
Avant-propos

Le sujet de l’Intelligence Artificielle fait partie du plan d’études de la section
d’Informatique de l’EPFL depuis plus de 20 ans. Ce livre est le résultat d’une
évolution constante des notes de cours et des exercices pendant cette période.
Il contient donc à la fois des méthodes très anciennes, comme les algorithmes
d’inférence et l’apprentissage de concepts, et des méthodes très récentes, comme
la planification par contraintes et certaines techniques d’apprentissage. La sé-
lection a été réalisée selon trois critères :

1) Utilité pratique : toutes les méthodes présentées dans ce livre trouvent
leur application dans de nombreux logiciels en application pratique au-
jourd’hui, et le livre couvre la majorité de telles techniques.

2) Couverture : l’ensemble des techniques donne un aperçu équilibré des dif-
férents sujets traités en Intelligence Artificielle, à l’exclusion du traitement
de la langue naturelle et de la robotique qui sont considérés comme des
sujets propres.

3) Simplicité : les méthodes sont suffisamment simples pour être comprises
et implémentées par un étudiant bachelor de dernière année. Aucune mé-
thode ne demande des connaissances mathématiques ou informatiques
particulièrement élevées. Par contre, elles ouvrent le chemin vers des mé-
thodes plus sophistiquées.

Le contenu théorique est accompagné de nombreux exercices qui apprennent
au lecteur à programmer pas à pas la majorité des algorithmes. C’est certai-
nement l’une des fortes spécificités de l’ouvrage. Même si les programmes re-
présentent des versions simples et en soi peu efficaces de l’implémentation des
techniques du livre, ils sont utiles pour bien les comprendre et constituent une
base pour des réalisations plus sophistiquées.
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Martin ont énormément amélioré le contenu des exercices et certains chapitres.
Nous remercions aussi les générations d’étudiants de l’EPFL qui ont contribué
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1.5.1 Systèmes à base de connaissances . . . . . . . . . . . . . 12
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8.1 Définition des problèmes de satisfaction de contraintes (PSC) . 172

8.2 Formulation d’un réseau de contraintes binaires . . . . . . . . . 174

8.3 Solution d’un PSC par recherche . . . . . . . . . . . . . . . . . 177
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8.3.2 Méthodes itératives . . . . . . . . . . . . . . . . . . . . 182

8.4 Solution par propagation . . . . . . . . . . . . . . . . . . . . . . 185
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9.1.2 Transformation en déduction . . . . . . . . . . . . . . . 212

9.1.3 Abduction par raisonnement incertain . . . . . . . . . . 213
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9.4 Modèles de défaillances . . . . . . . . . . . . . . . . . . . . . . 219

9.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
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Chapitre 1

Introduction

Dès le début de l’informatique, les chercheurs se sont tout particulièrement
intéressés à la reproduction de l’intelligence humaine sur ordinateur. C’était la
motivation principale pour aller au-delà de la simple machine à calculer vers des
automates capables de traiter l’information en général. Dans les années 1940,
des chercheurs comme Turing, Von Neumann et Shannon ont tous apporté des
contributions importantes dans ce sens.

L’Intelligence Artificielle (IA) a donc longtemps été synonyme d’informa-
tique tout court. Elle se distinguait des mathématiques numériques qui voyaient
dans les ordinateurs plutôt des machines à calculer. En 1956, l’IA est finalement
devenue une discipline en soi lors de la Conférence de Dartmouth qui réunissait
notamment McCarthy, Newell, Simon et Minsky, des personnages clés qui ont
fortement influencé le développement de la discipline.

Depuis ces débuts, l’Intelligence Artificielle a subi un développement fulgu-
rant et les techniques qui furent développés sont à la base de l’informatique telle
que nous la connaissons aujourd’hui : la programmation orientée objet et la pro-
grammation fonctionnelle en sont issues, de même que les techniques d’analyse
de données et d’apprentissage automatiques, qui sont largement répandues. Les
progrès de l’IA se sont signalés par des succès comme le système WATSON qui a
battu en 2011 les meilleurs joueurs humains dans le jeu télévisé Jeopardy, ou
encore l’assistant personnel SIRI disponible sur certains téléphones mobiles ou
les voitures autonomes.

Avant toute discussion sur les techniques de l’IA, il est nécessaire de prendre
connaissance de ses principaux objectifs et raisons d’être. Une définition intui-
tive est facile à donner : il s’agit de l’étude des programmes informatiques qui
simulent la pensée ou l’intelligence humaine. Mais comment définir exactement
en quoi cela consiste ?

Si les premiers ordinateurs symboliques ont effectivement été appelés des
cerveaux électroniques, l’évolution des techniques informatiques n’a pas tardé à
démontrer le caractère trop péremptoire de cette vision des choses. Les défini-
tions précises, comme celle qui prétend qu’un être intelligent est un être capable
de réagir à son environnement, s’avèrent trop simplistes : un thermostat réagit
aux modifications de son environnement, tout comme un être humain, mais
rares sont les personnes qui lui attribueront de l’intelligence. Par contre, la
complexité des comportements semble jouer un rôle important dans la défini-
tion de l’intelligence. Aujourd’hui, il apparâıt clairement que la complexité de
la pensée humaine est sans commune mesure avec tout ce qu’un ordinateur
existant est à même de réaliser.
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Fig. 1.1 Dessin d’une maison en 3-dimensions ou texture sur une feuille de papier ?

Une meilleure approche pour définir l’intelligence consisterait à étudier de
plus près ce que nous, êtres humains, considérons comme intelligent. Exami-
nons, par exemple, le dessin de la figure 1.1.

Imaginons ce qu’un robot équipé d’une caméra vidéo peut nous en dire. Une
réponse correcte serait : « Je vois un morceau de papier sur lequel est dessiné
un ensemble de lignes ». La réponse intelligente, « Je vois une maison », est
paradoxalement fausse en soi, mais c’est très probablement celle qu’on aurait
espérée d’un ordinateur intelligent. Ce dernier point dégage le critère selon le-
quel nous décidons que la réponse est intelligente ou ne l’est pas. Le fait de voir
une maison sur la feuille de papier et non pas simplement un ensemble de lignes,
est basé sur un grand nombre de conventions et de connaissances : les humains
utilisent des dessins pour communiquer de l’information sur des objets tridi-
mensionnels, l’élaboration de ces dessins obéit à des règles et la forme du dessin
correspond à celle d’une maison. La plupart des programmes d’IA utilisent une
quantité significative de connaissances humaines et sont généralement connus
sous l’appellation de systèmes basés sur la connaissance. L’exemple que nous
venons de voir nous permet de formuler une nouvelle définition de l’IA : un
programme intelligent est un programme qui résout des problèmes en utilisant
les règles et conventions propres aux humains (ou du moins qui s’en inspirent).

Si l’élaboration de programmes intelligents est déjà un objectif intéressant
en soi, le succès de l’IA comme discipline d’ingénierie provient largement du
fait qu’elle offre des solutions à des problèmes d’intérêt pratique. D’un point de
vue technologique, l’IA fournit des moyens plus souples et plus efficaces pour
produire du logiciel informatique. Par exemple, les techniques d’IA ont permis
la mise au point de programmes qui peuvent conduire des véhicules autonomes,
réagir à des pannes de circuits électriques, reconfigurer des réseaux de commu-
nication, ou traiter des rapports de sinistre d’une assurance. Un comportement
intelligent est important, car il permet d’éviter les obstacles rencontrés en pra-
tique plus facilement que les techniques algorithmiques classiques.

Dans les paragraphes suivants, nous verrons ce qui distingue actuellement
la résolution de problèmes par un être humain de la manière de procéder des
ordinateurs. Nous verrons aussi quels sont les problèmes pour lesquels l’IA peut
être d’un meilleur apport que les techniques classiques.
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1.1 Connaissances : données non structurées

Science et ingénierie sont toutes deux dominées par des principes, c’est-à-dire
par des règles générales dont l’application uniforme résout tous les problèmes
d’une même classe. Cela est particulièrement apparent en mathématiques, où
le but principal consiste à réduire des problèmes, en apparence complexes, à
un ensemble minimal de principes. Les ordinateurs ont été développés par des
mathématiciens, il n’est donc pas étonnant que ce soient des machines parti-
culièrement bien adaptées à la mise en œuvre de principes. Les premiers or-
dinateurs n’étaient en fait que des calculateurs implémentant les principes les
plus généraux de l’algèbre, et qui ne pouvaient résoudre que des problèmes
se ramenant à un ensemble de calculs algébriques. Aujourd’hui, même si les
ordinateurs peuvent traiter un ensemble plus vaste d’opérations, les notions
algorithmiques de base sous-jacentes aux programmes procéduraux reflètent
toujours le concept de machines de calcul : les programmes sont des séquences
d’étapes opérant sur des données. Cet aspect a conduit au développement des
superordinateurs dans lesquels certains principes (par exemple le calcul de vec-
teurs) sont câblés (physiquement implémentés) afin d’être exécutés de façon
extrêmement rapide.

En revanche, le comportement humain est régi par très peu de principes. Un
adage bien connu affirme dans cet esprit qu’il n’y a pas de règle sans exceptions.
En fait, les principes s’accommodent mal d’exceptions et il est ainsi difficile
d’utiliser des ordinateurs dans des domaines où peu de principes connus sont
clairement applicables.

En termes informatiques, on peut faire une distinction analogue entre le
traitement de données structurées et non structurées. L’informatique classique
est particulièrement adaptée au traitement de données structurées, comme par
exemple des chiffres, des codes et d’autres contenus de bases de données. Par
contre, le comportement humain repose sur beaucoup de données non structu-
rées : des règles, des normes sociales ou encore des informations incertaines. Ces
données sont difficilement formalisables sous un format structuré. Elles sont en
général incomplètes, ambiguës et parfois aussi inconsistantes. En IA, elles sont
appelées des connaissances.

1.2 Modélisation du monde et des connaissances

Comme le montre la figure 1.2, le premier pas pour tout système intelligent
est de modéliser le monde par une représentation logique qui identifie les objets,
propriétés et relations importants pour une tâche donnée. Par exemple, si la
tâche est de conduire un véhicule autonome, il faut reconnâıtre les piétons,
les autres véhicules, les voies de circulation, etc. Cette reconnaissance se fait
par un système de vision ou par d’autres capteurs, et fournit une première
représentation du monde. Toute tâche intelligente – comme le raisonnement, la
résolution de problèmes ou l’apprentissage – repose sur une telle représentation,
car l’ordinateur n’a pas d’autre connexion avec le monde.



4 L’intelligence artificielle par la pratique

marche(p1)
reste(p2) Représentation

Résolution de problèmes Apprentissage

Raisonnement

voie(p4)

voie-opposée(p4)

Pr(traverse(p2))=0.45 Pr(change(p8,p5))=0.01

tourne-à-
gauche(p6)

pos(p8,p6)

pos(p7,p6)

Pr(change(p7,p5))=0.2

comment obtenir pos(moi,p5)? pos(p7,p6,t1), pos(p7,p5,t2)

pos(x,p6,y) –> pos(x,p5,z)

pos(p10,p6,t3), pos(p10,p5,t4)=> Plan: vérifier(p1,vert)
=> Plan: avancer(moi)
=> Plan: ......

traverse(p1,p3)

voie(p5)

freine(p7)

passage(p3)
voiture(p8)

voiture(p7)

voie(p6)
piéton(p1) piéton(p2)

Fig. 1.2 Modélisation logique du monde pour un véhicule autonome et exemples de
raisonnement.

Pour exprimer ces données non structurées, la société se sert des langues
naturelles, telles que le français, l’anglais ou le chinois. Depuis le temps des
Grecs, on a cherché à formaliser la signification des expressions du langage
naturel. Le formalisme qui a été développé pour ce faire est la logique des
prédicats. Elle repose sur des prédicats qui peuvent être vrais ou faux. Dans ce
livre, nous exprimerons toujours nos modèles du monde dans le formalisme de
la logique des prédicats. Même si cette représentation n’est pas obligatoirement
présente de façon explicite dans tout logiciel IA, elle est utile au moins comme
notation de base.

En général, il y a une correspondance entre prédicats et mots d’une langue.
Sur la base des prédicats, on construit des expressions utilisant des connecteurs
tels que et et ou. Ces expressions correspondent à des phrases. La signification
d’une phrase devient donc : si la phrase est vraie, l’expression correspondante
en calcul des prédicats l’est aussi.

L’avantage de ce formalisme est que l’on peut maintenant définir des règles
qui permettent de juger si deux phrases sont consistantes entre elles, ou si une
phrase est la conséquence d’une autre. Par exemple, les trois phrases :

1) « Si l’enfant de Mme Dupont est une fille, ce n’est pas un garçon »
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2) « L’enfant de Mme Dupont est une fille »

3) « L’enfant de Mme Dupont est un garçon »

sont clairement inconsistantes, mais on ne peut pas s’imaginer un algorithme
qui permettrait de détecter une telle inconsistance avec une certaine généralité.
En formalisant :

• F = « L’enfant de Mme Dupont est une fille »

• G = « L’enfant de Mme Dupont est un garçon »

on obtient :

1) F ⇒ ¬ G

2) F

3) G

On peut alors appliquer des algorithmes généraux pour détecter l’inconsistance,
ou encore faire l’inférence que G doit être faux sur la base des deux premières
expressions.

Dans cet exemple, nous avons inventé des prédicats qui eux-mêmes corres-
pondent déjà à beaucoup plus que des mots de la langue. Pour obtenir une tra-
duction plus générale, le calcul des prédicats admet également des variables et
des quantificateurs. Dans ce cas précis, nous pouvons utiliser le prédicat F (x)
qui est vrai si l’argument x est une fille. Nous pouvons alors introduire une
constante E qui représente « l’enfant de Mme Dupont », et exprimer « l’enfant
de Mme Dupont est une fille » par F (E). Mieux encore, nous pouvons introduire
un prédicat E(x, y) qui dit « x est enfant de y », et utiliser la quantification
existentielle ∃x qui dit « il existe un x » pour écrire : (∃x)E(x,Dupont) et F (x).
Cela nous permet d’avoir un formalisme plus général, que nous pouvons appli-
quer non seulement à l’enfant de Mme Dupont, mais aussi à d’autres enfants.

On peut ensuite songer à exprimer également une autre information, qui est
donnée par chacune des phrases, celle qu’il n’existe qu’un seul enfant de Mme
Dupont. Il n’existe donc pas une seule et unique façon de traduire des phrases en
calcul des prédicats, surtout quand les phrases sont ambiguës. En fait, souvent,
on souhaite conserver une certaine ambigüıté, par exemple en diplomatie. La
traduction automatique de la langue en calcul des prédicats reste donc un rêve
qui ne sera probablement jamais réalité – on aura toujours besoin d’un humain
pour résoudre les ambigüıtés.

C’est pour cette raison que l’IA ne permet pas de traiter directement les
connaissances non structurées, mais suppose un processus qui aura traduit préa-
lablement les connaissances en calcul des prédicats. Ces traductions existent de
plus en plus, par exemple dans le « text mining » ou le web sémantique. L’uti-
lisation du calcul des prédicats permet ensuite de construire des programmes
capables de manipuler des connaissances non structurées telles que les expres-
sions en langue naturel. C’est là l’importance essentielle des techniques d’IA
dans l’informatique d’aujourd’hui.
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1.3 Inférence : manipuler les connaissances

Il n’est pas possible de manipuler des connaissances par des opérations arith-
métiques. Le mécanisme de base pour la manipulation de connaissances est le
raisonnement utilisant des principes d’inférence logique.

Il existe trois mécanismes de raisonnement : la déduction, l’induction et
l’abduction. Dans la déduction, un ensemble de propositions initiales (les pré-
misses) ainsi qu’un ensemble de règles sont utilisés pour inférer un ensemble
de conclusions. Dans l’abduction par contre, ce sont les conclusions et les règles
qui sont utilisées pour retrouver les prémisses desquelles découlent les conclu-
sions. Dans l’induction enfin, prémisses et conclusions sont utilisées pour inférer
l’ensemble des règles qui permettent de passer des premières aux secondes.

L’exemple suivant illustre les trois types de raisonnement. À partir des trois
propositions suivantes :

Oiseau(Titi) : Titi est un oiseau
(∀ x) oiseau(x) ⇒ chante(x) : Les oiseaux chantent
chante(Titi) :Titi chante

on peut imaginer les inférences suivantes :

déduction :
oiseau(Titi)

(∀x) oiseau(x)⇒ chante(x)
chante(Titi)

abduction :
chante(Titi)

(∀x) oiseau(x) ⇒ chante(x)
oiseau(Titi)

induction :
oiseau(Titi), oiseau(Fred)

chante(Titi), chante(Fred)
(∀ x) oiseau(x) ⇒ chante(x)

Ces trois modes de raisonnement définissent les trois grands domaines ap-
plicatifs de l’IA. La déduction s’applique surtout à la modélisation directe de
la pensée humaine, donc par exemple dans des programmes qui appliquent des
règles. L’abduction a un grand nombre d’applications dans des problèmes de
diagnostic, de planification et de conception. Les applications de l’induction se
trouvent dans des systèmes d’apprentissage à partir d’exemples.

Dans la figure 1.2, nous montrons des exemples des trois types de raisonne-
ment dans le cas de la conduite d’un véhicule autonome :

• Le raisonnement déductif est nécessaire pour établir les relations et pro-
priétés des objets reconnus dans le monde. Il peut aussi tirer des conclu-
sions incertaines avec une estimation de leur probabilité, par exemple pour
décider si un piéton va traverser la route ou pas.

• Le raisonnement abductif est utilisé pour la planification : quelles actions
faut-il accomplir pour se déplacer à un endroit voulu ? A quoi faut-il faire
attention ?
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• L’induction sert à l’apprentissage afin de prévoir le comportement des
autres usagers de la route : comment se déplaceront-ils dans les différentes
situations ?

Les résultats de l’abduction et de l’induction sont en général ambigus et ne
sont pas tous nécessairement valides :

• L’abduction donne autant de résultats que de règles qui permettent l’in-
férence de sa prémisse.

• Il existe plusieurs règles qui peuvent résulter d’une induction sur le même
ensemble de propositions. Par exemple, on aurait pu conclure par
(∀ x) chante(x) ⇒ oiseau(x).

Cependant, l’abduction et l’induction sont bien fondées sous l’hypothèse
d’un monde clos. Cette hypothèse s’explique comme suit :

• Pour l’abduction : toutes les règles sont connues, et on ne pourra donc
pas découvrir une autre explication.

• Pour l’induction : toutes les prémisses et conclusions sont connues, ce qui
signifie qu’on ne pourra jamais découvrir un contre-exemple à la règle
trouvée.

Comme on ne peut pas toujours assurer un monde clos, le seul mécanisme
d’inférence dont on peut garantir le bien-fondé inconditionnel est la déduc-
tion. Il est à la base de la grande majorité des systèmes informatiques : les
algorithmes classiques sont basés sur une déduction du résultat à partir des en-
trées. Cependant, sous l’hypothèse d’un monde clos, l’abduction et l’induction
deviennent également fondées et peuvent être implémentées par un programme
informatique. C’est ici que se trouve une grande partie de l’intérêt de l’IA par
rapport à l’informatique classique.

1.4 Historique de l’IA

Le but des premiers ordinateurs était de réaliser de grands calculs, en particu-
lier de trajectoires d’obus d’artillerie. Leur première utilisation en dehors des
calculs numériques fut de casser des codes cryptographiques dans un projet
mené par le mathématicien Alan Turing. Il fut l’un des premiers à développer
une vision beaucoup plus large des ordinateurs et à formaliser cette vision dans
des modèles théoriques comme la machine de Turing. Il considérait les ordina-
teurs comme de véritables cerveaux électroniques, capables de beaucoup plus
que du simple calcul.

Pendant l’été 1956, un groupe de chercheurs s’est réunit au collège de Dart-
mouth (New Hampshire, USA) pour une conférence d’un mois. Il y avait là
des chercheurs qui allaient devenir très influents, tels que l’organisateur John
McCarthy et Herbert Simon, qui allait recevoir plus tard le prix Nobel. À cette
époque, la puissance des ordinateurs progressait rapidement, et il paraissait
évident qu’ils allaient égaler ou dépasser l’intelligence humaine au bout de peu
de temps. La conférence a donc inventé le terme « Intelligence Artificielle ».
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En 1955 déjà, Alan Newell et Herbert Simon avaient créé un programme inti-
tulé le Logic Theorist, qui pouvait trouver des preuves – parfois très élégantes –
de certains théorèmes mathématiques. Ils ont ensuite développé ce programme
en une théorie générale de la résolution de problèmes, le General Problem Sol-
ver (GPS). En 1958, ils osèrent deux prédictions pour les dix années suivantes :
un ordinateur serait le premier à trouver la démonstration d’un théorème im-
portant et un ordinateur deviendrait champion du monde d’échec. La première
prédiction fut réalisée en 1974 avec le théorème des quatre couleurs, mais il
fallut attendre beaucoup plus longtemps pour la deuxième. Il semblait alors
qu’il n’y aurait aucune limite à ce qu’un ordinateur pourrait faire ; les seules
limitations provenaient de leur capacité et de leur vitesse, et les deux faisaient
des progrès rapides.

En même temps, on faisait des progrès importants dans la quête de deux
autres objectifs : la compréhension du langage humain et la vision par ordina-
teur. En 1964, Daniel Bobrow a développé un programme, du nom de student,
qui était capable de résoudre des exercices de mathématiques du niveau du ly-
cée. Un autre programme, appelé eliza et développé par Joe Weizenbaum en
1966, simulait la conversation d’un psychologue avec son patient. Il était tel-
lement convaincant que les gens oubliaient rapidement qu’ils étaient en train
de communiquer avec un ordinateur. Ce fut le premier « chatterbot ». Le cou-
ronnement des ces recherches fut le programme shrdlu, construit par Terry
Winograd en 1970. Il permettait une conversation, raisonnait lui-même et pla-
nifiait des actions dans un monde simulé de blocs. Ainsi, il apparaissait comme
un véritable collègue intelligent.

En vision, David Waltz développa des programmes qui pouvaient interpréter
des images faites de traits (line drawings) comme des structures tridimension-
nelles. Cette technique permettait aussi d’identifier dans des images des objets
par leurs contours. Cette technique reste le principe de base de pratiquement
toutes les techniques de vision par ordinateur utilisées aujourd’hui.

L’IA créa donc des attentes immenses, suivant un schéma qui plus tard sera
identifié comme la courbe « hype » de Gartner (voir fig. 1.3) : certains suc-
cès impressionnants créèrent des attentes qui ne purent jamais être satisfaites.
L’IA rencontrait ainsi des difficultés de deux côtés. Tout d’abord, la critique
fondamentale la plus importante venait de Hubert Dreyfus, qui affirmait que
l’intelligence devrait impliquer plus que du raisonnement, car les symboles uti-
lisés en IA n’avaient pas de signification pour l’ordinateur qui les traite.

De plus, de sérieux problèmes apparaissaient dans le développement de l’al-
gorithmique. Il devenait de plus en plus clair qu’il existait une certaine classe
de problèmes, appelés NP-durs, pour lesquels on n’arrivait pas à trouver des
algorithmes dont le temps de calcul n’explosait pas exponentiellement avec la
taille du problème. En fait, presque tous les problèmes que traitaient l’IA tom-
baient dans cette catégorie. On fut donc amené à douter que les succès, qui
avaient été obtenus sur des problèmes de petite taille, pourraient se généraliser
à des problèmes plus grands. Cette prise de conscience a eu pour effet un arrêt
presque total des recherches en IA.

Heureusement, il y eut aussi certains succès sur des problèmes d’intérêt pra-
tique, en particulier ceux des systèmes experts. Le système dendral, dont la
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Fig. 1.3 La courbe hype.

mise au point avait commencé en 1965 déjà, pouvait identifier des molécules
chimiques avec la même précision qu’un spécialiste humain et donc automati-
ser une tâche qui jusque-là nécessitait de très hautes qualifications. Le système
mycin, dont le développement avait débuté en 1972, identifiait des maladies in-
fectieuses et arrivait à proposer des traitements. Des analyses des performances
du système ont montré qu’elles étaient supérieures à tout médecin humain. Cela
peut être attribué au fait que le programme arrive à combiner les connaissances
d’un grand nombre d’experts. Un autre grand succès industriel fut le système
xcon, un système expert pour la configuration d’ordinateurs, développé par la
Digital Equipment Corporation : il aurait permis des économies de $40 millions
par an, une somme énorme pour l’époque. Les millieux industriels en prirent
note, et bientôt les systèmes experts furent à la base d’une industrie nais-
sante comportant de nombreuses entreprises comme Teknowledge, Inference,
ou Intellicorp. En même temps on développa des ordinateurs spécialisés dans
le traitement de données symboliques, ainsi que le langage de programmation
LISP, produits par Symbolics et Texas Instruments. Presque chaque grande
entreprises avait un département d’IA, et les espoirs mises dans la révolution
des systèmes experts étaient énormes.

Cependant, on découvrit bientôt que les bases théoriques n’étaient pas en-
core assez mûres pour réaliser toutes ces attentes. Pour réussir dans de vrais
problèmes de grande taille, il fallait résoudre des problèmes de base comme la
logique non monotone et le raisonnement incertain. Or ces problèmes n’étaient
pas très bien compris. Par conséquence, vers la fin des années 1980, le grand
boom des systèmes experts toucha à sa fin, et l’IA entra dans la phase du creux
de désillusion de la courbe de Gartner (voir fig. 1.3).
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Cette phase a conduit à l’« hiver de l’IA », une période de déception qui
a duré jusqu’en 1995. Certains sous-domaines sont devenus indépendants de
l’IA. Le traitement du langage et celui de la parole ont adopté des approches
statistiques, ne reposant plus sur des grammaires formelles développées par des
linguistes, ce qui a conduit aux méthodes de recherche d’information utilisées
dans les moteurs de recherche d’aujourd’hui. La vision par ordinateur est de-
venue un domaine en soi et a développé ses connexions avec le traitement des
signaux et des images. L’accent a été mis plutôt sur la reconnaissance d’objets
que sur la compréhension de l’environnement. La robotique s’est concentrée
sur des robots autonomes avec peu de capacités, ne possédant souvent aucune
connexion avec un raisonnement ou avec le langage. Même l’apprentissage au-
tomatique, clairement un sujet central de l’IA et fortement connecté avec le
raisonnement symbolique, est souvent vu comme un domaine séparé. Là aussi,
l’apparition des réseaux de neurones artificiels a eu tendance à démentir l’utilité
des connaissances explicites, en réalisant l’apprentissage de façon implicite.

Cependant, le boom des années 1980 a produit de nombreux chercheurs en
IA, qui, pendant les années 1990, ont réalisé des progrès importants sur les bases
théoriques qui posaient tant de problèmes pour les systèmes experts. Pour le
raisonnement, les techniques de satisfaction de contraintes ont permis le passage
à des techniques d’inférence beaucoup plus puissantes et à un traitement propre
des problèmes de logique non monotone. Les techniques des réseaux bayésiens
ont fourni un cadre théorique solide pour le traitement des informations in-
certaines. Pour l’apprentissage, les support vector machines ont remplacé les
techniques simples d’induction et les réseaux de neurones. Par conséquent, au-
jourd’hui, on retrouve des techniques telles que la programmation par règles
(par exemple les business rules), l’inférence bayésienne, la programmation par
contraintes, les résolveurs SAT et l’apprentissage automatique dans presque
toutes les applications informatiques. L’IA est devenue une des bases de l’in-
formatique et a finalement atteint le plateau de productivité de la courbe de
Gartner (fig. 1.3).

Les années 1990 ont connu également un développement important des
techniques de raisonnement probabilistes, notamment sur la base de modèles
graphiques, tels que les réseaux de Bayes. La capacité de raisonner avec des
informations incertaines a permis l’utilisation de connaissances qui ne sont pas
exacts à 100%, et donc d’échapper à la contrainte de cohérence absolue qu’im-
pose le cadre d’un raisonnement logique. Par exemple, dans le traitement du
langage naturel, ceci a permis de raisonner à partir d’informations textuelles
sans en avoir une compréhension parfaite. Dans des techniques de machine rea-
ding, la redondance des informations contenues dans des bases textuelles per-
met alors de tolérer un certain taux d’erreur dans la compréhension de textes
individuels et même de corriger des erreurs par la suite en raisonnant sur la
cohérence. Des modèles probabilistes se sont également imposés pour l’induc-
tion : l’apprentissage vise à apprendre des modèles probabilistes plutôt que
strictement logiques. Ceci permet de construire les connaissances nécessaires à
l’inférence par des techniques d’apprentissage.

Avec l’arrivée de l’internet dans la vie de tous les jours, l’Intelligence Arti-
ficielle a quitté le monde des laboratoires et de l’industrie spécialisée. La dis-
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ponibilité de presque tout les textes en format numérisé via l’internet a fourni
le cadre pour de nombreuses applications qui traitent automatiquement ces in-
formations, un phénomène désormais connu sous le terme de Big Data. Citons
quelques exemples :

• La compagnie Google fournit des services de traduction automatique grâce
à des modèles obtenus par l’analyse de grandes quantités de textes bi-
lingues trouvés sur le web.

• L’assistant SIRI, disponible sur les iphones de la compagnie Apple, par-
vient à désambigüıser les questions posées par son utilisateur, avant d’éta-
blir un plan de recherche des informations nécessaires à la réponse, de
l’exécuter et de synthétiser une réponse.

• Le programme WATSON, lors d’une démonstration organisée par IBM,
a battu les meilleurs joueurs humains du jeu télévisé Jeopardy, en cher-
chant en temps réel des informations spécialisées et en construisant un
raisonnement qui permet de trouver les réponses demandées.

L’intelligence artificielle a aussi trouvé son utilisation dans de nombreux autres
domaines, tels que des voitures auto-conductrices ou le négoce automatisé d’ac-
tions en bourse. Et, pour ne pas l’oublier : le 11 novembre 1997, avec presque
30 ans de retard sur la prédiction, le programme Deep Blue devenait champion
du monde d’échec en battant le champion de l’époque, Gary Kasparov, dans
un tournoi régulier.

Les techniques qui sont centrales à l’IA d’aujourd’hui, et qui font son suc-
cès dans les applications, sont basées sur l’inférence logique, les algorithmes de
recherche et d’optimisation et diverses techniques statistiques utiles pour l’ap-
prentissage automatique. Elles sont essentielles pour résoudre des problèmes
tels que :

• le traitement d’informations non structurées, comme par exemple des
textes ou le contenu de pages Web ;

• l’opérationnalisation de données, par exemple la génération de règles qui
peuvent être appliquées automatiquement pour implémenter une certaine
stratégie ;

• le calcul abductif, par exemple pour planifier ou ordonnancer des opéra-
tions afin d’atteindre certains buts ;

• le calcul inductif, par exemple l’apprentissage des préférences d’un utilisa-
teur, la prévision des mouvements de la bourse, ou la détection d’anomalies
dans une grande base de données.

Ce livre présente une introduction à ces techniques, développées par une
communauté de milliers de chercheurs au cours des cinquante dernières années.

1.5 Les domaines d’application de l’Intelligence Artificielle

L’IA est un domaine très vaste qui a de nombreuses applications. Comme pre-
mière classification, on peut en distinguer trois types :
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• des programmes qui imitent des capacités cognitives et reproduisent un
raisonnement humain, par exemple un diagnostic médical, la configuration
d’un central téléphonique, la planification d’une mission spatiale ou la
recherche de régularités dans une grande base de données ;

• des programmes qui imitent des capacités sensorielles et sont capables de
reconnâıtre des formes ou des objets, ou bien de comprendre la parole en
langage naturel ;

• des programmes qui imitent des capacités sensomotrices et sont capables
de réagir de façon autonome à leur environnement, par exemple des robots
ou agents autonomes.

Dans ce livre, nous traitons essentiellement d’applications du premier type,
bien qu’une grande partie des techniques s’appliquent également aux autres
applications. Les méthodes utilisées pour la vision et le traitement de la parole
s’inspirent de plus en plus de modèles neuronaux du cerveau et de la statis-
tique qui ne sont pas facilement applicables à des tâches de raisonnement et
sont devenus des domaines en soi. Les agents autonomes posent des problèmes
supplémentaires, comme la réactivité en temps réel et l’optimisation du com-
portement par rapport à leur environnement. Ils dépassent le cadre de ce livre
et sont traités dans les domaines des agents autonomes et des systèmes multi-
agents.

Pour illustrer les problèmes auxquels s’appliquent les techniques décrites
dans ce livre, nous allons considérer quelques exemples.

