appliquable a chaque
paire d’éléments. L’objectif des algorithmes de recherche que nous allons pro-
grammer sera de trouver le chemin le plus court entre deux éléments.

La classe Element du module element.py représentera donc un élément gé-
nérique placé dans un espace de recherche. Cet élément sera caractérisé par
un seul attribut, self.nom. Commencez par compléter le constructeur de la
classe, qui doit initialiser cet attribut au moyen d’une valeur passée en para-
metre. Ensuite, complétez la méthode __eq__, qui doit vérifier I’égalité entre
Pélément courant et un autre. Deux éléments seront réputés égaux (__eq__ re-
tourne True) lorsqu’ils possédent des noms égaux. Notez que Element contient
aussi une fonction qui retourne la distance entre ’élément courant et un autre
élément. Cette fonction n’a ici qu’une implémentation triviale et devra étre
surchargée de maniere appropriée dans les sous-classes.

La classe Ville

La classe Element nous fournit un modele que les éléments de recherche doivent
spécialiser. Notre but dans cet exercice est de trouver des chemins entre des
villes, qui sont des éléments dans un espace a deux dimensions. Nous définissons
donc une sous-classe Ville, qui étend Element en lui ajoutant deux attributs :

e x : la position de ’élément sur 'axe des x;
e y : la position de ’élément sur 'axe des y.

Commencez par coder le constructeur de la classe, qui doit initialiser ces
attributs a partir des valeurs passées en parametre. Ensuite, surchargez la
méthode d’égalité __eq__, afin qu’elle compare les noms et les coordonnées.
Finalement, surchargez la fonction de distance, afin de retourner la distance
euclidienne entre deux villes. Pour cette derniere opération, vous pouvez uti-
liser I'opérateur de mise & la puissance de Python, qui est *x (par exemple :
3%%2 == 9). En outre, from math import sqrt permet d’importer uniquement la
fonction racine carrée du module math.

La classe Espace

Dans l’espace de recherche, chaque élément sera lié a d’autre éléments placés
a proximité — ses voisins. Par exemple, si I'espace de recherche représente
une carte de la Suisse, Lausanne sera parmi les éléments voisins de Geneve.
Nous indiquerons la proximité entre deux éléments par un tuple (element_1,
element_2). Du point de vue formel, un tuple représente ainsi un arc dans le
graphe constitué par les éléments et leurs relations de vicinité.

Nous utiliserons la classe Espace pour représenter un espace de recherche.
Espace stockera tous ses éléments dans une liste self.elements et tous ses arcs
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dans self.arcs. Le constructeur initialise les listes d’éléments et d’arcs, soit
avec des collections passées en parametre, soit comme des listes vides lorsqu’il
est appelé sans arguments.

La classe contient aussi les méthodes suivantes, que vous devez implémenter :

e ajoute_arcs(self, arcs) : prend en argument une collection de tuples (a,
b) représentant des arcs, qu’elle ajoute aux collections de I'objet courant.
(Cette méthode n’est pas absolument indispensable, car les listes peuvent
aussi bien étre remplies lors de la construction, mais il est parfois plus
pratique et plus lisible d’ajouter des arcs par le biais d’une méthode.).

e trouve_voisins(self, element) : retourne la liste de tous les voisins d’un
élément (par exemple, si Parc (a, b) est le seul de ’espace e : e.voisins(a)
doit retourner [b].

La classe Noeud

Lors de la recherche, chaque Element sera modélisé par un nceud dans un arbre
de recherche. Chaque nceud contiendra une référence sur un élément. Les nceuds
seront créés de fagon dynamique au cours de l'exploration de I'espace de re-
cherche par 'algorithme.

Nous avons donc besoin d'une classe Noeud (squelette disponible dans
noeud.py), permettant de modéliser un nceud. Cette classe contiendra quatre
attributs :

e element : une référence sur un objet de type Element.

e cout_c : contient le colit ¢(n), c’est-a-dire le coiit depuis le noeud de départ
jusqu’au nceud en question. Il s’agit de la somme minimale des longueurs
des arcs entre ’élément référencé par le nceud de départ et I’élément ré-
férencé par le noeud courant. Dans notre cas, la longueur d’un arc est
donnée par la distance entre ses deux éléments.

e cout_f : contient le colit f(n), c’est-a-dire le colit heuristique utilisé par
lalgorithme A*, qui est égal & c¢(n) + h(n). Dans notre cas, la fonction
heuristique h(n) calcule la distance euclidienne entre 1’élément contenu
par le noeud courant et I’élément but ; le cott heuristique modélise ainsi
la distance au but, de maniere a privilégier ’exploration du noeud le plus
prometteur ;

e parent : le nceud parent du nceud courant, c’est-a-dire le noeud qui a
conduit au nceud courant durant la recherche.

Ecrivez donc un constructeur qui initialise ces quatre attributs a partir de
valeurs passées en parametres.

Exercice 7.1.2 Algorithmes de recherche

Nous allons maintenant développer un outil de recherche qui implémente les
trois principaux algorithmes : DFS (Depth-first search : Recherche en profondeur-
d’abord), BFS (Breadth-first search : Recherche en largeur-d’abord) et A* (Re-
cherche par A*).
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Le principe de tout algorithme de recherche est de trouver un élément but
(dans notre exemple, la ville de destination) a partir d’un élément initial (la ville
de départ). Lors de I’exploration de ’espace des éléments, la recherche traverse
un arbre constitué de noeuds qui sont liés a leurs noeuds successeurs. Chaque
nceud de recherche correspond & une étape dans la recherche. L’exploration
d’un noeud de recherche permet, s’il en a, de trouver ses successeurs — qui
deviennent de nouveaux nceuds de recherche.

Les algorithmes que nous allons étudier ne se différencient que par la gestion
de la liste des noeuds ouverts Q :

o DFS (en profondeur-d’abord) : place les nouveaux noeuds en téte de Q;

o BFS (en largeur-d’abord) : place les nouveaux nceuds en queue de Q;

e A* :insere les nouveaux nceuds de telle sorte que Q soit toujours ordonnée
selon le cotit heuristique croissant de ces noeuds.

Le pseudocode de I'algorithme de recherche vous est donné ci-dessous :

Recherche(noeud_depart, noeud_but, methode)
1. Q <— [noeud_depart]
2. WHILE Q n'est pas vide DO

3. n <— premier(Q)

4. Q <— reste(Q)

5. IF n == noeud_but THEN

6. RETURN chemin de noeud_depart an

7. ELSE

8. S <— successeurs de n

9. Q <— AjouterSuccesseurs(Q, S, methode)
10. END IF

11. END WHILE
12. RETURN échec
END Recherche

Comme vous pouvez le constater, I’algorithme de base est le méme quelle
que soit la méthode utilisée (DFS, BFS et A*). La seule différence réside dans
la fagon d’ajouter les successeurs a la liste Q. Plus concréetement, la fonction qui
ajoute les successeurs a Q est définie comme suit :

AjouteSuccesseurs(Q, S, methode)
1. IF methode == DFS THEN
2. RETURN S + Q
. ELSE IF methode == BFS THEN
RETURN Q + S
. ELSE IF methode == Ax THEN
Q<—-Q+S
Q <— Q trié par cout heuristique
RETURN Q
9. ELSE
10. RETURN échec
11. END IF
END AjouteSuccesseurs

® N o w

Les classes de recherche

L’algorithme de recherche doit étre implémenté dans la classe Recherche de re-
cherche.py. Un constructeur de la classe, qui initialise le graphe de recherche,
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vous est déja donné. Nous avons également donné une fonction d’interface
recherche, qui prend en parametres deux éléments, crée deux noceuds de re-
cherche contenant ces éléments et les passe en arguments a la méthode re-
cherche_chemin. C’est dans celle-ci que vous devez implémenter ’algorithme.
Appelez 1eS méthodes trouve_successeurs et ajoute_successeurs aux étapes 8
et 9 de l'algorithme. Afin de retourner le chemin depuis le nceud de départ,
appelez la méthode trouve_chemin, qui vous est déja donnée.

Ensuite, complétez la méthode trouve_successeurs. Cette méthode doit re-
tourner une liste contenant tous les successeurs d’un nceud passé en parametre.
La méthode doit retourner tous les éléments voisins de 1’élément encapsulé par
le nceud courant, eux-mémes contenus dans de nouveaux nceuds de recherche
(sauf le parent du nceud courant, pour éviter les cycles...). Notez qu’en créant
ces nouveaux neeuds, vous devez aussi initialiser leurs cotits, & partir du cott du
nceud courant et en utilisant la fonction heuristique self.h. Cette derniere est
initialisée a l'aide d’une fonction lambda dans la méthode d’interface recherche.

Ensuite, vous pouvez passer a la méthode ajoute_successeurs. Il convient
d’implémenter cette méthode différemment pour chacun des trois algorithmes,
dans les sous-classes de Recherche : RechercheDFS (dfs .py), RechercheBFS (bfs .py)
et RechercheAStar (astar.py)

Test du programme

Testez vos algorithmes sur les fichiers exemple_carte_simple.py et exemple_
carte_suisse.py.

python3 exemple_carte_simple.py
python3 exemple_carte_suisse.py

Qu’en concluez-vous ? Quelle est I'importance de ’heuristique utilisée par
A*? Regardez surtout le nombre de noeuds de recherche examinés. Que pouvez-
vous conclure sur les algorithmes en regardant la longueur des chemins (en
nombre de villes traversées) 7

Pourquoi I'algorithme DFS boucle-t-il a Iinfini sur les deux cartes ? Testez
maintenant en commentant le code appelant I’algorithme DFS. Quel résultat
obtenez-vous 7

Exercice 7.1.3 Algorithmes de recherche avec détection de cycles
Comme vous avez pu le constater, ’algorithme n’est pas tres efficace car, dans
un espace de recherche cyclique, certains noeuds peuvent étre visités a plusieurs
reprises. Pire, 'algorithme peut se retrouver prisonnier d’une boucle infinie.
Détecter et éviter les cycles nécessitent de maintenir une liste des noeuds
déja explorés. Dans le cas du DFS et du BFS, ’algorithme devra controler si ce
neeud est déja présent dans la liste avant de chercher ses successeurs. Lorsque
c’est le cas, nous savons que les successeurs ont déja été construits, et il n’est
pas utile de recommencer. L’algorithme A* est un peu plus compliqué de ce
point de vue : on doit revisiter un nceud si et seulement si le colt f£(n) est
inférieur au cout £(n) du noeud la derniere fois qu’il a été exploré
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En résumé, 'algorithme de recherche optimisé est le suivant :

RechercheOptimisee(noeud_depart, noeud_but, methode)
1. Q <— [noeud_depart]

2. C<—

3. WHILE Q non vide DO

4. n <— premier(Q), Q <— reste(Q)

5. IF n == noeud_but THEN

6. RETURN chemin de noeud_depart an

7. ELSE

8. IF n not in C or

(n=n'in C and f(n)<f(n') and methode is "A%”) THEN

9. S <— successeurs de n
10. Q <— AjouterSuccesseurs(Q, S, methode)
11. ajoute n dans C
12. END IF

13. END IF

14. END WHILE
15. RETURN échec
END RechercheOptimisee

En vous basant sur le pseudocode ci-dessus, implémentez 1’algorithme de re-
cherche optimisé. Vous devrez d’abord implémenter la méthode detecte_cycle,
qui teste si un neeud a déja été exploré, étant donné le noeud courant et la col-
lection trace des noeuds déja explorés. Notez que vous devez surcharger cette
méthode dans la classe RechercheAStar, afin de tolérer les cycles qui permettent
de trouver un chemin plus court.

Nous vous recommandons de ne pas implémenter une nouvelle méthode
recherche_chemin, mais de modifier la version existante afin de traiter le cas
ou lattribut de la classe self.optimisee prend la valeur True. En outre, afin
d’optimiser la détection des cycles, nous vous suggérons d’implémenter trace
comme un dictionnaire qui associe chaque élément au nceud de recherche qui
le contient.

Lorsque vous avez terminé, vous pouvez tester a nouveau votre programme.
Qu’observez-vous cette fois ?

Exercice 7.1.4 Labyrinthe

A titre d’exercice supplémentaire, vous pouvez tester votre implémentation
en lui faisant découvrir un chemin entre deux points d’un labyrinthe. Pour
simplifier, vous coderez ce dernier sous la forme d’une matrice de caracteres L,
telle que L[i] [j] prenne la valeur ’x’ si la cellule (i,j) est occupée et ne peut
pas étre explorée.

Vous pouvez ensuite implémenter une méthode qui traduira cette matrice
en un objet Espace, qui contiendra les déplacements possibles depuis chaque
cellule (par exemple, en haut, en bas, & gauche et & droite si les cellules voisines
sont libres). Appliquez les trois algorithmes de recherche pour construire le
chemin conduisant d’un point quelconque a un autre et comparez les résultats.

Solutions a la page 365






CHAPITRE 8

Satisfaction de contraintes

On peut observer que les algorithmes de recherche généraux ont une complexité
exponentielle en la taille du probleme. Cela n’est souvent pas acceptable, et on
doit alors chercher des heuristiques valables pour le domaine en question qui
permettent souvent de résoudre le probleme spécifique avec un temps de calcul
beaucoup plus raisonnable.

Il serait alors intéressant de définir un cadre limité de problemes qui soit a
la fois suffisamment spécifique pour admettre des heuristiques efficaces, mais
aussi suffisamment général pour s’appliquer & une large gamme d’applications
pratiques. Le paradigme de la satisfaction de contraintes est un tel modele qui
a rencontré beaucoup de succes en pratique.

Un probléme de satisfaction de contraintes (PSC) se caractérise comme suit :

o Le probleme peut étre décrit par un ensemble de variables. Une solution
est donnée par 'affectation d’une valeur a chaque variable. La plupart des
probleémes auxquels s’intéresse 'TA (comme la conception, la planification
ou encore la programmation logique) sont susceptibles d’étre formalisés
de cette maniere.

o La valeur d’une variable appartient & un domaine, qui est soit un ensemble
fini de valeurs discretes (satisfaction symbolique), soit un ensemble d’in-
tervalles numériques (satisfaction continue).

o Les contraintes de consistance agissent sur les variables. On distingue les
contraintes unaires, qui déterminent la valeur d’une seule variable, les
contraintes binaires qui concernent les combinaisons des valeurs de deux
variables et les contraintes multiples qui concernent des combinaisons de
plus de deux variables.

Cette formulation est applicable & de nombreux problemes pratiques. Citons
par exemple :

e Dans 'ordonnancement et la planification de taches, le but est de trou-
ver un ensemble d’actions qui respecte les contraintes dérivant du but a
atteindre et des moyens a disposition. Les variables sont alors les taches,
leurs domaines, les ressources et les intervalles de temps durant lesquels
celles-ci peuvent s’effectuer. Les contraintes exigent qu’aucune ressource
ne puisse étre affectée a deux taches simultanément et que les téaches
doivent étre accomplies dans les délais.



172 Le raisonnement basé sur modeles

o Dans la conception ou configuration, le but est de trouver un ensemble de
composants et de connections qui respectent toutes les contraintes fonc-
tionnelles. Les variables sont alors les fonctionnalités, leurs domaines les
composants qui peuvent les réaliser, et les contraintes de la compatibilité,
le respect des cotts, etc.

¢ Dans la vision, le but est de trouver une interprétation qui soit consis-
tante avec les observations. Les variables sont alors les observations, leurs
domaines les interprétations et les contraintes des contraintes de compa-
tibilité entre observations et interprétations.

8.1 Définition des problemes de satisfaction de
contraintes (PSC)

Etant donné la généralité du probléme, il est utile de définir des méthodes gé-
nérales pour le résoudre de maniére efficace. Formellement, un PSC = (X,D,C)
s’exprime de la maniere suivante :

Etant donné :
e Les variables X = x1, 9, ..., Tp.
e Les domaines D = Dy, Ds, ..., D,, associés aux variables.

o Les contraintes C = C4 (z, 21, ...), Ca, ..., Cpn, qui restreignent les
combinaisons de valeurs possibles pour les variables sur lesquelles
elles portent.

Trouver :

Toutes les solutions :
{z1 = vp, 29 = vy, ..., T, = v, } telles que toutes les contraintes
soient satisfaites.

Dans ce livre, nous traitons uniquement des techniques pour variables a
valeurs discrétes, c’est-a-dire que les domaines Dy, ..., D,, sont des ensembles
finis de valeurs. Il existe des différences importantes entre des problemes &
domaines finis et des problémes & domaines infinis.

Dans le cas ou toutes les contraintes sont binaires, on peut formuler le
probleme comme un graphe ot les nceuds sont les variables et les arcs sont des
contraintes entre ces variables. On parle alors d’un graphe ou d’un réseau de
contraintes.

Le formalisme des PSC a permis de développer un grand nombre d’heu-
ristiques et de méthodes efficaces valables pour tout probleme formalisé sous
cette forme. On a méme développé des langages de programmation logique par
contraintes tels que PROLOG 3 et Eclipse.

Un premier exemple d’'un PSC est 1'allocation de ressources a des taches
échelonnées dans le temps (fig. 8.1). On a ici un certain nombre de taches (T}
a Ty), dont chacune peut étre exécutée par une ressource parmi un ensemble
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restreint. Le but est alors de trouver une assignation des ressources aux taches
de maniére a ce qu’aucune ressource n’effectue plus d’une tache en méme temps.
Le probleme se formule facilement comme PSC :

e Variables x1..z,, correspondant aux taches T1,75..7T,,
(valeur = une ressource).

o Domaines = ressources qui peuvent effectuer la tache. Par exemple, D, =

(B,C}.

o Contraintes = deux téaches se chevauchant dans le temps ne peuvent étre
effectuées par la méme ressource.

I T1(x4) I

D1 ={B,C}
| To(xo) | gf$€§
318,
I T3(x3) I I Ta(Xq) | D,={A,B}
-
temps

Fig. 8.1 Quatre taches Ty a Ty a effectuer avec 3 ressources.

Ce probleme peut étre résolu par un algorithme de generate-and-test : es-
sayer toutes les combinaisons des valeurs admissibles pour les variables et rete-
nir celles qui respectent toutes les contraintes. Pour 'exemple de la figure 8.1,
on a deux ressources possibles pour chacune des quatre téaches, donc il y a
2% = 16 combinaisons de ressources pour T3 ToT5T} :

(BABA) (BABB) (BACA) (BACB)
(BCBA) (BCBB) (BCCA) (BCCB)
(CABA) [(CABB)| (CACA) (CACB)
(CCBA) (CCBB)  (CCCA) (CCCB)

En vérifiant les contraintes de non-simultanéité pour chaque combinaison,
on peut observer que seule la combinaison BBAC satisfait toutes les contraintes
et est donc une solution. Il est évident que la complexité d’une solution four-
nie par generate-and-test est toujours exponentielle par rapport au nombre de
variables. Un PSC typique implique un grand nombre de variables, ce qui rend
cette méthode inapplicable. Des algorithmes plus efficaces ont donc été définis.

L’idée sous-jacente a presque toutes les méthodes de satisfaction de
contraintes consiste a vérifier les contraintes sur des instanciations partielles
de valeurs & un sous-ensemble de variables. Une instanciation partielle est une
solution partielle seulement si toutes les contraintes entre les variables aux-
quelles on a assigné une valeur sont satisfaites. Une instanciation partielle n’est
alors étendue que si elle est une solution partielle.

Cela donne lieu a une recherche ou les nceuds sont des solutions partielles
et la fonction de successeur consiste a assigner une prochaine valeur a 'une
des variables qui n’a pas encore de valeur. On vérifie alors les contraintes pour
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( 1_:_1_) — 7_)

SN N

+BAB) BAC.) (BCBo) +(B66 (CAB

SR

{B:ACGAr  (BACB) {GABA)- (C,AB,B)

Fig. 8.2 Arbre de recherche pour la résolution d’un probléeme d’allocation de res-
sources par une recherche en profondeur-d’abord.

filtrer les nceuds qui ne sont pas consistants. La figure 8.2 montre I'arbre de
recherche résultant pour I’exemple de la figure 8.1.

Il existe un certain nombre d’heuristiques pour rendre encore plus efficace
une telle recherche. Si la recherche évite d’explorer plus loin des instanciations
inconsistantes, les tests d’inconsistance ne peuvent s’appliquer que dans ’ordre
d’instanciation des variables. A chaque backtrack, on perd l'information sur
les combinaisons consistantes de valeurs pour les dernieres variables instan-
ciées. Dong, il arrive souvent que ’algorithme explore plusieurs fois la méme
combinaison contradictoire de valeurs.

Pour pallier ce désavantage, on pourrait imaginer une application d’un fil-
trage uniforme sur toutes les variables et non seulement sur celles qui sont déja
instanciées. C’est I'idée des algorithmes de consistance partielle : d’abord limiter
I’espace de recherche a un sous-ensemble prometteur en éliminant des combinai-
sons de valeurs qui dans aucun cas ne peuvent respecter toutes les contraintes.
Ce processus peut s’appliquer comme prétraitement avant ou entre différentes
étapes de recherche. Par exemple, imaginons qu’une contrainte implique que la
valeur 77 = A ne puisse jamais faire partie d’une solution. On éliminera alors
ce choix et la recherche ne va plus considérer du tout l’assignation 77 = A.
Comme [’élimination d’une valeur en entraine souvent I’élimination d’autres,
on parle d’une propagation des contraintes.

8.2 Formulation d’un réseau de contraintes binaires

La plupart des travaux traitent des contraintes binaires qui s’averent les plus
adaptées a la propagation. Un probleme de satisfaction de contraintes binaires
peut alors étre représenté par un graphe ou :

o les neceuds sont les variables,

o les arcs représentent les contraintes.

On appelle ceci un réseau de contraintes. Par exemple, le probleme d’al-
location de ressources de la figure 8.1 donnera lieu au réseau de contraintes
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/ x3€{B,C} \
=

X1E{B,C}<_> x,€{A,C
X /

Fig. 8.3 Réseau de contraintes pour l’exemple de l’allocation de ressources.

x,€{A,B}

de la figure 8.3. Pour cet exemple, toutes les contraintes sont des contraintes
d’inégalité (#) signifiant que les valeurs assignées aux deux variables doivent
étre différentes.

Si la représentation comme graphe est bien adaptée a un réseau de contraintes
binaires, la plupart des problemes pratiques conduisent a des contraintes mul-
tiples. Pourvu qu’il s’agisse d’'un probleme a valeurs discretes, il existe deux
méthodes pour transformer un réseau n-aire en un réseau binaire : la projection
et la transformation en réseau dual.

Une contrainte impliquant plus de deux variables peut étre approximée
par un réseau de contraintes binaires, sa projection. La figure 8.4 montre un
exemple : la contrainte R est représentée par trois contraintes a deux variables
en retenant les combinaisons de valeurs qui figurent dans la liste des combinai-
sons admises par R.

Projection Ea%féisoenmée:
R= R'=

(xy2) {ab). @c s
b, D), (&, (a,b), (a,c) (a,b,0)
EZ,C’ g)) (b.b), (b.0)} bb), (b.c)} (@.c,b)
(b,b,b) (b,b,b)
(b,b,c) (b,b,c)
(b,c,b) (b,c,b)
(b9 (b,c,c)
(a,b,b)

(a,c,c)

Fig. 8.4 Projection d’une contrainte R a trois wvariables. Le réseau de trois
contraintes qui en résulte admet deux combinaisons de valeurs en plus : (a,b,b) et
(a,c,c).

Cependant, une perte d’information s’ensuit souvent d’une projection : dans
I’exemple, le réseau qui en résulte admet en effet deux combinaisons de valeurs
en trop! Cette perte d’information est inévitable : une relation a n variables
avec des domaines de taille m représente un volume d’information de m™ bits.
Sa projection consiste en n-(n—1)/2 contraintes dont chacune ne représente que
m? bits d’information. Comme en général m"™ < n-(n—1)/2-m?, I'information
de la contrainte a n variables ne peut pas étre completement représentée.
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La deuxieme possibilité consiste & transformer 'hypergraphe du PSC avec
contraintes a variables multiples en un probleme binaire équivalent en construi-
sant un graphe dual Gp au réseau de contraintes G :

e nceuds de Gp = contraintes de G,

o arcs de Gp = ensembles de variables en commun : la contrainte exige que
les instanciations soient les mémes des deux cotés.

On peut montrer qu’il n’y a alors aucune perte d’informations : le PSC
transformé admet exactement les mémes solutions que le probléeme original.

La figure 8.5 montre un exemple d’'un PSC avec des contraintes a plus de 2
variables.

x={a,b,c} w={a,b,c}
x.y.2) (w.y,2)
(a,b,c) (a,a,a)
(a,c,b) (a,a,b) _
(b,b,b) (a,b,a) Solution:
(b,b,c) (a,b,b) (w,x,y,2)=(a,b,b,b)
(b,c,b) (c,a,b)
(b,c,9 (c,b,a)
yela,b,c} ze{a,b,c}

Fig. 8.5 Un probléeme tmpliquant des contraintes a variables multiples.

Sa transformation en graphe dual donnera deux nceuds :
1) a=(z,y,2) €
{(a,b,¢), (a,c,b),(b,b,b),(b,b,c), (b, c,b),(b,c,c)}

2) ﬂ = (w,y72) €
{(a,a,a), (a,a,b),(a,b,a),(a,b,b),(c,a,b),(c,b,a)}

et une contrainte :
Cyla) =y(B), z(a) = 2(B) : {((b,;b,b), (a,b,b)}

et il y a une seule combinaison qui satisfait la contrainte :
a=(b,b,b),3 = (a,b,b)

Comme il est alors possible de transformer tout PSC discret en un probleme
a contraintes binaires, nous nous concentrerons par la suite sur les réseaux de
contraintes binaires uniquement. Nous ne considérons explicitement des algo-
rithmes pour des contraintes non binaires que pour le cas de variables continues,
ou une telle transformation n’est pas possible.
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8.3 Solution d’un PSC par recherche

Tout PSC discret peut étre résolu par un algorithme de recherche : on énu-
mere toutes les combinaisons imaginables de valeurs des variables, et on retient
celles qui respectent les contraintes. Cependant, un PSC comporte souvent
des centaines de variables, dont les domaines peuvent également prendre une
taille considérable. Un algorithme de recherche sans aucune optimisation serait
donc tellement inefficace que 1’on ne peut envisager une telle solution. Dans le
contexte des PSC, on utilise donc des heuristiques spécifiques qui permettent
une recherche plus efficace.

En fait, il y a deux types de méthodes pour la résolution d’un PSC par re-
cherche. Le premier prend comme base un algorithme de recherche en profondeur-
d’abord et y ajoute certaines heuristiques et méthodes de propagation de labels
qui le rendent beaucoup plus efficace. Le deuxieme type de méthode s’inspire de
I'optimisation et se base sur une modification itérative d’'une assignation com-
plete pour minimiser et finalement éliminer tout conflit avec les contraintes. Il
s’agit donc d’une propagation de valeurs.

8.3.1 Méthodes basées sur la recherche en profondeur-d’abord

Pour résoudre un PSC, on peut utiliser un algorithme de recherche en profondeur-
d’abord ot :

e nceud de recherche = instanciation de variables x1 = vy, 29 = vg, ..., 2 =
v (K est la profondeur du noeud dans I’arbre de recherche, le noeud racine
étant par convention & la profondeur 0);

o fonction de successeur = instanciation de la variable xy11 = vgy1 de
maniere a respecter toutes les contraintes avec x1, ..., T ;

o neeud initial = instanciation vide;

e noeud but = instanciation de toutes les variables z1, ..., ;.

La figure 8.6 montre comment l’algorithme de recherche en profondeur-
d’abord (aussi appelé « backtrack ») peut étre adapté a la résolution d’un PSC.
La recherche peut étre rendue plus efficace par :

o les valeurs considérées : pour limiter leur choix, on utilise les méthodes du
forward checking ou du lookahead, basées sur la consistance partielle des
contraintes ;

e ordre d’instanciation des variables : on utilise des heuristiques basées sur
la structure du réseau de contraintes.

En pratique, ces méthodes conduisent a des améliorations tres sensibles de
lefficacité des algorithmes.
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x = tableau de n variables, rempli jusqu’a k
d = domaines des variables

1: Function DFS(x,d k)

2: if k > n then

3:  return x

4: else

5. for v € dk] do

6 consistent «+ true
7 fori+ 1tok-1do
8

if - consistent(v,x[i],C(i,k)) then consistent < false

9: if consistent then

10: x[k] v

11: rest + DFS(x,d k)

12: if rest # :echec then return rest

13: return :echec

Fig. 8.6 Algorithme pour la solution d’un PSC par recherche en profondeur-d’abord.

Comme exemple, considérez a nouveau le probleme d’allocation de res-
sources que montre la figure 8.7.
Nous avons les variables et domaines :

D, ={B,C}
Dy ={A,C}
D; ={B,C}
D, = {AaB}

et les contraintes :

C(xlva) {(BvA)7(B7C)7<C7A)}
0(93171'3) {(B,C),(C,B)}

C($1,1'4) {(B,A)a(CaB)7(CaA)}
C(x%xd) {(A,B),(A,C),(C,B)}
C(w2,74) : {(A4, B),(C, A),(C,B)}

L’algorithme DFS sera alors appelé avec d = [(B,C), (A,C),(B,C),(A,B)]
et trouve la solution en 12 pas, comme le montre la figure 8.8.
Backjumping

Si lassignation & xx41 échoue, il faut changer au moins une variable qui y est
liée par une contrainte. Dans la trace de la figure 8.8, le premier retour-arriere
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/Xse{B C}\
=

x1€{B,C} <#=——> x,c{AC
\ x4€{A,B} /

Fig. 8.7 Probleme d’allocation de ressources.

Pas | k | x[1] | x[2] | x[3] | x[4]

1 1 B - - -

2 2 B A - -

3 3| B A C -

4 41 B A C * retour-arriere !
5 3| B A * - retour-arriere !
6 2 B C - -

7 3 B C - retour-arriere !
8 2| B * - - retour-arriere !
9 1 C - - -

10 2 (@ A - -

11 3 C A B -

12 4 C A B B solution!

Fig. 8.8 Trace de l’exécution du DFS simple. Les « * » indiquent qu’il n’y a aucune
valeur qui n’est pas en conflit avec les assignations déja effectuées.

aurait pu directement revenir sur xs, puisque aucune contrainte lie x3 et x4.
Ceci est l'idée de la regle du backjumping :

Quand il n’y a pas de valeur consistante pour la variable xj4.1, revenir
directement a la derniére variable qui a une contrainte avec Ty 1.

Dans 'exemple, cela évite le pas 5. La méthode peut étre rendue encore plus
ciblée dans le conflict-directed backjumping :

Quand il n’y a pas de valeur consistante pour la variable zj 41, revenir
a la derniere variable qui avait un conflit avec une des valeurs du
domaine de zj4;.

Forward checking

Si le backjumping produit un gain d’efficacité dans le cas ou un retour-arriere
a effectivement lieu, le forward checking a pour but d’éviter a l'avance des
instanciations inconsistantes en appliquant le critere de la consistance des arcs
pendant la recherche.
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Il exige qu’on ajoute un label 1[i] a chaque variable, qui sera initialement
égal & son domaine. La regle du forward checking met & jour ces labels en
appliquant la regle suivante :

A chaque instanciation d’une variable xj, éliminer toutes les valeurs
inconsistantes avec xj des labels des variables qui ne sont pas encore
instanciées.

Lookahead et consistance des arcs

Le forward checking est tres semblable & la consistance des arcs, mais differe
car la propagation n’est appliquée qu’aux contraintes impliquant la derniere
variable assignée. Si on étend cette méthode pour continuer la propagation ré-
cursivement, I’heuristique s’appelle le lookahead. Si en plus on fait une itération
jusqu’a ce qu’il n’y a plus de changement, on obtient la consistance des arcs a
chaque pas de la recherche. Les versions plus poussées ont ’avantage d’éliminer
au maximum le besoin de recherche, mais elles sont elles-mémes cofiteuses a
appliquer. En pratique, il semblerait que les heuristiques plus poussées soient
avantageuses pour des grands problémes.

Comme le montre la trace de la figure 8.9, le forward checking permet de

résoudre ’exemple avec uniquement deux retours-arriere. La trace du lookahead
(fig. 8.10) donne un résultat encore meilleur : un seul retour-arriere suffit.

k| x[1] | x[2] | x[3] | x[4] | 1[1] 1[2] 1[3] 1[4]
0 - - - B,C | A,C | B,C ,
1 B - - - C AC C A
2 B A - - C C C - retour-arriere !
2 B C - - C - - A retour-arriere !
1 C - - - - A B AB
2 C A - - - - B B
3 C A B - - - - B
4 C A B B - - - - solution !
Fig. 8.9 Trace de la recherche avec forward checking.
k| x[1] | x[2] | x[3] | x[4] | 1[1] 1[2] 1[3] 1[4]
0 - - - B,C | AC | BC | AB
1 B - - - - A C - retour-arriere !
1 C - - - - A B B
2 C A - - - - B B
3 C A B - - - - B
4 C A B B - - - - solution !

Fig. 8.10 Trace de la recherche avec lookahead.
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Ordonnancement des variables

L’autre possibilité pour influencer la recherche consiste a influencer ’ordre dans
lequel on considere l'assignation des variables. Il y a plusieurs heuristiques
d’ordre qui sont proposées dans la littérature. Parmi les plus importantes, on
trouve :

o dynamic variable ordering (DVO) : prendre la variable non instanciée dont
le label est le plus petit (combinaison avec forward checking/lookahead) ;

o min-width ordering : prendre la variable non instanciée connectée au plus
petit nombre de variables non instanciées;

o maz-degree ordering : prendre la variable la plus connectée dans le graphe
original ; ceci est un ordre statique qui ne dépend pas de I’état de la
recherche.

Les deuxieme et troisieme heuristiques sont souvent couplées a la premiere :
dans les cas ou l'ordre produit n’est pas unique, on utilise la deuxiéme puis
la troisieme heuristique pour décider. Cette combinaison est, selon 1’état des
connaissances en 1996, la plus performante pour les problemes pratiques.

La figure 8.11 montre la trace d’une recherche qui utilise uniquement ’heu-
ristique DVO en combinaison avec le forward checking. Maintenant, un seul
retour-arriere suffit pour trouver la solution. Ce résultat peut encore étre amé-
lioré en utilisant en plus I’heuristique min-width, comme le montre la figure 8.12
qui trouve la solution sans aucun retour-arriere. Pour cet exemple, on ne peut
pas faire mieux!

Pas | x[1] | x[2] | x[3] | x[4] | 1[1] | 1[2] | Y3] | 1/4]

0 - - - - B,C| AC|BC | AB

1 B - - - C AC C A

2 B - C - - A - A

3 B A C - - - - - retour-arriere !
4 cl| - | -] -1|-1A/|B|AB

5 C A - - - - B B

6 C A B - - - - B

7 C A B B - - - solution !

Fig. 8.11 Trace de la recherche utilisant le dynamic value ordering (DVO).

Sur un exemple trés simple comme celui que nous avons vu ici, les gains
en performance qui sont obtenus grace a ces algorithmes ne sont pas tres im-
pressionnants. Cependant, sur des grands problemes, il est normal de voir des
gains tres importants qui rendent possibles la solution de grands systéemes de
contraintes. Comme résultats théoriques comparatifs, on peut retenir :

e la recherche par retour-arriere simple est la moins efficace ;

o D'heuristique du backjumping (simple) est meilleure, mais visite au moins
autant de nceuds que le forward checking et est donc strictement moins
puissante que celui-ci ;.
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Pas | x[1] | x[2] | x

<
Ll
M
=
=

12] [ 1B3] | 1}4]

0 - - - - B,C | AC | B,C| AB

1 - - B - C | AC C AB

2 C - B - - A - AB

3 C A B - - - - B

4 C A B B - - - - solution!

Fig. 8.12 Trace de la recherche utilisant l’heuristique DVO suivie de ’heuristique
min-width.

o le forward checking et sa version plus poussée du lookahead sont les meilleures
heuristiques;

o le conflict-directed backjumping peut améliorer la performance du forward
checking.

8.3.2 Meéthodes itératives

A c6té des méthodes de recherche incrémentale, qui ne considerent que des so-
lutions partielles consistantes, il existe des méthodes itératives qui commencent
avec n’importe quelle assignation de valeurs et effectuent des changements lo-
caux pour éliminer les conflits avec les contraintes I'un apres 'autre. Ceci corres-
pond plutét a la propagation de valeurs. Nous allons examiner deux algorithmes
de ce type :

o l'heuristique min-conflicts,

e le recuit simulé.

Les différences entre les méthodes itératives se situent dans la maniere dont
les changements locaux sont faits. Ils peuvent se faire :
o de maniére déterministe (min-conflicts), c’est-a-dire qu’il y a un critere
fixe et que le changement se fait toujours quand ce critere est satisfait ;

o probabiliste (recuit simulé), c’est-a-dire que le critére ne donne que les
probabilités pour un changement.

Pour toutes les méthodes itératives, la performance dépend essentiellement
du choix des valeurs initiales : si elles sont proches d’une solution, il y a évi-
demment moins de pas qui restent a faire. Ceci rend difficile la comparaison
des performances observées sur ces algorithmes avec la recherche incrémentale.

L’idée de I’heuristique min-conflicts est de changer & chaque étape ’assigna-
tion de la variable qui réduira le plus le nombre total de conflits. La figure 8.13
montre ’algorithme qui en résulte. Le choix de la variable a changer se fait
dans le pas 10; on compare le nombre de conflits qui existeront apres avoir
changé la valeur de la variable. La figure 8.14 montre la trace d’une exécution
sur I’exemple de la figure 8.7 que nous avons déja traité auparavant.

L’heuristique min-conflicts correspond directement & la procédure du hill-
climbing bien connue dans I'optimisation. Elle est donc susceptible d’amener
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X = variables
V = valeurs
C = contraintes

1: Function min-conflicts(X,V,C)
2: for i < 1 to max-tries do

3: 'V <« assignation aléatoire

4: for j < 1 to max-steps do
5 nconf « check(V,C)

6: if nconf = 0 then
7

return solution V

8: else
9: trouver k tel que changer v[k] donne un nombre minimal de conflits
10: changer v[k]

11: retourner solution partielle V
Fig. 8.13 Algorithme min-conflicts.
1°7 pas :

Assignation initiale : (x1 = B, x2 = A, x3 =B, x4 = A)
= 2 conflits : ¢(x1,x3) et c(x2,x4)

variable conflits nombre total
changée avec de conflits
x1 = C c(x2,x4) 1

x2 - C c(x1,x3) 1

x3 — C c(x2,x4 1

x4 — B | c(x1,x3),c(x1,x

4) | 2
accepter (x1 — C) : (x1 =C,x2=A,x3 =B, x4 =A)
= 1 conflit : c(x2,x4)

2° pas :

variable conflits nombre total

changée avec de conflits

x1 — B | ¢(x1,x3), ¢(x2,x4) | 2

x2 - C c(x1,x2) 1

x3 = C | c¢(x1,x3),c(x2,x4) | 2

x4 — B - 0
accepter (x4 — B) : (x1 = C,x2=A,x3 =B, x4 =B)
= solution !

Fig. 8.14 Solution d’un PSC par l’algorithme min-conflicts.
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la recherche vers des minima locaux. La figure 8.15 montre une trace ol en
acceptant un changement différent mais aussi valable que celui de la figure 8.14,
I’algorithme tombe dans un minimum local ot il n’y a aucun changement local
qui apporte une réduction du nombre de conflits. C’est pour cette raison qu’on
admet un certain nombre d’essais destinés a donner plusieurs chances de trouver
une solution. Il semblerait par contre qu’en pratique, ces minima locaux ne
présentent que peu de probléemes. La méthode de solution de PSC par min-
conflicts est utilisée par exemple pour I'ordonnancement et la planification du
télescope spatial HUBBLE.

1" pas :
Assignation initiale : (x1 = B, x2 = A, x3 =B, x4 = A)
= 2 conflits : ¢(x1,x3) et c(x2,x4)

variable conflits nombre total
changée avec de conflits
x1 - C c(x2,x4) 1

x2 - C c(x1,x3) 1

x3 - C c(x2,x4) 1

x4 — B | c¢(x1,x3),c(x1,x4) | 2

accepter (x2 > C): (x1 =B, x2=C,x3=B,x4 = A)
= 1 conflit : ¢(x1,x3)

2¢ pas :
variable conflits nombre total
changée avec de conflits
xl - C c(x1,x2) 1
x2 = A | c¢(x1,x3),c(x2,x4) | 2
x3 - C c(x2,x3) 1
x4 — B | c¢(x1,x3),c(x1,x4) | 2

aucun changement réduisant le nombre de conflits = fin

Fig. 8.15 Un autre exemple ot l'algorithme min-conflicts s’arréte dans un minimum
local et ne trouve donc pas la solution, bien qu’elle existe.

Notons finalement qu’'on pourrait également utiliser [D’heuristique
min-conflicts pour un ordonnancement des valeurs dans la recherche incrémen-
tale. Elle consisterait alors a considérer d’abord la valeur qui aura le moins de
possibilités de conflits avec les variables qui restent encore a instancier.

Pour éviter le probleme des minima locaux, la méthode du recuit simulé
admet qu’on puisse accepter, avec une probabilité faible, des changements qui
n’améliorent pas la qualité de la solution. Cet algorithme est inspiré de la phy-
sique et plus particulierement du processus de la solidification des verres. 11
utilise une température T' qui donne la probabilité d’accepter un changement
qui n’améliore pas la solution; en choisissant 0 < 7" < 1, on peut utiliser T’
comme une probabilité. Cette température, et donc la probabilité, est décrois-
sante en fonction des itérations. La figure 8.16 montre I'algorithme, tres simi-
laire a ’algorithme min-conflicts. La figure 8.17 montre une trace d’exécution
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Tableau T = liste de probabilités décroissantes

1: Function recuit(X,V,C)

2: V « assignation aléatoire

3: T[max-steps] < plan de réduction de "température”
4: for j < 1 to max-steps do

5. nconf < check(V,C)

6:  if nconf = 0 then return V

7.V’ < V avec une valeur v[k] changée aléatoirement
8 if check(V’,C) < check(V,C) then
9

VeV
10: else
11: if random(0..1)<T[j] then V + V’

12: return solution partielle V

Fig. 8.16 Algorithme du recuit simulé.

Assignation initiale : (x1 = B, x2 = A, x3 =B, x4 = A)
= 2 conflits : ¢(x1,x3) et c(x2,x4)

changement conflits mieux? | accepter? | assignation
x2 = C c(x1,x3) oui oui B,C,B,A
x4 — B c(x1,x3),c(x1,x4) non oui B,C,B,B
xl —» C c(x1,x2) oui oui C,C,B,B
x3 — C c(x1,x2),c(x1,x3),c(x2,x3) | non non C,C,B,B
x2 — A - oui oui C,ABB

Fig. 8.17 Trace d’exécution du recuit simulé sur l’exemple de la figure 8.7.

de I'algorithme, a nouveau sur I’exemple de la figure 8.7. Dans cet exemple, on
a supposé que la température prend les valeurs suivantes, selon les itérations :
7=(0.7,0.5,0.3,0.1,0.01,0.001).

8.4 Solution par propagation

Une autre maniere de résoudre des problemes de satisfaction de contraintes
est par une propagation locale d’informations suivant la structure du réseau de
contraintes. De telles méthodes, en général de complexité polynomiale dans la
taille du probleme, peuvent s’utiliser comme pré-traitement avant une recherche
ou parfois méme comme seul algorithme de solution.
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Le terme propagation de contraintes est utilisé pour plusieurs différentes
méthodes bien distinctes. Par exemple, il peut s’agir de :

o la propagation de valeurs,
o la relaxation de valeurs,
« la propagation de labels,

« la propagation de contraintes a proprement dit.

Clarifions un peu ces différentes notions.

Propagation de valeurs

Etant donné un PSC (X,D,C) ol :
o certaines variables {z;} ont des valeurs v;,

o les valeurs des autres variables {«;} sont inconnues.

On utilise les contraintes pour attribuer des valeurs consistantes aux {x;}.
Ceci est possible surtout avec des contraintes fonctionnelles, comme z = y + z.
En général, les contraintes ne permettent pas de déduire des valeurs uniques. On
doit alors faire un choix arbitraire de valeurs, et la convergence de la procédure
n’est pas garantie.

Relaxation de valeurs

Etant donné un PSC (X,D,C) ot :
« toutes les variables {z;} ont chacun une valeur v;,

o les valeurs ne sont pas consistantes avec les contraintes.

On change incrémentalement les valeurs de certaines variables pour arri-
ver a une solution consistante avec toutes les contraintes. La procédure peut
suivre un régime de minimisation du nombre de conflits et revient alors & une
optimisation. Les probléemes qui se posent sont :

o il n’est pas certain de trouver la meilleure solution,
o on ne peut pas distinguer des solutions multiples,

o il y a une forte possibilité de cycles.

Une variation de la relaxation est ’algorithme Tabou, dont 1’élément im-
portant est qu’on mémorise des étapes précédentes pour éviter qu’il y ait des
cycles.

Propagation de labels

Etant donné un PSC (X,D,C) ot :
o chaque variable x; a un label I; C D,

o les labels indiquent les valeurs considérées comme encore consistantes.
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On change itérativement les labels des variables pour éliminer toutes les
valeurs ne pouvant étre consistantes.

Le résultat d’une telle propagation est un ensemble de labels qui remplissent
un certain degré de consistance. La consistance des nceuds est vérifiée si toutes
les valeurs du label I; respectent toutes les contraintes unaires C'(x;). La consis-
tance des arcs concerne des paires de deux variables z; et x; ainsi que la
contrainte C(z;,x;) les liant. Une valeur de z; = v; € [; ne peut faire par-
tie d’'une solution du PSC que s’il existe au moins une valeur z; = v; € [; telle
que C(v;,v;) soit respectée. On peut donc éliminer toutes les valeurs de I; et
l; qui ne respectent pas la contrainte. Par application itérative sur toutes les
contraintes, on obtient des labels qui satisfont la consistance des arcs.

1: Function REVISER (i,j,C)

2: modifiée < faux

3: for chaque x € [; do

4:  if aucun y € l; tel que C(z,y) then
5: I« i \z

6: modifiée < vrai

7. return modifiée

Fig. 8.18 Fonction élémentaire pour la consistance des arcs : REVISER(i,5,Cij)
effectue le raffinement de C;; et sera appelée pour toutes les contraintes jusqu’a ce
qu’il n’y ait plus de changement.

Ceci est le fonctionnement de I’algorithme de Waltz, le premier algorithme
a introduire la notion de propagation de contraintes. Il consiste a appliquer
REVISER (i,7,C;;) (fig. 8.18) & toutes les combinaisons de variables i et j
jusqu’a ce que le résultat soit faux pour toutes les combinaisons. Par exemple,
si nous avons le PSC suivant :

Variables : x1, 2,3
Domaines = labels initiaux

ll = {a7 ba c, d}a
12 = {av bv c, d}7
I3 ={a,b,c,d}
Contraintes :

Cl(xha:?) - {(avb)’( 76)’ (Cv d)}v
CQ(xh‘Tﬁi) {(avb)a( ,C),(C,d)},
C3(w2,23) = {(a,b), (a,¢),(d,d)}

la propagation des labels effectuée par ’algorithme de Waltz sera la suivante :
1) Cl(l‘l) = = {a,c}
1(3:2) = 12 = {b7 C, d}
2) 62(1‘1) = = {a,c}
Ca(z3) = I3 = {b,d}
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3) Cg(l’g) = lg = {d}
63(1'3) = lg = {d}

4) Cl(xl) = ll = {C}

ce qui donne déja une solution unique sans aucune recherche :

r1=c¢210=d,x3=d

La propagation de contraintes

Dans la propagation de contraintes a proprement parler, il s’agit de déterminer
incrémentalement les contraintes implicites entre variables qui résultent de la
composition des contraintes d'un PSC. A partir de contraintes a k variables,
on construit donc des contraintes & (k+1) variables qui représentent les com-
binaisons consistantes de valeurs de ces (k+1) variables. On termine avec une
seule contrainte qui englobe toutes les variables et représente toutes les solu-
tions globalement consistantes. Cette opération ressemble fortement au « join »
connu dans les bases de données.

Comme exemple, considérons le PSC que montre la figure 8.3. Il contient
uniquement des contraintes a 2 variables, la propagation des contraintes
construit d’abord un PSC dont les contraintes impliquent 3 variables :

X1X2X3= X1XeX4=

X7={B,C}

XoX3Xa= /
{ABB,ACB,CBA,CBB}

Xxo={A,C}
et ensuite une seule contrainte a 4 variables :
C(z1, e, z3,24) = {(C, A, B, B)}
Dans le cas d’un PSC a k variables, la procédure s’arrétera avec une seule

contrainte & k variables qui contient toutes les solutions. On appelle alors le
PSC (k-1)-consistant.

8.5 Consistance et complexité de la recherche

Si une utilisation des algorithmes de propagation peut étre de trouver directe-
ment une solution a un PSC, une autre possibilité est de les utiliser pour un



Satisfaction de contraintes 189

pré-traitement du probleme avant ou pendant sa solution par recherche. Ceci
est notamment utile pour les algorithmes de consistance. Il est évident que ces
méthodes peuvent servir a réduire le temps que met un algorithme de la re-
cherche pour trouver une solution. Maintenant, nous allons établir des relations
précises entre la forme d’un réseau de contraintes, le degré de consistance et la
complexité de recherche nécessaire pour trouver une solution.

Trouver toutes les solutions a un PSC général est un probleme de com-
plexité exponentielle, puisque le nombre de solutions qu’admet le PSC peut
étre en croissance exponentielle avec le nombre de variables du probleme ; dans
ce cas, la complexité de les énumérer toutes ne peut pas étre moins qu’exponen-
tielle. Par contre, pour trouver une seule solution, on peut espérer de limiter la
complexité a un temps polynomial.

Nous allons considérer les notions de consistance suivantes :

¢ consistance des noeuds : toutes les valeurs admissibles pour un nceud sa-
tisfont I’ensemble des contraintes unaires sur ce noeud ;

» consistance des arcs : pour chacune des valeurs admissibles pour un noeud
24, il existe des valeurs admissibles pour les autres nceuds z; telle que
chaque contrainte entre x; et x; est satisfaite.

Pour chacune de ces notions de consistance, nous allons examiner la com-
plexité de recherche d’une solution dans un réseau qui remplit cette consistance.

8.5.1 Consistance des nceuds

Si les variables associées au probléeme prennent leurs valeurs dans un domaine
discret, ’ensemble des valeurs admissibles pour une variable peut étre repré-
senté sous la forme d’une liste. Pour satisfaire les contraintes unaires (consis-
tance des nceuds), il suffit alors de disposer d’un algorithme qui élimine sim-
plement de ces listes les valeurs engendrant une inconsistance. Par contre, les
garanties que peut donner la consistance de noeuds ne sont pas tres fortes :
pour le cas d’un réseau sans contraintes entre variables, la consistance des
neeuds donne une garantie que n’importe quelle combinaison de valeurs est une
solution admissible.

8.5.2 Consistance des arcs

L’algorithme le plus simple pour réaliser la consistance des arcs est 1’algo-
rithme de Waltz. Il consiste a appliquer itérativement une procédure REVISER
(fig. 8.18) & toutes les contraintes jusqu’au moment ol aucune modification
ne peut étre apportée (état stationnaire). L’algorithme est terminé quand les
appels & REVISER ont retourné faux pour toutes les paires de noeuds (3, j).

La complexité de l'algorithme de Waltz peut étre estimée comme suit. Consi-
dérons m contraintes, n variables dont les domaines ont la taille maximale d. A
chaque itération, REVISER est appliquée au plus 2m fois, une fois dans chaque
direction. Pour que l'itération ne s’arréte pas, il faut enlever au moins une va-
leur. Il ne peut donc pas y avoir plus que n - d itérations. Donc, la complexité
totale ne peut pas dépasser O(m - n - d).
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La propagation de Waltz peut étre facilement généralisée a des contraintes a
n variables : REVISER doit alors veiller a ce que pour chaque valeur du label L;,
il existe toujours une combinaison de valeurs admises par les labels des autres
(n — 1) variables pour que la contrainte soit respectée.

Pour des réseaux de contraintes binaires qui ont la topologie d’un arbre,
c’est-a~dire qui n’ont pas de cycles, la consistance des arcs garantit qu’on peut
trouver une solution de maniere tres efficace par une recherche sans retour-
arriére :

X

e,
?

En commengant par un nceud initial quelconque z, on affecte des valeurs
aux variables couche par couche. La consistance des arcs garantit alors qu’a
chaque étape le label d’une variable w contient au moins une valeur qui est
consistante avec la valeur qui a été choisie pour son unique noeud parent. Une
solution peut ainsi étre trouvée avec un temps de calcul linéaire en fonction du
nombre de variables. Méme si cette classe de PSC n’est pas la seule qui peut
étre résolue en temps polynomial, elle est la plus importante car elle est facile a
caractériser. Il existe d’ailleurs des méthodes de transformation qui permettent
de regrouper des variables d'un PSC dans des méta-variables qui alors forment
un arbre entre elles. Un tel clustering permet de réduire la complexité de la
recherche qui n’est désormais exponentielle que dans la taille des clusters.