1.5.1 Systèmes à base de connaissances

Une des premières applications de l’IA est l’automatisation de tâches com-
plexes. Par exemple, des assurances pourraient souhaiter automatiser les déci-
sions sur des dossiers de sinistres, des fabricants d’imprimantes souhaiteraient
fournir des outils de diagnostic de pannes et on aimerait automatiser la confi-
guration et la reconfiguration d’installations informatiques. Quand ces tâches
dépassent une certaine complexité, elles impliquent une quantité importante de
connaissances et il n’est plus rentable de les implémenter par des algorithmes.
Cela est le cas surtout quand les connaissances changent, comme par exemple
pour une assurance qui doit s’adapter à des règlements qui varient régulière-
ment.

Pour de telles applications, on modélise les connaissances sous-jacentes di-
rectement sous forme logique, en calcul des prédicats ou dans un langage spécia-
lisé qui en est dérivé. Cela permet alors d’appliquer des algorithmes généraux,
appelés moteurs d’inférence, pour obtenir les raisonnements qui en découlent.
Un premier avantage est que le temps de développement se trouve fortement
raccourci. De plus, il devient facile d’adapter le système à des changements de
connaissances. On peut les changer directement au lieu de devoir développer à
nouveau un algorithme qui en découle.

La complexité des connaissances peut varier entre des systèmes très simples
et très complexes. Pour les applications dans les systèmes d’information, les
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connaissances sont souvent des règles, lois ou policies qui doivent être appli-
quées automatiquement. Pour ce faire, on utilise des techniques relativement
simples comme les business rules. À l’autre extrême, on trouve des systèmes
qui modélisent le comportement d’un expert, par exemple pour aider à établir
un diagnostic médical ou estimer des risques financiers. De tels systèmes, ap-
pelés aussi systèmes experts, peuvent faire appel à des techniques parfois très
sophistiquées telles que la logique non monotone et le raisonnement incertain.

Une autre application des systèmes à base de connaissances se trouve dans
le web sémantique. Il se base sur des langages standardisés qui permettent
d’ajouter des connaissances logiques à des pages web. Il devient alors possible
de faire des raisonnements complexes utilisant les connaissances disponibles sur
le World Wide Web.

1.5.2 Raisonnement basé sur modèles : systèmes de planification

Un deuxième type d’application est la résolution de problèmes, tels que des
casse-têtes, où des systèmes IA sont plus performants que les humains grâce
à leur capacité de comparer un grand nombre de possibilités et de choisir la
meilleure. Parmi les applications pratiques, le problème de la planification se
pose de façon très nette pour la gestion des procédures impliquant des humains
et des machines et dont le degré de complexité est tel qu’il est difficile d’en avoir
une vision d’ensemble. Prenons pour exemple le cas d’une mission spatiale. Il
existe des centaines de buts à réaliser pendant le laps de temps relativement
court que dure la mission. De plus, dans le cas où les problèmes rencontrés n’ont
jamais été étudiés auparavant, il faudra pouvoir très vite modifier les plans
pour s’adapter aux imprévus. Les processus industriels de grande envergure,
comme la construction d’avions, impliquent souvent des millions d’opérations
différentes. Ils constituent un autre exemple typique de systèmes nécessitant
une planification automatique par ordinateur.

Il est très intéressant d’utiliser des systèmes basés sur la connaissance dans
le domaine de la planification : d’une part, parce que la tâche en elle-même
est compliquée, d’autre part parce que par nature, elle ne peut être traitée
algorithmiquement. En pratique, les systèmes de planification sont développés
sur la base de règles heuristiques établies par des experts.

Les applications des systèmes de planification sont nombreuses. Par exemple,
les missions de la navette spatiale américaine ont été organisées par un système
de planification. Il en va de même pour la logistique des opérations militaires
américaines. On utilise des systèmes d’IA pour planifier l’utilisation des instal-
lations d’usines chimiques ainsi que pour la production d’avions. Ils sont éga-
lement utilisés pour planifier les mouvements d’avions au sol dans les grands
aéroports.

Avec l’avènement du raisonnement probabiliste, la planification a également
pu être appliquée à des problèmes peu structurés, tels que la planification d’ac-
teurs de synthèse dans les jeux vidéo. Il est quasiment impossible d’imaginer
de programmer leurs mouvements d’une façon réaliste sans faire appel aux
techniques de planification de l’Intelligence Artificielle.

L’ordonnancement est une version simplifiée de la planification, qui se trouve
à l’intersection de l’IA et de la recherche opérationnelle. On en trouve de nom-
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breuses applications dans des domaines divers, tels que les mouvements d’avions
sur un porte-avions, le placement de conteneurs dans un port ou encore la
confection d’horaires de cours.

1.5.3 Systèmes d’apprentissage

Pour un grand nombre de personnes, c’est la capacité d’apprendre qui est le trait
caractéristique de l’intelligence. L’apprentissage de nouvelles connaissances a
donc été largement étudié en IA. Le processus qui est le mieux connu est ce-
lui de l’induction. Dans un système inductif, on présente à l’ordinateur des
exemples positifs et négatifs caractérisant un concept. À partir de ces exemples,
le programme construit une description compacte du concept.

On distingue deux types d’apprentissage : supervisé et non supervisé. Dans
un apprentissage supervisé, les exemples présentés à l’ordinateur sont classées
d’avance, et l’apprentissage construit un modèle qui reproduit cette classifica-
tion. Comme ce type d’apprentissage a un but et une mesure de performance
clairs, il a été longtemps au centre des préoccupations et on connâıt aujour-
d’hui des techniques puissantes. La problématique inhérente à l’apprentissage
est d’apprendre un modèle aussi fiable que possible avec aussi peu de données
que possibles. On constate en fait souvent que la quantité des données est in-
suffisante pour permettre l’apprentissage avec la qualité voulue, surtout quand
il faut fournir les classifications des exemples à l’entrée.

On s’est donc intéressé à exploiter la grande masse de données qu’on peut
trouver sur le web, mais qui a normalement pas de classification associée, le
Big Data. Apprendre néanmoins des modèles utilisables est le but des tech-
niques d’apprentissage non supervisée ou semi-supervisée, qui ont connu un
développement fulgurant ces dernières années. Ces algorithmes d’apprentissage
permettent de tirer des leçons inhérentes aux données qui sont collectées, de
les transformer en connaissances, et d’agir en conséquence. Le public ne voit
pas toujours d’un oeil positif ces techniques, qui sont perçues comme une sur-
veillance généralisée qui rappelle le Big Brother. Cependant, ils fournissent aussi
de nombreux services, comme la recommandation de produits, l’optimisation
de l’adaptation des ressources aux besoins de leurs utilisateurs ou la détection
d’épidémies et la mise au point de nouvelles hypothèses scientifiques.

1.6 Structure du livre

Le contenu de ce livre est structuré en trois parties selon les trois modes d’infé-
rences utilisés. La première partie traite des systèmes à base de connaissances
(knowledge-based systems). Ces systèmes utilisent des moteurs d’inférence dé-
ductifs basés sur les principes de la logique et s’appliquent surtout à automatiser
des tâches qui exigent des connaissances complexes.

La deuxième partie traite des systèmes utilisant l’abduction, appelés sys-
tèmes de raisonnement à base de modèles (model-based reasoning). Ces sys-
tèmes sont utilisés afin de trouver des solutions à des problèmes complexes tels
que la planification de missions spatiales ou de processus de production.
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La troisième partie traite des systèmes utilisant l’induction, appelés sys-
tèmes d’apprentissage automatique (machine learning). Ces systèmes ont pour
but de trouver des nouvelles connaissances sur la base d’une grande quantité
de données et s’utilisent par exemple dans la détection de fraudes.

Littérature

Le livre de référence de loin de plus cité sur l’Intelligence Artificielle est celui de
Russel et Norvig [1], qui existe également en version française. Le livre de Poole
et Mackworth [2] est plus compact et plus récent. Pour des synthèses avec une
perspective historique par un des plus anciens chercheurs du domaine, consulter
les livres de Nilsson [3, 4].

Les revues principales pour la publication des résultats de recherche en
Intelligence Artificielle sont les revues Artificial Intelligence (Elsevier), qui est
la plus prestigieuse, et le Journal of Artificial Intelligence Research (JAIR), qui
se trouve sur le web

http://www.cs.washington.edu/research/jair/home.html

La revue Intelligent Systems (IEEE Press) est une bonne revue focalisée surtout
sur les applications.

Application : Python

L’IA demande la possibilité de traiter des données symboliques et d’autres
structures dynamiques comme des listes. Pendant de nombreuses années,
c’est le langage de programmation LISP qui était le seul à fournir effica-
cement ces possibilités.

Récemment, Python a été développé comme une alternative. Ce langage
met à disposition des fonctionnalités similaires à LISP, mais dans une
syntaxe plus proche des langages de programmation courants.

De nombreuses sociétés basent leur logiciels sur Python, comme par exemple
Google (voir le site web www.python.org).





Première partie

Systèmes à base de connaissances





Les systèmes basés sur la connaissance sont des logiciels dont le comporte-
ment se base sur des connaissances qui sont généralement des informations
non-structurées. Ils sont particulièrement utiles pour l’automatisation du rai-
sonnement d’un expert humain, comme par exemple pour définir un ensemble
de règles qui permettent de traiter des cas d’assurance ou qui aident au diag-
nostic de maladies.

Pour rendre des connaissances non structurées utilisables par un programme,
on les traduit généralement dans un formalisme logique équivalent à la logique
des prédicats. Nous supposons donc dans cette partie du livre que les connais-
sances sont exprimées sous cette forme, bien que certains outils puissent utili-
ser un autre format plus restreint. La représentation des connaissances est le
contenu du premier chapitre de cette partie.

Sur la base de cette formulation logique, les systèmes à base de connaissances
appliquent en général une inférence déductive. Cette partie du livre, et plus
spécifiquement le deuxième chapitre, est donc consacrée à l’inférence déductive
qui permet l’implémentation d’un raisonnement humain sur ordinateur.

Dans les cinq chapitres suivants, nous considérons trois sujets qui sont im-
portants en relation avec des systèmes à base de connaissances : la représen-
tation de connaissances par des règles et des représentations structurées, les
techniques d’inférence et leur utilisation, ainsi que le traitement de connais-
sances incertaines.





Chapitre 2

Connaissances et inférence

Afin d’assurer la flexibilité qui caractérise les programmes d’IA, il est nécessaire
de doter l’ordinateur de mécanismes lui permettant de représenter aussi bien
les problèmes que leurs solutions. En effet, construire un système basé sur la
connaissance requiert avant tout de pouvoir représenter des connaissances sur
un ordinateur. Dans ce chapitre, nous nous intéresserons à ce qui distingue les
connaissances des données, puis nous présenterons le formalisme du calcul des
prédicats appliqué à la représentation des connaissances. Ensuite, nous mon-
trerons comment utiliser ce formalisme pour construire des moteurs d’inférence
automatiques.

2.1 Modèles et représentations

Si un programme est avant tout destiné à tirer des conclusions sur des situations
du monde réel, il n’en reste pas moins incapable de dériver et de formuler ces
conclusions à partir du monde réel lui-même. Il lui faudra d’abord disposer d’un
modèle sur lequel il pourra travailler. Généralement, les programmes se basent
sur des modèles mathématiques décrivant le monde réel comme un ensemble
d’entités caractérisées par des propriétés et liées entre elles par des relations.
L’exemple de la masse accrochée à un ressort, décrit par la figure 2.1, illustre
ce type de modélisation.

Entités : m, s, g
propriétés : masse(m), ressort(s), fixé(g)
Relations : connecté(m,s), connecté(s,g)

Un tel modèle au niveau des objets et des relations reste cependant insuffisant
pour effectuer des calculs sur le système. Si l’on désire par exemple simuler le

s

m
g

Fig. 2.1 Une masse attachée à un ressort.
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mouvement du bloc, il est nécessaire de modéliser également sa position, sa
vitesse, sa masse ainsi que la force agissant sur lui :

Entités : x, v, a, F, t
Relations : position(m, x), vitesse(m, v),
accélération(m, a) force(s, F), temps(t),

égal(v, dx/dt), égal(a, dv/dt), égal(F, -Dx), égal(F, ma)

Notons toutefois que ce modèle présuppose que seul le mouvement de New-
ton de la masse sous l’influence de la force du ressort est intéressant. On pourrait
aussi très bien modéliser les propriétés électriques du ressort et en particulier
ses propriétés en tant que bobine magnétique. Lorsque l’on modélise un sys-
tème physique, il est toujours nécessaire d’émettre des hypothèses limitant la
taille du modèle. Pour élaborer un programme simulant ou analysant le sys-
tème masse-ressort dans un langage de programmation algorithmique tel que
C ou Java, seule la seconde partie du modèle, comportant les variables et les
équations, est utile. Il n’est pas nécessaire – ni possible – de représenter dans le
programme l’information concernant les objets et leurs relations. Nous verrons
dans ce qui suit les différences de base existant entre la représentation des don-
nées dans les programmes algorithmique et la représentation des connaissances
dans les systèmes basés sur la connaissance.

2.1.1 Modélisation et représentation

Un programme travaille sur des données pour dériver des prédictions. Données
et prédictions sont toutes deux formulées dans les termes propres au modèle
choisi. Pour réaliser cela, le programme manipule une représentation du mo-
dèle stockée dans la mémoire de l’ordinateur. Dans les langages de program-
mation les plus conventionnels, cette représentation consiste en un ensemble
de variables, dont chacune représente une instance particulière choisie pour un
élément du modèle. Dans le cas de la masse accrochée au ressort de la figure 2.1,
un programme de simulation tiendra compte tout au plus de quatre variables,
une pour chacun des x, v, a et F. L’ensemble constituera le modèle du système
à simuler (fig. 2.2). En fait, il suffit de représenter x et v ainsi que le temps t.

Il est important de noter que si nous considérons que le programme de
simulation modélise le système masse-ressort, ce n’est qu’une simple question
d’interprétation. En effet, on pourrait utiliser exactement le même programme
pour simuler, par exemple, un oscillateur électrique constitué d’un condensateur
et d’une inductance : tout ce qu’il sera nécessaire de faire sera d’interpréter à
nouveau la position de la masse comme une charge, sa vitesse comme le courant
et le ressort comme une tension. Cela est illustré par la figure 2.2.

Ce dernier exemple démontre en fait l’importante distinction existant entre
un modèle et sa représentation : le programme de simulation contient non
seulement la représentation d’un modèle du système masse-ressort mais aussi
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Program Oscillator;
const s=3.452; m=7.342
var x,v,t: real;
       k:integer;
begin 
 t:=0; v:=0; x:=–1.0;
 for k:=1 to 100 do begin
   v:=v ! 0.1*s*x/m;
   x:=x + 0.1*v;
   t:=t + 0.1;
   print(t,x); end;
 end.

Program Oscillator;
const L–inv=3.452; C=7.342
var i,q,t: real;
         k:integer;
begin
 t:=0; i:=0; q:=!1.0 ;
 for k:=1 to 100 do begin

   q:=q + 0.1*i;
   t:=t + 0.1;
   print(t,q); end;
end.

   i:=i – 0.1*L!inv*q/C;

Fig. 2.2 Le modèle d’un programme algorithmique s’applique de la même manière à
beaucoup de systèmes en changeant les noms des variables.

celle de nombreux autres oscillateurs. L’interprétation de la représentation dans
les termes d’un modèle particulier est strictement l’affaire de l’utilisateur. En
termes techniques, la sémantique du programme est fixée par l’utilisateur.

2.1.2 Les connaissances ont une interprétation unique

Les programmes d’Intelligence Artificielle, même s’ils sous-tendent des idées
originales, n’en demeurent pas moins des programmes. Ils sont, par conséquent,
sujets aux mêmes limitations que des programmes conventionnels. Les faits
du monde réel, quant à eux, doivent être représentés conformément à un cer-
tain modèle. Il faut cependant noter que les modèles liés à un programme
typique d’IA sont souvent beaucoup plus complexes que ceux utilisés par des
programmes conventionnels. Ainsi, si la sémantique de l’interprétation des don-
nées et des résultats devait toujours être imposée par l’utilisateur, celui-ci se-
rait confronté à l’énorme tâche de mâıtriser toutes les connaissances intégrées
dans le programme ainsi que leurs significations. La complexité du modèle ren-

drait l’utilisation du programme beaucoup trop difficile
(1)

. Un problème plus
complexe encore est celui de l’interprétation du monde réel par un système au-
tonome comme un robot : si la relation existant entre le modèle informatique
et la réalité n’est pas unique, il n’est pas évident d’interpréter les observations
effectuées sur le monde réel.

(1)
Ce phénomène peut également être observé dans les systèmes d’exploitation comme
UNIX : peu de personnes en connaissent toutes les fonctionnalités.
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sg
mg L C

masse(m), ressort(s), fixe(g)
connecte(m,s), connecte(s,g)

inductance(L),condensateur(C)
connexion  electrique(L,C)

Fig. 2.3 Les connaissances ne peuvent pas s’interpréter à nouveau en changeant de
noms de variables.

Une convention importante distingue les connaissances des données. Elle
consiste à considérer que la signification des symboles représentant la connais-
sance est non seulement fixe mais qu’elle est en plus proche de celle que les
êtres humains lui attribuent : le symbole rouge se réfère à la couleur rouge et
le symbole voiture à une voiture. Ainsi les connaissances ne sont autres que
des données formulées selon un modèle cognitif humain et pour lesquelles il n’y
a qu’une seule interprétation possible.

Le modèle sous-jacent aux échanges d’informations entre êtres humains par
le biais du langage ou de diagrammes est en fait un modèle cognitif humain
dont les interprétations sont généralement connues. Comme éléments commu-
nément admis de ce modèle cognitif figurent par exemple les objets liés à une
situation particulière, leurs couleurs, formes et autres caractéristiques. Dans
un environnement très spécifique, par exemple celui des échanges bancaires,
les objets manipulés comme les chèques et autres lettres de crédit auront une
interprétation bien précise. À l’inverse de ceux des modèles numériques, les élé-
ments d’un modèle cognitif sont en correspondance exacte avec la perception
que les humains en ont. En conséquence, ils ne peuvent être librement réin-
terprétés : les modèles d’un oscillateur mécanique et électrique, décrits par la
figure 2.3, ne peuvent pas être transformés l’un en l’autre en changeant des
noms de variables.

Cela nous permet d’affirmer qu’un programme dont la représentation incor-
pore par exemple des faits sur les ressorts connâıt ces faits : il sait comment les
interpréter puisque leur signification est connue et admise par tous les utilisa-
teurs. L’existence de cette interprétation unique et unanimement admise est le

principal aspect différenciant la connaissance des données
(2)

.

La capacité de l’IA de représenter des connaissances est particulièrement
mise en valeur lorsque le modèle sous-jacent au programme est identique à ce-
lui qui sous-tend la perception humaine. L’utilisateur d’un programme basé sur

(2)
Notons, cependant, que certains philosophes affirment que tant que l’interprétation reste
fixée par convention et non par nécessité, on ne peut toujours pas parler de connaissances.
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la connaissance n’a, en conséquence, nul besoin de connâıtre quoi que ce soit sur
le programme pour en interpréter les résultats : cette interprétation est unique
et peut être formulée en langue naturelle par exemple. Cela rend possible la
construction de systèmes basés sur la connaissance beaucoup plus complexes
que des logiciels conventionnels, mais néanmoins utilisables sans qu’il soit né-
cessaire de connâıtre beaucoup de détails sur leur fonctionnement. Il devient
également possible au programme lui-même de changer son propre modèle en
cours d’exécution, par apprentissage ou en réponse aux modifications de son
environnement.

Il existe des bases de connaissances standardisées, appelées ontologies, qui
sont utilisées pour formaliser l’échange d’informations entre différents pro-
grammes et bases de données. Le consortium WWW a standardisé des langages
pour leur formalisation. Cela permet notamment d’organiser des symboles dans
des hiérarchies d’héritage caractérisées par des relations de classe et sous-classe
des objets que représentent les symboles. Ils permettent également de définir
les propriétés associées à ces objets. De nombreuses organisations mettent à
disposition des ontologies qui définissent des termes.

2.2 Représentation de la connaissance

Représenter un modèle cognitif sur un ordinateur nécessite des structures de
données beaucoup plus riches que celles offertes par les langages de program-
mation classiques. Le formalisme communément admis pour représenter des
connaissances est celui de la logique, plus précisément le calcul des prédicats du
1er ordre.

En logique, l’unité d’information élémentaire est la proposition qui repré-
sente un fait particulier. Des exemples de propositions sont donnés ci-dessous :

Jacques pèse 78 kilos.

Lausanne est situé en Amérique.

Une proposition peut-être vraie ou fausse : le premier de nos deux exemples
peut aussi bien être une proposition vraie que fausse, alors que le second est
sûrement une proposition fausse. Néanmoins, ces propositions sont toutes deux
licites.

En calcul des prédicats, une proposition s’exprime par des formules bien
formées, c’est-à-dire des expressions qui respectent les règles d’écriture du calcul
des prédicats. Les formules bien formées sont en fait des expressions construites
au moyen des éléments suivants :

• instances : représentées par des symboles comme Jacques, Vert, Bloc ;

• prédicats : symboles prenant un nombre fixe d’arguments, voire aucun ar-
gument. Exemples : Il-pleut, Etudiant(Jacques), Age(Jacques,25) ;

• fonctions : retournant les propriétés d’un symbole, par exemple :
Oncle(Jacques) (→ Pierre), Age(Jacques) (→ 25) ;

• connecteurs : permettant les combinaisons de formules bien formées :

– ∧ : et
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– ∨ : ou

– ⇒ : implique

– ¬ : non

• quantificateurs : comme ∀ (pour tout) et ∃ (il existe), qui sont introduits
ici mais ne seront expliqués que plus tard.

Des exemples de formules bien formées peuvent être obtenus par combinai-
son de ces éléments, comme dans les exemples suivants :

1.Pèse(Jacques,78)

« Jacques pèse 78 (kilos). »
2.¬ Ecrivain(Mozart)

« Mozart n’est pas un écrivain »
3.Cousin(Fils(Jean),Neveu(Jean))

« le fils et le neveu de Jean sont cousins »
4.Lit(Pierre,Candide) ∧ Auteur(Voltaire,Candide)

« Pierre lit Candide dont l’auteur est Voltaire »
5.Humain(Socrate) ⇒ Mortel(Socrate)

« Socrate est humain donc il est mortel »

Ces éléments sont combinés en formules bien formées selon les règles syn-
taxiques suivantes, FBF désignant une formule bien formée :

FBF ::=
Prédicat | FBF ∨ FBF | FBF ∧ FBF | ¬FBF | FBF ⇒ FBF | (FBF )

Comme pour des expressions algébriques, des parenthèses peuvent être uti-
lisées pour clarifier la priorité des opérateurs. En l’absence de parenthèses, ∧
(et) correspond à la multiplication et est prioritaire par rapport à ∨ (ou) qui
correspond à l’addition. ¬ (non) correspond alors à la négation.

Il faut noter que cette définition du calcul des prédicats de 1er ordre n’est
pas minimale. On peut en effet très bien remplacer F1 ⇒ F2 par ¬F1 ∨ F2

et il n’est donc pas nécessaire d’introduire l’implication. L’objectif est plutôt
de permettre une expression aussi confortable que possible : il y a des cas où
F1 ⇒ F2 est heuristiquement préférable à ¬F1 ∨ F2 et vice versa.

2.3 Règles d’équivalence

En général, le calcul des prédicats ne représente pas forcément un état du monde
réel de manière unique. Il existe souvent plusieurs possibilités de formulation.
Cela est lié aux règles d’équivalence présentées dans ce qui suit :

• ¬(¬X1) est équivalent à X1

X1 ∨X2 est équivalent à ¬X1 ⇒ X2

• les lois de Morgan :
¬(X1 ∧X2) est équivalent à ¬X1 ∨ ¬X2

¬(X1 ∨X2) est équivalent à ¬X1 ∧ ¬X2



Connaissances et inférence 27

• les lois distributives :
X1 ∧ (X2 ∨X3) est équivalent à (X1 ∧X2) ∨ (X1 ∧X3)
X1 ∨ (X2 ∧X3) est équivalent à (X1 ∨X2) ∧ (X1 ∨X3)

• les lois commutatives :
X1 ∧X2 est équivalent à X2 ∧X1

X1 ∨X2 est équivalent à X2 ∨X1

• les lois associatives :
(X1 ∧X2) ∧X3 est équivalent à X1 ∧ (X2 ∧X3)
(X1 ∨X2) ∨X3 est équivalent à X1 ∨ (X2 ∨X3)

• la loi de la contraposée :
X1 ⇒ X2 est équivalent à ¬X2 ⇒ ¬X1

Ces lois justifient en fait certaines simplifications d’écriture des formules
bien formées. Ainsi les lois d’associativité permettent d’écrire la conjonction
X1 ∧X2 ∧ . . . ∧XN sans aucune parenthèse.

2.4 Exemple de modélisation

Le pays de Lointainie veut automatiser le traitement des voyageurs à la douane.
Le règlement actuel prévoit entre autres :

• Tout voyageur adulte a le droit d’importer hors taxe une petite quantité
de marchandise.

• Sont considérées comme petites quantités :

– pour le cognac, moins d’un litre ;

– pour le vin, moins de deux litres ;

– pour toute marchandise, une valeur de moins de cent francs.

Le but est de mettre au point un programme permettant de décider si un
voyageur doit être taxé ou non. Pour cela, il faut d’abord modéliser le problème
formellement. Pour ce faire, on identifie les objets :

voyageur (v), marchandise (m)

et leurs propriétés :

adulte, hors-taxe, petite-quantité, cognac, <-1-litre, <-2-litres, <-
100-Frs.

Ensuite, on peut identifier des règles :

adulte(v) ∧ petite-quantité(m) ⇒ hors-taxe(m,v)
cognac(m) ∧ <-1-litre(m) ⇒ petite-quantité(m)
vin(m) ∧ <-2-litres(m) ⇒ petite-quantité(m)
<-100-Frs.(m) ⇒ petite-quantité(m)

L’inférence permettra alors d’obtenir des conclusions sur la base du modèle.
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2.5 Inférence

L’utilité de la représentation en calcul de prédicats est qu’elle permet de tirer
des inférences par un programme. Une inférence logique suit le schéma suivant :

Étant donné un ensemble P de propositions, trouver des propositions
x telles que si toutes les propositions de P sont vraies, x le sera aussi.

On écrit alors {P} ` x.

Il existe des preuves que tout calcul algorithmique peut être formulé sous
la forme d’un problème d’inférence logique. Il existe donc des langages de pro-
grammation généraux (par exemple PROLOG) qui sont basés uniquement sur
l’inférence logique.

Les possibilités d’inférence peuvent être formalisées par des règles d’infé-
rence. Une règle d’inférence prend la forme suivante :

P1 ∧ P2 ∧ ... ∧ Pn ⇒ Q

ou P1, ..., Pn ∈ P ` Q.

Si les règles d’inférence peuvent être formulées sans grande difficulté, leur
utilisation sous forme de programme efficace est plus difficile. En fait, la plupart
des systèmes pratiques se limitent à la règle du modus ponens sur la base de
laquelle on peut concevoir des programmes simples et efficaces.

La règle d’inférence du modus ponens se définit comme suit :

{(p⇒ q)} ∧ p⇒ q

On peut imaginer d’autres règles d’inférence :

p ∧ q ⇒ {p ∧ q} (Introduction ET)

{(p⇒ q)} ∧ {(q ⇒ r)} ⇒ {(p⇒ r)} (Transitivité)

Une preuve logique d’une proposition Q est la trace d’inférence de Q à
partir d’un ensemble de faits P. Pour décrire des preuves, nous allons utiliser
la notation suivante :

Proposition Justification
1. p(A) prémisse
2. q(A) prémisse
3. p(A) ∧ q(A) IE 1 2
4. ... ....

où la justification correspond toujours à la manière dont une proposition a
été déduite. Nous avons utilisé « IE 1 2 » pour « Introduction d’un Et entre
propositions 1 et 2 ». D’autres abréviations sont par exemple « MP » pour
modus ponens, « IO » pour « Introduction d’un Ou ».

Nous allons voir plus tard des algorithmes servant à construire automatique-
ment des preuves logiques. Une preuve est utile non seulement pour le résultat
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Proposition Justification
1. cognac prémisse
2. <-1-litre prémisse
3. adulte prémisse
4. (cognac ∧ <-1-litre) prémisse
⇒ petite-quantité

5. (adulte ∧ petite-quantité) prémisse
⇒ hors-taxe

6. cognac ∧ <-1-litre IE 1 2
7. petite-quantité MP 6 4
8. adulte ∧ petite-quantité IE 3 7
9. hors-taxe MP 5 8

Fig. 2.4 Exemple d’une preuve logique.

qu’elle fournit, mais également parce qu’elle permet de donner une explication
de ce résultat. Par exemple, on peut demander une explication de la conclusion
hors-taxe du raisonnement de la figure 2.4 :

« Pourquoi hors-taxe ? »
La trace de la preuve peut alors être reformatée pour donner l’explication :

parce-que :

1) petite-quantité

2) adulte

3) Règlement : adulte ∧ petite-quantité ⇒ hors-taxe

L’interrogation pourrait se poursuivre récursivement par exemple en deman-
dant ensuite :

« Pourquoi petite-quantité ? »
La réponse peut également être obtenue par simple reformulation de la preuve
logique. Cette facilité d’explication est souvent importante. Dans l’exemple du
règlement douanier, elle protège des erreurs ou des manipulations. Dans une
telle application, cette possibilité est indispensable pour une utilisation pra-
tique, car le système doit pouvoir prouver que sa réponse est juste. Il en va de
même pour beaucoup d’autres applications de systèmes à base de connaissances,
par exemple pour des décisions concernant les droits au dédommagement par
une assurance. Elles sont en général très difficiles à donner dans un cadre de
programmation procédural où des explications doivent être explicitement pro-
grammées.

Un autre avantage de systèmes à base de connaissances est la facilité d’adap-
tation à des changements. Par exemple, si le règlement change pour introduire
une nouvelle manière de traiter des parfums, on pourra simplement ajouter une
règle, par exemple :

(parfum(m) ∧ <-50-ml(m)) ⇒ petite-quantité

Dans un programme procédural, par contre, toute la structure logique doit être
revue. Il en va de même pour d’autres modifications. Par exemple, l’introduction
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d’une nouvelle condition de non-résidence conduit à un changement local d’une
règle :

(petite-quantité(m) ∧ non-résident(v)) ⇒ hors-taxe(m,v)

Son implémentation par un programme classique pourrait être beaucoup plus
complexe.

Littérature

Il existe de nombreux livres sur la logique des prédicats, qui est plutôt un sujet
de la philosophie et des mathématiques. Le livre de Kowalski [5] a été le premier
à évoquer son utilisation pour la programmation.

2.6 Exercice

Pour ce chapitre, nous ne vous proposons pas d’exercice particulier. Par contre,
nous vous suggérons, selon votre niveau, d’apprendre ou de réviser le langage de
programmation Python, puisque celui-ci est utilisé tout au long de ce livre. Vous
pouvez vous documenter si nécessaire au travers des nombreuses ressources en
ligne et par les livres existants.



Chapitre 3

Algorithmes d’inférence

Dans un système à base de connaissances, le « calcul » se fait par des moteurs
d’inférence, des programmes généraux qui permettent de trouver automatique-
ment des preuves logiques. En général, un moteur d’inférence construit des
implications :

{P} ` q

La procédure est :

• fondée si q est toujours une conséquence de {P},
• complète si elle trouve toutes les q fondées,

• complète pour la réfutation si elle trouve toutes les contradictions de {P},
c’est-à-dire elle ne manquera jamais q = ⊥ (contradiction).

L’idéal serait d’avoir un algorithme qui est à la fois fondé et complet. Hélas,
par le théorème de Gödel, un tel algorithme ne peut pas exister. Par contre,
pour le calcul de prédicats de 1er ordre, il existe une procédure d’inférence qui
est complète pour la réfutation. Il s’agit de la résolution. Une procédure qui
est complète pour la réfutation peut être utilisée pour construire des preuves
indirectes.

3.1 Forme normale

Les équivalences entre expressions ont pour conséquence qu’il y a de nom-
breuses manières d’exprimer les mêmes connaissances en calcul de prédicats.
Cela complique aussi enormément les algorithmes d’inférence qui doivent alors
être capables de s’adapter à toutes les manières d’expression. On adopte alors
une convention d’une unique forme normale.

Nous allons appeler une proposition formée par un prédicat appliqué à
des instances ou fonctions d’instances une proposition simple, et nous sup-
posons que deux propositions simples ne sont égales que s’elles sont iden-
tiques. Nous acceptons ainsi de ne pas considérer des équivalences comme
plus− grand(a, b)⇔ plus− petit(b, a).

On distingue alors deux formes normales : dans la forme normale conjonc-
tive, l’expression est transformée en une conjonction de clauses :

c1 ∧ c2 ∧ ... ∧ cn



32 Systèmes à base de connaissances

où les clauses ci sont des disjonctions de propositions simples :

ci = p1 ∨ p2 ∨ ... ∨ pm

En revanche, la forme disjonctive normale représente les expressions sous forme
d’une disjonction de conjonctions.

On utilise exclusivement la forme normale conjonctive car elle permet faci-
lement d’exprimer plusieurs expressions qui sont simultanément vraies comme
une seule conjonction de toutes les clauses qu’elles contiennent, en supprimant
les clauses qui apparaissent en double. Par contre, pour la forme disjonctive
cela demanderait une reécriture couteuse des expressions.

À cause de la commutativité, il reste une ambigüıté quant à l’ordre des
expressions. On considère que les clauses forment un ensemble sans ordre par-
ticulier, appellé une base de connaissances. À l’intérieur des clauses, on peut
trier les propositions simples par exemple par ordre lexique.

En appliquant les règles d’équivalence dans le bon sens, toute expression
logique peut être transformée en forme conjonctive normale. Le plus important
est de transformer les implications (⇒) en disjonction, donc A ⇒ B devient
¬A ∨ B. Nous allons supposer que les premisses {P} sont représentés comme
un ensemble de clauses.

Par exemple, l’expression :

(A ∨B)⇒ (C ∧D)

sera réécrit comme :

¬(A ∨B) ∨ (C ∧D)

(¬A ∧ ¬B) ∨ (C ∧D)

(¬A ∨ C) ∧ (¬A ∨D) ∧ (¬B ∨ C) ∧ (¬B ∨D)

et donc l’ensemble des quatre clauses :

(¬A ∨ C)

(¬A ∨D)

(¬B ∨ C)

(¬B ∨D)

3.2 Inférence par résolution

La règle de résolution prend deux clauses qui contiennent la même proposition
C une fois de façon positive et une fois de façon négative et en produit une
nouvelle clause qui est composée du reste des deux clauses :

ci : C ∨X;X = a ∨ ...
cj : ¬ C ∨Y, Y = b ∨ ...
⇒ cij : X ∨ Y
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Un moteur d’inférence basé sur la résolution applique cette règle de façon
itérative pour ainsi compléter une base de données BD avec toutes les inférences
qui peuvent être obtenues.

1: Fonction Résolution(P)

2: BD ← {P}
3: repeat

4: sélectionner deux clauses ∈ BD :

p1 : a1 ∨ ... ∨ an ∨ C

p2 : b1 ∨ ... ∨ bm ∨ ¬C

5: appliquer la règle de résolution pour obtenir :

pn : a1 ∨ ... ∨ an ∨ b1 ∨ ... ∨ bm

6: if pn est une clause vide then

7: arrêter : contradiction

8: else

9: éliminer de pn toutes les propositions doublées ;

10: if pn 6∈ BD then

11: ajouter pn à BD

12: until il ne reste plus de combinaisons de clauses qui n’ont pas
encore été utilisées

13: retourner BD

Si la fonction Résolution finit sans jamais trouver une clause vide, l’ensemble
fourni au départ doit être consistant. Cela peut être prouvé par le fait que
la procédure suivante ne manquera pas d’assigner un modèle (vrai ou faux)
consistant à toutes les propositions élémentaires qui apparaissent dans {P} :

1) ordonner les propositions p1, ..., pk

2) assigner toutes les propositions à faux

3) BD ← Résolution(P)

4) for i← 1 to k

5) if ∃clausec ∈ BD qui en plus de pi ne contient que des pj , j < i qui
sont tous assignées à faux, (donc qui ne peut être vrai que si pi = vrai),
assigner pi à vrai.

6) end for

La seule façon dont cette procédure pourrait échouer est s’il existe à la fois des
clauses qui demandent que pi soit vrai et d’autres qui demandent que pi soit
faux. Comme les premiers doivent contenir pi et les derniers ¬pi, la résolution
aurait été appliqué à toutes ces paires et aurait obtenu des clauses ne contenant
que des pj , j < i et qui sont fausses. Donc, la procédure aurait du échouer à
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une itération précédente déjà. Pour i = 1, soit il y a p1 et ¬p1, ce qui aurait
donné une clause vide, soit la procédure trouve une assignation. Comme elle ne
peut pas échouer après, elle fournira une assignation qui satisfait à toutes les
clauses.

Cette procédure peut être exploitée pour trouver n’importe quelle preuve
en appliquant le principe de la preuve indirecte, c’est-à-dire on réduit la preuve
de {P} ` q à la preuve :

({P}+ ¬q) ` ⊥

où ⊥ est le symbole de la contradiction qui est toujours faux. Si en fait {P} `
q est vraie, la procédure de résolution est alors garantie de s’arrêter avec la
contradiction qui fait preuve de cela. Lors de la résolution, cette contradiction
se manifestera dans la découverte d’une clause vide :

X ∧ ¬X ⇒ ⊥

Un moteur d’inférence pour le calcul de prédicats de 1er ordre basé sur le
principe de la résolution est donc garanti de s’arrêter quand cette contradiction
sera déduite.

Si la résolution est très générale, elle est aussi très peu efficace. En pratique,
on a donc tendance à baser l’inférence logique plutôt sur des règles plus simples
dont la plus importante est le modus ponens :

{p, p⇒ q} ` q

Ce type de règle est la base du châınage de règles, qui se retrouve dans
presque tous les moteurs d’inférence utilisés dans la pratique. Le châınage est
complet pour la réfutation de clauses de Horn. Une clause de Horn est une
implication de la forme :

cond1 ∧ cond2 ∧ ...⇒ assertion

qui n’admet qu’une seule conclusion à la fois. En fait, pour des clauses de Horn
le modus ponens n’est rien d’autre que la règle de résolution ! Il est important
que l’application de la règle de résolution à deux clauses de Horn donne toujours
comme résultat une autre clause de Horn. La classe des clauses de Horn est donc
fermée sous la règle de résolution.

Certaines formes de règles peuvent être traduites en clauses de Horn équi-
valentes. Tel est le cas quand il y a des disjonctions de conditions :

p ∨ q ⇒ r ' p⇒ r, q ⇒ r

ou quand il y a une conjonction des conclusions :

p⇒ q ∧ r ' p⇒ q, p⇒ r

Une telle transformation n’est par contre pas possible quand il y a une
disjonction des conclusions :

p⇒ q ∨ r
Cela signifie qu’une telle connaissance ne peut pas être traitée par un moteur

d’inférence à châınage, mais seulement par la résolution.
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3.3 Inférence propositionnelle par châınage

La forme la plus classique d’une inférence logique est celle du modus ponens :

(∀ x) oiseau(x) ⇒ vole(x) « Tous les oiseaux volent »
oiseau(Tweety) « Tweety est un oiseau »

alors vole(Tweety) « Tweety vole »

La plupart des déductions logiques effectuées dans les systèmes basés sur
la connaissance s’appuie sur cette règle, qui s’appelle aussi le châınage. Elle
s’applique à des connaissances sous la forme de clauses de Horn.

Rappelons que l’on peut obtenir une procédure d’inférence complète sur
clauses de Horn en utilisant le modus ponens et des preuves indirectes. Comme
la seule manière d’obtenir une contradiction entre clauses de Horn est de trouver
une proposition et sa négation, il suit que l’application du modus ponens en soi
est suffisante pour produire toutes les propositions qui découlent de l’ensemble
de prémisses et de règles. On n’a donc pas besoin de spécifier la conclusion
souhaitée pour obtenir une contradiction – il suffit d’attendre que la procédure
d’inférence produise la proposition souhaitée.

La résolution d’un problème par châınage implique :

• Une base de données, qui contient des propositions jugées vraies. Au dé-
part, elle contient les prémisses du problème.

• Une base de connaissances, qui contient les règles générales qui seront
utilisées pour trouver une solution.

• La spécification d’une solution, qui peut être une proposition complète-
ment ou partiellement spécifiée, ou bien un critère quelconque qui permet
de vérifier si une proposition donnée est considérée comme solution.

Il existe alors deux manières de trouver les solutions :

• En châınage « avant » : à partir des prémisses, appliquer les règles pour
produire toutes les conséquences jusqu’au moment où une solution est
trouvée. Le châınage avant est la procédure naturelle d’inférence logique.

• En châınage « arrière » : à partir de la solution, produire toutes les étapes
intermédiaires hypothétiques (sous-buts) qui permettront de déduire une
solution jusqu’au moment où un tel sous-but est satisfait par les prémisses.
Le châınage arrière a été proposé comme une procédure qui est plus proche
du raisonnement humain. Nous allons considérer le châınage arrière plus
tard dans ce livre.

3.4 Châınage avant sans variables

La procédure d’inférence à châınage avant consiste à appliquer toutes les règles
possibles à l’ensemble des faits connus, en ajoutant chaque nouvelle conclusion
à cet ensemble. Par application itérative du processus, chaque conclusion peut
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elle-même satisfaire les conditions d’une autre règle, ce qui conduit à un châı-
nage avant des règles. Le processus s’arrête lorsqu’aucune règle n’est applicable
à l’ensemble des faits, ou quand une solution satisfaisante est trouvée.

Nous considérons d’abord un moteur d’inférence pour la logique proposi-
tionnelle (sans variables) et nous allons y rajouter la possibilité d’utiliser des
variables par la suite.

Comme exemple d’inférences que notre moteur d’inférence sera capable de
faire, considérons l’exemple suivant où l’on doit décider si une certaine mar-
chandise peut passer hors taxe ou non. On suppose qu’au départ on a les faits
et règles suivants :

R1. vin ∧ <-2-litres ⇒ petite-quantité

R2. cognac ∧ <-1-litre ⇒ petite-quantité

R3. <-100-Euro ⇒ petite-quantité

R4. petite-quantité ∧ adulte ⇒ hors-taxe

F1. vin

F2. <-2-litres
F3. <-100-Euro
F4. adulte

et que le but sera de prouver :

hors-taxe

La procédure de châınage avant résoudrait ce problème par la suite d’infé-
rences suivante :

R1, F1, F2 → F5 : petite-quantité
R3, F3 → F5 : petite-quantité
R4, F5, F4 → F6 : hors-taxe ⇒ but

L’efficacité de la procédure dépend essentiellement du nombre de fois auquel
on arrive à éviter les inférences inutiles (par exemple, F5 a été trouvé deux fois).

Un moteur d’inférence à châınage avant est appelé avec un ensemble de
prémisses, F et un ensemble de règles sous la forme de clauses de Horn. Il fait
appel aux structures de données suivantes :

• une base de règles constituée par les règles qui permettent de réaliser les
déductions,

• une base de données de faits, qui sont soit des prémisses soit des proposi-
tions déduites des prémisses,

• une file d’attente pour éviter les boucles.

Le flux d’informations entre ces divers éléments est décrit par la figure 3.1
et l’algorithme par la figure 3.2. La base de règles R est passée au moteur
d’inférence et ne change pas pendant l’exécution. Les prémisses F sont insérées
dans une file d’attente. L’état courant de l’inférence est représenté par une base
de données de faits, qui contient tous les faits qui sont connus comme étant vrais
par le moteur d’inférence. Avant son insertion dans cette base de données, tout
nouveau fait est d’abord comparé à la base de règles pour déterminer s’il permet
de nouvelles inférences. Pour éviter des boucles, chaque fait est examiné dans
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Règles

déclenchées
Base de

règles
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Solution?
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(Q)
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.

Fig. 3.1 Flux des informations entre composants d’un moteur d’inférence à châınage
avant.

1: Procédure châınage-simple(F,R)

2: Q ← {F}
3: while Q n’est pas vide do

4: q ← first(Q) ; Q ← rest(Q)

5: if q 6∈ base de données then

6: ajouter q à la base de données

7: if q est un noeud but then imprimer q

8: for r ∈ {R} do

9: if q ∈ conditions(r)
and conditions(r) ⊆ base de données then

10: ajouter conclusion(r) à la queue Q

Fig. 3.2 Algorithme pour un moteur d’inférence en châınage avant, pour calcul pro-
positionnel, sans nécessité de substitution de variables.

l’ordre de sa découverte à l’aide d’une file d’attente Q. Les prémisses passent
elles aussi par le même processus.

Si un nouveau fait correspond aux conditions d’une règle, le moteur d’infé-
rence vérifie que toutes les autres conditions font également partie de la base de
données. Si c’est le cas, la règle est applicable (on dit aussi qu’elle est déclen-
chée) et la conclusion est un nouveau fait, à condition qu’elle n’existe pas déjà
dans la base de données ou la file d’attente Q. Le nouveau fait est alors inséré
dans la file d’attente pour être traité lors d’une prochaine itération. Notons que
la file d’attente sert à éviter que des inférences se fassent en double.

Le processus s’arrête au moment où un nouveau fait constitue une solution
satisfaisante au problème, selon une spécification donnée par l’utilisateur. Cette
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spécification peut être une proposition précise qui doit être prouvée, une pro-
position contenant des variables dont on cherche les valeurs, ou des contraintes
qui permettent de vérifier qu’une proposition remplit les critères d’une solution.
Le test se fait au moment de l’insertion dans la base de données, ce qui permet
également de traiter le cas où la solution se trouve déjà parmi les prémisses.

3.5 Expression de connaissances générales grâce aux
quantificateurs

La logique propositionnelle nous permet uniquement d’exprimer des connais-
sances relatives à des situations particulières. Elle est insuffisante pour décrire
des connaissances générales s’appliquant à plusieurs situations. Cela est dû à
l’absence de variables. L’utilisation de variables permet d’exprimer qu’une pro-
position est vraie pour toutes les substitutions possibles d’une variable donnée.

En calcul des prédicats, il est possible d’utiliser des variables comme sub-
stitut des instances. Chaque variable doit alors être définie au moyen d’un
quantificateur. En général, le calcul des prédicats du 1er ordre permet les deux
quantificateurs suivants :

• ∀ : c’est le quantificateur universel. Placé devant une formule P (x), il
donne une proposition vraie pour toute interprétation vérifiant P , quelles
que soient les instances du domaine de x.

• ∃ : c’est le quantificateur existentiel. Placé devant une formule P (x), il
donne une proposition vraie pour toutes les interprétations pour lesquelles
il existe au moins une instance du domaine de x vérifiant P .

Grâce à la quantification, on peut maintenant exprimer des connaissances
générales comme :

(∀ x) [Eléphant (x) ⇒ Couleur (x, Gris)]

« Tous les éléphants sont gris »
ou encore
(∃ x) [Eléphant (x) ∧ Fait-des-numéros-de-cirque(x)]

« Il existe au moins un éléphant qui fait des numéros de cirque »

Le calcul des prédicats avec quantification permet de distinguer des ambi-
güıtés qui existent dans la langue naturelle. La phrase : « Tout le monde parle
une langue » peut être traduite par deux alternatives :

a.(∀ x) personne(x) ⇒ (∃ y) (langue(y) ∧ parle(x,y))

b.(∃ y) langue(y) ∧ (∀ x) (personne(x) ⇒ parle(x,y))

qui distinguent les cas (a) où tout le monde parle une langue quelconque et (b)
où il existe une langue précise que tout le monde parle.

Selon le type de quantification admis, on distingue le calcul de prédicats de

• ordre 0 : aucune quantification possible ;

• 1er ordre : quantification sur les individus ;

• 2e ordre : quantification sur les individus et les prédicats.
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Des algorithmes d’inférence existent uniquement pour la logique d’ordre 0
et du 1er ordre. Par conséquent, le calcul des prédicats de 2e ordre n’est presque
jamais utilisé. Il serait cependant nécessaire pour exprimer des connaissances
telles que :

« Toutes les propriétés des liquides sont également valables sur la
lune. »

Heureusement, on n’a que rarement besoin de formuler de telles connais-
sances.

Le logicien Skolem a montré qu’on peut éliminer tout quantificateur exis-
tentiel en introduisant une fonction, appelée fonction de Skolem. Considérons
un quantificateur existentiel qui se trouve à l’intérieur du domaine d’un autre
quantificateur universel, comme dans le schéma général suivant :

(∀ x) [ (∃ y) p(x,y) ]

On introduit une fonction de Skolem fy(x) qui retournera pour tout x un
y tant que p(x,y) est vrai. Par la suite, on écrit alors :

(∀ x) p(x,fy(x))

On utilisera une fonction de Skolem différente pour chaque quantificateur
existentiel et toutes les variables à quantification universelle dont le domaine
s’intersecte avec celui du quantificateur existentiel seront des arguments de la
fonction. Si le quantificateur existentiel se trouve en dehors de tout quantifica-
teur universel, la fonction de Skolem sera une constante.

Une fois que les quantificateurs existentiels sont éliminés, toutes les va-
riables restantes seront soumises à une quantification universelle et il n’y aura
plus d’interdépendance entre elles. On peut donc laisser tomber tous les quan-
tificateurs universels en introduisant la convention que toute variable libre est
toujours quantifiée de manière universelle. On arrive ainsi à une formulation
plus compacte et plus lisible.

Par exemple, l’expression

(∀ x) personne(x) ⇒ (∃ y) (langue(y) ∧ parle(x,y))

peut ainsi être transformée d’abord en :

(∀ x) personne(x) ⇒ (langue(flangue(x)) ∧ parle(x,flangue(x))

et ensuite en :

personne(x) ⇒ (langue(flangue(x)) ∧ parle(x,flangue(x))

D’après la signification des quantificateurs, il est également possible de for-
muler les lois d’équivalences suivantes :

(∃x)P (x) est équivalent à ¬ (∀x)[¬P (x)]
(∀x)P (x) est équivalent à ¬ (∃x)[¬P (x)]
(∀x)[P (x) ∧Q(x)] est équivalent à (∀x)P (x) ∧ (∀y)Q(y)
(∃x)[P (x) ∨Q(x)] est équivalent à (∃x)P (x) ∨ (∃y)Q(y)
(∀x)P (x) est équivalent à (∀y)P (y)
(∃x)P (x) est équivalent à (∃y)P (y)
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3.5.1 Appliquer des connaissances quantifiées : unification

Pour que de nouvelles propositions puissent être déduites d’un ensemble donné
d’autres propositions, il faut qu’il existe des connaissances quantifiées, généra-
lement valides, applicables au problème.

Pour cela, un moteur d’inférence doit d’abord trouver des correspondances
entre une représentation des données quantifiées et la représentation d’une pro-
position. Ces correspondances seront exprimées par des valeurs attribuées aux
variables qui apparaissent dans les formules quantifiées. La détermination de
ces correspondances fait l’objet du mécanisme de filtrage (pattern matching) et
plus généralement de celui de l’unification.

3.5.2 Filtrage (pattern matching)

Le mécanisme de filtrage consiste, comme son nom l’indique, à filtrer une donnée
avec une expression contenant éventuellement des variables (cette expression
jouant le rôle de filtre). Cela permet de dégager les correspondances existant
entre la donnée et le filtre. Dans l’exemple suivant, il s’agit de filtrer la don-
née Paul regarde Pierre avec le filtre ( ?X regarde ?Y) contenant les deux
variables ?X et ?Y :

(filtrer ’(Paul regarde Pierre) ’( ?X regarde ?Y))

→ (( ?X Paul) ( ?Y Pierre))

Le résultat obtenu consiste en une liste d’associations indiquant pour quelles
substitutions des variables le filtre correspond à la donnée. Si le filtre ne conte-
nait aucune variable, la fonction filtrer se contenterait de retourner une liste
vide lorsque le filtre et la donnée sont identiques et ECHEC dans le cas contraire.

Un algorithme de filtrage récursif est donné à la figure 3.3. La notation
{Ei/Vi} signifie que l’on construit une association de la variable Vi avec le
terme Ei.

3.5.3 Unification

L’unification correspond en fait à un mécanisme de filtrage pour lequel on
admet que la donnée elle-même contient également des variables (et non pas
seulement le filtre comme c’est le cas pour le filtrage). En d’autres termes,
il s’agit d’unifier deux filtres pour y déceler des correspondances. L’exemple
suivant décrit ce que l’on entend par unification :

(unifier ’( ?X est un éléphant) ’( ?Y est un ?ANIMAL))

→ (( ?X ?Y) ( ?ANIMAL éléphant))

L’écriture d’un unificateur pose un peu plus de problèmes que celle d’un mé-
canisme de filtrage. En effet, étant donné que des variables peuvent apparâıtre
dans les deux arguments à filtrer, des phénomènes de circularité indésirables
peuvent se produire, ainsi que le démontrent les exemples suivants (circularités
directe et indirecte) :

(unifier ’ ?x ’(f ?x))

ou

(unifier ’( ?x ?z) ’( ?z (f ?x))
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1: Function Filtrer(datum,pattern)

2: if pattern est un symbol then

3: if datum et pattern sont identiques then return {}
4: if pattern est une variable then return {pattern/datum}
5: return ECHEC

6: if datum est un symbol then return ECHEC

7: F1 ← premier élément de datum, T1 ← reste de datum

8: F2 ← premier élément de pattern, T2 ← reste de pattern

9: Z1 ← FILTRER(F1,F2)

10: if Z1 = ECHEC then return ECHEC

11: G1 ← T1

12: G2 ← remplacer les variables de T2 par les unifications Z1

13: Z2 ← FILTRER(G1,G2)

14: if Z2 = ECHEC then return ECHEC

15: return { Z1 ∪ Z2 }

Fig. 3.3 Algorithme récursif de filtrage.

Il est par conséquent nécessaire de tester ce genre de configurations circu-
laires avant d’engager le mécanisme d’unification à proprement parler.

La figure 3.4 présente un algorithme d’unification récursif. Cet algorithme
n’est autre que celui de la figure 3.3 auquel ont été ajoutés des tests détectant
la circularité.

3.5.4 Châınage avant avec variables

Le moteur d’inférence en châınage avant peut maintenant être étendu pour
admettre également des règles qui contiennent des variables. L’introduction de
variables changera peu le schéma de la figure 3.1. La mise en correspondance
d’un nouveau fait avec la base de règles est remplacée par l’application de
l’algorithme de filtrage et il se peut qu’il en résulte plusieurs correspondances
avec des substitutions de variables différentes. Chacune de ces substitutions est
utilisée pour une instanciation différente de la conclusion. Le schéma modifié est
donné par la figure 3.5. La figure 3.6 donne la version modifiée de l’algorithme
simple de la figure 3.2.

Comme exemple pour illustrer le processus, considérons les prémisses sui-
vantes :

F1 : père(Jacques,Charles),
F2 : frère(Charles,François),
F3 : frère(Jacques,Pierre)

une base de connaissances qui consiste en deux règles :

R1 : père( ?x, ?y) ∧ frère( ?y, ?z) ⇒ père( ?x, ?z)

R2 : père( ?x, ?y) ∧ frère( ?x, ?z) ⇒ oncle( ?z, ?y)
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1: Function Unifier(E1,E2)

2: if E1 ou E2 est un symbole then

3: Interchanger les arguments de E1 et de E2 (si nécessaire) de sorte que E1 soit
un atome

4: if E1 et E2 sont identiques then return {}
5: if E1 est une variable then

6: if E1 apparâıt dans E2 then return ECHEC

7: return {E1 / E2}

8: if E2 est une variable then return {E2 / E1}
9: return ECHEC

10: F1 ← premier élément de E1, T1 ← reste de E1

11: F2 ← premier élément de E2, T2 ← reste de E2

12: Z1 ← UNIFIER(F1,F2)

13: if Z1 = ECHEC then return ECHEC

14: G1 ← remplacer les variables de T1 par les substitutions Z1

15: G2 ← remplacer les variables de T2 par les substitutions Z1

16: Z2 ← UNIFIER(G1,G2)

17: if Z2 = ECHEC then return ECHEC

18: return { Z1 ∪ Z2 }

Fig. 3.4 Algorithme récursif d’unification.
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Fig. 3.5 Flux des informations entre composants d’un moteur d’inférence à châınage
avant avec variables.
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et le but de l’inférence :

oncle( ?x,François)

La procédure de châınage avant résoudrait le problème décrit ci-dessus par
les inférences suivantes :

R1, F1, F2 → F4 : père(Jacques,François))
R2, F1, F3 → F5 : oncle(Pierre,Charles)
R2, F4, F3 → F6 : oncle(Pierre,François) ⇒ but

L’efficacité de la procédure dépend essentiellement du degré auquel on arrive
à limiter les inférences inutiles (par exemple F5 dans l’exemple ci-dessus).

L’algorithme d’inférence, décrit en détail dans la figure 3.6, consiste princi-
palement à filtrer les faits avec les déclencheurs des règles de la base de connais-
sances. Chaque paire de (fait, règle) où le fait correspond à une condition de
la règle (par filtrage), est placée avec ses substitutions dans la file. Lorsque
tous les filtrages sont opérés, l’algorithme construit itérativement les conclu-
sions des éléments de la file, en commençant par le premier élément. Chaque
nouvelle conclusion est immédiatement comparée à la base de connaissances
pour voir si elle correspond à l’une des règles (c’est-à-dire si elle est susceptible
de la déclencher). Toutes les correspondances sont insérées en fin de file. Le pro-
cessus s’arrête si une nouvelle conclusion constitue une solution satisfaisante au
problème.

1: Procédure Châınage-Avant-Variables(F,R)

2: Q ← faits de départ F

3: while Q n’est pas vide do

4: q ← premier(Q), Q ← reste(Q)

5: if q 6∈ base de données then

6: imprimer q and ajouter q à la base de données

7: for chaque règle r de la base de règles R do

8: if ∃ c ∈ conditions(r) FILTRER(q,c) 6= ECHEC then

9: for toute combinaison C d’éléments de la base de données tel que FIL-
TRER(C,conditions(r)) 6= ECHEC do

10: n ← instanciation de conclusion(r) avec les substitutions de FIL-
TRER(C,conditions(r))

11: if n 6∈ base de données then ajouter n en queue de Q

Fig. 3.6 Algorithme pour un moteur d’inférence en châınage avant avec variables.

3.6 Inférence par résolution avec variables

Si la règle du modus ponens, qui est à la base du moteur d’inférence à châınage-
avant, constitue un moyen très naturel de faire des déductions, elle reste ce-
pendant limitée à des clauses de Horn. La règle de la résolution, quant à elle,
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permet une procédure de preuve complète. Elle s’utilise dans le contexte d’une
preuve indirecte : une proposition but G se déduit d’un ensemble de prémisses
{P} et d’un ensemble de règles {R} si et seulement si l’ensemble

{P} ∪ {R} ∪ {¬ G }
est contradictoire. Avant d’appliquer une telle procédure, les règles d’inférence
seront traduites en leurs équivalents conformément à la règle suivante :

(A ⇒ B) ⇔ (¬ A ∨ B)

Toute expression est alors simplifiée en une forme canonique selon les étapes
suivantes : élimination des quantificateurs, rendre les noms uniques, transformer
en conjonction de disjonctions. Ensuite, chaque disjonction dans la conjonction
devient une clause et toutes les clauses sont valables simultanément.

Un moteur d’inférence basé sur la résolution ajoute la négation d’un but
donné à l’ensemble des faits existants et utilise l’algorithme pour déduire une
contradiction dans cet ensemble. Du fait que la proposition but doit être préci-
sément spécifiée à la procédure de résolution, de tels moteurs d’inférences sont
aussi appelés démonstrateurs de théorèmes.

La résolution se base sur les deux règles d’inférence suivantes :

1) résolution binaire :

(L1 ∨A), (¬L2 ∨B), Unificateur(L1, L2) = U
⇒ (U(A) ∨ U(B))

2) factorisation :

(L1 ∨ L2 ∨A), Unificateur(L1, L2) = U
⇒ (U(L2) ∨A)

La règle de résolution binaire est appliquée à toute paire de clauses qui
contient des parties L1 et ¬L2 telles que L1 et L2 peuvent s’unifier. La règle
de factorisation s’applique quand une clause contient deux parties L1 et L2 qui
peuvent s’unifier entre elles et sont donc redondantes.

Un moteur d’inférence par résolution applique ces deux règles de façon itéra-
tive à tous les endroits possibles jusqu’à ce qu’il n’y ait plus aucune possibilité
d’application. Cette procédure est garantie de trouver une contradiction (p et
¬p) si elle existe. Par contre, elle peut être très inefficace.

Pour illustrer le fonctionnement de la résolution, considérons l’exemple sui-
vant. En partant des faits initiaux :

1. ¬lapin(x) ∨ animal(x)

(= lapin(x) ⇒ animal(x))

2. ¬animal(y) ∨ bouge(y)

(= animal(y) ⇒ bouge(y))

on veut prouver :

¬lapin(z) ∨ bouge(z)
(= lapin(z) ⇒ bouge(z))
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La transformation de ce but en sa négation donne :

lapin(z) ∧ ¬bouge(z)

ce qui se traduit en deux clauses élémentaires qui sont ajoutées à la base de
faits initiale :

3. lapin(z)

4. ¬bouge(z)

En appliquant la règle de résolution binaire deux fois (1.+2., 4.+5.), on
trouve :

5. ¬lapin(x) ∨ bouge(x)

6. ¬lapin(z)

et donc une contradiction entre 6. et 3. qui sert comme preuve de l’hypothèse.

Comme dans cet exemple il n’y avait aucun conflit entre les noms des va-
riables, la factorisation n’était pas nécessaire.

Littérature

Robinson a publié la règle de résolution en 1965 dans [6]. Les clauses de Horn
ont été introduites dans [7], et [8] a décrit pour la première fois leur utilisation
dans un moteur d’inférence. Le livre de Gallier [9] donne un aperçu plus complet
des méthodes d’inférence.

Outils - domaine public

Il y a plusieurs moteurs d’inférence pour les business rules, notamment Drools :

http ://www.drools.org

et OpenRules (disponible aussi en version commerciale) :

http ://www.openrules.com

L’outil CLIPS, également en domaine public, existe depuis longtemps mais est
toujours mise à jour et utilisé dans de nombreuses projets :

http://clipsrules.net/

Il existe plusieurs logiciels de démonstration automatique de théorèmes qui sont
disponibles dans le domaine public. Un des premiers était le système Otter et
son successeur Prover9, qui utilisent le principe de la résolution :

http://en.wikipedia.org/wiki/Otter_theorem_prover
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Plus récent, on peut considérer E, developpé depuis 1998 et parmi les plus
puissants aujourd’hui :

http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

Une autre méthode est de prouver des théorèmes par réduction à SAT, comme
le système KODKOD issu du MIT :

http://alloy.mit.edu/kodkod/

Ce type de logiciel ne se base cependant pas sur l’inférence explicite, mais sur
la satisfaction de contraintes que nous allons voir plus tard dans ce livre au
chapitre 8.

Outils - commercial

Les moteurs d’inférence sont le plus souvent integrés dans des outils de business
rules. Ils sont commercialisés par presque toute les grandes fournisseurs de
logiciel, parmi eux IBM Business Rules Management System :

http://www-01.ibm.com/software/websphere/products/business-

rule-management/

Microsoft Business Rules Engine :

https://msdn.microsoft.com/en-us/library/aa561216.aspx

ou encore SAP Business Rule Framework :

https://en.wikipedia.org/wiki/BRFplus

Plus généralement, on trouve des moteurs d’inférence dans de nombreuses outils
pour l’implémentation de systèmes intelligents. Le fournisseur de logiciel le plus
engagé est IBM avec sa division de cognitive computing.

Application : Traitement de requêtes de transfert par business
rules

La société Thames Water s’occupe de l’approvisionnement d’eau de toute
la région de Londres. Elle doit traiter chaque année 250 000 demandes de
transfert concernant la tarification de l’approvisionnent d’eau pour des
constructions ou rénovations de la région.

Auparavant, ces demandes étaient traitées par une équipe de trente per-
sonnes. Vu la complexité des situations et des règles appliquées, il parais-
sait impossible d’automatiser leur traitement. À partir de l’an 2000, la
société a néanmoins réussi à le faire par des business rules, des règles à
châınage-avant.

Le nouveau système a permis aux employés de se concentrer sur la réalisa-
tion des changements demandés et a ainsi diminué les délais de réponse de
50%. Les coûts ont été réduits de trois millions de livres par an. De plus,
on a pu corriger des calculs erronés et ainsi identifier un découvert de 1.4
million de livres qui a pu être récupéré.
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On observe là un résultat typique de l’introduction de business rules pour
automatiser des processus administratifs.