8.6 Contraintes globales

Dans le cas de grands problemes pratiques, on rencontre souvent des structures
de contraintes relativement régulieres qui créent une grande complexité lors
de la résolution par recherche. Considérons par exemple un probleme d’alloca-
tion de ressources ou il s’agit d’assigner quatre taches simultanées z;..z4 aux
ressources {a, b, ¢,d, e} en respectant les domaines suivants :

o x1 € {a,b,c,d}

° o € {CL, b}

o z3 € {a,b, c}

e 24 € {a,c}

La contrainte qu’aucune ressource ne puisse étre assignée a deux taches peut

étre représentée par un ensemble de contraintes binaires d’inégalité entre les
variables. Cependant, cela conduit a un grand effort de recherche, parce que
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pour les trois premieres valeurs de x1, c.a.d. a,b et ¢, I'algorithme doit effectuer
la recherche jusqu’a x4 pour trouver qu’il n’y a aucune solution. Les algorithmes
de consistance locale n’effectuent aucune réduction avant la derniére étape et
ne sont donc pas efficaces.

Une alternative serait de reconnaitre qu’on trouve ici une structure spéciale
qu’on peut appeler alldifferent (tous différents). On peut alors formuler ainsi
une contrainte additionnelle que ’'on nomme contrainte globale :

alldifferent(z1, s, x3,24)
L’intérét de cette contrainte globale est que I’'on peut formuler un algorithme
de propagation spécialisé et plus efficace qui la prend en compte.
Représentons la structure d’une contrainte alldifferent par un graphe qui
contient comme nceuds :
o les variables,

e les valeurs de leurs domaines.

et un arc qui lie chaque variable avec toutes les valeurs de son domaine (voir
fig. 8.19).

Fig. 8.19 Représentation de la contrainte alldifferent comme graphe. Les arcs qui
peuvent apparaitre dans un matching maximal sont indiquées en gras.

Une assignation de valeurs aux variables peut étre représentée par un mat-
ching de taille maximale qui associe tous les nceuds variables aux nceuds valeurs.
Il existe un algorithme efficace qui permet de trouver tous les arcs qui peuvent
participer & un tel matching. Pour ’exemple, ils sont identifiées par des traits
gras dans la figure 8.19.

Un tel filtrage permet d’éliminer des le départ les valeurs a,b et ¢ du do-
maine de x1, et donc de trouver une solution de maniere beaucoup plus efficace.
Il pourrait également s’appliquer lors de la recherche, par exemple pour un for-
ward checking, et ainsi obtenir des gains de performance impressionnants.

Pour profiter de telles possibilités, les outils de programmation par contrain-
tes mettent a disposition de nombreuses contraintes globales dont la propaga-
tion est implémentée par des algorithmes spécialisés. Citons par exemple le
global cardinality constraint, qui permet d’indiquer que chaque valeur doit étre
assignée a au moins x et au plus y variables parmi un certain ensemble. D’autres
exemples sont de nombreuses contraintes de cycles qui se réferent a l’existence
et a des propriétés de cycles dans les assignations des variables.
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8.7 Satisfiabilité

Le probleme de la satisfiabilité (SAT) se définit comme suit :
Etant donné

o un ensemble de littéraux x1, ..., x,

o et un ensemble de clauses +x; V £x; V ... V £xy,

trouver une assignation de valeurs z; = v; € {vrai, fauz} pour tous les z; tel
que toutes les clauses soient vraies.

Pour des clauses de longueur trois ou plus, la satisfiabilité est un probleme
de complexité NP.

Il est évident que la satisfiabilité est un cas spécial de probleme de satis-
faction de contraintes. Cependant, il existe deux simplifications : toutes les
variables ont le méme domaine de deux valeurs uniquement, et les contraintes
ont une forme restreinte. On peut ainsi utiliser des méthodes spécifiques pour
la résolution de ces problemes.

Comme pour les PSC, il existe des méthodes completes, basées sur la re-
cherche et l'inférence, et des méthodes itératives qui sont incompleétes. Elles
fonctionnent essentiellement comme les PSC.

Un algorithme de recherche construit une assignation de valeurs a toutes les
variables (littéraux) de fagon incrémentale. Cependant :

e On remplace le forward checking par unit propagation. Suite a I’assignation
d’une valeur v; & une variable x;, on peut substituer cette valeur dans tous
les clauses. Il y aura alors :

— des clauses qui contiennent x; et ou la valeur v; satisfait la clause; ces
clauses sont désormais satisfaites et ne doivent plus étre considérées;

— des clauses qui contiennent x;, et ou la valeur v; ne satisfait pas la
clause ; on peut éliminer x; de la clause; si elle ne contient désormais
aucune variable, on a trouvé une contradiction qui nécessite un back-
track ;

— des clauses qui ne contiennent pas x; et ne sont donc pas affectées.

Cette propagation est en général beaucoup plus forte que dans le cas d’un
PSC.

o On remplace également le dynamic variable ordering par une heuristique
qui sélectionne la prochaine variable basée sur son occurrence dans les
clauses qui ne sont pas encore satisfaites. Par exemple, on prend la variable
qui apparait dans le plus grand nombre de clauses pas encore satisfaites.

Un algorithme itératif commence avec une assignation aléatoire de valeurs
aux variables. Pour améliorer le nombre de conflits, un changement d’assigna-
tion doit forcement affecter une clause qui n’est pas satisfaite. Une technique
utilisée peut consister a sélectionner une clause non satisfaite et a changer 1’as-
signation d’une des variables. On répete ce processus jusqu’a ce qu'une solution
soit trouvée. Cette méthode ne peut pas tomber dans des optima locaux, mais
elle peut résulter en une boucle infinie. Pour éviter cela, il suffit de choisir les
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clauses a changer de fagon aléatoire : un boucle infinie apparaitra alors avec
une probabilité tres petite. La méthode peut donc étre complete. Par contre,
si le probleme n’admet pas de solution, elle ne s’arrétera jamais.

8.8 Optimisation sous contraintes

Le paradigme de la satisfaction de contraintes peut étre étendu a celui de ’op-
timisation en exigeant que la solution trouvée ne soit non seulement conforme
a toutes les contraintes, mais également la meilleure suivant un certain cri-
tere d’optimisation. En fait, la recherche de solution optimale se retrouve dans
presque toutes les applications pratiques. Des méthodes d’optimisation font
donc partie de pratiquement tous les outils de programmation par contraintes.

Du point de vue formel, le critére d’optimisation est normalement défini
comme une fonction de cout qui se calcule comme la somme des valeurs de
diverses relations. On peut ainsi compléter la definition d’'un PSC comme suit :

Etant donné :
e les variables X = x1, s, ..., Ty ;
e les domaines D = Dy, Do, ..., D,, associés aux variables;

e les contraintes C = Cy(zg, zy, ...), Ca, ..., Cpy, qui restreignent les
combinaisons de valeurs possibles pour les variables sur lesquelles
elles portent ;

e les relations R = Rj(xg, 2y, ...), Ra, ..., Ry, ot chacune donne un
colit pour chaque combinaison de valeurs des arguments ;

Trouver :

la solution :

{z1 = vk, 22 = vy, ..., Tn = V,} telle que toutes les contraintes
soient satisfaites et que la somme Ry + Ry + ... + R; soit mi-
nimale parmi tous les assignations consistantes.

L’optimisation sous contraintes est une alternative plus générale a la pro-
grammation linéaire. Si la programmation linéaire et ses variantes discretes
développées en recherche opérationnelle présentent un avantage en efficacité,
I'optimisation sous contraintes admet des contraintes et des relations arbi-
traires. Cette derniere est donc plus généralement applicable.

Il existe parfois des problemes ou des algorithmes efficaces permettent d’op-
timiser I'un ou l'autre aspect isolé, mais pas leur combinaison. Par exemple,
dans l'optimisation de transports, il peut étre important de chercher a la fois
le chemin le plus court et un ordonnancement optimal. L’optimisation sous
contraintes permet de combiner ces deux criteres.

L’algorithme de recherche en profondeur-d’abord pour la solution de PSC
peut étre adapté a 'optimisation en introduisant le mécanisme de branch-and-
bound. Le principe est le suivant :

o On maintient pour chaque nceud de recherche (c.a.d. une assignation par-
tielle) une borne inférieure BI(n) sur le colit d’une assignation consistante
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qui contient ’assignation partielle. La borne inférieure se calcule comme
la somme des cotits de toutes les relations qui peuvent étre évaluées étant
donné les assignations déja faites. Pour une relation ot uniquement une
partie des variables a une valeur, on compte le cotut le plus bas qui est
possible étant donné les assignations déja fixées.

o L’algorithme maintient également une borne supérieure BS qui est initia-
lisée a +00. Chaque fois qu’on trouve une assignation compléte, si le cout
¢ est inférieur & BS, on met a jour BS « ¢, et on mémorise ’assignation
comme la solution provisoire.

o Tout nceud n tel que BI(n) > BS ne peut pas conduire & une meilleure
solution que la solution provisoire et est donc abandonné.

o S’il ne reste aucun nceud non exploré, la solution provisoire est la solution
optimale avec cout BS.

Il est également possible de généraliser a I'optimisation les techniques de
forward checking, de lookahead et de la consistance des arcs.

L’adaptation des algorithmes itératifs pour trouver une solution optimale
est plus simple : au lieu de minimiser uniquement les violations de contraintes,
on associe a chaque violation de contrainte un cotlit qui se rajoute au cotit de
la solution. On choisit alors les modifications qui réduisent le plus possible le
cotit de la solution.

Une variante de I'optimisation sous contraintes est la satisfaction partielle
de contraintes. Dans cette variante, on consideére que toute contrainte peut étre
violée avec un certain colit. On cherche alors la solution qui minimise le cott
de tous les violations. On peut transformer un tel probleme en un probléme
d’optimisation sous contraintes en considérant chaque contrainte comme une
relation qui aurait un cout de zéro pour toutes les assignations admises et un
cout de ¢ pour toutes celles qui ne sont pas admises. On parle alors aussi de
préférences ou de soft constraints.

Littérature

Plusieurs livres sur la programmation par contraintes sont apparus récemment.
La collection [32] est la plus complete et couvre pratiquement tous les sujets.
Les livres [33] et [34] présentent des approches plus spécifiques, le premier avec
un accent sur la programmation dynamique et le deuxieme avec un accent sur
la programmation logique par contraintes.

L’idee de la consistance locale et plus particulierement la consistance des
arcs a été introduit dans [35]. La combinaison du forward checking et dynamic
variable ordering a été introduite en 1980 dans [36], et le fait que la consistance
des arcs garantit une recherche sans retour-arriére a été démontré dans [37] et
développé dans [38]. On ne connait pas l'inventeur du principe de la recherche
locale, mais le recuit simulé a été introduit dans [39] et le GSAT dans [40].
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Outils - domaine public

Il existe de nombreux outils pour la satisfaction de contraintes, mais beaucoup
sont vieux ou mal documentés. Le systeme Choco est un développement récent
qui est beaucoup utilisé :

http://choco.sourceforge.net/

Application : Gestion de production d’automobiles

Appartenant a la société Nissan, I'usine de Sunderland (UK) était déja
considérée comme l'usine de voitures la plus efficace d’Europe. L’usine
fabriquait deux modeles sur ses deux chaines de production.

En 1999, Nissan voulait y produire un troisieme modele, mais sans aug-
menter le nombre de chaines de production. On a réussi a le faire grace
a l'introduction d'un outil d’ordonnancement basé sur la satisfaction de
contraintes. La technologie a permis de gérer les contraintes qui résultent
du fait que trois modeles sont produits simultanément sur deux chaines
de production, ce qui n’était pas possible avec les outils de la recherche
opérationnelle.

Nissan a ainsi augmenté le nombre de voitures produit par année de
236000 a 337000 sans introduire de nouveaux équipements. L’alterna-
tive, la construction d’une troisieme chaine de production, aurait cotté
plus de cing cent millions de dollars! De plus, avec le nouveau systeme,
la planification est beaucoup plus souvent respectée : si, avant, seulement
3% des voitures étaient produites selon le plan, en utilisant la satisfaction
de contraintes, ce taux est passé & 95%.

(Source : ILOG SA : Success Story : Nissan, http://www.ilog.com)

8.9 Exercices

Exercice 8.1 Premiere partie - Algorithme de Backtrack

Dans cette série d’exercices, vous allez programmer des algorithmes destinés a
résoudre des problemes de satisfaction de contraintes :

¢ la consistance de nceuds et d’arcs,

o l'algorithme de recherche par backtracking.

Dans la série suivante, vous appliquerez ces algorithmes au jeu du Sudoku.

Modules squelettes

Les modules moteur_psc suivants contiennent le squelette du programme que
nous allons développer. Le module exemple_backtracking.py permettra de le
tester.
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Module .../moteur_psc/variable.py :

class Variable:
def _init_ (self, nom, domaine, val=None):
self .nom = nom
self .domaine = domaine
self . val = val

def taille_domaine( self ):
return len(self.domaine)

def _eq_(self, that):
return self.nom == that.nom

def _hash_(self ):
return sum(map(ord, self.nom))

def _repr_ (self ):
return '{} = {}, domaine: {}'.format(self.nom, self.val, self.domaine)

Module .../moteur_psc/contrainte.py :

class Contrainte:
def _init_ (self, variables ):
self . variables = tuple(variables)

def dimension(self):
return len(self. variables)

def est_valide ( self ):
return False

def _repr_ (self ):
return 'Contrainte: {}'.format(self.variables)

def _eq_(self, that):
return self. variables == that.variables

def _hash (self ):
return sum([v._hash__ for v in self. variables ])

class ContrainteUnaire(Contrainte):
def _init_ (self, var, op):
Contrainte. _init_ ( self , (var,))
self .op = op

def est_valide (self , val):
print('a compléter')

class ContrainteBinaire(Contrainte):
def _init_ (self, varl, var2, op):
Contrainte. _init__ ( self, (varl, var2))
self .op = op

def est_valide ( self , var, val):
print('a compléter')

def est_possible ( self , var):
print('a compléter')
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def reviser ( self ):
print('a compléter')

Module .../moteur_psc/moteur_psc.py :

class PSC:
def _init_ (self, variables, contraintes ):
self . variables = variables
self . contraintes = contraintes

self . iterations = 0
self . solutions = [

def consistance_noeuds(self ):
print('a compléter')

def consistance_arcs ( self ):
print('a compléter')

def consistance_avec_vars_precedentes ( self , k):
print('a compléter')

def backtracking(self, k=0, une_seule_solution=False):
print('a compléter')

def affiche_solutions ( self ):
print('Recherche terminée en {} itérations'.format(self. iterations ))

if len(self . solutions) == 0:
print('Aucune solution trouvée')
return

for sol in self . solutions:
print('Solution')

for (nom, var) in sorted(sol.items()):
print('\tVariable {}: {}'.format(nom, var))

Module .../exemple_backtracking.py :

from moteur_psc.variable import Variable
from moteur_psc.contrainte import ContrainteUnaire, ContrainteBinaire
from moteur_psc.psc import PSC

variables = [
Variable('a', [2, 3]),
Variable('b', list (range(12))),
Variable('c', list (range(3))),
Variable('d', list (range(3))),
Variable('e', list (range(12))),
J

contraintes = |

ContrainteUnaire(variables [1], lambda x: x < 4),
ContrainteBinaire(variables [0], variables [1], lambda x, y: x !=y),
ContrainteBinaire(variables [1], variables [2], lambda x, y: x !=y),
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psc

psc.
psc.

ContrainteBinaire(variables [1], variables [3], lambda x, y:
ContrainteBinaire(variables [1], variables [4], lambda x, y:
ContrainteBinaire(variables [2], variables [3], lambda x, y:
ContrainteBinaire(variables [2], variables [4]

ContrainteBinaire(variables [3], variables [4], lambda x, y:
ContrainteBinaire(variables [4], variables [0], lambda x, y:

Le raisonnement basé sur modeles

X
X
X

, lambda x, y: x 1=y
X
X

= PSC(variables, contraintes)

consistance_noeuds|()

consistance_arcs ()

psc.backtracking(0, False)

psc.

affiche_solutions ()

Exercice 8.1.1 Consistance des noeuds et des arcs

Les modules variable.py et contrainte.py contiennent les classes Variable et
Contrainte, ainsi que les sous-classes de cette derniére, ContrainteUnaire et
ContrainteBinaire. Le module psc.py implémente la classe PSC - une librairie
pour la gestion d’un ensemble de variables et de contraintes, ainsi que pour la
résolution d’un systéme de contraintes.

Comme vous pouvez le constater, les fonctions consistance_noeuds et consis-

tance_arcs la classe PSC ne sont pas implémentées. Vous pouvez commencer par
compléter ces fonctions, en suivant les indications suivantes :

o La fonction consistance_noeuds doit appeler la méthode est_valide de la

classe ContrainteUnaire, que vous devez aussi compléter.

o La fonction consistance_arcs doit appeler la méthode reviser de la classe

ContrainteBinaire, dans laquelle vous devez implémenter ’algorithme de
Waltz (consistance d’arcs). Comme les contraintes binaires sont bidirec-
tionnelles, vous devrez implémenter la fonction reviser de telle sorte que
les domaines des deux variables de la contrainte soient réduits (si possible)
par I'appel a reviser.

N

e A son tour, la méthode reviser s’appuie sur les méthodes est_valide et

est_possible de la classe ContrainteBinaire, que vous devez aussi com-
pléter.

Exercice 8.1.2 Algorithme du backtrack
Le Backtracking est un algorithme de recherche en profondeur-d’abord avec les
charactéristiques suivantes :

o un nceud de recherche est une instanciation de variables z1 = vy, 2 = s,

ey T, = Vg (o k est la profondeur du noeud dans I’arbre de recherche),

« la fonction de successeur ajoute une nouvelle instanciation xxi11 = Vr41

de maniere a respecter toutes les contraintes pour les variables 1, ..., Ty,

e le noeud initial est une instanciation vide,

o un nceud but consiste en une instanciation de toutes les variables xq, ...,

Ty
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L’algorithme de recherche, dont nous vous donnons le pseudo-code ci-dessous,
doit ainsi étre implémenté dans la méthode backtracking de la classe PSC :

solutions <— ]
variables <— [vl, v2, ..., vn]

Backtracking(k, une_seule_solution)

1. IF k >=n THEN

2 IF NOT une_seule_solution THEN

3. ajouter la solution actuelle a solutions

4. ELSE

5 RETURN solutions = [solution actuelle]

6. END IF

7. ELSE

8. v <— variables[k]

9. FOR EACH valeur de domaine d de la variable v DO
10. assigner la valeur d a la variable v

11. vé rifier la consistance de v=d avec les variables précédentes
12. IF v=d est consistant THEN

13. reste <— Backtracking(k+1, une_seule_solution)
14. IF reste != échec THEN

15. RETURN reste

16. END IF

17. END IF

18. END FOR

19. END IF

20. RETURN échec
END Backtracking

backtracking prend deux parametres :

e k : la profondeur courante (commence & 0),

e une_seule_solution : si vrai, alors retourne la premiere solution trouvée,
sinon retourne toutes les solutions possibles.

Les étapes 11 et 12 de Palgorithme ci-dessus seront implémentées a ’aide de la
fonction consistance_avec_vars_precedentes de la classe PSC, que vous devez
aussi compléter.

Les solutions seront stockées dans la variable de classe self.solutions, cha-
cune étant représentée par un dictionnaire qui associera le nom de la variable
a sa valeur. Comme ces solutions sont conservées dans un champ de la classe,
il n’est donc pas indispensable de les retourner. En outre, au lieu de retourner
une valeur spéciale en cas d’échec, la méthode backtracking peut se terminer
simplement sans valeur de retour.

5

Test du programme

Une fois que vous avez terminé, vous pouvez tester votre implémentation sur
le module exemple_backtracking.py :

python3 exemple_backtracking.py
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Exercice 8.1.3 Permutations
S’il vous reste du temps, vous pouvez utiliser I’algorithme du backtrack pour
afficher toutes les permutations possibles des entiers de 0 a N. Par permutation,
nous entendons une solution dont les clés seront des indices et les valeurs, des
entiers de 0 a N. Chacune de ces solutions doit contenir chaque valeur une fois
et une fois seulement. Vous devrez donc définir un systéme de contraintes pour
vous assurer que cette condition soit respectée. Testez votre implémentation
pour plusieurs valeurs de N. (Ne choisissez pas des valeurs trop élevées pour
N, faute de quoi I'algorithme risque de tourner pendant des heures.)

Essayez ensuite d’imaginer d’autres contraintes pour restreindre ’ensemble
des solutions et implémentez-les. Par exemple, on peut exiger que deux valeurs
consécutives ne soient jamais toutes deux paires ou toutes deux impaires.

Solutions a la page 370

Exercice 8.2 Deuxieme partie - Forward Checking

Dans cette série, vous allez programmer de nouveaux algorithmes de résolution

de systemes de contraintes, plus sophistiqués que ceux de la lecon précédente :
o les heuristiques du Variable Ordering et du Dynamic Variable Ordering,

o programmer 'heuristique du Forward Checking.

Vous les testerez ensuite sur le jeu du Sudoku.

Modules squelettes

Commencez par copier les modules suivants, qui implémentent partiellement le
code de l'exercice. Le module moteur_psc_heuristique fournit le squelette du
programme que nous allons développer. Les modules exemple_forward_checking.py
et exemple_sudoku.py sont la pour vous permettre de tester votre programme.

Module .. ./moteur_psc_heuristique/variable_avec_label.py :

from moteur_psc.variable import Variable

class VariableAvecLabel(Variable):
def _init_ (self, nom, domaine, val=None):
Variable. _init__ (self , nom, domaine, val)

# Le label est initialement égal au domaine.
self . label = domaine|:]

def _repr_ (self ):
return '{} = {}, domaine: {}, label: {}'.format(self.nom,
self .val,
self .domaine,
self . label )
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Module .../moteur_psc_heuristique/contrainte_avec_propagation.py :

from moteur_psc.contrainte import ContrainteBinaire

class ContrainteAvecPropagation(ContrainteBinaire):
def _init_ (self, varl, var2, op):
ContrainteBinaire. _init__ ( self , varl, var2, op)

def reviser (self ):
# Nous appliquons d'abord la méthode reviser() de la classe—mére pour
# réviser les domaines de chaque variable.
domaines modifies = ContrainteBinaire.reviser( self)

# Puis, s'il y a lieu, nous nous assurons que les labels sont toujours
# identiques auxr domaines.
if domaines modifies:
for var in self . variables :
var.label = var.domainel[:]

return domaines_modifies

def propage(self, var):
print('a compléter')

Module .../psc_heuristique/moteur_psc_heuristique.py :

from moteur_psc.psc import PSC
class PSCHeuristique(PSC):

def _init_ (self, variables, contraintes):
PSC._init_( self , variables, contraintes)

self . reinitialise ()

def reinitialise ( self ):
self . initialise_labels ()
self . solutions = []
self . iterations = 0

def initialise_labels ( self ):
for var in self . variables :
var.label = var.domaine|:]

def consistance_noeuds(self ):
# Nous appelons d'abord la méthode de la classe—mére PSC pour réduire
# les domaines.
PSC.consistance_noeuds(self)

# Puis, nous nous assurons que les labels sont identiques aux domaines.
self . initialise_labels ()

def variable_ordering ( self ):
print('a compléter')

def dynamic_variable_ordering(self, k):
print('a compléter')
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def propagation_consistante(self , k):
print('a compléter')

def forward_checking(self, k=0, une_seule_solution=False):
print('a compléter')

Module .../sudoku.py :

from moteur_psc_heuristique.variable_avec_label import VariableAvecLabel

from moteur_psc.contrainte import ContrainteUnaire

from moteur_psc_heuristique.contrainte_avec_propagation import
ContrainteAvecPropagation

from moteur_psc_heuristique.psc_heuristique import PSCHeuristique

class Sudoku:
def _init_ (self, grille, taille =9, sous_taille =3):
if taille % sous_taille != 0:
raise ValueError(' Taille et sous—taille de grille incompatibles.')
self . taille = taille
self . sous_taille = sous_taille

# Génére une variable par case.
self . variables = [VariableAvecLabel('{}{}'.format(i, j),
list (range(1, self. taille + 1)))
for i in range(self. taille ) for j in range(self. taille )]

# Initialise les cases dont les wvaleurs sont connues.
for i in range(self. taille ):
for j in range(self. taille ):
# Si la case est instanciée avec une valeur valide,
# assigne la variable et restreint son domaine dala valeur initiale .
if isinstance(grille[i][]j], int):
if not (1 <= grille[i][j] <= self. taille ):
raise ValueError('Valeur invalide dans la grille de départ."')
var = self. variables [1 * self . taille + j]
var.val = grille [i][]]
var.domaine = [grille[i][]]]
var.label = [grille [1][j]]

self . contraintes = |]
self . genere_contraintes ()

def __genere_contraintes_sous_grille (self, x, y):
# Parcours de la sous—grille.
for i in range(x, x + self. sous_taille ):
for j in range(y, y + self. sous_taille ):
# Pour chaque case qui n'est ni dans la méme ligne i ni dans la méme
# colonne j, on ajoute une contrainte. (les autres cases sont couvertes
# par les contraintes de lignes et de colonnes.)
for k in range(x, x + self. sous_taille ):
for 1 in range(y, y + self. sous_taille ):
if i I=kandj!=1:
self . contraintes .append(
ContrainteAvecPropagation(self.variables[i * self .
taille + jJ,
self . variables [k * self .
taille + 1],
lambda x,y: x I=y)
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)

def genere_contraintes ( self ):
self . contraintes = ]

for i in range(0, self. taille ):
for j in range(0, self. taille ):
# Contraintes sur les case d'une ligne.
for k in range(j + 1, self. taille ):
self . contraintes . append(
ContrainteAvecPropagation(self.variables[i % self . taille + j],
self . variables [i * self . taille + k],
lambda x,y: x |=y)

# Contraintes sur les cases d'une colonne.
for k in range(j + 1, self. taille ):
self . contraintes . append(
ContrainteAvecPropagation(self.variables[j * self . taille + i]
self . variables [k * self . taille + i],
lambda x,y: x |I=y)

)

# Contrainte sur les cases d'une sous—grille.

# Le troisiéme argument de range permet de régler l'incrément.

# Ex.: range(0, 5, 2) génére la séquence 0, 3.

# range(10, 5, —1) génére la séquence 10, 9, 8, 7, 6.

#'//" est l'opérateur de division entiere.

for i in range(0, self. taille , self. taille // self . sous_taille ):
for j in range(0, self. taille , self. taille // self. sous_taille ):

self . _genere_contraintes_sous_grille (i, j)

def resoudre(self , methode):
psc = PSCHeuristique(self.variables, self . contraintes)
psc.consistance_noeuds()
psc. consistance_arcs ()

if methode == 'forward_checking':
psc.forward_checking(une_seule_solution=True)
elif methode == 'backtracking':

psc. variable_ordering ()
psc.backtracking(une_seule_solution=True)
else:
raise ValueError('Méthode inconnue: ' + str(methode))
print('Méthode: ' 4+ methode)
print('Recherche terminée en {} itérations'.format(psc.iterations))
for i in range(self. taille ):
for j in range(self. taille ):
nom = '{}{}'.format(i, j)
self . variables [i * self . taille + j].val = psc.solutions [0][ nom)]

def _repr_ (self ):
def val(e):
if e is None:
return '—'
else:
return e
ret ="'
for i in range(self. taille ):

203
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for j in range(self. taille ):
ret +='{} '.format(val(self. variables [i * self. taille + j].val))
ret +="\n'

return ret

Module .../exemple_forward_checking.py :

from moteur_psc_heuristique.variable_avec_label import VariableAvecLabel

from moteur_psc.contrainte import ContrainteUnaire

from moteur_psc_heuristique.contrainte_avec_propagation import
ContrainteAvecPropagation

from moteur_psc_heuristique.psc_heuristique import PSCHeuristique

variables = [
VariableAvecLabel('a', [2, 3]),
VariableAvecLabel('b', list (range(12))),
VariableAvecLabel('c', list (range(3))),
VariableAvecLabel('d', list (range(3))),
VariableAvecLabel('e', list (range(12))),
]

contraintes = [

ContrainteUnaire(variables [1], lambda x: x < 4),

ContrainteAvecPropagation(variables[0], variables [1], lambda x, y: x !1=y),
ContrainteAvecPropagation(variables[1], variables [2], lambda x, y: x =),
ContrainteAvecPropagation(variables[1], variables [3], lambda x, y: x !1=y),
ContrainteAvecPropagation(variables[1], variables [4], lambda x, y: x |=1y),
ContrainteAvecPropagation(variables[2], variables [3], lambda x, y: x =),
ContrainteAvecPropagation(variables[2], variables [4], lambda x, y: x |=y),
ContrainteAvecPropagation(variables[3], variables [4], lambda x, y: x |=y),
ContrainteAvecPropagation(variables[4], variables [0], lambda x, y: x < y),

]

psc = PSCHeuristique(variables, contraintes)

psc.consistance_noeuds()
psc. consistance_arcs ()
psc. variable_ordering ()

psc.backtracking()

print('Backtracking avec variable ordering: ')
psc. affiche_solutions ()

psc. reinitialise ()
psc.forward_checking()

print('Forward checking: ')
psc. affiche_solutions ()

Module .../exemple_sudoku.py :

from sys import argv, exit

from moteur_psc_heuristique.variable_avec_label import VariableAvecLabel
from moteur_psc.contrainte import ContrainteUnaire

from moteur_psc_heuristique.contrainte_avec_propagation import
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ContrainteAvecPropagation
from moteur_psc_heuristique.psc_heuristique import PSCHeuristique
from sudoku import Sudoku

grilleA = |
[ o JRRRIL R L 2}’
[37'_|777 1 7‘_'7'_'747'_'7 8}7
[‘7'» 1 7‘7'7'7'7 5 ’ 4 7‘7" 6 7‘7']7
[I_ll_! LI B U DI B U |_|]
[|7l:l7|: 4 :l7| |7|’17|: 9 :l7|’7|7l]7
[1_172 ’|_l7l_!|_l7l_!78 7!_!7|_
|_l7 8 7|_|, 3 , 2 ’l_'7|_|7 4 7|_l7
{ 7 7'_|7 3 7'_'7|_'a 6 ) 2 7'_'7 1}’]

Vvt v

[ 4 ’ ) ) ’ ) ’ ) ’ 5}

]

rilleB =

& [l_ll£||_ll_!|_ll_!|_ll_!|_l]
[T 8L 8o
['_')'_|7 5 7'_'7|_'7 2 ) 6 ) 4 7|_']a
[1_171_17 2 , 6 7|_l,l_!7|_l7 7 7|_|]7
[|7l’ 4 7|7| 17|7|7|’|7|’|71’ 8 7|71]7
[l_l 6 '—''—11_1 3 9 1t |_|]
[=h2,8, 4,5 =]

: 1 7:_:7:_']1

]

if len(argv) < 3:
print('On attend deux arguments: grille (A ou B) ' +\
"et méthode (forward_checking ou backtracking)')

exit (1)
if argv [1]. lower() == "a"
sudoku = Sudoku(grilleA)
elif argv [1].lower() == 'b"
sudoku = Sudoku(grilleB)
else:
print('Le premier argument doit étre A ou B')
exit (1)

if argv([2] in ('backtracking', 'forward checking'):
methode = argv|2]

else:
print('Le second argument doit étre forward_checking ou backtracking')
sys. exit (1)

print('Grille ' + argv[l])
print(sudoku)

sudoku.resoudre(methode)

print(sudoku)

Comme les méthodes que vous allez programmer dans cet exercice sont une
extension du code des chapitres précédents, il est plus commode de les im-
plémenter dans des classes-filles, qui héritent des classes que nous avons déja
développées. Nous vous fournissons ainsi la classe VariableAvecLabel, qui étend
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la classe Variable, la classe ContrainteAvecPropagation, qui étend la classe
ContrainteBinaire, et la classe PSCHeuristique, qui hérite de la classe PSC.

Exercice 8.2.1 Variable ordering

Dans le cas du Backtracking, comme vous avez pu le constater, les variables
sont instanciées les unes apres les autres dans ’ordre ou elles apparaissent dans
self.variables. L'heuristique du Variable Ordering consiste a trier ces variables
de fagon a instancier d’abord celles dont le domaine est le plus restreint. L’idée
est de commencer par les variables les plus restrictives, car ce sont celles-ci qui
ont le plus de chance d’aboutir a une instanciation inconsistante, et donc a un
backtrack.

Le premier exercice consiste & implémenter cet algorithme dans la classe
PSCHeuristique. Pour trier les variables, vous pouvez appeler la méthode sort ()
de la liste self.variables en passant comme parametre key une fonction lambda
qui retourne la taille du domaine. Vous pouvez vous inspirer de la documenta-
tion disponible i

Vous pouvez ensuite tester votre algorithme sur le fichier exemple_forward_
checking.py en vérifiant s’il améliore la performance du Backtracking.

Exercice 8.2.2 Algorithme du forward checking
Des heuristiques peuvent aussi étre employées afin d’améliorer la recherche par
rapport au Backtracking. Vous allez ainsi programmer ’heuristique connue sous
le nom de Forward Checking. Elle a pour but d’éviter a 'avance des instancia-
tions inconsistantes en appliquant le critere de la consistance des arcs pendant
la recherche. Pour cela, il faut ajouter a chaque variable un attribut self.label,
qui sera initialement égal au domaine de celle-ci. Le forward checking met alors
a jour ces labels en appliquant la régle suivante : a chaque instanciation d’une
variable xj, on retire toutes les valeurs inconsistantes avec xj des labels des
variables qui ne sont pas encore instanciées.

Dans la méthode forward_checking de la classe PSCHeuristique, programmez
donc l'algorithme ci-dessous :

solutions <— ]
variables <— [vl, v2, ..., vn]

ForwardChecking(k, une_seule_solution)

1. IF k >=n THEN

2 IF NOT une_seule_solution THEN

3. ajouter la solution actuelle a solutions

4. ELSE

5 RETURN solutions = [solution actuelle]

6 END IF

7. ELSE

8. v <— variables[k]

9. sauvegarde_labels <— labels des variables vk, ..., vn
10. FOR EACH valeur de label d de la variable v DO
11. assigner la valeur d a la variable v

12. réduire le label de v a la seule valeur d

W http ://wiki.python.org/moin/HowTo/Sorting
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13. propager v=d aux labels des variables suivantes

14. IF v=d est consistant THEN

15. reste <— ForwardChecking(k+1, une_seule_solution)
16. IF reste != échec THEN

17. RETURN reste

18. END IF

19. END IF

20. labels des variables <— sauvegarde_labels

21. END FOR

22. END IF

23. RETURN échec
END ForwardChecking

La méthode forward_checking prend deux parametres :

e k : la profondeur courante (commence a 0),

e une_seule_solution : si True, retourne la premiere solution trouvée, sinon
retourne toutes les solutions.

Les solutions seront stockées dans la variable de classe self.solutions. Chaque
solution sera représentée par un dictionnaire qui, & un nom de variable donné,
associera la valeur de cette variable.

Les étapes 13 et 14 de l'algorithme ci-dessus sont a implémenter a ’aide
de la fonction propagation_consistante de la classe PSCHeuristique, que vous
devez compléter. Pour chaque contrainte portant sur la variable courante et
sur au moins une deuxieme variable non encore instanciée, cette fonction doit
appeler la méthode propage de la contrainte pour tenter de réduire le label de
la deuxieme variable.

Vous devez aussi implémenter la méthode propage de la classe ContrainteA-
vecPropagation. Pour chaque valeur possible de la deuxieme variable, propage
vérifiera si cette valeur est consistante avec la contrainte et la retirera du label
de la variable si ce n’est pas le cas. Les deux méthodes propagation_consistante
et propage devront retourner True si les contraintes peuvent étre satisfaites, et
False si au moins une des variables non encore instanciées n’a plus aucune
valeur possible dans son label apres propagation.

Lorsque vous avez terminé, vous pouvez tester votre implémentation du
forward checking sur le fichier exemple_forward_checking.py en vérifiant s’il
améliore la performance du Backtracking.

Exercice 8.2.3 Dynamic variable ordering

L’heuristique du variable ordering ne trie la liste des variables qu’une seule fois,
avant la recherche. Le Dynamic Variable Ordering est une heuristique encore
plus efficace, qui trie la liste des variables par ordre croissant de la taille du label
a chaque étape de la recherche. L’idée est donc de retrier la liste des variables
a chaque étape k, mais seulement & partir de la position k (car les variables
précédentes ont déja été instanciées).

Implémentez cette heuristique dans la classe PSCHeuristique, et appelez-la
dans ’algorithme du forward checking entre les lignes 7 et 8 du pseudocode ci-
dessus. Notez que vous n’avez pas besoin de trier toute la liste. En supposant
que vous étes a I’étape k, il est plus efficace de chercher la variable possédant
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le plus petit label a partir de la position k et de 1’échanger avec la variable
d’indice k. Pour échanger les valeurs de deux variables a et b en Python, vous
pouvez utiliser la syntaxe a, b = b, a.

Testez finalement a nouveau votre algorithme sur le fichier exemple_forward_
checking.py, et comparez les résultats.

Exercice 8.2.4 Sudoku

Afin de comprendre ces algorithmes plus en détail, testez-les sur le fichier
exemple_sudoku.py, qui contient deux grilles de Sudoku. Essayez la grille 4,
puis la grille B. Que constatez-vous 7

python3 exemple_sudoku.py A forward_checking
python3 exemple_sudoku.py B forward checking

Essayez maintenant d’utiliser le Backtracking. Que constatez-vous ?

python3 exemple_sudoku.py A backtracking
python3 exemple_sudoku.py B backtracking

Solutions a la page 373



CHAPITRE 9

Diagnostic

Effectuer un diagnostic d’un systeme défaillant est une tache fréquente et pré-
sente un grand domaine d’application de lintelligence artificielle. Des outils
automatiques sont utiles car :

e le probleme est clairement défini et peut donc étre résolu par un pro-
gramime,

« le diagnostic nécessite souvent un raisonnement complexe qui dépasse les
capacités des personnes confrontées au probleme,

¢ une panne, par exemple dans un réseau électrique ou dans une installation
industrielle, est souvent trés colteuse et doit étre réparée dans un délai
aussi bref que possible.

Un algorithme de diagnostic automatique prend comme entrées un modele
du comportement du systeme (MS) et des observations de ce comportement
(OBS). 11 doit produire un ensemble de candidats de diagnostic (CAND), dans
lequel chaque candidat indique une combinaison de composants défectueux.
L’algorithme peut trier les candidats selon la probabilité qu’ils constituent le
bon diagnostic. Une autre fonctionnalité peut étre de proposer des observations
ou mesures qui permettent d’affiner ’ensemble des candidats.

Un systeme est défaillant si son comportement n’est pas consistant avec son
modele :

MSUOBS F L(Contradiction)

Nous allons d’abord considérer des méthodes qui expliquent les observations,
c’est-a-dire que :

MSUCAND - OBS

Il est évident que ce probléme est un probléme abductif et non pas déductif.

La difficulté principale pour un algorithme de diagnostic est que pour un
certain ensemble d’observations, il y a souvent une grande variété de causes
possibles. Par exemple, il y a beaucoup de raisons pour lesquelles une lampe
peut ne pas s’allumer quand on enclenche l'interrupteur : 'ampoule peut étre
cassée ou mal vissée, la lampe peut avoir un mauvais contact ou la prise peut
manquer de courant. Uniquement la prise en compte d’autres observations per-
met de rétrécir cet ensemble de possibilités.

Ce processus est difficile & modéliser par un raisonnement déductif comme
I’exprime un systeme de regles. Un tel raisonnement impliquerait que chaque
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observation peut rajouter de nouveaux candidats au lieu d’en éliminer. En fait,
I'implémentation d’'un processus de raisonnement abductif pose des difficultés
liées au fait qu’il n’y a pas de correspondance directe avec un raisonnement
déductif. Dans ce chapitre, nous allons voir trois manieres de résoudre ce pro-
bleme :

o par abduction explicite,
e par transformation en un probleme déductif,

e par raisonnement incertain.

Ces techniques s’appliquent aussi a 'implémentation d’autres moteurs d’in-
férence abductifs, et le diagnostic peut étre considéré comme un exemple d’un
tel processus.

Par la suite, nous allons considérer un diagnostic basé sur la notion de
consistance au lieu d’abduction. Cette technique est spécifique au diagnostic.

9.1 Trois maniéeres d’implémenter un diagnostic

Considérons le circuit électrique de la figure 9.1. Le circuit contient trois am-
poules aj, as et ag dont on peut observer le fonctionnement. Ces ampoules
sont connectées a une source de courant. Nous supposons que cette derniere ne
tombe jamais en panne. La connexion est faite par quatre cables ¢y, ¢, c3 et
c4 qui peuvent étre défectueux, ce qu’on ne peut pas observer directement. Le
probleme est de trouver quels cables sont défectueux.

C1

Src

Fig. 9.1 Circuit électrique dont on souhaite un diagnostic.

La modélisation des dispositifs joue un role important, car elle fixe la granu-
larité du diagnostic. Le modele doit se situer au bon niveau pour identifier avec
suffisamment de précision les composants défectueux. Normalement, on mo-
délisera comme composants des unités qui peuvent étre remplacées. En méme
temps, le modele doit étre aussi abstrait que possible pour limiter la complexité
du raisonnement. Dans I’exemple, on suppose qu’on peut échanger les ampoules
ou bien réparer les cables individuellement.
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Le probléeme peut étre formalisé en logique comme suit. Nous décrivons le
circuit et sa topologie par les propositions suivantes :

ampoule(a;) ,ampoule(ay) ,ampoule (az)
cdble(cy),céble(cy) ,cdble(cs),cable(cy)
connexion(cy,src,as),connexion(cy,src,ay),
connexion(cy,src,ay),connexion(cs,as,src),
connexion(cy,ay,src),connexion(cy,as,src)

Pour les prédicats qui figurent dans ces propositions, on peut formuler les
regles suivantes, valables pour n’importe quel circuit :

ampoule(x) A cable(y) A connexion(y,src,x) A défectueux(y)
= éteint(x)

ampoule(x) A cable(y) A connexion(y,x,src) A défectueux(y)
= éteint (x)

Grace a ces regles, par déduction on peut tirer les inférences suivantes :

défectueux(cy) = éteint(az)
défectueux(cy) = éteint(ay)
défectueux(cy) = éteint(ay)
défectueux(cs) = éteint(ay)
défectueux(cy) = éteint(ay)
défectueux(cy) = éteint(az)

qui décrivent les effets d’un céble défectueux.

A partir de I’état des composants, ces regles permettent donc de déduire les
observations sur I’état des ampoules. Or, ce que nous voulons atteindre, c’est
la possibilité de déduire 1’état des composants a partir des observations sur
I’état des ampoules. Nous allons décrire ci-apres trois manieres de réaliser un
tel diagnostic.

9.1.1 Diagnostic par abduction explicite

Une premiere possibilité pour trouver un diagnostic de ce circuit est un raison-
nement abductif explicite. On fera alors ’hypothese du monde clos en supposant
que seuls les quatre cables peuvent étre défectueux. Soient les observations :

éteint(ay), allumé(a,), éteint(az)

On fera alors une recherche entre toutes les combinaisons de cables défectueux
imaginables en retenant celles pour lesquelles le modele du circuit (développé
ci-dessus) prédit les observations qui ont été faites. La recherche est formulée
comme suit :

o un nceud de recherche représente un ensemble de défauts,
¢ le nceud initial est ’ensemble vide,
« la fonction de successeur consiste & ajouter un défaut,

e le critere de terminaison consiste a ce que les défauts permettent de dé-
duire les observations.
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La figure 9.2 montre une trace de recherche pour I’exemple cité ci-dessus.
Dans I'exemple, uniquement la combinaison :

défectueux(cy) A défectueux(cz)

peut donner lieu aux observations. Il peut y avoir de nombreuses solutions
qui expliquent les mémes observations. Pour un diagnostic, on aimerait avoir
I’explication la plus simple : elle est la plus probable, et montre la maniere
la plus simple de résoudre le probleme. L’algorithme de recherche doit donc
fournir la solution la plus simple, c.a.d. celle qui est la plus proche du nceud
initial. L’algorithme A* est souvent utilisé pour satisfaire ce critére.

{
(1,1,1)

— 7 N

¥ {ca} {c3}
11 ,0) (0,20,1) (0?1 1) %‘%,O)

{c1,¢2} ® {c1.cqa}
(0,0,0) (1,0,0)

Fig. 9.2 Ezemple d’une recherche pour trouver un diagnostic.

{c
(1

Notons que 'exactitude de la réponse dépend d’une hypothese d’un monde
clos : toutes les combinaisons de défauts possibles doivent étre explorées lors
de la recherche. Cette hypothese doit cependant étre faite uniquement au mo-
ment de la recherche. On peut donc changer les connaissances entre différentes
instances de diagnostic.

9.1.2 Transformation en déduction

Une deuxieme possibilité consiste a effectuer la recherche de diagnostic pour
toutes les observations possibles. On peut donc construire un tableau de toutes
les hypotheses justifiées selon les observations. Pour le circuit exemple, on ob-
tient (1 = marche, 0 = éteint) :

Diagnostic
{}
Cc1
Cq

S
=

C2

C3

C3 A C1

(01 N CQ) \Y (83 A\ C4) V (CQ N C4)

O»—l»—lOOO»—l»—lg
OOHD—‘HOO}—‘S

OO OO - ==
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Dans certains cas, il se peut que d’autres éléments soient également en
panne : par exemple, les observations 1 0 0 peuvent aussi s’expliquer par une
panne simultanée de c¢; et c4. Les hypotheses données dans le tableau sont
des hypotheses minimales dans le sens que toute hypothese qui explique les
observations doit au moins la contenir. Notons que cela implique également
qu’elles sont des conclusions nécessaires des observations. Elles peuvent donc
étre transformées en regles, comme nous le verrons ci-dessous.

Il est important d’observer qu’une telle construction n’est valide que sous
la condition d’une hypothése de monde clos. Si, par exemple, on admettait
également que les ampoules mémes peuvent étre défectueuses, I’espace des pos-
sibilités serait plus grand. Un diagnostic qui se base sur ce tableau sera donc
forcement dépendant de la validité de cette hypothese, et tout changement
de connaissances qui viole 'hypothese de monde clos oblige de recalculer le
tableau.

Le tableau qui donne la liste de tous les cas de figures possibles sous ’hypo-
thése d’'un monde clos peut étre exploité pour construire un systeme déductif
pour le diagnostic de ce circuit :

1) éteint(az) A — éteint(ay) = défectueux(cy)
2) éteint(a;) A éteint(ay) A — éteint(az) = défectueux(cy)

3) éteint(ay) — éteint(ay) = défectueux(cs)

A
4) éteint(ay) A éteint(az) A — éteint(a;) = défectueux(cy)
A

5) éteint(a;) éteint(ay) A éteint(az) =
(défectueux(cy) A défectueux(cy)) V

Ces regles correspondent alors a un systeme expert ou un programme conven-
tionnel pour le diagnostic de ce circuit précis sous ’hypothese d’un certain en-
semble de défauts possibles. Un tel systéme pourrait par exemple étre fourni
par un constructeur de machines avec son produit. L’établissement des regles
peut étre obtenu par la programmation classique. Cependant, si le circuit est
modifié ou si de nouveaux défauts sont possibles, le systeme doit étre com-
pletement réécrit. Le systeme fournira en plus des résultats faux s’il se trouve
dans une situation ot I’hypothese du monde clos n’est pas vérifiée, par exemple
quand il y a un court-circuit.

9.1.3 Abduction par raisonnement incertain

Une autre possibilité de résoudre un probleme abductif est d’explicitement re-
présenter I'incertitude qui résulte du fait que ’abduction n’est pas bien fondée.
On peut exprimer en utilisant des chiffres de certitude (CF), qui sont plus ou
moins équivalents a des probabilités. Chaque regle et chaque fait porteront un
CF, et ’abduction peut alors étre approximée par des regles déductives. Pour
cet exemple, on pourrait formuler les regles incertaines comme suit :

1) ampoule(x) A cdble(y) A connexion(y,src,x) A éteint(x)

“IE05 gefectueux (y)

2) ampoule(x) A céble(y) A connexion(y,x,src) A éteint(x)

505 gefectueux (y)
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3) ampoule(x) A céble(y) A connexion(y,src,x) A — éteint(x)

G0 gsfectueux (y)

4) ampoule(x) A cadble(y) A connexion(y,x,src) A — éteint(x)

CFZ10 gsfectueux (y)

en notant qu’'un chiffre de certitude négatif représente la probabilité de la né-
gation.

Si nous appliquons ces regles a ’'observation ou toutes les trois lampes sont
éteintes, nous aurons :

éteint(az) = :

défectueux(cy) ,CF=0.5
défectueux(cy) ,CF=0.5

éteint(a;) A éteint(ay) =

défectueux(cy) ,CF=0.75 (2 regles)
défectueux(cz) ,CF=0.5
défectueux(cy) ,CF=0.5

Nous allons examiner les formules & utiliser pour un tel raisonnement ainsi
que le probleme général du raisonnement incertain en détail plus tard.

Notons ici qu'une des utilités d’un raisonnement incertain est qu’il permet de
formuler des regles déductives indépendantes du contexte pour des problemes de
nature abductive. Il est donc tres intéressant pour la mise au point de systemes
intelligents.

9.2 Diagnostic basé sur la consistance

Un diagnostic par abduction doit prédire le comportement défectueux qui est
observé. Cela le rend bien str plus crédible, mais il peut étre trop difficile a
obtenir. Par exemple, un circuit logique défectueux a un comportement tres
complexe et il peut étre tres couteux de caractériser exactement ce comporte-
ment. En plus, en pratique, il n’est pas important de connaitre la défaillance
exacte, mais plutot d’identifier correctement le composant en cause.

Considérons par exemple un circuit arithmétique comme le montre la fi-
gure 9.3. Le circuit peut avoir des défaillances tres complexes qui font que le
résultat du calcul est faux uniquement pour certaines entrées. Pour un diag-
nostic, il n’est normalement pas important de connaitre ces détails, car on ne
pourra qu’échanger des modules entiers. Il est donc suffisant de savoir quels
sont les modules qui ont des défaillances.

Formellement, cette idée peut s’exprimer comme suit. Au lieu d’expliquer les
observations, un candidat au diagnostic doit spécifier les composants & enlever
du modele du systeme pour le rendre consistant avec les observations, c’est-a-
dire :

(MS - CAND)UOBS I/ L

Appelons cela un diagnostic basé sur la consistance.
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a=3
] M, * x=?
| A+ F=10
b=2
C=2 I M2 * y:’)
a=3 |
1 Ay 41— G=12
| M ox z=?
e=3

Fig. 9.3 Modéle de circuit digital constitué de deur additionneurs et de trois multi-
plicateurs.

Dans I'exemple de la figure 9.3, supposons que les trois unités de multi-
plication et les deux unités d’additions sont des composants qui peuvent étre
échangés de facon indépendante. Le diagnostic sera donc exprimé en termes de
ces composants.

Chaque composant aura des lois de comportement. Notons qu’on modélise
uniquement le comportement correct — aucun modele d’'un comportement dé-
faillant est requis. Dans ’exemple de la figure 9.3, I'unité de multiplication
M, aura un comportement décrit par la loi x = A x C. Utilisant les lois de
comportement, on peut calculer des prédictions sur la base des observations.
Par exemple, dans la figure 9.3, on peut calculer F = 12 a partir des observa-
tions A = 3,B =2,C = 2,D = 3. Cette prédiction peut étre justifiée par un
comportement correct des trois composants My, My et A;.

Un candidat de diagnostic sera une combinaison de composants défectueux.
Le diagnostic se base sur le principe suivant. Si un composant est défectueux,
aucune des prédictions justifiées par son comportement correct n’est valable.
Un candidat est donc valable si toutes les prédictions du modele qui contre-
disent une observation dépendent d’un composant qui fait partie du diagnostic
candidat.

Dans I'exemple de la figure 9.3, supposons que la mesure de F est 10 et non
pas 12, comme prédit par le modele. On appelle une telle paire un symptome.
La déduction F = 12 est valable a condition que My, Ms et A; fonctionnent
correctement. Etant donnée cette divergence, tous les composants de ’ensemble
{M1, Ma, A1} ne peuvent pas fonctionner correctement. On appelle cette com-
binaison un conflit. Les défaillances candidates se traduiraient par les candidats
suivants :

{Ml}v {M2}7 {Al}a
{My, Mo}, { My, A1}, {Ma, Ay}
et {Ml, Mg, Al}

Cependant, en général on ne s’intéresse qu’aux candidats minimauz qui
contiennent un minimum de composants. Dans cet exemple, les candidats mi-
nimaux sont :

D= {{Ml}a {MQ}v {Al}}
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Par propagation, la mesure F = 10 conduira aussi a d’autres conflits. Par
exemple, sous 'hypothese que M; fonctionne, le modele prédit z = 6. En méme
temps, M3 nous donne z = 6, avec As et G=12 nous obtenons y = 6, et avec
F = 10 et A; nous obtenons x = 4 avec la justification que {A;, Ay, M3}
fonctionnent tous. On aura donc le conflit Cy entre x = 4 et la prédiction
du modele x = 6 qui implique les composants : {A1, As, M1, M3}. Il est donc
important qu’'un moteur d’inférence, par exemple un moteur de chalnage avant,
fasse toutes les inférences possibles pour obtenir tous les symptomes et, par
conséquent, tous les conflits.

Un candidat de diagnostic doit rendre consistants tous les conflits. Cela
veut dire qu’il doit contenir au moins un élément de chaque conflit. Lors d’un
diagnostic, on découvre les conflits séquentiellement en prenant des mesures,
et on aimerait donc maintenir I’ensemble des candidats de facon incrémentale
aussi. Cela est possible par une procédure en deux étapes :

o générer un nouvel ensemble de candidats qui contient pour chaque candi-
dat CAND et chaque composant ¢ du conflit un candidat ¢’ = CAND U
{c},

o filtrer ’ensemble des nouveaux candidats en éliminant tous ceux qui sont
en double ou qui ne sont pas minimaux, c’est-a-dire éliminer tous les

candidats X qui sont des sur-ensembles stricts d’un autre candidat Y
(X2Y).