(Source : ”Britain’s Thames Water Delivers Millions in Cost Benefits Using ILOG

JRules.” The Free Library, 31 May 2005. http ://www.thefreelibrary.com/)

3.7 Exercices

Exercice 3.1 Première partie - sans variable

L’inférence à châınage avant est à la base de la plupart des systèmes de rai-
sonnement automatiques utilisés aujourd’hui. Cette série d’exercices a pour but
d’introduire cette technique. La réalisation d’un tel système se fera en plusieurs
étapes, la première se limitant à des règles sans variables. Dans les étapes sui-
vantes, vous implémenterez un moteur d’inférence qui utilisera des règles avec
variables.

Modules squelettes

Les modules de cette section fournissent le squelette du programme que nous
allons développer. Le module exemple_impots_sans_variables.py représente le
code d’un fichier test.

Module .../moteur_sans_variables/regle_sans_variables.py :

class RegleSansVariables:
def init ( self , conditions , conclusion):

self .conditions = set(conditions)
self .conclusion = conclusion

def depend de(self, fait ):
print('à compléter')

def satisfaite par ( self , faits ):
print('à compléter')

def repr ( self ):
print('à compléter')

Module .../moteur_sans_variables/connaissance.py :

class BaseConnaissances:
def init ( self , constructeur de regle ):

self . faits = []
self . regles = []
self . constructeur de regle = constructeur de regle

def ajoute un fait( self , fait ):
self . faits .append(fait)

def ajoute faits ( self , faits ):
self . faits .extend(faits )
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def ajoute une regle( self , description ):
regle = self . constructeur de regle (description)
self . regles .append(regle)

def ajoute regles ( self , descriptions ):
for description in descriptions :

self . ajoute une regle(description)

Module .../moteur_sans_variables/chainage.py :

class Chainage:
indentation = 4 ∗ ' '

def init ( self , connaissances):
self . trace = []
self . solutions = []
self .connaissances = connaissances

def reinitialise ( self ):
self . trace = []
self . solutions = []

def chaine( self ):
# Nous retournons un ensemble vide dans ce cas.
return self. solutions

def affiche trace ( self , indent=None):
if indent is None:

indent = Chainage. indentation

print('Trace:')
for evenement in self . trace :

print('{}{}'.format(indent, evenement))

def affiche solutions ( self , indent=None):
if indent is None:

indent = Chainage. indentation

if len( self . solutions ) > 0:
print('Faits d\'eduits : ')
for fait in self . solutions :

print('{}{}'.format(indent, fait))
else:

print('Aucun fait trouv\'e. ')

Module .../moteur_sans_variables/chainage_avant_sans_variables.py :

from .chainage import Chainage

class ChainageAvantSansVariables(Chainage):
def chaine( self ):

print('à compléter')
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Module .../exemple_impots_sans_variables.py :

from sys import argv, exit
from moteur sans variables.regle sans variables import RegleSansVariables
from moteur sans variables.connaissance import BaseConnaissances
from moteur sans variables.chainage avant sans variables import ChainageAvantSansVariables

# La description d'une règle est une liste de deux éléments:
# une liste de conditions et une conclusion.
regles = [

[[ 'pas−d−enfants'], 'réduc−enfant−0'],
[[ 'enfants ' ], 'réduc−enfant−100'],
[[ 'bas−salaire' ], 'réduc−loyer−200'],
[[ 'moyen−salaire'], 'réduc−loyer−100'],
[[ 'haut−salaire' ], 'réduc−loyer−0'],
[[ 'pas−de−loyer'], 'réduc−loyer−0'],
[[ ' petit−trajet' ], 'réduc−trajet−0'],
[[ 'réduc−enfant−0', 'long−trajet'], 'réduc−trajet−100'],
[[ 'réduc−loyer−0', 'long−trajet' ], 'réduc−trajet−100'],
[[ 'réduc−enfant−100', 'réduc−loyer−100', 'long−trajet'],
'réduc−trajet−50'],

[[ 'réduc−enfant−100', 'réduc−loyer−200', 'long−trajet'],
'réduc−trajet−0'],

[[ 'réduc−enfant−0', 'réduc−loyer−0', 'réduc−trajet−0'],
'réduc−0'],

[[ 'réduc−enfant−100', 'réduc−loyer−0', 'réduc−trajet−0'],
'réduc−100'],

[[ 'réduc−enfant−0', 'réduc−loyer−100', 'réduc−trajet−0'],
'réduc−100'],

[[ 'réduc−enfant−100', 'réduc−loyer−100', 'réduc−trajet−0'],
'réduc−200'],

[[ 'réduc−enfant−0', 'réduc−loyer−200', 'réduc−trajet−0'],
'réduc−200'],

[[ 'réduc−enfant−100', 'réduc−loyer−200', 'réduc−trajet−0'],
'réduc−300'],

[[ 'réduc−enfant−0', 'réduc−loyer−0', 'réduc−trajet−50'],
'réduc−50'],

[[ 'réduc−enfant−100', 'réduc−loyer−0', 'réduc−trajet−50'],
'réduc−150'],

[[ 'réduc−enfant−0', 'réduc−loyer−100', 'réduc−trajet−50'],
'réduc−150'],

[[ 'réduc−enfant−100', 'réduc−loyer−100', 'réduc−trajet−50'],
'réduc−250'],

[[ 'réduc−enfant−0', 'réduc−loyer−200', 'réduc−trajet−50'],
'réduc−250'],

[[ 'réduc−enfant−0', 'réduc−loyer−200', 'réduc−trajet−50'],
'réduc−250'],

[[ 'réduc−enfant−100', 'réduc−loyer−200', 'réduc−trajet−50'],
'réduc−350'],

[[ 'réduc−enfant−0', 'réduc−loyer−0', 'réduc−trajet−100'],
'réduc−100'],

[[ 'réduc−enfant−100', 'réduc−loyer−0', 'réduc−trajet−100'],
'réduc−200'],

[[ 'réduc−enfant−0', 'réduc−loyer−100', 'réduc−trajet−100'],
'réduc−200'],

[[ 'réduc−enfant−100', 'réduc−loyer−100', 'réduc−trajet−100'],
'réduc−300'],

[[ 'réduc−enfant−0', 'réduc−loyer−200', 'réduc−trajet−100'],
'réduc−300'],
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[[ 'réduc−enfant−100', 'réduc−loyer−200', 'réduc−trajet−100'],
'réduc−400'],

]

if len(argv) < 2 or argv[1].lower() not in ('a' , 'b' ):
print('On attend au moins un arguments: A ou B')
exit (1)

if argv [1]. lower() == 'a':
faits initiaux = ['bas−salaire' , ' loyer ' , 'enfants ' , ' long−trajet' ]

elif argv [1]. lower() == 'b':
faits initiaux = ['pas−d−enfants', 'pas−de−loyer',

'haut−salaire' , ' long−trajet' ]

bc = BaseConnaissances(lambda descr: RegleSansVariables(descr[0], descr[1]))
bc. ajoute faits ( faits initiaux )
bc. ajoute regles ( regles )

moteur = ChainageAvantSansVariables(bc)
moteur.chaine()

moteur. affiche solutions ()

if len(argv) > 2 and argv[2].lower() == 'trace':
# Utile durant le déboggage.
moteur. affiche trace ()

Idée de base

L’idée de base d’un moteur d’inférence à châınage avant est de déduire toutes
les faits possibles à partir d’un ensemble de règles et de faits initiaux, c’est-à-
dire de propositions qui sont tenues pour vraies dès le départ. Chaque fois qu’un
nouveau fait est déduit, l’ensemble des règles doit être appliqué à nouveau à la
base des faits : il est en effet possible que le fait nouvellement déduit permette
le déclenchement d’une règle qui a déjà été essayée auparavant sans succès. Le
processus d’inférence se termine lorsque plus aucun fait nouveau ne peut être
déduit.

Exercice 3.1.1 Les faits et les règles

Dans cette série, les propositions ne contiendront pas de variables et seront
représentées par des châınes de caractères (string) contenant leur description
en langage naturel. Les faits seront donc des propositions. En outre, les règles
seront des clauses de Horn, et donc composées de deux parties :

• Un ensemble de conditions (des propositions qui doivent être toutes satis-
faites pour que la règle se déclenche) ;

• Une seule conclusion (une proposition qui pourra le cas échéant être inséré
dans la base des faits).

Les règles seront ainsi représentées par la classe RegleSansVariables du mo-
dule regle_sans_variables.py. Cette classe possède deux attributs : une liste de
propositions, qui représentent les conditions, et une proposition, qui représente
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la conclusion. Pour utiliser RegleSansVariables, vous devez donc compléter les
méthodes :

• depend_de(self, fait), qui doit retourner True si le fait passé en argument
fait partie des conditions ;

• satisfaite_par(self, faits), qui doit retourner True si toutes les condi-
tions de déclenchement de la règle sont présentes dans la liste de faits
passée en argument ;

• __repr__, qui retourne une représentation d’une règle sous forme de string.
Cela nous permettra d’afficher les règles de manière plus pratique en
utilisant la syntaxe print(règle), au lieu de print(règle.conditions) et
print(règle.conclusion).

Pensez à utilisez l’opérateur in pour écrire depend_de et la méthode issubset

de la classe set pour implémenter satisfaite_par.
Les faits et les règles pertinents pour un problème seront collectés dans la

classe BaseConnaissances, qui est décrite dans le module connaissance.py.

Exercice 3.1.2 Le moteur d’inférence à châınage avant sans variables

Vous disposez maintenant du code nécessaire pour implémenter le moteur à
châınage avant sans variables. Ce code est à implémenter dans chainage_avant_

sans_variables.py, en complétant la classe ChainageAvantSansVariables. Notez
que cette dernière est une sous-classe de la classe Chainage du module chai-

nage.py et qu’elle hérite par conséquent des deux méthodes affiche_solutions

et affiche_trace, qui servent à afficher les résultats et le parcours de l’algo-
rithme. La classe ChainageAvantSansVariables doit recevoir une instance de
BaseConnaissances en tant que paramètre de son constructeur. C’est à partir
du contenu de cette base de connaissance qu’elle recherchera des faits nouveaux.

Votre tâche consiste à implémenter la méthode chaine dans la classe Chai-

nageAvantSansVariables. N’oubliez pas de placer les faits déduits dans la va-
riable self.solutions au moment où ils sont découverts. Vous pouvez également
ajouter les règles et les faits à self.trace à mesure qu’ils interviennent dans
l’inférence.

Pour rappel, l’algorithme à implémenter est le suivant :

ChainageAvantSansVariables(faits depart, regles)
1. solutions <− liste vide
2. Q <− faits depart
3. WHILE Q n'est pas vide DO
4. q <− premier(Q)
5. Q <− reste(Q)
6. IF q n'est pas dans solutions THEN
7. ajouter q à solutions
8. FOR EACH règle r de regles DO
9. IF r .depend de(q) et r. satisfaite par ( solutions ) THEN
10. ajouter la conclusion de r en queue de Q
11. END IF
12. END FOR
13. END IF
14. END WHILE
15. RETURN solutions
END ChainageAvantSansVariables
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Rappelez-vous qu’en Python, les listes peuvent s’employer comme des queues
grâces aux méthodes append et pop.

Test du programme

exemple_impots_sans_variables.py contient les règles et les faits nécessaires
pour le calcul du montant d’une réduction d’impôts. Après avoir écrit votre
programme, testez-le sur un premier exemple en ajoutant l’option A et vérifiez
que le fait ’réduc-300’ est correctement déduit. Vous pouvez afficher la trace
en utilisant l’option trace.

python3 exemple impots sans variables.py A
python3 exemple impots sans variables.py A trace

Le module contient un deuxième exemple. Quelle devrait être alors la ré-
duction d’impôts ?

python3 exemple impots sans variables.py B
python3 exemple impots sans variables.py B trace

Solutions à la page 343

Exercice 3.2 Deuxième partie - avec variables

Le but de cette série est de développer un moteur d’inférence à châınage avant
capable de manipuler des règles comportant des variables. Dans un premier
temps, vous devrez étendre l’implémentation des règles en complétant quelques
fonctions utilitaires. Puis vous construirez un filtre, qui permettra de comparer
deux propositions dont l’une pourra contenir des variables. Ensuite, en utilisant
votre filtre, vous implémenterez un moteur d’inférence avec variables.

Vous aurez également la possibilité d’implémenter un unificateur et de le
tester sur votre moteur à châınage avant avec variables. Un unificateur permet
aussi de comparer deux propositions. La différence fondamentale avec le filtre
est que l’unificateur accepte la présence de variables dans les deux expressions,
ce qui rend possible de l’utiliser dans le châınage arrière.

Modules squelettes

Les modules qui suivent constituent le squelette du programme que nous allons
développer. Le dernier, exemple_impots_avec_variables.py, est un module de
test.

Module .../moteur_avec_variables/proposition_avec_variables.py :

def est atomique(proposition):
print('à compléter')

def est une variable (proposition, marqueur='?'):
print('à compléter')
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def tete(proposition):
if est atomique(proposition):

raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:

return proposition[0]
else:

raise Exception(”Proposition vide: Impossible de la segmenter.”)

def corps(proposition):
if est atomique(proposition):

raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:

return proposition[1:]
else:

raise Exception(”Proposition vide: Impossible de la segmenter.”)

def lister variables (proposition):
variables = set()
if est atomique(proposition):

if est une variable (proposition):
variables .add(proposition)

else:
for sous prop in proposition:

variables .update( lister variables (sous prop))
return variables

Module .../moteur_avec_variables/regle_avec_variables.py :

class RegleAvecVariables:
def init ( self , conditions , conclusion):

self .conditions = conditions
self .conclusion = conclusion

def depend de(self, fait , methode):
print('à compléter')

def satisfaite par ( self , faits , cond, env, methode):
print('à compléter')

def repr ( self ):
return '{} => {}'.format(str(self.conditions), str( self .conclusion))

Module .../moteur_avec_variables/chainage_avant_avec_variables.py :

from moteur sans variables.chainage import Chainage
from . filtre import Filtre

class ChainageAvantAvecVariables(Chainage):
def init ( self , connaissances, methode=None):

Chainage. init ( self , connaissances)

if methode is None:
self .methode = Filtre()

else:
self .methode = methode
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def instancie conclusion ( self , regle , envs):
print('à compléter')

def chaine( self ):
print('à compléter')

Module .../moteur_avec_variables/filtre.py :

from .proposition avec variables import est atomique, est une variable, tete , corps

class Filtre :
echec = 'échec'

def substitue( self , pattern, env):
print('à compléter')

def filtre ( self , datum, pattern):
print('à compléter')

def pattern match(self, datum, pattern, env=None):
print('à compléter')

Module .../moteur_avec_variables/unificateur.py :

from .proposition avec variables import est atomique, est une variable, tete , corps

class Unificateur :
echec = 'échec'

def substitue( self , pattern, env):
print('à compléter')

def unifie ( self , prop1, prop2):
print('à compléter')

def pattern match(self, prop1, prop2, env=None):
print('à compléter')

Module .../exemple_impots_avec_variables.py :

from sys import argv, exit
from moteur avec variables.regle avec variables import RegleAvecVariables
from moteur sans variables.connaissance import BaseConnaissances
from moteur avec variables. filtre import Filtre
from moteur avec variables.unificateur import Unificateur
from moteur avec variables.chainage avant avec variables import

ChainageAvantAvecVariables

faits initiaux = [
( 'add', '0' , '0' , '0' , '0' ),
( 'add', '100' , '100' , '0' , '0' ),
( 'add', '100' , '0' , '100' , '0' ),
( 'add', '200' , '100' , '100' , '0' ),
( 'add', '200' , '0' , '200' , '0' ),
( 'add', '300' , '100' , '200' , '0' ),
( 'add', '50' , '0' , '0' , '50' ),
( 'add', '150' , '100' , '0' , '50' ),
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( 'add', '150' , '0' , '100' , '50' ),
( 'add', '250' , '100' , '100' , '50' ),
( 'add', '250' , '0' , '200' , '50' ),
( 'add', '350' , '100' , '200' , '50' ),
( 'add', '100' , '0' , '0' , '100' ),
( 'add', '200' , '100' , '0' , '100' ),
( 'add', '200' , '0' , '100' , '100' ),
( 'add', '300' , '100' , '100' , '100' ),
( 'add', '300' , '0' , '200' , '100' ),
( 'add', '400' , '100' , '200' , '100' ),
# Paul
( 'bas−salaire' , 'Paul'),
( ' loyer ' , 'Paul'),
( 'enfants ' , 'Paul'),
( ' long−trajet' , 'Paul'),
# Marc
( 'moyen−salaire', 'Marc'),
( ' loyer ' , 'Marc'),
( 'enfants ' , 'Marc'),
( ' long−trajet' , 'Marc'),
# Jean
( 'haut−salaire' , 'Jean'),
( 'pas−de−loyer', 'Jean'),
( 'pas−d−enfants', 'Jean'),
( ' long−trajet' , 'Jean'),

]

regles = [
# Reduction enfants
[[( 'pas−d−enfants', '?x' )], ( 'réduc−enfant', '0' , '?x' )],
[[( 'enfants ' , '?x' )], ( 'réduc−enfant', '100' , '?x' )],
# Reduction loyer
[[( 'bas−salaire' , '?x' ), ( ' loyer ' , '?x' )], ( 'réduc−loyer', '200' , '?x' )],
[[( 'moyen−salaire', '?x' ), ( ' loyer ' , '?x' )], ( 'réduc−loyer', '100' , '?x' )],
[[( 'haut−salaire' , '?x' ), ( ' loyer ' , '?x' )], ( 'réduc−loyer', '0' , '?x' )],
[[( 'pas−de−loyer', '?x' )], ( 'réduc−loyer', '0' , '?x' )],
# Reduction transport
[[( ' petit−trajet' , '?x' )], ( 'réduc−trajet', '0' , '?x' )],
[[( 'réduc−enfant', '0' , '?x' ), ( ' long−trajet' , '?x' )],
( 'réduc−trajet', '100' , '?x' )],

[[( 'réduc−loyer', '0' , '?x' ), ( ' long−trajet' , '?x' )],
( 'réduc−trajet', '100' , '?x' )],
[[( 'réduc−enfant', '100' , '?x' ), ( 'réduc−loyer', '100' , '?x' ),

( ' long−trajet' , '?x' )], ( 'réduc−trajet', '50' , '?x' )],
[[( 'réduc−enfant', '100' , '?x' ), ( 'réduc−loyer', '200' , '?x' ),

( ' long−trajet' , '?x' )], ( 'réduc−trajet', '0' , '?x' )],
# Reduction totale
[[( 'réduc−enfant', '?a' , '?x' ), ( 'réduc−loyer', '?b' , '?x' ),

( 'réduc−trajet', '?c' , '?x' ), ( 'add', '?res ' , '?a' , '?b' , '?c' )],
( 'réduc', '?res ' , '?x' )],

]

if len(argv) < 2 or argv[1].lower() not in (' filtre ' , ' unificateur ' ):
print('On attend un argument: Filtre ou Unificateur')
exit (1)

if argv [1]. lower() == 'filtre ' :
methode = Filtre()

elif argv [1]. lower() == 'unificateur' :
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methode = Unificateur()

bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr[0], descr[1]))
bc. ajoute faits ( faits initiaux )
bc. ajoute regles ( regles )

moteur = ChainageAvantAvecVariables(connaissances=bc, methode=methode)
moteur.chaine()

moteur. affiche solutions ()

if len(argv) > 2 and argv[2].lower() == 'trace':
moteur. affiche trace ()

Le code de cette série d’exercices s’appuie sur le code développé pour l’infé-
rence sans variables. Il est donc important de respecter strictement la structure
des dossiers que nous vous fournissons. Sinon, Python ne pourra pas importer
correctement les modules.

Les faits et les règles

Au cours des exercices précédents, vous avez manipulé des faits simples et des
règles sans variables. Dans cette série, les faits pourront être composés et les
règles pourront contenir des variables. Nous parlerons plus généralement de
propositions qui sont définies récursivement comme étant :

• un atome, présenté sous la forme d’une string et représentant soit une
variable, soit une valeur ;

• ou un tuple contenant des propositions.

Vous trouverez ici
(1)

des informations détaillées sur la syntaxe des tuples en
Python. L’essentiel à retenir pour cet exercice est qu’un tuple est une séquence
de valeurs construite en alignant plusieurs éléments séparés par des virgules :
t3 = ’str’, 0, []. Pour plus de clarté, on entoure généralement ces valeurs de
parenthèses : t3 = (’str’, 0, []). Notez enfin qu’un tuple composé d’un seul
élément doit contenir une virgule finale. Ici aussi, il est préférable d’utiliser des
parenthèses : t1 = (’unique’,).

Par convention, une variable sera un atome qui commence par un point
d’interrogation. Exemple :

'?x'
'?qui'

Les faits seront des propositions sans variables. Voici par exemple deux
descriptions de faits :

'Paul'
( 'réduc−loyer', '200' , 'Michel')

(1)
https ://docs.python.org/3.5/tutorial/datastructures.html#tuples-and-sequences
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En général cependant, une proposition pourra contenir des variables, comme
dans ces exemples :

( 'réduc−loyer', '200' , '?x')
( 'bas−salaire' , '?z')
( 'réduc−trajet', '?x' , '?y')

Comme dans la série précédente, les règles seront constituées d’une liste de
conditions et d’une conclusion. Voici les descriptions de deux règles possibles :

[( 'pas−d−enfants', '?x' )], ( 'réduc−enfant', '0' , '?x')
[[( 'bas−salaire' , '?x' ), ( ' loyer ' , '?x' )], ( 'réduc−loyer', '200' , '?x')

La classe RegleSansVariables de la série précédente doit ainsi être adaptée à
l’utilisation de variables. Nous créerons donc une nouvelle classe RegleAvecVa-

riables qui devra redéfinir les méthodes depend_de et satisfaite_par en faisant
appel aux méthodes de pattern matching (filtrage ou unification). Vous devrez
compléter ces méthodes une fois le pattern matching implémenté.

Exercice 3.2.1 Le filtre

La technique du filtrage permet d’établir des correspondances entre deux propo-
sitions. Plus précisément, un filtre détermine les substitutions variables-valeurs
qui permettent de retrouver une proposition sans variables (le datum) à partir
d’une autre (le pattern) qui peut contenir des variables.

Pour commencer, vous devrez coder deux fonctions utilitaires dans le module
proposition_avec_variables.py, afin de faciliter l’implémentation du filtrage :
La fonction est_atomique(prop), qui doit retourner True si la proposition prop

est une string et la fonction est_une_variable(prop), qui doit retourner True

si prop est un atome et si le premier caractère de sa description indique une
variable (’ ?’).

La méthode Filtre.substitue

Vous pouvez maintenant vous attaquer à la classe Filtre du module filtre.py

et implémenter sa méthode substitue. Cette méthode doit retourner un pattern
dont les variables auront été remplacées par les valeurs disponibles dans l’envi-
ronnement env qui est passé en paramètre. env est un dictionnaire qui contient
des substitutions variable-valeur. N’oubliez pas que le pattern est une proposi-
tion, donc soit un atome, soit un tuple pouvant contenir d’autres propositions.
Pensez donc à utiliser une méthode récursive pour traiter ces cas.

Pour vous guider, voici quelques exemples du fonctionnement de la mé-
thode :

substitue( 'doctorant' , {'?z' : 'Paolo', '?y' : 'Michel', '?x' : 'Vincent'})
−> 'doctorant'

substitue( '?x' , {'?z' : 'Paolo', '?y' : 'Michel', '?x' : 'Vincent'})
−> 'Vincent'

substitue(( '?x' , ' est un', 'doctorant'), {})
−> ('?x', ' est un', 'doctorant')
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substitue(( '?x' , ' est un', 'doctorant'), {'?x' : 'Vincent'})
−> ('Vincent', 'est un', 'doctorant')

substitue(( '?x' , ' est un', 'doctorant'), {'?y' : 'Michel'})
−> ('?x', ' est un', 'doctorant')

substitue(( '?x' , ' est un', ( '?a' )), {'?y' : 'Michel', '?a' : 'Vincent'})
−> ('?x', ' est un', ( 'Vincent'))

La méthode Filtre.filtre

Nous allons maintenant écrire la méthode filtre de la classe Filtre, qui im-
plémente l’algorithme de filtrage. La méthode retournera :

• Un environnement, {’ ?x’ :’toto’, ..., ’ ?y’ :’titi’}, dans le cas où le
processus aboutit à des substitutions ;

• Un environnement vide, {}, si le processus réussit sans aucune substitu-
tion, c’est-à-dire lorsque les deux propositions sont identiques ;

• La constante Filtre.echec, en cas d’erreur de filtrage (si datum et pattern

sont incompatibles).

La méthode possède la signature filtre(datum, pattern), où datum est une
proposition sans variables, et pattern une proposition pouvant contenir des
variables.

Voici son pseudo-code :

Filtre (datum, pattern)
1. IF pattern == () AND datum == () THEN RETURN {}
2. ELSE IF pattern == () OR datum == () THEN RETURN échec
3. ELSE IF pattern est un atome THEN
4. IF pattern et datum sont identiques THEN RETURN {}
5. ELSE IF pattern est une variable THEN RETURN {pattern: datum}
6. ELSE RETURN échec
7. END IF
8. ELSE IF datum est un atome THEN RETURN échec
9. ELSE
10. F1 <− premier (datum)
11. T1 <− reste (datum)
12. F2 <− premier(pattern)
13. T2 <− reste(pattern)
14. Z1 <− Filtre(F1, F2)
15. IF Z1 == échec THEN RETURN échec END IF
16. G1 <− T1
17. G2 <− remplacer les variables de T2 selon les substitutions de Z1
18. Z2 <− Filtre(G1, G2)
19. IF Z2 == échec THEN RETURN échec END IF
20. RETURN {Z1 UNION Z2}
21. END IF
END Filtre

Et voici quelques exemples de son usage :

filtre ( 'Vincent', '?x')
−> {'?x': 'Vincent'}

filtre (( 'Vincent', ' est un', 'doctorant'), ( '?x' , ' est un', 'doctorant'))
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−> {'?x': 'Vincent'}

filtre (( 'Vincent', ' est un', 'doctorant') , ( 'Vincent', ' est un', 'doctorant'))
−> {}

filtre (( 'Vincent', ' est un', 'doctorant'), ( '?x' , ' est un', '?x'))
−> échec

filtre (( 'Vincent', ' est un', ( 'doctorant')) , ( 'Vincent', ' est un', ( '?y' )))
−> {'?y': 'doctorant'}

Vous trouverez ici
(2)

quelques fonctions utiles pour manipuler des diction-
naires. La méthode update est particulièrement commode pour obtenir l’union
de deux dictionnaires. Une façon brève et élégante pour retourner un diction-
naire à un élément est : return {key : value}.

La vraie fonction d’interface : Filtre.pattern_match

La fonction filtre n’est pas très pratique pour un programme hôte car il n’est
pas possible de lui fournir en entrée un environnement. Dans le processus de
châınage avant que vous allez écrire, chaque condition d’une règle doit être
vérifiée avant de pouvoir être utilisée. Cela implique que chaque condition soit
filtrée avec succès par un fait existant. Comme plusieurs conditions peuvent
être présentes, il est nécessaire de tester chacune en respectant l’environnement
obtenu lors des filtrages précédents. Il faut donc pouvoir fournir à la fonction
de filtrage un environnement déjà établi.

Vous devez ainsi compléter la méthode pattern_match de la classe Filtre,
qui permettra de prendre en compte un environnement de substitutions déjà
existantes. Cette méthode prend en paramètres deux propositions, un datum et
un pattern, accompagnés d’un environnement sous forme d’argument optionnel,
et retourne un nouvel environnement. Elle s’appuiera bien évidemment sur les
méthodes filtre et substitue.

Voici une liste d’exemples qui prennent en compte des environnements pré-
existants :

pattern match(('Vincent', ' est un', 'doctorant'), ( '?x' , ' est un', 'doctorant') ,
{'?y' : 'doctorant'})
−> {'?y': 'doctorant' , '?x' : 'Vincent'}

pattern match(('Vincent', ' est un', 'doctorant'), ( '?x' , ' est un', '?y' ),
{'?y' : 'doctorant'})
−> {'?y': 'doctorant' , '?x' : 'Vincent'}

pattern match('Vincent', '?x' , {})
−> {'?x': 'Vincent'}

Les arguments optionnels d’une fonction Python obéissent à la syntaxe ar-

gument=valeur. À cause de problèmes de mutabilité, il est déconseillé d’utiliser

(2)
http://docs.python.org/py3k/library/stdtypes.html\#typesmapping
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{} comme valeur par défaut. Il est préférable d’utiliser la valeur None et d’assi-
gner un dictionnaire vide à la variable à l’intérieur de la méthode. Vous pouvez

consulter cet article
(3)

pour plus d’informations.

Exercice 3.2.2 De retour aux règles

La méthode RegleAvecVariables.depend_de

La classe RegleAvecVariables, qui est à implémenter dans le module regle_avec_

variables.py, reprend les noms des méthodes de la classe RegleSansVariables

que nous avons utilisée dans l’exercice précédent, mais avec une implémenta-
tion passablement différente. La méthode dépend_de doit ainsi vérifier qu’un
fait passé en paramètre est un déclencheur des conditions de la règle, et doit
retourner un dictionnaire associant à chaque condition de la règle l’environne-
ment résultant du pattern match entre cette condition et le fait. Si la recherche
de substitutions aboutit à un échec pour une condition, il n’est pas nécessaire
de la mentionner dans le dictionnaire. Il faudra donc comparer chaque condi-
tion de la règle avec le fait à l’aide de la méthode pattern_match du filtre et
recueillir les environnements résultants.

La méthode dépend_de prend en entrée deux paramètres : fait, un fait à
tester, et methode, l’objet de pattern matching utilisé, soit un filtre soit un
unificateur (filtre par défaut). N’oubliez pas que cette fonction doit vérifier
toutes les conditions de la règle. Pour vous aider, voici quelques exemples :

règle = RegleAvecVariables([('père', '?x' , '?y' ), ( 'père' , '?y' , '?z' )],
( 'grand−père, '?x', '?z' ))

# Le fait ( 'père' , 'Jean', 'Paul') peut satisfaire la première ou la seconde condition :
methode.pattern match(('père', 'Jean', 'Paul'), ( 'père' , '?x' , '?y'))
−> {'?x': 'Jean', '?y' : 'Paul'}

methode.pattern match(('père', 'Jean', 'Paul'), ( 'père' , '?y' , '?z' ))
−> {'?y': 'Jean', '?z' : 'Paul'}

# La méthode depend de renvoie donc un dictionnaire avec ces deux conditions associées
# à leurs environnements respectives :
depend de(('père', 'Jean', 'Paul'), Filtre ())
−> {('père', '?x' , '?y' ): {'?x' : 'Jean', '?y' : 'Paul'},

( 'père' , '?y' , '?z' ): {'?y' : 'Jean', '?z' : 'Paul'}}

La méthode RegleAvecVariables.satisfaite_par

La méthode satisfaite_par de la classe RegleAvecVariables vérifie que les faits
passés en paramètres satisfont toutes les conditions de la règle tout en res-
pectant l’environnement de départ inféré par dépend_de. La méthode prend en
entrée quatre paramètres :

• faits : une liste de faits ;

• cond : la condition qui a servi à découvrir l’environnement env ;

(3)
http ://www.deadlybloodyserious.com/2008/05/default-argument-blunders/
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• env : l’environnement déjà établi par depend_de ;

• methode : l’objet de pattern matching utilisé, soit un filtre soit un unifica-
teur (filtre par défaut).