Par exemple, pour ’ensemble de candidats :

Dy = {{M1},{Mz},{A1}}

et le nouveau conflit { A1, Ag, My, M3}, on génére d’abord un nouvel ensemble :

D' ={ {My, A1}, {Ms, A1}, {A1}
{My, Ao}, {Ms, Ao}, { A1, Ao}
{My}, { Mz, My}, {Ay, M1}
{M, M3}, {Ma, M3}, {A1, M3} }

Ensuite, on élimine les candidats qui ne sont pas minimaux, et on obtient
ainsi le diagnostic :

Dy = {{M1},{A1},{M2, M3}, {A2, Ma}}

Il faut noter cependant qu'un composant défectueux n’a pas forcément tou-
jours un comportement anormal. Par exemple, un multiplicateur défectueux
qui omettrait le dernier bit du résultat aurait en apparence un comportement
correct lorsque le résultat est pair, 'erreur n’étant visible que lorsqu’il est im-
pair. Cela signifie en fait que si un diagnostic constitué de 1’ensemble D de
composants défectueux explique une divergence, tout sur-ensemble contenant
D est aussi un diagnostic correct. Cependant, le proposer comme diagnostic se-
rait trop pessimiste : on ne soupgonnera pas des composants d’avoir un défaut
sans qu’ils aient été impliqués dans un symptome de défaillance.
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Notons enfin qu’une mesure donnée n’est utilisée par le systeme que si elle
est en désaccord avec une prédiction issue du modele. Cela peut parfois ne
pas sembler tres naturel si ’on considére qu’'une observation en accord avec le
modele atteste du fonctionnement correct de certains composants. En basant
le diagnostic sur la notion de circonscription, il est possible de tenir compte de
ces considérations positives afin d’exonérer certains composants.

Un processus typique de diagnostic ne se poursuit pas jusqu’a ce qu’il n’y
ait plus qu'un candidat unique, il s’acheéve plutot des qu’un candidat particulier
se révele beaucoup plus probable que les autres. Un critere simple de détection
d’un tel candidat pourrait consister en un comptage : s’il persiste un candi-
dat contenant un seul composant défectueux, il sera choisi comme le meilleur
candidat. Mais une facon plus efficace de procéder consiste plutdt & calculer
explicitement la probabilité d’occurrence de chaque candidat et d’arréter la
recherche deés que I'un d’entre eux semble plus probable que les autres.

Ce calcul est basé sur les probabilités de défaillance P(c) de chaque compo-
sante c¢ et I’hypothese d’indépendance de défauts. Si on considere qu'un candi-
dat X décompose les composantes en deux sous-ensembles :

{ D(X) = composantes défectueuses } et
{ N(X) = composantes non défectueuses }

on peut alors calculer la probabilité d’un candidat X comme

P(X) = HceD(X) P(c)- HcEN(X)(l — P(c))
Deés qu’il y a un candidat dont la probabilité est particulierement élevée, le
diagnostic peut étre considéré comme terminé.

9.3 Proposition de mesures

Dans la plupart des cas, un systeme de diagnostic a la possibilité de proposer
par lui-méme les mesures a effectuer sur le dispositif & 1’étape suivante. Le sys-
teme doit en particulier proposer d’effectuer les mesures permettant d’aboutir a
la meilleure discrimination dans I’ensemble courant des candidats. De telles pro-
positions de mesures sont basées sur des informations relatives aux ensembles
candidats, établies elles-mémes par le biais de mesures. Une mesure de ces
informations est donnée par la théorie de I'information :

I(X:Y)=EX)-EX|Y)=I(Y;X)=E(Y) - E(Y|X)

ou I(X;Y) est l'information que la mesure de Y donne sur la valeur de X.
Cette information est d’ailleurs, par un théoreme remarquable de la théorie de
Iinformation, aussi égale & I(Y; X). E(X) est I'entropie de X :

E(X) =) —P(z:)log(P(z))
et E(X|Y) est Pentropie de X étant donnée la mesure de Y :

%

E(X]Y) = Z P(y;) {Z P(xiyj)log(P(wilyj))}
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La mesure de Y est optimale si elle donne le maximum d’informations sur
les candidats potentiels, c’est-a-dire si elle maximise la somme de I(X;Y") pour
P’ensemble courant des candidats possibles. Si on suppose que E(Y") est la méme
pour tout Y, l'information est maximisée lorsque E(Y|X) est minimisée, et
par conséquent, proposer une mesure optimale revient a calculer E(Y|X) pour
toutes les mesures possibles de Y et & conserver celle qui est minimale. E(Y|X)
est calculée a partir des probabilités des résultats possibles de mesure pour Y
étant donné ’ensemble courant des candidats.

L’entropie de la valeur d’une mesure Y se calcule par la formule suivante :

EY)=- Zp(Y = wvaly) *x log(p(Y = valy))
k

La probabilité de mesurer la valeur k pour la variable ¢ se calcule de la
maniere suivante :

p(var; = valy,) = Z p(e) + Z p(c)/m

ceEP;y celU;

ou P;; est 'ensemble de candidats qui prédisent la valeur k& pour la variable
i, et U; regroupe les candidats qui ne donnent aucune valeur pour la mesure
i. Pour que le calcul soit correct, il faut cependant normaliser les probabilités
pour que
> p(CAND) =1
CAND
comme on sait qu’un des candidats doit étre correct.

Dans notre exemple, les différents candidats prédisent des valeurs différentes
pour les mesures X,Y et Z. Si on suppose que pour tous les composants,
la probabilité de panne est de 0.01, on obtient les prédictions et probabilités
suivantes :

Candidat  Prévision Probabilité Normalisé
{M} xyz = (4,6,6) 0.01 0.495
{A1} xyz = (6,6,6) 0.01 0.495
{My, A3}  xyz=(6,4,6) 10~* 0.005
{My, M3} xyz=(6,4,8) 107* 0.005

et donc les probabilités des différentes valeurs :

Mesure Justifications Candidats Probabilité
X =4 ({MQ’Al}v{MSaA17A2}) {Ml} 0.495
X=6 ({M}) {A1} {Ma, Ao}, {M2, M3} 0.505

Y =6 ({Mz},{Ms,Az}) {Mi}, {A:} 0.99

Y=4 ({M,A}) {Ma, As}, { Mz, M3} 0.01

Z=6 ({Ms},{Mz, Az}) {My}, {Ar}, { Mz, Ao} 0.995

Z =8 ({M, A, As}) {M>, M3} 0.005

ou il faut observer qu'un candidat prédit une mesure si au moins une des
justifications de la mesure ne contient aucun élément qui fait partie du candidat.
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On obtient donc les entropies :

X =P(6)log(P(6)) — P(4)log(P(4))
~0.50500g(0.505) — 0.495109(0.495) = 0.99993bit
) )

) )

Y : —P(6)log(P(6)) — P(4)log(P(4) 0.0808bit
Z : —P(6)log(P(6)) — P(8)log(P(8)) = 0.0454bit

et on décide donc de mesurer X.

9.4 Modeles de défaillances

La technique de diagnostic basée sur la consistance souffre d’un probléme fon-
damental di a I’absence de modélisation des comportements anormaux, et qui
engendre parfois des diagnostics candidats physiquement inconcevables. Un
exemple d’une telle situation est donné par la figure 9.4, ou la plupart des
candidats inclut des défaillances physiquement irréalisables. De tels problemes
peuvent étre résolus en utilisant des modéles de défaillances décrivant toutes
les défaillances possibles dont est susceptible de souffrir un composant donné.
Un comportement défectueux général est admis comme candidat dans le seul
cas ou le modele de défaillances n’admet aucun des candidats possibles.

OFF

W, B w,
OFF

Ws

? 8

Bs

Fig. 9.4 FExemple pour lequel le processus général de GDE produit un diagnostic
inacceptable. 1l existe 22 candidats minimauz, incluant la prédiction selon laquelle
la batterie ainsi que l’ampoule Bs sont défectueuses : la batterie ne produit pas de
courant et Bs est allumée sans courant. En éliminant ces défaillances physiquement
impossibles, ’ensemble des candidats se restreint a seulement 4 candidats.

Le diagnostic utilisant les modeles des défaillances procede en introduisant
successivement les différentes défaillances dans 'ordre de leur probabilité, et
en choisissant le premier qui explique le comportement observé. L’hypothese
d’une certaine défaillance est ainsi justifiée par le seul fait qu’il n’y a pas d’autre
explication plus convaincante, ce qui constitue une forme de raisonnement par
défaut.
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Littérature

Les principes du diagnostic développés ici sont issus d’une syntheése de nom-
breux éléments. Le concept du diagnostic basé sur la consistance fut introduit
dans [41], et la collection [42] réunit plusieurs travaux dans cette direction. Le
papier plus récent [43] présente une vision & plus long terme de l'utilisation du
diagnostic dans un contexte de systemes autonomes.

Outils

Application : Diagnostic de systémes spatiaux

En 1999, le vaisseau Mars Polar Lander faisait sa descente vers la surface
de Mars. La descente était guidée par un altimetre jusqu’a une altitude de
quarante metres. Ensuite, le moteur freinait 'appareil et devait s’arréter
au moment ol des capteurs placés dans les pieds détectaient le contact avec
le sol. Or, la vibration a endommagé I'un de ces capteurs qui détectait le
contact en permanence, ce qui a provoqué I’arrét du moteur. La sonde est
alors tombée de son altitude de quarante metres. Le résultat, c’est qu’elle
ne fonctionnait plus. Les ingénieurs n’avaient pas prévu tous les défauts
possibles...

La méme année, un autre vaisseau, la sonde Deep Space 1, subissait éga-
lement un certain nombre de problemes. Par exemple, une vanne d’une de
ses fusées risquait de se bloquer, provoquant ainsi un dysfonctionnement
du moteur. Heureusement, la sonde était équipée du systeme Livingstone,
un outil de diagnostic basé sur modeles. Celui-ci aurait non seulement dé-
tecté le probleme, mais également trouvé la maniere de reconfigurer les
vannes pour rendre le moteur a nouveau fonctionnel.

(Source : Wade Roush : Immobots take control, MIT Technology Review
Dec. 2002/Jan. 2003, pp. 36-41.

Brian Williams et al. : Model-based Programming of Fault-Aware Systems,
Al Magazine 24(4), 2003, pp. 61-75.)

9.5 Exercices

Exercice 9.1 Diagnostic d’'un réseau par abduction explicite

Dans cet exercice, vous allez programmer un exemple d’abduction explicite.
Pour ce faire, nous considérerons un réseau électrique formé d’un ensemble de
blocs recevant des signaux les uns des autres. Chaque bloc prend deux signaux
en entrée et produit une seule sortie. Le but, en supposant qu’une panne est
survenue, est de découvrir quels sont les blocs qui ne fonctionnent pas.
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e

Fig. 9.5 Exemple d’un réseau.

TEE

Considérons un exemple concret illustré a la figure 9.5. Nous décrivons ce
réseau de la maniere suivante :

circuit = Circuit()

circuit . ajouter_bloc('B1', 'a', 'b', 'f'")
circuit . ajouter_bloc('B2', 'a', 'c¢', 'y')
circuit . ajouter_bloc('B3', 'f', 'y', 'g")
Or sur ces blocs, on peut faire des observations. Par exemple, pour signaler
) p ple, p g
que la sortie g n’est pas correcte, on invoque circuit.observe_incorrect(’g’) ;
pour annoncer que la sortie £ fonctionne normalement, on utiliserait cir-
cuit.observe_correct (’£’). Nous verrons plus loin ces méthodes en détail.

Modules squelettes

Avant toute chose, voici le squelette du programme que nous allons développer.
Nous discuterons des cing premiers modules dans les paragraphes qui suivent.
Les deux derniers, exemple_1.py et exemple_2.py, sont des modules de tests qui
vous permettront de vérifier votre implémentation. Nous vous recommandons
de respecter la structure des dossiers telle qu’elle est exprimée dans les noms
des modules, sous peine de devoir modifier les import.

Module .../reseau/bloc.py :

class Bloc:
def _init_ (self, nom, entree_1, entree_2, sortie ):
self .nom = nom
self . entree_1 = entree_1
self .entree_2 = entree_2
self . sortie = sortie

def _1t_ (self, autre):
if not isinstance(autre, Bloc):
raise ValueError(”Seul un bloc peut étre comparé aun bloc.”)
return self.nom < autre.nom

def _eq_ (self, autre):
if not isinstance(autre, Bloc):
raise ValueError(”Seul un bloc peut étre comparé aun bloc.”)
return autre.nom == self.nom

def _hash (self ):
return hash(self.nom)
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def _repr_ (self ):
return 'Bloc({})'.format(self.nom)

Module .../reseau/circuit.py :

from .bloc import Bloc
from .disjonction import Disjonction
from .conjonction import Conjonction

class Circuit:
def _init_ (self ):
self .blocs = {}
self . conflits = ]
self .no_goods = ||

def ajouter_bloc( self , nom, entree_1, entree_2, sortie ):
bloc = Bloc(nom, entree_1, entree_2, sortie)
self . blocs| sortie ] = bloc

def observe_incorrect ( self , signal ):
chemin = self.trouver_un_chemin(signal)
conflit = self.traduire_chemin_en_disjonction(chemin)
self . conflits .append(conflit)

def observe_correct (self , signal ):
chemin = self.trouver_un_chemin(signal)
for el in chemin:
self .no_goods.append(Conjonction([el]))

def trouver_un_chemin(self, signal ):
chemin = ||
sorties = [signal |
while len(sorties) > 0:
sortie = sorties.pop(—1)
bloc = self.blocs.get( sortie )
if bloc is not None:
chemin.append(bloc)
sorties .append(bloc.entree_1)
sorties .append(bloc.entree_2)
return chemin

def traduire_chemin_en_disjonction( self , chemin):
return Disjonction([Conjonction([etape]) for etape in chemin])

Module .../reseau/conjonction.py :

class Conjonction(frozenset):
def _or__ (self, autre):
elements = list( self)
elements.extend (autre)
return Conjonction(elements)

def _repr_ (self ):
elements = [str(element) for element in sorted(self)]
conj ="' & '.join (elements)
if len(elements) > 1:
return '({})'.format(conj)
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else:
return conj

Module .../reseau/disjonction.py :

class Disjonction(set):
def combiner(self, disjonction ):
if len(self) == 0:
return disjonction
elif len(disjonction) == 0:
return self

ret = Disjonction()
for conj 1 in self:
for conj_2 in disjonction :
ret.add(conj_1 | conj_2)

return ret

def _repr_ (self ):
if len(self) == 0:

return '()'
elements = [str(element) for element in sorted(self)]
return ' | '.join (elements)

Module .../reseau/abduction.py :

from .disjonction import Disjonction
from .conjonction import Conjonction

class Abduction:

def _init_ (self, conflits, no_goods):
self . conflits = conflits
self .no_goods = no_goods

def combiner_conflits_observations ( self , disjonctions ):
print('a compléter')

def retire_subsumes(self , conjonctions):
print('a compléter')

def retire_no_goods( self , conjonctions, no_goods):
print('a compléter')

def calcule_conflit_minimal ( self , afficher_etapes =False):
# 1. Combine les conflits.
conflit_minimal = self. combiner_conflits_observations ( self . conflits )
if afficher_etapes : print('Conflit combiné :', conflit_minimal)
# 3. Supprime les candidats subsumés.
conflit_minimal = self.retire_subsumes(conflit_minimal)
if afficher_etapes : print('Non subsumsés :', conflit_minimal)

# 4. Supprime les candidats contenant les no—goods.
conflit_minimal = self. retire_no_goods (conflit_minimal, self .no_goods)
if afficher_etapes : print('Sans no—goods :', conflit_minimal)

223
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return conflit_minimal

Module .../exemple_1.py :

from reseau.circuit import Circuit

from reseau.bloc import Bloc

from reseau.abduction import Abduction

circuit = Circuit()

circuit . ajouter_bloc('B1', 'a', 'b', 'f")
circuit . ajouter_bloc('B2', 'a', 'c', '

circuit . ajouter_bloc('B3', 'f', 'y',

circuit . observe_incorrect ('f")
circuit . observe_incorrect ('g')

abduc = Abduction(circuit.conflits, circuit .no_goods)
conflit_minimal = abduc.calcule_conflit_minimal( afficher_etapes =True)

print('Conflit minimal :")
print(conflit_minimal)

Module .../exemple_2.py :

from reseau.circuit import Circuit
from reseau.bloc import Bloc
from reseau.abduction import Abduction

circuit = Circuit()

circuit . ajouter_bloc('B1', 'a', 'b', 'f'")
circuit . ajouter_bloc('B2', 'a', 'c¢', 'g")
circuit . ajouter_bloc('B3', 'c', 'd', 'h')
circuit . ajouter_bloc('B4', 'c', 'e', 'i'")

circuit . ajouter_bloc('B5', 'f', 'h', 'j")
circuit . ajouter_bloc('B6', 'g', 'i', 'k')

circuit . ajouter_bloc('B7', 'j', 'k', '1")

circuit . observe_incorrect ('1")

circuit . observe_correct ('j')

abduc = Abduction(circuit.conflits, circuit .no_goods)

conflit_minimal = abduc.calcule_conflit_minimal( afficher_etapes =True)

print('Conflit minimal :")
print(conflit_minimal)



Diagnostic 225

Abduction

Chaque observation génere un conflit. Un conflit est un ensemble d’éléments
qui ne peuvent pas fonctionner tous en méme temps. A partir de ces conflits,
I’abduction explicite va générer des listes de candidats. Un ensemble de candi-
dats est une liste d’éléments qui peuvent expliquer les observations. Donc, si
on a un conflit entre a, b et ¢, on dira qu'un candidat parmi a, b, ou ¢ doit étre
fautif.

Nous représenterons les candidats sous la forme de conjonctions exprimant
un ET logique. La conjonction de A, B, et C s’interpete donc comme AANBAC.
Nous définissons ainsi une classe Conjonction, qui hérite de la classe frozenset
de Python. Il s’agit d’une collection immutable, non ordonnée et ne pouvant
contenir qu'une instance d’un object donné. Elle possede une méthode spéciale
importante pour nous : __or__, qui permet d’utiliser la syntaxe conj = conj_1
| conj_2 pour créer une conjonction portant sur tous les éléments présents dans
conj_1 ou dans conj_2 (ou éventuellement dans les deux).

Un ensemble de candidats sera une disjonction de conjonctions (un OU lo-
gique), que nous représenterons par la classe Disjonction. Cette derniére spécia-
lise la classe set de Python. Si conj_1 = Conjonction([’A’, ’B’]) et conj_2 =
Conjonction([’D’, ’E’]) sont deux conjonctions, c’est-a-dire deux candidats,
correspondant & (A A B) et (D A E), leur disjonction Disjonction([conj_1,
conj_2]) exprimera le fait (AA B)V (D A E). Disjonction contient essentielle-
ment la méthode combine, qui combine I'objet courant avec une autre disjonc-
tion afin de produire une nouvelle disjonction contenant toutes les conjonctions
qui résultent de 'union deux-a-deux des conjonctions des disjonctions origi-
nales.

Nous aurons également besoin d’une liste de nogoods, c’est-a-dire de valeurs
contradictoires. Un nogood est une liste d’éléments qui ne peuvent étre présents
en méme temps. Par exemple, si Conjonction([’A’, ’E’]) est un nogood, cela
signifie que A et E ne peuvent étre la source du probléme en méme temps.

La classe Abduction formalise le processus abstrait de I'abduction. Elle
contient les deux attributs self.conflits et self.no_goods pour les conflits et
les nogoods. Sa méthode principale calcule_conflit_minimal est une fonction
générale qui permet de trouver les candidats minimaux. Nous vous en donnons
le code. calcule_conflit_minimal procede en quatre étapes :

1) elle génere un ensemble de combinaisons de candidats & partir des candi-
dats de chaque conflit,

2) elle supprime les candidats subsumés,

3) et enfin elle supprime les candidats contenant les nogoods.

Chacune de ces étapes est réalisée par une méthode spécialisée. Ce sont ces
méthodes que vous devez implémenter en suivant les descriptions que nous vous
donnons :

e combiner_conflits_observations : combine itérativement tous les candi-
dats pour chaque conflit. Cette fonction doit s’appuyer sur
Disjonction.combine.
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e retire_subsumes : enléve les candidats qui sont subsumés. Par exemple,
(anbAc)V(a)V (bAc)V (bAcAd) doit donner (a)V (bAc).
e retire_no_goods : enleve les candidats qui contiennent un nogood.

class Abduction:
def combiner_conflits_observations ( self , disjonctions ):
def retire_subsumes(self , conjonctions):

def retire_no_goods( self , conjonctions, no_goods):

Blocs et circuits

Une fois le moteur d’abduction créé, nous pouvons 'appliquer & notre exemple
du réseau électrique. Tout d’abord, nous devons définir une classe Bloc, qui
modélise un bloc. Elle possede un attribut nom, qui identifie chaque bloc, et
trois attributs correspondant aux identifiants des deux entrées et de la sortie.
Les blocs sont assemblés en un réseau modélisé par la classe Circuit. Cette
derniére contient trois attributs self.blocs, self.conflits, self.no_goods, qui
recueilleront respectivement les blocs, les conflits et les nogoods. Les deux der-
niers attributs sont des listes standards, le premier est un dictionnaire dans
lequel chaque bloc est identifié par son signal de sortie.

La méthode ajouter_bloc de Circuit permet de construire le circuit en
ajoutant des blocs un a un, étant donné leurs noms et les identifiants de leurs
entrées et sorties. observe_incorrect notifie 'observation d’un signal erroné,
observe_correct en revanche garanti qu’un signal fonctionne convenablement.
trouver_un_chemin et traduire_chemin_en_disjonction permettent de définir un
conflit une fois qu'un signal défectueux a été enregistré. La premiere méthode
collecte toutes les causes possibles de 'observation, et la seconde les traduit en
une disjonction de conjonctions, c’est-a-dire un conflit.

Etant donné un circuit, il suffit ensuite de passer le contenu de ses attributs
conflits et no_goods a un moteur d’abduction, et d’appeler calcule_conflit_
minimal pour trouver le conflit minimal susceptible d’expliquer les observations.

Test du programme

Vous pouvez tester maintenant votre solution sur les deux modules de test
exemple_1.py et exemple_2.py. Essayez en outre de créer des réseaux plus com-
pliqués, en introduisant davantage de blocs.

Solutions a la page 376



CHAPITRE 10

Génération de plans

Les humains sont capables de planifier des actions en vue d’atteindre un ob-
jectif. Pour de nombreuses taches, comme la programmation d’un robot auto-
nome, 'ordinateur est amené a s’inspirer de cette activité intelligente propre
a 'homme. Pour qu’un robot puisse fonctionner correctement, il doit évidem-
ment étre en mesure de formuler des plans et de les exécuter pour atteindre
les objectifs souhaités. Nous nous intéressons dans ce qui suit & ce probleme
particulier pour lequel nombre de travaux ont été réalisés. Nous illustrerons les
méthodes au moyen de I’exemple de STRIPS qui est 'un des premiers travaux
dans ce domaine. Il présente I'intérét d’étre a la base de plusieurs mécanismes
présents dans les systemes de planification actuels.

Le probleme de planification se pose de fagon trés nette pour la gestion
des procédures impliquant des humains et des machines qui ont un degré de
complexité tel qu’il est difficile d’en avoir une vision d’ensemble. Nombre de
systemes pratiques sont en effet impossibles a gérer proprement, car on ne peut
développer des plans d’action optimaux pour les opérations a réaliser. Prenons
pour exemple le cas d’une mission spatiale : il existe des centaines de buts a
réaliser pendant le laps de temps relativement court de la mission. De plus,
dans le cas ou les problemes rencontrés n’ont jamais été étudiés auparavant, il
faudra pouvoir tres vite modifier les plans pour s’accommoder des particularités
inattendues. Un autre exemple peut étre pris des processus industriels de grande
envergure, comme la construction d’avions. Ceux-ci impliquent souvent des
millions d’opérations différentes qui nécessitent une planification automatique
par ordinateur.

Il est tres intéressant d’utiliser des systemes basés sur la connaissance dans
le domaine de la planification, parce que, d’'une part, la tache en elle-méme
est compliquée et, d’autre part, elle ne peut étre traitée algorithmiquement.
En pratique, les systemes de planification sont développés sur la base de regles
heuristiques établies par des experts.

10.1 Représentation d’un environnement changeant

Un systeme de planification doit représenter un monde dont il est lui-méme
I’agent des changements effectués : le monde ne reste pas inchangé comme c’est
le cas pour un systeme de diagnostic. Lorsqu’une action donnée d’un plan est
exécutée, on dit que le monde change de situation. Pour enchainer correctement
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les actions d’un plan, le modele du monde doit donc pouvoir distinguer les
différentes situations auxquelles il peut étre confronté durant I’exécution du
plan.

Comme exemple, considérons le monde des blocs, illustré par la figure 10.1.
Chaque état du monde est représenté par une situation, qui est une descrip-
tion partielle de I’état en calcul des prédicats. Ces représentations utilisent les
prédicats suivants :

e ON(x,y) : le bloc x se trouve directement au-dessus du bloc y.

o ONTABLE(x) : le bloc x se trouve sur la table.

e CLEAR(x) : il n’y a rien sur le bloc x.

e HOLDING(x) : la main tient le bloc x.

o HANDEMPTY : la main est vide.

oo >

B

ON(A,B) HOLDING(A)
ON(B,C)

ON(B,C)
CLEAR(A)

CLEAR(B)
HANDEMPTY ONTABLE(C)
ONTABLE(C)

Fig. 10.1 Deuz états du monde des blocs et leur représentation sous la forme de
situations en calcul de prédicats.

Les deux états illustrés dans la figure 10.1 sont logiquement incompatibles
entre eux : HANDEMPTY est en contradiction avec HOLDING(A). Par conséquent,
la représentation doit distinguer les deux situations. Le calcul de situations,
développé pour le systéme de planification de robots STRIPS, est un exemple
de modele d’environnement capable d’intégrer la notion de changement de si-
tuation. Dans ce modeéle chaque nouvelle situation créée par I'exécution d’un
plan est indexée par un symbole particulier. Tous les prédicats utilisés pour
modéliser un état du monde sont modifiés de sorte & incorporer comme nouvel
argument la situation dans laquelle ils s’appliquent. Lorsque ’on passe d’'une
situation S7 a une situation Ss, la plupart des prédicats valides dans Sp le
restent dans S, mais ce fait doit cependant étre explicitement déduit a partir
d’un ensemble d’aziomes cadres. Le probleme relatif a la formulation de ces
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axiomes est généralement désigné sous le nom de probléme de cadres. Le terme
de cadre établit en fait une analogie avec les changements de situations et de
cadres (décors) dans un film : de nombreuses situations ont lieu dans un cadre
quasi identique. Le passage d’un cadre a un autre se fait par l'intermédiaire
d’une action, modélisée comme 'application d’'un opérateur.

La facon la plus naturelle de formuler des axiomes cadres consiste a utiliser
la régle par défaut suivante : tout ce qui n’est pas explicitement mentionné dans
la description d’un opérateur demeure inchangé apres son exécution. Cette regle
a été adoptée dans le calcul de situations, qui spécifie explicitement pour chaque
opérateur la liste DELETE des propositions qui ne seront plus valides apres son
exécution et la liste ADD des propositions qui au contraire deviendront valides.

En plus, pour appliquer une action, il faut respecter certaines précondi-
tions. Par exemple, pour qu'un robot puisse saisir un objet, il faut satisfaire au
préalable que I'objet soit dégagé et que la main du robot soit libre. La trans-
formation qui résulte de ’action établit une nouvelle situation dans laquelle le
robot porte 'objet. Dans le formalisme de STRIPS, cela s’exprime au moyen
d’un opérateur PICKUP(x), ou x est une variable qui représente 1'objet &
salsir :

PICKUP(x)
PRECONDITIONS (P) = HANDEMPTY, CLEAR(x),ONTABLE(x)
DELETE (D) = HANDEMPTY, CLEAR(x), ONTABLE(x)
ADD (A) = HOLDING (x)

Les autres opérateurs utilisés dans le monde des blocs sont :

o PUTDOWN (x) :
P= HOLDING(x), D = P,
A= ONTABLE(x), CLEAR(x), HANDEMPTY

e PUTON(x,y) :
P = HOLDING(x), CLEAR(y), D = P,
A = HANDEMPTY, ON(x,y), CLEAR(x)

o UNSTACK(x,y) :
P = HANDEMPTY, ON(x,y), CLEAR(x),
D = P, A = HOLDING(x), CLEAR(y)

La principale difficulté posée par cette formulation vient du fait que le
nombre de prédicats qui doivent figurer dans les listes ADD, DELETE et
PRECONDITIONS devient rapidement tres important. Cela est particulierement
vrai lorsque des propositions additionnelles peuvent étre ajoutées aux listes par
le biais de regles d’inférences : la liste DELETE d’un opérateur doit alors aussi
supprimer toutes les conséquences inférées sur la base de faits qui ne sont plus
vrais.

La représentation que nous venons de voir est formalisée dans le langage
PDDL (Planning Domain Definition Language) qui a permis de standardiser
I'interface aux algorithmes de planification et ainsi de les comparer sur différents
problémes test.
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10.2 Planification par chainage arriéere

L’algorithme de planification est lancé avec une situation initiale et une situa-
tion but, qui, comme toute expression de situation, ne donnent qu’une des-
cription partielle des états & transformer. La planification se fait par chainage-
arriére a partir du but, de facon analogue au systéeme a chainage-arriere utilisé
par les systemes experts. La raison pour laquelle on utilise le chainage-arriere
est qu’en général, le nombre d’actions possibles a partir d’un certain état est
beaucoup plus grand que le nombre d’actions qui peuvent servir aux buts cou-
rants ; donc, la recherche en chainage arriere est beaucoup plus efficace.

La figure 10.2 montre un exemple d’une réduction effectuée par un tel pro-
cessus. L’utilisation de cette stratégie se justifie par le fait que les systémes
de planification comme STRIPS sont basés sur une analyse des objectifs et
des moyens (moyens-buts) qui requiert de lier une opération & un but donné.
Comme il n’existe généralement aucun opérateur permettant d’atteindre di-
rectement le but en un seul pas d’inférence, STRIPS réduit itérativement les
buts en sous-buts jusqu’a satisfaire la situation initiale. Il est & noter que la
classification des opérateurs par rapport aux buts qu’ils permettent de réaliser
est implicitement obtenue par le contenu des listes ADD.

ON(A,B
CLéAR()é) “

CLEAR(C) E II

Analyse moyens-buts

™~ Opérateur: PUTON(A,B)

A: {ON(A,B), CLEAR(A)}: a enlever!
P, D: {CLEAR(B), HOLDING(A)}: a ajouter!

|

Situation précédente:

CLEAR(B)
HOLDING(A)

CLEAR(C) E E

Fig. 10.2 Chainage arriére pour réduire la situation but a une situation sous-but.

La réduction d’une situation but S en une situation sous-but S’ s’effectue
en planifiant Papplication d’un opérateur O transformant S’ en S. Dans le
contexte de STRIPS, une description de S’ s’obtient comme suit (fig. 10.2) :

e les buts (propositions de la description partielle de 1'état) existant dans
S sont unifiés avec les propositions de la liste ADD de 'opérateur O ne
figurant pas dans S’,
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e les propositions de la précondition de O qui n’apparaissent pas dans S’,
ou qui font partie de la liste DELETE, sont ajoutées comme sous-buts & la
description de S’,

o toutes les autres propositions sont reportées dans S.

Comme la description des situations S et S’ en terme de buts & atteindre
n’est que partielle, il est possible que le processus de régression génere des
descriptions ambigués de situations, ce qui peut conduire a de nouveaux bran-
chements. Si nous considérons, par exemple I'application de I'opérateur :

UNSTACK (x,y)
P = D = HANDEMPTY, CLEAR(x), ON(x,y)
A = HOLDING(x), CLEAR(y)

pour atteindre le but HOLDING(A) en présence d’un autre but CLEAR(C), I'ins-
tanciation de 'opérateur fixera © = A, mais aucune valeur pour y. Siy = C, ce
que le systeme de planification ne peut pas savoir, on n’aura plus besoin d’une
action pour obtenir CLEAR(C) ; si y # C, il faut le maintenir comme but. La
régression de CLEAR(C) impliquera donc la disjonction (y=c) VvV CLEAR(C). Les
deux possibilités doivent étre poursuivies séparément.

La planification construit la chaine d’opérations en appliquant un algorithme
de recherche tel que l'algorithme A*. Par exemple, supposons que le but est de
construire une tour de trois blocs, décrite par la situation :

ON(A,B), ON(B,C)
a partir de la situation :

ON(C,A), CLEAR(B), CLEAR(C)

L’arbre de recherche qui résulte pour ce probleme est décrit par la fi-
gure 10.3. A Dexception du premier niveau, la trace ne montre pas tous les
chemins possibles, mais uniquement le chemin qui conduit a la solution. L’arbre
de recherche complet est beaucoup plus grand et contient de nombreux chemins
inutiles.

Pour minimiser le cotit du plan résultant, on utilise I’algorithme A* ou le
cout se compose des couts des opérateurs impliqués dans le plan, et la fonc-
tion heuristique peut se baser sur la différence entre la situation actuelle et la
situation but.

Notons I'importance de détecter des situations qui sont en fait contradic-
toires aussitot que possible afin d’éviter des recherches inutiles. La détection
des inconsistances est aussi importante pour éviter des plans inconsistants qui
peuvent étre générés sinon. Par exemple, considérons la situation but précé-
dente :

ON(A,B), ON(B,C)

En appliquant ’opérateur PUTON(B,C), on obtient la situation sous-but
contradictoire (et physiquement impossible) :

ON(A,B), HOLDING(B), CLEAR(C)
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/8mze;2%

PU;ON(A,B) PUTOl\I(B,C)

ON(B,C)

HOLDING(A) 2o Bie®)
CLEAR(B) CLEAR(C)
PICKUP(A) ‘

+ Contradiction: ON(A,B), HOLDING(B)

ON(B,C)
CLEAR(B)
CLEAR(A)
HANDEMPTY

PUT(iN(B,C)

SHFt

HOLDING(B)
CLEAR(C)
CLEAR(A)

PIC&;UP(B)

CLEAR(B)
CLEAR(C)
CLEAR(A)
HANDEMPTY

PUTII%OWN(C)

HOLDING(C)
CLEAR(B)
CLEAR(A)

UNSTf\CK(C,A)

ON(C,A)
CLEAR(C)
CLEAR(B)
HANDEMPTY

B

Fig. 10.3 Arbre de recherche pour la construction d’une tour de 3 blocs.
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a laquelle on peut cependant appliquer la séquence d’opérateurs PICKUP (B),
PUTON (A, B) et PICKUP (A) pour obtenir la situation initiale parfaitement consis-
tante :

CLEAR(A), CLEAR(B), CLEAR(C)

Si 'inconsistance n’est pas détectée, le systeme considérerait ce plan comme
une solution, bien qu’il soit physiquement impossible & réaliser! Il est donc
important d’arréter la recherche aussitot qu'un état inconsistant est détecté.

Notons également quelques lacunes de I’analyse moyens-buts qui est a la base
de I'algorithme de planification. Une premiere lacune concerne la formulation
de la représentation. Supposons que celle-ci inclut un prédicat ABOVE(x,y) qui
spécifie que x se trouve quelque part au-dessus de y. Une tour de 3 blocs A, B,
C pourrait alors étre spécifiée par les buts :

ABOVE(A,C) A ON(A,B)

Or, 'analyse moyens-buts est incapable de trouver les opérateurs qui per-
mettent d’atteindre cette combinaison de buts : le but ABOVE(A,C) ne permet
que de proposer un opérateur PUTON (A, C), mais pas ’opérateur PUTON(B,C) qui
serait nécessaire pour atteindre ce but en combinaison avec le but ON(A,B). Un
autre probléeme concerne le fait qu’il est impossible d’introduire dans un plan
l'utilisation d’objets non mentionnés dans le but. Ce probléeme est plus pro-
fondément lié au probleme théorique faisant qu’une planification permettant
I'introduction d’éléments supplémentaires n’est pas calculable par un ordina-
teur.

10.3 Macro-opérateurs

Dans STRIPS, les séquences d’actions réalisant un type particulier de buts,
peuvent étre précalculées et stockées sous forme de macro-opérateurs (MACROP).
Un macro-opérateur permet au systeme de planification de décrire les plans & un
niveau plus élevé que celui donné par des opérateurs élémentaires. Les MACROP
sont représentés par des tables triangulaires, ayant 'aspect décrit par I’exemple
de la figure 10.4.

0

HANDEMPTY
1| CLEAR (C) 1
ON(C,A) UNSTACK (C.A)
2 HOLDIN 2
OLDING (©) | pyrpown (©)
3| ONTABLE(B) HANDEMPTY 3
CLEAR (B) PICKUP (B)
4 CLEAR(C) 4
HOLDING(B) PUTON (B.C)
5| ONTABLE(A) CLEAR(A) HANDEMPTY PIC&UP(A)
6 CLEAR(B) HOLDING(A) 6
PUTON (A,B)
7 ONTABLE(C) ON(B,C) ON(A.B)

Fig. 10.4 Ezemple de tables triangulaires utilisées par STRIPS.
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La table triangulaire que montre cette figure représente un plan pour
construire une tour de trois blocs A, B et C. On peut le réappliquer comme un
macro-opérateur suivant :

P = D = HANDEMPTY,CLEAR(C),0N(C,A) ,ONTABLE(B) ,CLEAR(B) ,ONTABLE (A)
A = ON(B,C), ON(A,B), ONTABLE(C)

Sur la diagonale de la table triangulaire figurent les séquences d’actions
du plan. Chaque colonne située en-dessous d’une action donne la description
des situations qui s’ajoutent par l'exécution de cette action. Sur les lignes sont
spécifiées les propositions supprimées par exécution des actions de la diagonale.

Considérées plus attentivement, ces tables triangulaires présentent une par-
ticularité intéressante : ’ensemble total des propositions ajoutées et supprimées
par la séquence d’opérateurs, peut étre entierement lu sur la colonne 0 (liste
DELETE de MACROP) et sur la derniére ligne (liste ADD de MACROP). Tout ceci
établit le fait que les tables triangulaires constituent une structure adéquate
pour la représentation d’opérateurs plus abstraits que ceux utilisés a la base.

10.4 La complexité du probleme de la planification

Le probleme de générer un plan utilisant le formalisme du calcul des situa-
tions a été analysé en informatique théorique. On considere en fait le probleme
PLANMIN : est-ce qu’il existe un plan pour un certain probleme donné avec une
longueur d’au plus k opérateurs ? Si le nombre d’opérateurs ou d’objets n’est
pas fini, le probléeme ne peut pas étre résolu par une machine de Turing et il
est inutile de parler de sa complexité. Autrement, le probleme de la planifica-
tion peut se réduire directement a différentes versions du halting problem pour
machines de Turing.

La figure 10.5 montre différentes classes du probleme et leur complexité.
Chaque classe est caractérisée par des conditions sur les opérateurs et parfois
les buts :

e 0,1,2* indique le nombre de pré(post)conditions,
e + veut dire que la condition doit étre une proposition sans négation,

o g buts veut dire que le nombre de buts ne dépasse pas une constante g.

Le cas le plus général ainsi que trois sous-classes indiquées dans la figure 10.5
sont équivalents & une machine de Turing et donc PSPACE-complets. Les cas
qui peuvent étre résolus en temps polynomial se limitent a des opérateurs sans
préconditions ou bien a un nombre limité de buts et au plus une précondition
par opérateur — autrement, on pourrait construire des sous-buts et surmonter
la limitation du nombre de buts. Ces cas ne sont en général pas intéressants
dans la pratique.

On voit donc que la planification est un probleme tres difficile et pour sa
résolution, on doit compter sur de bonnes méthodes heuristiques comme elles
ont été développées dans le cadre de moteurs d’inférence ou de la satisfaction
de contraintes. Nous allons donc voir comment profiter de ces outils pour la
planification.
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* preconds.
* postconds.

PSPACE

* preconds. 1 precond. 2 + preconds.
1 postcond. * postconds. 2 postconds.

0 precond.

* +preconds. * postconds.

1 postcond.

NP
1 + precond. 0 precond. 0 precond.
1 + postcond. 2 postconds. 3 +postconds
1 precond. 0 precond.
* postconds. 1 Sostcond. 9 precond. P

2 +postconds.

g buts

Fig. 10.5 Hiérarchie de complexité du probléme PLANMIN.

10.5 Planification par inférence logique

Un probleme de planification peut également étre posé comme un probléme
d’inférence, ce qui permet d’utiliser un moteur d’inférence quelconque comme
base du systeme. Une maniere de faire cela consiste a ajouter a chaque prédicat
utilisé pour décrire une situation un argument qui indique la situation dans
laquelle le prédicat est valable :

ON(A,B,S1)
et en définissant une fonction d’évolution des états :

S1 = apply(PUTON(A,B), Sp)
Au lieu de formuler les opérateurs avec des listes ADD, DELETE, etc., on formule
des regles d’inférence comme ceci :

(CLEAR(x,s) A HOLDING(y,s)) =

(ON(y,x,apply (PUTON(y,x),s)) A
Un plan sera alors construit de la maniére suivante. Supposons que nous partons
de la situation initiale Sy :

ONTABLE(A,So), ON(B,C,So), HANDEMPTY (Sy)
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et que nous cherchons a satisfaire le but ON(A,B,x), ou la variable x désigne
une éventuelle situation finale que le systéme ne connait pas encore. Si toutes
les regles d’inférence sont bien formulées, un moteur d’inférence retournera par
exemple le résultat :

x = apply(PUTON(A,B),
apply (PICKUP(4),
apply (PUTDOWN (B) ,
apply (UNSTACK(B,C),S0))))

ce qui est une substitution de la variable z qui rendra le résultat sous la forme
d’une conséquence de la situation initiale.

Cependant, cette maniere de résoudre le probleme pose a nouveau le pro-
bleme des cadres : pour chaque combinaison de prédicat P et d’opérateur O,
on est obligé de formuler des regles d’inférences qui indiquent si P reste va-
lable ou non dans la situation qui résulte de I'application de 'opérateur O. Si
nous pensions, par exemple, a tous les blocs qui peuvent se trouver ailleurs sur
une table pendant I'exécution d’un plan, il est évident que le nombre de regles
qu’on aurait a formuler serait énorme. Il faut donc formuler des axiomes cadres,
c’est-a-dire des regles générales du type :

(VP) (P # CLEAR) A (P # ...) =
(P(s) = P(apply(PUTON(x,y),s)))

Malheureusement, il s’agit la d’une regle du calcul de prédicats de deuxieme
ordre, ce qui ne peut pas étre utilisé dans une procédure d’inférence algorith-
mique. Une issue a cela est de générer un individu pour chaque prédicat utilisé
dans la planification et de ’associer & un état spécifique par un prédicat HOLDS :

HOLDS(ON(A,B),Sp)
ce qui fait que les axiomes de cadre deviennent des regles de 1°" ordre :

(V P) (TYPE(P) # CLEAR) A (TYPE(P) # ...) =
(HOLDS(P,s) = HOLDS(P, (apply(PUTON(x,y),s))))

La formulation logique du probléme de la planification permet son inté-
gration avec d’autres considérations, notamment le raisonnement temporel qui
permet de planifier des opérations qui se déroulent en parallele.

10.6 Buts multiples

Quand un probleme de planification implique plusieurs buts a réaliser en méme
temps, on peut souvent exécuter les actions qui y menent dans n’importe quel
ordre. La planification par A* effectue une recherche linéaire entre les différentes
séquences d’états, ce qui conduit & une explosion combinatoire de noeuds de
recherche. La figure 10.6 en montre un exemple : les quatre actions de poser une
ampoule et un couvercle sur deux lampes (gauche et droite) peuvent s’exécuter
dans six ordres différents, qui seront tous distingués lors d’une recherche par
A*.
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Ampoule Ampoule Ampoule Ampoule Ampoule Ampoule
gauche droite droite gauche droite gauche
Couvercle Couvercle Ampoule Ampoule Ampoule Ampoule
gauche droit gauche droite gauche droite
Ampoule Ampoule Couvercle Couvercle Couvercle Couvercle
droite gauche gauche gauche droit droit
Couvercle Couvercle Couvercle Couvercle Couvercle Couvercle
droit gauche droit droit gauche gauche

f / ' f / f

Fig. 10.6 Plans linéaires pour mettre ampoules et couvercles.

L’idée de la planification non linéaire est de séparer la sélection des actions
qui feront partie du plan de leur ordonnancement dans une séquence précise.
Un plan non linéaire est un graphe dont les noeuds sont des actions et les arcs
représentent des contraintes sur I'ordre des opérations. Par exemple, on repré-
sentera les différentes séquences pour mettre les ampoules et les couvercles par
un seul plan non-linéaire (fig. 10.7). Dans des situations comme celle-ci, ol
certaines actions peuvent étre exécutées dans n’importe quel ordre, la planifi-
cation non linéaire permet une représentation plus compacte. C’est un exemple
de l'idée du least commitment, c’est-a-dire de ne pas faire de choix avant que
ce soit vraiment nécessaire.

début

Ampoule Ampoule
gauche droite

\ /

Couvercle Couvercle
gauche droit

fin

Fig. 10.7 Plan non linéaire pour ampoules et couvercles.
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Il existe de nombreux algorithmes pour la génération de plans non linéaires.
Ils impliquent une recherche relativement complexe d’opérateurs et construisent
les contraintes d’ordonnancement par une analyse des préconditions et des
conséquences des opérations. Au lieu d’entrer dans les détails de ces algo-
rithmes, nous allons montrer une maniere de traduire un probleme de pla-
nification en un probleme de satisfaction de contraintes, plus précisément en
un probleme de satisfiabilité (SAT). Cela permet ensuite I’application des al-
gorithmes efficaces de PSC que nous avons vus.

Le plan construit par cette technique sera exprimé dans une autre repré-
sentation qui est une séquence linéaire d’états, ou l'on associe a chaque état
un ensemble d’actions qui peuvent toutes s’exécuter en parallele. La figure 10.8
en montre un exemple. On peut montrer que s’il existe un plan non-linéaire, il
existe aussi un plan sous cette forme. Donc ce choix n’affecte pas la généralité
de I’approche.

ampoule ampoule
gauche droite So

couvercle couvercle
gauche droit S

S2

Fig. 10.8 Une représentation alternative d’un plan non-linéaire : une séquence
d’états avec des actions qui peuvent s’exécuter en paralléle.

La méthode repose sur deux hypotheses :

o On connait une longueur maximale [ du plan, c’est-a-dire le nombre maxi-
mal d’états. Cela peut étre satisfait de maniere analogue a la recherche en
iterative deepening : on choisit d’abord une limite petite que I’on augmente
si aucune solution n’est trouvée.

e On a déterminé par avance toutes les actions qui pourraient étre néces-
saires pour obtenir un plan d’actions complet.

Nous allons maintenant décrire un probleme de satisfaction de contraintes
dont n’importe quelle solution correspond & un plan valable pour atteindre les
conditions buts. Le PSC ne contiendra que des variables booléennes, c’est-a-
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dire des variables dont la valeur sera choisie entre vrai et faux. On appelle un
tel PSC un probleme de satisfiabilité (SAT).

En partant de la limite [ sur la longueur, on définit d’abord la séquence
d’états S1, 59, ..., S1+1. Le dernier état représente 1’état final qui n’admet plus
aucune action. Pour chaque état, le PSC contient deux types de variables :

o pour chaque action qui pourrait faire partie du plan, il existe une variable
qui prendra la valeur vrai si I’action est exécutée dans cet état et faux
si elle ne l'est pas,

e pour chaque propriété qui caractérise les états dans le formalisme STRIPS,

il existe une variable qui indique si la propriété est vraie ou fausse dans
cet état.

Notons que les valeurs des variables qui correspondent aux actions défi-
nissent un plan sous le format de la figure 10.8.
Considérons a nouveau ’exemple des lampes. Il existe quatre actions :
mettre ampoule gauche/droite ~ ag/ad
mettre couvercle gauche/droite ~ cg/cd
et supposons qu’il y ait trois états : s0,s1,s2. Le PSC aura alors les variables
suivantes pour les actions :

ag(s0),ad(s0),cg(s0),cd(s0)
ag(s1),ad(s1),cg(s1),cd(s1)

En plus, supposons qu’on représente les états par quatre propositions :

posée ampoule gauche/droite ~ pag/pad
posé couvercle gauche/droite ~ pcg/pcd

On aura alors en plus les variables :
pag(s0) ,pad(s0) ,pcg(s0),pcd(s0)

pag(sl) ,pad(sl) ,pcg(sl),pcd(sl)
pag(s2) ,pad(s2),pcg(s2) ,pcd(s2)

Le deuxieme élément d’un PSC, ce sont les contraintes sur les valeurs des
variables :

o Chaque variable qui représente une action a des contraintes avec chaque
variable qui représente une précondition dans le méme état. Elles assurent
que si I’action est exécutée, alors les préconditions doivent étre satisfaites.
On a donc 'expression logique :

action = précondition

Par exemple, pour mettre "ampoule gauche (ag), il faut que le couvercle
gauche ne soit pas encore posé (- pcg), donc :
ag(s0) = — pcg(s0)

et ainsi pour toutes les autres instances de ag. Notons que cette expression
sera représentée comme une contrainte, c’est-a-dire comme matrice de
valeurs admissibles :
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pcg
ag | vrai faux
vrai 0 1
faux | 1 1

o Des contraintes analogues existent pour les postconditions et les suppres-
sions de chaque action, donc par exemple :

ag(s0) = pag(sl)

e Les conditions initiales donnent lieu & des contraintes sur les variables
du premier état. Par exemple, si au début on n’a rien posé, on aura les
contraintes :

Cl:pag(sO)=faux;
C2:pad(s0)=faux;
C3:pcg(sO0)=faux;
C4:pcd(sO)=faux;

o Les buts deviennent des contraintes sur les variables du dernier état, par
exemple :

Cl:pag(s2)=vrai;
C2:pad(s2)=vrai;
C3:pcg(s2)=vrai;
C4:pcd(s2)=vraij;

o Les axiomes de cadre seront également exprimés par des contraintes. Rap-
pelons que les axiomes de cadre expriment le fait que si une variable d’état
n’est pas touchée par une action, alors sa valeur au prochain état doit res-
ter inchangée. Il est équivalent de dire que si la valeur change, il doit y
avoir eu une action qui en est responsable. Donc, pour toute paire d’états
successifs, et toute variable d’état, il existe une contrainte entre les va-
riables correspondantes et toutes les actions qui peuvent ’affecter :

si la valeur de la variable change, une des actions doit I’avoir comme
postcondition.

Par exemple, si le couvercle est posé alors qu’il ne I’était pas avant, cela
doit étre parce qu’on I'a posé ; s’il n’est plus posé, c’est une contradiction,
car il n’y a pas d’opérateur pour I’enlever. On peut exprimer cela par les
contraintes suivantes :

- pcg(s0) A pecg(sl) = cg(s0)
pcg(s0) A — pcg(sl) = L

e Supposons qu’une action a; ait la précondition p et une autre action as
ait une postcondition —p. Si les deux actions sont exécutés simultanément,
il pourra y avoir un conflit car as annulera la précondition de a;. Donc,
il faut établir une contrainte d’exclusion mutuelle (mutex) entre a; et
asz, et en général entre toute paire d’actions tel que 'une influence la
précondition de 'autre.
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Le probleme de satisfaction de contraintes qu’on aura ainsi défini n’admettra
comme solution qu’un plan valable. Pour ’exemple, une solution (qui corres-
pond a la figure 10.8) pourrait étre :

pag(s0) = faux; pad(s0) = faux; pcg(s0) = faux; pcd(s0) = faux;
ag(s0) = vrai; ad(s0) = vrai; cg(s0) = faux; cd(s0) = faux;
pag(sl) = vrai; pad(sl) = vrai; pcg(sl) = faux; pcd(sl) = faux;
ag(sl) = faux; ad(sl) = faux; cg(sl) = vrai; cd(sl) = vrai;
pag(s2) = vrai; pad(s2) = vrai; pcg(s2) = vrai; pcd(s2) = vrai;

Notons que si le nombre de variables parailt élevé, il ne croit que de fagon
linéaire avec le nombre d’états, d’opérateurs et de variables d’état. Il reste donc
maitrisable méme pour de grands problémes de planification.

Bien entendu, il peut y avoir plusieurs solutions et donc plusieurs plans.
Il est d’ailleurs possible d’ajouter d’autres criteres, par exemple on pourrait
ajouter des contraintes pour tenir compte de la disponibilité des ressources. Cela
permettra alors de planifier 'exécution de certaines opérations en parallele, ce
qui correspond plus a la réalité dans beaucoup de problemes industriels tels
que la productique. Il s’agit alors de satisfaire deux types de contraintes :

o précédence : un opérateur qui satisfait la précondition d’un autre doit
venir avant ;

« ressource : deux opérations qui utilisent la méme ressource ne peuvent pas
étre exécutées en méme temps.

En général, la planification non-linéaire permet d’améliorer de fagon signi-
ficative l'efficacité de traitement d’un systéme de planification. Cela s’explique
par le fait que l'effort de calcul le plus important, I’ordonnancement des taches,
peut se faire en utilisant des méthodes de satisfaction de contraintes plus ef-
ficaces que les méthodes de recherche simples. Il existe des techniques tres
efficaces qui permettent de résoudre des problemes de satisfiabilité avec des
millions de variables et rendent donc possible des plans tres complexes.

10.7 Extensions pour améliorer la flexibilité

Opérateurs avec variables

Si la planification non linéaire permet déja de profiter du principe du least com-
mitment en ce qui concerne ’ordre des opérations, les opérateurs sont toujours
completement instanciés, c’est-a-dire que les objets auxquels ils se réferent sont
décidés au moment de la sélection de 'opérateur. Pour pousser le principe du
least commitment plus loin, on pourrait aussi imaginer d’avoir des opérateurs
contenant des variables, par exemple :

PUTON (A, 7x)
... UNSTACK (A, ?7x)
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pour entreposer A sur un autre bloc et libérer la main. Cela évitera de formuler
un grand nombre d’alternatives pour tous les différents endroits ou on pourrait
entreposer le bloc A.

Cependant, les variables qu’on introduit ainsi doivent satisfaire a des
contraintes pour éviter des situations inconsistantes. Dans I’exemple, ?x ne peut
pas étre égal & A ni & un bloc qui est utilisé dans une autre opération. Ces
contraintes peuvent s’intégrer facilement dans un systéeme de planification par
satisfaction de contraintes.

Opérateurs avec disjonctions

Une autre possibilité est qu'un opérateur puisse contenir des disjonctions. S’il
s’agit d’une disjonction des préconditions, par exemple A V B, on peut rem-
placer I'opérateur par deux copies identiques ayant comme préconditions A et
B seules. Si, par contre, il s’agit d’une disjonction de postconditions, cela veut
dire qu’il peut y avoir plusieurs contextes pour poursuivre la planification. Cela
pourrait se produire par exemple si 'opérateur implique une mesure dont le ré-
sultat est incertain. Dans ce cas, il n’est pas possible de trouver une formulation
équivalente sans disjonctions. En fait, de telles disjonctions conduisent a une
explosion combinatoire des possibilités qui est a éviter si possible.

Planification hiérarchique

Souvent, le domaine dans lequel se fait la planification admet une structuration
hiérarchique. La figure 10.9 montre un exemple d’une telle décomposition. En
développant un plan a plusieurs niveaux d’abstraction, on peut exploiter cette
structure pour améliorer 'efficacité de la planification. On construit d’abord
un plan au plus haut niveau d’abstraction. On définit ainsi une suite de sous-
problémes a résoudre aux niveaux inférieurs. C’est évidemment plus efficace,
mais peut cacher certaines possibilités et rendre donc le processus incomplet.
Par exemple, il se peut que I’on doive reconfirmer le voyage de retour pendant
le séjour, mais la décomposition ne permettrait pas d’intercaler une telle action
dans la planification du séjour.

—
/// S~ ~
7 S~
o o e e ey
| |
| |
I maison —> aéroport —> I
[l aéroport vol destination |
| |
| |
S 1

Fig. 10.9 FExemple d’une structuration hiérarchique.

Pour éviter ce genre d’interférence, on a developpé des techniques qui
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construisent une hiérarchie sans interférences en analysant les dépendences vi-
sibles par les préconditions et postconditions des opérateurs. Par exemple, le
systéme Fast Downward [52] construit ainsi un graphe causal au dessus de la
structure du probleme de satisfaction de contraintes. Ce graphe est alors la base
d’heuristiques pour la résolution du probleme de satisfaction de contraintes en
tirant profit de son hiérarchie ainsi découverte. Cette technique permet des
gains importants en complexité par rapport aux heuristiques générales pour la
satisfaction de contraintes.

En pratique, la plupart des systemes de planification utilisés actuellement
sont de type non linéaire. Ils s’appliquent a une large variété de problemes,
citons par exemple :

o la planification de missions spatiales (DEVISER),
o les opérations d’un porte-avions (SIPE),

 l'opération d’un ensemble d’ascenseurs (Schindler).

En raison de I’énorme économie de ressources induite par une planification
intelligente, c’est dans le domaine de la planification que 'apport de I'TA s’est
particulierement démarqué.

Littérature

La planification a été I'un des premiers problemes considérés par I'TA. Le pa-
pier [44] considére les problémes principaux de modélisation et formule le pro-
bleme des cadres. [45] introduit le systéme de planification STRIPS, et [46] ana-
lyse le calcul de situations qui est sous-jacent a pratiquement tous les travaux
sur la planification. [47] fait une analyse de la complexité de calcul inhérente
au probléme de la planification.

[48] présente la planification non linéaire qui s’est développée pendant les
années 1980 et 1990. La derniere génération d’algorithmes de planification basés
sur les contraintes a été introduite dans [50] pour I’algorithme Graphplan et [49]
pour le systeme Satplan. La méthode décrite dans ce chapitre prend également
des éléments de [51]. La methode hiérachique du fast downward est décrite
dans [52].

On trouve une bonne syntheése récente dans le livre de Geffner et Bonet [53].

Outils - domaine public

Les systemes de planification ont plusieurs générations et il existe de nombreux
logiciels qui sont maintenant dépassés. Un systeme qui est relativement proche
de I’état de l'art et similaire a la technique présenté ici est Satplan et son
successeur Madagascar, disponibles ici :

http://users.ics.aalto.fi/rintanen/satplan.html

Une méthode qui gagne en efficacité en exploitant les structures hiérachiques
du probleme est le systeme Fast Downward dont le développeur se trouve a
I’Université de Basle :
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http://www.fast-downward.org/

Il existe aussi un site qui regroupe les développements qui se sont faits autour
du formalisme de représentation PDDL :

http://planning.domains/

Application : Planification des mouvements d’ascenseurs

Les gratte-ciel contiennent une multitude d’ascenseurs qui doivent servir
de nombreuses demandes. Quand tous les ascenseurs sont réglés par un
méme régime simple, on peut observer qu’ils ont tendance a tous servir les
mémes étages en méme temps. C’est évidemment inutile, parce qu un seul
ascenseur est suffisant pour accueillir toutes les personnes qui attendent
sur un étage. La société Schindler a mis au point un systeme de plani-
fication, basé sur un formalisme STRIPS et traduit en PSC, qui planifie
les mouvements de tous les ascenseurs de fagon coordonnée. Ainsi, pour
chaque étage il n’y aura qu’un seul ascenseur qui viendra chercher les per-
sonnes qui y attendent. Le systeme réduit le temps de parcours des usagers
entre 10 et 50%, permet d’économiser une partie des ascenseurs ou d’in-
troduire des ascenseurs a plusieurs étages pour multiplier la capacité sans
prendre plus de surface au batiment.

(Source : Jana Koehler et Daniel Ottiger : An Al-Based Approach to
Destination Control in Elevators, AI Magazine 23(3), 2002, pp. 59-78.)

10.8 Exercices

Exercice 10.1 Planification - Modélisation

L’objectif de cette série d’exercices consistera a planifier la traversée d’un
groupe de cannibales et de missionnaires de la rive gauche a la rive droite
d’une riviere. Ceux-ci disposent pour ce faire d’un bateau a deux places, qui ne
peut étre piloté que par un missionnaire. Nous supposons qu’il y a en tout deux
missionnaires M; et My et deux cannibales C; et Cs. La traversée ne peut se
faire qu’en empruntant un unique bateau B.

Cette série se compose de deux parties. Dans la premiere partie, corres-
pondant a l'exercice 1, vous devrez concevoir sur papier un modele PSC qui
représente le probleme de planification donné au paragraphe précédent et qui
permette de le résoudre au moyen d’algorithmes de résolution de PSC. Dans la
seconde partie, vous implémenterez ce modele en Python et vous le résoudrez
en appliquant le module PSC implémenté au cours des exercices précédents.

Notez qu’il n’est pas nécessaire de lire ’énoncé de la deuxieéme partie pour
accomplir la premiere. Vous pourriez en fait éprouver une certaine difficulté a
comprendre cet énoncé avant d’avoir lu la solution de la premiere partie, étant
donné qu’il y fait référence.
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Modules squelettes

Les modules qui suivent constituent le squelette du programme que nous allons
développer. exemple_missionnaires.py sert en particulier a définir le probleme
et vous permettra de tester votre implémentation lorsque vous aurez terminé.

Module .../moteur_psc_planification/axiomecadre.py :

from moteur_psc.contrainte import Contrainte

class ContrainteAxiomeCadre(Contrainte):
def _init_ (self, var_pre, ops, var_post):
Contrainte. _init_ (self , (var_pre, var_post) + tuple(ops))

self .var_pre = var_pre
self .var_post = var_post
self . vars_ops = ops

def est_valide (self , var, val):
print('a compléter')

def propage(self, var):
print('a compléter')

def reviser (self ):
return False

def _repr_ (self ):
return 'Axiome de cadre:\n\t{}\n\t{}\n\t{}'.format(self.var_pre,
[op for op in self .vars ops],
self .var_post)

Module .../moteur_planification/operateur.py :

class Operateur:
def _init_ (self, nom, precond, postcond):
self .nom = nom

self . precond = precond
self . postcond = postcond

def _repr_ (self ):
return self.nom

Module. . ./moteur_planification/etat.py :

from moteur_psc_heuristique.variable_avec_label import VariableAvecLabel
class Etat:
def _init_ (self, no_etat, propositions, operateurs, etat_prec=None):

self .no_etat = no_etat
self . etat_prec = etat_prec

self .operateurs = { op.nom: op for op in operateurs }

self . vars_initiales = {}
self . vars_finales = {}
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. construire_vars_operateurs (operateurs)
. construire_vars_propositions (propositions)

def construire_vars_operateurs ( self , ops):

self

for

.vars_operateurs = {}

op in ops:

var_nom = '{} état {}'.format(op.nom, self.no_etat)

self . vars_operateurs [op.nom| = VariableAvecLabel(var_nom,
[True, False])

def construire_vars_propositions ( self , props):
print('a compléter')

def variables ( self ):

return (list(self. vars_initiales .values()

Module ..

) +
list (self . vars_finales .values()) +
list ( self . vars_operateurs. values ()))

./moteur_planification/planification.py :

from moteur_psc.contrainte import ContrainteUnaire

from moteur_psc_heuristique.contrainte_avec_propagation import
ContrainteAvecPropagation

from moteur_psc_heuristique.psc_heuristique import PSCHeuristique

from moteur_psc_planification.axiomecadre import ContrainteAxiomeCadre

from .etat import Etat

class Planification :
def _init_ (self, propositions, operateurs,

self
self
self

self
self

self .

self .

self .
self .

self

mutex_propositions, mutex_operateurs,
depart, but, nb_etats):
.operateurs = operateurs
.mutex_propositions = mutex_propositions
.mutex_operateurs — mutex_operateurs

.depart = depart
.but = but

nb_etats = nb_etats
propositions = propositions

etats = |[]
construire_etats ()

.psc = PSCHeuristique(self.variables (), self . construire_contraintes ())

def construire_etats ( self ):
print('a compléter')

def variables ( self ):
# Utiliser un set évite les doublons entre variables finales et
# initiales .
variables = set()
for etat in self .etats:

variables .update(etat. variables ())
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return list(variables)

def construire_contraintes ( self ):
return (self. construire_contraintes_propositions () -+
self . construire_contraintes_operateurs () +
self . construire_contraintes_conditions () +
self . construire_contraintes_axiomes_cadre () +
self . construire_contraintes_initiales () +
self . construire_contraintes_finales ())

def construire_contraintes_propositions ( self ):
print('a compléter')

def construire_contraintes_operateurs ( self ):
print('a compléter')

def construire_contraintes_conditions ( self ):
print('a compléter')

def construire_contraintes_axiomes_cadre ( self ):
print('a compléter')

def construire_contraintes_initiales (self ):
print('a compléter')

def construire_contraintes_finales (self ):
print('a compléter')

def resoudre( self ):
self . psc.consistance_noeuds()
self . psc. consistance_arcs ()
self . psc. variable_ordering ()

self . psc.forward_checking(0, True)
self . sol = self.psc. solutions

return self. sol

def affice_solutions (self ):
print('Recherche terminée en {} itérations'.format(self.psc. iterations ))

if len(self . psc. solutions) == 0:
print('Aucune solution trouvée')
return

for sol in self .psc.solutions:
print('Solution")

for etat in self .etats:
print('Etat {}: '.format(etat.no_etat))
print(' Propositions initiales :')
for nom, var in sorted(etat. vars_initiales .items ()):
if sol [var.nom]:
print(' ' 4+ nom)

print(' Opérateurs:')
for nom, var in sorted(etat.vars_operateurs.items()):
if sol [var.nom]:
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print( ' 4+ nom)

print(' Propositions finales :")
for nom, var in sorted(etat. vars_finales .items ()):
if sol [var.nom]:
print(" ' 4+ nom)
print()

Module .../exemple_missionnaires.py :

from moteur_planification.operateur import Operateur
from moteur_planification. planification import Planification

def format_g(acteur):
return 'g({})'.format(acteur)

def format_d(acteur):
return 'd({})'.format(acteur)

def format_dg(bateau, pilote):
return 'dg({}, {})'.format(bateau, pilote)

def format_gd(bateau, pilote, passager):
return 'gd({}, {}, {})'.format(bateau, pilote, passager)

bateaux = ['B']
missionnaires = ['M1', 'M2']
cannibales = ['C1', 'C2']

acteurs = bateaux + missionnaires + cannibales

# Ajoute les propositions pour la position des acteurs.
propositions = []
print('a compléter')

# Ajoute les opérateurs de déplacement.
operateurs = |]
print('a compléter')

# Ajoute les mutex de proposition (un acteur ne peut pas étre sur les deux rives
# simultanément).

mutex_propositions = ||

print('a compléter')

# Ajoute les mutex d'opérateurs.
mutex_operateurs = ||
print('a compléter')

# Ajoute les contraintes initiales (tous les acteurs & gauche).
depart = ||

print('a compléter')

# Ajoute les contraintes finales (but: tous les acteurs & droite ).
but = []

print('a compléter')

# Transforme le probléme de planification en PSC.
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plan = Planification (propositions, operateurs,
mutex_propositions, mutex_operateurs,
depart, but,
nb_etats=5)

plan.resoudre()

plan. affice_solutions ()

Veillez a respecter la structure des dossiers telle qu’elle est reflétée dans
les noms des modules ci-dessus, sous peine de devoir modifier les instructions
import.

Exercice 10.1.1 Modélisation sur papier
Avant de commencer a coder, vous devez modéliser le probleme de planification
sous forme de PSC. Pour ce faire, il convient de procéder en deux étapes :

e définition du probleme de planification en termes de propositions et d’opé-
rateurs,

e définition d’un PSC correspondant, en termes de variables et de contraintes
sur ces variables.

Définition du probléme de planification
Un probleme de planification peut étre défini par trois éléments :

o Un ensemble de propositions qui décrivent completement 1’état du monde
a un moment donné. Certaines de ces propositions peuvent étre mutuel-
lement exclusives. Il faut alors expliciter les contraintes d’exclusion.

o Deux ensembles d’instanciations partielles de ces propositions, qui dé-
crivent respectivement ’état initial et ’état final, qui est le but a atteindre.

e Un ensemble d’opérateurs qui permettent de faire évoluer le monde d’un
état a un autre.

Rappelons qu’une proposition est, par définition, une affirmation portant
sur I'état d’une partie du monde et qui peut étre vraie ou fausse. Les opéra-
teurs, quant a eux, se définissent comme des actions dont 1’exécution nécessite
que certaines propositions (leurs préconditions) soient vraies ou fausses et qui
ont pour conséquence d’imposer & certaines propositions (leurs postconditions)
d’étre vraies ou fausses.

Pour commencer, proposez donc une définition d’un probleme de planifica-
tion qui corresponde a la description informelle du probleme telle qu’elle vous
est donnée en introduction.

Privilégiez un modele simple, qui ne contienne pas trop d’opérateurs su-
perflus. Par exemple, il est inutile d’introduire des opérateurs pour décrire le
fait qu’un missionnaire ou un cannibale embarque sur le bateau ou qu’il en
débarque. Pour chaque acteur, vous pouvez utiliser une proposition indiquant
s’il se trouve ou non sur la rive gauche et une autre proposition indiquant s’il
se trouve ou non sur la rive droite.
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Définition d’un PSC correspondant

Par définition, un PSC est décrit par :

o un ensemble de variables, qui prennent des valeurs dans des domaines
définis,

o un ensemble de contraintes sur ces variables, qui définissent les combinai-
sons de valeurs admissibles.

Proposez un modele PSC pour le probleme de planification. Les variables
doivent décrire completement les propositions et les opérateurs lors de chaque
état. Les contraintes, quant & elles, doivent exprimer les propriétés et les limita-
tions du probleme. Par exemple, un bateau ne peut contenir que deux acteurs
au maximum, et 'un d’eux (le pilote) doit étre un missionnaire. Ou encore, le
bateau doit initialement étre & gauche pour pouvoir faire la traversée de gauche
a droite.

Afin de reformuler le probléme de planification sous la forme d’un PSC, vous
devrez faire une hypotheése sur le nombre d’états nécessaires pour l’existence
d’un plan aboutissant & une solution (c’est-a-dire sur le nombre d’applications
successives d’opérateurs). Notez que votre modele PSC n’est pas obligé de se
limiter aux contraintes unaires ou binaires. Il peut comporter des contraintes
n-aires avec n > 2. Par exemple, les contraintes correspondant aux axiomes de
cadre.

Solutions a la page 378

Exercice 10.2 Planification - Implémentation

Exercice 10.2.1 Construction du probleme de planification

Le module exemple_missionnaires.py contient une routine qui, pour commen-
cer, définit les acteurs, opérateurs, mutex et conditions de départ et de fin du
probléme, puis construit le probleme de planification en utilisant la classe Plani-
fication du module planification.py. Une fois 'objet Planification construit,
sa méthode resoudre utilise les outils de résolution de PSC développés les séries
précédentes pour résoudre le probleme.

Construction des propositions : rédigez le code nécessaire pour contruire les
propositions du probleme. Une proposition doit étre simplement représentée
par une string. Stockez toutes les propositions dans la liste propositions.

Construction des opérateurs : construisez a présent les opérateurs du probleme,

qui seront représentés par la classe Operateur du module operateur.py. Le
constructeur de cette classe prend comme arguments trois parametres :

e le nom de lopérateur & créer (similaire & la représentation des proposi-
tions,

« la liste des préconditions (une liste de propositions),

« la liste des postconditions (une liste de propositions).
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Spécification des mutex de propositions : ajoutez le code nécessaire a construire
les mutex de propositions et qui les stockera dans une liste sous forme de tuples
(propl, prop2). propl et prop2 sont ainsi deux propositions qui ne doivent pas
étre vraies en méme temps.

Spécification des mutex d’opérateurs : ajoutez ensuite le code qui définira les
mutex d’opérateurs avec le méme format que les mutex de propositions, c¢’est-
a-dire comme une liste de tuples (op1, op2), avec opl et op2 deux opérateurs
qui ne doivent pas étre exécutés en méme temps.

Déclaration des contraintes initiales et finales : spécifiez maintenant les contrain-
tes initiales et finales du probleme de planification avec deux listes de tuples
(proposition, valeur).

Exercice 10.2.2 Implémentation des axiomes de cadre, états et planificateur

Les modules axiomecadre.py, etat.py et planification.py contiennent les classes
et les algorithmes qui permettent de modéliser un probléme de planification
comme un PSC, avant de résoudre celui-ci pour trouver un plan valide. Le mo-
dule PSC utilisé sera celui qui a été développé au cours de la série d’exercices
8.2 (p. 200).

La classe ContrainteAxiomeCadre

Cette classe, définie dans axiomecadre.py, est une sous-classe de la classe
Contrainte et implémente une contrainte d’axiome de cadre pour un état .S;
donné et une proposition prop donnée :

Si prop(S;) = False et prop(S;+1) = True, alors, pour au moins un
opérateur op qui a prop comme postcondition, on a op(S;) = True.

Cette contrainte est une contrainte n-aire qui porte sur plus de deux variables.
Ces variables sont les attributs de la classe :

e var_pre est la variable prop(S;),
 var_post est la variable prop(S;41),

o vars_ops est la liste des variables correspondant aux opérateurs qui ont
prop comme postcondition.

La méthode est_valide : il vous faut tout d’abord implémenter la méthode
est_valide. Notez que contrairement au cas des contraintes unaires et binaires,
cette méthode peut étre appelée alors que toutes les variables de la contrainte
ne sont pas encore instanciées (c’est-a-dire méme quand leur valeur est None).
Traitez donc ce cas en premier et faites une hypothese de présomption de va-
lidité : la contrainte est présumée valide tant qu’on n’a pas pu prouver qu’elle
était violée (c’est-a-dire tant qu’au moins une de ses variables n’est pas encore
instanciée).
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La méthode propage : implémentez ensuite la méthode propage. Cette méthode
est appelée juste apres qu’'une valeur ait été choisie pour une variable de la
contrainte. Elle tente alors de propager les conséquences de ce choix aux va-
riables non encore instanciées de la contrainte pour réduire leurs labels. En
effet, il est possible que I'assignation d’une valeur & une variable rende incom-
patibles certaines valeurs des labels des variables non encore instanciées. Cette
méthode doit retourner True si et seulement si aucune inconsistance n’a été
découverte.

Imaginons par exemple que la seule variable déja instanciée est prop(S;) =
False, et qu’on désire propager aux variables d’opérateurs les conséquences de
lassignation prop(S;,1) = False. Il est clair que la contrainte sera alors toujours
vérifiée et que la méthode retournera True sans avoir pu découvrir aucune valeur
incompatible dans les labels des variables d’opérateurs. Inversement, si I'on
choisit Passignation prop(S;+1) = True, on peut en déduire qu’au moins un
des labels des variables d’opérateurs doit contenir la valeur True. Si ce n’est
pas le cas, cette assignation est inconsistante. Si seulement une des variables
d’opérateurs possede un label qui contient True, alors on peut d’ores et déja
conclure que seule la valeur True est possible pour cette variable et on peut
retirer la valeur False de son label.

Comme vous le soupgonnez peut-étre déja sur la base de cet exemple, 1'im-
plémentation d’un algorithme de propagation performant pour une contrainte
n-aire s’avere étre un probleme difficile dans le cas général, surtout si I'on veut
accélérer la recherche en découvrant le plus tot possible les inconsistances et
en réduisant au maximum les labels des variables non encore instanciées.

Dans cet exercice, nous vous proposons d’en implémenter une version simple,
peu performante mais suffisante pour le probleme de planification qui nous
occupe. Cette implémentation paresseuse consiste a ne tenter de réduire les
labels et de détecter les inconsistances que lorsqu’il ne reste plus qu’une seule
variable de la contrainte qui ne soit pas encore instanciée. Lorsque c’est le
cas, vérifiez simplement les valeurs du label de cette variable une par une et
retirez du label celles qui ne respectent pas la contrainte. Retournez True si et
seulement si le label résultant n’est pas vide. Dans le cas contraire, lorsqu’au
moins deux variables de la contraintes ne sont pas encore instanciées, utilisez
la méme hypothese de présomption de validité que pour la méthode est_valide
et retournez systématiquement True sans vous mettre en peine de réduire les
labels de ces variables.

Remarque sur la méthode reviser : notez que I'implémentation de la fonction
reviser qui vous est fournie retourne simplement False, c’est-a-dire qu’elle
n’essaie pas de réduire les domaines des variables en appliquant la consistance
des arcs. La raison en est que la consistance des arcs n’est pas définie pour des
contraintes n-aires. Pour ces contraintes, on parle plutot de consistance des arcs
généralisée (Generalized Arc Consistency, ou GAC) : pour chaque valeur du do-
maine de chaque variable, il doit exister une combinaison de valeurs pour toutes
les autres variables qui satisfasse la contrainte. Mais dans I’exemple simple qui
nous occupe, il n’est pas nécessaire d’implémenter la GAC, de méme qu’il n’est
pas nécessaire d'implémenter une méthode de propagation tres performante.
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La classe Etat
Un état contient six attributs :

e vars_initiales : une liste de variables correspondant aux propositions au
début de I’état (égales & celles qui existent & la fin de 1’état précédent).
Cette « liste » est en fait un dictionnaire qui associe les propositions a
leurs variables respectives.

e vars_finales : un dictionnaire de variables associées aux propositions a la
fin de I'état (égales a celles du début de I’état suivant).

e vars_operateurs : un dictionnaire de variables associées aux opérateurs
pour cet état.

e no_etat : le numéro de I’état, inclus dans l'intervalle [0, Planification.nb_
etats).

e etat_prec : I'objet Etat qui précede I’état courant dans le plan.

Le constructeur vous est donné, et appelle les méthodes construire_vars_
operateurs €t construire_vars_propositions, qui remplissent les attributs
vars_operateurs, et vars_initiales et vars_finales respectivement.

La premiere de ces méthodes est déja implémentée. Vous devez coder la
seconde en vous inspirant de la premiere. Nommez les variables a ’aide du
numéro de I'état au début duquel se trouve la variable. N'oubliez pas que les
variables finales d’un état doivent étre les mémes que les variables initiales de
I’état suivant.

La classe Planification

La classe Planification est la classe centrale du planificateur. Elle transforme
un probleme de planification en un PSC afin de découvrir un plan valide. Cette
classe possede les attributs suivants :

e propositions, operateurs, mutex_propositions, mutex_operateurs, depart
et but, qui correspondent aux listes construites dans exemple_
missionnaires.py,

e nb_etats : le nombre d’états dans le plan, c’est-a-dire la longueur de celui-
ci,

o etats : la liste des états du probleme,
e psc : I'instance de PSC qui représente le probleme modélisé en PSC.

Les méthodes de la classe : vous allez maintenant implémenter les méthodes de
la classe Planification. Ce sont les suivantes :

e contruire_etats : construit tous les états de la planification et les ajoute a
la liste self.etats. Faites en sorte que la liste soit triée par ordre croissant
du numéro de ’état.

e constuire_contraintes_propositions : construit les contraintes binaires
d’exclusion mutuelle entre propositions.
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construire_contraintes_operateurs : construit les contraintes binaires
d’exclusion mutuelle entre opérateurs.
construire_contraintes_initiales et construire_contraintes_finales

ajoutent les contraintes initiales sur les propositions de I’état 0 et les
contraintes finales sur les propositions de 1’état final.

constuire_contraintes_conditions : ajoute les contraintes de pré- et post-
conditions entre propositions et opérateurs.

construire_contraintes_axiomes_cadre : ajoute les contraintes d’axiomes
de cadre en utilisant la classe ContrainteAxiomeCadre.

Test du programme

Finalement, testez votre programme en lancant exemple_missionaires.py.

Solutions a la page 385



TROISIEME PARTIE

Apprentissage automatique






Un aspect important de l'intelligence est la capacité d’apprendre de nouvelles
connaissances sur la base d’exemples issus de I'observation du monde. Parmi les
trois modes d’inférence, 'apprentissage correspond a l'induction, c’est-a-dire a
des raisonnement qui tirent des conclusions universelles a partir de prémisses
particulieres. Par exemple, si nous considérons les propositions :

a) oiseau(Tweety)

b) vole(Tweety)

¢) (V x) oiseau(x) = vole(x)
I'induction construit la reégle ¢) & partir de a) et b).

On ne peut pas garantir que le résultat d’une telle inférence soit correct sauf
si on ajoute I’hypothese d’un monde clos :

Tous les exemples ont été considérés, et il n’existe donc aucun contre-
exemple aux regles pour autant qu’elles soient consistantes avec ces
exemples.

En général, on ne peut garantir cette propriété qu’avec une certaine pro-
babilité. Méme si cette probabilité augmente avec le nombre d’exemples, on
n’atteint jamais une certitude absolue. Par contre, il existe une théorie de ’ap-
prentissage qui permet de donner des bornes a la probabilité qu'un résultat soit
correct en fonction du nombre d’exemples utilisés dans 'apprentissage (expli-
quée a la section 12.2).

On peut distinguer deux types d’apprentissage :

o L'apprentissage supervisé : on fournit au systeme des exemples avec la
bonne classification ou la bonne prédiction ; le systeme doit alors repro-
duire cette classification ou prédiction aussi bien que possible. L’appren-
tissage supervisé s’applique par exemple a ’apprentissage de regles pour
reconnaitre les mauvais payeurs ou les conditions de dysfonctionnement
d’un appareil.

o L’apprentissage non supervisé : le systeme doit lui-méme proposer une
classification raisonnable, par exemple pour optimiser ses propres criteres
de performance du systeme. L’apprentissage non-supervisé peut ainsi ser-
vir & grouper les clients d’un site web en classes typiques pour optimiser
leur structure d’acces ou a classifier de segments de génome pour distin-
guer les portions importantes de celles qui ne le sont pas.

L’apprentissage supervisé vise a obtenir un modele capable de prédire une
variable-« cible » pour de nouveaux exemples, en utilisant un ensemble d’exemples
pour lesquels la valeur de cette variable est déja connue. On distingue entre
la classification, dans laquelle la variable-cible est catégorique, et la régres-
sion, dans laquelle la variable-cible prend des valeurs numériques. Les modeles
peuvent en outre se diviser en deux catégories :

o des modeles simples, appelées également paramétriques, qui couvrent tous
les exemples avec une seule expression, dont il s’agit de trouver les para-
metres,

o des modeles structurés, appelés également non paramétriques, dans les-
quels on décompose ’ensemble des exemples en sous-ensembles afin d’ap-
prendre une classification simple pour chacun d’entre eux.
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L’apprentissage non-supervisé ne s’appuie pas sur des variables-cibles préa-
lablement données, mais vise & obtenir un modele qui regroupe des exemples
similaires. Il est particulierement utile quand on dispose d’une grande quantité
de données non-interprétées. Le but de I'apprentissage est alors de découvrir la
structure inhérente a ces données, en général sous la forme d’un regroupement
en classes similaires (des clusters).

Comme 'apprentissage s’observe avant tout chez les étres vivants, plusieurs
techniques s’inspirent de la biologie. Nous considérons ainsi notamment les ré-
seaux de neurones artificiels, qui imitent la structure du cerveau sous une forme
idéalisé, et les algorithmes génétiques. Tous les deux permettent un apprentis-
sage supervisé.

Littérature

Parmi les nombreux ouvrages qui traitent de 'apprentissage automatique, citons-
en deux : le livre de Bishop [54] et celui de Murphy [55]. [56] presente le domaine
sous un angle de la statistique.

Certains livres sont accompagnés de logiciels qui permettent d’expérimenter
avec les techniques : par exemple, [57] présente la boite & outils open-source
WEKA, une collection qui contient pratiquement tous les algorithmes d’appren-
tissage. Elle constitue un outil extraordinaire pour construire des applications
de l'apprentissage automatique.

Pour une perspective de I'influence que les techniques d’apprentissage pro-
mettent sur 'informatique, le livre de Domingos [58] est intéressant.



CHAPITRE 11

Induction de modeles
paramétriques a partir
d’exemples

Dans ce chapitre, nous allons nous occuper de 'apprentissage d’un seul modele
simple qui doit couvrir du mieux possible tous les exemples fournis a ’entrée.
Un modele simple est une forme type qui contient certains parametres, comme
par exemple :

e un polynéme d’un certain degré k,

e une expression logique,

o un hyperplan dans un espace de traits qui sépare des exemples positifs et
négatifs.

Apprendre un modele simple revient en général a déterminer les paramétres
de la classification qui donnent la meilleure approximation des exemples consi-
dérés. Par exemple, il existe des techniques pour trouver les parametres d’un
polynéme qui réduisent au minimum l’erreur d’approximation d’un ensemble
de points de mesure, ou 'on exprime l’erreur par la somme des carrés des
différences. On parle donc aussi d’un apprentissage paramétrique.

Considérons d’abord I’apprentissage d’expressions logiques tels que des regles.
Le but de 'apprentissage est donc de construire une regle du type :

condition logique = classification

ol la condition logique décrit un concept ou 'ensemble des situations pour
lesquelles classification est vraie. L’apprentissage construit donc une clas-
sification qui permet de classer une situation en instance ou non-instance du
concept.

Par exemple, supposons que vous fassiez un voyage dans un pays tropical, ou
la nourriture a tendance a contenir des piments tres piquants. Vous souhaitez
alors utiliser vos expériences des types de piments :

grand,allongé,rouge,piquant
grand,rond,vert,—piquant
petit,allongé, jaune,—piquant
petit,allongé,rouge,piquant
petit,rond,rouge,piquant
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pour trouver une regle :
allongé,rouge = piquant
qui vous permettra a I’avenir d’éviter les piments trop piquants.

A Tentrée du systeme d’apprentissage, nous avons donc un ensemble d’exemples
classés :

o un ensemble P d’instances d’un concept et

« un ensemble N de non-instances du concept.

L’apprentissage a alors pour but de trouver une description logique qui
couvre toutes les instances de P et aucune instance de N.

11.1 Représentation

Les exemples peuvent étre représentés par des traits, qui sont soit des attributs
a valeurs binaires (vrai/faux) :

piquant,rouge,...
des attributs a valeurs multiples :

couleur = {rouge,bleu,vert},longueur € [1..4.5]
ou des relations :

(couleur ?x rouge),...
g

Le choix des traits a utiliser dans la représentation est essentiel pour la per-
formance du systeme d’apprentissage. Le probléme est complexe car il n’y a pas
de critere qui permette a coup stur de savoir si un attribut est important pour la
classification ou pas. Souvent, I'utilité des attributs peut se révéler uniquement
dans leur combinaison. Considérons par exemple trois attributs z,y, z € [—1..1]
qui sont dérivés du contenu de textes e-mail. Le message est considéré comme
un spam si z -y -z > 0. Par contre, aucun des attributs x,y et z ni aucune
paire d’entre eux n’a de corrélation avec le spam. Dans ce cas, il est impossible
de déterminer I'importance de ces attributs sans les considérer tous ensemble.
En général, pour étre str de considérer tous les attributs importants, il faudra
examiner toutes les combinaisons et leur pertinence pour la tache d’apprentis-
sage, ce qui revient a une recherche combinatoire cotuteuse. Malheureusement,
on ne connait pas a ce jour de meilleure méthode, et le probleme de la sélection
d’attributs reste un important probleme ouvert !

La représentation la plus générale d’une description apprise serait une ex-
pression logique quantifiée :

homme(?x) A (37y)pere(?x, 7y)

Mais ce genre de descriptions n’est en général pas applicable a cause de la
complexité de 'apprentissage. Il est plus réaliste d’utiliser une expression sans
quantificateurs :

homme(?x) A pére(?x, Charles)
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Or toute expression sans quantificateurs possede une forme normale, sous la
forme d’une disjonction de conjonctions :

(pL AP2 Ap3)V (p4d Ap2) V (pl Ap5 A Pp6)

En interprétant chaque conjonction comme un sous-concept, la forme nor-
male se réduit a un ensemble de sous-concepts. Si on divise au préalable les
exemples en sous-ensembles correspondant aux différents sous-concepts, on peut
alors apprendre les conjonctions qui représentent ces sous-concepts en appli-
quant & chaque sous-ensemble un algorithme adapté a l'apprentissage d’une
conjonction d’attributs. C’est I'idée de base des classifications structurées que
nous verrons plus en détail dans le chapitre 12.

11.2 Biais

L’apprentissage peut en principe étre effectué par un algorithme de recherche
qui parcourt ’espace de toutes les descriptions possibles. En fait, pour le pro-
bleme général on ne connait aucun autre algorithme. Considérons cependant
la complexité d’une telle recherche. L’apprentissage d’un concept divise les
exemples en deux sous-classes : membres et non-membres. Si les instances sont
décrites par k attributs binaires différents, il y a alors 2* instances différentes

possibles :
oiee
1

al a2 a3 ak

et donc 22" manieres différentes d’attribuer lensemble des instances & une

classes ou a lautre :
oo

i1 i2 i3 i(27K)
Par exemple, avec 10 attributs, il y aura plus de 103%° possibilités. Une recherche
exhaustive a travers toutes ces possibilités est clairement exclue.
Pour combler ces lacunes, on introduit des biais dans la recherche sous-
jacente a 'apprentissage. Ces biais peuvent se situer a trois niveaux :

o Dans la représentation méme : on limite par exemple les descriptions consi-
dérées a des conjonctions d’attributs et de négation d’attributs. Nous dé-
finissons alors pour chaque attribut trois valeurs possibles (positif, négatif
ou absent). Cela donne lieu & un espace de descriptions qui comprend 3*
possibilités.

o Dans la recherche : on utilise des heuristiques qui privilégient des descrip-
tions simples qui sont souvent plus adéquates.

o Par le domaine d’application : souvent, certaines combinaisons d’attri-
buts peuvent étre exclues a priori en s’appuyant sur la connaissance du
domaine dans lequel se déroule ’apprentissage. Par exemple, pour recon-
naitre un mauvais payeur le prénom ne devrait jouer aucun role.
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11.3 Apprentissage par recherche

Un processus de recherche se définit par deux éléments : les noeuds et la fonc-
tion de successeur. Dans le cas de 'apprentissage de descriptions conjonctives,
les nceuds correspondront a des descriptions candidates, et la fonction de suc-
cesseur soit a une spécialisation, soit a une généralisation de cette description.
Chaque neeud sera filtré par les ensembles P (instances du concept) et A (non-
instances du concept) ; toute description qui :

e n’est pas satisfaite par un exemple de P ou
o est satisfaite par un exemple de A/

n’est pas valable et ne sera plus développée par la suite.

La spécialisation et la généralisation sont deux regles opposées qui donnent
lieu a des algorithmes tres différents. La spécialisation part d’un concept général
(au début, une description vide) qui s’applique & n’importe quel exemple. On
ajoute ensuite des attributs qui en limitent l'applicabilité jusqu’a ce que la
description ait atteint un maximum de spécificité.

La généralisation fonctionne dans le sens inverse : on part d’un exemple
précis et on retire des attributs jusqu’a ce que la description soit suffisam-
ment générale pour couvrir I’ensemble des exemples positifs. Dans les deux cas,
chaque description aura plusieurs successeurs et l'algorithme effectuera donc
une recherche.

11.3.1 Apprentissage par spécialisation

Pour ’apprentissage par spécialisation, on commence avec une description vide
et on y ajoute des attributs jusqu’a ce que la description ne couvre plus aucun
exemple négatif. On applique donc un algorithme de recherche, par exemple en
profondeur d’abord ou en largeur d’abord, dans lequel :

e les noeuds sont des descriptions candidates (conjonctions d’attributs),

o les successeurs d’un nceud sont obtenus en rajoutant un attribut de plus
a la description,

e le noeud initial est une description vide,

o un nceud final est une description qui couvre tous les exemples de P, et
aucun exemple de N.

Notons qu’on peut éliminer les nceuds qui ne couvrent pas tous les exemples
de P, car il ne serait pas possible de les couvrir en spécialisant encore la des-
cription. Aucun de leurs successeurs ne pourrait donc étre un nceud final.

En pratique, 'apprentissage par spécialisation n’est pas toujours tres effi-
cace, car il implique une recherche peu ciblée parmi de nombreuses descriptions
possibles. Il est surtout utilisé quand il s’agit d’apprendre des descriptions par-
tielles pour construire des classifications structurées.

11.3.2 Apprentissage par généralisation

Dans I'apprentissage par généralisation, il convient de construire comme des-
cription de départ une description Dy, constituée par I'intersection de tous les
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attributs communs & tous les exemples positifs. Aucun sur-ensemble de Dy ne
pourra s’appliquer a tous les exemples positifs, et donc toute description valable
D doit étre un sous-ensemble : D C Dy.

Ainsi, on peut savoir tout de suite que si Dy couvre également un exemple
négatif, il n’existe pas de description conjonctive valable!

Par exemple, pour les piments :

grand,allongé,rouge,piquant
grand,rond,vert,—piquant
petit,allongé, jaune,—piquant
petit,allongé,rouge,piquant
petit,rond,rouge,piquant

les attributs partagés par tous les exemples positifs sont les suivants :
Dy = allongé, rouge

On peut ensuite simplifier Dy pour trouver une description qui ne couvre
aucun exemple négatif. Cela peut se faire ici aussi par un algorithme de re-
cherche. Dans ce cas cependant, les successeurs sont obtenus par généralisation
en écartant des attributs. Une description correspond a un nceud final si elle
ne couvre plus aucun exemple négatif.

Au lieu de commencer par la conjonction des attributs communs, on peut
aussi débuter la recherche par des exemples spécifiques, appelés des noyauzx.
Cela permet de trouver un résultat partiel méme quand il n’existe pas de des-
cription conjonctive qui couvre tous les exemples. Une telle recherche est sur-
tout intéressante si, outre la regle de généralisation simple qui consiste a Oter
des attributs un a un, on applique également d’autres regles de généralisation,
telles que :

o changer des constantes en variables :
Nom=Frangois = Nom=x

o monter dans un arbre de généralisation de concepts :
type = Macintosh = type = pomme = type = fruit

En admettant de nouveaux prédicats, on peut aussi :

o ajouter une disjonction d’intervalles :
[1..5] = [1..5] v [7..10]

¢ fermer un intervalle :
[1..4] v [5..10] = [1..10]

o trouver les extrémes d’un ordre partiel :
ON(A,B),ON(B,C) = LOWEST(C), HIGHEST(A)

L’avantage de ces regles, dont la plupart sont utilisables soit en généralisa-
tion soit en spécialisation, est qu’on peut parfois trouver des descriptions pour
des jeux d’exemples qui n’admettraient autrement aucune possibilité de des-
cription conjonctive. Par exemple, supposons une nouvelle instance positive :

petit,allongé,vert,piquant
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qui fait qu’il n’y a aucune description conjonctive qui réponde a nos criteres,
c’est-a-dire qui recouvre tous les exemples positifs. En utilisant une hiérarchie
ou les couleurs rouge,vert sont une instance de foncé, on peut généraliser a

allongé,foncé

qui est ainsi une description valable du concept des piments piquants.

Néanmoins, il y aura des cas ou il sera impossible de trouver une seule
description conjonctive. Par exemple, si nous avons les exemples positifs P :

grand,allongé,rouge,piquant
petit,allongé,rouge,piquant
petit,rond,vert,piquant

et les exemples négatifs A :

grand,rond,vert,—piquant
petit,allongé, jaune,—-piquant
petit,rond,rouge,—piquant

il n’y a aucune conjonction d’attributs qui réponde aux criteres d’une descrip-
tion valable, et il faut avoir utiliser des classifications structurées que nous
allons voir au chapitre 12.

11.4 TFrontieres de décision

On a souvent affaire a des attributs qui ne sont pas des propositions logiques,
mais qui prennent des valeurs dans des domaines continus. Par exemple, pour
détecter les dysfonctionnements d’une machine, on part de mesures continues
telles que des pressions, températures, etc. L’apprentissage doit alors apprendre
des frontieres de décision dans un espace a plusieurs dimensions continues, et on
ne peut pas les apprendre par une recherche entre différentes descriptions. Par
contre, il existe des algorithmes spécialisés pour apprendre de telles frontieres.

On se limite en général a des frontieres linéaires. La figure 11.1 en montre
un exemple. Ces frontieres se décrivent sous le format général suivant :

Wy X1+ Wy Ty 4+ Wy Ty > S
ou, en remplacant le seuil s par —wq :
OW, X)=wo 14wy -1 +ws-Ta+ .. Wy, - Ty >0

Un exemple décrit par le vecteur X est alors classé selon qu’il se trouve d’un
cOté ou de l'autre de la frontiere :

_ [ W) sié(WX) =0
Cx) = { 0(—) autrement

S’il existe une telle frontiere qui sépare les deux classes, on dit qu’elles sont
linéairement séperables.
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(-0.75,0.75) +//// Pre

(0350.25) (0903

e 10X
/

/ —0.3.—
// y (-0.3,-0.45)

Fig. 11.1 Frontiéres de décision dans un espace continu.

Le probleme est alors comment apprendre une telle frontiere a partir d’ex-
emples. Un premier algorithme est donné par la regle du perceptron, qui s’inspire
d’un ancien modele du fonctionnement d’un neuron humain. L’algorithme du
perceptron, décrit a la figure 11.2, est tres simple : on commence avec une regle
quelconque et on s’en sert pour classifier les exemples. Chaque fois que la regle
se trompe, on applique une correction qui consiste simplement a ajouter ou a
déduire ’exemple du vecteur des poids. Le seuil wg reste égal a 1. Le parametre
o indique la vitesse de convergence désirée ; il peut conduire a des problemes de
stabilité s’il est trop élevé. On peut prouver que si les classes sont linéairement
séparables, et il est en fait possible de trouver une (seule) frontiere de décision
linéaire qui sépare les exemples des différentes classes, la régle du perceptron en
trouvera une. Cependant, si une telle frontiere n’existe pas, la régle ne converge
vers aucun résultat.

: Function PERCEPTRON(P, N)
. W+ (1,0,0,...,0)
: for X; e PUN do
if C(W, X;) # class(X;) then
if class(X;) = + then
W~ W+o-X;
else
W W-0-X;

[ B A S O A v

return W

©

Fig. 11.2 Regle du perceptron pour l’apprentissage d’une seule frontiére de décision
linéaire.
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La trace suivante donne un exemple du fonctionnement de la regle du per-

ceptron, avec 0 =1 :

Exemple Winit Class. Wrnodit
(0.4,0.8) + (0,0) - (0.4,0.8)
(0.35,0.25) - (0.4,0.8) - (0.4,0.8)
(0.9,0.3) - (0.4,0.8) - (0.4,0.8)

(-0.75,0.75) + (0.4,0.8) - (-0.35,1.55)
(-1,-0.35) + (-0.35,1.55) - (-1.35,1.2)
(-0.3,-0.45) - (-1.35,1.2) - (-1.35,1.2)
(-1,-0.35) + (-1.35,1.2) - (-2.35,0.85)

(-2.35,0.85) - (-1.95,1.65)

(0.4,0.8) +

On peut observer qu’un seul exemple doit passer plusieurs fois, et que la conver-
gence peut étre tres lente.
Si la regle du perceptron est utile parce qu’elle a la garantie de converger vers
une frontiere adéquate lorsqu’une telle frontiere existe, elle ne débouche pas
forcément sur la meilleure solution. Parmi les différentes frontiéres possibles,
on préférerait en effet trouver celle qui mazimise la séparation des exemples,
comme le montre la figure 11.3. On souhaite donc trouver des poids W tels
que :

 pour toutes les instances positives, la distance ¢ a la frontiere est > o,

e pour toutes les instances négatives, la distance § < —dg et

e 0p est maximal.

X2

7/
(-0.75,0.75) /"\// pd
+ Ve / /

7 s

// ¢

AL
!

(035,0.25)
7

] _ »(\>d.elta0
(0.4,0.8
s

7
7

(0.9,0.3)

e 4 7
7
— Ve e X
1 7/ Z 1 1

Fig. 11.3 La meilleure frontiére de décision est celle qui mazimise la distance entre
les exemples.
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Ce choix assure que la frontiere sépare au mieux les exemples, et s’avere le
meilleur critére en pratique. Elle est donc la solution d’'un probleme d’optimi-
sation quadratique :

o objectif : maximiser 5o = minimiser |W|?
e contraintes :

pour tout exemple positif, X - W > §q
pour tout exemple négatif, X - W < —dg

Un tel probleme peut étre résolu en temps polynomial par rapport au
nombre d’exemples, donc de fagon assez efficace. On peut observer que dans
la solution optimale, certains exemples se trouveront & une distance &g de la
surface de décision. On appelle les vecteurs entre la surface de décision et ces
exemples les plus proches des vecteurs de support (support vectors), et la mé-
thode s’appelle donc support vector machine (SVM).

Lorsque les exemples ne sont pas séparables par une frontiere linéaire, on
peut soit :

o Admettre que certains exemples ne sont pas correctement classifiés. On
peut alors déduire la somme des erreurs de dg lors de la maximisation de
la surface et ainsi optimiser une combinaison des criteres.

o Introduire une transformation non linéaire qui les rend séparables (Kernel
function).

Le recours & une fonction de noyau (kernel function) est souvent considéré
comme un élément principal des SVM. Il consiste a transformer les coordonnées
en appliquant une fonction non linéaire ¢(x) et ainsi & projeter les exemples
dans un autre espace d’exemples. Dans 'exemple de la figure 11.4, on peut
utiliser les fonctions :

95/1 = ¢(r1) = %
1’/2 = ¢($2):35§

pour rendre séparables les exemples positifs et négatifs qui ne I’étaient pas selon
les coordonnées initiales.

X2 Xé‘

7

Fig. 11.4 L’application d’une fonction de noyau rend séparables les exemples positifs
et négatifs.
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Notons que 'optimisation qui est sous-jacente a la construction d’'une SVM
n’utilise que les produits scalaires de vecteurs :

min ¢(W) - $(W)
sous les contraintes définies par les exemples X; :
¢(Xs) - ¢(W)>1 ou < —1 selon la classe de 'exemple.

On n’a donc pas vraiment besoin de construire ¢(W) et ¢(X;); il suffit
de construire leur produit scalaire. On remplace donc ¢(X) - ¢(Y) par une
fonction de noyau K(X,Y), et on peut alors considérer des fonctions noyaux
particulierement simples, comme par exemple :

K(X,)Y) = (X -Y)?= ¢= (a1, /(2)x120,23)
K(X,)Y) T3yt + 2112202 + 73Y5 = H(X) - B(Y)

Les contraintes de la SVM s’expriment alors sur la fonction noyau :
min K (W, W), sous contraintes K(X;, W) > 1/ < —1
et on n’a jamais besoin de construire ¢.

Ceci est particulierement intéressant pour certaines fonctions noyaux, par exemple
la Radial basis function :

K(X,Y) = e |X-YI/20°

pour laquelle ¢ serait d’'une dimensionnalité infinie. Il est donc heureux que
I’on puisse se passer de la calculer explicitement. En général, on choisit comme
fonctions noyaux des expressions qui mesurent la similarité entre exemples. La
radial basis function en montre un bon exemple, car elle prend des valeurs
d’autant plus élevées que les vecteurs arguments sont plus semblables.

Les support vector machines sont beaucoup utilisées en pratique, surtout pour
la reconnaissance de formes, mais également dans de nombreuses applications
de classification.

11.5 Régression

La régression est une technique statistique qui a pour but de prédire la valeur
d’une variable aléatoire y sur la base d’'un ensemble de variables z1, .., xx. On
parle aussi d’une explication de la valeur de y en termes des ;. La forme la
plus connue est la régression linéaire, dans laquelle le modele prend la forme :

Yy =wo+ wirry + ... +wgrp + L

ou L est une erreur résiduelle. L’apprentissage d’un tel modele doit donc trouver
les parametres w; qui minimisent £ sur I'ensemble des exemples.

Le plus souvent, on suppose que l'erreur résiduelle pour '’exemple i est
distribuée selon une distribution Gaussienne :

pli) = p(L()) = e~ wEO"
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Selon le principe de la maximisation de vraisemblance, on choisit les parametres
du modeles de fagon & maximiser la probabilité II;p(i) d’observer l’ensemble
des exemples. Comme il est plus simple de maximiser une somme, et comme la
fonction du logarithme est monotone, il est préférable de maximiser ). log p(%)
a la place. Dans le cas d’une distribution Gaussienne, cela revient a minimiser :

Z log p(i) o Z E(i)2

ce qui est aussi connu comme "approximation des moindres carrés.

Les w; qui correspondent a une telle approximation aux moindres carrés
peuvent étre obtenus en résolvant un systéme de k équations linéaires. La fi-
gure 11.5 montre un exemple de régression linéaire.

Y

Ly

Lz

>

Fig. 11.5 FExemple d’une régression linéaire pour trouver un modéle qui couvre quatre
exemples. L’erreur résiduelle est la somme des L1, .., La.

La régression peut aussi s’étendre facilement & une approximation par poly-
noémes, car un polynoéme est une fonction linéaire dans un espace qui inclut les
termes polynomiaux z; - ; comme dimensions supplémentaires. Par exemple,
pour 2 traits x1 et xo, une régression polynomiale de degré 2 :

2 2
Y = Wo + W1T1 + WaLs + W11 L] + Wi12T1T2 + waxs + L

est linéaire dans un espace de 5 au lieu de 2 dimensions. On peut ainsi étendre
la régression linéaire a des courbes plus complexes, et obtenir un modele avec
moins d’erreur. Pour le méme exemple que montre la figure 11.5, on peut
par exemple obtenir une erreur beaucoup plus faible, comme le montre la fi-
gure 11.6.

Cependant, un tel procédé a tendance a produire des modeles peu vraisem-
blables, qui obtiennent de bons résultats sur les exemples utilisés pour ’ap-
prentissage, mais pas sur de nouveaux exemples (comme les cercles dans la
figure 11.6). Il y a en fait un compromis & faire entre :

o le biais du modele : la capacité du modele a représenter la réalité,

o la variance de I'apprentissage : erreur du modele induite par une courbe
déterminée trop fortement par les erreurs d’observation.
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7

>

Fig. 11.6 Ezemple d’une régression polynomiale pour trouver un modéle qui couvre
quatre exemples. L’erreur résiduelle est beaucoup plus faible, mais d’autres exemples
tels que les cercles produisent une erreur nettement plus grande.

Un modele trop complexe va introduire trop de variance, un phénomene qu’on
appelle le surapprentissage (overfitting). Pour éviter ce phénomene, on introduit
une régularisation, qui va pénaliser des modeles peu vraisemblables.

La régularisation peut étre vue comme un remplacement du critére de maxi-
misation de la vraisemblance P(X|W) par un critére de maximisation de la
probabilité du modele lui-méme :

_ p(W)
p(W|X) = P(X|W)m

Comme p(X) n’est pas influencé par W, il suffit de choisir W pour minimiser :
—Inp(X|W) = Inp(WV)

ce qui revient a modifier le critere des maximisation de la vraisemblance par
lajout du terme lnp(W), qu'on appelle régularisateur. Son influence dépend
de la probabilité qu’on attribue au modele W :

o si tous les W sont equiprobables, il n’a pas d’influence;

e si on s’attend a ce que les w; soient distribués selon Gaussienne avec
moyenne 0, alors le régularisateur sera Y., —wji ; ceci est le cas le plus
courant ;

« si la distribution des w; est Laplacienne (exponentielle), alors le régulari-
sateur sera ), —wy ; ce cas s’appelle LASSO;

o d’autres distributions supportent d’autres régularisateurs.