La méthode satisfaite_par retourne une liste d’environnements qui cor-
respondent à toutes les substitutions possibles entre les conditions de la règle
et les faits. Il s’agit donc de trouver les environnements qui satisfont chacun
toutes les conditions. Si ce n’est pas possible, la méthode doit retourner une
liste vide. En outre, chaque nouvel environnement construit devra être testé
lors de la vérification de la prochaine condition. Voici un petit exemple pour
clarifier les choses :

faits = [( 'père' , 'Jean', 'Paul'),
( 'père' , 'Florent' , 'Paul'),
( 'père' , 'Paul', 'Michel')]

regle = RegleAvecVariables([('père', '?x' , '?y' ), ( 'père' , '?y' , '?z' )],
( 'grand−père, '?x', '?z' ))

satisfaite par ( faits , ( 'père' , '?x' , '?y' ), {'?x' : 'Jean', '?y' : 'Paul'})
−> [{'?x': 'Jean', '?y' : 'Paul', '?z' : 'Michel'}]

satisfaite par ( faits , ( 'père' , '?y' , '?z' ), {'?y' : 'Jean', '?z' : 'Paul'})
−> []

Et voici le pseudo-code de la méthode :

SatisfaitePar ( regle , faits , cond, env)
1. conditions a tester <− conditions de regle sauf cond
2. environnements satisfaisants <− [env]
3. FOR EACH condition cond1 de conditions a tester DO
4. environnements nouveaux <− liste vide
5. FOR EACH fait de faits DO
6. FOR EACH environnement env1 de environnements satisfaisants DO
7. env1 <− nouvel environnement déterminé par pattern match(fait, cond1, env1)
8. IF NOT env1 == échec THEN
9. ajouter env1 à environnements nouveaux
10. END IF
11. END FOR
12. END FOR
13. IF environnements nouveaux est vide THEN
14. RETURN liste vide
15. END IF
16. environnements satisfaisants <− environnements nouveaux
17. END FOR
18. RETURN environnements satisfaisants
END SatisfaitePar

Exercice 3.2.3 Le moteur d’inférence à châınage avant avec variables

La méthode ChainageAvantAvecVariables.instancie_conclusion

Une fois que les conditions d’une règle ont été validées, il faut instancier la
conclusion en accord avec la liste des environnements ainsi obtenus afin de dé-
duire de nouvelles propositions. La fonction instancie_conclusion de la classe
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ChainageAvantAvecVariables prend comme paramètres une règle et une liste
d’environnements, et retourne une liste de nouveaux faits (un par environne-
ment). Exemples :

règle = RegleAvecVariables(liste de conditions, ( '?x' , '?y'))
instancie conclusion (règle , [{ '?x' : 'X', '?y' : 'Y'}])
−> [('X', 'Y')]

Vous pouvez implémenter cette méthode de façon simple avec une boucle
for itérant sur les environnements, mais il est aussi possible de l’écrire en une

ligne sous forme de ’list comprehension’
(4)

(un peu plus complexe mais plus
élégant). Pensez en outre à utiliser la fonction substitue de la classe de pattern
match.

La méthode ChainageAvantAvecVariables.chaine

Grâce aux changements apportés aux règles, grâce à la méthode instancie_

conclusion et au module de filtrage que nous avons développé, nous pouvons
maintenant réaliser une nouvelle version de notre moteur d’inférence à châınage
avant, avec la capacité de manipuler des règles comportant des variables.

Implémentez l’algorithme de châınage avant dans la méthode chaine de la
classe ChainageAvantAvecVariables. Pour rappel, l’algorithme à implémenter est
le suivant :

ChainageAvantAvecVariables(faits depart, regles)
1. solutions <− liste vide
2. Q <− faits depart
3. WHILE Q n'est pas vide DO
4. q <− premier(Q)
5. Q <− reste(Q)
6. IF q n'est pas dans solutions THEN
7. ajouter q à solutions
8. FOR EACH règle r de regles DO
9. IF une condition de r dépend de q THEN
10. FOR EACH condition cond et environnement env déduits de

r .depend de(q) DO
11. envs <− r. satisfaite par ( solutions , cond, env)
12. instances <− instancier la conclusion de r selon envs
13. ajouter instances en queue de Q
14. END FOR
15. END IF
16. END FOR
17. END IF
18. END WHILE
19. RETURN solutions
END ChainageAvantAvecVariables

Test du programme : Châınage avant avec filtre

Le module exemple_impots_avec_variables.py contient les règles et les faits
nécessaires pour le calcul du montant d’une réduction d’impôts. Après avoir

(4)
Introduction à la list comprehension de Python : https://docs.python.org/3/tutorial/
datastructures.html\#list-comprehensions.
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écrit votre programme, testez-le en exécutant dans le terminal avec l’option
filtre. Vous pouvez afficher la trace en ajoutant l’option trace. Quelle devrait
être la réduction d’impôts ?

python3 exemple impots avec variables.py filtre
python3 exemple impots avec variables.py filtre trace

Exercice 3.2.4 L’unificateur

Nous allons maintenant construire un unificateur. C’est un outil analogue à
un filtre mais bien plus puissant. À la différence du filtre, qui compare deux
expressions dont l’une seulement peut comporter des variables, l’objectif d’un
unificateur est de comparer deux expressions pouvant toutes deux contenir des
variables. L’unificateur est donc une version généralisée du filtre. Il fournit
comme résultat les correspondances entre les deux propositions sous la forme
de substitutions variable-proposition (lorsqu’il en existe).

Pour mieux comprendre l’utilité de l’unificateur, voyons quelques exemples :

unifie (( 'Vincent', ' est un', 'doctorant'), ( 'Vincent', ' est un', 'doctorant'))
−> {}

unifie (( 'Vincent', ' est un', 'doctorant'), ( 'Michel', ' est un', 'doctorant'))
−> échec

unifie (( ' foo ' , '?x' , ( '?y' , 'bar' , 'Jean' )), ( ' foo ' , 'Jean', ( 'Marc', 'bar' , '?x' )))
−> {'?y': 'Marc', '?x' : 'Jean'}

unifie (( 'p' , '?x' , ( ' f ' , '?y' )), ( 'p' , ( ' f ' , 'a' ), '?x'))
−> {'?y': 'a' , '?x' : ( ' f ' , 'a')}`

Nous utiliserons des conventions analogues à celles que nous avons appli-
quées dans le cas du filtrage. Désormais cependant un environnement pourra
associer des propositions, pas nécessairement des valeurs, à des variables.
Le résultat final de l’unification contiendra plutôt des substitutions variable-
proposition sans variables, mais les étapes intermédiaires pourront aussi ren-
voyer des environnements qui associent des propositions contenant des variables
à d’autres variables.

La méthode Unificateur.substitue

La fonction substitue de la classe Unificateur doit permettre d’instancier
une proposition étant donné un ensemble de substitutions variable-proposition.
Exemples :

substitue(( '?x' , ' est un', 'doctorant') , {})
−> ('?x', ' est un', 'doctorant')

substitue(( 'p' , '?x') , {'?y' : ( 'g' , '?z' ), '?x' : ( ' f ' , '?y' ), '?z' : ( 'a')})
−> ('p', ( ' f ' , ( 'g' , ( 'a' ))))

substitue(( 'p' , '?x' ), {'?y' : ( 'g' , '?z' ), '?x' : ( ' f ' , '?y' ), '?z' : ( '?q')})
−> ('p', ( ' f ' , ( 'g' , ( '?q' ))))

Lorsque vous rédigerez le code de cette méthodes, rappelez-vous qu’une va-
riable doit parfois être remplacée par une définition de substitution qui contient
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elle-même des variables. Il faut donc veiller à aussi remplacer toutes les va-
riables qui figurent dans la proposition associée à une autre variable. Pensez à
implémenter une solution récursive.

La méthode Unificateur.unifie

Vous avez maintenant tout ce qu’il faut pour implémenter la fonction Unifi-

cateur.unifie. L’algorithme d’unification est très proche de l’algorithme de
filtrage :

Unifie(prop1, prop2)
1. IF prop1 ou prop2 est un atome THEN
2. si nécessaire , échanger prop1 et prop2 pour que prop1 soit un atome
3. IF prop1 et prop2 sont identiques THEN RETURN {}
4. ELSE IF prop1 est une variable THEN
5. IF prop1 apparâıt dans prop2 THEN RETURN échec
6. ELSE RETURN {prop1: prop2}
7. END IF
8. ELSE IF prop2 est une variable THEN RETURN {prop2: prop1}
9. ELSE RETURN échec
10. END IF
11. ELSE
12. F1 <− premier(prop1)
13. T1 <− reste(prop1)
14. F2 <− premier(prop2)
15. T2 <− reste(prop2)
16. Z1 <− Unifie(F1, F2)
17. IF Z1 == échec THEN RETURN échec END IF
18. G1 <− remplacer les variables de T1 selon les substitutions de Z1
19. G2 <− remplacer les variables de T2 selon les substitutions de Z1
20. Z2 <− Unifie(G1, G2)
21. IF Z2 == échec THEN RETURN échec END IF
22. RETURN {Z1 UNION Z2}
23. END IF
END Unifie

La vraie fonction d’interface : Unificateur.pattern_match

Comme dans le cas de la méthode filtre, unifie n’est pas très pratique pour un
programme hôte. Il faut donc aussi coder une fonction Unificateur.pattern_match

qui permette de prendre en compte un environnement de substitutions déjà
existantes. Cette fonction prendra en paramètres deux expressions pouvant
contenir des variables et un environnement à titre d’argument optionnel. Elle
doit retourner un nouvel environnement ou la constante Unificateur.echec, se-
lon que le pattern matching a réussi ou échoué. La méthode s’appuiera bien
évidemment sur unifie et substitue.

Voici une liste d’exemples qui prennent en compte des environnements pré-
existants :

pattern match(('foo' , '?x' , ( '?y' , 'bar' , 'Jean' )), ( ' foo ' , 'Jean', ( 'Marc',
'bar' , '?x' )), {'?y' : 'Marc'})
−> {'?y': 'Marc', '?x' : 'Jean'}

pattern match(('foo' , '?x' , ( '?y' , 'bar' , 'Paul' )), ( ' foo ' , 'Jean', ( 'Marc',
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'bar' , '?x' )), {})
−> échec

Pour coder cette méthode, il convient donc de s’assurer que l’environnement est
valide, puis de remplacer les variables des deux propositions par les définitions
de l’environnement, et enfin de procéder à l’unification.

Test du programme : Châınage avant avec unificateur

Essayez d’utiliser l’unificateur à la place du filtre, en lançant exemple_impots_

avec_variables.py avec l’option ‘unificateur’. Que constatez-vous et pourquoi ?

python3 exemple impots avec variables.py unificateur
python3 exemple impots avec variables.py unificateur trace

Est-il vraiment nécessaire d’utiliser un unificateur dans le châınage avant ?

Solutions à la page 343





Chapitre 4

Représentation structurée des

connaissances

Au-delà de la logique des prédicats, on peut imaginer une structuration des
connaissances qui permet de plus facilement gérer des bases de connaissances.
Des objets du monde comme chien, livre, personne, montagne ou couleur sont
des instances de concepts. Étant donné les objectifs fondamentaux de l’intel-
ligence artificielle, il va de soi que cette notion peut être représentée au sein
d’un programme. Savoir ce qui définit exactement un concept est une question
philosophique. Ce problème est d’ailleurs troublé par l’existence d’exceptions :
par exemple, un oiseau est en général capable de voler, mais cette propriété
ne s’applique pas aux autruches. Dans le cadre de l’intelligence artificielle, on
s’intéresse toujours à des applications spécifiques, ce qui permet une définition
pragmatique des concepts (qui ne satisfait évidemment pas nécessairement les
philosophes). En général, un concept est défini comme étant une combinaison
de propriétés de définition : les oiseaux ont des ailes, ils volent, ils chantent,
etc. Une combinaison de propriétés définit une classe d’individus et si l’on
ajoute davantage de propriétés de définition, il est aussi possible de définir des
sous-classes : la classe des oiseaux est ainsi une sous-classe des animaux qui se
distingue par des propriétés telles que peut-voler ou a-des-ailes.

Dans le cadre du calcul des prédicats, il n’existe qu’un seule type d’objets :
les entités. Comme la plupart des règles ne s’appliquent qu’à des concepts
particuliers, le champ d’une entité doit être restreint en précisant les propriétés
définissant le concept. C’est en fait un moyen extrêmement lourd de définir des
connaissances, principalement parce que qu’on ne tire pas parti des relations
existant entre concepts : une grande partie des propriétés d’une entité peuvent
être héritées des concepts englobant dont elle est l’instance. Des techniques
particulières de structuration de la connaissance, représentées par les réseaux
à héritage structuré, ont été développées en vue de profiter de la structuration
conceptuelle des classes.

Les entités qui se conforment à la définition d’une classe sont nommées ses
instances. Si dans une représentation des connaissances toutes les entités sont
structurées en classes, on peut alors les distinguer en représentant uniquement
les propriétés spécifiques les différenciant des autres membres de la même classe.
Par exemple, une instance du concept table peut désormais être identifiée
par un ensemble limité de propriétés : sa hauteur, sa taille, le matériau qui la
compose et sa position dans l’espace. Pour chaque concept, on peut ainsi définir
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Fig. 4.1 Structuration utilisant des réseaux à héritage et cadres. Les propriétés com-
munes sont représentées par le réseau, les instances distinguées par les cadres.

un ensemble de propriétés distinctives qui définissent une instance du concept.
C’est l’idée des cadres (frames) : pour chaque classe, on regroupe l’ensemble
des propriétés distinctives, appelées des slots, sous forme d’un cadre.

La structuration des connaissances qui résulte de l’utilisation parallèle de
réseaux à héritage et de cadres est décrite dans la figure 4.1. Elle permet de
définir les concepts avec un maximum d’économie. Cette structuration a no-
tamment inspiré la programmation orientée objet, pour laquelle la plupart des
langages intègrent une méthodologie analogue.

La notion des réseaux à héritage structurés peut être généralisée en per-
mettant non seulement des liens entre sous-classes, mais également d’autres
relations entre concepts. De tels types de réseaux sont connus sous le nom de
réseaux sémantiques.

4.1 Cadres

Un cadre est une structure de données qui regroupe un ensemble de propriétés
et correspond ainsi à un enregistrement, notion connue des langages de pro-
grammation classiques. Un cadre décrit un objet, qui peut être :

• une classe, dont les propriétés communes à toutes les instances sont re-
groupées dans le cadre ;

• une instance d’une classe, dont les propriétés qui la distinguent des autres
instances sont représentées par le cadre.

La figure 4.2 donne un exemple de cette notion pour la représentation d’un
étudiant.
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Frame : ETUDIANT

Slots :   NOM

             DATE DE NAISSANCE

             ANNEE

             SECTION

Fig. 4.2 Exemple d’un cadre. À chaque slot doit être attribuée une propriété, qui
peut être une référence à un autre cadre. Des valeurs par défaut peuvent remplir les
propriétés indéfinies.

jacques:
  personne: ....

rue-du-centre:
  rue:....

chambre-a-coucher-1:
   chambre: ....

Maison-Jacques:
  Maison:
    Rue:
    Proprietaire:
    Chambres:( .  .  ...)

Fig. 4.3 Les slots qui contiennent des pointeurs à d’autres cadres créent une struc-
ture de mémoire associative.

Si un cadre ressemble beaucoup à un enregistrement, il existe néanmoins
des différences importantes. Les propriétés que regroupe un cadre, appelées des
slots, peuvent en effet contenir des valeurs qui sont d’autres cadres, créant ainsi
une structure de mémoire associative. La figure 4.3 montre un exemple d’une
telle structure.

Cette structure associative permet de reproduire dans un programme la
nature associative de la mémoire humaine : le cadre qui représente la maison
de Jacques peut susciter les cadres qui représentent la personne ou des détails
de cette maison. Une telle structuration permet de simplifier considérablement
des bases de connaissances car les objets importants peuvent être rapidement
retrouvés par les liens associatifs.

La notion de cadre a été développée dans le contexte de systèmes de vision
artificielle afin de mieux permettre la reconnaissance d’objets. La reconnais-
sance proprement dite d’un objet se base alors sur la vérification des propriétés
de la classe à laquelle appartient le cadre. Une fois reconnue, l’information que le
système doit obtenir sur l’objet est définie par les slots du cadre correspondant.
Les cadres définissent alors quelle est l’information importante que le système
doit avoir concernant un objet, un problème qui est difficile à résoudre autre-
ment. Les cadres définissent un contexte de la structure de mémoire dont le
choix d’objets est limité : la tâche de reconnaissance est alors considérablement
simplifiée.
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4.2 Réseaux à héritage structurés

Pour de nombreux domaines, les relations de définition liant les éléments de la
représentation des connaissances sont en quantité non négligeable. L’exemple
le plus important est celui des classifications hiérarchiques : un moineau est
un type d’oiseau, un oiseau est un type d’animal, etc. Chaque membre d’une
certaine classe partage des propriétés avec les autres membres de cette classe :
par exemple, les oiseaux volent et les animaux ont besoin de nourriture. Au
lieu d’écrire des ensembles de règles exprimant cette connaissance, il est alors
préférable d’utiliser un mode structuré de représentation permettant une ex-
pression directe de ce type de connaissances. L’exemple de la figure 4.1 illustre
la notion de réseau à héritage structuré.

La plupart des représentations structurées de la connaissance utilisent la
notion de graphes ou réseaux sémantiques. L’idée sur laquelle se basent les ré-
seaux sémantiques puise ses sources de certaines théories psychologiques de la
mémoire humaine. Les nœuds correspondent aux concepts, et les arcs aux rela-
tions entre concepts. Un concept est une classe d’entités partageant certaines
propriétés, comme les animaux, les oiseaux ou les pingouins. Selon des théo-
ries psychologiques, la mémoire humaine s’articule et se structure autour de
concepts.

Un concept est défini par l’ensemble des prédicats définissant les propriétés
communes à toutes ses entités. Comme le montre la figure 4.1, des propriétés
sont attachées aux nœuds du réseau. Les concepts sont hiérarchisés afin d’ex-
primer l’héritage des propriétés. Le réseau de la figure 4.1 donne un exemple de
telles hiérarchies. Les concepts sont par ailleurs liés à des sous-concepts via des
liens EST-UN, et c’est grâce à ces liens qu’ils héritent des propriétés englobantes.
Les réseaux sémantiques qui ne contiennent que des liens EST-UN sont désignés
sous le nom de réseau à héritage structuré et sont de loin les plus fréquemment
utilisés.

Dans les classifications hiérarchiques réelles, il existe de nombreuses excep-
tions aux propriétés générales. Ces exceptions nécessitent un mécanisme par-
ticulier afin de construire efficacement les hiérarchies : il s’agit de considérer
que les propriétés définies sur les niveaux les plus bas ont la précédence sur
celles spécifiées sur les niveaux les plus hauts. Par exemple, la propriété d’être
située en centre ville, généralement propre à la classe des bureaux, ne s’étend
pas à l’Ecole polytechnique fédérale de Lausanne (EPFL) qui fait pourtant
bien partie de cette classe. Ceci s’exprime dans le réseau de la figure 4.1 par
l’adjonction au nœud représentant l’EPFL d’une propriété explicite spécifiant
qu’elle se situe en banlieue.

Une autre complication est donnée par le fait que de nombreux concepts
partagent des liens d’héritage avec plusieurs classes. Par exemple, un hôtel
partage à la fois des caractéristiques d’un bâtiment résidentiel – il est occupé
la nuit – et des caractéristiques d’un bâtiment commercial : il est normalement
situé en centre ville. Une telle situation exige l’utilisation de l’héritage multiple
de plusieurs classes.
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Les règles d’héritage qui tiennent compte des exceptions et de l’héritage
multiple sont les suivantes :

• Les propriétés d’une instance x de la classe C sont données par l’union des
propriétés du cadre et les propriétés de la classe C.

• Les propriétés d’une classe C sont données par les propriétés de C et de
toutes les classes avec lesquelles C partage un lien EST-UN. Des conflits
entre propriétés sont résolus suivant les règles de précédence suivantes :

– les propriétés de C ont la précédence sur toutes les super-classes ;

– entre les super-classes de la classe C, la précédence est fixée par une
liste.

Les réseaux à héritage font partie intégrante de la plupart des outils de sys-
tèmes experts actuels. Ils sont particulièrement utiles pour exprimer, de manière
compacte, les connaissances de définition liées aux concepts d’un domaine. La
notion d’héritage hiérarchique a également été adoptée dans de nombreux lan-
gages de programmation orientée-objets, dans le but de structurer les classes
d’objets.

4.3 Logiques descriptives

Les logiques descriptives (description logics) sont une formalisation des cadres
et de leurs relations d’héritage. Elles permettent en particulier de faire des
inférences sur les propriétés de concepts et les relations entre classes.

Dans une logique descriptive, les cadres sont représentés par des concepts,
généralement décrits par des lettres majuscules comme C ou D. Les propriétés
(slots) sont décrites par des relations. Pour une relation R, la notation C.R
donne les concepts D tels que R(C,D). On s’intéresse ensuite à l’héritage, qui
est une relation de sous-ensemble : C hérite les propriétés de D si les instances
de C sont un sous-ensemble des instances de D et on écrit : C v D. Finalement,
on peut construire la conjonction de concepts C et D par l’intersection des
instances (C uD) et la disjonction par l’union (C tD).

Par rapport aux réseaux d’héritage, les logiques descriptives ajoutent no-
tamment des possibilités de quantification et de restrictions sur les valeurs. On
décrit par ∀R.C les concepts dont toutes les instances qui sont en relation R
sont des instances de C :

∀R.C = x|∀y : R(x, y)⇒ C(y)

De manière analogue, on écrit ∃R.C pour celles pour lesquelles il existe une
instance de C en relation R :

∃R.C = x|∃y : R(x, y) ∧ C(y)

Parmi les restrictions, notons des restrictions de nombre ; par exemple (≤ nR)
donne toutes les instances qui sont en relation R avec au plus n autres instances.
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Considérons comme exemples les expressions suivantes :

1) père v personne u ∃enfant
le concept père est un sous-ensemble des personnes qui ont des enfants.

2) père = personne u masculin u ∃enfant
le concept père est défini comme une personne masculine qui a des enfants.

3) ∀ enfant.masculin
toutes les instances dont tous les enfants sont masculins.

4) ∃ enfant.masculin t ∃ enfant.feminin
toutes les instances qui ont un fils ou une fille.

5) ∃ enfant (sans qualification)
toutes les instances qui ont un enfant.

L’importance des logiques descriptives se retrouve dans le fait qu’elles ad-
mettent des procédures de raisonnement spécialisées et efficaces. Le raisonne-
ment peut avoir différents buts :

• Satisfiabilité de concepts : Σ 6|= C ≡ ⊥
Est-ce que C est compatible avec la base de connaissances ?

• Subsumption : Σ |= C v D ?
Est-ce que C est une sous-classe de D ?
Une telle inférence est utile pour la classification de concepts : trouver les
concepts D tel que C v D. Elle a par exemple les applications suivantes :

– intégrer un concept dans une base de connaissances ;

– lier une requête à une classification d’informations ;

– traduire des informations entre différentes représentations.

• Consistance : Σ 6|= ⊥
Elle est utile pour vérifier la cohérence : est-ce qu’une base de connais-
sances est contradictoire ?

• Vérification d’instances : Σ |= C(a)
Est-ce que a est une instance de C ? Cette inférence est utile pour retrouver
les propriétés d’une instance. Les applications sont par exemple de trouver
les propriétés d’un objet (base de données) ou de filtrer les objets pour
trouver ceux qui répondent à certains critères.

Il existe d’ailleurs les réductions suivantes :

• Subsumption ⇒ Satisfiabilité :
Σ |= C v D ssi Σ |= (C u ¬D) ≡ ⊥

• Vérification d’instances ⇒ Consistance :
Σ |= C(a) ssi Σ ∪ {¬C(a)} |= ⊥

La figure 4.4 montre les constructeurs admis par une logique descriptive
simple, la logique FL−. Considérons donc, à titre d’exemple, l’algorithme de
subsumption (C v D ?) pour la logique FL−. Supposons d’abord que la T-Box
(voir ci-après) est vide, c’est-à-dire qu’il n’y a pas d’autres connaissances sur
les classes que celles des expressions mêmes. L’inférence progresse alors en deux
pas :
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1) Transformation en forme canonique :

• A u (B u C)⇒ A uB u C
• ∀R.C u ∀R.D ⇒ ∀R.(C uD)

⇒ C = C1 u C2 u C3... u Cm
⇒ D = D1 uD2 uD3... uDn

2) Vérification de chaque facteur Di :

• si Di est un atome, ou de la forme ∃P , alors il doit y avoir un Cj = Di,

• si Di a la forme ∀P.D′, alors il doit y avoir un Cj = ∀P.C ′ tel que
C ′ v D′.

La complexité est quadratique dans la taille des descriptions : O(|C|× |D|).

Nom Syntaxe Exemple
Conjonction A uB personne u jeune

Quantification Universelle ∀R.C ∀ enfant.mâle
Quantification Existentielle ∃R.> ∃ enfant

Fig. 4.4 Les constructeurs admis par la logique descriptive FL−.

Considérons un exemple d’une inférence en FL− : prouver que la classe C
de toutes les personnes qui ont un garçon mineur est une sous-classe de la classe
D des personnes qui ont un enfant mineur. Il s’agit donc d’une subsumption
C v D :

C = personne u ∃ enfant u
∀ enfant.mineur u ∀ enfant.masculin
⇒ C ′ = personne u ∃ enfant u
∀ enfant.(mineur u masculin)

D = D′ = personne u ∃ enfant u
∀ enfant.mineur

et la subsumption est donc vérifiée.

La puissance des logiques descriptives est l’utilisation de bases de connais-
sances, notamment des définitions de concepts. On distingue deux bases de
connaissances :

• La T-box, qui contient les connaissances terminologiques concernant les
classes et qui fait l’objet de mécanismes d’inférence spécifiques.

• La A-Box, qui contient des assertions quelconques concernant les instances
et fait l’objet d’un raisonnement logique classique. Elle correspond à la
base de connaissances classique.

On distingue plusieurs types de T-box :

• primitive : admet des spécifications de concepts :
A v C, A = nom, C = expression
Exemple :
professeur v personne u ∃ enseigne



74 Systèmes à base de connaissances

• simple : admet en plus des définitions de concepts :
A = C

Exemple :
parent = personne u ∃ enfant

• libre : admet en plus des relations entre concepts :
C v D, C = D

Exemple :
personne u jeune v étudiant t écolier

Nous allons nous limiter à des T-boxes simples et acycliques. Pour des
T-boxes libres, le test de subsumption est très complexe (EXPTIME) ; elles sont
donc peu étudiées. Pour les T-boxes cycliques, la subsumption est PSPACE-
complete ; en plus, il y a peu de raison d’avoir des définitions cycliques dans la
pratique.

Sous l’hypothèse d’une T-box simple et acyclique, on peut réduire le test de
subsumption à un test entre concepts en appliquant itérativement les règles de
transformation :

• T (C uD)→ T (C) u T (D)

• T (∀R.C)→ ∀R.T (C)

• T (∃R)→ ∃R
• T (A)→ définition de A

S’il y a plusieurs spécifications de concepts, il peut y avoir plusieurs résultats
de réécriture, et il faut considérer leur union dans l’algorithme de subsumption.
Cela fait que la réécriture peut engendrer une explosion combinatoire, selon la
terminologie.

Comme exemple, considérons la T-Box :

Σ = { femme = personne u feminin
ecolier v personne u mineur
ecolier v personne u curieux}}

On peut alors prouver la subsumption C v D entre :

C = femme u ∃ enfant u
∀ enfant.écolier u ∀ enfant.masculin

et

D = personne u ∃ enfant u
∀ enfant.mineur

en tenant compte de la T-box Σ par les inférences suivantes :

C = femme u ∃ enfant u
∀ enfant.écolier u ∀ enfant.masculin
⇒ C ′ = personne u féminin u ∃ enfant u
∀ enfant.(personne u mineur u masculin)
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⇒ C ′′ = personne u féminin u ∃ enfant u
∀ enfant.(personne u curieux u masculin)

D = D′ = personne u ∃ enfant u
∀ enfant.mineur

Subsumption C ′ v D !

La réécriture des concepts suivant les définitions de la T-box peut produire
une explosion combinatoire surtout dans le cas où les définitions contiennent
des quantifications, par exemple :

pauvre = ∀compte.vide

Dans ce cas, il faut créer une version pour toutes les substitutions des quan-
tificateurs possibles, par exemple pour chaque compte. Quand il y a plusieurs
quantificateurs, il faut générer toutes les combinaisons, conduisant ainsi à une
explosion exponentielle.

La logique FL− n’est pas très puissante. Il existe d’autres logiques des-
criptives qui sont plus expressives. La figure 4.5 montre la logique AL, et la
figure 4.6 montre la complexité du raisonnement (subsumption) pour différentes
extensions.

Une autre classe très expressive de logiques descriptives est donnée par les
logiques SHIQ et SHIN . La figure 4.7 montre les expressions qui sont pos-
sibles dans ces logiques. Ces logiques sont surtout importantes car elles sont

Nom Syntaxe Exemple
Conjonction A uB personne u jeune

Quantification Universelle ∀R.C ∀ enfant.mâle
Quantification Existentielle ∃R.> ∃ enfant

Tautologie >
Contradiction ⊥

Négation d’atomes ¬A ¬ personne

Fig. 4.5 Opérateurs et exemples d’expressions de la logique AL.

Expressivité |= C v D |= C(a)
C uD
∀R.C
∃R

FL− P P

¬A AL P P
∃R.C ALE NP PSPACE
¬C ALC PSPACE
{a1, ...} ALCO PSPACE

SHIQ EXPTIME

Fig. 4.6 Complexité de l’opération de subsumption pour différents degrés d’expres-
sivité.
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Nom Syntaxe Exemple
Conjonction A uB personne u jeune

Disjonction A tB vieux t jeune

Négation ¬C ¬ (personne u jeune) S
Q.U. ∀R.C ∀ enfant.mâle
Q.E. ∃R.C ∃ enfant.mâle

Rôle transitif R.R soeur.enfant

Rôles hiérarchiques R v S mère v parent H
Inversion de rôles R− enfant ⇔ parent I

Restriction de nombre ≥ nR ≥ 2 enfant N
Restriction qualifiée ≥ nR.C ≥ 2 enfant.mâle Q

Fig. 4.7 Expressivités des logiques SHIQ et SHIN .

la base du langage OWL (ontology web language) de formalisation de connais-
sances, standardisé par le consortium du World Wide Web (W3C). Ce langage
est destiné à la formalisation d’ontologies, des bases de connaissances taxono-
miques utilisées pour la classification d’information sur le Web. Une ontologie
permet par exemple d’automatiser l’intégration de l’information provenant de
différents sites web et de construire des moteurs de recherche plus puissants et
permettant par exemple l’utilisation de synonymes.

Par exemple, en utilisant une ontologie qui précise que pomme v fruit,
un site qui offre des pommes peut être trouvé comme résultat d’une requête
qui cherche des fruits. En plus, l’inférence peut être faite au niveau de la
requête même au lieu de chaque instance, ce qui la rend efficace. Une ontologie
permettrait également d’exprimer des équivalences entre différentes langues
ainsi qu’entre différentes classifications.

À part leur utilisation dans le web, les logiques descriptives ont trouvé de
nombreuses autres applications dans la formalisation et la fédération de bases
de données, des outils de configuration, et d’autres outils d’aide à la décision.
Citons par exemple LOOM, outil du ISI (University of Southern California), in-
complet, existe depuis 1987 et disponible sous :
http://www.isi.edu/isd/LOOM/LOOM-HOME.html

Littérature

Le concept des frames et de la représentation structurée des connaissances a
été introduite par Marvin Minsky dans [10]. John Sowa a été l’un des moteurs
du développement dans ce domaine [11]. La collection [12] donne un aperçu des
recherches sur les réseaux sémantiques. Le domaine des logiques de descriptions,
bien que très vaste, est bien résumé dans [13]. Le World Wide Web Consortium
publie des standards pour la représentation des connaissances ontologiques, en
particulier le langage OWL [14].
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Outils - domaine public

De nombreuses outils pour les langages du world wide web ont été développés
par des universités, comme par exemple :

KAON2, pour OWL, de l’Université de Karlsruhe, distribué sous :

http://kaon2.semanticweb.org/

FaCT++, pour OWL, de l’Université de Manchester, distribué sous :

http://owl.man.ac.uk/factplusplus/

La page

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/

donne une liste d’outils disponibles pour les logiques descriptives.

4.4 Exercices

Nous souhaitons mettre à disposition des contribuables un système informa-
tique qui leur permette de connâıtre les déductions auxquelles ils ont droit
dans leur déclaration d’impôts. Le code d’imposition fixe les déductions par
classes de contribuables.

Exercice 4.1 Modélisation

Il existe des personnes et des contribuables. Parmi les contribuables, il y a des
salariés et des indépendants. Chaque contribuable déclare :

• ses enfants (des personnes)

• l’âge de chaque enfant (<12,12−18)

• son revenu (faible, moyen, élevé)

• son loyer (faible, moyen, élevé)

• son trajet au travail (faible, moyen, élevé)

Modélisez le problème par des concepts et relations en logique descriptive.
Quels sont les concepts et quelles sont les relations ?