Le régularisateur permet de combattre le surapprentissage de maniere simple
et efficace. Des instruments analogues sont également utilisés dans d’autres
techniques d’apprentissage, en imposant une penalité pour des modeles com-
plexes. Leur justification est souvent moins claire que dans le cas de la régres-
sion.
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11.6 Classification par régression logistique

Pour appliquer la régression a la classification, il faut fixer y a deux valeurs
discretes, par exemple 0 ou 1. Ceci ne correspond évidement plus a I’hypothese
d’une erreur Gaussienne, et il convient donc d’introduire une transformation
de y :

o D’abord, on rend y continu en utilisant la probabilité p(y = 1/X). Comme
on peut le voir dans I'exemple de la figure 11.7, la régression linéaire donne
toujours une fonction qui dépasse I'intervalle [0..1], et qui peut donc pas
toujours étre interprétée comme probabilité.

o Ensuite, on limite le domaine & lintervalle [0..1] par la transformation
logistique :
87U0+701I1+~~-+u}k-’1’3k

p(y = 1|X) = 1+ eWotwiTi+...+wrTk
Cette opération limite le domaine & U'intervalle [0..1] par une transforma-
tion sigmoide, comme montré dans la figure 11.7, ou le modele serait :

wo+wiT
eWotwi

= 1 r=—
ply =1lz) = 5 T

La classification par régression logistique apprend donc les parametres w; du
modeéle qui minimisent les erreurs sur ’ensemble des exemples fournis. Plus pré-
cisément, nous souhaitons trouver les parametres w qui sont les plus probables
étant donnés les exemples D, c’est-a-dire maximiser :

_ p(W)
p(W|D) = p(DIW)m

par la régle de Bayes. Comme p(D) n’est pas influencé par w;, il suffit de maximi-
ser le produit des deux autres termes. Il s’avere d’ailleurs la aussi plus pratique
de maximiser leur logarithme :

lnp(D|W) + lnp(W)

régression linéaire

Y 0000 909

régression logistique

y=0

5 /10 15 20 25 30 35 40 X:poids

Fig. 11.7 Régression de la classe y (1=chien, 0 = chat) en fonction du trait z
(poids).
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Considérons d’abord une probabilité uniforme pour tous les choix de w. Le
terme p(wp,wn,...,wi) = c est constant et peut étre ignoré. On doit donc
maximiser :

p(DIW) = HP(?/ =yl W, X)

ol ¢ varie sur tous les exemples. On observe que :

eWX 1
ply = 01X) 1+eWX  14eWX
et Wox
e’ 1
Ply=+11X) = I—wx = 75—
et donc

1
Py =vilX) = T

La maximisation de la probabilité revient donc a choisir w pour maximiser :

> —In(1+ (20X (11.1)

i

et existe des routines d’optimisation convexe qui peuvent fournir la solution
optimale de fagon stable et efficace.

La régression logistique est utilisée avec énormément de succes pour ap-
prendre des modeles probabilistes de données. On s’intéresse non seulement au
classificateur, mais également a la caractérisation de I'influence des variables
x; qui est mise en évidence par les coefficients de régression correspondents w;.

11.7 Classification probabiliste

La classification naive Bayesienne, (naive Bayes) est une autre forme de classi-
fication, similaire & la régression linéaire, et qui fait appel aux techniques d’infé-
rence probabiliste introduites au chapitre 6. Elle s’applique lorsqu’une structure
causale avec une seule cause Y, qui ne peut étre observée directement, produit
k conséquences X; observables, de sorte que ces conséquences sont toutes condi-
tionnellement indépendantes étant donné Y. C’est-a-dire lorsque :

et que les conséquences peuvent étre observées. La figure 11.8 en montre un
exemple.

Dans ce cas, on sait que P(Y") est proportionnel au produit des probabilités
conditionnelles. Nous reprenons ici ’équation 6.2 du chapitre 6 :

k

p(Y X1, X0) = ap(V) [] p(XAIY)
=1
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) ()

Fig. 11.8 Réseau causal d’une cause Y avec k conséquences X;.

De manieére similaire & la régression, elle permet la prédiction de P(Y|X), mais
I’apprentissage peut alors se faire par une simple estimation des probabilités
conditionnelles p(X;|Y), par exemple sur la base des fréquences des effets X
quand la cause Y est également présente.

Par exemple, pour prédire si un e-mail est du spam ou pas (Y'), on peut consi-
dérer I’ensemble des noms et adjectifs (X;) du message comme des effets causés
par le type du message. Sur la base d’un échantillon de messages déja triés
en spam et non-spam, il suffit d’estimer les probabilités p(X;|Y"), par exemple
en calculant la fréquence de chaque mot dans les deux classes. On peut alors
estimer la probabilité qu'un message précis soit du spam en appliquant I’équa-
tion 6.2 ci-dessus. Pour trier les messages en fonction de cette probabilité, il
suffit de les comparer entre elles et on n’a donc pas besoin de connaitre p(Y) qui
est identique pour chaque message. Cette technique est tres largement utilisée
dans des filters a spam.

Littérature

La méthode d’induction par spécialisation ou généralisation est décrite en dé-
tail dans [59]. Le perceptron a été introduit pour la premiere fois par Ro-
senblatt [60], puis développé par de nombreux autres auteurs. Un survol des
techniques se trouve dans [61]. Les support vector machines ont été introduites
par Vapnik [62].

Le livre de Bishop [54] donne des détails sur la régression logistique.

Application : Filtre & spam pour e-mails

L’envoi de messages non sollicités (ce que 'on appelle spam) constitue un
grave probléme pour tout utilisateur d’e-mail d’aujourd’hui. SpamAssassin
est un logiciel gratuit qui est trés largement utilisé pour le filtrage du
spam. Le logiciel est aussi intégré comme noyau dans de nombreux outils
commerciaux de gestion d’e-mail.
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Comme la plupart des outils anti-spam, SpamAssassin permet d’apprendre
la classification spam/non-spam sur la base d’exemples de messages clas-
sifiés par 1'utilisateur. Certains logiciels se contentent d’apprendre des cor-
rélations statistiques (comme la méthode Bayésienne naive). Dans sa troi-
sieme version, SpamAssassin obtient une meilleure performance en utili-
sant l'algorithme du perceptron pour apprendre une pondération de dif-
férents critéres. D’autres études ont montré que la performance pourrait
étre encore améliorée en utilisant une support vector machine ; cependant
son implémentation est trop complexe pour un outil qui se veut simple.

(
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Source : http://spamassassin.apache.org/)

11.8 Exercices

Exercice 11.1 Apprentissage avec attributs discrets

Supposons que l'on veuille apprendre a reconnaitre les champignons vénéneux

sur

la base des exemples suivants :

Ordre | chapeau | couleur du chapeau | pied | lamelles | décision
1 convexe brun épais | étroites | poison
2 convexe brun fuselé | larges ok
3 en cloche pourpre épais larges poison
4 convexe pourpre épais | étroites | poison
5 en cloche gris fuselé | larges ok
6 en cloche gris épais | étroites | poison
7 convexe gris fuselé | larges ok
8 en cloche pourpre fuselé | larges ok

1

2

3

Répondez aux questions suivantes :
) Donnez une ou plusieurs descriptions conjonctives pour les champignons
non-vénéneux. Laquelle de ces descriptions est la meilleure ?

) Pourquoi est-ce qu’on ne prend pas simplement l'intersection de tous les
attributs que partagent les champignons non-vénéneux ?

) Supposons que l'on rajoute ’exemple suivant :

Ordre | chapeau | couleur du chapeau | pied | lamelle | décision

9 convexe gris fuselé | étroit poison

Pouvez-vous trouver une description conjonctive de la classe des champi-
gnons non vénéneux ? Quel critere permet de répondre a cette question
facilement ?
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4) Supposons qu’on prenne note également de la couleur de la partie supé-
rieure des champignons, en distinguant les valeurs rouge, brun, blanc et
noir.

Peut-on utiliser ce nouvel attribut pour apprendre une classification conjonc-
tive 7 Quel technique permettrait de le faire (pensez aux similarités entre
couleurs).

Solution a la page 392

Exercice 11.2 Apprentissage avec attributs numériques

La séparation d’exemples décrits par des attributs numériques exige qu’il soit
possible de séparer les exemples positifs et négatifs par une frontiere linéaire.
Méme dans les cas ou une frontiere linéaire n’existe pas, il est souvent possible
d’en trouver une en rajoutant des coordonnées redondantes.

Quelle transformation de coordonnées rendrait ces distributions linéaire-
ment séparables ?

1) Les exemples positifs occupent une bande de largeur 2 autour de 'axe Y
(coordonnées X entre entre —1 et 1).

+ | t |-
- + )
+
- + |-
4=
- + 4 - -
- _
- +
- + _
+ -
S P
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3) Intérieur du cercle de rayon 1 centré en (2,2).

-1 1 2

-1

Solution d la page 392



CHAPITRE 12

Apprentissage de classifications
structurées

Souvent, il est impossible de trouver une seule classification simple qui donne
une performance suffisante sur I’ensemble des exemples. Dans le cas ou nous
avons les exemples positifs P :

grand,allongé,rouge,piquant

petit,allongé,rouge,piquant

petit,rond,vert,piquant

et les exemples négatifs A :

grand,rond,vert,—piquant

petit,allongé, jaune,—piquant

petit,rond,rouge,—piquant
il n’existe aucune classification simple sous forme de conjonction d’attributs
qui donne le résultat correct sur tous les exemples.

On peut alors appliquer le principe de diviser pour régner : en séparant
les exemples dans des sous-ensembles, on peut apprendre des classifications
simples plus fiables pour chacun de ces sous-ensembles. Lors de la classification
de nouveaux exemples, on appliquera le méme critere de séparation pour décider
quelle classification simple est a appliquer.

Nous considérons trois méthodes pour I'apprentissage d’une description struc-
turée. La premiere consiste a modifier les méthodes d’apprentissage de classi-
fications logiques simples afin d’apprendre des classifications disjonctives. La
deuxieme consiste & construire des arbres de décision, et la troisieme est le
boosting qui apprend une combinaison de classifications.

12.1 Apprentissage de classifications disjonctives

Il y a deux manieéres d’adapter I'algorithme d’apprentissage de classifications
logiques pour apprendre des concept disjonctifs :

1) Admettre des hypotheses h qui ne soient pas satisfaites par tous les exemples
positifs. La description sera alors une disjonction qui, dans son ensemble,
couvrira I’ensemble des exemples positifs.

2) Admettre des hypothéses h qui ne soient pas satisfaites par certains exemples
négatifs. La description sera alors une liste de décision, une hiérarchie
d’exceptions.
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Apprentissage de disjonctions

La figure 12.1 montre un algorithme simple qui implémente la premiere solu-
tion. Il construit successivement des descriptions D qui couvrent une partie X
des exemples positifs, tout en excluant I’ensemble des exemples négatifs, et les
accumule dans TERM S. Chaque fois qu’'une description a été trouvée, on peut
éliminer les exemples X qui sont couverts par cette description de I’ensemble
PSET des exemples. La description finale sera alors une disjonction entre les
descriptions de TERM S. Pour apprendre les descriptions individuelles, on uti-
lise un apprentissage par spécialisation comme décrit dans le chapitre précé-
dent. Cependant, comme on veut apprendre des descriptions qui ne couvrent
pas tous les exemples, on ne peut pas partir de ’ensemble des attributs de tous
les exemples positifs, mais il faut commencer avec une description vide.

: Function DISJONCT(P, N)

: PSET « P

: TERMS « {}

: repeat

D < Description qui couvre X C PSET mais aucun n € N/
PSET « PSET - X

TERMS < TERMS U D

: until PSET = {}

: return TERMS

Fig. 12.1 Algorithme pour l’apprentissage de descriptions disjonctives.

Sur 'exemple donné ci-dessus, l’algorithme trouve la description { ( allongé
A rouge ) V ( petit A rond A vert ) } par les deux étapes suivantes :

1) X = {{ grand,allongé,rouge }, { petit,allongé,rouge } }
TERMS = { allongé A rouge }
PSET = { petit,rond,vert }

2) X ={{ petit,rond,vert } }
TERMS = { (allongé A rouge) V (petit A rond A vert) }
PSET = {}

Le résultat de cet algorithme simple dépend tres fortement du choix des sous-
ensembles X couverts par chaque partie de la description. Un algorithme plus
performant pourrait étre obtenu par une recherche entre différents choix pour
ces sous-ensembles.

Apprentissage avec exceptions

Une autre maniere de traiter les concepts disjonctifs consiste a utiliser une
description qui admette des exceptions. Ainsi, dans l’exemple cité plus haut,
lexemple { petit,rond,vert,piquant } devient une exception a la reégle!
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En général, on peut représenter des exceptions par une liste de décisions. 1l

s’agit d’une liste de regles :
D = (conj; = ci, conjs = Ca, ...., Cp)
ol conj; est une conjonction d’attributs et c; une classification.

La regle qui donne la classification c; a la priorité sur c;y4 : les regles
sont parcourues dans 'ordre et la premiere regle qui est déclenchée donne la
classification. Le dernier élément est une classification par défaut. Par I'ordre
des regles, la regle c; agit comme exception a la regle c; 14 : tous les cas auxquels
s’applique c; ne seront plus considérés par c; 1.

La figure 12.2 montre un algorithme pour 'apprentissage automatique d’une
telle liste de décision. Il part d’un ensemble £ qui contient tous les exemples
(positifs et négatifs). Il construit itérativement des descriptions partielles des
exemples de la classe C' qui ne sont pas encore correctement classifiés par la
DLIST courante. Il se peut que ce processus entre dans un boucle infinie, qui
construit toujours la méme description. Dans ce cas, on peut sélectionner un
attribut A qui divise 'ensemble MISSED des exemples mal classés en deux
parties M1 et M2, et trouver des descriptions pour chacune d’entre elles qui
seront alors rajoutées en téte de DLIST. Si ces descriptions sont a nouveau
identiques a d’autres qui se trouvent déja dans DLIST, on applique le méme
processus récursivement jusqu’a ce que les descriptions soient différentes.

1: Function DL(E)

2: DLIST < {<classe par défaut>}

3: repeat

4 MISSED <« p € PUN pas correctement classifié par DLIST
5. C « classe la plus commune de MISSED

6 D < conjonction qui couvre le plus d’instances de CEMISSED
7 if D # first(DLIST) then

8 DLIST ¢ cons(D = C,DLIST)

9

: else
10: sélectionner un attribut A qui divise MISSED en M1 et M2
11: récursion sur M1 et M2

12: until MISSED = {}
13: return DLIST

Fig. 12.2 Algorithme pour ’apprentissage d’une liste de décision.

Dans le cas d’un seul concept, on considére qu’il y a deux classes : membres
et non-membres. Dans 'exemple des piments déja cité plus haut, ces deux
classes seront piquant et = piquant :

a) grand,allongé,rouge,piquant
b) petit,allongé,rouge,piquant
¢) petit,rond,vert,piquant
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d) grand,rond,vert,-piquant
e) petit,allongé, jaune, piquant
f) petit,rond,rouge, "piquant

L’algorithme choisira piquant comme classification par défaut et donc comme
valeur initiale de DLIST ; ce choix est arbitraire car piquant et —piquant ap-
paraissent avec la méme fréquence. L’algorithme procédera alors selon les étapes
suivantes :

1) MISSED = (d,e,f)

D = rond

DLIST = (rond = — piquant,piquant)
2) MISSED = (c,e)

D = petit A rond A vert

DLIST =

(petit A rond A vert = piquant, rond = — piquant,piquant)
3) MISSED = (e)

D = petit A jaune A allongé

DLIST =

(petit A jaune A allongé = — piquant, ...)

12.2 Apprentissage d’arbres de décision : ’algorithme ID3

Le deuxieme type de description structurée qui peut étre appris automati-
quement est celui des arbres de décision ou, plus précisément, des arbres de
classification. Un arbre de classification, par exemple celui de la figure 12.3,
est une structure qui permet de déterminer de fagon univoque la classe (ou le
concept) d’'un exemple x.

Les différents éléments d’'un arbre de classification ont la signification sui-
vante :

o chaque neeud non terminal correspond & un test P(x) qui évalue le prédicat
P sur 'exemple x,

o chaque feuille désigne une classe.

Exemple x a classifier

Cy Co C3 Cy

Fig. 12.3 Ezemple d’un arbre de classification.
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L’arbre peut étre assimilé a une entrevue avec un expert. Pour classifier un
exemple, il faut parcourir ’arbre de la racine aux feuilles, chaque nceud inter-
médiaire correspondant a une question de ’expert. Chaque réponse du client
détermine alors la question suivante de ’expert, soit le chemin a emprunter
dans Parbre : si la réponse est affirmative, il faut prendre le chemin de gauche,
sinon celui de droite. Une conversation respectant ’arbre de classification de la
figure 12.3 pourrait étre :

Expert : Votre exemple est-il grand ?

Vous : Oui.

Expert : Votre exemple est-il vert ?

Vous : Non.

Expert : Alors la classe de votre exemple est co.

Plus formellement, I’arbre doit étre parcouru selon ’algorithme suivant (x
est 'exemple a classifier et N est la racine de larbre) :

1: Function CLASSIFY(x,N)
2: while N n’est pas terminal do
3:  if Py(z) then

4: N := noeud gauche
5. else
6: N := noeud droite

7: return la classe de N.

ou Py est le prédicat associé au noeud intermédiaire N.

Il est a remarquer que la description d’une classe ¢ se déduit directement de
I’arbre de classification : c’est la conjonction de tous les tests que ’on a effectués
lors du parcours de I’arbre, de la racine a la feuille identifiant la classe c¢. Chaque
terme de la description est soit le prédicat P associé au noeud intermédiaire si
I’on est parti sur la gauche apres le noeud, soit le complément du prédicat —P
si I’on est allé sur la droite. Ainsi, la description de ¢y de la figure 12.3 est :

D¢, : grand(x) A —vert(x)

L’algorithme ID3 (fig. 12.4) est une méthode pour construire un arbre de
classification optimal, c¢’est-a-dire 'arbre qui permet de classer un exemple en
effectuant, en moyenne, un minimum de tests. Pour ce faire, ID3 construit
I’arbre de maniére incrémentale en créant a chaque étape une feuille de I'arbre
partiel courant :

e Si le parcours de la racine a cette feuille n’est possible que pour les
exemples d’une seule classe ¢;, elle constitue une feuille de I’arbre final et
elle est libellée avec la classe ¢;. Les instances pour lesquelles le parcours
aboutit & ce nceud seront classifiées ainsi et ne seront bien évidemment
plus prises en compte pour la suite de la construction de ’arbre.

e Sinon, la feuille correspond & un nceud intermédiaire de ’arbre final. Un
prédicat P; doit alors étre choisi pour définir le test associé au noceud.
P; doit étre sélectionné de maniere a laisser aussi peu d’incertitude que
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1: Function ID3(E)
2: if E = {} then
3:  return NIL

4: else

5:  if V e € E classe(e)=c then

6 return c

7. else

8 P + attribut €A qui reduit le plus I’entropie de la classe
9 L + {e|le € E et P(e) = succes}

10: R « {e|e € E et P(e) = échec }

11: N < noeud vide, N.P «+ P

12: N.left < ID3(L), N.right < ID3(R)

13: return N

Fig. 12.4 L’algorithme IDS3.

possible sur la classe de ’exemple apres le test. Nous verrons par la suite
qu’un critére d’entropie permet d’effectuer ce choix. Le prédicat P; choisi
ne pourra bien évidemment plus étre utilisé par ses noeuds descendants.

Dans les exemples que nous avons pris ci-dessus, les prédicats sont booléens
et ne donnent comme réponse que vrai ou faux, créant ainsi un arbre de décision
binaire. On peut généraliser les questions posées dans les noeuds en prenant
en compte toutes les valeurs possibles d'un attribut. Par exemple, pour une
question sur 'attribut hauteur 7, on aurait comme valeurs possibles grand,
moyen ou petit. L’algorithme ID3 doit alors construire plusieurs branches a la
place des seules branches L et R. Ainsi, un prédicat booléen ne représente que
le cas spécial d'un attribut aux deux valeurs, vrai ou faux.

Choisir de fagon intelligente les attributs qui seront testés a chaque nceud de
I’arbre constitue un élément clé de ID3. Pour obtenir un arbre compact, il faut
qu’on choisisse des attributs pertinents, qui réduisent rapidement l'incertitude
restant quant a la classe.

La théorie de I'information fournit une mesure précise de l'incertitude ap-
pelée entropie. Si I'on applique ce concept a notre probleme de classification,
I’entropie est une mesure de 'incertitude liée a la classification d’'un exemple.
Cette mesure est importante car elle nous permet de quantifier le degré d’opti-
malité d’un arbre de décision.

Mathématiquement, si un exemple appartient a 'une des n classes cq, ...,
¢n et que la probabilité qu'un exemple fasse partie de la classe ¢; est p(c;),
Pentropie de la classification H(C) est :

n

H(C) == ple;) - logs ples)

i=1
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L’entropie d’une classification apres avoir utilisé un test A (qui normalement
correspond & la présence d’un certain attribut) nous permet de décider quel test
il faut effectuer : le test retenu doit étre celui qui entraine la plus petite entropie,
soit le moins d’incertitude.

Soit H(C|.A) Ventropie de la classification aprés avoir utilisé A. Afin de
calculer la valeur de H(C|A), il faut tout d’abord déterminer Pentropie de
chaque sous-arbre généré par le test A. Dans le cas général, un test A peut
fournir m résultats différents aq, ..., a,,. L’entropie du sous-arbre ou A vaut
a; est définie par :

H(Claj) = = plcila;) - logy plcilay)
i=1

p(cila;) étant la probabilité qu'un exemple appartienne a la classe ¢; si le test
A fournit a;.

Pour calculer I'entropie de la classification H(C|.A) apres le test A, il suffit
de prendre la moyenne pondérée des entropies de tous les sous-arbres du test :

H(C|A) = ZP a;) - H(Clay)

N

L’algorithme ID3 choisit alors & chaque itération le test A qui fournit la
valeur la moins élevée de H(C|.A). En pratique, ce critére revient le plus souvent
a diviser les instances restantes de maniere aussi égale que possible.

Pour illustrer le fonctionnement de ID3, considérons les exemples suivants :

a) grand,allongé,rouge,piquant
b) petit,allongé,rouge,piquant
c) petit,rond,vert,piquant
d) grand,rond,vert,piquant
e) petit,allongé, jaune, -piquant
f) petit,rond,rouge, "piquant

La figure 12.5 montre comment les différents attributs conduisent a répartir
les exemples. La qualité de ces répartitions peut étre chiffrée par ’entropie
moyenne des ensembles restants. Par exemple, pour 'attribut rouge, nous avons
les probabilités :
Pr(vrai) = 0.5 (a,b,f), Pr(faux) = 0.5 (c,d,e)

et les probabilités conditionnelles que le piment soit piquant ou non :
Pr(piquant|rouge) = 0.66, Pr(— piquant|rouge) = 0.33
Pr(piquant|-rouge) = 0.33, Pr(— piquant|—-rouge) = 0.66

L’incertitude sur la classification qui reste dans le cas ou rouge est vrai est

alors :

H(C|rouge = vrai) = -— Z Pr(vlrouge = vrai) - log,(Pr(v|rouge = vrai))
ve{piq.,~pig.}
= —0.66 log,(0.66) — 0.33 log,(0.33)
0.92 bit
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grand/petit: allongé/rond: rouge:
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- QN -) - ON
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Fig. 12.5 Répartition des exemples selon les différents attributs.

@ = poivron non piquant

et le méme résultat sera obtenu pour H(C|rouge = faux). L’entropie moyenne
se calcule comme la moyenne pondérée sur les deux valeurs de rouge, c’est-a-
dire :

H(C|rouge) = H(C|rouge =wvrai)- Pr(rouge = vrai) +
H(C|rouge = fauz) - Pr(rouge = faux)
0.5-0.92+0.5-0.92 = 0.92 bit

L’arbre est alors construit itérativement en appliquant les mémes calculs a
chaque sous-ensemble. Dans cet exemple, nous avons trois étapes :

1) (a,b,c,d,e,f)
grand, petit ou vert : incertitude moyenne restante : 1 bit
rond,allongé ou rouge : incertitude moyenne restante : 0.92 bit
jaune : incertitude moyenne restante 0.81 bit
= choisir jaune

2) (a,b,c,d,f)
grand ou petit : incertitude moyenne restante 0.955
rond ou allongé : incertitude moyenne restante 0.554
rouge ou vert : incertitude moyenne restante 0.955
= choisir rond

3) (c,d,f)
grand ou petit : incertitude moyenne restante 0.66 bit
rouge ou vert : incertitude moyenne restante 0.66 bit
= choisir vert

4) (c,d)

grand ou petit : incertitude moyenne restante 0 bit = petit
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Fig. 12.6 L’arbre de classification résultant de l’application de ID3 sur [’exemple.

La figure 12.6 montre 'arbre qui résulte de cette exécution de ID3.

Une petite lacune de lalgorithme tel qu’il a été présenté est que le cri-
tere d’entropie privilégie des prédicats a beaucoup de valeurs. Cela n’a pas
d’importance dans I’exemple que nous avons vu, car tous les attributs ont des
valeurs binaires (vrai/faux). Mais ce sera important pour des attributs a va-
leurs multiples ou méme numériques. Il est alors possible de compenser cet
effet en divisant la réduction d’incertitude par le nombre de branches générées,
c’est-a-dire en choisissant le prédicat A qui maximise :

H(C)— H(C|A)
|valeurs(A)]

Si l’entropie est le critere le plus habituellement utilisé pour la construction
d’un arbre de décision, il en existe d’autres, qui peuvent se révéler utiles. Dans
le cas des classifications numériques, on peut notamment minimiser la variance
de la classe pour les différents valeurs d’un attribut :

n

1/n Z(Ci -0)?

i=1
Une autre possibilité, pour n’importe quel type de classification, consiste a
minimiser la fraction d’exemples n’appartenant pas a la classe la plus fréquente :

1/n|{c;i|c; # classe la plus fréquente}|

ID3 est un algorithme qui existe depuis longtemps et qui a prouvé sa grande
efficacité dans de nombreuses applications pratiques. Cependant, il présente
certaines lacunes importantes :
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o Certaines décisions peuvent étre dues aux hasards de la sélection des
exemples, quand ces derniers sont peu nombreux.

o La classification de nouveaux exemples n’est pas toujours adéquate. En
fait, il arrive souvent que la performance d’un arbre de classification soit
pire que la stratégie qui consiste a assigner a tout exemple la classe la plus
fréquente.

e Les arbres de classification qui en résultent sont souvent difficiles a inter-
préter.

Les deux premiers problemes sont étroitement liés et sont tous les deux
une conséquence du phénomene du surapprentissage (overfitting). La derniere
lacune peut souvent étre résolue en remplagant ’arbre par un jeu de regles
équivalent. Apres quelques considérations sur la qualité d’un apprentissage en
général, nous montrons deux solutions qui sont souvent utilisées aujourd’hui.

Qualité de ’apprentissage

Le critere statistique utilisé par ID3 peut conduire & choisir des prédicats qui
n’ont aucune signification. Par exemple, si la lettre attachée a chaque exemple
serait aussi considérée comme un attribut, un prédicat tres puissant serait :

“o

indice de ’exemple < “c” = piquant
indice de ’exemple > “d” = —piquant

Comme il est clair, dans cet exemple, qu’il n’existe aucune relation entre
I’indice et la classification, on peut s’attendre a ce que I'arbre donne de tres
mauvais résultats pour de nouveaux exemples. Dans ce cas, il est évident que
la numérotation n’est pas significative. Mais comment faire dans le cas ou 1’'on
n’a vraiment aucune information quant a la relation entre attributs et classifi-
cation ?

Il existe en fait une théorie qui permet de chiffrer la qualité qu’on peut
espérer d’un résultat d’apprentissage en fonction de sa complexité et du nombre
d’exemples fournis en entrée : la théorie PAC. Ces trois lettres sont I’abréviation
de :

o Probablement :
la classification est approximativement correcte avec probabilité §.

o Approximativement :
la probabilité d’erreur de classification est inférieure a e.

o Correct.

L’idée principale de la théorie est que la situation ou un prédicat sans im-
portance a une forte corrélation avec le résultat peut se produire uniquement
dans le cas ou le nombre d’exemples n’est pas assez élevé. Dans 'exemple de
la numérotation, il serait rare dans un grand ensemble d’exemples que tous les
exemples positifs viennent avant tous les exemples négatifs.

Le résultat principal de la théorie PAC suppose que l'algorithme rend un
résultat correct sur tous les exemples fournis pour ’apprentissage. On fournit
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alors N exemples, dont distribution exemples correspond a la réalité, et on
cherche & apprendre un concept parmi |P| possibilités. La théorie donne alors
une relation entre N, |P|, § et € qui est valable pour n’importe quel algorithme
d’apprentissage.

Cette relation est obtenue comme suit. Supposons que h € P ait un taux
d’erreur qui dépasse €. Cela veut dire que la probabilité que h soit néanmoins
correct sur les N exemples est

Pr(correct(h,N)) < (1 —e)¥

En supposant que 'algorithme d’apprentissage n’a pas de biais parmi les
descriptions possibles, la condition PAC est satisfaite si et seulement si la pro-
babilité qu’il existe un h qui soit correct sur N exemples, mais a un taux d’erreur
> ¢ sur de nouveaux exemples est < ¢ :

§>|P|-(1—e¥

Cette relation permet alors d’obtenir une limite sur N nécessaire pour ga-
rantir une borne dg sur ¢ :

log(do/|P)
= log(ffe)

Donc, par exemple, si le nombre de descriptions possibles |P| croit de
facon simplement exponentielle avec le nombre d’attributs, alors le nombre
d’exemples requis croit de fagon linéaire avec la complexité de la description.
Cela est le cas notamment des descriptions conjonctives que nous avons vues
précédemment. Ce sont donc des descriptions qui peuvent étre apprises de ma-
niere efficace. Par contre, pour les arbres de classification, la croissance du
nombre d’arbres possibles par rapport au nombre d’attributs est exponentielle
par rapport au carré du nombre d’exemples, et donc le nombre d’exemples
requis augment bien plus vite.

Par exemple, pour un domaine avec dix attributs, il y a au plus :

|P|=11-10%-9*-8%.... 2% =2 6579 10%

arbres différents possiblesm. Donc, si on veut en plus atteindre une erreur de
classification € < 0.001 avec une probabilité § < 0.01, la formule nous donne,
pour le nombre d’exemples requis :

N o /1P)

T In(l—¢)

ce qui est déja un nombre trés important pour un domaine aussi simple. Si,

par contre, nous nous contentons d’une erreur de classification € < 0.05, il ne

faudra plus que 1680 exemples.

En général, comme 22" est plus grand que chacun des 10 autres facteurs de

la somme, c’est ce dernier élément qui est déterminant pour la complexité (qui
est donc doublement exponentielle par rapport au nombre d’attributs).

= 86131

1

( )Cela se calcule comme suit : on a le choix entre 10 attributs ou rien du tout pour le
premier noeud, 9 attributs ou rien = 10 possibilités pour chacun des deux noeuds du 2¢
niveau, 9 possibilités pour chacun des 4 nceuds du 3° niveau, et ainsi de suite.
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.,
Elaguer un arbre de décision

Dans le contexte des arbres de classification, le probleme de 'overfitting ap-
parait surtout pres des feuilles de ’arbre, quand la taille des sous-ensembles
utilisés pour construire les dernieres parties de ’arbre devient trop peu impor-
tante pour assurer la qualité de la classification. Dans ce cas, on peut souvent
obtenir de meilleurs résultats en assignant a tous les exemples la classe la plus
probable de I’ensemble. Dans le cas idéal, on arréterait la procédure ID3 au mo-
ment ou le nombre d’exemples restants ne suffit plus pour garantir une bonne
qualité de classification. Cependant, il est difficile de faire cela car on ne connait
pas encore les performances de I’arbre qui en résulteraient. On procede donc
plutét par élagage d’un arbre une fois qu’il est completement construit.

L’idée de I'élagage est de comparer la performance de I'arbre élagué avec
celle de I'arbre original sur de nouveaux exemples. Cependant, comment peut-
on effectuer cette comparaison sans disposer de nouveaux exemples ? On peut
utiliser 'estimation suivante, qui provient de la statistique. Supposons que éla-
guer un neeud n implique E erreurs sur les N exemples du jeu original qui sont
attribués a ce noeud. Supposons de plus que les erreurs pour chaque exemple
sont statistiquement indépendantes :

Pr(E erreurs) = Pr(erreur)? - (1 — Pr(erreur))N=5)

La statistique permet alors de donner des bornes sur Pr(erreur) qui assurent
un certain degré de confiance. Par exemple, si un arbre de classification fait
zéro erreur sur six exemples, la probabilité d’erreur avec un degré de confiance
> 25% est 0.206. On peut ensuite comparer cela avec le nombre d’erreurs
qui apparaissent si on remplace ’arbre qui classifie ces six exemples par une
classification uniforme. Si en fait la classification uniforme est meilleure, on
coupe 'arbre a partir de ce noeud.

Arbre = Regles

Les décisions de l’arbre sont toujours liées a une séquence de tests. Comme
chaque noeud de 'arbre dépend alors de tous les nocuds qui le précedent, on
ne peut pas 'interpréter en soi. Il serait plus pratique de disposer de regles qui
soient valables indépendamment du contexte, par exemple :

jaune = — piquant

— jaune A — rond = piquant

- jaune A rond A — vert = — piquant

Un premier jeu de régles peut étre généré facilement en observant que chaque
parcours de l'arbre généere une regle indépendante. Pour ’arbre de la figure 12.6,
nous avons les parcours et donc les regles suivantes :

1. jaune = — piquant

2. — jaune A — rond = piquant

3. 7 jaune A rond A - vert = — piquant

4. - jaune A rond A vert A petit = piquant
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5. 7 jaune A rond A vert A — petit =
— piquant

Cependant, ces regles sont beaucoup trop compliquées, car certaines des
conditions ne sont pas nécessaires. On peut alors les simplifier comme suit :

3. rond A - vert = - piquant

4’. rond A vert A petit = piquant

4”. vert A petit = piquant

5. rond A vert A — petit = — piquant
5”. vert A - petit = — piquant

Les simplifications peuvent étre trouvées automatiquement en traitant une
regle a la fois. On écarte itérativement un prédicat a la fois et on examine si la
regle reste valide sur ’ensemble des exemples. S’il n’y a que tres peu d’exemples
qui ne satisfont pas la reégle modifiée, on peut parfois tolérer ces exceptions avec
une justification similaire a celle du élagage de I'arbre.

L’apprentissage inductif dont sont capables certains types de réseaux de
neurones possede des caractéristiques semblables a ID3. Cependant, comme
I’ensemble des neurones est fixe, la profondeur de la classification n’est pas
adaptée automatiquement a la précision requise pour classer tous les exemples.
Ainsi, dans certains cas, la classification construite par de tels réseaux est surdé-
terminée et permet donc également de compléter des informations manquantes.
Par contre, si le nombre de neurones s’avere insuffisant, le réseau n’apprendra
jamais une classification suffisamment précise pour classer correctement tous
les exemples.

12.3 Bagging et boosting : combinaison de différentes
techniques d’apprentissage

La troisitme méthode pour 'apprentissage de classifications structurées consiste
a combiner différents classificateurs par les méthodes du bagging et boosting. 11
s’agit de techniques tres générales qui permettent d’apprendre de facon ciblée
des classifications simples qui peuvent s’intégrer dans une seule classification
structurée.

Le bagging et le boosting font appel a des méthodes dites méthodes d’ap-
prentissage faibles, qui apprennent des classifications simples, et dont on exige
que le taux d’erreur soit inférieur & 50%, étant donné une certaine distribu-
tion de la probabilité des exemples. De telles méthodes ne sont pas difficiles a
construire, puisque la plupart des méthodes d’apprentissage d’une description
simple remplissent ce critere.

La méthode d’apprentissage simple prend ainsi comme entrée
o n exemples (z;,¢;),i € 1.n; ¢; € {0, 1},

o une distribution de probabilités p;, > i, p; = 1,
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et doit fournir une classification simple h(z) avec une probabilité d’erreur in-
férieure a 50% :

e=> pilhlz,) —ci| <05
=1

Le bagging consiste a appliquer un certain nombre n de méthodes d’ap-
prentissage faibles, choisies de fagon aléatoire et & réaliser un vote parmi les
classificateurs : si au moins k sur n classificateurs donnent un résultat positif,
on conclut & une classification positive, autrement elle reste négative.

Dans le cas du boosting, on choisit les méthodes d’apprentissage faibles de
facon plus ciblée. L’algorithme ADABOOST construit k classifications simples
en choisissant chaque fois une distribution de probabilité des exemples qui mette
I’accent sur les exemples mal classés par les classifications déja apprises.

Initialement, tous les n exemples auront le méme poids w; = 1/n. L’algo-
rithme est une itération pour ¢t € 1..k des opérations suivantes :

foriel..ndo

i
h « résultat de la méthode faible, ou les fréquences des examples
sont données par les p;

erreur € <— Z?:l pilh(z;) — cil
Br — a=g

for i € 1..n do

La premiere étape consiste a calculer les probabilités des exemples en nor-
malisant la distribution des poids. On applique ensuite la méthode faible et on
mesure le taux d’erreur € sur les exemples avec leur distribution. Le facteur £
qui sera associé a cette classification est calculé en fonction de ce taux d’erreur.
Ensuite, les poids w; sont mis a jour de fagon a réduire le poids des exemples
qui sont correctement classés. Lors de l'itération suivante, I’algorithme se fo-
calisera donc sur les exemples pour lesquels la classification n’est pas encore
correcte.

Le classificateur final consiste en une classification structurée, qui combine
les différents classificateurs multipliés par leur poids :

.k
hota) = { 1 ST sB ) ~1/2) 20
0 sinon
On peut garantir que 'on obtient par cette méthode une classification de
plus en plus fiable.

Considérons le boosting sur le probleme de classification de piments suivant :
1) grand,allongé,rouge,piquant
2) petit,allongé,rouge,piquant
3) petit,rond,vert,piquant
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4) grand,rond, jaune, "piquant
5) petit,allongé, jaune, -piquant
6) grand,rond,rouge, piquant

Supposons que nous utilisons un seul attribut qui prédit piquant ou —piquant

avec une fiabilité d’au moins 50% et que nous apprenons ainsi 3 classifications
faibles :

1) hy :allongé = piquant
erreurs €1 61 w1 w2 ws waq Ws We
3,5 1/3 (1/2 | 1/12 1/12 1/6 1/12 1/6 1/12
= P=(1/8,1/8,1/4,1/8,1/4,1/8)
2) hy : jaune = - piquant
erreurs €9 /82 w1 wa ws Wy Ws We
6 1/8 | 1/7 | 1/84 1/84 1/42 1/84 1/42 1/12
= P=(1/14,1/14,1/7,1/14,1/7,1/2)
3) hs :petit = piquant
erreurs ‘ €3 ‘ B3 ‘ w1 Wo w3 Wy ws We
5 | 1/7 | 1/6 | 1/84 1/84 1/42 1/84 1/42 1/12

Le résultat est donc la classification :

hy(z)

log(2)h1(z) + log(7)ha(x) + log(6)hs(z) —
0.69%1 () + 1.95hs(z) + 1.8hs(z) — 2.22

log(2) + log(7) + log(6)
2

Considérons la performance de la classification structurée sur les exemples :

Exemple hi he hs hy

1) grand,allongé,rouge,piquant 1 1 0 042—-1
2) petit,allongé,rouge,piquant 1 1 1 222 =1

3) petit,rond,vert,piquant 0 1 1 153—>1

4) grand,rond, jaune, ~piquant 0O 0 0 -222-=0

5) petit,allongé, jaune,piquant 1 0 1 027 =1

6) grand,rond,rouge, "piquant 0 1 0 -027—0

Méme si dans ce cas, il reste toujours une erreur de classification, le boosting

est une méthode tres utilisée en pratique.

Une autre variante du boosting, appelée Martingale boosting, est apparue
récemment. Dans cette méthode, on considere les classificateurs faibles dans un
ordre et choisit le prochain classificateur en fonction du résultat des classifica-
tions précedentes, et plus précisement sur la base du nombre de classifications
positives obtenues par les classificateurs précédents. Lors de l'apprentissage
également, on apprend les classificateurs sur les sous-ensembles d’exemples qui
ont obtenu un certain nombre de classifications positives par les classificateurs
précédents. Cette méthode est dans un certain sens une combinaison entre un
arbre de classification et le boosting, mais la croissance du nombre de noeuds
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est plus faible que pour les arbres de décision. On peut prouver que si chaque
classificateur correspond au critére d’'une méthode d’apprentissage faible, le
résultat convergera rapidement vers une classification fiable des exemples.

La figure 12.7 montre schématiquement une séquence de classificateurs qui
pourrait étre apprise par Martingale boosting sur notre exemple. Un exemple
commence son parcours en haut & gauche. Chaque fois qu'un classificateur
rend un résultat positif, on continue vers la droite, autrement vers la gauche.
Les fleches en traits pointillés correspondent & un test nul qui échoue toujours
(comme la classification est déja parfaite).

-allongé

(rouge,vert)
—petit

|
i
0
Fig. 12.7 Séquence de classificateurs obtenue par Martingale boosting pour l’exemple

des piments.

Les exemples seront alors classés comme suit (notons que les exemples ne
suivent pas tous les mémes classificateurs) :

Exemple hi hs hs score
1) grand,allongé,rouge,piquant 1 1 - 2
2) petit,allongé,rouge,piquant 11 - 2
3) petit,rond,vert,piquant 0 1 1 2
4) grand,rond, jaune, "piquant 0o 0 - 0
5) petit,allongé,jaune,—piquant 1 0 0 1
6) grand,rond,rouge, "piquant 0 0o - 0

En classifiant tous les piments avec au moins deux votes positifs comme pi-
quants, on obtient donc un résultat correct.

Littérature

L’algorithme ID3 a été présenté dans [64]. La théorie PAC a été publiée
dans [65]. Le boosting a été introduit & origine dans [66], puis amélioré dans [67].
Le Martingale boosting présenté dans ce chapitre a été publié pour la premiere
fois dans [68].
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Application : Prédiction de pannes de réseaux électriques

Le réseau de distribution d’électricité de la ville de New York contient de
nombreux cables tres vieux, qui risquent de causer des courts-circuits lors
de périodes de fortes demande. Pour maintenir la stabilité du réseau, il est
important de remplacer ces cables avant qu’ils ne lachent sous la tension.
La compagnie Consolidated Edison, fournisseuse d’électricité pour la plus
grande partie de la ville, possede une procédure pour tester les cables
et détecter s’il faut les remplacer. Mais souvent c’est 'application méme
du test qui rend les cables défectueux. Cette procédure a donc un cott
important.

En 2005, la société a introduit un systeme d’apprentissage basé sur le
boosting qui détecte les cables les plus a risque sur la base de 150 attributs
comme leur age, leur type, leur charge habituelle et leur comportement
en fonction de la charge. Le systeme utilise une version de boosting qui
s’appelle Martingale boosting pour apprendre a établir un classement des
cables dont le risque de panne est le plus élevé. Tous les cables qui sont
effectivement tombés en panne se trouvaient dans la moitié que le systeme
avait classée comme la plus a risque. De plus, 75% des pannes concernaient
25% des cables classés comme les plus & risque.

En focalisant I’attention sur les cables les plus a risque, le systeme a fait
économiser des dizaines de millions de dollars de cotts a la société ConE-
dison. Une amélioration supplémentaire de la performance est attendue,
ainsi qu’une utilisation plus grande de cette technique.

(Source : Philip Gross et al. : Predicting Electricity Distribution Feeder
Failures Using Machine Learning Susceptibility Analysis, TAAI-06, pp.
1705-1711, 2006.)

12.4 Exercices

Exercice 12.1 Les arbres de décision (ID3)

Si vous voulez investir dans une compagnie informatique et que vous deman-
dez conseil a un expert financier, avant de vous répondre, celui-ci vous posera
toute une série de questions concernant l’entreprise. Il voudra connaitre le type
de concurrence a laquelle elle est confrontée, son age, son secteur d’activité,
etc. En admettant que vous possédiez de nombreux exemples de profils d’en-
treprise accompagnés des conclusions de I'expert, vous auriez en quelque sorte
a votre disposition une partie de son expertise. Il serait intéressant de pouvoir
la réutiliser sans avoir toujours recours a lui lorsque vous souhaitez analyser de
nouvelles entreprises.

Un arbre de décision est une structure qui est souvent utilisée pour repré-
senter des connaissances. Il permet justement de remplacer un expert humain
lorsque l'on désire connaitre la nature d’une certaine caractéristique d’un ob-
jet, caractéristique que nous appellerons la ‘classe’ de cet objet. Il s’agit d’'une
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structure en arbre qui modélise le cheminement intellectuel de ’expert et dans
laquelle :

e Chaque nceud intermédiaire correspond a une question portant sur une
propriété de I'objet. Nous appelons une telle propriété un « attribut ».

o Chaque aréte correspond a une valeur de cet attribut.

o Chaque nceud terminal correspond a une collection d’objets appartenant
a la meéme classe. Cette classe est donc associée au noceud. La méme classe
peut se manifester dans plusieurs nceuds terminaux.

En parcourant cet arbre, c¢’est-a-dire en répondant aux questions des noeuds
intermédiaires et en suivant les arétes correspondantes, on parvient a un nceud
terminal qui nous renseigne sur la classe de 1'objet.

Modules squelettes

Voici tout d’abord les squelettes de fichiers Python qui vous permettront de réa-
liser I’exercice. Les deux modules exemple_profits.py et exemple_maladies.py
vous permettront de tester votre programme :

Module moteur_id3/noeud_de_decision.py :

class NoeudDeDecision:
def _init_ (self, attribut, donnees, enfants=None):
self . attribut = attribut
self .donnees = donnees
self .enfants = enfants

def terminal( self ):
return self.enfants is None

def classe ( self ):
if self .terminal ():
return self.donnees [0][0]

def classifie (self, donnee):

rep ="'

if self .terminal ():
rep += "Alors {}'.format(self.classe (). upper())

else:
valeur = donnee(self. attribut |
enfant = self . enfants[valeur]
rep +='Si {} = {}, '.format(self.attribut, valeur.upper())
rep += enfant. classifie (donnee)

return rep

def repr_arbre( self , level =0):

rep ="'

if self .terminal ():
rep += '———"«level
rep += "Alors {}\n'.format(self.classe (). upper())
rep +="———"«level

rep += 'Décision basée sur les données:\n'
for donnee in self.donnees:
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rep +="'———"xlevel
rep += str(donnee) + "\n'

else:
for valeur, enfant in self .enfants.items():
rep += "'———"xlevel
rep += 'Si {} = {}: \n'.format(self.attribut, valeur.upper())
rep += enfant.repr_arbre(level+1)

return rep

def _repr_ (self ):
return str(self.repr_arbre( level =0))

Module moteur_id3/id3.py :

from math import log
from .noeud_de_decision import NoeudDeDecision

class ID3:
def construit_arbre ( self , donnees):
# Nous devons extraire les domaines de valeur des
# attributs, puisqu'ils sont nécessaires pour
# construire ' arbre.
attributs = {}
for donnee in donnees:
for attribut, valeur in donnee[1].items():
valeurs = attributs.get(attribut)
if valeurs is None:
valeurs = set()
attributs [attribut] = valeurs
valeurs . add(valeur)

arbre = self. construit_arbre_recur (donnees, attributs)
return arbre

def construit_arbre_recur (self , donnees, attributs ):
print('a compléter')

def partitionne( self , donnees, attribut, valeurs):
print('a compléter')

def p_aj(self, donnees, attribut, valeur):
print('a compléter')

def p_ci_aj(self, donnees, attribut, valeur, classe ):
print('a compléter')

def h_C_aj(self, donnees, attribut, valeur):
print('a compléter')

def h_C_A(self, donnees, attribut, valeurs):
print('a compléter')
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Module exemple_profits.py :

from moteur_id3.noeud_de_decision import NoeudDeDecision
from moteur_id3.id3 import ID3

# Les données d'apprentissage.
donnees = |
['down', {
'age': 'old',
'competition': 'no',
'type': 'software'
3,
['down', {
'age': 'midlife',
'competition': 'yes',
'type': 'software'

b
['up', {
'age': 'midlife',
'competition': 'no',

'"type': 'hardware'
}]7
['down', {
'age': 'old',
'competition': 'no',
'type': 'hardware'

}]7

['up', {
'age':
'competition': 'no',
'type': 'hardware'

}]7

['up', {
'age': 'new',
'competition': 'no',
'type': 'software'

b
["up', {
'age': 'midlife',
'competition': 'no',

'type': 'software'

b

['up', {
'age': 'new',
'competition': 'yes',
'type': 'software'

}]7

['down', {
'age': 'midlife',
'competition': 'yes',
'type': 'hardware'

}]7

['down', {
'age': 'old',
'competition': 'yes',
'type': 'hardware'

s
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id3 = ID3()

arbre = id3.construit_arbre (donnees)
print('Arbre de décision :')
print(arbre)

print()

print('Exemplification :")

print(arbre. classifie ({
'age': 'midlife ',
'competition': 'no',
'"type': 'hardware'}))

Module exemple_maladies.py :

from moteur_id3.noeud_de_decision import NoeudDeDecision
from moteur_id3.id3 import ID3

# Les données d'apprentissage.
donnees = |
['angine—érythémateuse', {
'fievre': 'élevée',
'amygdales': 'gonflées',
'ganglions': 'oui',
'géne—a—avaler': 'oui',
'mal—au—ventre': 'non',
'toux': 'non',
'rhume': 'non',
' respiration ': 'normale',
'joues': 'normales',
'yeux': 'mormaux'}
]7
['angine—pultacée', {
'fievre': 'élevée',
'amygdales': 'points—blancs',
'ganglions': 'oui',
'géne—a—avaler': 'oui',
'mal—au—ventre': 'non',
"toux': 'non',
'thume': 'non',
' respiration ': 'normale',
'joues': 'normales',
'yeux': 'normaux'}
]7
['angine—diphtérique', {
'fievre': 'légere',
'amygdales': 'enduit—blanc',
'ganglions': 'oui',
'géne—a—avaler': 'oui',
'mal—au—ventre': 'non',
'toux': 'non',
'rhume': 'non',
' respiration ': 'normale',
'joues': 'normales',
'yeux': 'normaux'}

b}
['appendicite', {
"fievre': 'légere',
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'amygdales': 'normales',
'ganglions': 'non',
'géne—a—avaler': 'non',
'mal—au—ventre': 'oui',
'toux': 'non',

'rhume': 'non',

' respiration ': 'normale',
'joues': 'normales',
'yeux': 'normaux'}

]

['bronchite', {

'fievre': 'légere',
'amygdales': 'normales',
'ganglions': 'oui',
'géne—a—avaler': 'non',
'mal—au—ventre': 'non',
'toux': 'oui',

'rhume': 'oui',

' respiration ': 'génée',
'joues': 'normales',

'yeux': 'normaux'}

['coqueluche', {

"fievre': 'légere',
'amygdales': 'normales',
'ganglions': 'non',
'géne—a—avaler': 'oui',
'mal—au—ventre': 'non',
'toux': 'oui',

'rhume': 'oui',

' respiration ': 'génée',
'joues': 'normales',

'yeux': 'normaux'}

],

['pneumonie’, {

'fievre': 'élevée’,
' d 1 L 1 1
amygdales': 'normales’,
'ganglions': 'non',

'géne—a—avaler': 'non',

'mal—au—ventre': 'non',
'toux': 'oui'
'rhume': 'non',
' respiration ': 'rapide',
'joues': 'rouges',
'yeux': 'mormaux'}
]7
[ 1

rougeole', {

'fievre': 'légere',
'amygdales': 'normales',
'ganglions': 'non',
'géne—a—avaler': 'oui',
'mal—au—ventre': 'non',
"toux': 'oui'

'rhume': 'oui',

' respiration ': 'normale',
'joues': 'normales',

'yeux': 'larmoyants'}

]7

['rougeole', {
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"fievre': 'légere',
'amygdales': 'normales',
'ganglions': 'non',
'géne—a—avaler': 'oui',
'mal—au—ventre': 'non',
"toux': 'oui'

'rhume': 'oui',

' respiration ': 'normale',

'joues': 'taches—rouges',
'yeux': 'larmoyants'}

['rubéole’, {

"fievre': 'légere',
! d 1 L 1 1
amygdales': 'normales’,
'ganglions': 'oui',

'géne—a—avaler': 'non',
'mal—au—ventre': 'non',
"toux': 'non',
'rhume': 'non',
' respiration ': 'normale',
'joues': 'taches—rouges',
'yeux': 'mormaux'}

]7

['rubéole', {

! 1

'fiéevre': 'non',
'amygdales': 'normales',
'ganglions': 'oui'
'géne—a—avaler': 'non',
'mal—au—ventre': 'non',
'toux': 'non',

'rhume': 'non',

' respiration ': 'normale',
'joues': 'taches—rouges',

'yeux': 'normaux'}

['rubéole’, {

'fievre': 'non',
'amygdales': 'normales',
'ganglions': 'oui',

'géne—a—avaler': 'non',
'mal—au—ventre': 'non',
'toux': 'non',

'rhume': 'non',
' respiration ': 'normale',
'joues': 'normales',
'yeux': 'normaux'}

id3 = ID3()

arbre = id3.construit_arbre (donnees)
print('Arbre de décision :')
print(arbre)

print()

print('Exemplification :')
print(arbre. classifie ({

'fievre': 'non',
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'amygdales': 'normales',
'ganglions': 'oui',
'géne—a—avaler': 'non',
'mal—au—ventre': 'non',
'toux': 'non',
'thume': ' !

non',
' respiration ': 'normale',
'joues': 'normales',

'yeux': 'mormaux'}))

L’algorithme ID3

ID3 est un algorithme de construction d’arbres de décision qui vise & minimiser
le nombre de questions a poser. Il construit un arbre de décision a partir d’un
ensemble de données constituées d’objets décrits par leurs attributs et leur
classe. L’algorithme est le suivant :

ID3(données, attributs)

1. IF données est vide THEN

2. RETURN NULL

3. ELSE IF toutes les données font partie de la méme classe THEN
4. # Neeud terminal

5. RETURN un nceud terminal contenant tous les données

6. ELSE

7. # Neeud intermédiaire

8. A <— l'attribut minimisant 1'entropie de la classification

9. valeurs <— liste des valeurs possibles pour A

10. FOR v IN valeurs DO

11. # Partitionnement:

12. partitions [v] <— les données qui ont v comme valeur pour A
14. # Calcul des sous—neeuds

15. enfants[v] <— ID3(partitions[v], attributs — A)

16. END FOR

17. RETURN un noeud avec enfants comme successeurs

18. END IF

END ID3

Bien évidemment, la qualité de I’arbre de décision construit par ID3 dépend
des données; plus elles sont variées et nombreuses, plus la classification de
nouveaux objets sera fiable.

Structures de données

Voyons les structures de données dont nous aurons besoin. Nous représente-
rons les donnée d’apprentissage (un objet avec sa classe) sous forme de listes
composées du nom de la classe et d’un dictionnaire {attribut : valeur} :

donnée ::= [val—classe,
{attribut—1: val—attribut—1,

attribut —k: val—attribut—k}]

ou k est le nombre d’attributs. Chaque donnée doit spécifier une valeur pour

chaque attribut. Vous pouvez trouver des exemples de telles données d’appren-

tissage dans les modules de test exemples_maladies.py et exemples_profits.py.
Nous utiliserons aussi :
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o un dictionnaire qui fait correspondre chaque attribut a son domaine de
valeurs :

attributs ::= {attribut—1: [val—attribut—1—1, ...],

attribut —k: [val—attribut—1-k, ...]}

o une liste contenant toutes les classes des données d’apprentissage :

classes = [val—classe—1, ..]]

La classe NoeudDeDecision

Les nceuds de ’arbre de décision seront modélisés par la classe NoeudDeDecision.
La classe contient trois champs :

e attribut : 'attribut de partitionnement d’un nceud. Ce champ vaut None
pour un nceud terminal.

e donnees : la liste des données qui tombent dans la sous-classification du
neceud.

« enfants : un dictionnaire associant un fils (sous-nceud) a chaque valeur de
Pattribut du nceud. Ce champ vaut None pour un nceud terminal.

Exercice 12.1.1 L’entropie

La classe ID3 du module id3.py implémente ’algorithme ci-dessus. Elle contient
une méthode qui construit un arbre de décision a partir des données d’appren-
tissage. Cette méthode s’appuie a son tour sur une méthode utilitaire qui calcule
I’entropie conditionnelle de la classe étant donné un attribut qui partitionne les
données.

L’entropie est une mesure de l'information, ou plutét de l'incertitude, a
I’égard de la classification d’un objet. ID3 utilise cette mesure comme une
heuristique visant a minimiser la taille de I’arbre de décision, ne conservant a
chaque étape que l'information absolument nécessaire pour classer un objet.
Chaque fois que 'on doit choisir un attribut pour partitionner les données, on
privilégie ainsi celui qui génere une classification dont ’entropie est minimale.

Nous notons H(C|A) Pentropie de la classification apres avoir partitionné
les données selon la valeur de I'attribut A. Sa valeur est donnée par I’équation :

M
H(C|A) = plaj)H(Clay)

Jj=1

ol a; est une valeur de 'attribut A, M est le nombre total de valeurs possibles
de A et p(a;) est la probabilité que la valeur de I’attribut A soit a;.
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H(Cla;) est entropie de la classification parmi les données pour lesquelles
lattribut A prend la valeur a;. Elle est définie par I’égalité :

N
H(Cla;) = =Y pleilay) logs p(cia;)
i=1
ol IV est le nombre de classes différentes, et p(c;|a;) la probabilité conditionnelle
qu’un objet appartienne a la classe ¢; sachant que son attribut A vaut a;.

Dans la classe ID3, écrivez donc une méthode p_aj, avec quatre arguments :
self, donnees, attribut et valeur. Cette méthode doit retourner la probabilité
p(attribut=valeur), c’est-a-dire la probabilité p(a;), sur la base de donnees,
que lattribut attribut vaille valeur.

De facon similaire, écrivez une deuxiéme méthode p_ci_aj qui prenne un
argument de plus : classe. Cette méthode doit retourner la probabilité condi-
tionnelle p(classe=classe|attribut=valeur), c’est-a-dire la probabilité p(c;|a;)
qu’une donnée appartienne & la classe classe lorsque son attribut attribut vaut
valeur. Cette probabilité devra étre calculée par rapport aux objets de donnees.

Ensuite, écrivez une méthode h_C_aj, avec quatre arguments : self, donnees,
attribut et valeur, qui retourne Ientropie de la sous-classification H(Cla;),
ol a; est la valeur valeur de 'attribut attribut. Aidez-vous de la deuxieme
équation ci-dessus. (Lorsque p = 0, le résultat de plog, p est indéfini. Il faut
alors prendre la limite et traiter ce cas comme plog, p = 0.)

Finalement, écrivez une méthode h_C_A, qui prenne quatre arguments : self,
donnees, attribut et valeurs, et retourne ’entropie H(C|A) de la classification
des objets de donnees apres avoir choisi 'attribut attribut. Aidez-vous de la
premiere équation ci-dessus.

Exercice 12.1.2 La méthode partitionne
Dans la méme classe, écrivez une méthode partitionne qui prendra trois para-
metres (outre self) :
e donnees : les données d’apprentissage a partitionner;
e attribut : lattribut A de partitionnement ;
o valeurs : une liste contenant les valeurs a; de 'attribut A.
La méthode doit retourner un dictionnaire qui associe a chaque valeur a; de

A une liste contenant les données pour lesquelles A vaut a;. (Si une certaine
valeur a; n’apparait pas dans donnees, la partition correspondante vaudra [1).

Exercice 12.1.3 La méthode construit_arbre_recur
Nous pouvons maintenant passer a la construction de 'arbre proprement dite.
Pour cela, écrivez une méthode construit_arbre_recur, qui doit accepter trois
parametres :

o self : la classe ID3;

e donnees : les données de la sous-classification courante ;

e attributs : les attributs encore disponibles pour partitionner les exemples.
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Cette méthode doit construire un arbre de décision en suivant ’algorithme
ID3, dont le pseudo-code vous a été donné ci-dessus. Nous vous suggérons
d’utilisez la méthode h_C_A pour construire une liste qui associe un attribut a
son entropie, puis de choisir I’attribut dont I’entropie est la plus petite. Utilisez
la méthode partitionne pour partitionner les exemples selon les valeurs de cet
attribut.

Notez que construit_arbre_recur est appelée par construit_arbre, qui sert
d’interface. Le code de cette derniere vous est donné et consiste en une routine
qui extrait les domaines des attributs, avant de les passer a construit_arbre_recur.

Test du programme

Vous pouvez maintenant tester votre module avec les modules d’exemple :

o exemple_profits.py : présente des profils d’entreprises informatiques avec
leurs espérances de profit ;

e exemple_maladies.py : essaie de trouver de quelle maladie souffre un en-
fant.

Utilisez les méthodes repr_arbre et __repr__ de la classe NoeudDeDecision
afin d’afficher 'arbre de décision résultant de construit_arbre. Essayez d’utili-
ser I’arbre de décision comme un expert humain de manieére interactive a 'aide
de la méthode classifie de la classe NoeudDeDecision.

Solutions a la page 393






CHAPITRE 13

Apprentissage non supervisé

Pour I'apprentissage de hiérarchies de classification, ainsi que pour ’apprentis-
sage de descriptions caractéristiques, il est nécessaire que 'utilisateur indique
pour chaque exemple la classe dont celui-ci est I'instance. Cette forme d’ap-
prentissage est dite supervisée. On pourrait aussi imaginer que l'algorithme
d’apprentissage décide lui-méme des classes qui existent et de la classification
de chaque exemple. Cet apprentissage, dit non supervisé, a donc pour but de
former automatiquement des classes, processus appellé clustering.

L’apprentissage non supervisé a de nombreuses applications pratiques, sur-
tout pour 'analyse de données et la découverte de nouvelles connaissances. Par
exemple :

o dans un site web, on peut appliquer le clustering pour trouver des classes
d’utilisateurs similaires ; on peut ainsi améliorer le site en leur offrant des
chemins d’acces spécifiques ;

o dans un systeme de recherche d’informations, on peut regrouper les docu-
ments par sujets et ainsi les retrouver de maniere plus fiable qu’avec une
recherche par mots-clés;

o dans un systeme d’analyse d’images, on peut séparer les différents objets
représentés dans une image ;

o en bio-informatique, on peut appliquer le clustering ou des algorithmes
génétiques afin de classer des segments d’ADN similaires pour en recon-
naitre la structure;

o dans les sciences naturelles, on peut formuler des hypotheses de lois ou
des théoremes.

13.1 Apprentissage de sous-classes

L’apprentissage de sous-classes consiste a trouver une maniere de regrouper des
exemples en sous-classes naturelles, appellées des clusters. Certains regroupe-
ments montrent une plus grande cohérence que d’autres. Par exemple, étant
donné les exemples :

: grand,allongé,rouge

: grand,rond,rouge

: petit,rond,vert

: petit,rond,rouge

(wlN@Nvsis
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on formers plutét les groupes {A, B} et {C, D} que {A,C} et {B, D}, car la
description des classes serait beaucoup plus complexe dans le second cas.

Apprendre une sous-division implique une recherche parmi un certain
nombre d’alternatives possibles pour sélectionner celle qui couvre les exemples
de la meilleure maniere. Cependant, dans la plupart de cas, cette recherche se-
rait beaucoup trop complexe : pour n exemples, il y a k™ manieres de les repartir
en k clusters, ce qui rend une recherche exhaustive beaucoup trop complexe.

Le clustering fournit des méthodes pour regrouper les exemples en clusters
de maniere que chaque cluster contienne des exemples similaires. La base de ce
processus est une mesure de distance d(z;, z,) entre exemples. En général, les
algorithmes de clustering sont des heuristiques, qui fonctionnent par approxi-
mations afin de garantir une complexité de calcul linéaire, ou presque linéaire,
par rapport au nombre d’exemples.

Pour appliquer une méthode de clustering adéquate, il faut typiquement
suivre les étapes suivantes :

o définir une représentation des exemples ;

o définir la mesure de similarité entre exemples, c’est-a-dire la distance
(ou proximité) de deux exemples suivant le domaine d’application ; par
exemple, pour des points sur un espace & deux dimensions, on utilise la
distance euclidienne ;

« la phase du clustering proprement dit consiste alors a regrouper les exemples
similaires entre eux suivant 1’algorithme choisi.

Il existe deux types de clustering qui se distinguent par le critere de similarité
qui est appliqué :

o Similarité transitive : on considére que si x est similaire a y, et y est simi-
laire & z, alors x,y et z devraient faire partie du méme cluster, méme si
x n’est pas similaire a z. Ce type de similarité se présente souvent quand
il s’agit de partitionner des données, par exemple lors de la ségmenta-
tion d’objets dans une image ou la classification d’especes en biologie. On
représente généralement cette similarité sous forme de graphe.

o Similarité non-transitive : on considere que tous les exemples qui font par-
tie d’'un cluster doivent étre similaires les uns aux autres. Cela veut dire
que chaque cluster représente un prototype qui pourrait se substituer a
n’importe lequel des exemples grace a sa similarité. Ce type de similarité se
présente quand il s’agit de simplifier des données en les résumant par des
exemples prototypes, comme dans la classification, la recherche d’informa-
tions ou la recommendation, et de maniere plus générale le data mining
de régularités a partir d’'une grande quantité de données. On représente
généralement cette similarité par une mesure géométrique.

La partie gauche de la figure 13.1 montre un exemple ou la transitivité de
la similarité est nécessaire pour obtenir le clustering indiqué, tandis que dans
I’exemple de droite tous les exemples sont suffissamment similaires pour que
cette propriété ne soit pas nécessaire.
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Fig. 13.1 A gauche, le clustering nécessite une similarité transitive, tandis que
l’exzemple de droite n’a pas besoin de cette propriété.

Il existe principalement trois grands groupes d’algorithmes de clustering :
le clustering hiérarchique, le clustering de partitionnement, et le clustering
probabiliste. Le premier créée une hiérarchie de regroupements, tandis que le
deuxieme définit un seul regroupement. Le troisieme associe & chaque exemple
une probabilité d’appartenance a chaque cluster. Nous les expliquons ci-apres.

13.2 Clustering hiérarchique

Les algorithmes de clustering hiérarchique peuvent suivre deux approches
suivant le type de structures de données crées au départ :

o Les méthodes par agglomération attribuent tout d’abord a chaque exemple
un seul cluster. Cela signifie que pour n exemples, nous créons d’abord n
clusters. Ces derniers sont alors fusionnés les uns apres les autres jusqu’a ce
qu’il n’en reste plus qu’un seul, qui couvre tous les exemples. L’algorithme
peut s’arréter lorsqu’il ne reste plus qu’un certain nombre de clusters, selon
un seuil prédéfini.

o Les méthodes par division suivent le procédé inverse. Elles partent d’un
cluster unique, qui englobe tous les exemples existants. Ce cluster est alors
divisé au fur et & mesure suivant des criteres précis.

Dendrogramme

Le clustering hiérarchique est une méthode qui construit une hiérarchie de
clusters de maniere a ce que ceux-ci soient regroupés a nouveau en clusters a
un niveau supérieur. Le résultat sera ce que 'on nomme un dendrogramme. Un
dendrogramme représente différents regroupements d’exemples et de niveaux
de similarité (fig. 13.3). Il peut étre coupé a différents niveaux, donnant lieu
a différents clusters. Pour le montrer, considérons les exemples du plan de la
figure 13.2. Pour le moment, nous faisons abstraction des trois clusters dessinés.

La figure 13.3 illustre le dendrogramme résultant d’un algorithme hiérar-
chique appliqué aux exemples de ce plan. Le bas du dendrogramme représente
un clustering maximal, ou chaque cluster ne contient qu’un seul exemple. Le
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Cluster 3
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Cluster 1

X1
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Fig. 13.2 FExemples dans un plan avec trois clusters.

Similarité

e

A B C D E F G

Fig. 13.3 Le dendrogramme correspondant a la figure 13.2.

haut montre le cluster qui regroupe tous les exemples. Si ’on prend la coupe en
pointillé sur la figure 13.3, on obtient les trois regroupements représentés par
les ovales de la figure 13.2.

Méthode par agglomération : single-link et complete-link
La maniere la plus simple de construire un dendrogramme consiste a procéder
par agglomération. Le schéma général est le suivant :

1) placer chaque exemple dans son propre cluster (singleton),

2) trouver la paire de clusters la plus similaire, étant donnée une définition
de distance entre clusters, et la fusionner en un seul cluster,

3) calculer la distance entre ce nouveau cluster et tous les autres clusters,

4) répéter les pas 2 et 3 jusqu'a ce qu’il n’existe plus qu'un seul cluster
contenant tous les exemples.
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Sur la base de ce procédé général, il existe deux algorithmes principaux : le
single-link et le complete-link. Ils se différencient par leur maniere de calculer
la distance entre deux clusters (étape 3) :

o dans l'algorithme single-link, la distance entre deux clusters est le mi-
nimum des distances entre toutes les paires d’exemples composées d’un
élément de chaque cluster,

o dans l'algorithme complete-link, on prend le maximum des distances entre
toutes les paires d’exemples appartenant a des clusters différents.

Il est intéressant de constater que ces deux algorithmes, qui sont trés simi-
laires, donnent des regroupements qui peuvent étre de qualité tres différente.
La figure 13.4 illustre ce phénomene. Les exemples ont déja été regroupés dans
trois clusters 1, 2 et 3, et la question est alors de décider s’il faut regrouper
cluster 1 avec 2 ou avec 3. Si on applique le critere single-link, on doit comparer
les distances dg;(1,2) et dg(1,3), et on regroupe donc 1 avec 3. Par contre, par
le critere complete-link, on doit clairement regrouper 1 et 2.

Comme le single-link n’a besoin que d’une seule paire de membres similaires
pour établir la connexion entre deux clusters, il se préte bien a des mesures de
similarité transitives. Par contre, le complete-link exige que tous les membres
soient similaires et ne suppose donc aucune transitivité de la mesure de simi-
larité.

2
% 2
dsi(1,2) 22,22
i dei(1,3)
--------------------------------------------------------------------------------- > 3
3
1 dai(1,2) 3
1 3
1 1 1 1 1 3 3
Qq
1 1 1 1 < 3 3

dsi(1,3)

Fig. 13.4 Différence entre les critéres single-link et complete-link.

Méthode par division

Si les algorithmes par agglomération s’efforcent de regrouper les exemples les
plus similaires, les algorithmes par division se focalisent sur les dissimilarités
en séparant les exemples les moins similaires.

Ces méthodes partent d’une représentation des similarités sous forme de
graphe complet, dont les sommets correspondent aux exemples et dont chaque
aréte porte un poids égal a la similarité entre les exemples qu’elle lie. On di-
vise alors le graphe en construisant des coupes qui contiennent des arétes de
poids minimal. Cela implique que la mesure de similarité soit considerée comme
transitive, comme dans le critére single-link dans le clustering agglomératif.
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L’algorithme le plus simple est basé sur les arbres couvrants. Avant de
Iexpliquer, rappelons quelques notions. Soit un graphe connecté et non dirigé.
Un arbre couvrant (en anglais spanning tree) de ce graphe est un sous-graphe qui
1) est un arbre et 2) connecte tous les sommets. Un graphe peut avoir plusieurs
arbres couvrants. Si un poids est attribué a chaque aréte, on peut calculer le
poids total de chaque arbre couvrant. Parmi tous les arbres couvrants possibles
d’un graphe, 'arbre couvrant de poids minimal (en anglais minimal spanning
tree, abrégé MST) est celui dont le poids est le plus faible pour tous les arbres
couvrants.

Un algorithme de clustering peut utiliser cela pour créer un partitionnement.
Il s’agit d’'une méthode par division, qui proceéde en deux étapes principales :

« on crée tout d’abord ’arbre couvrant de poids minimum sur le graphe des
exemples existants ;

« on efface I’aréte dont le poids est le plus grand, afin de créer deux clusters ;
cette deuxieme étape est répétée jusqu’a obtenir un clustering satisfaisant
selon un critere fixé d’avance.

La figure 13.5 montre comment appliquer cette méthode. Sur la base des
exemples positionnés dans le plan, on établit un arbre couvrant de poids mini-
mum. [’aréte dont la longueur est la plus grande se trouve entre C et D. En
I’éliminant, on obtient deux sous-graphes, qui définissent deux clusters.

A X2

Aréte de longueur maximale X1

Fig. 13.5 Algorithme utilisant un arbre couvrant de poids minimal.

Il existe de nombreux algorithmes pour trouver un MST. Les meilleurs ob-
tiennent une solution en un temps presque linéaire dans le nombre d’arétes
(donc quadratique dans le nombre d’exemples), et sa complexité n’est donc pas
plus élevée que I’évaluation de toutes les similarités entre exemples qui est a la
base du clustering.

Cependant, la méthode a deux points faibles :
e elle minimise le poids minimal des arétes traversées par une coupe, mais

ne prend pas en considération la somme des poids, qui peut parfois étre
plus significative,
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o elle ne permet pas d’équilibrer la taille des sous-graphes qui résultent du
fractionnement, et peut donc conduire & des arbres trés inhomogénes.

Pour combler ces lacunes, on fait appel a des méthodes de coupe a poids
minimal de la théorie des graphes. Ces méthodes permettent de minimiser la
somme des poids des arétes qui traversent une coupe, et non seulement le
minimum des poids comme c’est le cas quand on utilise un MST. Cependant,
la complexité de tels algorithmes est nettement plus élevée : la méthode la
plus courante, celle de Ford-Fulkerson, a un temps de calcul quadratique dans
le nombre d’arétes, et est donc beaucoup plus élevé que I’approche basée sur
le MST. De plus, cette méthode a tendance a sélectionner des coupes tres
déséquilibrées, qui isolent des petits groupes de noeuds.

On utilise donc une méthode de clustering spectral (spectral clustering), qui
fait une approximation de la coupe & poids minimal et en méme temps minimise
la différence entre la taille des parties qui sont construites. Elle utilise une re-
présentation du graphe de similarité sous forme de deux matrices quadratiques
avec une rangée/colonne pour chaque nceud :

o la matrice W, qui représente les poids w des arrétes entre noeuds et

 la matrice diagonale D, qui représente le degré (nombre d’arrétes) de
chaque noeud.”

On considere alors la matrice Laplacienne normalisée du graphe :
L=1-D"'W

et plus précisément ses valeurs propres, qu’on suppose triées dans 1’ordre crois-
sant :

e1 <ex<..<ey
La matrice Laplacienne normalisée d'un graphe connexe a les propriétés sui-
vantes :
e la premiere valeur propre e; = 0;
o la deuxiéme valeur ey est associée a un vecteur propre qui définit une

coupe entre deux sous-graphes C; et Cs; cette coupe minimise (approxi-
mativement) le critére NCut :

1 1
Z w(a) . ZaEC1 w(a) - ZaeCz w(a)

accut

de sorte que les composantes positives du vecteur correspondent aux
neeuds de C et les composantes négatives a ceux de Cs.

W Comme le critére de coupe utilise la somme des poids, on suppose qu’on réduit le nombre
d’arétes en supprimant celles dont le poids est trés faible, et qui ne comptent que trés
peu dans le poids total d’une coupe. Ceci permet de réduire la complexité.
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Ce vecteur propre s’appelle aussi le vecteur de Fiedler (Fiedler vector). Le cri-
tere qu’il optimise prend en compte a la fois le poids de la coupe et ’équilibrage
de la taille des deux parties, exprimée chacune par la somme des similarités
entre les exemples qu’elle contient. Par application récursive, on peut donc
construire sur cette base un clustering hiérarchique bien équilibré.

Une autre fagon d’interpréter le vecteur de Fiedler consiste a le prendre
comme une projection du graphe sur un axe, de sorte que les deux clusters
se trouvent sur les moitiés positives et négatives de cet axe. On peut se de-
mander quelle pourrait étre la signification des vecteurs propres associés aux
prochaines valeurs propres. Elles définissent en fait une projection du graphe
dans d’autres dimensions, de telle sorte que les 2 — (K + 1)-eéme vecteurs dé-
finissent une projection en k dimensions, qui découpe le graphe en k clusters
de points proches les uns des autres. On peut donc trouver une partition dite
spectrale en k clusters, qui applique la transitivité de la similarité en utilisant
des algorithmes de clustering de partitionnement dans ’espace défini par les
k vecteurs propres. Ces algorithmes, notamment l’algorithme k-means, seront
décrits dans la prochaine section.

Plus précisément, pour obtenir k clusters, on construit une matrice H de
n rangées et k colonnes, qui consistent en des k vecteurs propres associées
aux valeurs propres es, .., ex41. Ensuite, on procede au clustering des exemples
dont les coordonnées sont données par les rangées de H, en utilisant comme
similarité I'inverse de la distance Euclidienne. Ce clustering utilise 1’algorithme
k-means, décrit ci-dessous. L’avantage est qu’on peut obtenir un clustering de
partitionnement avec un critére de similarité transitif, comme dans le cas de la
segmentation d’image.

13.3 Clustering de partitionnement

Le clustering de partitionnement construit une partition unique des exemples,
et non pas une structure hiérarchique. L’algorithme de clustering le plus connu
et le plus appliqué est justement un algorithme de partitionnement : le k-means.

Algorithme k-means

Pour appliquer le k-means, on doit choisir au départ le nombre k de clusters
que l'on veut construire. Comme initialisation, on choisit alors k noyauz ¢;, qui
sont des exemples distincts, qui vont chacun caractériser un cluster Cj.
L’algorithme procede alors par itération :
« associer chaque exemple z, au cluster dont le noyau est le plus proche,
c’est-a-dire au Cj tel que d(c;, ;) est minimale,
« pour chaque cluster C}, remplacer le noyau par l'’exemple qui est le plus
au centre des exemples du cluster, c’est-a-dire par le z. € Cj tel que

Z d(gc’ gi)2
z;€C;

est minimal.
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Apres un certain nombre d’itérations, I'arrangement devrait se stabiliser
et on obtient alors un regroupement en clusters. Notons qu’il s’agit d’un al-
gorithme approximatif, qui ne donne aucune garantie quant a la qualité du
résultat.

L’algorithme que nous venons de décrire est en fait la variante k-médoids
de k-means. L’algorithme k-means proprement dit s’applique uniquement a des
attributs continus. Le noyau d’un cluster se calcule alors par les moyennes des
attributs des instances qui en font partie. L’algorithme k-médoids que nous
présentons est une variante qui s’applique également a des attributs discrets,
et nous allons utiliser le terme k-means pour cette variante.

Comme exemple, considérons la situation suivante, dans laquelle les exemples
ne sont pas encore classés :

A
@@ @@@
@ @ ®
®@m @
®a
®

A Tinitialisation, supposons que nous choisissons au hasard trois noyaux
(indiqués en noir) et que nous classons les exemples ainsi :

A
@@ e@@
® @ ®
On O
©®
o

Ensuite, nous recalculons les noyaux :

A

@e ®@@

® @ ®
Ca O
O®

A
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et nous classons les exemples & nouveau :

A

@e ©®@

® @ ®
Ca O
® o
©

Y

Apres un nouveau calcul des noyaux :

A

® ® ® ® ®
® o °
Ca ®
RO
©
et un reclassement des exemples :
A
® ® ® ® ®
® o o
Ca ©
® ©
©

A

nous avons construit un regroupement raisonnable en trois clusters.

L’application de k-means demande a 1’'utilisateur de faire le bon choix de &
ainsi que des k noyaux d’apprentissage de départ. Il est également important
d’utiliser une bonne mesure de distance, qui ait une signification réelle. Par
exemple, pour des attributs symboliques ou logiques, la distance pourrait étre
le nombre d’attributs différents.

13.4 Clustering probabiliste
Nous avons passé en revue deux grands groupes de méthodes de clustering : le

clustering hiérarchique et le clustering de partitionnement. Ces méthodes gé-
nerent des partitions dans lesquelles chaque exemple n’appartient qu’a une et
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une seule partition a la fois. Or, il existe aussi des applications pour lesquelles
on souhaiterait disposer d’une certaine flexibilité dans le résultat, notamment
en attribuant un exemple a plusieurs clusters a la fois. C’est ce que réalise
le clustering probabiliste. Cette méthode permet a un exemple d’appartenir a
plusieurs clusters, en utilisant une fonction qui définit une probabilité d’appar-
tenance.

Prenons I'exemple illustré a la figure 13.6. Un algorithme déterministe at-
tribuerait chaque exemple a un seul cluster, par exemple H1 ou H2. Un algo-
rithme probabiliste, quant a lui, définirait deux clusters F1 et F2, et attribuerait
a chaque exemple une probabilité d’appartenance. Pour notre exemple, nous
aurions :

« F1 = (1,0.9), (2,0.8), (3,0.7), (4,0.6), (5,0.55), (6,0.2), (7,0.2), (8,0.0),
(9,0.0)

« F2 = (1,0.0), (2,0.0), (3,0.0), (4,0.1), (5,0.15), (6,0.4), (7,0.35), (8,1.0),
(9,0.9)

L’exemple 4 aurait alors une probabilité d’appartenance a F1 de 0.6 et une
probabilité d’appartenance a F2 de 0.1.

b x2

X1

Fig. 13.6 Un exemple de clustering probabiliste.

Le modele le plus courant est donné par un mélange de Gaussiennes tel
qu’illusté par la figure 13.7 pour une seule dimension ¢. Dans un tel modele,
chaque cluster C; est représenté par une distribution Gaussienne centrée sur
Y, avec variance 0]2-. La probabilité qu'une instance appartenent au cluster C;
est égal a l'instance X; est alors estimée comme :

1 6_%((1()(;1}/].))2
O'j\/%

J
ol d(X,Y) est la distance entre X; et Y; (dans le cas de la Figure 13.7, la
différence en t).
Par exemple, ¢ pourrait représenter le poids dans un ensemble de personnes,
et on aimerait que I'algorithme trouve qu’il y a deux populations, les « o » (qui
sont les femmes) et les « z » (qui sont les hommes).

P(Xi|j> =
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0 0 000.0-XD
Yi Yo t

Fig. 13.7 Un exemple d’un mélange de Gaussiennes dans une seule dimension t.
Y1 est le centre de la distribution des « o », Ya le centre des « x ». Chaque courbe
Gaussienne indique la probabilité que le processus génére une instance de la classe
correspondante avec cette valeur de t.

Pour classer une instance donnée, nous aimerions connaitre la probabilité
qu’elle appartienne a une des classes. Nous exprimons 'appartenance par une
variable latente z; € {1,..,k}, et la probabilité d’appartenance est alors :

Pl = jIX,) = WP(XZ-U) (13.1)

ce qui permet d’utiliser le modele pour la classification des instances.

Pour apprendre le modele, nous appliquons le principle du maximum de
vraisemblance : nous cherchons

« pour chaque cluster, les parametres Y; et o; ainsi que

 pour chaque exemple, la probabilité d’appartenance p(z; = j),

de fagon & maximiser la probabilité de I’ensemble des instances :

k

p(Xi) = P(Xilj)p(z = )

j=1

Nous nous trouvons cependant confronté au probleme de la poule et de I'ceuf :

e supposons que nous connaissions pour chaque instance le cluster z; auquel
elle appartient, nous pouvons alors trouver les parametres des distribu-
tions Gaussiennes qui maximisent la probabilité des instances en calculant
Y; comme moyenne des X; avec z; = j,

e supposons que nous connaissions les parametre des distributions, alors
nous pouvons estimer les valeurs les plus probables des z; par 1’équa-
tion 13.1.

Nous pouvons résoudre ce probléeme en utilisant un algorithme tres similaire a k-
means, 'algorithme de maximisation de Iespérance (ezxpectation mazimisation,
EM). L’algorithme commence par une initialisation aléatoire des parameétres
des clusters et de la distribution p(z; = j), et consiste ensuite en une itération
de deux étapes :
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o Espérance : pour chaque exemple X;, on calcule la probabilité L!(i, )
d’appartenance & chaque cluster C}, étant données les valeurs courantes
des parametres a 'itération ¢ :

p'(zi = j)g(Xi, 0, YY)
Stz = Dg(Xi, ot Y}

ou g(X,0,Y) est la fonction de distribution Gaussienne centrée en Y avec
variance o, appliquée a X :

L'(i,j) =

1 .
X,0,Y)= ——¢ 2
g ) T

et d(X,Y) est la distance entre X et Y, par exemple la distance Eucli-

dienne />, (x; — ;)2

o Maximisation : pour chaque cluster, on recalcule le centre et la variance
de la distribution de fagon a maximiser la probabilité des exemples :

Z:’L:l Lt(ia .])Xz
>ima L1, 5)

(a5

t+1 _
Yj =

et

pirt _ S L ()P, Y))
! Zi:l Lt(lvj)

et la probabilité d’appartenance :
1 n
ﬁ+1 —— Lt iq
Pt =— ; (i,5)

Comme pour 'algorithme k-means, ’algorithme se termine quand il n’y a que
peu de changement dans la classification.

On peut garantir que 'algorithme converge vers un optimum local. Il peut
cependant en exister plusieurs, et ’on n’est pas siur d’aboutir au meilleur. On
applique donc souvent cet algorithme a plusieurs reprises, avec différentes initia-
lisations, et on retient le résultat qui obtient les meilleures probabilités P(X;).
Si on obtient ainsi différents modeles avec des probabilités similaires, cela si-
gnifie que les données ne suffisent pas pour identifier un seul modele correct.

13.5 Apprentissage semi-supervisé

Souvent, on a la possibilité d’assigner des étiquettes a une petite partie des
données a disposition, mais une grande partie reste sans étiquette. On aime-
rait donc appliquer a la fois un apprentissage supervisé sur les données dont
on connait la classification et un apprentissage non-supervisé sur le reste des
données. L’apprentissage semi-supervisé permet de le faire.
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frontiere semi-supervisée

frontiére supervisée l frontiére non-supervisée

E]o‘..". .o@ FOXX I

D classe 1 O classe 2

Fig. 13.8 L’apprentissage semi-supervisé part d’un ensemble d’exemples dont cer-
tains seulement sont déja classées.

La figure 13.8 illustre I'intuition sous-jacente a I’apprentissage semi-supervisé
[75]. On peut voir Papprentissage semi-supervisé de deux manieres :

o Un apprentissage supervisé qui utilise en plus les exemples non-classifiés.
Le principe est que la classification apprise doit étre aussi peu ambigué
que possible sur les exemples non-classifiées. Par exemple, lorsqu’il s’agit
de construire une frontiére de décision, on aimerait que celle-ci soit aussi
éloignée que possible des exemples non-classifiés. Dans la figure 13.8, une
analyse de la distribution permet ainsi de placer la frontiere entre les deux
classes d’une fagon plus précise.

o Un apprentissage non-supervisé qui utilise en plus les exemples classées.
Dans ce cas, on suppose que des exemples similaires doivent avoir la méme
classe, et on utilise donc les exemples classifiés comme contraintes pour
la formation des clusters. Dans la figure 13.8, on sait que les exemples
classifiés font partie de clusters différents et ceci permet de distinguer la
bonne maniere de les regrouper.

Pour le premier type, la technique la plus courante est de modifier la fonction
d’optimisation d’'une SVM (fig. 11.3) de fagon & ce que, non seulement, on
maximise la distance aux exemples classifiés les plus proches, mais également,
dans une moindre mesure, la distance aux exemples non-classifiés. Ceci évite
que la frontiere soit placée dans une région dense, comme c’est le probleme
dans l'exemple de la figure 13.8.

Pour le deuxieme type, on utilise habituellement les exemples classifiés
comme noyaux des clusters, et étend ces derniers a partir d’eux. Ce principe
s’applique évidement a des algorithmes comme k-means, mais également de
facon plus large. Par exemple, si nous avons a construire un dictionnaire de
mots positifs et négatifs, nous pouvons commencer avec les mots « bon » et
« mauvais » et ensuite rajouter a chaque classe les mots qui sont similaires,
c’est-a-dire qui apparaissent souvent dans la méme phrase.

L’apprentissage semi-supervisé rencontre un grand succes en pratique et se
trouve encore en plein développement.
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Littérature

Les articles [69] et [70] sont des syntheses largement citées portant sur les
algorithmes de clustering.

L’algorithme EM a été introduit a l'origine par [71] et est décrit également
dans des livres généraux tels que celui de Bishop [54].

Le clustering spectral a été originalement introduit dans [72] et [73]; [74]
est un tutorial qui en explique les différents variantes.

[75] est un bon résumé des techniques d’apprentissage semi-supervisé.

Outils - domaine public

La bibliotheque WEKA réunit pratiquement tous les algorithmes d’apprentissage
dans un seul cadre et est tres commode pour construire rapidement des appli-
cations pratiques :

http://www.cs.waikato.ac.nz/ml/weka/

Il existe de nombreux autres outils, comme par exemple des environnements de
programmation liés a I'inductive logic programming. La plupart sont disponibles
dans le domaine public.

p
Application : Recommandation de produits

L’apprentissage non-supervisé, et plus particulierement le clustering, est
une méthode classique du marketing. En regroupant les produits qui sont
souvent achetés ensemble, ou par les mémes personnes, on peut savoir
comment mieux les positionner dans un magasin, ou comment organiser
la publicité.

Le clustering est utilisé dans les sites d’e-commerce afin de les rendre
plus faciles & naviguer (les produits similaires sont regroupés sur la méme
page) ou pour donner des recommandations. Par exemple, Amazon.com
donne une recommandation de produits qui sont susceptibles d’intéresser
le client. Cela est fait sur la base des produits qu’il a déja achetés et des
groupes de produits achetés par d’autres clients.

Pour rendre ce processus plus efficace, Amazon utilise un processus de
collaborative filtering qui est une forme de clustering spécifique pour la
recommandation.

(Source : Greg Linden, Brenth Smith, Jeremy York : Amazon.com Recom-
mendations, IEEE Internet Computing 7(1), pp. 76-80, 2003.)
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13.6 Exercices

Exercice 13.1 Clustering

La notion de clustering recouvre un ensemble de procédés qui permettent, a
partir d’une base de données, de regrouper les données similaires en agrégats,
ou clusters, afin de réduire leur complexité apparente et de mettre & jour leur
structure. Les classifications ainsi obtenues peuvent ensuite étre utilisées dans
diverses applications. Par exemple,

« en bio-informatique, des méthodes de clustering sont utilisées pour grou-
per les especes d’étres vivants similaires, afin de pouvoir généraliser & tout
le groupe les propriétés connues d’une espece particuliere; par exemple,
un traitement efficace contre un certain agent pathogéne peut s’avérer
aussi efficace a ’égard d’autres micro-organismes du méme cluster.

o dans le domaine de la vision, le nombre de pixels de différentes nuances
de gris dans une image peut étre réduit en regroupant plusieurs pixels en
un méme cluster et en leur attribuant une nuance de gris commune ;

« la classification des utilisateurs d’un site internet a partir de leurs habi-
tudes de consultation du site peut permettre de concevoir des interfaces
différentes pour chaque classe, adaptées a leurs attentes spécifiques; de
fagon similaire, la classification du contenu d’un site internet peut aider &
décider comment diviser ce contenu en rubriques thématiques.

Dans cette série d’exercices, nous vous proposons de travailler avec deux
sortes de données :

o une liste de maladies avec leurs symptomes; la classification de ces mala-
dies doit permettre d’identifier des groupes d’affections similaires, suscep-
tibles d’étre traitées par des traitements similaires ;

o une liste d’entreprises actives dans le domaine de I'informatique, dont une
classification en différents groupes doit permettre d’identifier les concur-
rents proches sur le marché.

Modules squelettes

Voici pour commencer les modules partiellement implémentés qui serviront de
base a nos exercices. Le dernier constitue un module de test.

Module .../moteurs_clustering/cluster.py :

class Cluster:
def _init_ (self, donnees, nom="):
self .donnees = ||
self .ajoute_donnees(donnees)
self .nom = nom

def ajoute_donnee(self, donnee):
self .donnees.append(donnee)
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def ajoute_donnees(self, donnees):
for donnee in donnees:
self .ajoute_donnee(donnee)

Module .. ./moteurs_clustering/cluster_mean.py :

from .cluster import Cluster

class ClusterMean(Cluster):
def _init_ (self, donnees, nom):
Cluster. _init_ (self, donnees, nom)
self .noyau = self.donnees[0] if len(self.donnees) > 0 else None

def centre( self , dist_f ):
print('a compléter')

def vide( self , garde_noyau=False):
if garde_noyau:
self .donnees = [self.noyau]
else:
self .donnees = ]
self .noyau = None

def _repr_ (self ):
rep = 'Cluster {}: \n'.format(self.nom)
for donnee in self.donnees:
indent = '———>" if donnee == self.noyau else ' 'x4
rep += "{}{}\n'.format(indent, donnee)
return rep

Module .../moteurs_clustering/cluster_hierarchique.py :

from .cluster import Cluster

class ClusterHierarchique(Cluster):
def _init_ (self, donnees, gauche=None, droite=None):
Cluster. _init__ (self , donnees)
self .gauche = gauche
self . droite = droite

def est_terminal ( self ):
return self.gauche is None and self.droite is None

def repr_hierarchie (self , level =0):
if self . est_terminal ():
rep ="' "s«(level —=1) + '|———"' + str(self.donnees[0]) + '"\n'
else:
rep ="' "slevel + '|———'+4+ "\n'

if self .gauche is not None:

rep += self.gauche.repr_hierarchie (level +1)
if self . droite is not None:

rep += self.droite . repr_hierarchie (level +1)

return rep

def _repr_ (self ):
return 'Cluster racine: \n{}'.format(self. repr_hierarchie (level =0))
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Module .../moteurs_clustering/clustering.py :

class Clustering:
def _init_ (self ):
self . clusters = ]

def initialise_clusters (self, donnees):
return |

def revise_clusters ( self ):
return |

def fini (self, anciens_clusters ):
return False

def itere ( self , donnees):
# Sauvegarde des clusters.
anciens_clusters = |]
self . initialise_clusters (donnees)

# Continue le clustering tant que les nouveaux clusters ont changé par
# rapport a l' it ération précédente.
while not self. fini ( anciens_clusters ):

anciens_clusters = self. clusters [:]

self . revise_clusters ()

Module .../moteurs_clustering/clustering_kmeans.py :

from .cluster_mean import ClusterMean
from .clustering import Clustering

class ClusteringKMeans(Clustering):
def _init_ (self, k, dist_f):
super(). _init_ ()
self .k =k
self . dist_f = dist_f

def noyaux(self, clusters ):
return [cluster.noyau for cluster in clusters |

def initialise_clusters (self, donnees):
print('a compléter')

def fini (self, anciens_clusters ):
print('a compléter')

def revise_clusters ( self ):
print('a compléter')

def affiche_clusters ( self ):
print("\n'. join ([str(cluster) for cluster in self . clusters ]))

Module .../moteurs_clustering/clustering_hierarchique.py :

from .cluster_hierarchique import ClusterHierarchique
from .clustering import Clustering

class ClusteringHierarchique(Clustering):
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liens = {
'single': min,
'complete': max,

}

def _init_ (self, type_lien, dist_f):
super(). _init_ ()
self . dist_f = dist_f
# Permet d'utiliser min ou mazx de maniere générique en fonction du
# paramétre type_lien.
self . lien = self. liens [ type_lien |

def fusionne_clusters ( self , clusterl, cluster2):
donnees = clusterl.donnees + cluster2.donnees
return ClusterHierarchique(donnees, clusterl, cluster2)

def calcule_distance (self , clusterl, cluster2 ):
print('a compléter')

def initialise_clusters (self, donnees):
print('a compléter')

def fini (self, anciens_clusters ):
print('a compléter')

def revise_clusters ( self ):
print('a compléter')

def affiche_clusters (self ):
print("\n'. join ([str(cluster) for cluster in self . clusters ]))

Module .../exemple_clustering.py :

from sys import argv, exit
from moteurs_clustering.clustering_kmeans import ClusteringKMeans
from moteurs_clustering.clustering_hierarchique import ClusteringHierarchique

def distance(donneel, donnee2):
if len(donneel) != len(donnee2):
raise Exception('Les deux données doivent avoir le méme nombre d\'attributs.")

return sum(attribl != attrib2 for attribl, attrib2 in zip(donneel, donnee2))

def est_entier_positif (s):

” Teste si une string représente un entier positif. ”
try:

return int(s) > 0
except ValueError:

return False

profits = [
('down', 'old', 'no', 'software'),
('down', 'midlife', 'yes', 'software'),
('up', 'midlife', 'no', 'hardware'),
('down', 'old", 'no', 'hardware'),
('up', 'new', 'mno', 'hardware'),
('up', 'mew', 'mno', 'software'),
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('up', 'midlife', 'no', 'software'),
("up', 'new', 'yes', 'software'),
('down', 'midlife', 'yes', 'hardware'),
('down', 'old', 'yes', 'software'),

maladies = |

('angine—érythémateuse', 'élevée', 'gonflées’,

'non', 'normale', 'normales', 'normaux'),

('angine—pultacée', 'élevée’, 'points—blancs', 'oui', 'oui', 'non', 'non',

'non', 'normale', 'normales', 'normaux'),

('angine—diphtérique', 'légere', 'enduit—blanc', 'oui', 'oui', 'non',

'non', 'normale', 'normales', 'mormaux'),

('appendicite', 'légere', 'normales', 'non', ' !
'non', 'normale', 'normales', 'normaux'),
('bronchite', 'légere', 'normales', 'oui', '
'oui', 'génée', 'mormales', 'normaux'),
('coqueluche', 'légere', 'mormales', 'non', '
'oui', 'génée', 'mormales', 'normaux'),
('pneumonie', 'élevée’, 'normales', 'non', '
'non', 'rapide', 'rouges', 'mormaux'),
('rougeole', 'légere', 'nmormales', 'non', 'oui', 'non', 'oui',
'oui', 'nmormale', 'normales', 'larmoyants'),
('rougeole', 'légere', 'mormales', 'non', 'oui', 'non',
'oui', 'nmormale', 'taches—rouges', 'larmoyants'),
('rubéole', 'légere', 'nmormales', 'oui', 'non', ' ! !
'non', 'normale', 'taches—rouges', 'normaux'),
('rubéole', 'non', 'normales', 'oui', 'non', 'non', ' !
'non', 'normale', 'taches—rouges', 'normaux'),
('rubéole', 'non', 'normales', 'oui', 'non', 'non', ' !
1 '

non', 'normale', 'normales', 'normaux'),

1 ! 1 ' ! 1 ! 1

oui', 'oui', 'non', 'non',

if len(argv) < 4:
print('On attend trois arguments: ' +
'"type des exemples (”profits 7, “maladies”), ' +
'nombre de clusters (pour le clustering k—means), '
'"type de lien (”single”, “complete”, pour le clustering hiérarchique)')

exit (1)
if argv [1].lower() == 'profits':
donnees = profits
elif argv [1].lower() == 'maladies":
donnees = maladies
else:
print('Type des exemples accepté : profits ou maladies')
exit (1)

if not est_entier_positif (argv [2]):
print('Nombre de clusters accepté : entier positif ')
exit (1)

k = int(argv([2])
if argv [3].lower() not in ('single', 'complete'):

print('Type de lien accepté : single ou complete')
exit (1)
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type_lien = argv(3]

clustering = ClusteringKMeans(k, distance)
clustering . itere (donnees)

print('Clustering k—means:")
clustering . affiche_clusters ()

clustering = ClusteringHierarchique(type_lien, distance)
clustering . itere (donnees)

print('Clustering hiérarchique: ")
clustering . affiche_clusters ()

L’algorithme général de clustering

Les deux algorithmes de clustering que vous allez implémenter sont des algo-
rithmes itératifs, qui construisent des clusters en suivant 1’algorithme général
ci-dessous :

clusters <— liste vide

Clustering(données)

1. anciens_clusters <— liste vide

2. clusters <— initialise_clusters (données)

3. WHILE NOT fini(anciens_clusters) DO

4. anciens_clusters <— sauvegarde des clusters
5. clusters <— revise_clusters( clusters)

6. END WHILE

END Clustering

La classe Cluster

La classe Cluster représente un cluster défini par un nom (optionnel) et par
une liste de données. Cette classe contient donc deux attributs :

e donnees : la liste des données du cluster,

e nom : le nom (optionnel) du cluster.

Cette classe contient aussi des méthodes utilitaires qui permettent d’ajouter
des données aux clusters.

La classe Clustering

La classe Clustering implémente 1’algorithme général de clustering que nous
avons vu ci-dessus. La méthode itere implémente cet algorithme en appelant
trois méthodes : initialise_clusters, revise_clusters et fini; elle joue donc
le role d'un wrapper pour ces trois méthodes. itere initialise les clusters, puis
les révise de maniere itérative jusqu’a ce qu'’ils soient stabilisés, et ne changent
plus d’une itération a ’autre.

Clustering impose une structure générale que ses sous-classes sont contraintes
de respecter. Afin d’obtenir le comportement désiré pour le clustering k-means
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et le clustering hiérarchique, les méthodes initialise_clusters, revise_clusters
et fini doivent cependant étre implémentées différemment dans chaque sous-
classe.

Exercice 13.1.1 Le clustering k-means (clustering de partitionnement)
L’algorithme k-means part d’une liste de noyaux, qui sont des données au-
tour de chacune desquelles sera construit un cluster. Au cours d’une itération,
chaque donnée est réaffectée au cluster du noyau duquel elle est le plus proche.
Chaque cluster est ensuite recentré autour d’'un nouveau noyau. L’algorithme
se termine quand l’ensemble des noyaux n’a pas changé d’une itération a la
suivante. Il existe plusieurs méthodes pour recentrer un noyau, qui donnent
lieu a différentes variantes de l'algorithme. Dans cet exercice, nous applique-
rons une variante adaptée a 1'usage de données discretes, qui est aussi appelée
algorithme des k-médoides.

La classe ClusterMean

La classe ClusterMean étend la classe meére Cluster avec un attribut noyau qui
doit aussi faire partie de la liste des données du cluster. Le constructeur initialise
cet attribut au premier élément de la liste de données.

La méthode principale & implémenter est centre, qui met a jour le noyau
d’un cluster afin que celui-ci soit au centre des données du cluster. Le nouveau
noyaux sera la donnée qui minimise la somme quadratique des distances aux
autres données du cluster. En d’autres termes, le noyau x,, du cluster C' doit
minimiser I’expression suivante :

Z d(zn,)?

zeC

C’est pour cette raison que la méthode prend un argument dist_f, qui est la
fonction de distance entre deux données d’un cluster. La distance que nous
utiliserons sera calculée comme le nombre d’attributs différents dans les tuples
représentant les éléments & comparer (voir exemple_clustering.py).

A plusieurs reprises, vous allez devoir parcourir une liste pour trouver 1'élé-
ment qui minimise une certaine fonction. En Python, ceci peut étre implémenté
en une seule ligne, grace a la fonction min(liste, key=fonction), qui prend en
parametres une liste d’éléments et une fonction que 'on cherche & minimiser.
Par exemple, pour trouver I’élément de la liste [1, 2, -3] qui a le plus pe-
tit carré, on peut utiliser la ligne de code m = min([1, 2, -3], key=lambda x :
X**2).

La classe ClusteringKMeans

La classe ClusteringKMeans étend la classe mere Clustering afin d’implémenter
I’algorithme k-means. Elle ajoute deux nouveaux attributs :

e k : le nombre des clusters a construire,

e dist_f : la fonction de distance entre deux éléments.
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Le constructeur de la classe prend ainsi en arguments le nombre de clusters
souhaités et la fonction de distance.

Comme nous 'avons vu ci-dessus, les méthodes principales a implémen-
ter sont initialise_clusters, revise_clusters et fini. La méthode initia-
lise_clusters prend en argument la liste des données a regrouper. Elle initia-
lise la liste self.clusters de sorte que celle-ci contienne k clusters avec comme
noyaux les k premiers éléments de la liste de données. Tous les autres éléments
sont affectés au premier cluster.

La méthode revise_clusters s’exécute en deux étapes :

o calcul des nouveaux clusters : initialisation des clusters avec uniquement
les noyaux, calcul des distances de chaque élément aux noyaux et ajout
de I’élément dans le cluster le plus proche;

o pour chaque cluster ainsi obtenu, le noyau est mis a jour afin d’étre au
centre du cluster.

La méthode fini prend en argument la liste des anciens clusters. Elle com-
pare cette liste avec les clusters actuels, afin de tester si I’algorithme a convergé.
Afin d’implémenter cette méthode, vous pouvez comparer les listes de noyaux
de ces deux ensembles de clusters : les noyaux ne changent pas si et seulement
si les clusters restent les mémes.

Astuce : Afin d'implémenter ces deux dernieres méthodes, vous pouvez vous
aider des méthodes vide de la classe ClusterMean, qui vide un cluster avec 1’op-
tion de garder son noyau, et noyaux de la classe ClusteringKMeans, qui retourne
les noyaux d’une liste de clusters.

Exercice 13.1.2 Le clustering hiérarchique

A la différence du clustering de partitionnement, le clustering hiérarchique par
agglomération construit une classification en clusters de plus en plus larges,
qui peut se présenter sous la forme d’un dendrogramme. La classification hié-
rarchique ainsi obtenue est organisée en groupes et en sous-groupes, afin de
discerner les agrégats de similarité grossiere des agrégats de similarité plus
fine.

L’algorithme part d’un ensemble de clusters ne contenant chacun qu’une
seule donnée, et, lors de chaque itération, fusionne les deux clusters les plus
similaires. L’algorithme se termine quand toutes les données ont été regroupées
en un seul cluster. La mesure de similitude entre deux clusters peut étre calcu-
lée de différentes facons. Dans cet exercice, nous vous en proposons deux : la
distance single-link et la distance complete-link. La distance single-link définit
la similitude de deux clusters comme la plus courte distance entre deux données
de ces clusters. A Iinverse, le complete-link considere la plus longue distance.
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La classe ClusterHierarchique

La classe ClusterHierarchique représente un cluster (un noeud) dans le dendro-
gramme (un arbre binaire) construit par le clustering hiérarchique. Elle contient
deux nouveaux attributs :

e gauche : le sous-cluster de gauche,

e droite : le sous-cluster de droite.

La classe ClusteringHierarchique

La classe ClusteringHierarchique implémente le clustering hiérarchique. Elle
étend la classe mere Clustering avec deux nouveaux attributs :

e type_lien : le type de distance entre deux clusters (’single’ ou ’comple-
o),

e dist_f : la fonction de distance entre deux données.

Le constructeur de la classe prend en arguments la fonction de distance entre
deux données et le type de distance entre deux clusters.

Les méthodes principales que vous devez implémenter sont initialise_
clusters, revise_clusters, clusters_distances et fini. La méthode initia-
lise_clusters initialise la liste self.clusters de sorte qu’elle contienne un
cluster (un nceud) pour chaque donnée de la liste passée en argument.