Solution à la page 349

Exercice 4.2 Déductions

On admet les déductions suivantes :

1) enfants : lorsque le contribuable a au moins un enfant ;

2) loyer : lorsque le contribuable a un loyer élevé et un revenu faible ;

3) trajet : lorsque le contribuable est un salarié qui a un trajet élevé ;

4) pension : lorsque le contribuable est un indépendant, ou salarié à revenu
élevé.
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Formalisez les classes qui ont droit aux déductions comme expressions en
logique descriptive.

Solution à la page 349

Exercice 4.3 Raisonnement(1)

Calculez les déductions de Charles étant donné :

salarié(Charles)

enfant(Charles,Jacques)

trajet(Charles,élevé)

loyer(Charles,élevé)

revenu(Charles,faible)

Solution à la page 349

Exercice 4.4 Raisonnement(2)

Le gouvernement veut changer la loi en adaptant les déductions pour loyer de
façon à ce qu’elles s’appliquent à quelqu’un qui a un loyer élevé et qui a :

• version a) au moins un enfant âgé entre 12-18 ans, ou

• version b) au moins deux enfants.

Pour les deux versions, caractérisez les groupes de personnes qui perdent le
droit à la déduction et ceux qui gagnent le droit à la déduction. Quelle puissance
de la logique faut-il pour exprimer ces classes ?

Solution à la page 350



Chapitre 5

Raisonnement basé sur des règles

et systèmes experts

Parmi toutes les méthodes de résolution de problèmes, la préférence doit sans
doute aller à celles se rapprochant le plus du raisonnement humain. Cela se
justifie à plus d’un titre : d’abord un tel type de procédé facilite l’interaction
entre utilisateur et programme, puisque l’utilisateur comprend ce que fait le
programme. Un second point, non négligeable, est lié au fait qu’il est souvent
important de savoir pourquoi un résultat a pu être obtenu. Par une explication,
on se réfère à la manière par laquelle un problème a pu être résolu. Elle n’est par
conséquent compréhensible que si elle se conforme au raisonnement humain.
La dernière raison (et peut-être la plus importante) est liée à des questions
d’efficacité : grâce à leurs expériences, les humains ont développé des stratégies
de résolution remarquablement efficaces. Il est intéressant de s’inspirer de ces
stratégies pour obtenir des algorithmes performants.

5.1 Systèmes experts

Inspirés par le succès de systèmes d’inférence à base de règles tel que le General
Problem Solver (GPS) [15], les chercheurs ont tenté de modéliser le raisonne-
ment humain dans des problèmes d’intérêt pratique. GPS a introduit le principe
de l’analyse moyens-buts, où le raisonnement est motivé par un but à atteindre
au lieu d’enchâıner aveuglement des inférences. Ce principe a été repris sous
la forme de déduction en châınage arrière, qui a permis des systèmes très ef-
ficaces. Le châınage arrière peut ainsi être vu comme une stratégie d’inférence
qui est très proche du raisonnement humain.

L’un des premiers programmes s’inspirant d’une telle démarche fut den-
dral, un système analysant automatiquement des données sur la spectrosco-
pie de masse. L’analyse de spectroscopies de masse est habituellement effectuée
par des experts ayant une solide expérience en la matière. dendral a modé-
lisé le raisonnement des experts en utilisant un formalisme basé sur des règles,
similaire à celui utilisé par GPS. C’est ainsi que fut créé le premier système
expert (même si l’appellation n’existait pas encore à l’époque) de compétence
comparable à celle des humains.

Les premières recherches sur les systèmes experts ont révélé que la modéli-
sation du raisonnement d’un expert pouvait être d’une surprenante simplicité.
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En général, quelques centaines de règles suffisent à reproduire la résolution de
problèmes par des experts ! Cela a conduit aux nombreux succès de l’IA dans
les années 1970 et au début des années 1980. Les systèmes experts sont jusqu’à
ce jour utilisés en industrie. De plus, la technologie des systèmes experts a dé-
montré clairement que c’est la connaissance et non pas les algorithmes qui est
garante du comportement intelligent d’un programme.

Les systèmes experts sont généralement utilisés comme outils de résolution
dans les applications où la conclusion est unique et bien définie, comme le
diagnostic ou encore l’interprétation de données. Des exemples bien connus de
systèmes experts aux résultats concluants, sont donnés ci-dessous :

• dendral, le premier système expert, utilisé pour l’interprétation de spec-
troscopies de masse.

• mycin, pour diagnostiquer des infections et recommander des antibio-
tiques, est le système expert le mieux documenté dans la littérature.

• prospector, utilisé pour l’interprétation de données géologiques en vue
de détecter des gisements miniers.

• xcon, un des plus grands systèmes experts (plus de 10 000 règles), utilisé
en son temps pour configurer des systèmes d’ordinateurs vax.

5.1.1 Inférence à châınage arrière

La procédure d’inférence à châınage arrière commence par le but et consiste
à appliquer toutes les règles possibles dans un sens “arrière” pour le réduire à
des environnements consistant en sous-buts. Par sa construction, chaque envi-
ronnement permet alors l’inférence du but donné. Par application itérative du
processus, chaque sous-but sera à nouveau réduit, ce qui conduit à un châınage
arrière des règles. Le processus s’arrête lorsqu’aucune règle n’est applicable à
l’ensemble des sous-buts, ou quand un environnement de sous-buts est entière-
ment satisfait par la base de données. Par exemple, la procédure de châınage
arrière résoudrait le problème exemple du paragraphe 3.5.4 de la manière sui-
vante.

Le premier pas consiste à réduire successivement les buts à des environne-
ments de sous-buts :

R2, But→{ SB1 = père( ?y,François),
SB2 = frère( ?y, ?x) }

R1, SB1→{ SB2 = frère( ?y, ?x),
SB3 = frère( ?w, François),
SB4 = père( ?y, ?w) }

Ensuite, comme les sous-buts de ce dernier environnement peuvent tous
être satisfaits par la base de données, on les remplace par les substitutions de
variables qu’ils impliquent :

SB2→ E1 : { ?y=Charles, ?x=Francois } ,
E2 : { ?y=Jacques, ?x=Pierre }

SB3 → { ?w=Charles }

SB4 → { ?y=Jacques, ?w=Charles }
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Par combinaison des substitutions possibles, on obtient deux environne-
ments qui permettent la déduction de la solution voulue :

E1 : { ( ?y=Charles, ?x=Francois) ∧ ( ?w=Charles) ∧
( ?y=Jacques, ?w=Charles) }

E2 : { ( ?y=Jacques, ?x=Pierre) ∧ ( ?w=Charles) ∧
( ?y=Jacques, ?w=Charles) }

Cependant, le premier de ces deux environnements est contradictoire, et
par conséquent ne peut pas servir comme solution. La procédure rend donc le
résultat ?x=Pierre.

Les structures de données utilisées par une procédure de châınage arrière
sont essentiellement les mêmes que celles utilisées pour le châınage avant. Ce-
pendant, le flux d’informations, décrit par la figure 5.1, est différent.

Base de

règles

(R)

Base de

données

(F)

Paires but/règle

ou but/proposition

Pattern match /

uni"cation

Substitutions

des variables

Instantiation d’un

nouvel environnement

File d’attente
Environnement

courant

Buts initiaux

(B)

R
é

su
lt

a
ts

But courant

Solution? Sélection

Fig. 5.1 Flux des informations entre composants d’un moteur d’inférence à châınage
arrière.

En fait, un algorithme de châınage arrière est beaucoup plus compliqué à
implémenter de manière efficace, car il faut tenir compte des liens entre sous-
buts et environnements pour empêcher une duplication du travail :

• Si on traite chaque sous-but de façon isolée, on risque d’en résoudre plus
que nécessaire : il faut uniquement satisfaire un des environnements géné-
rés.

• Si on traite chaque environnement de façon isolée, on répète le même
travail pour chaque sous-but qui apparâıt dans plus d’un environnement.

La figure 5.2 décrit une version simplifiée de l’algorithme d’inférence. Elle
parcourt tous les environnements courants et vérifie d’abord si l’environnement
ne contient que des substitutions de variables, c’est-à-dire si la procédure peut
être arrêtée. Sinon, elle parcourt tous les buts de l’environnement pour soit les
unifier avec une proposition de la base de données, soit les réduire encore à
d’autres sous-buts. Notons que la procédure est simplifiée, car elle ne tient pas
compte d’occurrences multiples d’un même sous-but : le travail est alors répété.
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1: Fonction Châınage-Arrière (R,F,B)

2: envs ← { buts-initiaux } = B

3: repeat

4: e ← premier(envs), envs ← reste(envs)

5: if tous les buts de e sont résolus then

6: return instancier(buts(e),unificateurs(e))

7: for tout but b ∈ e do

8: for toute proposition p de la base de données F do

9: if U ← UNIFIER(p,b) 6= ECHEC then

10: ajouter (e \ b) ∪ U à la file envs

11: for toute règle r de la base de règles R do

12: if U ← UNIFIER(droit(r),b) 6= ECHEC then

13: ajouter (e \ b) ∪ instancier(gauche(r),U) à la file envs

14: until envs = vide

Fig. 5.2 Algorithme pour un moteur d’inférence en châınage arrière.

5.1.2 Critères de choix

Le choix entre le châınage avant et arrière peut être fait sur la base du type de
règles :

• le-plus-cher( ?x) ⇒ plus-cher( ?x, ?y) :
utilisation en châınage arrière uniquement, car le châınage avant exige
l’unification avec un nombre infini d’individus.

• père( ?x, ?y) ⇒ masculin( ?x) :
analogue, mais doit être utilisée en châınage avant.

En général, le châınage arrière est plus efficace pour des problèmes bien
ciblés tels que le planification ou le diagnostic. Par contre, le châınage avant
est plus adapté aux problèmes d’interprétation des données et est d’ailleurs
beaucoup plus simple à implémenter.

Notons qu’il est envisageable de combiner les deux stratégies en déclarant
certaines règles comme étant du type avant et d’autres du type arrière. Les
règles de châınage avant pourront alors être appliquées chaque fois qu’un but a
été résolu par châınage arrière. Les résultats du châınage avant seront déposés
dans la base de données et pourront servir à une vérification plus rapide des
sous-buts par châınage arrière.

Lorsque plusieurs règles concourent au même but, chaque alternative doit
être explorée séparément. Ceci aboutit à une recherche des ensembles de sous-
buts qu’il est possible d’obtenir par application des différentes règles. Cette
recherche peut s’effectuer au moyen d’algorithmes de recherche que nous verrons
plus tard dans ce livre. Dans certains systèmes experts, des méta-règles sont
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employées pour guider la recherche vers les règles à privilégier. Par exemple,
une méta-règle de mycin pourrait suggérer :

Si le but est de ....., essayer les règles 15, 27, 45

... ne pas essayer les règles 7, 98, 162

En plus de sa fonction principale qui consiste à trouver des solutions, un
système expert peut être doté des trois fonctionnalités suivantes :

• il peut poser des questions à l’utilisateur lorsque les informations dispo-
nibles sont insuffisantes pour résoudre le problème,

• il peut fournir des explications sur les raisons permettant d’aboutir à une
conclusion,

• il est souvent doté de mécanismes lui permettant de traiter de l’informa-
tion incertaine.

Ces fonctionnalités supplémentaires se justifient pour un type d’utilisation
du système visant à en faire une aide à la décision plutôt qu’un résolveur de
problèmes indépendant.

5.1.3 Formulation de questions

De nombreuses tâches résolues par les systèmes experts s’apparentent au diag-
nostic ou à l’interprétation de données. Dans de telles applications, il arrive
souvent que l’information ne puisse être obtenue que par des mesures coû-
teuses. Aussi, par souci d’économie, un système expert ne devrait nécessiter de
telles informations que lorsqu’elles sont indispensables au traitement. Cela peut
être réalisé en dotant le système de mécanismes lui permettant de demander
explicitement un complément d’informations lorsque le besoin s’en fait sentir.

À titre d’exemple, considérons mycin, le système diagnostiquant les infec-
tions bactériennes. La session de diagnostic démarre au moyen de plusieurs
informations initiales concernant le patient : son nom, son âge, son poids et les
symptômes visibles. Sur la base de ces informations initiales, mycin élabore
des hypothèses quant aux infections possibles et propose des tests addition-
nels pour confirmer ou infirmer ces hypothèses. Ces tests additionnels peuvent
être extrêmement coûteux et mycin dispose d’heuristiques lui permettant de
privilégier ceux qui sont les plus économiques ou encore de grouper les tests
pouvant s’exécuter ensemble. Notons au passage que cela reflète exactement le
comportement d’un praticien.

En pratique, il n’est généralement pas très aisé d’obtenir une grande quantité
d’informations en se basant exclusivement sur les questions posées à l’utilisa-
teur : le système question-réponse est en effet un moyen de communication très
inefficace. Une meilleure solution consiste bien sûr à donner au départ toutes les
informations nécessaires à la résolution du problème par le biais d’une interface
graphique.

5.1.4 Explication du raisonnement

Les systèmes experts sont souvent utilisés comme moyen d’aide dans les cas où
les décisions à prendre peuvent avoir des conséquences très importantes. Dans
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mycin par exemple, on pourrait envisager qu’un diagnostic erroné engendre des
répercussions catastrophiques sur un patient. Il n’est pas d’usage de faire une
confiance aveugle aux recommandations données par un ordinateur dans des cas
aux implications si graves. Il est important qu’un système expert puisse justifier
ses conclusions en faisant explicitement état des raisons qui lui ont permis d’y
aboutir. Cela fournit à l’utilisateur un moyen de valider les recommandations
de l’ordinateur avant de les appliquer.

Dans les systèmes basés sur des règles, chaque conclusion se base sur l’appli-
cation d’une châıne de règles à l’information initialement fournie par l’usager.
Cette châıne de règles, exprimées en langage naturel, est utilisée comme ex-
plication des résultats obtenus. Dans la plupart des cas, elles sont données à
l’utilisateur sous la forme d’un dialogue dans lequel les résultats intermédiaires
sont expliqués les uns après les autres. Les dialogues de la figure 5.3 ainsi que
ceux de la figure 5.4 illustrent les différents types d’explications fournies par le
système mycin.

En plus des explications relatives au résultat final, il est parfois intéressant
de connâıtre les raisons pour lesquelles le système pose certaines questions à

Question WHY

(question typique posée par MYCIN)

* WHY      (Requête de lʼutilisateur pour déterminer ce qui a motivé la question)

(Mycin reformule la question en langue naturelle)

[1.0] This will help to determine whether there is a significant disease associated

 

  

 with the occurence of the organism.
    
      It has already been established that

   

1.3] the number of cultures which were positive for
ORGANISM-1 is greater than 2

Then 
    there is a suggestive evidence (.5) that there is a significant disease associated with
    this occurence of the e-coli (ORGANISM-1)
    [RULE 049]

 

In this series, how many of the cultures for the e-coli (ORGANISM-1)?

[i.e. Why is it important to determine the number of culture which were
positive for the organism?]

[2.0] This will help to determine a diagnosis for which the infection should be treated
.........

    [1.1] the culture was taken from a sterile source
    [1.2] the number of cultures in the series is greater than 2

Therefore, if
    [

[ie Why is it important to determine if there is a significant disease associated with the
occurence of the organism]

** WHY      

          (Répétition de la question WHY pour tester le bien-fondé
           des explications fournies)

Fig. 5.3 Explications données par mycin à la suite d’une requête WHY.
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Question  HOW

** HOW[1.1]   lʼinformation [1.1] donnée
pour la question WHY (voir figure sur la question WHY))

[ie How was it determined that the culture was taken from a sterile source?]

(Mycin reformule la question en langue naturelle)

 

[3.1] RULE 001 was used to conclude that there is a suggestive evidence (.7) that
 the culture was taken from a sterile source                            

** HOW[3.1]       

[ie How was RULE001 used]
It has already been established that

[4.1] the site of the culture is one of: those sites from which the sterility of the
cultures depend upon the method of collection

methods of collection associated with the site of the culture,

Therefore

 
    

[RULE022]

 there is strongly suggestive evidence (.8) that the culture was taken
 from a sterile source  

[4.3] it is not known whether the cade was taken in collecting the culture

[4.2] the method of collection of the culture is one of: the recognized

    (Requête de lʼutilisateur se rapportant à

  (Autre requête de lʼutilisateur)

Fig. 5.4 Explications données par mycin à la suite d’une requête HOW.

l’usager. Un mécanisme similaire à celui précédemment vu permet de fournir
ce genre d’explications car chaque question est engendrée par une règle que
le système aimerait appliquer. Dans un système de diagnostic comme mycin,
ces règles correspondent aux hypothèses de diagnostic que le système essaie de
vérifier. Elles donnent par conséquent une bonne explication des raisons pour
lesquelles un test donné est nécessaire.

5.2 Problèmes spécifiques liés à l’inférence

5.2.1 La négation

Dans la pratique, il peut aussi arriver qu’une conclusion soit conditionnée par
le fait qu’une proposition soit fausse. Par exemple, on pourrait imaginer une
règle :

petite-quantité ∧ ¬ frontalier ⇒ hors-taxe
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Cette règle n’est pas une clause de Horn, car son équivalent logique contient
plus d’une proposition positive :

¬ petite-quantité ∨ frontalier ∨ hors-taxe

On pourrait corriger ce problème en introduisant une proposition non-

frontalier qui serait vraie exactement dans les cas où frontalier est fausse.
Cependant, si aucune règle ne permet l’assertion explicite de ¬ frontalier ou
non-frontalier, comment pourra-t-on satisfaire cette condition ? Du point
de vue de la logique, cela ne pourrait jamais arriver, car aucune inférence ne
permet de conclure la condition.

Cependant, dans la pratique, on voudrait probablement quand même dé-
clencher la règle si on n’arrive pas à prouver l’inverse. Ceci s’appelle le principe
de Negation as failure :

Si le moteur d’inférence n’arrive pas à prouver p, alors il faut sup-
poser que ¬p est vrai.

Cette règle semble correcte sous l’hypothèse d’une procédure d’inférence
complète qui garantit que le moteur d’inférence permettra de prouver p.

Cependant, ce raisonnement pose un deuxième problème : on n’a pas un
moyen de savoir quand il ne faut plus s’attendre à une preuve d’une hypothèse
p. On pourrait penser qu’on doive attendre que la procédure ne trouve plus
aucune inférence. Mais que fera-t-on si :

¬ p ⇒ q

¬ q ⇒ p

Si on déclenche d’abord la première règle, la deuxième ne sera jamais dé-
clenchée ; on aura donc ¬ p et q. Si par contre, on commence par la deuxième,
on finira avec p et ¬ q, l’inverse du premier cas ! Ce problème est en fait plus
profond et est lié au fait que la négation introduit un caractère non monotone
qui n’était pas prévu dans la logique classique : une proposition qui était vraie
peut devenir fausse par la suite.

5.2.2 Inférences non monotones

L’application des règles d’inférence fait que l’ensemble des propositions consi-
dérées vraies est toujours en croissance monotone. On parle alors de logique
monotone. Or, il est connu que le raisonnement humain est souvent non mo-
notone : des inférences sont souvent révisées au moment où de nouvelles in-
formations deviennent disponibles. Par exemple, étant donné que Tweety est
un oiseau, la conclusion vole(Tweety) semble justifiée. Mais au moment où on
découvre que Tweety est en fait une autruche, l’inférence doit être révisée. En
fait, le problème est que la règle :

oiseau⇒ vole

n’est pas correcte et devrait être remplacée par la règle :

oiseau ∧ ¬autruche ∧ ¬ailes− coupées ∧ ¬...⇒ vole
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Mais de telles règles ne peuvent être appliquées que si un grand nombre
de faits sont connus. Elles sont donc peu utiles dans un système pratique ! Une
formulation utile est celle de la logique des défauts, où des règles peuvent inclure
des conditions négatives :

oiseau ∧ ¬anormal⇒ vole

et où l’inférence sera faite même en absence de la connaissance explicite des
conditions négatives. Si par la suite on découvre qu’une telle condition n’est
effectivement pas satisfaite, le système d’inférence doit retirer la conclusion et
toutes ses conséquences pour que la validité du raisonnement soit maintenue.

On ne peut cependant pas se contenter de retirer simplement une assertion
qui s’est avérée invalide. En effet, cette dernière constitue peut-être la base
d’une châıne complète de déductions ultérieures qui deviennent, de ce fait, elles
aussi invalides. Lorsqu’on découvre qu’en réalité l’oiseau ne vole pas, une asser-
tion affirmant qu’il peut construire son nid sur un toit devient discutable. Le
processus de rétraction doit par conséquent pouvoir remonter toute la châıne
d’inférences établies à partir d’un certain fait. L’automatisation de ce traite-
ment fait l’objet de ce qu’il est convenu d’appeler des systèmes de maintenance
de la cohérence (RMS : Reason Maintenance Systems).

Dans le cas de déductions logiques classiques, le nombre de faits déduits
crôıt toujours de manière monotone. On parle alors d’inférence monotone. Par
opposition, les moteurs d’inférence permettant la rétraction de faits sont dits
non monotones.

5.2.3 Systèmes de maintenance de la cohérence

Un système de maintenance de la cohérence comporte deux aspects importants.
Le premier est la représentation des faits, qui permettra aussi d’exprimer l’in-
certitude quant à la validité d’une proposition. Le deuxième est la manière
d’ajouter et d’enlever des assertions dans la base de données ; celle-ci doit main-
tenir la cohérence de l’ensemble.

Représentation

Dans un système de maintenance de la cohérence (SMC), chaque proposition
devient un nœud qui est doté d’un état explicite, traduisant sa crédibilité : IN
ou OUT. IN veut dire que le moteur d’inférence peut prouver la proposition,
soit comme prémisse ou comme conséquence d’une prémisse. Par contre, OUT
veut dire que le moteur d’inférence n’a pas d’informations sur la véracité de la
proposition. Un SMC opte pour différentes attitudes selon la nature du nœud
qu’il traite :

• (OUT n), (OUT (NOT n)) : le système ne sait rien quant à la véracité de
n

• (IN n), (OUT (NOT n)) : le système croit que n est vrai

• (OUT n), (IN (NOT n)) : le système croit que n est faux

• (IN n), (IN (NOT n)) : contradiction
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Lorsqu’un nœud marqué par IN est retiré, c.à.d. qu’il devient OUT, un al-
gorithme de maintenance de la cohérence doit assurer que toutes les assertions
qui en découlent sont également retirées. Si on découvre qu’un nœud marqué
par IN est contradictoire, cela indique également qu’il y a une contradiction
dans les antécédents qui ont permis de déduire ce nœud.

Pour qu’on puisse retrouver ces antécédents, chaque nœud d’un SMC contient
des justifications qui indiquent tous les chemins d’inférence par lesquels le nœud
a été déduit. Une justification contient :

• la règle qui a donné la proposition associée au nœud comme conclusion,

• les nœuds qui ont été utilisés pour satisfaire les conditions de la règle.

Afin d’améliorer l’efficacité de traitement, un SMC maintient en plus explici-
tement des pointeurs entre tout nœud et ses conséquences. On peut représenter
un nœud par une liste :

(IN/OUT < proposition > < justification >)

On peut ainsi aussi admettre plusieurs justifications qui seront ajoutées à
la fin de la liste, par exemple quand la même proposition a été déduite par
plusieurs inférences.

Par exemple, en utilisant les notations d’un SMC, la règle qui permet de
déduire qu’un oiseau peut voler peut être formulée par une règle LES-OISEAUX-
VOLENT comme suit :

(IN oiseau( ?x) ?j1) ∧ (OUT anormal( ?x) ?j2 ⇒
(IN vole( ?x) (LES-OISEAUX-VOLENT ?j1 (OUT ?j2)))

Si A et B sont les justifications des deux conditions,

(LES-OISEAUX-VOLENT A (OUT B))

sera la justification de la conclusion construite par l’application de la règle.

Algorithme d’assertion/rétraction

Un système de maintenance de la cohérence est lié à un moteur d’inférence de
sorte que toute assertion dans la base de données s’opère via le SMC, de même
que pour les requêtes concernant l’état des propositions existantes. Le SMC
peut être appelé dans deux fonctions :

1) Si une proposition est déduite par le moteur d’inférence, le SMC doit
l’ajouter comme nœud à la base de données s’il n’existe pas déjà. Ensuite,
il doit mettre l’état du nœud à IN et installer la justification qui correspond
au nouveau chemin de raisonnement.

2) Si on découvre une contradiction et on veut donc retirer un fait, le nœud
correspondant doit être mis à OUT.

Chaque opération déclenche l’algorithme de maintenance de la cohérence qui en
propage les effets sur la base de données. L’implémentation détaillée dépendra
beaucoup du contexte de l’application, donc nous nous contentons ici d’un
schéma de l’algorithme :
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1) Si un nœud existe déjà pour la proposition, ajouter la nouvelle justification
sinon créer un nouveau nœud N en lui associant la justification. Mettre
l’état du nœud à IN ou OUT selon l’assertion effectuée.

2) Construire une liste L contenant toutes les conséquences de N.

3) Pour tout nœud de L, réévaluer les justifications pour voir s’il en existe
une valide indépendamment de N. Si elles sont toutes invalides, mettre le
nœud à OUT et appliquer récursivement la procédure de maintenance de la
cohérence. Si, par contre, une justification valide existe, marquer le nœud
avec un IN. Si le nœud est marqué IN, réévaluer les justifications de toutes
ses conséquences (qui peuvent alors être devenues valides).

4) Contrôler s’il y a une contradiction. Si un nœud permet de déduire un
nœud nogood, il y a une contradiction. Le système détecte une contra-
diction lorsqu’un nœud nogood devient IN, ce qui est signalé au moteur
d’inférence qui doit alors retirer des nœuds de sorte à lui restituer un état
OUT.

Le fait que l’on propage toute modification de l’état d’un nœud sur ses
conséquences constitue la principale caractéristique de l’algorithme de mainte-
nance de la cohérence. Comme chaque nœud peut avoir été dérivé de différentes
manières, il est nécessaire de réévaluer ses justifications pour voir si elles sont
toujours valables. Le processus de propagation peut devenir très coûteux car
il est possible qu’un nœud puisse avoir un nombre important de conséquences.
Les systèmes de maintenance de la cohérence doivent, pour cela, être utilisés
avec précaution.

Lorsque des contradictions sont découvertes, il est utile de les mémoriser afin
que les déductions qui les ont engendrées puissent être évitées par la suite. Cela
peut être réalisé en marquant explicitement les nœuds contradictoires comme
nogood.

Le nogood classique est une contradiction logique forte, telle que (P et ¬P ).
Il peut cependant être utile d’introduire d’autres types de contradictions. Par
exemple, si une variable x ne peut prendre qu’une valeur unique, une contra-
diction peut être déduite à partir de (x = a, x = b et a 6= b).

Lorsqu’une contradiction se produit dans le processus de raisonnement, cela
signifie qu’une des valeurs conflictuelles doit être retirée. Comme il n’existe pas
de règles générales permettant de décider laquelle des valeurs il faut retirer,
le choix est délégué au moteur d’inférence qui peut s’aider d’heuristiques pour
l’accomplir.

Preuves conditionnelles

Les systèmes de maintenance de la cohérence permettent de définir des hy-
pothèses pour construire des argumentations générales. Par exemple, un SMC
peut être utilisé pour démontrer la transitivité de la règle d’implication :

(1) A ⇒ B (prémisse)

(2) B ⇒ C (prémisse)

(3) A (hypothèse)
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(4) B (modus ponens (1) (3))

(5) C (modus ponens (2) (4))

(6) A ⇒ C (preuve conditionnelle (5) (3) (1) (2))

En traçant la structure de justification associée à la dérivation de C, il
est possible de vérifier que, pour conclure C, l’hypothèse A et deux prémisses
suffisent. Une stratégie générale de preuve conditionnelle produit ainsi une règle
explicite pour déduire la transitivité. Un processus similaire aurait pu être
appliqué, même si les dérivations opérées étaient beaucoup plus complexes.

Une seconde forme de raisonnement basé sur des hypothèses est donnée par
les démonstrations indirectes : le contraire du but est supposé, et il s’agit de
détecter une contradiction. L’exemple suivant illustre cette forme de preuve
indirecte :

(1) A ⇒ B (Prémisse)

(2) B ⇒ C (Prémisse)

(3) (NOT (A ⇒ C)) (Hypothèse preuve indirecte)

(4) (AND A (NOT C)) (Equivalence 3)

(5) A (élimination-et (4))

(6) B (modus ponens (5) (1))

(7) C (modus ponens (6) (2))

(8) (NOT C) (élimination-et (4))

(9) CONTRADICTION ((7) (8))

(10)(A ⇒ C) (preuve indirecte (1) (2) (9))

Littérature

Le système GPS qui était l’ancêtre des systèmes experts est décrit dans l’ar-
ticle [15], paru en 1963. De nombreux ouvrages ont été publiés sur les systèmes
experts. [16] est une bonne référence générale. Le premier système expert den-
dral et ses développements font l’objet du livre [17]. Le livre [18] contient une
description de mycin, un système expert pour le diagnostic d’infections qui a
été beaucoup analysé. Les business rules sont un développement plus récent,
dont [19] donne une bonne introduction.

Outils - domaine public

Parmi de nombreux outils de systèmes experts disponibles dans le domaine
public, l’outil clips est le mieux développé et est toujours mis à jour par ses
auteurs :

http://clipsrules.sourceforge.net/

Il existe d’ailleurs un livre édité par deux des auteurs de clips [20].
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Outils - commercial

Comme les moteurs d’inférence, les outils pour les systèmes experts sont de plus
en plus integrés dans des systèmes intelligents de plus grande envergure. La divi-
sion de cognitive computing de IBM, par exemple, intègre souvent des systèmes
experts en combinaison avec d’autres techniques tels que la compréhension du
langage naturel et l’apprentissage des connaissances. Cependant, il reste des
entreprises de plus petite envergure tels que Exsys qui a mis au point de nom-
breux systèmes avec des démonstrations en ligne (http://www.exsys.com).

Application : Prédiction de toxicité par le système DEREK

Lors de la synthèse d’une nouvelle substance, il est important de savoir
si elle est toxique. Comme la toxicité est un phénomène complexe, sa
prédiction nécessite beaucoup de connaissances.

Le système derek constitue une des ressources les plus utilisées par des
chimistes pour la prédiction de la toxicité. Il s’agit d’un système expert qui
a été d’abord développé par la compagnie Schering Agrochemical et en-
suite donné à une organisation à but non lucratif (Lhasa Limited). derek
est constamment mis à jour et intègre ainsi les connaissances cumulées
d’innombrables experts du domaine.

(source : http://www.lhasalimited.org/)

5.3 Exercices

Exercice 5.1 Comparaison du châınage avant et arrière

Le but de cet exercice est de comparer les avantages et les inconvénients des
deux différents types de châınage utilisés dans les systèmes experts, c’est-à-dire
les châınages avant et arrière. Nous allons explorer cette question à l’aide d’un
exemple.

Un négociant en vin s’est constitué un mini-système expert pour l’aider
à gérer sa cave. Ce système permet de déclasser et de bonifier des vins de
différentes régions viticoles selon leur ancienneté. Un vin devient bon à partir
d’un certain nombre d’années. Passé un second seuil, le vin sera déclassé. Ces
seuils varient en fonction de la provenance. Voici la liste des faits :

1. Stock−Vin(Bordeaux, 1997)
2. Stock−Vin(Bordeaux, 1990)
3. Stock−Vin(Bordeaux, 1961)
4. Stock−Vin(Bordeaux, 1965)
5. Stock−Vin(Bordeaux, 1977)
6. Stock−Vin(Bordeaux, 1978)
7. Stock−Vin(Bordeaux, 1981)
8. Stock−Vin(Bourgogne, 1995)
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9. Stock−Vin(Bourgogne, 1986)
10. Stock−Vin(Bourgogne, 1990)
11. Stock−Vin(Bourgogne, 2002)
12. Problème−de−Bouchon(Bordeaux, 1986)
13. Problème−de−Bouchon(Bourgogne, 1998)
14. Année−Courante = 2007

Nous définissons des règles associées. Nous supposons que le nom d’une
variable commence toujours par un point d’interrogation ; par exemple : ?vin.