La méthode revise_clusters cherche les deux clusters les plus proches et
les fusionne en un seul grace a la méthode fusion de la méme classe, qui re-
tourne le nouveau noeud. Elle les retire ensuite de la liste des clusters pour y
ajouter le produit de leur fusion. Cette méthode s’appuie sur la méthode cal-
cule_distance, qui doit, selon le type de lien indiqué, retourner le minimum ou
le maximum des distances entre chaque paire des données des deux clusters.
Selon que la distance entre deux clusters est définie comme le minimum des
distances entre chaque paire d’éléments ou comme le maximum, on obtient en
effet une distance de type single-link ou de type complete-link.

Rappelons que c’est la méthode Clustering.itere qui implémente 1'algo-
rithme général de clustering, et qui joue le role d’'un wrapper pour les mé-
thodes initialise_clusters et revise_clusters. Dans le cas du clustering hié-
rarchique, itere va donc initialiser les clusters, puis les fusionner de maniere
itérative jusqu’a ce qu’il ne reste qu'un seul élément dans la liste self.clusters.
Cet élément constituera la racine de la hiérarchie construite par le clustering.
La méthode fini, quant a elle, arréte I’algorithme quand la taille de la liste des
clusters est réduite a un seul élément.

Test du programme

Une fois que vous avez terminé I'implémentation des méthodes manquantes,
il ne vous reste plus qu’a tester ces deux algorithmes sur les deux exemples
fournis : maladies et profits d’enterprises.
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Pour le clustering k-means, faites varier le nombre de clusters (ainsi que
'initialisation des clusters et leurs noyaux, si vous étes motivés). Que pensez-
vous de la qualité des clusters? Les données classifiées dans un méme cluster
sont-elles toujours tres similaires 7 Est-il facile de choisir le nombre de clusters ?

Pour le clustering hiérarchique, quelles différences obtenez-vous si vous al-
ternez entre les méthodes single-link et complete-link? Que pensez-vous de la
qualité des clusters ainsi obtenus, en comparaison avec 1’algorithme k-means ?

Solutions a la page 396






CHAPITRE 14

Apprentissage bio-inspiré

L’apprentissage est une caratéristique de nombreux étres vivants. Il n’est donc
pas surprenant que ’observation du monde naturel nous fournisse des sources
d’inspiration. Deux techniques principales sont ainsi calquées sur des modeles
biologiques :
o les réseaur de neurones artificiels, qui forment une structure imitant les
réseaux de neurones du cerveau et

o les algorithmes génétiques, qui réalisent un processus d’optimisation en
simulant I’évolution des organismes.

Dans les deux cas, bien que ces techniques s’inspirent de la nature, elles
utilisent des modeles simplifiés, qui sont bien adaptés a 'implémentation infor-
matique, mais assez éloignés de modeles biologiques corrects.

14.1 Réseaux de neurones artificiels

Nous avons déja vu au chapitre 11 la méthode du perceptron pour la classifi-
cation binaire. Le perceptron a été inspiré par le fonctionnement des neurones,
dont il constitue un modele fortement simplifié, qui néglige notamment la dy-
namique temporelle a 'ceuvre dans les neurones biologiques.
Etant donnée cette analogie, il est naturel de regrouper de tels éléments de
calcul dans un réseau qui imite le réseau qu’on retrouve dans le cerveau humain.
Un tel réseau est bien plus puissant qu’un seul perceptron et peut implémenter
des frontieres de décision plus complexes. En outre, il peut réaliser d’'un seul
coup des classifications ou prédictions multiples, tandis que le perceptron est
limité a séparer deux classes.

La version la plus simple d’un tel réseau utilise deux couches de neurones,
comme montré dans la figure 14.1. On y trouve :

e une couche d’entrées ey, .., e,, qui représentent chacune une valeur d’acti-
vation d’un trait dans la situation ou dans I’exemple courant ; ces valeurs
sont transmises a

o une couche de neurones cachés (hidden units) Hy,.., Hp, qui regoivent
des entrées depuis les neurones de la couche d’entrées et fournissent les
résultats vers

e une couche de neurones de sortie Oy, ..,0,,, qui retournent les résultats
du réseau, par exemple des classifications ou des prédictions.
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Fig. 14.1 Ezemple d’un réseau de neurones artificiels multicouche.
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Fig. 14.2 Fonctionnement d’un neurone artificiel.

La couche cachée permet de construire des traits complexes en fournissant
différentes classifications des entrées, qui peuvent étre combinées de différentes
manieres par la couche de sortie. Ceci donne a une telle architecture, méme
avec seulement deux niveaux, une puissance largement supérieure a celle d’un
seul perceptron.

A Tinstar du perceptron, un neurone artificiel (fig. 14.2) calcule la somme
de ses entrées e;, pondérées par les poids de connexion, et ajoute un biais wy :

T = E w;e; + wo

e;Eentrees

Ensuite, on applique une fonction non-linéaire, dite fonction d’activation, pour
obtenir la valeur de sortie. Cette fonction peut étre une simple fonction de seuil
(threshold) :

1 siz>0

f(x):{ 0 siz<0
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ou une fonction sigmoide :
1

f(l"):m

ou bien une fonction redresseur (rectifier) :
f(z) = max(0, )

La fonction sigmoide est identique & la transformation logistique (voir sect. 11.6)
et assure que la fonction d’activation prend des valeurs dans I'intervalle [0..1].
Un réseau a 2 couches présente donc une équivalence avec une regression logis-
tique. La fonction redresseur est surtout importante dans un réseau possédant
de nombreuses couches, ou elle permet un meilleur apprentissage, comme nous
le verrons par la suite.

La classification ou prédiction effectuée par le réseau est déterminée par
les poids w;;. Dans 'exemple de la figure 14.1, le neurone caché H1 calcule
flwir - ex + war - e2), et la sortie O3 est obtenue par f(vis - H1 4 vo3 - H2 +
v33 - H3). En choisissant convenablement les connections et les poids, on peut
donc construire une tres large gamme de fonctions. En pratique, des réseaux de
neurones artificiels peuvent représenter pratiquement toutes les fonctions, soit
pour la classification, soit pour la régression et la prédiction, a condition qu’ils
soient suffisement complexes.

I’apprentissage d’un réseau de neurones artificiels consiste donc a détermi-
ner les poids qui permettront la meilleure performance sur les exemples fournis
en entrée. Pour la couche de sortie, il est possible d’appliquer ’algorithme du
perceptron, ou, plus généralement, la descente de gradient stochastique. Par
contre, pour les couches cachées, on ne connait pas directement 'erreur a at-
tribuer & un neurone particulier. On peut cependant déterminer cette erreur
par rétropropagation (back-propagation), en calculant la variation de l’erreur
en fonction de chacun des poids sous la forme du gradient de la fonction d’ac-
tivation.

Comme le montre la figure 14.3, on utilise les erreurs observées sur la couche
de sortie €y, .., €, pour mettre a jour les poids et rétropropager les erreurs vers
la couche précédente. Chaque neurone artificiel (fig. 14.4) effectue les deux
opérations suivantes :

1) correction de w; par gradient

_5ej_df6x_ﬁ

9: = Sw; %5101- o dxei

Aw; = —aeg; (o € [0..1] = taux d’apprentissage)

2) rétropropagation de Perreur vers la couche cachée par gradient

_Ge _bfsu_of

miéieiiaéeiéxwi

[ q— € 3 1 A
€; = >_;1ij€; (somme sur tous les neurones j connectées)
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Fig. 14.3 Apprentissage dans un réseau multicouches par rétropropagation des er-
reurs de sortie.

&1 =¢&"1
AW1 = —oen

& =¢%rp

AW3 =—oelg

g3 =¢"r3
Fig. 14.4 Rétropropagation sur un neurone.

La rétropropagation dépend alors de facon cruciale de la forme du gradient
de la fonction d’activation f utilisée par le neurone artificiel. Pour la fonction de
seuil du percepton, le gradient est soit infini soit zéro, et ne permet donc aucune
rétropropagation. Heureusement, d’autres fonctions sont mieux adaptées :

« pour la fonction sigmoide f(z) = 1—#%’
utilisant la valeur de la fonction méme :

Sf e
e e f(@)(1— f(z))

le gradient peut se calculer en

« pour la fonction redresseur, le gradient est encore plus simple : f(x) =

max(0, z) :
of [ 1 siz>0
Sz 1 0 siz<0

Chaque neurone effectue donc la rétropropagation de ’erreur vers les neurones
qui lui fournissent ses entrées. Ces neurones somment les erreurs qu’ils recoivent
a leur sortie et appliquent également a leur tour la méme procédure.
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Comme dans le cas du perceptron, on applique cet algorithme itérativement
a des exemples sélectionnés de fagon aléatoire. On obtient donc ainsi une des-
cente de gradient stochastique. L’algorithme se termine quand le réseau atteint
un taux d’erreurs acceptable.

Bien qu’une grande partie des applications de réseaux de neurones artificiels
se contentent de deux couches (comme dans la figure 14.1), la rétropropagation
en autorise un nombre nettement plus élevé, par exemple une trentaine. On
parle alors de réseau profond (deep neural net) dont 'apprentissage constitue
le deep learning. Dans un tel réseau profond, l'apprentissage est cependant
beaucoup plus lent et nécessite une grande quantité de données.

Les réseaux profonds sont donc utiles surtout pour des applications dans
lesquelles on dispose de données abondantes, comme la vision, la reconnais-
sance de la parole, ou des jeux qui peuvent étre répetés indéfiniment (comme
le programme AlphaGo, qui est ainsi devenu champion du monde de Go). Les
couches multiples se révelent utiles, car elles permettent de créer une hiérachie
de détecteurs de traits de plus en plus complexes. Ainsi, dans un systeme de
vision, on peut observer que les premieres couches apprennent a reconnaitre des
traits simples, comme des lignes et des formes géométriques, qui seront ensuite
composées pour former des détecteurs de formes plus complexes, tels que des
éléments de visages, dans des couches supérieures.

Le développement de réseaux profonds a longtemps été empéché par le pro-
bleme du gradient disparaissant (vanishing gradient) : la derivée de la fonction
sigmoide restant toujours inférieure a 1, le signal d’erreur rétropropagé d’une
couche a I’autre devient de plus en plus faible. L utilisation de la fonction redres-
seur a permis d’éliminer ce probleme et ainsi d’entrainer des réseaux beaucoup
plus profonds.

Un deuxieme probleme lié a la complexité de l'apprentissage est que la
descente de gradient conduit vers un minimum local, et que dans un grand
réseau il n’est pas facile de recommencer avec différents points de départ. On
utilise alors la méthode du dropout pour créer des variations aléatoires, qui
permettent d’échapper aux minima locaux. Elle consiste a enlever au hasard
quelques neurones lors du calcul du gradient. L’apprentissage s’arréte alors
uniquement si le résultat est robuste a l’égard des variations produites par
cette méthode, ce qui donne des résultats plus proches de I'optimum.

Le deep learning est en fait une technique trés ancienne, qui a été mise
au point dans les années 1980 et qui a suscité un vif intérét a cette époque
déja. Pendant longtemps, la technique n’a cependant fourni que des résultats
médiocres. On pense aujourd’hui que cela était di au manque de données et
de puissance de calcul. Depuis 2010, le deep learning a accumulé de nombreux
succes, en particulier dans les domaines de la vision et de la reconnaissance
automatique de la parole. Des progres supplémentaires ont été obtenus par ’in-
tégration du deep learning avec d’autres techniques d’Intelligence Artificielle,
ce qui a rendu possibles des applications dans d’autres domaines. Par exemple,
le programme AlphaGo, qui integre des réseaux profonds dans un systeme de
planification avec adversaire, a été capable de battre le champion du monde
de Go.
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Fig. 14.5 Ambiguité du classificateur appris par deep learning : le réseau entrainé
sur des guitares et des pingouins admet également d’autres structures a la place.

Lors de l'utilisation des techniques du deep learning, on ne peut plus vrai-
ment interpréter les contenus appris par le réseau comme de nouvelles connais-
sances explicites. Il est donc aussi difficile de vérifier et de garantir que ces
connaissances sont effectivement correctes. Par exemple, un réseau entrainé
pour reconnaitre des guitares et des pingouins pourra également admettre des
images plus abstraites comme étant de tels objets (fig. 14.5). Si on veut utiliser
un systeme qui repose sur le deep learning pour la prise de décisions impor-
tantes, cette imprévisibilité peut poser de sérieux problemes.

14.2 Algorithmes génétiques

Les algorithmes génétiques s’inspirent de I’évolution biologique et restent en
effet tres proches de celle-ci. L’idée est de chercher un résultat d’apprentis-
sage en faisant évoluer une population de plusieurs modeles possibles, dont les
qualités sont mises en compétition. Cette technique peut permettre d’éviter de
rester bloqué dans des optima locaux. Les algorithmes génétiques permettent
I’apprentissage et la découverte d’une structure qui satisfait un critére d’éva-
luation donné. L’apprentissage se fait par une recherche incrémentale et impose
donc tres peu de restrictions sur les modeles qui peuvent étre appris.
En entrée, un algorithme génétique dispose :

o d’une population initiale de n solutions potentielles; chaque solution est
représentée par un « chromosome », qui est une version codée de toutes
ses caractéristiques sous la forme d’une chaine de symboles (en s’inspirant
de la biologie) ;

e d’une fonction f d’évaluation des solutions; f n’est pas forcément une
fonction mathématique des chromosomes, elle peut aussi consister en une
simulation de la performance des solutions dans le probleme auquel elles
doivent étre appliquées ; cela permet de modéliser le principe de « sélection
naturelle ».
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A chaque itération, ’algorithme génere de nouvelles solutions en appliquant
des opérateurs de mutation et de combinaison sur des membres de la population
courante. Ces opérateurs s’inspirent également de la biologie :

o la mutation change un élément du chromosome de maniere aléatoire,

e la combinaison de deux chromosomes crée un nouveau chromosome com-
binant des éléments des deux premiers.

Une nouvelle population est constituée a partir de la population courante en
éliminant certaines solutions peu performantes et en en créant de nouvelles
par mutation et combinaison. Par exemple, la génération suivante pourrait se
constituer de :

o k solutions dont la fonction d’évaluation est la plus élevée (c’est & ce
niveau qu’est effectuée la sélection naturelle) et

« un nombre (n — k) de solutions choisies au hasard parmi les autres.

L’application itérative de la procédure conduit a ’optimisation de la popu-
lation selon le critere d’évaluation choisi au départ.

Comme exemple d’une application, considérons un fabricant de chocolat
qui veut optimiser la qualité de ses produits. On suppose que la qualité du
chocolat dépend fortement de la quantité de sucre et de cacao ajoutés dans la
pate. La forme précise de cette relation, comme la montre la figure 14.6, est
cependant inconnue et peut étre évaluée uniquement en produisant les chocolats
correspondants et en les mettant en vente.

sucre

cacao

Fig. 14.6 La qualité du chocolat en fonction de la quantité de sucre et de cacao dans
la pate.
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Une solution peut étre représentée par un « chromosome » :

quantité de quantité de
sucre cacao

Les opérateurs sont alors :
o la mutation : la quantité de sucre ou de cacao augmente ou décroit de 1,

o la combinaison z de deux chromosomes x et y : sucre(z) = sucre(zx),
cacao(z) = cacao(y).

Pour un probléeme dont la fonction d’évaluation est simple, comme celle de
la figure 14.6, la mutation suffit pour obtenir la meilleure solution. Elle équivaut
a un processus de hill-climbing couramment utilisé en optimisation.

sucre

cacao

Fig. 14.7 Une fonction d’évaluation qui nécessite la combinaison en plus de la mu-
tation.

Par contre, si la fonction d’évaluation contient des minima ou maxima lo-
caux, la combinaison est nécessaire pour les surmonter. La figure 14.7 montre
un exemple d’une fonction d’évaluation dans laquelle les tres bonnes solutions
de la partie centrale sont entourées d’un « fossé » de zéros, qui les sépare des
solutions médiocres des bords. 1l est difficile, voire impossible, pour 1’optimi-
sation basée sur des criteres locaux, de traverser le « fossé » constitué par les
valeurs 0, car toute mutation qui se rapprocherait du bon résultat prendrait
d’abord une valeur zéro et serait éliminée.
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La combinaison permet de trouver un bon résultat en combinant deux so-

lutions qui sont chacune localement optimales :
(51) avec (1 5) = (55)

Ce phénomene est typique des applications d’algorithmes génétiques. L’opéra-
teur de combinaison est donc essentiel pour leur performance. Pour bien exploi-
ter cet opérateur, il est important de maintenir une certaine diversité dans la
population. Il peut donc étre utile d’encourager explicitement cette diversité,
par exemple en modifiant la fonction d’évaluation pour favoriser des distri-
butions plus variées. On peut ainsi remplacer la fonction f(s) par la somme
f(s) + g(s), on g(s) caractérise le degré d’individualité :

g9(s) = 211

Les algorithmes génétiques sont souvent utilisés pour effectuer une optimi-
sation dans des domaines ou la fonction d’optimisation est peu claire, et qui
nécessitent donc cette forme d’apprentissage au lieu d’un calcul direct de la
solution optimale. Les applications sont tres variées et incluent par exemple
I'optimisation de la forme de turbines ou l'optimisation de stratégies de négo-
ciation sur des marchés financiers.

Littérature

Le livre général [54] contient une bonne introduction aux réseaux de neurones
artificiels. Le livre [76] entre en plus de détail dans le deep learning.

Les livres [77] et [78] introduisent les algorithmes génétiques ; de nombreuses
publications existent quant a leurs applications.
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CHAPITRE 3

Algorithmes d’inférence

Exercice 3.1 : Inférence a chainage avant sans variables

Module .../moteur_sans_variables/regle_sans_variables.py :

class RegleSansVariables:
def _init_ (self, conditions, conclusion):
self . conditions = set(conditions)
self .conclusion = conclusion

def depend_de(self, fait ):
return fait in self . conditions

def satisfaite_par ( self, faits ):
return self. conditions. issubset ( faits )

def _repr_ (self ):
return '{} => {}'.format(str(list(self.conditions)),
str( self .conclusion))

Module .. ./moteur_sans_variables/chainage_avant_sans_variables .py -

from .chainage import Chainage

class ChainageAvantSansVariables(Chainage):
def chaine( self ):
queue = self. connaissances. faits [:]
self . reinitialise ()

while len(queue) > 0:
fait = queue.pop(0)

if fait not in self. solutions:
self . solutions . append(fait)
self . trace .append(fait)

# Vérifie si des régles sont déclenchées par le nouveau fait.
for regle in self .connaissances. regles :
if regle.depend_de(fait) and regle. satisfaite_par ( self . solutions ):
queue.append(regle.conclusion)
self . trace.append(regle)

return self. solutions
Exercice 3.2 : Moteur d’inférence a chainage avant avec variables
Module .../moteur_avec_variables/proposition_avec_variables.py :

def est_atomique(proposition):
return type(proposition) == type(")
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def est_une_variable (proposition, marqueur='7"):
return est_atomique(proposition) and proposition[0] == marqueur

def tete(proposition ):
if est_atomique(proposition):
raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:
return proposition[0]
else:
raise Exception(”Proposition vide: Impossible de la segmenter.”)

def corps(proposition ):
if est_atomique(proposition):
raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:
return proposition[1:]
else:
raise Exception(”Proposition vide: Impossible de la segmenter.”)

def lister_variables (proposition ):
variables = set()
if est_atomique(proposition):
if est_une_variable (proposition):
variables .add(proposition)
else:
for sous_prop in proposition:
variables .update( lister_variables (sous_prop))
return variables

Module .. ./moteur_avec_variables/regle_avec_variables.py :

class RegleAvecVariables:
def _init_ (self, conditions, conclusion):
self . conditions = conditions
self . conclusion = conclusion

def depend_de(self, fait, methode):
envs = {}

for condition in self .conditions:
# Si au moins une des conditions retourne un environnement,
# nous savons que la proposition satisfait une des conditions.
env = methode.pattern match(fait, condition, {})
if env !|= methode.echec:
envs|[condition] = env

return envs

def satisfaite_par ( self, faits, cond, env, methode):
envs = [env]

# On n'a pas besoin de tester * " cond” " car cela a été fait dans l'appel
# o’ " depend_de’* qui précéde l'appel a cette méthode.
conditions_a_tester = [condl for condl in self.conditions if condl != cond]

# Pour chaque condition dans la liste des conditions, si la liste
# des environnements n'est pas vide, on y ajoute les environnements
# qui permettent de satisfaire une des conditions.
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for condl in conditions_a_tester :
envs_nouveaux = ||

for fait in faits:
for envl in envs:
envl = methode.pattern_match(fait, condl, envl)
if envl != methode.echec:
envs_nouveaux.append(envl)

# Si au moins une condition n'est pas satisfaite ,
# la régle ne ' est pas non plus.
if len(envs_nouveaux) == 0:

return ]

envs = envs_nouveaux
return envs

def _repr_ (self ):
return '{} => {}'.format(str(self.conditions), str(self .conclusion))

Module .../moteur_avec_variables/chainage_avant_avec_variables.py :

from moteur_sans_variables.chainage import Chainage
from . filtre import Filtre

class ChainageAvantAvecVariables(Chainage):
def _init_ (self, connaissances, methode=None):
Chainage. __init_ ( self , connaissances)

if methode is None:

self .methode = Filtre()
else:

self .methode = methode

def instancie_conclusion ( self , regle, envs):
return [self.methode.substitue(regle.conclusion, env) for env in envs]

def chaine(self ):
queue = self.connaissances. faits [:]
self . reinitialise ()

while len(queue) > 0:
fait = queue.pop(0)

if fait not in self. solutions:
self . trace . append(fait)
self . solutions . append(fait)

# Veérifie si des régles sont déclenchées par le nouveau fait.
for regle in self .connaissances. regles :
cond_envs = regle.depend_de(fait, self .methode)
for cond, env in cond_envs.items():
# Remplace ['environnement par ceux qui satisfont
# toutes les conditions de la régle et pas seulement la
# premiere condition.
envs = regle. satisfaite_par ( self . solutions, cond, env,
self .methode)
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# Ajoute la conclusion de la régle instanciée pour tous
# les environnements possibles.
if len(envs) > 0:
queue.extend(self. instancie_conclusion (regle , envs))
self . trace.append(regle)

return self. solutions

Module .../moteur_avec_variables/filtre.py :

from .proposition_avec_variables import est_atomique, est_une_variable, tete, corps

class Filtre:
echec = 'échec'

def substitue( self , pattern, env):
if est_atomique(pattern):
if pattern in env:
return env|pattern]
else:
return pattern

pattern_subst = ()

for sous_pattern in pattern:
sous_pattern_subst = self .substitue (sous_pattern, env)
pattern_subst = pattern_subst + (sous_pattern_subst,)

return pattern_subst

def filtre (self, datum, pattern):
if len(pattern) == 0 and len(datum) == 0:
return {}

if len(pattern) == 0 or len(datum) == 0:
return Filtre.echec

if est_atomique(pattern):
if datum == pattern:
return {}
if est_une_variable (pattern):
return {pattern: datum}

return Filtre.echec

if est_atomique(datum):
return Filtre.echec

datum_tete = tete(datum)
pattern_tete = tete(pattern)
datum_reste = corps(datum)
pattern_reste = corps(pattern)

tete_env = self. filtre (datum_tete, pattern_tete)

if tete_env == Filtre.echec:
return Filtre.echec
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pattern_reste = self. substitue( pattern_reste, tete_env)
reste_env = self. filtre (datum_reste, pattern_reste)

if reste_env == Filtre.echec:
return Filtre.echec

tete_env.update(reste_env)
return tete_env

def pattern_match(self, datum, pattern, env=None):
if env is not None:
env = env.copy()
else:

env = {}

pattern = self. substitue(pattern, env)
resultat = self. filtre (datum, pattern)
if resultat == Filtre.echec:

return Filtre.echec

env.update(resultat)
return env

Module .../moteur_avec_variables/unificateur.py :

from .proposition_avec_variables import est_atomique, est_une_variable, tete, corps

class Unificateur:
echec = 'échec'

def substitue( self , pattern, env):
if est_atomique(pattern):
if pattern in env:
return self. substitue (env[pattern], env)
else:
return pattern

pattern_subst = ()

for sous_pattern in pattern:
sous_pattern_subst = self . substitue (sous_pattern, env)
pattern_subst = pattern_subst + (sous_pattern_subst, )

return pattern_subst

def unifie ( self , propl, prop2):
if len(propl) == 0 and len(prop2) == 0:
return {}
if len(propl) == 0 or len(prop2) == 0:
return Unificateur.echec

# Une des deux propositions est un atome => on essaie de le matcher.
if est_atomique(propl) or est_atomique(prop2):
if propl == prop2:
return {}
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if not est_atomique(propl):
propl, prop2 = prop2, propl

if est_une_variable (propl):
if propl in prop2:
return Unificateur.echec
else:
return {propl: prop2}

if est_une_variable (prop2):
return {prop2: propl}

# Dans les autres cas, ' unification est un échec.
return Unificateur.echec

# Aucune des propositions n'est atomique : on unifie récursivement.
propl_tete = tete(propl)
prop2_tete = tete(prop2)
propl_reste = corps(propl)
prop2_reste = corps(prop2)
tete_env = self. unifie (propl_tete, prop2_tete)
if tete_env == Unificateur.echec:
return Unificateur.echec

propl_reste = self.substitue (propl_reste, tete_env)
prop2_reste = self.substitue (prop2_reste, tete_env)
reste_env = self. unifie (propl_reste, prop2_reste)
if reste_env == Unificateur.echec:

return Unificateur.echec

tete_env.update(reste_env)
return tete_env

def pattern_match(self, propl, prop2, env=None):

if env is not None:
propl = self. substitue (propl, env)
prop2 = self. substitue (prop2, env)
env = env.copy()

else:

env = {}

resultat = self. unifie (propl, prop2)
if resultat == Unificateur.echec:
return Unificateur.echec

env.update(resultat)
return env
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CHAPITRE 4

Représentation structurée des connaissances

Exercice 4.1 Modélisation
Il faut modéliser tous les concepts qui figurent dans le probleme, c.a.d. les
concepts suivants :

personne, contribuable, salarié, indépendant, faible, moyen,
élevé, <12, 12—-18

Le modele contiendra également toutes les relations :
enfant, &ge, revenu, loyer, trajet
Finalement, certains concepts font partie d’une hiérarchie :

contribuable C personne
salarié C contribuable
indépendant L contribuable

Exercice 4.2 Déductions
Les classes qui ont droit aux quatre déductions peuvent étre modélisées par les
expressions suivantes :

1) déduction-enfant = contribuable M3 enfant

2) déduction-loyer = contribuable I loyer.élevé I revenu.faible
3) déduction-trajet = salarié M trajet.élevé

4) déduction-pension = indépendant Ll (salarié 1 revenu.élevé)

Exercice 4.3 Raisonnement (1)

La classe de Charles est décrite par I'expression :
(salarié I enfant.Jacques [1 trajet.élevé 1 loyer.élevé M1
revenu.faible)

Charles a droit a trois déductions : déduction-enfant, déduction-trajet,
et déduction-loyer
On trouve déduction-enfant en utilisant de la T-box d’abord le fait qu'un
salarié est un contribuable :

salarié C contribuable
pour construire une réécriture de I'expression qui décrit Charles, et ensuite la
définition de la classe

déduction-enfant = contribuable M3 enfant
pour réécrire le but.
La procédure de subsumption sera alors appliquée pour montrer :

(contribuable I enfant.Jacques I trajet.élevé N loyer.élevé
M revenu.faible) T (contribuable M3 enfant)
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La méme réécriture pourra étre utilisée pour montrer la subsumption avec
déduction-trajet, et la subsumption avec déduction-loyer peut étre trou-
vée sans réécriture.

Exercice 4.4 Raisonnement (2)
Pour la version a), on peut caractériser la classe de ceux qui perdent par :

contribuable M loyer.élevé 1 revenu.faible M —3 enfant.dge.12—18
et de ceux qui gagnent :

contribuable [ loyer.élevé 1 — revenu.faible 3 enfant.&ge.12—18
Pour la version b), on peut caractériser la classe de ceux qui perdent par :

contribuable I loyer.élevé 1 revenu.faible I <2.enfant
et ceux qui gagnent par :

contribuable I loyer.élevé 1 — revenu.faible 1 >1.enfant

Pour la version a), la logique AL est suffisante. Pour la version b), la pos-
sibilité d’introduire des restrictions de nombre est nécessaire, ce qui rend le
raisonnement beaucoup plus complexe.
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CHAPITRE 5

Raisonnement basé sur des regles
et systemes experts

Exercice 5.1 Comparaison du chalnage avant et arriere

1)

En chainage avant, il suffit de lancer le systeme pour trouver tous les faits
qui peuvent étre établis d’apres la base des faits initiaux et les regles.
Ensuite on examine le contenu de la base de faits pour voir les faits qui
correspondent & notre requéte. On peut envisager que I’examen du contenu
de la base de faits se fasse au moyen d’un mécanisme de pattern matching.
Pour le chainage arriere, il suffit de fournir au systeme le but a satisfaire :

e Requéte 1 : Bonifier (Bourgogne, ?Année-Vin,2007)
o Requéte 2 : Eliminer( ?Vin, ?Année-Vin)

Bonifier (Bourgogne,1995,2007) est la requéte a laquelle nous nous inté-
ressons. Voici les regles qui sont appliquées :

REGLE 4)

BUT: Bonifier(Bourgogne,1995,2007)

consequence—regle: Bonifier(Bourgogne,? Année—Vin,? Année—Vin+10)
—>ECHEC

REGLE 6)
BUT: Bonifier(Bourgogne,1995,2007)
SOUSBUTS:
— 2006 > 1900 —> SUCCES
— 2006 < 2020 —> SUCCES
— NOT Déclasser(Bourgogne,1995,2007)
REGLE 2)
BUT: Déclasser(Bourgogne,1995,2007)
SOUSBUTS:
— 2007 — 1995 > 20—>ECHEC
—>ECHEC
REGLE 5)
BUT: Déclasser(Bourgogne,1995,2007)
SOUSBUTS:
— 2006 < 2020 —> SUCCES
— 2006 > 1900 —> SUCCES
— Déclasser(Bourgogne, 1995, 2006)
REGLE 5)
BUT: Déclasser(Bourgogne, 1995, 2006)
SOUSBUTS:
— 2005< 2020 —> SUCCES
— 2005> 1900 —> SUCCES
— Déclasser(Bourgogne, 1995, 2005) ... jusqu'a 1900 ... —> ECHEC
—> ECHEC
—>ECHEC
—>SUCCESS

— Bonifier(Bourgogne,1995,2006)
REGLE 4)
BUT:Bonifier(Bourgogne,1995,2006)
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SOUSBUTS:
— Stock—Vin(Bourgogne,1995) —> SUCCES
— 2006 — 1995 > 10 —> ECHEC
—> ECHEC
REGLE 6)
BUT: Bonifier(Bourgogne,1995,2006)
SOUSBUTS:
— 2005 > 1900 —> SUCCES
— 2005 < 2020 —> SUCCES
— NOT Déclasser(Bourgogne,1995,2006)
REGLE 2)
BUT: Déclasser(Bourgogne,1995,2006)

—> ECHEC
—> SUCCES

— Bonifier(Bourgogne,1995,2005)
REGLE 4)
BUT: Bonifier(Bourgogne,1995,2005)
SOUSBUTS:
— Stock—Vin(Bourgogne,1995) —> SUCCES
— 2005 — 1995 = 10 —> SUCCES
—> SUCCES

—> SUCCES

—> SUCCES

Si on enclenche le systeme en chalnage avant, le mécanisme d’inférence va
essayer de déduire tous les faits possibles en unifiant I’ensemble des regles
avec les faits de la base (faits initiaux et faits inférés). Dans le cas de notre
exemple, le systéme va surcharger la base de faits avec des informations
inutiles, en déduisant pour chaque année tous les vins qui seront bons cette
année-1a (et ce jusqu’a 2020). Or, si un vin est bon une certaine année, il le
restera tant qu’il n’est pas déclassé. Déduire explicitement qu’il sera bon
toutes les années suivantes est inutile. Imaginons que le nombre de bons
vins soit important, le nombre de faits inférés risque d’étre tres grand et
va considérablement ralentir le fonctionnement de notre systéeme expert.
Ces séries d’inférences sont d’autant plus inutiles qu’elles n’ont rien a voir
avec la requéte qui nous intéresse, c.a.d. quels sont les vins a éliminer.
Les regles 1), 2), 5), 7) et 8) permettent de déduire tous les vins a déclasser
et a éliminer en utilisant le chainage avant. Cela peut-étre constaté en
partant du fait Eliminer et en regardant quelles sont les seules regles qui
peuvent étre successeurs de ce type de faits dans un processus de chainage
arriere.

Dans le cas du chainage arriere, ’absence de cette condition va faire cycler
le systeme a l'infini pour certaines requétes : par exemple, si on désire
savoir si le Bourgogne 1983 est un bon vin, la régle 4) ne sera jamais
satisfaite car il n'y a pas de Bourgogne 1983 en stock et le systeme va
donc récursivement essayer d’appliquer la régle 6) puis la regle 4) sans
jamais s’arréter.

Si toutes les regles sont appliquées en chainage arriere, les vins déclassés
sont a déduire a nouveau a chaque fois que 'on veut savoir si un vin
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particulier est bon. De plus, on va essayer de satisfaire a plusieurs reprises
les mémes sous-buts, par exemple : Stock-Vin( ?Vin, ?Année-Vin) qui est
impliqué dans les regles 1), 2) 3) et 4). Il est clair que si la satisfaction
d’un sous-but est onéreuse, on aimerait éviter de le recalculer plusieurs
fois.

7) Ce qu’on veut montrer, ¢’est qu'un processus de décision est souvent com-
posé de parties en chainage avant et de parties en chainage arriere. Le
choix du mécanisme d’inférence est souvent lié a la nature des requétes
(certaines requétes se prétent mieux au chainage avant et d’autres au chai-
nage arriere). En principe, si les régles ont été congues avec suffisamment
de soin pour éviter les problemes de cycles, on peut indifféremment utili-
ser I'un ou l'autre type de chalnage pour satisfaire une requéte. Cela ne
veut pas dire que les coiits (en capacité mémoire et en temps) soient les
mémes. C’est pour cela qu’en pratique, les systémes experts sont souvent
hybrides.

Exercice 5.2 Programmation du chainage arriere

Module .../moteur_chainage_arriere/noeud.py :

from moteur_avec_variables.proposition_avec_variables import x

class Noeud:
def _init_ (self, but, sous_but_courant, sous_buts_a_tester, profondeur):
self .but = but
self .sous_but_courant = sous_but_courant
self . sous_buts_a_tester = sous_buts_a_tester
self . profondeur = profondeur

def est_terminal ( self ):
return len(self.sous_but_courant) == 0 and len(self.sous_buts_a_tester) == 0

def est_solution ( self ):
variables = lister_variables ( self .but)
return self. est_terminal () and len(variables) == 0

def successeur( self , env, nouveaux_sous_buts, unificateur ):
# Les sous—buts aexplorer sont composés par les sous—buts
# encore ouverts et les nouveaur sous—buts (cas d'une régle).
sous_buts = nouveaux_sous_buts[:]
sous_buts.extend(self . sous_buts_a_tester )

if len(sous_buts) > 0:
premier_sous_but = sous_buts|0]
else:
premier_sous_but = ()

if len(sous_buts) > 1:
reste_sous_buts = sous_buts[1:]
else:
reste_sous_buts = ]

successeur = Noeud(
unificateur . substitue ( self .but, env),
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unificateur . substitue (premier_sous_but, env),

[ unificateur . substitue (sous_but, env) for sous_but in
reste_sous_buts |,

self . profondeur + 1

)

return successeur

def description_standardisee (noeud):
sous_buts = [noeud.sous_but_courant] if len(noeud.sous_but_courant) > 0 else ]
sous_buts.extend (noeud.sous_buts_a_tester)
sous_buts = sorted(sous_buts, key=lambda prop: prop)
but_et_sous_buts = [noeud.but] 4+ sous_buts

return but_et_sous_buts

def _repr_ (self ):
return '<{},{},{},{}>' format(self.but,
self .sous_but_courant,
self . sous_buts_a_tester ,
self . profondeur)

Module .. ./moteur_chainage_arriere/chainage_arriere.py :

from moteur_sans_variables.chainage import Chainage
from .noeud import Noeud
from .noeuds_testes import NoeudsTestes

class ChainageArriere(Chainage):
def _init_ (self, connaissances, unificateur ):
self .connaissances = connaissances
self . unificateur = unificateur

def successeurs( self , noeud):
nouveaux_noeuds = [|

if noeud.est_terminal ():
return nouveaux noeuds

# On se limite aux faits et auzx régles intéressants a examiner.
# En effet, si le sous—but examiné commence par 'grand—pere',
# alors il est inutile de considérer des noeuds commencant

# par 'oncle' par exemple.

regles_interessantes = self.connaissances. choisir_regles_interessantes (noeud.
sous_but_courant, self . unificateur )
faits_interessants = self.connaissances. choisir_faits interessants (noeud.

sous_but_courant)

# On parcourt les régles intéressantes.
for regle in regles_interessantes :
# Tentative d'unification entre le sous—but sélectionné
# et la consequence de la régle.
env = self. unificateur . unifie (noeud.sous_but_courant,
regle . conclusion)
if env != self. unificateur .echec:
nouveau noeud = noeud.successeur (env,
regle . conditions,
self . unificateur )
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nouveaux_noeuds.append (nouveau_noeud)

# On parcourt les faits intéressants.
for fait in faits interessants :
# Tentative d'unification entre le sous—but sélectionné et le fait .
env = self. unificateur . unifie (noeud.sous_but_courant, fait)
if env != self. unificateur .echec:
nouveau noeud = noeud.successeur(env, [], self. unificateur )
nouveaux_noeuds.append(nouveau noeud)
# Retourne les nouveaux noeuds ainsi trouvés.
return nouveaux noeuds

def backchain(self, noeud_depart):
# Liste des moeuds a tester .
queue = [noeud_depart]
# Liste des noeuds déja testés.
noeuds_testes = NoeudsTestes()
# Liste des solutions.
self . solutions = set()

# Tant qu'il y a des noeuds a tester dans la liste ,
while len(queue) > 0:
# on sélectionne le noeud suivant.
noeud = queue.pop(0)
self . trace .append(noeud)
# Si le noeud n'appartient pas encore a la liste des noeuds
# déja testés, on l'y ajoute pour éviter les cycles.
if noeud not in noeuds_testes:
noeuds_testes.ajoute(noeud)
# Si le noeud est une solution, on l'ajoute a celles qu'on a
# déja trouvées.
if noeud.est_solution ():
self . solutions .add(noeud.but)
else:
# On obtient des noeuds supplémentaires par chainage arriere.
successeurs = self . successeurs (noeud)
successeurs . extend (queue)
queue = successeurs

# Retourne la liste des solutions au probléme.
return self. solutions

def chaine(self , pattern):
# Retourne les solutions par chainage arriére.
noeud_depart = Noeud(pattern, pattern, [], 0)
solutions = self . backchain(noeud_depart)

return solutions
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CHAPITRE 6

Traitement de I'information incertaine

Exercice 6.1 Réseaux de Bayes

6.1.1 Raisonnement probabiliste

Question 1. Informellement, la probabilité que vous soyez malade est toujours
proportionnelle & la probabilité de cette maladie. Ainsi, sur 10’000 personnes,
I'une d’entre elle sera effectivement malade et sera diagnostiquée comme telle
par le test avec 99 % de chance. Cependant, pour les 9999 personnes res-
tantes, le test se trompera dans 1 % des cas. Environ 100 personnes seront
donc positives au test bien que n’étant pas malade. Globalement, vous avez
donc seulement 1 % de risque d’étre effectivement malade si le test est positif.

Plus formellement, soit T' la variable représentant le résultat du test, et M
la variable représentant la maladie. Par définition des taux de faux négatifs et
de faux positifs, ona P(T =1|M =1)=1-P(T'=0/M =1) =1-0.01 = 0.99
et P(T=0M =0)=1—P(T =1M =0) =1-0.01 = 0.99. Cependant,
P(M = 1) =0.0001 puisque la maladie ne frappe qu'une personne sur 10’000.
La probabilité qui nous intéresse est P(M = 1|T = 1), puisque nous souhaitons
déterminer le risque que vous soyez effectivement malade sachant que votre test
a été positif. Or,

PM=1T=1)= P(T=1M=1)-P(M=1)+P(T =1|M =0)-P(M =0)
B 0.99 - 0.0001
~0.99-0.0001 + 0.01 - 0.9999
= 0.009804

Comme ce chiffre demeure tres faible, vous ne devez pas forcément vous
inquiéter. Bien str, cette conclusion est due a la faible fréquence de la maladie
dans la population.

6.1.2 Causalité

Modélisation du probléme

Question 1. Le réseau bayésien (fig. 1) possede les noeuds :
o I=Route-Gelée
o H=Accident-Holmes
o W=Accident-Watson
o S=Professeur-Sauvé
et les arcs :

e I — H et I — W, car I’état des routes influence les accidents de Holmes
et de Watson.

e W = Set H— S, car les accidents de Holmes et de Watson influencent
la résolution de 'affaire.
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(1)
R (W
&)

Fig. 1 Le réseau bayésien avec les noeuds : I=Route-Gelée, H=Accident-Holmes,
W =Accident-Watson, S=Professeur-Sauvé

Question 2 (Inférence déductive).
o Pour calculer P(H), il nous faut connaitre P(H|I) :
P(H=h)=P(H=h/I[=1)P(I=1)+ P(H = h|I = 0)P(I = 0)

Il en va de méme de la probabilité P(W), pour laquelle il faut connaitre
PWII) :

PW =w)=P(W =w|l =1)P(I =1)+ P(W = w|I = 0)P(I = 0)

o Pour calculer P(S5), il nous faut en plus P(S|H, W) :

P(S=s)=
S P(S=s|H=hW =w)P(H=hI=i)P(W = w|l =i)P(I =i)
i,h,we{1,0}

Question 3 (Inférence abductive). La probabilité que nous cherchons est P(I|W).
Pour la calculer, il nous faut P(W|I). Par la régle de Bayes, nous avons :

P(I:“W:w):P(W:w\I:'P(I:i)

Question 4 (Déduction et abduction) :
e On cherche P(H|W). Il nous faut donc P(W|I) et P(H|I) :

PH=hW=w)= > P(H=hI=i)P(I=iW =uw)
i€{1,0}

e On cherche P(H|W,S). Il nous faut donc en plus P(S|H, W) :

PH=WW =w,S=3)=aP(S=s|H=hW=w)P(H=hW=uw)



358

L’intelligence artificielle par la pratique

7 . _ 1 .
On détermine & = prz—;7=yy de sorte que :

> PH=WW=wS=s)=1
he{1,0}

o On cherche P(H|I,W,S) :

PH=hI=iW=w,5=s)=aP(S=slH=hW=w)P(H = h|l =1)

7 . _ 1 .
On détermine o = PE=sT=iw=a) de sorte que :

Y PH=WI=iW=wS=s) =1
he{1,0}

Calcul probabiliste

Question 5.

Question 6.

P(H=1)=PH =1/ =1)P(I =1)+ P(H = 1|I = 0)P(I = 0)
=0.9-0.7+0.1-0.3 = 0.66

1)= P(W =1|I =1)P(I = 1)+ P(W = 1|I = 0)P(I = 0)
—0.7-0.740.5-0.3 = 0.64

P(W

Question 7.

Pl = 1w =y = P P

~0.7-0.7
~0.64
Il en résulte que P(I = 0|W = 1) = 0.234.

=~ (.766

Question 8 (Dépendance).

PH=1W=1)=PH=1I=1)-PI=1W=1)
+PH=1I=0)-PI=0W=1)
=0.9-0.766 +0.1-0.234 =2 0.713
On peut constater que la probabilité d’accident de Holmes a augmenté suite

a la connaissance de ’accident de Watson, car cet accident laisse supposer que
la route peut étre gelée. H et W sont deux événements dépendants.
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Question 9 (Indépendance conditionnelle). Si on sait que la route n’est pas
gelée, I = 0 et l'accident de Watson n’a plus d’influence sur la probabilité
d’accident de Holmes. En effet, 'accident de Watson n’a pas d’effet sur la
probabilité que la route soit gelée puisque celle-ci est connue avec certitude.
Ainsi,ona: P(H=1I=0,W =1) = P(H = 1|I = 0) = 0.1, sachant que I,

H et W sont deux événements indépendants.

Question 10.

POSW,H) [H=1,W=1|H=1L,W=0]| H=0W=1] H=0, W =0
S=1 0.1 0.2 038 1
S=0 0.9 0.8 0.2 0

Question 11 (Causes multiples).

> P(S=s|H=hW=wP(H=h| =i
i,h,we{1,0}

P(W = w|I =i)P(I =)
=0.1-(0.9-0.7-0.740.1-0.5-0.3)
+0.2-(0.9-0.3-0.7+0.1-0.5-0.3)
+0.8-(0.1-0.7-0.7+0.9-0.5-0.3)
+1-(0.1-0.3-0.740.9-0.5-0.3)
= 0.3896

Question 12.

PH=1W=1,8=1)=aP(S=1|H=1,W =1)P(H =1|W =1)
=a-0.1-0.713 = - 0.0713

PH=0W=1,8=1)=aP(S=1H =0,W =1)P(H =0|W =1)
=o-0.8-0.287 = - 0.23

Il faut que «- (0.0713+0.23) = 1, donc on trouve o = 3.319, P(H = 1|W =
1,8 =1)=0.237 et P(H =0|[W = 1,8 = 1) = 0.763.

Question 13 (Abduction avec plusieurs conséquences).

PI=1W=1S=1)= Y PI=1H=hW=1)PH=hW=15=1)

he{1,0}
S P(H =h|I =1)P(W = 1|I = 1)P(I = 1)
B oy P(H =h|W =1)P(W =1)
P(H=hW =1,5=1)
0.9-0.7-0.7 0.1-0.7-0.7
= 073060 T Gasro06a 078

=0.229 + 0.204 = 0.433
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Question 14.

PH=1I=0W=1,8=1)=aP(S=1H=1,W =1)P(H =1|I = 0)
=a-0.1-01=a-0.01

PH=0I=0W=18=1)=aP(S=1]H =0,W =1)P(H = 0|I = 0)
=a-08-09=a-0.72

Il faut que a - (0.01 4+ 0.72) = 1, donc on trouve a = 1.370 et P(H = 1|I =
0,W=1,8=1)=0014 et P(H=0[=0,W =1,5 = 1) = 0.986.

Question 15 (Dépendance conditionnelle).

PH=1I=0,S=1)=aP(S=1H=1,I=0)P(H=1/I=0)
=a- Y PE=1H=1,W=uw) - P(W=uw|l=0)P(H=1|I=0)
we{1,0}
=«-(0.1-0.54+0.2:0.5)-0.1 =«-0.015
PH=0I=0,S=1)=aP(S=1H=0,I =0)P(H=0[I=0)
=a- Y P(S=1H=0W=w) P(W=uwl=0) PH=0|I=0)
weq{1,0}
=a-(08-054+1-0.5)-09=0a-0.81
Il faut que a - (0.015 4+ 0.81) = 1, donc on trouve o = 1.21 et P(H = 1|1 =
0,S=1)=0.02et P(H=0|I =0,5=1) = 0.98. Donc, si en plus on sait
que Watson a eu un accident, la probabilité que Holmes en ait eu un aussi

redescend un peu. Ainsi, H et W sont des événements dépendants sachant que
Setl.

Question 16. On ajoute le noeud V=Vieux-Pneus-Watson et 'arc V. — W (fig.