1. Stock−Vin(Bordeaux, ?Année−Vin)
=> Déclasser(Bordeaux, ?Année−Vin, ?Année−Vin+40)

2. Stock−Vin(Bourgogne, ?Année−Vin)
=> Déclasser(Bourgogne, ?Année−Vin, ?Année−Vin+20)

3. Stock−Vin(Bordeaux, ?Année−Vin)
=> Bonifier(Bordeaux, ?Année−Vin, ?Année−Vin+20)

4. Stock−Vin(Bourgogne, ?Année−Vin)
=> Bonifier(Bourgogne, ?Année−Vin, ?Année−Vin+10)

5. Déclasser(?Vin, ?Année−Vin, ?Année) AND ?Année > 1900 AND ?Année < 2020
=> Déclasser(?Vin, ?Année−Vin, ?Année+1)

6. Bonifier(?Vin, ?Année−Vin, ?Année) AND ?Année > 1900
AND ?Année < 2020 AND NOT Déclasser(?Vin, ?Année−Vin, ?Année+1)
=> Bonifier(?Vin, ?Année−Vin, ?Année+1)

7. Déclasser(?Vin, ?Année−Vin, ?Année) AND ?Année = Année−Courante
=> Eliminer(?Vin, ?Année−Vin)

8. Problème−de−Bouchon(?Vin, ?Année−Vin)
=> Eliminer(?Vin, ?Année−Vin)

Nous supposons ici que le moteur d’inférence est capable d’accomplir des
calculs arithmétiques et que la négation fonctionne (“not A” est vrai s’il n’est
pas possible de déduire “A” à partir des faits contenus dans la base de données).

Le négociant voudrait savoir que répondre aux deux requêtes suivantes :

• Quels sont les stocks de bon Bourgogne pour l’année courante (2007) ?

• Quels vins faut-il éliminer de la cave ?

Répondez aux questions suivantes :

1) Comment exprimer ces requêtes dans le langage de notre système expert
(en châınage avant, puis en châınage arrière) ?

2) Si l’on utilise le châınage arrière, quel est, en détail, le comportement du
système pour la première requête, sachant que le Bourgogne auquel on
s’intéresse est celui de 1995 ? C’est-à-dire, est-ce que le Bourgogne 1995
est encore bon en 2007 ?

3) Comment se comporte le système pour la seconde requête, en supposant
cette fois que le mécanisme d’inférence est le châınage avant ? Quel est le
problème ?

4) Quel est le sous-ensemble de règles qui nous permet de répondre à cette
requête par châınage avant ?

5) À quoi sert la condition ?Année > 1900 dans la règle 6 ? Peut-on trouver
un exemple de requête pour laquelle l’absence de cette condition pose un
problème ?
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6) Quel est l’inconvénient d’utiliser toutes les règles en châınage arrière pour
la première requête ?

7) Que peut-on conclure de tout ce qui précède ?

Solution à la page 351

Exercice 5.2 Programmation du châınage arrière

Vous allez maintenant programmer un moteur d’inférence à châınage arrière.
Le principe est simple. Sachant que l’on dispose d’une base de faits et de règles,
l’idée consiste à poser des questions au moteur d’inférence. Une question est
une proposition, contenant éventuellement des variables, qui est interprétée
comme un but à satisfaire. Le moteur d’inférence tente de satisfaire ce but en
trouvant un ou plusieurs faits qui y correspondent, c’est-à-dire qui peuvent lui
être unifiés. Ces faits peuvent soit exister directement dans la base de faits, soit
être déduits par une combinaison de règles et d’autres faits.

Dans le premier cas, le moteur d’inférence retourne le ou les faits correspon-
dants. Dans le second cas, il cherche l’ensemble des règles dont la conséquence
correspond au but. Lorsqu’il en trouve, il applique à nouveau récursivement le
même raisonnement en considérant l’ensemble des conditions de la règle comme
de nouveaux sous-buts qu’il faut atteindre. Ce processus peut être interprété
comme une recherche dans un espace de solutions, l’idée étant de trouver les
faits unifiables avec le but.

Chaque étape de l’algorithme dépend d’un environnement, c’est-à-dire d’un
ensemble de valeurs possibles pour les variables, et construit une liste de buts
qui restent à satisfaire pour obtenir une preuve du but initial. Nous appelons la
structure de données qui contient cette liste de buts un nœud. L’unification d’un
but avec un fait ou avec la conclusion d’une règle donne lieu à un ou plusieurs
nœuds successeurs, traités à leur tour dans les étapes ultérieures. Chaque noeud
contient en outre une instanciation du but initial, laquelle constitue une solution
lorsqu’il ne reste plus aucun sous-but à satisfaire.

Modules squelettes

Les modules suivants fournissent le squelette du programme que nous allons dé-
velopper. Les modules exemple_classification_animale.py, exemple_genealogie.py
et exemple_cycle.py permettront de le tester :

Module .../moteur_chainage_arriere/connaissance.py :

from moteur avec variables.proposition avec variables import ∗

class BaseConnaissances:
def init ( self , constructeur de regle ):

self . faits = {}
self . regles = {}
self . constructeur de regle = constructeur de regle
self .sym = 0
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def ajoute un fait( self , fait ):
clef = tete( fait )
if clef in self . faits :

self . faits [ clef ]. append(fait)
else:

self . faits [ clef ] = [ fait ]

def ajoute faits ( self , faits ):
for fait in faits :

self . ajoute un fait ( fait )

def ajoute une regle( self , description ):
regle = self . constructeur de regle (description)
clef = tete(regle .conclusion)
if clef in self . regles :

self . regles [ clef ]. append(regle)
else:

self . regles [ clef ] = [regle ]

def ajoute regles ( self , descriptions ):
for description in descriptions :

self . ajoute une regle(description)

def choisir faits interessants ( self , pattern):
clef = tete(pattern)
faits = self . faits .get( clef , [])
return faits

def choisir regles interessantes ( self , pattern, unificateur ):
regles interessantes = []
clef = tete(pattern)
if clef in self . regles :

anciennes regles = self . regles [ clef ]
for regle in anciennes regles :

regles interessantes .append(self. nouvelle instance( regle , unificateur ))
return regles interessantes

def nouvelle instance( self , regle , unificateur ):
env = {}
variables = set()
for cond in regle .conditions :

variables .update( lister variables (cond))
variables .update( lister variables ( regle .conclusion))
for var in variables :

self .sym = self.sym + 1
nouvelle var = '?{}' .format(self.sym)
env[var] = nouvelle var

conditions = [unificateur . substitue(cond, env) for cond in regle .conditions ]
conclusion = unificateur . substitue( regle .conclusion, env)

return self. constructeur de regle ((conditions , conclusion))

Module .../moteur_chainage_arriere/noeud.py :

from moteur avec variables.proposition avec variables import ∗
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class Noeud:
def init ( self , but, sous but courant, sous buts a tester , profondeur):

self .but = but
self .sous but courant = sous but courant
self . sous buts a tester = sous buts a tester
self .profondeur = profondeur

def est terminal( self ):
print('à compléter')

def est solution ( self ):
print('à compléter')

def successeur( self , env, nouveaux sous buts, unificateur ):
print('à compléter')

def description standardisee(noeud):
sous buts = [noeud.sous but courant] if len(noeud.sous but courant) > 0 else []
sous buts.extend(noeud.sous buts a tester)
sous buts = sorted(sous buts, key=lambda prop: prop)
but et sous buts = [noeud.but] + sous buts

return but et sous buts

def repr ( self ):
return '<{},{},{},{}>'.format(self.but,

self .sous but courant,
self . sous buts a tester ,
self .profondeur)

Module .../moteur_chainage_arriere/noeuds_testes.py :

from moteur avec variables.proposition avec variables import ∗
from .noeud import Noeud

class NoeudsTestes:
echec = 'échec'

def init ( self ):
# Nous utiliserons une liste standard pour stocker les descriptions des\
# noeuds déjà testés.
self . descriptions = []

def ajoute( self , noeud):
description = noeud.description standardisee()
self . descriptions .append(description)

def contains ( self , noeud):
if not isinstance(noeud, Noeud):

raise ValueError(”Seul un noeud peut être testé.”)

description = noeud.description standardisee()
for descr in self . descriptions :

if self . inclut (descr, description ):
return True

return False
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def match(self, prop1, prop2, env):
prop1 = prop1[:]
prop2 = prop2[:]
env = env.copy()

# Si les deux propositions sont vides, le processus est terminé.
if len(prop1) == 0 and len(prop2) == 0:

return env

# Si une des propositions seulement est vide, les deux n'ont pas la même
# longueur, donc elles sont bien diff érentes.
elif len(prop1) == 0 or len(prop2) == 0:

return NoeudsTestes.echec

# Si les deux sont des variables ,
elif est une variable (prop1) and est une variable(prop2):

# on teste si la substitution a déjà été trouvée
if prop1 in env:

if env[prop1] == prop2:
return env

# sinon on l'ajoute a l 'environnement courant.
else:

if prop1 != prop2:
env[prop1] = prop2

return env

# Si l 'une des propositions est un atome, on retourne l'environnement.
elif est atomique(prop1) or est atomique(prop2):

if prop1 == prop2:
return env

else:
tete1 = tete(prop1)
reste1 = corps(prop1)
tete2 = tete(prop2)
reste2 = corps(prop2)
env tete = self .match(tete1, tete2 , env)
if env tete == NoeudsTestes.echec:

return NoeudsTestes.echec
env reste = self .match(reste1, reste2 , env tete)
if env reste == NoeudsTestes.echec:

return NoeudsTestes.echec
return env reste

# Aucune tentative n'a donné de résultat.
return NoeudsTestes.echec

def inclut sous buts( self , sous buts1, sous buts2, env):
if len(sous buts1) == 0:

return True

sb1 = tete(sous buts1)
sous buts restants1 = corps(sous buts1)

for sb2 in sous buts2:
nouvel env = self .match(sb1, sb2, env)
if nouvel env != NoeudsTestes.echec:

# On teste le match avec les sous−buts restants.
sous buts restants2 = [sb for sb in sous buts2 if sb != sb2]
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if self . inclut sous buts (sous buts restants1 , sous buts restants2 , nouvel env):
return True

return False

def inclut( self , descr1, descr2):
env = self .match(tete(descr1), tete(descr2), {})
if env != NoeudsTestes.echec:

# On compare les sous−buts non−résolus.
return self. inclut sous buts (corps(descr1), corps(descr2), env)

return False

Module .../moteur_chainage_arriere/chainage_arriere.py :

from moteur sans variables.chainage import Chainage
from .noeud import Noeud
from .noeuds testes import NoeudsTestes

class ChainageArriere(Chainage):
def init ( self , connaissances, unificateur ):

self .connaissances = connaissances
self . unificateur = unificateur

def successeurs( self , noeud):
print('à compléter')

def backchain(self , noeud depart):
print('à compléter')

def chaine( self , pattern):
# Retourne les solutions par châınage arrière.
noeud depart = Noeud(pattern, pattern, [], 0)
solutions = self .backchain(noeud depart)

return solutions

Module .../exemple_classification_animale.py :

from sys import argv
from moteur chainage arriere.connaissance import BaseConnaissances
from moteur chainage arriere.chainage arriere import ChainageArriere
from moteur avec variables.regle avec variables import RegleAvecVariables
from moteur avec variables.unificateur import Unificateur

faits = [
( 'a−des−poils', 'blaireau ' ),
( 'a−des−bébés−formes', 'blaireau'),
( 'température−stable', 'blaireau ' ),
( 'a−des−poils', 'é cureuil ' ),
( 'a−des−bébés−formes', 'écureuil'),
( 'température−stable', 'é cureuil ' ),
( 'chimpanzé', 'cheetah' ),
( ' gorille ' , 'bozo'),
( ' singe ' , 'babouin'),
( ' singe ' , 'paresseux' ),
( 'chien ' , ' bill ' ),
( ' loup' , ' loup−1'),
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( ' lycaon' , ' lycaon−1'),
( 'chat' , ' mistigri ' ),
( ' lion ' , 'minet'),
( ' tigre−du−bengale', 'tigre−du−bengale−1'),
( 'a−des−poils', 'kangourou'),
( 'a−des−bébés−foetaux', 'kangourou'),
( 'température−stable', 'kangourou'),
( 'pond−des−oeufs', 'ornythorinque'),
( 'pond−des−oeufs', 'nouveau−spécimen'),
( 'a−des−poils', 'ornythorinque'),
( 'température−stable', 'nouveau−spécimen'),
( 'température−stable', 'ornythorinque'),

]

regles = [
[[( ' placentaire ' , '?x' )], ( 'mammifère', '?x' )],
[[( 'marsupial', '?x' )], ( 'mammifère', '?x' )],
[[( 'monotrème', '?x' )], ( 'mammifère', '?x' )],
[[( ' placentaire−1', '?x' )], ( ' placentaire ' , '?x' )],
[[( 'genre−placentaire', '?x' )], ( ' placentaire ' , '?x' )],
[[( 'a−des−poils', '?x' ), ( 'a−des−bébés−formes', '?x'),

( 'température−stable', '?x' )],
( ' placentaire−1', '?x' )],
[[( 'a−des−poils', '?x' ), ( 'a−des−bébés−foetaux', '?x'),

( 'température−stable', '?x' )],
( 'marsupial', '?x' )],
[[( 'pond−des−oeufs', '?x'), ( 'a−des−poils', '?x' ),

( 'température−stable', '?x' )],
( 'monotrème', '?x' )],
[[( ' singe ' , '?x' )], ( 'genre−placentaire', '?x' )],
[[( 'primate', '?x' )], ( ' singe ' , '?x' )],
[[( ' lemurien' , '?x' )], ( ' singe ' , '?x' )],
[[( 'chimpanzé', '?x' )], ( 'primate', '?x' )],
[[( ' gorille ' , '?x' )], ( 'primate', '?x' )],
[[( 'canidé' , '?x' )], ( 'genre−placentaire', '?x' )],
[[( 'chien ' , '?x' )], ( 'canidé' , '?x' )],
[[( ' loup' , '?x' )], ( 'canidé' , '?x' )],
[[( ' lycaon' , '?x' )], ( 'canidé' , '?x' )],
[[( ' fé lin ' , '?x' )], ( 'genre−placentaire', '?x' )],
[[( 'chat' , '?x' )], ( ' fé lin ' , '?x' )],
[[( ' lion ' , '?x' )], ( ' fé lin ' , '?x' )],
[[( ' tigre ' , '?x' )], ( ' fé lin ' , '?x' )],
[[( ' tigre−du−bengale', '?x')], ( ' tigre ' , '?x' )],
[[( ' tigre−de−l−himalaya', '?x')], ( ' tigre ' , '?x' )],

]

questions = [
( ' placentaire ' , '?quel−animal'),
( ' fé lin ' , '?quel−animal'),
( ' fé lin ' , ' mistigri ' ),
( 'mammifère', 'ornythorinque'),
( ' fé lin ' , 'ornythorinque'),

]

bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr[0], descr[1]))
bc. ajoute faits ( faits )
bc. ajoute regles ( regles )

moteur = ChainageArriere(bc, Unificateur())
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for question in questions:

print()
print('Question: ' + str(question))

moteur. reinitialise ()
moteur.chaine(question)

moteur. affiche solutions ()

if len(argv) > 1 and argv[1].lower() == 'trace':
moteur. affiche trace ()

Module .../exemple_genealogie.py :

from sys import argv
from moteur chainage arriere.connaissance import BaseConnaissances
from moteur chainage arriere.chainage arriere import ChainageArriere
from moteur avec variables.regle avec variables import RegleAvecVariables
from moteur avec variables.unificateur import Unificateur

femmes = ['françoise' , ' julie ' , 'alphonsine' , 'véronique' ,
' charlotte ' , ' brigitte ' , 'constance']

hommes = ['jean', 'pierre ' , 'marc', 'philippe ' , 'gustave' ,
'octave' , 'antoine' , 'hyacynthe', 'rodolphe']

tous = femmes + hommes

faits = []
faits .extend([( 'femme', f) for f in femmes])
faits .extend([( 'homme', f) for f in hommes])
faits .extend([( ' diff érent ' , x, y) for x in tous for y in tous if x != y])

faits .extend([
( 'parent' , 'jean' , ' pierre ' ),
( 'parent' , ' françoise ' , ' pierre ' ),
( 'parent' , 'philippe ' , 'alphonsine' ),
( 'parent' , ' charlotte ' , 'alphonsine' ),
( 'parent' , ' pierre ' , ' julie ' ),
( 'parent' , 'alphonsine' , ' julie ' ),
( 'parent' , 'antoine' , 'véronique'),
( 'parent' , 'constance', 'véronique'),
( 'parent' , 'octave' , 'marc'),
( 'parent' , ' brigitte ' , 'marc'),
( 'parent' , 'marc', 'gustave' ),
( 'parent' , 'véronique' , 'gustave' ),
( 'parent' , 'gustave' , 'hyacynthe'),
( 'parent' , ' julie ' , 'hyacynthe'),
( 'parent' , 'philippe ' , 'rodolphe'),
( 'parent' , ' brigitte ' , 'rodolphe'),

])

regles = [
[[( 'parent' , '?x' , '?y' ), ( 'femme', '?x' )], ( 'mère', '?x' , '?y' )],
[[( 'parent' , '?x' , '?y' ), ( 'homme', '?x')], ( 'père' , '?x' , '?y' )],
[[( 'parent' , '?x' , '?y' )], ( 'enfant' , '?y' , '?x' )],
[[( 'parent' , '?x' , '?y' ), ( 'homme', '?y')], ( ' fils ' , '?y' , '?x' )],
[[( 'parent' , '?x' , '?y' ), ( 'femme', '?y' )], ( ' fille ' , '?y' , '?x' )],
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[[( 'parent' , '?x' , '?z' ), ( 'parent' , '?z' , '?y' )],
( 'grand−parent', '?x' , '?y' )],
[[( 'parent' , '?x' , '?z' ), ( 'parent' , '?z' , '?y' ), ( 'parent' , '?y' , '?u' )],
( ' arri ère−grand−parent', '?x', '?u' )],
[[( 'grand−parent', '?x' , '?y' ), ( 'femme', '?x' )], ( 'grand−mère', '?x', '?y' )],
[[( 'grand−parent', '?x' , '?y' ), ( 'homme', '?x')], ( 'grand−père', '?x' , '?y' )],
[[( ' arri ère−grand−parent', '?x', '?y' ), ( 'femme', '?x' )],
( ' arri ère−grand−mère', '?x', '?y' )],
[[( ' arri ère−grand−parent', '?x', '?y' ), ( 'homme', '?x')],
( ' arri ère−grand−père', '?x', '?y' )],
[[( 'parent' , '?x' , '?z' ), ( 'parent' , '?x' , '?y' ), ( 'homme', '?y'),

( ' diff érent ' , '?z' , '?y' )], ( ' fr ère ' , '?y' , '?z' )],
[[( 'parent' , '?x' , '?z' ), ( 'parent' , '?x' , '?y' ), ( 'femme', '?y' ),

( ' diff érent ' , '?z' , '?y' )], ( 'soeur' , '?y' , '?z' )],
]

questions = [
( ' arri ère−grand−mère', '?qui', '?qui−d−autre'),
( ' arri ère−grand−parent', '?qui', '?qui−d−autre'),
( 'soeur' , '?qui' , '?qui−d−autre'),
( ' fr ère ' , '?qui' , '?qui−d−autre'),
( ' fils ' , '?qui' , '?qui−d−autre'),
( ' fils ' , 'gustave' , 'marc'),
( ' fils ' , '?qui' , 'marc'),
( ' fils ' , 'gustave' , 'hyacynthe'),
( ' fils ' , 'gustave' , 'ferdinand' ),

]

bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr[0], descr[1]))
bc. ajoute faits ( faits )
bc. ajoute regles ( regles )

moteur = ChainageArriere(bc, Unificateur())

for question in questions:

print()
print('Question: ' + str(question))

moteur. reinitialise ()
moteur.chaine(question)

moteur. affiche solutions ()

if len(argv) > 1 and argv[1].lower() == 'trace':
moteur. affiche trace ()

Module .../exemple_cycle.py.py :

from sys import argv
from moteur chainage arriere.connaissance import BaseConnaissances
from moteur chainage arriere.chainage arriere import ChainageArriere
from moteur avec variables.regle avec variables import RegleAvecVariables
from moteur avec variables.unificateur import Unificateur

faits = [( 'r ' , 'd' )]
regles = [[[( 'r ' , '?a' )], ( 'q' , '?b' )], [[( 'q' , '?b' )], ( 'r ' , '?a' )]]
questions = [( 'r ' , '?qui' )]
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bc = BaseConnaissances(lambda descr: RegleAvecVariables(descr[0], descr[1]))
bc. ajoute faits ( faits )
bc. ajoute regles ( regles )

moteur = ChainageArriere(bc, Unificateur())

for question in questions:

print()
print('Question: ' + str(question))

moteur. reinitialise ()
moteur.chaine(question)

moteur. affiche solutions ()

if len(argv) > 1 and argv[1].lower() == 'trace':
moteur. affiche trace ()

Étape initiale

Le premier nœud contiendra la même proposition, la requête initiale, comme
but et comme sous-but. Par exemple, si l’on recherche toutes les personnes dont
Jean est le grand-père, on aura :

Base des faits :

( 'père' , 'Jean', 'Pierre ' ), ...

Base des règles :

R1 : ( 'père' , '?x' , '?z) AND ('père', '?z' , '?y') => ('grand−père', '?x', '?y')
R2 : ( 'père' , '?x' , ?z) AND ('mère', '?z', '?y') => ('grand−père', '?x', '?y')

Requête initiale :

( 'grand−père', 'Jean', '?x')

Nœud initial : n1, avec

But : ( 'grand−père', 'Jean', '?x')
Sous−buts : ('grand−père', 'Jean', '?x')

Les antécédents

Pour gérer les nœuds au cours du processus, nous devons définir deux listes, qui
seront mises à jour au fur et à mesure du châınage arrière : i) Nœuds-à-Tester
est la liste des nœuds qui restent à visiter ; ii) Nœuds-Testés est la liste des
nœuds qui ont déjà été visités (elle sert à éviter les cycles). Nous aurons ainsi,
dans la première étape, Nœuds-à-Tester qui équivaut à [n1] (le premier nœud),
et Nœuds-Testés égale à []. En explorant n1, nous trouvons deux nouveaux
nœuds (n2 et n3), que nous ajoutons aux nœuds à tester tandis que n1 est
ajouté à Nœuds-Testés et ainsi de suite.
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Exploration de n1 : calcul des successeurs de n1 en tentant de satisfaire un de
ses sous-buts :

• Utilisation de la règle R1 : nouveau nœud n2, avec :

But : ( 'grand−père', 'Jean', '?x')
Sous−buts : ('père' , 'Jean', '?z' ), ( 'père' , '?z' , '?x')

• Utilisation de la règle R2 : nouveau nœud n3, avec :

But : ( 'grand−père', 'Jean', '?x')
Sous−buts : ('père' , 'Jean', '?z' ), ( 'mère', '?z' , '?x')

Nœuds-à-Tester : [n2, n3]

Nœuds-Testés : [n1]

Exploration de n2 : calcul des successeurs de n2 en tentant de satisfaire un de
ses sous-buts :

• Utilisation du fait (’père’, ’Jean’, ’Pierre’) pour satisfaire le premier
sous-but de n2 : nouveau nœud n4, avec :

But : ( 'grand−père', 'Jean', '?x')
Sous−buts : ('père' , 'Pierre ' , '?x')

• Utilisation d’autres faits, ou de règles qui ont“père”comme conséquence...

Nœuds-à-Tester : [n3, n4]

Nœuds-Testés : [n1, n2]

...

Les classes utilitaires

Nous avons tout d’abord besoin d’un unificateur. Nous vous suggérons de re-
prendre celui que vous avez programmé vous-même, ou d’utiliser la solution
que nous vous avons proposée.

La classe BaseConnaissances servira à contenir les faits et les règles. Elle pos-
sède des méthodes permettant d’ajouter de nouveaux faits et de nouvelles règles
lors de l’initialisation, ainsi que les deux méthodes choisir_faits_interessants

et choisir_regles_interessantes, qui méritent un commentaire. choisir_faits_
interessants permet d’éviter de vérifier des faits inutiles. Elle prend en para-
mètre une proposition (contenant éventuellement des variables), et retourne la
liste de tous les faits dont le premier élément est identique au premier élément
de la proposition. Par exemple, si les faits enregistrés dans la base de connais-
sances sont (’père’, ’Jean’, ’Paul’), (’mère’, ’Martina’, ’Marie’) et (’pè-

re’, ’Paul’, ’Martina’), on a :

choisir faits interessants (( 'père' , 'Marc', '?x'))
−> [('père' , 'Jean', 'Paul'), ( 'père' , 'Paul', 'Martina')]

choisir faits interessants (( 'père' , '?x' , 'Jean'))
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−> [('père' , 'Jean', 'Paul'), ( 'père' , 'Paul', 'Martina')]

choisir faits interessants (( 'mère', '?x' , '?y'))
−> [('mère', 'Martina', 'Marie')]

choisir faits interessants (( 'cousin' , '?x' , 'Jean'))
−> []

choisir_regles_interessantes prend en paramètre une proposition (la consé-
quence d’une règle), et retourne la liste de toutes les règles dont le premier
élément de la conséquence est identique au premier élément de la proposition.
Par exemple, si la base de connaissances contient les règles :

R1 : ( 'père' , '?x' , '?z') AND (père', '?z' , '?y') => (grand−père', '?x', '?y')
R2 : ( 'père' , '?z' , '?y') AND (marié', '?z', '?x') => (mère', '?x', '?y')

on a :

choisir regles interessantes (( 'grand−père', 'Marc', '?x'))
−> [('père' , '?45' , '?46') AND (père', '?46', '?47') => (grand−père', '?45', '?47' )]

choisir regles interessantes (( 'grand−père', '?x' , '?y'))
−> [('père' , '?1' , '?2') AND (père', '?2', '?3') => (grand−père', '?1', '?3' )]

choisir regles interessantes (( 'mère', '?x' , '?y'))
−> [('père' , '?75' , '?74') AND (marié', '?75', '?73') => (mère', '?73', '?74' )]

choisir regles interessantes (( 'cousin' , '?x' , 'Jean'))
−> []

Comme vous pouvez le remarquer, choisir_regles_interessantes ne re-
tourne pas les règles avec leurs variables d’origine. Chaque invocation de cette
fonction doit générer des copies des règles originales dans lesquelles les variables
auront été remplacées par des variables uniques, jamais encore employées. Cette
précaution est absolument vitale dans un moteur d’inférence à châınage arrière.
Elle permet d’utiliser les mêmes variables lors de la définition de règles diffé-
rentes, voire de définir des règles récursives, sans qu’il n’y ait de risque de
confusion. Nous pouvons illustrer ceci par un exemple en prenant le fait (’pè-

re’, ’Jean’, ’Marie’) et les règles suivantes :

R1 : ( 'parent' , '?y' , '?x') => ('ancêtre', '?y' , '?x')
R2 : ( 'père' , '?x' , '?y') => ('parent', '?x' , '?y')

Si l’on n’utilise pas des copies des règles avec variables uniques et que l’on
veut connâıtre tous les ancêtres du système, on aura comme but (’ancêtre’,

’ ?y’, ’ ?x’) et comme sous-but par R1 (’parent’, ’ ?y’, ’ ?x’). Il faut alors
satisfaire le sous-but (’parent’, ’ ?y’, ’ ?x’). La règle R2 permet de pour-
suivre le châınage : il faut donc unifier le sous-but avec la conséquence de R2,
ce qui conduit à une circularité ’ ?x’ => ’ ?y’ et ’ ?y’ => ’ ?x’ et donc un échec.
Et même si l’on s’assure que deux règles différentes n’ont jamais de variables
en commun, la génération de copies des règles avec des variables uniques reste
nécessaire à cause des règles récursives.

BaseConnaissances définit donc une variable sym, qui va nous permettre de
construire des symboles uniques. C’est la méthode nouvelle_instance qui est
chargée de créer de nouvelles instances de chaque règle en utilisant la valeur de
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sym (un entier) pour créer de nouveaux noms de variables et en l’incrémentant
en même temps.

Les faits sont enregistrés dans un dictionnaire faits, qui est une variable
d’instance (self.faits = {}). Les valeurs de ce dictionnaire sont des listes, qui
regroupent les faits selon leur premier atome. Chaque clé d’accès du dictionnaire
est donc le premier atome de tous les faits de la liste associée. Par exemple,
avec les clés ’grand-père’ et ’grand-mère’, nous pourrions avoir :

self . faits = {
'grand−père': [

( 'grand−père', 'Paul', 'Jacques'),
( 'grand−père', 'Jean', 'Marc')

],
'grand−mère': [

( 'grand−mère', 'Mathilde', 'Pierre ' ),
( 'grand−mère', 'Véronique', 'Françoise')

]
}

Nous représenterons les règles au moyen de la classe RegleAvecVariables,
déjà définie précédemment, et qui possède deux attributs : conditions, une liste
de propositions, et conclusion, qui est aussi une proposition. BaseConnaissances
possède également une variable regles, pour stocker les règles. regles est un
dictionnaire dont les clés sont des atomes et les valeurs des listes de règles,
classées de telle sorte que chaque liste est associée au premier atome de la
conclusion de tous ses éléments.

Par exemple, avec la clé d’accès ’grand-père’, on pourrait avoir :

self . regles = {
'grand−père': [

RegleAvecVariables([('père' , '?x' , '?z' ),
( 'père' , '?z' , '?y' )],
( 'grand−père', '?x' , '?y' )),

RegleAvecVariables([('père' , '?x' , '?z' ),
( 'mère', '?z' , '?y' )],
( 'grand−père', '?x' , '?y'))

]
}

Création et gestion des nœuds

Un nœud doit regrouper plusieurs informations. Nous définissons donc une
classe Noeud, qui contient les éléments suivants :

• but : le but principal (la requête initiale) ;

• sous_but_courant : le sous-but courant ;

• sous_buts_a_tester : l’ensemble des sous-buts restants, qu’il faut encore
satisfaire pour répondre à la requête initiale ;

• profondeur : la longueur du chemin exploré depuis le nœud initial.

Noeud possède la méthode description_standardisee, qui retourne une des-
cription univoque du nœud et qui nous sera utile pour le traitement de la liste
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des nœuds déjà testés. Plus exactement, cette méthode retourne une liste for-
mée du but, puis des sous-buts du nœud (y compris le sous-but courant), les
sous-buts étant triés par ordre croissant selon le nom du prédicat (le premier
élément de chaque sous-but).

Un nœud est-il une solution ?

Un nœud est une solution lorsqu’il ne lui reste plus de sous-buts à satisfaire
et que son but principal ne contient plus de variables. Pour tester la première
condition, implémentez donc la méthode est_terminal, qui retournera la valeur
False si et seulement si le nœud contient encore des sous-buts à examiner.

class Noeud:
...

def est terminal( self ):
...

Vous pouvez ensuite utiliser cette méthode pour implémenter est_solution,
qui doit retourner True si le nœud courant correspond à une solution, et False

sinon. Dans le premier cas, le but du nœud constituera une solution, c’est-à-
dire une instance de la requête initiale dont les variables éventuelles auront été
remplacées.

class Noeud:
...

def est solution ( self ):
...