' OB
& W
5

Fig. 2 Le nouveau réseau bayésien avec les noeuds : I=Route-Gelée, H=Accident-
Holmes, W=Accident-Watson, S=Professeur-Sauvé, V' =Vieux-Pneus-Watson
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Question 17. On cherche P(V|I, W). Il nous faut donc P(W|I,V) :

PV =vl=i,W=w)=aPW=wlI=4V =v)P(V=0)
On détermine o = m de sorte que :

S PV =ol=i,W=w)=1
ve{1,0}

Exercice 6.2 Facteurs de certitude

Module .. ./moteur_avec_variables_fc/facteurs_certitude .py -

def fc_ou(fcl, fc2):
if fc1 > 0.0 and fc2 > 0.0:
return fcl + fc2 — (fcl * fc2)
elif fcl1 < 0.0 and fc2 < 0.0:
return fcl + fc2 + (fcl * fc2)
else:
return (fcl + fc2) / (1.0 — min(abs(fcl), abs(fc2)))

def fc_et (fcl, fc2):
return min(fcl, fc2)

Module .. ./moteur_avec_variables_fc/regle_avec_variables_fc Py :

from .facteurs_certitude import fc_et

class RegleAvecVariables_FC:
def _init_ (self, conditions, conclusion, fc=1.0):
self . conditions = conditions
self . conclusion = conclusion
self . fc = fc

def depend_de(self, fait, methode):
envs = {}

for condition in self .conditions:
# Si au moins une des conditions retourne un environnement,
# nous savons que la proposition satisfait une des conditions.
env = methode.pattern match(fait, condition, {})
if env != methode.echec:
envs|[condition] = env

return envs
def satisfaite_par ( self, faits, cond, env, env_fc, methode):

envs_et_fcs = [(env, env_fc)]
conditions_a_tester = [condl for condl in self.conditions if condl != cond]
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for condl in conditions_a_tester :
nouveaux_envs_et_fcs = ]

for fait, fait_fc in faits:
for envl, env_fcl in envs_et_fcs:
envl = methode.pattern_match(fait, condl, envl)
if envl != methode.echec:
fc_mix = fc_et(env_fcl, fait_fc)
nouveaux_envs_et_fcs.append((envl, fc_mix))

if len(nouveaux envs_et_fcs) ==
return

envs_et_fcs = nouveaux_envs_et_fcs
return envs_et_fcs

def _repr_ (self ):
return '{} => {}, {}'.format(str(self.conditions),
str( self .conclusion ),
str(self . fc))

Module .../moteur_avec_variables_fc/connaissance_fc.py :

from .facteurs_certitude import fc_ou
from moteur_avec_variables_fc. regle_avec_variables_fc import RegleAvecVariables_ FC

class BaseConnaissances_FC:
def _init_ (self ):
self . faits = {}
self . regles = ||

def ajoute_un_fait ( self, fait ):
if len(fait) == 2:
prop, fc = fait
elif len(fait) == 1:
prop, fc = fait [0], 1.0
else:
raise ValueError("Fait mal formé: ” 4 str(fait))

fc_deja_present = self. faits . get(prop)

if fc_deja_present is not None:
nouveau_fc = fc_ou(fc, fc_deja_present )
self . faits [prop] = nouveau_fc

else:
self . faits [prop] = fc

def ajoute_faits ( self , faits ):
for fait in faits:

self . ajoute_un_fait ( fait )

def ajoute_une_regle( self , description ):

if len(description) == 2:
regle = RegleAvecVariables_FC(description[0], description [1])
elif len(description) == 3:

regle = RegleAvecVariables_FC(description[0], description [1], description [2])
else:
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raise ValueError("Une regle doit avoir deux ou trois éléments. Regu ” +
str(description ))

self . regles . append(regle)

def ajoute_regles (self , descriptions ):
for description in descriptions:
self . ajoute_une_regle (description)

Module . . ./moteur_avec_variables_fc/chainage_avant_avec_variables_fc.py:

from moteur_sans_variables.chainage import Chainage
from moteur_avec_variables. filtre import Filtre

class ChainageAvantAvecVariables_ FC(Chainage):
def _init_ (self, connaissances, methode=None):
Chainage. __init_ ( self , connaissances)

if methode is None:

self .methode = Filtre()
else:

self .methode = methode

def instancie_conclusion ( self , regle, envs_et_fcs ):
nouveaux_faits = ]

for env, env_fc in envs_et_fcs:
prop = self.methode.substitue(regle.conclusion, env)
nouveau fait = (prop, max(0.0, env_fc) * regle. fc)
nouveaux_faits.append(nouveau_fait)

return nouveaux_ faits

def chaine( self ):

queue = [p for p in self .connaissances. faits .items ()]
self . reinitialise ()

while len(queue) > 0:
fait, fait_fc = queue.pop(0)

if (fait, fait_fc ) not in self.solutions:
self . trace.append((fait, fait_fc))
self . solutions .append((fait, fait_fc ))

# Si le facteur de certitude du fait est supérieur a 0.0
if fait fc > 0.0:

# on vérifie si des régles sont déclenchées par le mouveau fait.
for regle in self .connaissances. regles :

envs = regle.depend_de(fait, self .methode)

for cond, env in envs.items():
# On remplace I'environnement par ceuz qui satisfont toutes
# les conditions de la régle et pas seulement la premiére
# condition.
envsl = regle. satisfaite_par ( self . solutions, cond, env,
fait_fc , self .methode)
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# On ajoute a la queue la conclusion de la régle instanciée
# selon chaque environnement possible.
if len(envsl) > O:
queue.extend(self. instancie_conclusion (regle, envsl))
self . trace.append(regle)

return self. solutions
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CHAPITRE 7

Résolution de problemes par recherche

Exercice 7.1 Codage des classes de bases

Module .../moteurs_recherche/element.py :

class Element:
def _init_ (self, nom="):
self .nom = nom

def distance( self , element):
return 1

def _eq_(self, autre):
return self.nom == autre.nom

def _hash (self ):
return hash(str(self))

def _repr_ (self ):
return '{}'.format(self.nom)

Module .. ./moteurs_recherche/ville.py :

from math import sqrt
from .element import Element

class Ville (Element):
def _init_ (self, x, y, nom=""):
Element. _init__ ( self , nom)
self .x = x
self .y =y

def distance( self , ville ):
return sqrt((self .x—ville.x)**2 + (self.y—ville.y)*x2)

def _eq_ (self, autre):
if not isinstance(autre, Ville):
return False
return self.x == autre.x and self.y == autre.y and self.nom == autre.nom

def _hash (self ):
return hash(str(self))

def _repr_ (self ):
return '{}({}, {})'.format(self.nom, self.x, self.y)

Module .../moteurs_recherche/espace.py :

from copy import copy

class Espace:
def _init_ (self, elements=None, arcs=None):
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self .elements = |]
if elements is not None:
self .elements = sorted(self.elements, key=lambda e: e.nom)

self .arcs = ||
if arcs is not None:
self . ajoute_arcs (arcs)

def ajoute_arcs( self , arcs):
for element_1, element_2 in arcs:
if not element_1 in self.elements:
self .elements.append(element_1)
if not element_2 in self.elements:
self . elements.append(element_2)

if not (element_1, element_2) in self .arcs:
self . arcs.append((element_1, element_2))

self .elements = sorted(self.elements, key=lambda e: e.nom)

def trouve_voisins ( self , element):
voisins = |]

for element_1, element_2 in self .arcs:

if element_1 == element:
voisins .append(element_2)
if element_2 == element:

voisins .append(element_1)
voisins = sorted(voisins, key=lambda v: v.nom)

return voisins

def _repr_ (self ):

rep ="'

for element in self .elements:
rep += '{}, '.format(element)
rep += 'avec voisins: '
voisins = self. trouve_voisins (element)
rep += "', '. join (map(str, voisins))
rep +="\n'

return rep

Module .../moteurs_recherche/noeud.py :

from math import sqrt

class Noeud:
def _init_ (self, element, parent=None, cout=0, cout_f{=0):
self .element = element
self .parent = parent
self .cout = cout
self . cout_f = cout_f

def _repr_ (self ):
rep = '<{}, {}, {}>'.format(self.clement,
round (self.cout),
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round (self.cout_f))

return rep

Module .../moteurs_recherche/recherche.py :

from .noeud import Noeud

class Recherche:
echec = 'échec’

def _init_ (self, espace, optimisee=False):
self .espace = espace
self .optimisee = optimisee

def recherche( self , depart, but):
# L'heuristique & wutiliser (utile uniquement pour A\x).

self .h = lambda e: e.distance(but)

noeud_depart = Noeud(depart, None, 0, self.h(depart))
noeud_but = Noeud(but)

return self.recherche_chemin(noeud_depart, noeud_but)

def recherche_chemin(self, noeud_depart, noeud_but):
queue = [noeud_depart]
iterations =0
trace = {}

while len(queue) > 0:
noeud = queue.pop(0)

if self .optimisee and self. detecte_cycle (trace, noeud):
continue

iterations += 1
print('Itération {}: {}'.format(iterations, noeud))

if noeud.element == noeud_but.element:
return self.trouve_chemin(noeud)

else:
trace [noeud.element] = noeud
successeurs = self . trouve_successeurs (noeud)

queue = self. ajoute_successeurs (queue, successeurs)
return Recherche.echec
def trouve_chemin(self, noeud):
chemin = ]
while noeud is not None:
chemin.insert (0, noeud.element)
noeud = noeud.parent

return chemin

def detecte_cycle (self , trace, noeud):
return noeud.element in trace

def trouve_successeurs( self , noeud):

367
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successeurs = |]
voisins = self . espace. trouve_voisins (noeud.element)
for voisin in voisins :

# Evite les cycles a deux éléments a — b — a — b ...
if noeud.parent is not None and noeud.parent.element == voisin:
continue

# Codt jusqu'au noeud successeur = cott jusqu'au noeud courant +
# distance entre les deuxr noeuds.

distance = noeud.element.distance(voisin)

cout = noeud.cout + distance

# Codt estimé = cott jusqu'au noeud successeur + cotit estimé entre
# le noeud successeur et le but.
cout_f = cout + self.h(voisin)

successeur = Noeud(voisin, noeud, cout, cout_f)
successeurs . append (successeur)

return successeurs

def ajoute_successeurs( self , queue, successeurs ):
# Nous retournons une liste vide pour éviter de déclencher une exception,
# mais cette méthode doit étre surchargée dans les sous—classes.
return ||

Module .../moteurs_recherche/bfs.py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheBFS(Recherche):
def ajoute_successeurs( self , queue, successeurs ):
return queue + successeurs

Module .../moteurs_recherche/dfs.py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheDFS(Recherche):
def ajoute_successeurs( self , queue, successeurs ):
return successeurs + queue

Module .. ./moteurs_recherche/astar.py :

from moteurs_recherche.recherche import Recherche
from moteurs_recherche.noeud import Noeud

class RechercheAStar(Recherche):
def detecte_cycle (self , trace, noeud):
if noeud.element not in trace:
return False

autre = trace[noeud.element)]
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return autre.cout_f <= noeud.cout_f
def ajoute_successeurs( self , queue, successeurs ):
queue = queue -+ successeurs

queue = sorted(queue, key=lambda n: n.cout_f)

return queue
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CHAPITRE 8
Satisfaction de contraintes

Exercice 8.1 Consistance des nceuds et des arcs

Module .../moteur_psc/contrainte.py :

class Contrainte:
def _init_ (self, variables ):
self . variables = tuple(variables)

def dimension(self):
return len(self. variables)

def est_valide ( self ):
return False

def _repr_ (self ):
return 'Contrainte: {}'.format(self. variables )

def _eq_(self, that):
return self. variables == that.variables

def _hash_(self ):
return sum([v._hash__ for v in self. variables ])

class ContrainteUnaire(Contrainte):
def _init_ (self, var, op):
Contrainte. _init_ ( self , (var,))
self .op = op

def est_valide (self , val):
return self.op(val)

class ContrainteBinaire(Contrainte):
def _init_ (self, varl, var2, op):
Contrainte. _init_ ( self, (varl, var2))
self .op = op

def est_valide (self , var, val):
varl, var2 = self. variables

if varl == var:
return self.op(val, var2.val)
elif var2 == var:
return self.op(varl.val, val)
else:
# wvar n'est pas une des variables de la contrainte.
raise ValueError('Mauvaise variable: ' + var.nom + '. ' +
'On attendrait ' + varl + 'ou ' 4 var2)

def est_possible ( self , var):
if var not in self. variables :
# wvar ne fait pas partie des variables de la contrainte
varl, var2 = self. variables
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raise ValueError('Mauvaise variable: ' + var.nom + '. ' +
'On attendrait ' + varl + 'ou ' + var2)

for val in var.domaine:
if self . est_valide (var, val):
# Il suffit d'une valeur valide.
return True

# Aucune valeur val du domaine n'a retourné True pour
# est_valide (var, val).
return False

def reviser (self ):
domaines_modifies = False

# reversed() retourne !'inverse d'une liste ou d'un tuple.
# Les paires sont donc (varl, var2) et (var2, varl).
# Les tuples ne sont pas identiques mais ils contiennent des références
# sur les mémes objets Variable (modifier varl dans le premier tuple\
# modifie varl dans le second).
for varl, var2 in (self . variables, reversed(self.variables)):

ancienne_valeur = varl.val

for val in varl.domaine[:]:

varl.val = val

if not self. est_possible (var2):
varl.domaine.remove(val)
domaines_modifies = True
varl.val = ancienne_valeur

return domaines_modifies

Module .../moteur_psc/moteur_psc.py :

class PSC:
def _init_ (self, variables, contraintes):
self . variables = variables
self . contraintes = contraintes

self . iterations = 0
self . solutions = ]

def consistance_noeuds(self ):
for contrainte in self . contraintes:
if contrainte.dimension() ==

# Nous créons un nouveau domaine en ne gardant que les
# wvaleurs valides.
# Le plus simple est d' utiliser la ° list comprehension' avec
# une condition.
contrainte . variables [0]. domaine = [var for var in contrainte. variables [0].
domaine if contrainte. est_valide (var)]

def consistance_arcs ( self ):
refaire = False
for contrainte in self . contraintes:
if contrainte.dimension() == 2 and contrainte.reviser():
refaire = True
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if refaire :
self . consistance_arcs ()

def consistance_avec_vars_precedentes ( self , k):
for contrainte in self . contraintes:
# Si la variables courante est concernée.
if self . variables [k] in contrainte. variables :
for i in range(k):
# Si n'importe laquelle des variables précédentes est concernée.
if self . variables [i] in contrainte. variables :
if contrainte. est_valide ( self . variables [k], self . variables [k]. val):
break
else:
return False
# Toutes les contraintes sont valides.
return True

def backtracking(self, k=0, une_seule_solution=False):
if len(self.solutions) == 1 and une_seule_solution:
return

self . iterations +=1
# On est parvenu aune solution.
if k >= len(self. variables ):
sol = {}
for var in self . variables :
sol [var.nom| = var.val
if len(self . solutions) == 0 or not une_seule_solution:
self . solutions .append(sol)
else:
var = self. variables [k]
for val in var.domaine:
var.val = val
if self . consistance_avec_vars_precedentes (k):
# On continue ['algorithme sur la variable k+1.
self . backtracking(k=k+1, une_seule_solution=une_seule_solution)
var.val = None

def affiche_solutions ( self ):
print('Recherche terminée en {} itérations'.format(self.iterations ))

if len(self.solutions) == 0:
print('Aucune solution trouvée')
return

for sol in self . solutions:
print('Solution')

for (nom, var) in sorted(sol.items()):
print("\tVariable {}: {}'.format(nom, var))
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Exercice 8.2 Consistance des nocuds et des arcs

Module .../moteur_psc_heuristique/contrainte_avec_propagation.py :

from moteur_psc.contrainte import ContrainteBinaire

class ContrainteAvecPropagation(ContrainteBinaire):
def _init_ (self, varl, var2, op):
ContrainteBinaire. _init_ (self , varl, var2, op)

def reviser ( self ):
# Nous appliquons d'abord la méthode reviser() de la classe—mére pour
# réviser les domaines de chaque variable.
domaines_modifies = ContrainteBinaire.reviser( self)

# Puis, s'il y a lieu, nous nous assurons que les labels sont toujours
# identiques auxr domaines.
if domaines_modifies:
for var in self . variables :
var.label = var.domainel[:]

return domaines_modifies

def propage(self, var):
varl, var2 = self. variables

if var == varl:
fixe = varl
variable = var2
elif var == var2:
variable = varl
fixe = var2
else:
raise ValueError('Var est ' + var.nom + ' ' +
'on attendrait ' + varl.nom + 'ou '+ var2.nom)

# On ne garde que les valeurs du label pour lesquelles wvariable
# reste valide .
for val in variable.label [:]:
if not self. est_valide (variable, val):
variable . label .remove(val)

# S'il existe au moins une valeur possible, 1'assignation est consistante.

return len(variable.label) > 0

Module .. ./psc_heuristique/moteur_psc_heuristique .py -

from moteur_psc.psc import PSC
class PSCHeuristique(PSC):

def _init_ (self, variables, contraintes):
PSC._init__( self , variables, contraintes)

self . reinitialise ()

def reinitialise (self ):

373
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self . initialise_labels ()
self . solutions = []
self . iterations = 0

def initialise_labels ( self ):
for var in self . variables :
var.label = var.domaine]:]

def consistance_noeuds(self ):
# Nous appelons d'abord la méthode de la classe—mére PSC pour réduire
# les domaines.
PSC.consistance_noeuds(self)

# Puis, nous nous assurons que les labels sont identiques aux domaines.
self . initialise_labels ()

def variable_ordering ( self ):
self . variables . sort (key=lambda x: len(x.domaine))

def dynamic_variable_ordering(self, k):
index = k
taille_plus_petit_label = len(self. variables [index]. label)

for i in range(k+1, len(self.variables)):
if len(self . variables [i]. label) < taille_plus_petit_label :
index =i
taille_plus_petit_label = len(self. variables [i]. label)

if k != index:

self . variables [k], self . variables [index] = self. variables [index]|, self . variables [k]

def propagation _consistante(self, k):
# Pour chaque contrainte portant sur la variable courante,
for contrainte in self . contraintes :
if self . variables [k] in contrainte. variables :
# si la contrainte porte sur une des variables suivantes,
for i in range(k+1, len(self.variables)):
if self . variables [i] in contrainte. variables :
# on propage la nouvelle assignation.
if contrainte.propage(self. variables [k]):
break
else:
# La contrainte ne peut pas étre satisfaite .
return False
return True

def forward_checking(self, k=0, une_seule_solution=False):
if len(self . solutions) == 1 and une_seule_solution:
return

self . iterations +=1
if k >= len(self. variables ):
sol = {}
for var in self . variables :
sol [var.nom| = var.val
self . solutions . append(sol)
else:
self .dynamic_variable_ordering(k)
variable = self. variables [k]
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# Conserve une copie des labels de départ.
sauvegarde_labels = { var: var.label [:] for var in self . variables }

for val in sauvegarde_labels|variable ]:
variable . val = val
variable . label = [val]
if self .propagation_consistante(k):
# Continue l'algorithme sur la variable k+1.
self . forward_checking(k=k-+1, une_seule_solution=une_seule_solution)
for var in self . variables :

var.label = sauvegarde_labels[var]
variable .val = None
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CHAPITRE 9
Diagnostic

Exercice 9.1 Diagnostic d’un réseau par abduction explicite

Module .../reseau/abduction.py :

from .disjonction import Disjonction
from .conjonction import Conjonction

class Abduction:

def _init_ (self, conflits, no_goods):
self . conflits = conflits
self .no_goods = no_goods

def combiner_conflits_observations ( self , disjonctions ):
combinaison = Disjonction()
for disjonction in disjonctions :
combinaison = combinaison.combiner(disjonction)
return combinaison

def retire_subsumes(self , conjonctions):
sans_subsumes = Disjonction()

for conjonction in sorted(conjonctions, key=lambda expl: len(expl)):
conserver = True
for conj in sans_subsumes:
if conj.issubset (conjonction):
conserver = False
break
if conserver:
sans_subsumes.add(conjonction)

return sans_subsumes

def retire_no_goods( self , conjonctions, no_goods):
sans_no_goods = Disjonction()

for conjonction in conjonctions:
conserver = True
for no_good in no_goods:
if no_good.issubset(conjonction):
conserver = False
break
if conserver:
sans_no_goods.add(conjonction)

return sans_no_goods

def calcule_conflit_minimal (self , afficher_etapes =False):
# 1. Combine les conflits.
conflit_minimal = self. combiner_conflits_observations ( self . conflits )
if afficher_etapes : print('Conflit combiné :', conflit_minimal)
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# 3. Supprime les candidats subsumés.
conflit_minimal = self .retire_subsumes(conflit_minimal)
if afficher_etapes : print('Non subsumsés :', conflit_minimal)

# 4. Supprime les candidats contenant les no—goods.
conflit_minimal = self. retire_no_goods (conflit_minimal, self .no_goods)

if afficher_etapes : print('Sans no—goods :', conflit_minimal)

return conflit_minimal
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CHAPITRE 10

Génération de plans

Exercice 10.1 Modélisation

Planification : Modélisation sur papier

Il existe souvent différentes facons de modéliser un probleme de planification
donné sous la forme d’un Probléeme de Satisfaction de Contraintes. Le modele
que nous vous proposons ici correspond a celui qui est décrit dans le chapitre
10.6 du cours. Si vous avez développé une solution différente, il est cependant
possible qu’elle soit tout aussi valide.

Définition du probléme de planification

Rappelons qu’un probleme de planification est défini par les éléments suivants :

teu

e Une liste de propositions qui décrivent 1’état du monde.

o Une liste d’opérateurs qui décrivent les actions qui peuvent étre exécutées
pour changer I’état du monde. Chaque opérateur possede des précondi-
tions et des postconditions.

o Des conditions initiales, qui décrivent completement I’état initial du monde
en termes de propositions.

o Des conditions finales, qui décrivent complétement ou partiellement 1’état
du monde désiré en termes de propositions.

o Des mutex, qui stipulent des contraintes d’exclusion mutuelle entre les
propositions et entre les opérateurs. Les mutex de propositions sont des
paires de propositions qui ne peuvent étre vraies en méme temps. Par
exemple, un missionnaire ne peut pas simultanément se trouver sur la rive
gauche et sur la rive droite. Les mutex d’opérateurs définissent les paires
d’opérateurs qui ne peuvent étre exécutés en méme temps. Par exemple,
un méme bateau ne peut pas étre piloté a la fois par le missionnaire M;
pour transporter le canibale Cy et par My pour transporter Cs.

Dans notre probleme de planification, nous considérons trois types d’ac-
IS :

o Les bateaux, qui correspondent au type B. Dans notre exemple, il n’y a
qu’un seul bateau, dénoté par B.

o Les missionnaires, qui correspondent au type M. Il y a deux missionnaires,
M1 et MQ.

o Les cannibales, qui correspondent au type C. Il y a deux cannibales, C
et Cg.

Le choix des propositions du probleme de planification doit permettre de décrire
completement la position de chaque acteur.
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Notre probléeme présente aussi deux types d’actions possibles :

o traversée du fleuve depuis la rive gauche jusqu’a la rive droite,

o traversée du fleuve depuis la rive droite jusqu’a la rive gauche.

Chacun de ces deux types d’actions peut faire intervenir un certain nombre
d’acteurs. Par exemple, une traversée ne peut avoir lieu qu’a ’aide d’un bateau
(c’est-a-dire un acteur de type B). Seul un missionnaire (c’est-a-dire un acteur
de type M) peut conduire le bateau. Le bateau ne peut contenir qu’un passager
supplémentaire, qui peut étre indifféremment de type M (un missionnaire) ou
de type C (un cannibale). La liste des opérateurs du probléme de planification
doit couvrir toutes les combinaisons d’acteurs pour les deux types d’actions.

Choix des propositions du probléeme de planification

Afin de décrire la position d’un acteur, nous vous proposons d’utiliser deux pro-
positions, correspondant aux deux positions possibles de 'acteur (rive gauche
ou rive droite). Pour un acteur A donné, nous introduisons donc les deux pro-
positions suivantes :

o g(A) est vraie si et seulement si 'acteur A est sur la rive gauche,

o d(A) est vraie si et seulement si 'acteur A est sur la rive droite.

Ces deux propositions peuvent vous sembler redondantes, puisque A est
nécessairement sur la rive droite s’il n’est pas sur la rive gauche (d(A) est vraie si
g(A) est fausse et vice-versa). Nous avons cependant choisi cette représentation
car elle se généralise aisément a des problemes plus compliqués, dans lesquels
un acteur peut occuper plus de deux positions.

Choix des opérateurs du probléme de planification

Comme nous 'avons indiqué plus haut, des opérateurs seront nécessaires pour
modéliser la traversée du fleuve par des groupes d’acteurs. Pour un état donné,
les opérateurs seront les suivants :

e gd(B, M, A) est Popérateur décrivant la traversée du fleuve de gauche
a droite, a bord du bateau B, piloté par le missionnaire M, avec pour
passager A (qui peut par ailleurs étre de type M ou C'). Les préconditions
de cet opérateur sont que les propositions g(B), g(M) et g(A) doivent étre
vraies. Les postconditions sont que les propositions d(B), d(M) et d(A)
doivent étre vraies.

o dg(B, M) est I'opérateur décrivant la traversée de droite a gauche du mis-
sionnaire M a bord du bateau B. Les préconditions de cet opérateur sont
que les propositions d(B) et d(M) doivent étre vraies. Les postconditions
sont que les propositions g(B) et g(M) doivent étre vraies.

Le choix a été fait dans ce modele de ne pas tenir compte de la possibilité
pour un bateau de faire la traversée de droite a gauche avec un passager en plus
du pilote. Ce choix limite I’éventail des plans valides possibles. Il a 'avantage de
correspondre & un probleme de planification plus petit, plus facile a résoudre,
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et qui générera des plans plus courts (puisqu’il n’est alors pas permis de perdre
du temps a faire traverser un cannibale dans un sens, puis dans l'autre sens).
Dans cet exercice, sachant que les deux cannibales sont sur la rive gauche
dans I’état initial, il est tres facile de constater qu’il existe un plan valide qui
ne fait jamais traverser un cannibale de la rive droite a la rive gauche. Il faut
cependant se rappeler, que, dans le cas d’un probleme plus général, un tel choix
de modélisation pourrait déboucher sur un probleéme de planification infaisable,
quand bien méme le probleme initial serait soluble.

Conditions initiales du probléme de planification

Au début, tous les acteurs sont sur la rive gauche. Les conditions initiales sont
donc les suivantes :

Q(B) = Q(Ml) = Q(M2) = g(Cl) = g(CQ) = True

Conditions finales du probléme de planification

Le but est de faire passer tous les acteurs du coté droit de la riviere. Les
conditions finales sont donc les suivantes :

d(B) = d(Ml) = d(MQ) = d(Cl) = d(CQ) = True

Mutex de propositions du probléme de planification

Les mutex de propositions sont des paires de propositions qui ne peuvent étre
vraies en méme temps. Dans notre probleme, pour chaque acteur A, nous avons
le mutex suivant :

[9(A), d(A)]

En effet, un acteur ne peut se trouver en méme temps sur la rive gauche et sur
la rive droite.

Mutex d’opérateurs du probléme de planification

Les mutex d’opérateurs sont des paires d’opérateurs qui ne peuvent étre exé-
cutés en méme temps. Dans notre probleme, pour chaque paire d’opérateurs
distincts op; et ops, si les deux opérateurs ont un acteur en commun (qu’il soit
de type B, M ou C), alors on a le mutex suivant :

[op;, 0ps]

Dans le cas ou I'acteur en commun est de type B, ce mutex traduit le fait
qu’'un méme bateau ne peut pas contenir deux équipages différents en méme
temps. Dans le cas ou l'acteur en commun est de type M ou C, et si 'on a
plusieurs bateaux & disposition, un méme missionnaire ou un méme cannibale
ne peut se trouver sur deux bateaux différents en méme temps.
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Description du modéle PSC pour le probleme de planification

Rappelons qu'un plan non linéaire est constitué d’une séquence d’états Sy,
S1, ..., Sn, chaque état S; étant décrit par des propositions qui sont vraies ou
fausses au début de ’état, un ensemble d’opérateurs qui sont exécutés pendant
cet état et des propositions qui sont vraies ou fausses a la fin de I’état (apres
Pexécution des opérateurs), et qui correspondent aux propositions du début de
I’état suivant.

Un opérateur est caractérisé par des préconditions, c’est-a-dire des proposi-
tions qui doivent étre vraies au début de ’état S; pour que 'opérateur puisse
étre exécuté durant S;, et des postconditions, c’est-a-dire des propositions qui
devront étre vraies au début de I'état S; 1.

Choix des variables PSC pour les propositions

Pour chaque état S;, avec ¢ = 0...n+1, et chaque acteur A, le PSC contiendra les
variables booléennes suivantes, qui correspondent aux propositions du probleme
de planification introduites plus haut :

e g(A,S;) = True si et seulement si 'acteur A est sur la rive gauche a la fin
de I’état S;_1 et au début de I’état .S;,

e d(A,S;) = True si et seulement si Pacteur A est sur la rive droite & la fin
de I’état S;_1 et au début de I’état S;.

Choix des variables PSC pour les opérateurs

Pour chaque état S;, avec ¢ = 0...n, et chaque opérateur op (par exemple,
dg(B, My)), le PSC contiendra la variable booléenne op(S;), qui indiquera si
oui ou non l'opérateur est exécuté dans I'état S;.

Expression des contraintes du PSC

Il existe six types de contraintes qui doivent étre vérifiées pour qu’un plan soit
valide :

o les contraintes sur ’état initial,

o les contraintes sur ’état final,

o les préconditions et les postconditions des opérateurs,

e les axiomes de cadre,

e les mutex de propositions,

o les mutex d’opérateurs.
Contraintes PSC correspondant aux contraintes sur I’état initial. Tous les ac-

teurs sont initialement sur la rive gauche. Par conséquent, les contraintes sur
I’état initial prennent une forme tres simple, qui est la suivante :

9(B, So) = g(My, So) = g(M2, So) = g(C1, So) = g(C2, Sp) = True
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Contraintes PSC correspondant aux contraintes sur l’état final. Les contraintes
sur I’état final sont comparables aux contraintes sur 1’état initial, a la différence
fondamentale pres qu’il faut définir lequel des états Sy, S, ..., S, correspond
a cet état final. En d’autres termes, il faut choisir par avance la longueur des
plans solutions que 'on veut considérer, c’est-a-dire le nombre total d’états.

Si ’on ne considere que des plans tres courts, il est possible que ’on n’ob-
tienne aucune solution, car il peut n’exister aucun plan qui parvienne a passer
de I’état initial a I’état final avec si peu d’états intermédiaires. Si en revanche on
autorise des plans tres longs, la taille du PSC et la complexité de sa résolution
explosent. Traditionnellement, on commence donc par des plans courts, et on
augmente progressivement leur taille tant qu’aucune solution n’est découverte.

Dans notre cas, le probleme se résout tres facilement a la main. On peut donc
tricher et choisir le nombre d’états en sachant qu’il existe un plan solution qui
le contient. Les étapes suivantes constituent ainsi une solution possible, sachant
que le but a atteindre est d’avoir tous les acteurs sur la rive droite :

e gd(B, My, Ch),
o dg(B, M),
e gd(B, My, Cs),
o dg(B, M),
o gd(B, My, Ms).

11 suffit donc de cing étapes, soit cing états (sans compter I’état initial Sp)
pour obtenir I’état final désiré. On choisira donc S; comme état final. Les
contraintes sur 1’état final sont par conséquent les suivantes :

d(B,S5) = d(My,S5) = d(Ma, Ss) = d(C1, S5) = d(Cs, S5) = True

Contraintes PSC correspondant aux contraintes de préconditions et de post-
conditions des opérateurs. Reprenons les deux types d’opérateurs introduits
précédemment et explicitons leurs préconditions et postconditions en termes

de variables du PSC :

o L'opérateur gd(B, M, A) a pour préconditions que g(B), g(M) et g(A)
doivent toutes étre vraies. Les postconditions stipulent que d(B), d(M) et
d(A) doivent toutes étre vraies.

o L’opérateur dg(B, M) a pour préconditions que d(B) et d(M) doivent étre
vraies. Les postconditions stipulent que g(B) et g(M) doivent étre vraies.

On n’a pas mentionné ici les suppressions de chaque opérateur. Par exemple,
une autre postcondition de dg(B, M) est que d(B) doit étre fausse. Il n’est ce-
pendant pas nécessaire d’expliciter ces postconditions négatives, car elles seront
automatiquement imposées par les mutex de propositions introduits précédem-
ment et présentés en détail plus bas.

En termes de PSC, ces préconditions et postconditions prennent la forme
des contraintes suivantes sur les variables du PSC, pour chaque état S; avec
1 = 0...n et chaque opérateur op :
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o pour chaque proposition prop qui est une postcondition de I'opérateur op,
on a : op(S;) = prop(Si+1);

e pour chaque proposition prop qui est une précondition de 'opérateur op,
on a : op(S;) = prop(S;).

On utilise ici la notation = pour indiquer 'implication logique. Ainsi, si
prop est une postcondition de l'opérateur op, alors op(S;) = prop(S;+1) est
équivalent & « si op(.S;) = True, alors prop(S;+1) = True ». Ceci traduit bien le
fait que si 'opérateur op est exécuté dans 1’état S;, alors sa postcondition prop
doit étre vraie a la fin de I’état S;, c’est-a-dire au début de I'état S; 1.

Contraintes PSC correspondant aux axiomes de cadreles axiomes de cadre sti-
pulent que si aucun opérateur ne vient, dans I’état .S;, modifier une proposition
prop, alors elle reste identique a 1’état S;;1. De maniere équivalente : si la
valeur d’une proposition change d’'un état S; a ’état suivant S;y1, c’est que
Popérateur op(S;) y est pour quelque chose. Par exemple, si g(C1,S;) = True
et g(Cy, Si1+1) = False, alors op(.5;) est nécessairement I'un des deux opérateurs
suivants : gd(B, My, C1) ou gd(B, Ma, Ch).

Remarquez que cette contrainte est de formulation relativement complexe,
et en particulier qu’elle implique plus de deux variables : prop(.S;), prop(Si+1),
et les variables pour I’état S; de tous les opérateurs qui ont prop comme précon-
dition ou postcondition. Plus précisément, les contraintes d’axiomes de cadre
prennent les deux formes suivantes, pour chaque état S;, et pour chaque pro-
position prop :

o si prop(S;) = False et prop(S;;+1) = True, alors pour au moins un opéra-
teur op qui a prop comme postcondition, on a op(S;) = True,

o si prop(S;) = True et prop(S;+1) = False, alors pour au moins un opéra-
teur op qui a prop comme postcondition négative, on a op(S;) = True.

Comme indiqué précédemment, il n’est pas nécessaire de considérer le
deuxieme cas, qui comporte une postcondition négative. En effet, si nous pre-
nons exemple de la proposition d(Mj), lorsque celle-ci passe de True & False, il
n’est pas nécessaire de vérifier que 'opérateur dg(M) est exécuté, puisqu’alors
les contraintes de mutex de propositions imposeront que g(M;) passe (& l'in-
verse) de False & True. Le premier cas ci-dessus suffit alors pour assurer que
dg(My) soit exécuté.

Rappelons que ces contraintes ne sont pas simplement unaires ou binaires,
mais qu’elles ont une multiplicité plus grande que deux. Il faut donc aussi
modifier le module PSC pour qu’il puisse manipuler de telles contraintes.

Contraintes PSC' correspondant aux mutex de propositionsLes mutex de propo-
sitions sont des contraintes qui stipulent que deux propositions sont mutuelle-
ment exclusives, c’est-a-dire qu’elles sont incompatibles et ne peuvent pas étre
vraies en méme temps. Par exemple, on ne peut pas avoir g(Mp) et d(My)
vraies en méme temps, puisque le missionnaire M; ne peut pas se trouver a la
fois sur la rive droite et sur la rive gauche.
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Plus généralement donc, pour chaque état S;, et pour chaque acteur A (de
n’importe quel type), le modele PSC contiendra les contraintes suivantes :

Cette contrainte autorise virtuellement qu’un acteur puisse n’étre ni sur la
rive gauche, si sur la rive droite (g(4,S;) = d(A,S;) = False). Mais, dans la
pratique, cette situation ne pourra pas se produire. Ceci peut se démontrer
par récurrence : Nous partons du principe que les contraintes sur 1’état initial
décrivent complétement la situation initiale. C’est-a-dire qu’au début de 1’état
0, un acteur est nécessairement sur une rive donnée. Considérons maintenant
létat k, et supposons qu’un acteur se trouve sur la rive gauche (g(A) = True)
au début de cet état (le raisonnement est tout aussi valide si 'on remplace
« gauche » par « droite » et « droite » par « gauche »). Deux possibilités se
présentent alors pour les opérateurs exécutés dans ’état k : 1) aucun opérateur
n’a g(A) comme précondition, et alors les contraintes d’axiomes de cadre vont
imposer que g(A) reste vraie & la fin de 1’état ; 2) au moins un opérateur a g(A)
comme précondition, et alors les contraintes de postconditions vont imposer
que d(A) soit vraie a la fin de I’état. Dans les deux cas, la rive sur laquelle se
trouve 'acteur a la fin de I’état est clairement définie.

Contraintes PSC correspondant aur mutexr d’opérateurs. De maniere analogue
aux mutex de propositions, chaque mutex d’opérateur [op;, op,| va donner lieu,
pour chaque état S;, a la contrainte suivante :

opl(Si) NAND OPQ(Si)

Résumé du modele PSC

Au bout du compte, voici le modele que nous obtenons :

Variables :
1) Variables booléennes g(A, S;), pour chaque acteur A et chaque état S;.
2) Variables booléennes d(A, S;), pour chaque acteur A et chaque état S;.
3) Variables booléennes op(.S;), pour chaque opérateur op et chaque état .S;.
Contraintes :

1) Contraintes sur I’état initial :

9(B,50) = g(M, So) = g(Mz, So) = g(C1,50) = g(Ca, Sp) = True
2) Contraintes sur 1’état final :

d(B,Ss) = d(M,, S5) = d(Ma, S5) = d(C1, S5) = d(Ca, Ss) = True

3) Contraintes de préconditions et postconditions des opérateurs, pour chaque
état S; et chaque opérateur op :
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o Pour chaque proposition prop qui est une postcondition de 'opérateur
op : op(S;) = prop(Si+1)-

e Pour chaque proposition prop qui est une précondition de 'opérateur
op : op(S;) = prop(S;).

4) Contraintes d’axiomes de cadre, pour chaque état S; et chaque proposition
prop :

e Si prop(S;) = False et prop(S;+1) = True, alors pour au moins un

opérateur op qui a prop comme postcondition, on a op(S;) = True

5) Contraintes de mutex de propositions, pour chaque état S; et pour chaque
acteur A :

6) Contraintes de mutex d’opérateurs, pour chaque état S;, et pour chaque
paire d’opérateurs distincts op; et op, qui ont un acteur en commun :

op;(S;) NAND op,(.S;)

Dans ce PSC, toutes les variables sont booléennes. Typiquement, plutot
qu’un algorithme PSC, on utiliserait un algorithme SAT pour résoudre ce genre
de probléemes. Un algorithme SAT est en effet spécialisé dans la résolution de
PSC exprimés sous la forme de clauses (des expressions qui peuvent étre vraies
ou fausses) ne comportant que des variables booléennes.

Exercice 10.2 Implémentation

Module .../moteur_psc_planification/axiomecadre.py :

from moteur_psc.contrainte import Contrainte

class ContrainteAxiomeCadre(Contrainte):
def _init_ (self, var_pre, ops, var_post):
Contrainte. _init_ (self , (var_pre, var_post) + tuple(ops))

self .var_pre = var_pre
self .var_post = var_post
self . vars_ops = ops

def est_valide ( self , var, val):
ancienne_valeur = var.val
var.val = val

# On part du principe que la contrainte est valide si au moins une
# variable n'est pas instanciée.
for var2 in self . variables:
if var2.val is None:
var.val = ancienne_valeur
return True

valide = False
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# Si toutes les wariables sont instanciées et qu'une variable passe de
# False a True.
if self .var_pre.val == False and self.var_post.val == True:

# Vérifie qu'au moins un des opérateurs est appliqué.

for op in self .vars_ops:

if op.val == True:
valide = True
break
else:
valide = True

var.val = ancienne_valeur
return valide

def propage(self, var):
var2 = None
for var_i in self . variables :
if var_i.val is None:
if var2 is None:
var2 = var_i
else:
# Il reste plus d'une variable a instancier.
return True

# Teste les valeurs du label pour la derniere variable mnon instanciée.
for val in var2.label [:]:
if not self. est_valide (var2, val):
var2.label .remove(val)

return len(var2.label) > 0

def reviser ( self ):
return False

def _repr_ (self ):
return 'Axiome de cadre:\n\t{}\n\t{}\n\t{}'.format(self.var_pre,
[op for op in self .vars_ops],
self .var_post)

Module. . ./moteur_planification/etat.py :

from moteur_psc_heuristique.variable_avec_label import VariableAvecLabel

class Etat:
def _init_ (self, no_etat, propositions, operateurs, etat_prec=None):
self .no_etat = no_etat
self . etat_prec = etat_prec

self .operateurs = { op.nom: op for op in operateurs }

self . vars_initiales = {}
self . vars_finales = {}

self . construire_vars_operateurs (operateurs)
self . construire_vars_propositions ( propositions)

def construire_vars_operateurs ( self , ops):
self . vars_operateurs = {}
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for op in ops:
var_nom = '{} état {}'.format(op.nom, self.no_etat)
self . vars_operateurs|[op.nom|] = VariableAvecLabel(var_nom,
[True, False])

def construire_vars_propositions ( self , props):
if self .no_etat > 0:
self . vars_initiales = self.etat_prec. vars_finales

for prop in props:
var_nom = '{} état {}'.format(prop, self.no_etat + 1)
self . vars_finales [prop| = VariableAvecLabel(var_nom,
[True, False])

if self .no_etat == 0:
var_nom = '{} état 0'.format(prop)
self . vars_initiales [prop] = VariableAvecLabel(var_nom,

[True, False])

def variables ( self ):
return (list(self. vars_initiales .values()) +
list ( self . vars_finales .values()) +
list ( self . vars_operateurs. values ()))

Module .../moteur_planification/planification.py :

from moteur_psc.contrainte import ContrainteUnaire

from moteur_psc_heuristique.contrainte_avec_propagation import ContrainteAvecPropagation
from moteur_psc_heuristique.psc_heuristique import PSCHeuristique

from moteur_psc_planification.axiomecadre import ContrainteAxiomeCadre

from .etat import Etat

class Planification :
def _init_ (self, propositions, operateurs,
mutex_propositions, mutex operateurs,
depart, but, nb_etats):
self .operateurs = operateurs
self . mutex_propositions = mutex_propositions
self . mutex_operateurs = mutex_operateurs

self .depart = depart
self .but = but

self .nb_etats = nb_etats
self . propositions = propositions

self . etats = ]
self . construire_etats ()

self .psc = PSCHeuristique(self.variables (), self . construire_contraintes ())

def construire_etats ( self ):
self . etats .append(Etat(0, self.propositions, self .operateurs, None))

for i in range(1, self.nb_etats):
self . etats . append(Etat(i, self.propositions,
self .operateurs, self .etats[—1]))
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def variables ( self ):
# Utiliser un set évite les doublons entre variables finales et
# initiales .
variables = set()
for etat in self . etats:
variables .update(etat. variables ())

return list(variables)

def construire_contraintes ( self ):
return (self. construire_contraintes_propositions ()
self . construire_contraintes_operateurs () +
self . construire_contraintes_conditions () +
self . construire_contraintes_axiomes_cadre () +
self . construire_contraintes_initiales () +
self . construire_contraintes_finales ())

_l’_

def construire_contraintes_propositions ( self ):
contraintes = ||
nand = lambda x,y: not (x and y)

# Construction des contraintes générées par les mutexr de propositions
# *xpour chaque étatxx.
for mutex in self.mutex_propositions:
for etat in self .etats:
contr = ContrainteAvecPropagation(etat.vars_initiales [mutex [0]],
etat. vars_initiales [mutex[1]],
nand)
contraintes . append (contr)
# Les mutex de propositions doivent aussi étre valides pour les
# wvariables finales du dernier état.
if etat.no_etat == (self.nb_etats — 1):
contr = ContrainteAvecPropagation(etat.vars_finales[mutex[0]],
etat. vars_finales [mutex[1]],
nand)
contraintes . append(contr)

return contraintes

def construire_contraintes_operateurs ( self ):
contraintes = ]
nand = lambda x,y: not (x and y)

for mutex in self.mutex_operateurs:
for etat in self . etats:
contr = ContrainteAvecPropagation(etat.vars_operateurs/mutex[0].nom]|,
etat . vars_operateurs [mutex[1].nom],
nand)
contraintes . append(contr)

return contraintes

def construire_contraintes_conditions ( self ):
contraintes = ||
# Contraintes générées par les pré— et post—conditions.
# Implication logique.
imp = lambda x,y: (not x) or y
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for etat in self . etats:
for op in self .operateurs:
for precond in op.precond:
contr = ContrainteAvecPropagation(etat.vars,operateurs[op.nom],
etat. vars_initiales [precond],
imp)
contraintes . append(contr)
for postcond in op.postcond:
contr = ContrainteAvecPropagation(etat.vars_operateurs[op.nom]|,
etat. vars_finales [postcond],
imp)
contraintes . append(contr)

return contraintes

def construire_contraintes_axiomes_cadre ( self ):
contraintes = ||

for etat in self .etats:
for prop in self . propositions:
vars_ops = [etat.vars_operateurs|op.nom)]
for op in self .operateurs
if prop in op.postcond]
contr = ContrainteAxiomeCadre(etat.vars_initiales[prop],
vars_ops,
etat. vars_finales [prop])
contraintes . append(contr)
return contraintes

def construire_contraintes_initiales ( self ):

contraintes = ||
for contrainte in self .depart:
eq = lambda x: x == contrainte[1]

contr = ContrainteUnaire(self.etats [0]. vars_initiales [contrainte [0]], eq)
contraintes . append(contr)

return contraintes

def construire_contraintes_finales (self ):
contraintes = ||

for contrainte in self .but:
eq = lambda x: x == contrainte[1]
contr = ContrainteUnaire(self.etats [—1]. vars_finales [contrainte [0]], eq)
contraintes . append(contr)

return contraintes

def resoudre( self ):
self . psc.consistance_noeuds()
self . psc. consistance_arcs ()

self . psc. variable_ordering ()

self . psc.forward_checking(0, True)
self .sol = self.psc. solutions

return self. sol

def affice_solutions (self ):
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print('Recherche terminée en {} itérations'.format(self.psc. iterations ))

if len(self .psc. solutions) ==
print('Aucune solution trouvée')
return

for sol in self .psc.solutions:
print('Solution')

for etat in self .etats:
print('Etat {}: '.format(etat.no_etat))
print(' Propositions initiales :')
for nom, var in sorted(etat. vars_initiales .items()):
if sol [var.nom]:
print(' ' 4+ nom)

print(' Opérateurs:')
for nom, var in sorted(etat.vars_operateurs.items ()):
if sol [var.nom]:
print(' ' + nom)

print(' Propositions finales:')
for nom, var in sorted(etat. vars_finales .items ()):
if sol [var.nom]:
print(' ' + nom)
print()

Module .../exemple_missionnaires.py :

from moteur_planification.operateur import Operateur
from moteur_planification. planification import Planification

def format_g(acteur):
return 'g({})'.format(acteur)

def format_d(acteur):
return 'd({})'.format(acteur)

def format_dg(bateau, pilote):
return 'dg({}, {})'.format(bateau, pilote)

def format_gd(bateau, pilote, passager):
return 'gd({}, {}, {})'.format(bateau, pilote, passager)

bateaux = ['B']
missionnaires = ['M1', 'M2']
cannibales = ['C1', 'C2']

acteurs = bateaux + missionnaires + cannibales

# Ajoute les propositions pour la position des acteurs.

propositions = []

for acteur in acteurs:
propositions.append(format_g(acteur))
propositions.append(format_d(acteur))

# Ajoute les opérateurs de déplacement.
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operateurs = ||
for bateau in bateaux:
for pilote in missionnaires:
# Déplacements du bateau sans passagers (droite agauche).
operateurs.append(Operateur(
format_dg(bateau, pilote ),
[format_d(bateau), format_d(pilote )],
[format_g(bateau), format_g(pilote )])

)

for passager in missionnaires + cannibales:
# Déplacements du bateau avec passagers (gauche adroite).
if passager != pilote:
operateurs.append(Operateur (
format_gd(bateau, pilote, passager),
[format_g(bateau), format_g(pilote ), format_g(passager)],
[format_d(bateau), format_d(pilote), format_d(passager)])

)

# Ajoute les mutexr de proposition (un acteur ne peut pas étre sur les deuz rives
# stmultanément).
mutex_propositions = [|
for acteur in acteurs:
mutex_propositions.append((format_g(acteur), format_d(acteur)))

# Ajoute les mutex d'opérateurs.
mutex_operateurs = ||
for i in range(len(operateurs)):
for j in range(i+1, len(operateurs)):
for acteur in acteurs:

if ((format_d(acteur) in operateurs|[i|. precond or
format_g(acteur) in operateurs[i]. precond)
and
(format_d(acteur) in operateurs|j |. precond or
format_g(acteur) in operateurs[j ]. precond)):

mutex_operateurs.append((operateurs|[i], operateurs|[j]))
break

# Ajoute les contraintes initiales (tous les acteurs a gauche).
depart = ||
for acteur in acteurs:

depart.append((format_g(acteur), True))

# Ajoute les contraintes finales (but: tous les acteurs & droite ).
but = []
for acteur in acteurs:

but.append((format_d(acteur), True))

# Transforme le probléme de planification en PSC.

plan = Planification (propositions, operateurs,
mutex_propositions, mutex_operateurs,
depart, but,
nb_etats=5)

plan.resoudre()

plan. affice_solutions ()
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CHAPITRE 11

Induction de classifications simples
a partir d’exemples

Exercice 11.1 Attributs discrets

1)

Les descriptions conjonctives suivantes sont possibles :

o fuselé A large,

o fuselé.

Le plus court le mieux : c¢’est donc fuselé qui est la meilleure solution.

On ne prend pas lintersection de tous les attributs que partagent les
champignons venimeux, parce qu’on obtiendrait une description qui est
trop spécifique, c’est-a-dire fuselé A large.

Apres 'ajout du nouvel exemple, il n’existe pas de description conjonc-
tive de la classe des champignons non venimeux, parce qu’il n’y a aucun
attribut qui est partagé par tous les exemples.

Non, on ne peut pas utiliser ce nouvel attribut pour apprendre une clas-
sification conjonctive, parce qu’aucune valeur de l'attribut n’est vraie
pour tous les exemples d’une méme classe. Cependant, si on regroupe
{rouge, brun} = coloré, alors les champignons colorés sont ceux qui sont
venimeux.

Exercice 11.2 Attributs numériques

1)

2)

11 faut rajouter la coordonnée 22 qui permet la séparation par la frontiere
z? < 1.

La bande se caractérise par le fait que y—x se situe entre -1 et 1, donc (y—
x)? < 1. Elle peut s’exprimer par les trois coordonnées supplémentaires
22 xy,y? = 2ay+9y? <1

L’intérieur du cercle se caractérise par 'inégalité : (z —2)% + (y —2)2 < 1
ou de maniére équivalente : 4z + 4y — 2% —y? > 7, donc nous avons besoin
des coordonnées x2,y2, x, y.
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CHAPITRE 12

Apprentissage de classifications
structurées

Exercice 12.1 Les arbres de décision (ID3)

Module moteur_id3/id3.py :

from math import log
from .noeud_de_decision import NoeudDeDecision

class 1D3:

def construit_arbre (self , donnees):
# Nous devons extraire les domaines de valeur des
# attributs, puisqu'ils sont nécessaires pour
# construire ' arbre.
attributs = {}
for donnee in donnees:
for attribut, valeur in donnee[1].items ():
valeurs = attributs.get(attribut)
if valeurs is None:
valeurs = set()
attributs [attribut] = valeurs
valeurs . add(valeur)

arbre = self . construit_arbre_recur (donnees, attributs)
return arbre
def construit_arbre_recur (self , donnees, attributs ):

def classe_unique(donnees):
if len(donnees) == 0:
return True
premiere_classe = donnees|[0][0]
for donnee in donnees:
if donnee[0] != premiere_classe:
return False
return True

if donnees == [|:
return None

# Si toutes les données restantes font partie de la méme classe,
# on peut retourner un noeud terminal.
elif classe_unique (donnees):

return NoeudDeDecision(None, donnees)

else:
# Sélectionne 1' attribut qui réduit au mazimum I'entropie.
h C_As_attribs = [(self .h_C_A(donnees, attribut, attributs [attribut ]),
attribut) for attribut in attributs]

attribut = min(h_C_As_attribs, key=lambda h_a: h_a[0])[1]
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# Crée les sous—arbres de maniére récursive.
attributs_restants = attributs.copy()
del attributs_restants [attribut |

partitions = self. partitionne (donnees, attribut, attributs [attribut ])
enfants = {}
for valeur, partition in partitions .items():

enfants|valeur] = self. construit_arbre_recur ( partition

attributs_restants )
return NoeudDeDecision(attribut, donnees, enfants)

def partitionne( self , donnees, attribut, valeurs):
partitions = {valeur: [] for valeur in valeurs}

for donnee in donnees:
partition = partitions|[donnee[1][attribut ]]
partition .append(donnee)

return partitions

def p_aj(self, donnees, attribut, valeur):
# Nombre de données.
nombre_donnees = len(donnees)

# Permet d'éviter les divisions par 0.
if nombre_donnees ==
return 0.0

# Nombre d'occurrences de la valeur a_j parmi les données.
nombre_aj = 0
for donnee in donnees:
if donnee[l][attribut] == valeur:
nombre_aj += 1

# p(aj) = nombre d'occurrences de la valeur a_j parmi les données /
# nombre de données.
return nombre_aj / nombre_donnees

def p_ci_aj(self, donnees, attribut, valeur, classe ):
# Nombre d'occurrences de la valeur a_j parmi les données.
donnees_aj = [donnee for donnee in donnees if donnee[1][attribut] == valeur]
nombre_aj = len(donnees_aj)

# Permet d'éviter les divisions par 0.
if nombre_aj ==
return 0

# Nombre d'occurrences de la classe c_i parmi les données pour lesquelles
# A vaut a_j.

donnees_ci = [donnee for donnee in donnees_aj if donnee[0] == classe]
nombre_ci = len(donnees_ci)

# p(c_ilaj) = nombre d'occurrences de la classe c_i parmi les données
pour lesquelles A vaut a_j /

# nombre d'occurrences de la valeur a_j parmi les données.

return nombre_ci / nombre_aj
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def h_C_aj(self, donnees, attribut, valeur):
# Les classes attest ées dans les exemples.
classes = list(set([donnee[0] for donnee in donnees]))

# Calcule p(c_ila_j) pour chaque classe c_i.
p-ci_ajs = [self . p_ci_aj (donnees, attribut, valeur, classe)
for classe in classes |

# Si p vaut 0 —> plog(p) vaut 0.
return —sum([p_ci_aj * log(p_ci_aj, 2.0)
for p_ciaj in p_ciajs
if p_ciaj !=0])

def h_C_A(self, donnees, attribut, valeurs):
# Calcule P(a_j) pour chaque valeur a_j de l' attribut A.
p-ajs = [self .p_aj(donnees, attribut, valeur) for valeur in valeurs]

# Calcule H_C_aj pour chaque valeur a_j de l' attribut A.
h c_ajs = [self .h_C_aj(donnees, attribut, valeur)

for valeur in valeurs]

return sum([p_aj * h_c_aj for p_aj, h.c_aj in zip(p_ajs, h_c_ajs)])
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CHAPITRE 13
Apprentissage non supervisé

Exercice 13.1 Clustering

Module .../moteurs_clustering/clustering_kmeans.py :

from .cluster_mean import ClusterMean
from .clustering import Clustering

class ClusteringKMeans(Clustering):
def _init_ (self, k, dist_f):
super(). —init_ ()
self .k =k
self . dist_f = dist_f

def noyaux(self, clusters ):
return [cluster.noyau for cluster in clusters |

def initialise_clusters (self, donnees):
if len(donnees) < self.k:
raise Exception('Il faut au moins {} données'.format(self.k))

# Crée les clusters autour des noyauz, qui sont les premiéres k données.
noyaux = [(donnees|[i], str(i + 1)) for i in range(self.k)]
self . clusters = [ClusterMean([noyau[0]], noyau[l]) for noyau in noyaux]

# Ajoute toutes les autres données au premier cluster.
self . clusters [0]. ajoute_donnees(donnees[self.k:])

def fini (self, anciens_clusters ):
return self.noyaux(self. clusters ) == self.noyaux(anciens_clusters)

def revise_clusters ( self ):
# Extrait toutes les données des anciens clusters, sauf les moyaux.
donnees = ]
for cluster in self . clusters:
donnees.extend([d for d in cluster .donnees if d != cluster .noyau))

# Réinitialise les nouveauz clusters aur noyauxr des anciens clusters.
for cluster in self . clusters:
cluster . vide(garde_noyau=True)

# Assigne chaque donnée au cluster du noyau duquel il est le
# plus proche.
for donnee in donnees:
distances = [(self . dist_f (donnee, cluster .noyau), cluster)
for cluster in self . clusters |
cluster = min(distances, key=lambda x: x[0])[1]
cluster .ajoute_donnee(donnee)

# Recentre le noyau de chaque nouveau cluster.
for cluster in self . clusters:
cluster . centre( self . dist_f)
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def affiche_clusters (self ):
print('\n'. join ([str(cluster) for cluster in self . clusters ]))

Module .../moteurs_clustering/clustering_hierarchique.py :

from .cluster_hierarchique import ClusterHierarchique
from .clustering import Clustering

class ClusteringHierarchique(Clustering):
liens = {
'single': min,
'complete': max,

}

def _init_ (self, type_lien, dist_f):
super(). —init_ ()
self . dist_f = dist_f
# Permet d'utiliser min ou mazx de maniére générique en fonction du
# paramétre type_lien.
self . lien = self. liens [ type_lien |

def fusionne_clusters ( self , clusterl, cluster2):
donnees = clusterl.donnees + cluster2.donnees
return ClusterHierarchique(donnees, clusterl, cluster2)

def calcule_distance (self , clusterl, cluster2 ):
distances = ]
for donneel in clusterl.donnees:
for donnee2 in clusterl.donnees:
distances . append(self. dist_f (donneel, donnee2))

return self. lien (distances)

def initialise_clusters (self, donnees):
# Construit les clusters terminaux : un par donnée.
# Les clusters seront ensuite fusionnés pour créer la hiérarchie.
self . clusters = [ClusterHierarchique([donnee]) for donnee in donnees]

def fini (self, anciens_clusters ):
return len(self. clusters ) == len(anciens_clusters)

def revise_clusters ( self ):
if len(self . clusters) == 1:
return

# Calcule la distance entre chaque paire de clusters.
distances = |]
for clusterl in self . clusters:
for cluster2 in self. clusters:
if clusterl != cluster2:
distance = self. calcule_distance (clusterl, cluster2)
distances.append((distance, clusterl, cluster2))

# Trouve les deux clusters les plus proches.
paire = min(distances, key=lambda x: x[0])
clusterl = paire[1]
cluster2 = paire|[2]
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# Fusionne ces deux clusters.

nouveau_cluster = self. fusionne_clusters (clusterl, cluster2)
self . clusters .remove(clusterl)

self . clusters .remove(cluster2)

self . clusters .append(nouveau_cluster)

def affiche_clusters ( self ):
print("\n'. join ([str(cluster) for cluster in self . clusters ]))
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