Extension d’un nœud

Lorsqu’un nœud est sélectionné pour exploration et qu’il n’est pas une solution,
il faut tenter de satisfaire ses sous-buts un par un. Il convient donc d’essayer
d’abord de satisfaire l’un des sous-buts, dans notre cas le sous-but courant. Un
sous-but peut être satisfait de deux manières différentes :

Cas 1. Il est unifiable à un fait existant. Le sous-but est alors directement
satisfait et l’on peut se pencher sur les autres. Cela permet de créer un nouveau
nœud en tenant compte du résultat de l’unification qui vient d’être réussie et de
l’environnement E qui en résulte. Ce nouveau nœud aura les caractéristiques
suivantes : i) le but principal reste le même, sauf qu’il faut tenir compte de
l’unification, c’est-à-dire qu’il faut remplacer ses variables en accord avec E ;
ii) les sous-buts à satisfaire sont les sous-buts restants du nœud père, dont on
aura remplacé les variables selon E. Prenons un exemple :

Nœud examiné :

But : ( 'grand−père', '?x' , '?y')
Sous−buts : [( 'père' , '?x' , '?z' ), ( 'père' , '?z' , '?y' )]
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Fait :

( 'père' , 'Jean', 'Marc')

Unification du fait avec le premier sous-but :
→ environnement {’ ?x’ : ’Jean’, ’ ?z’ : ’Marc’}

Nouveau nœud :

But : ( 'grand−père', 'Jean', '?y')
Sous−buts : [( 'père' , 'Marc', '?y' )]

Cas 2. Il est unifiable à la conséquence d’une règle : il faut alors satisfaire
les conditions de cette règle. Cela permet de créer un nouveau nœud, en tenant
compte des nouveaux sous-buts et du résultat de l’unification entre le sous-
but et la conséquence de la règle, c’est-à-dire de l’environnement résultant E.
(Cette unification est nécessaire puisque le sous-but et la conséquence n’ont
pas les mêmes variables a priori). Ce nouveau nœud aura les caractéristiques
suivantes : i) le but principal reste le même, sauf qu’il faut tenir compte de
l’unification en remplaçant ses variables selon E ; ii) les sous-buts à satisfaire
sont les sous-buts restants du nœud père, dont on aura remplacé les variables
selon E, plus les conditions de la règle que l’on veut appliquer. Prenons un
exemple :

Nœud examiné :

But : ( 'grand−oncle', '?x' , '?y')
Sous−buts : [( 'grand−père', '?z' , '?y' ), ( ' fr ère ' , '?x' , '?z' )]

Règle :

( 'père' , '?a' , '?b') AND ('père', '?b' , '?c') => ('grand−père', '?a', '?c')

Unification de la conséquence de la règle avec le premier sous-but :
→ environnement {’ ?z’ : ’ ?a’, ’ ?y’ : ’ ?c’}

Nouveau nœud :

But : ( 'grand−oncle', '?x' , '?c')
Sous−buts : [( 'père' , '?a' , '?b' ), ( 'père' , '?b' , '?c' ), ( ' fr ère ' , '?x' , '?a' )]

Dans les deux cas précités, la génération d’un nouveau nœud est très si-
milaire, mis à part les sous-buts supplémentaires qui sont introduits lorsqu’un
sous-but est remplacé par les conditions d’une règle. Écrivez donc dans la classe
Noeud une méthode successeur, qui doit prendre comme paramètres :

• le nœud père (ici désigné par self) ;

• l’environnement résultant de l’unification du sous-but avec un fait ou avec
la conséquence d’une règle ;

• la liste des sous-buts supplémentaires (qui peut être vide le cas échéant) ;

• l’objet unificateur nécessaire à la réalisation des substitutions (par sa mé-
thode substitue).

class Noeud:
...
def successeur( self , env, nouveaux sous buts, unificateur ):

...
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Nœuds testés

La liste des nœuds déjà testés sera constituée par une instance de la classe
NoeudsTestes. Celle-ci définit la méthode __contains__, une méthode spéciale de

Python
(1)

, qui permet d’utiliser la syntaxe noeud in NoeudsTestes pour vérifier
si noeud est contenu dans NoeudsTestes, c’est-à-dire s’il a déjà été exploré. De
façon complémentaire, la méthode ajoute permet d’ajouter un nœud à la liste
chaque fois qu’il est examiné.

Un nœud sera donc considéré comme déjà exploré, et pourra être ignoré,
si et seulement s’il existe déjà dans la liste un nœud ayant le même but et les
mêmes sous-buts, à des substitutions variable-variable près. En d’autres termes,
s’il existe un ensemble de substitutions de variables par d’autres variables qui
permettent de retrouver la description d’un nœud déjà enregistré à partir du
nœud en question. C’est cette vérification qu’accomplissent les méthodes de
NoeudsTestes.

La méthode inclut vérifie ainsi si deux descriptions de nœuds correspondent
aux variables près. Elle s’appuie sur inclut_sous_buts, qui tente le filtrage spé-
cial (en s’appuyant sur match) de sous-buts en tenant compte d’un environ-
nement existant. match teste si deux expressions sont identiques à des substi-
tutions de variables près. Elle retourne un environnement (un dictionnaire de
substitutions) si le matching a réussi, ou la constante NoeudsTestes.echec s’il
a échoué.

Le chainage arrière

La classe ChainageArriere contiendra l’algorithme principal du châınage ar-
rière. Elle hérite de la classe Chainage, que nous connaissons déjà. Sa méthode
successeurs continue le processus de génération des successeurs que nous avons
discuté plus haut. Elle doit trouver tous les successeurs possibles d’un nœud, en
s’appuyant sur les faits et les règles de la base de connaissances. Le processus
est décrit dans l’algorithme suivant :

Successeurs(noeud):
1. nouveaux noeuds <− liste vide.
2. FOR EACH règle r de la base des règles DO
3. env <− unification du sous−but courant de noeud avec la conséquence de r
4. IF env n'est pas échec ( unification réussie ) THEN
5. ajouter à nouveaux noeuds un nouveau noeud où:

i ) le but est celui de noeud, dont les variables ont été remplacées
selon env ;

ii ) le sous−but courant est l'un des sous−buts restants de noeud, dont
les variables ont été remplacées selon env ;

iii ) les sous−buts restants sont ceux de noeud, moins le sous−but
courant, augmentés des conditions de la règle r ; les variables
auront été remplacées selon env.

6. END IF
7. END FOR
8. FOR EACH fait f de la base des faits DO
9. env <− unification du sous−but courant de noeud avec f

(1)
http://docs.python.org/3/reference/datamodel.html#specialnames
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10. IF env n'est pas échec ( unification réussie ) THEN
11. ajouter à nouveaux noeuds un nouveau noeud où:

i ) le but est celui de noeud, dont les variables ont été remplacées
selon env ;

ii ) le sous−but courant est un des sous−buts restants de noeud, dont les
variables ont été remplacées selon env ;

iii ) les sous−buts restants sont ceux de noeud, moins le sous−but
courant, dont les variables auront été remplacées selon env.

12. END IF
13. END FOR
14. RETURN nouveaux noeuds
END Successeurs

Écrivez la méthode successeurs de ChainageArriere, qui doit prendre comme
paramètre un nœud et qui retourne tous les successeurs possibles de celui-ci.
Nous vous suggérons d’utiliser les méthodes choisir_regles_interessantes et
choisir_faits_interessants décrites plus haut. Celles-ci sont disponibles dans
l’objet connaissances qui constitue un attribut de ChainageArriere. N’oubliez
pas non plus de faire appel à Noeud.successeur.

Nous pouvons maintenant passer à la méthode principale de ChainageAr-

riere, qui devra réaliser l’algorithme de châınage proprement dit. Écrivez donc
une méthode backchain, qui prenne comme argument un nœud initial et re-
tourne la liste de toutes les solutions trouvées (sans doublons), ou une liste
vide s’il n’en existe pas. Nous vous suggérons l’algorithme suivant :

Backchain(noeud initial)
1. noeuds testes <− vide
2. solutions <− liste vide
3. noeuds a tester <− liste contenant noeud initial
4. WHILE noeuds a tester n'est pas vide DO
5. n <− premier élément de noeuds a tester
6. noeuds a tester <− reste de noeuds a tester
7. IF n ne fait pas partie de noeuds testes THEN
8. noeuds testes <− ajouter n a noeuds testes
9. IF n est une solution THEN
10. ajouter n à solutions
11. ELSE
12. nouveaux noeuds <− générer les successeurs de n
13. ajouter nouveaux noeuds en tête de noeuds a tester
14. END IF
15. END IF
16. END WHILE
17. RETURN solutions
END Backchain

class ChainageArriere:
...
def backchain(self , noeud depart):

...

Interface

Il est temps d’écrire une méthode qui permette d’interroger le moteur. Soit
chaine cette méthode, qui prend comme argument une proposition à satisfaire,
nous aurons :
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• ChainageArriere.chaine((’grand-père’, ’Jean’, ’Marc’)) demande si
Jean est bien le grand-père de Marc.

• ChainageArriere.chaine((’grand-père’, ’Jean’, ’ ?x’)) permet de recen-
ser tous les petits-enfants de Jean.

• ChainageArriere.chaine((’grand-père’, ’ ?x’, ’ ?y’)) permet de connâıtre
toutes les relations “grand-père”.

Écrivez cette méthode, qui retournera les résultats obtenus. Elle invoquera
backchain avec un nœud initial dont le but principal sera la proposition fournie
à titre de requête, et dont les sous-buts seront réduits à un seul : la même
proposition.

class ChainageArriere:
...
def chaine( self , pattern):

...

Test du programme

Vous pouvez finalement tester votre moteur d’inférence avec le module exemple_

classification_animale.py, qui contient un exemple de règles et de faits ins-
pirés de la classification animale. Essayez d’inventer différentes requêtes, du
style :

• Quels sont les mammifères connus du système ?

moteur.chaine(('mammifere', '?x'))

• L’ornithorynque est-il un mammifère ?

moteur.chaine(('mammifère', 'ornithorynque'))

• Quels animaux sont des félins ?

moteur.chaine(('fé lin ' , '?quels−animaux'))

Vous pouvez aussi utiliser le module exemple_genealogie.py, qui présente des
règles formalisant les relations de parenté et le module exemple_cycle.py, qui
offre un exemple de règles circulaires.

Solutions à la page 353





Chapitre 6

Traitement de l’information

incertaine

Les raisonnements logiques s’appuient sur une distinction nette entre des pro-
positions vraies et des propositions fausses. Dans la réalité cependant, nous
sommes souvent confrontés à des situations d’incertitude, dans lesquelles il est
difficile d’affirmer que telle ou telle proposition est absolument vraie ou abso-
lument fausse. Ceci arrive pour diverses raisons :

• manque de précision dans les données de départ,

• utilisation d’un raisonnement abductif, dont la conclusion est ambiguë,

• présence de facteurs non-observables qui ont une influence sur la validité
du raisonnement.

Considérons comme exemple une maison intelligente. Elle dispose de nom-
breux capteurs, parmi lesquels un détecteur de mouvement dans le hal (M), un
détecteur d’ouverture de la porte d’entrée (E), et un détecteur de bris de vitre
(V). On aimerait construire un système qui permette d’interpréter ces capteurs
afin de contrôler la maison, par exemple en déclenchant une alarme lors d’un
cambriolage ou en éteignant la lumière lorsque personne n’est présent. Comme
chaque maison est différente, on souhaiterait en outre construire un seul sys-
tème de règles qui s’applique à toutes les maisons quel que soient les capteurs
et leur positionnement.

Pour modéliser logiquement la situation, on commence par élaborer une
déscription des éléments et des relations d’influence entre ces éléments. Pour la
fonction d’alarme, on peut ainsi établir le diagramme de la figure 6.1. Le but
est de construire un système de règles qui décide si une alarme est due à un
cambrioleur, ou s’il s’agit d’une fausse alerte. Par exemple, on peut utiliser le
fait que seul un cambrioleur briserait la vitre, mais qu’en absence de mouvement
dans la maison, il s’agit probablement d’une fausse alerte.

Bien qu’un tel système nécessite un raisonnement logique, il est difficile d’y
appliquer une distinction absolue entre propositions vraies et fausses, surtout
si la maison comporte de nombreux capteurs :

1) le capteur de mouvement donne des mesures continues et peut être activé
à un degré variable.
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E(ntrée)

P(ropriétaire) C(ambrioleur)

M(ouvement) V(itre)

A(larme)

Fig. 6.1 Influence entre présence de personnes, capteurs et alarme.

2) on ne peut conclure à la présence d’un cambrioleur sur la base des si-
gnaux des capteurs qu’à travers un raisonnement abductif et ambigu : le
propriétaire pourrait également en être la cause ;

3) il manque des informations sur la présence de personnes ailleurs que dans
la zone couverte par le détecteur de mouvements.

Ces trois facteurs font qu’il est difficile d’implémenter une solution par raison-
nement purement logique. Une telle situation est en fait très courante dans
presque toutes les applications de systèmes intelligents et souligne le besoin de
pouvoir tirer des raisonnements en présence d’incertitude.

Une approche qui s’est largement imposée, dans des systèmes de diagnostic
médical, dans le moteur WATSON de IBM, comme dans des voitures auto-
nomes, peut se résumer comme suit :

1) par un moteur d’inférence logique, on construit différents chemins d’infé-
rence possibles,

2) on évalue la vraisemblance de chaque raisonnement sur la base des infor-
mations dont on dispose,

3) on choisit le ou les raisonnements qui semblent les plus vraisemblables.

Evidemment, on peut alterner les étapes 2 et 3 avec la première pour gagner
en efficacité et ne pas poursuivre des hypothèses invraisemblables.

Dans notre cas, un moteur d’inférence identifierait donc d’abord les hypo-
thèses C(ambrioleur) et P(ropriétaire) comme conséquences possibles sur la
base des données A(larme), M(ouvement), E(ntrée) et V(itre). Par la suite, la
vraisemblance des deux hypothèses sera évaluée par les techniques que nous
allons voir dans ce chapitre.
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Il existe plusieurs formalismes qui permettent le calcul utilisant des infor-
mations incertaines :

• la logique floue et ses variantes, comme les facteurs de certitude, faciles à
appliquer mais sans bases théoriques solides et donc parfois incorrectes ;

• les calculs probabilistes, fondés sur la théorie des probabilités, mais qui
s’avèrent trop complexes à appliquer en pratique ;

• les réseaux bayésiens, bien fondés dans leur théorie et faciles à appliquer,
mais nécessitant un modèle causal de la réalité.

Dans ce chapitre, nous allons exposer ces techniques en détail.

6.1 De la logique floue à une représentation de l’incertitude

L’idée principale de la logique floue (fuzzy logic) est de traduire des valeurs
numériques en prédicats dont la validité est « floue », comme dans l’exemple de
la figure 6.2. Cette distribution exprime le pourcentage de sujets qui jugeraient
une personne d’une certaine taille comme étant grande. Si cette personne est
un enfant d’un mètre, seuls d’autres enfants pourraient peut-être lui appliquer
ce prédicat. La plupart des gens placeraient plutôt la limite entre 1,7 et 1,8
mètre, et c’est donc l’endroit où la courbe enregistre sa plus grande croissance.
Si l’on considère enfin une personne de deux mètres ou plus, tout le monde sera
d’accord pour dire qu’elle est grande et la probabilité que le prédicat s’applique
sera donc proche de 1.

0

1

1 m 1.5 m 2 m

grand(x)

taille(x)

Fig. 6.2 Exemple d’une distribution « floue » pour le prédicat grand.

La distribution modélise donc l’incertitude qui résulte de la traduction d’un
attribut continu en un prédicat qui ne connâıt que les valeurs vrai et faux.
En principe, chaque proposition qui figure dans un raisonnement peut faire
l’objet d’une telle incertitude. On associe donc à chaque proposition une mesure
numérique de vraisemblance, laquelle indique le degré auquel cette proposition
peut s’appliquer.
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L’incertitude pourra aussi se présenter en association avec des inférences.
Par exemple, un cambrioleur ne déclenchera pas forcément le détecteur de mou-
vement, puisqu’il pourrait prendre un autre chemin dans la maison. Même si
l’on est sûr qu’un cambrioleur se trouve dans la maison, le résultat d’une telle
inférence restera incertain. Il faut donc prévoir que les règles d’inférence peuvent
aussi être incertaines.

Finalement, une autre source d’incertitude résulte du fait que le raisonne-
ment souhaité est souvent de nature abductive. Par exemple, l’inférence que
le détecteur de mouvement indique la présence d’un cambrioleur est incertaine
non pas parce la relation est incertaine, mais parce qu’il existe une autre ex-
plication, qui est la présence du propriétaire. Si on modélise une telle inférence
abductive comme une inférence logique par clauses de Horn, elle doit fournir
une résultat incertain.

Pour faire face à ces besoins, nous souhaitons représenter l’incertitude par
des chiffres de sorte que que :

• l’incertitude de chaque proposition et de chaque inférence est caracterisée
par une tel chiffre,

• l’incertitude de la conclusion d’une inférence est une fonction des incerti-
tudes des prémisses et des règles utilisées,

• l’incertitude peut être adaptée quand de nouvelles informations appa-
raissent.

Nous allons d’abord examiner un formalisme simple, celui des facteurs de
certitude, qui remplit ces exigences mais ne fournit pas toujours un résultat
correct.

Partant de la reconnaissance des faiblesses de cette technique, nous discute-
rons ensuite de la méthode des réseaux bayesiens, qui permettent un vrai calcul
probabiliste mais avec certaines restrictions, notamment celle d’une reconnais-
sance explicite de la causalité.

6.2 Les facteurs de certitude

La plupart des systèmes experts modélisent l’incertitude en attachant un
certain degré de confiance aux conclusions obtenues. Dans mycin par exemple,
on tient compte de facteurs de certitude (CF) représentés par des nombres réels
compris entre −1.0 et 1.0. Un facteur de certitude de 1.0 signifie qu’un fait est
absolument certain, une valeur de 0.5 signifie que le fait est vraisemblable, une
valeur de 0.0 implique que l’on ignore totalement s’il est vrai ou faux et enfin
un facteur de certitude de −1.0 indique que le fait est faux avec une certitude
absolue.

Les facteurs de certitude sont attachés aussi bien aux faits qu’aux règles.
Lorsqu’une règle donnée est appliquée pour déduire un nouveau fait, le facteur
de certitude de ce fait est calculé par combinaison des facteurs de certitude des
antécédents de la règle et de celui de la règle elle-même. Ce calcul s’effectue
selon la formule suivante :
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CF (résultat) = max(min(CF (conditions)), 0) · CF (règle)

En prenant le minimum des CF des conditions, on considère que les conditions
sont satisfaites au degré du maillon le plus faible. Si une des conditions n’est
plutôt pas satisfaite, on utilise la valeur 0 et on n’attribue aucune certitude à la
conclusion. L’utilisation des opérateurs max et min pour effectuer la combinai-
son des certitudes des conditions est la caractéristique essentielle de la logique
floue qui est à la base des facteurs numériques de certitude.

Quand le même résultat a été trouvé par application de plusieurs règles
différentes, il faut combiner leurs facteurs de certitude. Même s’il est très difficile
de formuler ce calcul d’une manière telle que le résultat soit garanti correct,
il existe différentes formules qui donnent de bons résultats en pratique. Par
exemple, dans le système mycin, la combinaison de deux facteurs de certitude
x et y, attachés à la même proposition, s’effectue comme suit :

CFCOMBINE(x, y) =


x+ y − xy si x≥0, y≥0

x+y
1−min(|x|,|y|) si x < 0, y > 0

−CFCOMBINE(−x,−y) si x≤0, y≤0

Considérons maintenant l’application de ce formalisme à notre exemple.
Supposons que nous voulons détecter la présence d’un cambrioleur sur la base
des observations des capteurs, c’est-à-dire :

P1(CF=0.8) : M(ouvement)

P2(CF=0.7) : V(itre)

P3(CF=0.1) : E(ntrée)

et des règles :

R1(CF=0.9) : V(itre) ∧ M(ouvement) ⇒ C(ambrioleur)

R2(CF=0.2) : E(ntrée) ∧ M(ouvement) ⇒ C(ambrioleur)

ce qui permet l’inférence :

P4(CF=0. ? ?) : C(ambrioleur)

La proposition P4 peut être inférée soit par la règle R1, soit par la règle R2,
avec les facteurs de certitude suivants :

R1 : CF(P4)= max(min(0.7,0.8),0) * 0.9 = 0.63

R2 : CF(P4)= max(min(0.1,0.8),0) * 0.2 = 0.06

Les deux valeurs sont alors combinées par la formule de combinaison pour
arriver au résultat :

CF(P4) = CFcombine(0.63,0.02) = 0.63 + 0.02− 0.63 · 0.02 = 0.637

et il est donc assez probable qu’un cambrioleur soit présent, à cause du bris de
la vitre.

L’utilisation des facteurs de certitude pour « simuler » un raisonnement
abductif peut conduire à des résultats erronés, notamment dans le cas où des
règles déductives sont mélangées avec des règles qui simulent l’abduction. Par
exemple, les règles :

R1(CF=0.9) : E(ntrée) ∧ M(ouvement) ⇒ P(ropriétaire)

R2(CF=0.5) : C(ambrioleur) ⇒ E(ntrée)

R3(CT=0.99) : C(ambrioleur) ⇒ M(ouvement)
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permettent la châıne d’inférence :

C(ambrioleur) (CF=1.0) ⇒ E(ntrée) (CF=0.5), M(ouvement) (CF=0.99)

⇒
Propriétaire (CF=0.45)

Ce n’est pas du tout raisonnable : le fait qu’un cambrioleur soit présent ex-
plique déjà le déclencement des détecteurs, et ne donne donc pas d’information
quant à la présence du propriétaire ! Le problème de ce raisonnement, c’est que
les cas dans lesquels R1 est vrai sont justement ceux dans lesquels R2 est faux :
on n’a pas tenu compte de l’interdépendence entre les deux.

6.3 Réseaux bayésiens

Les interdépendances entre propositions sont donc le problème principal du rai-
sonnement incertain. La logique floue et les facteurs de certitude n’en tiennent
simplement pas compte. Malheureusement, en pratique, on peut observer une
forte dépendance entre les règles. Les conclusions tirées sans tenir compte de
cette constatation sont donc le plus souvent fausses.

Une possibilité pour pallier ce problème consiste à utiliser explicitement des
probabilités. En fait, nous allons caractériser l’incertitude par une probabilité :

p(A) = probabilité que la proposition A soit vraie.
p(¬A) = 1− p(A) = probabilité que la proposition A soit fausse.
P (A) = [p(A), p(¬A)] = distribution de probabilité de A.

La définition classique des probabilités veut qu’une probabilité mesure la
fréquence à laquelle un événement se produit. Ceci ne permettrait pas qu’une
probabilité change au cours du raisonnement. On adopte alors une autre inter-
prétation, qu’on appelle bayésienne. Dans cette interprétation, la probabilité
est une croyance portant sur la fréquence de l’événement, croyance qui peut
évoluer en fonction de nouvelles informations.

On peut définir de telles probabilités par une expérience hypothétique :
supposons qu’on pose à un expert une question sous forme de pari :

Soit un pari dans lequel vous gagnerez 100 CHF. si A est vrai. Quel
est la plus grande somme x que vous seriez prêt à mettre pour y
participer ?

La réponse x indique alors la probabilité bayésienne que cet expert attribue à
A : p(A) = x/100.

On aimerait propager ces probabilités dans un raisonnement utilisant le
modus ponens. Ainsi, si nous avons la règle A ⇒ B, et que p(A) est connue,
p(B) pourrait se calculer comme suit :

p(B) = p(B|A) · p(A) + p(B|¬A)(1− p(A))

où
p(B|A) = p(A,B)/p(A)

est la probabilité conditionnelle de B étant donné A.
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Une différence importante par rapport aux facteurs de certitude est que
l’incertitude de la règle s’exprime non seulement à travers p(B|A), mais aussi à
travers la probabilité p(B|¬A), appelée contrefactuelle (counterfactual). Cette
dernière est essentielle pour exprimer l’interdépendence entre les événements,
bien qu’elle rende les calculs plus complexes.

6.3.1 Châınage d’inférences

Considérons maintenant le châınage de plusieurs inférences, en rajoutant une
autre règle B ⇒ C. Le calcul le plus simple serait de simplement enchâıner le
même calcul deux fois. Considérons l’exemple de la maison intelligente. Soit :

P = « Propriétaire présent », p(C) = 0.9
M = « Mouvement détecté », p(M |P ) = 0.9, p(M |¬P ) = 0.01
A = « Alarme déclenchée », p(A|M) = 1.0, p(A|¬M) = 0.01

le châınage C →M → A nous donne le résultat :

p(M) = p(M |P ) · p(P ) + p(M |¬P )(1− p(P ))

= 0.9 · 0.9 + 0.1 · 0.011 = 0.811

p(A) = p(A|M) · p(M) + p(A|¬M)(1− p(M))

= 0.811 · 1 + 0.189 · 0.01 ' 0.811

ce qui semble être correct.
Par contre, considérons le calcul analogue sur un autre exemple :

P = « Propriétaire présent », p(P ) = 0.9
M = « Mouvement détecté », p(M |P ) = 0.9, p(M |¬P ) = 0.01
C = « Cambrioleur présent »,p(C|M) = 0.1, p(C|¬M) = 0.01

Pour le châınage P →M → C, le calcul des probabilités nous donne :

p(M) = 0.9 · 0.9 + 0.1 · 0.01 = 0.811

p(C) = 0.811 · 0.1 + 0.189 · 0.01 ' 0.0813

Cependant, si nous avons déjà identifié la présence d’un cambrioleur comme la
raison pour laquelle un mouvement a été detecté, il semble peu probable que le
propriétaire soit présent en même temps ! Ici, nous avons une forte dépendance
entre les règles : la detection du mouvement s’explique par la présence d’un
cambrioleur justement dans les cas où le propriétaire n’est pas présent ! Le
calcul correct devrait donc tenir compte des dépendances :

p(M) = 0.811

p(C) = p(C|M,P )︸ ︷︷ ︸
=0

p(M,P )

+ p(C|¬M,P )︸ ︷︷ ︸
=0

p(¬M,P )

+ p(C|M,¬P )︸ ︷︷ ︸
=0.9

p(M,¬P )︸ ︷︷ ︸
=0.001

+ p(C|¬M,¬P )︸ ︷︷ ︸
=0.01

p(¬M,¬P )︸ ︷︷ ︸
=0.5

= 0.001 · 0.9 + 0.01 · 0.5 = 0.0059
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Observons que ce calcul utilise la distribution jointe P (C|M,P ), ce qui est plus
complexe que les distributions P (M |P ) et P (C|M). Si on considérait aussi
toutes les autres causes imaginables de M , comme les mouvements du chat,
l’air chaud, la fille du propriétaire, etc., la probabilité conditionelle devrait
inclure toutes ces variables aussi. Avec 10 causes Y1, .., Y10, on aurait besoin
de la distribution P (C|M,Y1, .., Y10) qui compte 11 dimensions et 2048 valeurs
distinctes ! Pire, si le raisonnement implique un châınage, on doit tenir compte
de toutes les variables qui y sont mentionnées.

Comment peut-on savoir quand il est nécessaire d’utiliser ce calcul plus
complexe ? Une issue à ce dilemme est de profiter de la structure du monde
pour identifier les endroits où l’on peut s’attendre à des dépendances. Plus
précisement, il faut considérer la causalité entre les événements. La figure 6.1,
que nous avons montrée au début du chapitre, représente un graphe qui exprime
cette causalité sous forme d’arcs dirigés. En général, nous avons l’habitude
d’attribuer des liens de causalité aux phénomènes du monde qui nous entoure ;
de tels modèles ne sont donc pas difficiles à concevoir.

6.3.2 Importance de la causalité

Nous pouvons constater que la première inférence :

P →M → A

correspond à une châıne causale, tandis que la deuxième :

P →M ← C

n’a pas de telle correspondance, puisque P et C sont toutes les deux des causes
possibles de M . Nous pouvons donc formuler l’hypothèse que le châınage des
probabilités est possible quand l’inférence suit un chemin causal dans une seule
direction consistante. Mais comment concrétiser cette observation ?

La théorie des réseaux bayésiens formalise cette observation en utilisant la
notion d’indépendance conditionnelle. Rappelons que deux événements A et C
sont indépendants si :

p(C|A) = p(C|¬A) = p(C)

Nous définissons l’indépendance conditionnelle de A et C étant donné B
comme suit :

p(C|A,B) = p(C|¬A,B) = p(C|B)

et de même pour ¬B :

p(C|A,¬B) = p(C|¬A,¬B) = p(C|¬B)

L’indépendance conditionnelle est fortement liée à la causalité. En fait, on
peut définir la causalité comme suit :

Y1, ..., Yn sont les causes de X si X est conditionnellement indépen-
dant de tous les autres événements étant donné Y1, .., Yn.
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Donc, un graphe qui exprime les liens causaux entre événements nous révèle
également leurs relations d’indépendance causale. Souvent, les règles utilisées
pour établir un raisonnement expriment déjà des liens de causalité. Parfois
cependant les règles d’un système expert correspondent à un raisonnement
abductif, comme par exemple l’inférence M(ouvement) ⇒ P(ropriétaire). Dans
un tel cas, la règle suit la direction inverse de la causalité. On peut néanmoins
supposer que les inférences identifient correctement les paires de nœuds du
graphe qui doivent être liées par un arc.

L’indépendance conditionnelle est fort utile, puisqu’elle permet d’ignorer
la plupart des dépendances lors du calcul des probabilités dans une châınage
d’inférences. Par exemple, dans une inférence A→ B → C :

p(C|A) = p(C|A,B) · p(B|A) + p(C|A,¬B) · p(¬B|A)

Si A et C sont conditionnellement indépendants étant donné B :

p(C|A) = p(C|B) · p(B|A) + p(C|¬B) · (1− p(B|A))

nous n’avons pas besoin de connâıtre la distribution jointe P (A,C) ni celle
de P (C|A,B) pour calculer P (C), mais nous pouvons propager la probabilité
localement.

L’indépendance conditionelle permet de décomposer une distribution jointe
de probabilités en un produit de complexité réduite. En analogie avec des va-
riables indépendantes A et B, où P (A,B) = P (A) · P (B), si A et B sont
conditionellement indépendants étant donnée C on a

P (A,B,C) = P (A|C)P (B|C)P (C).

On peut donc représenter la distribution jointe des variables dans la figure 6.1
comme :

P (P,C,M,E, V,A) = P (P )P (C)P (M |P,C)P (E|P,C)P (V |C)P (A|M,E, V )

donc, au lieu d’une distribution qui compte 26 = 64 valeurs, on peut faire avec
2 + 2 + 8 + 8 + 4 + 16 = 40 valeurs. Si la différence n’est pas impressionante,
supposons qu’on rajoute 3 autres variables dont A est la seule cause, et la
comparaison sera entre 29 = 512 et 40 + 4 + 4 + 4 = 56 valeurs.

L’indépendance conditionnelle apparâıt dans deux types de structures, soit
dans des châınes causales :

A B C

soit lorsque plusieurs événements ont une cause commune :

B

A C
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Dans un graphe causal qui ne contient que ces deux structures comme sous-
graphes, il suffit de connâıtre les distributions de probabilités conjointes de
toutes les paires d’événements pour propager les probabilités dans les deux
sens.

Par contre, dans une structure où plusieurs causes conduisent au même
événement B, comme :

B

A

C

D

on rencontre une dépendance conditionnelle qui bloque le châınage de la propa-
gation des probabilités. A et C sont indépendants, mais deviennent dépendants
quand B est connu :

p(A|C) = p(A|¬C) = p(A)

p(A|B,C) 6= p(A|B)

et cela s’étend également aux descendants de B tels que D. La propagation
est néanmoins possible, mais il faut utiliser la distribution P (A|B,C) (ou bien
P (B|A,C) ou P (C|A,B), selon la direction de propagation - tous peuvent se
calculer à partir de P (A,B,C)).

En combinant ces trois types de structures, nous pouvons propager les pro-
babilités dans n’importe quelle structure causale. Comme une structure causale
ne peut pas contenir de cycles, elle établit parmi les variables un ordre tel que
les effets suivent les causes. Voici l’ordre pour l’exemple de la figure 6.1 :

variable nœud parents descendants
x0 P {} {M,E}
x1 C {} {M,E, V }
x2 M {P,C} {A}
x3 E {P,C} {A}
x4 V {C} {A}
x5 A {M,E, V } {}

L’algorithme général consiste à prendre les variables dans l’ordre et à calculer
P (xi) comme suit : en supposant l’indépendence des variables dans {parents(xi)},
on obtient d’abord la distribution jointe p(xi, parents(xi)) :

p(xi, {parents(xi)})← p(xi|{parents(xi)})
∏

yk∈parents(xi)

p(yk) (6.1)

et ensuite on marginalise les yk ∈ parents(xi) un par un dans une itération
d’opérations :

p(xi, y1, .., yk−1)←
∑

yk∈{vrai,faux}

p(xi, y1, .., yk)
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qui élimine la dernière variable de la distribution et va donc finalement laisser
que p(xi).

Pour appliquer cet algorithme, nous devons connâıtre pour chaque variable
la distribution conditionelle p(xi|{parents(xi)}). En pratique, il faut donc que
la structure soit telle que chaque nœud n’ait que peu de parents, afin d’éviter
des calculs prohibitifs. En tout cas, ce calcul sera plus efficace qu’un calcul
réalisé sans utilisation de la causalité et dans lequel on devrait considérer la
probabilité conditionelle non seulement des parents directs, mais de tous les
antécédants.

La méthode ci-dessus nous permet de calculer la probabilité des effets à
partir des causes. Cependant, pour estimer la probabilité de la présence d’un
cambrioleur, nous devons procéder dans le sens inverse, c’est-à-dire trouver la
probabilité des causes à partir des conséquences. C’est la question que nous
allons aborder ci-dessous.

6.3.3 Inférence abductive

Considérons un lien causal A → B. Nous avons vu que l’inférence de P (B)
peut se faire par propagation :

p(B) = p(B|A) · p(A) + p(B|¬A)(1− p(A))

En supposant qu’on connaisse une probabilité à priori p(A), on peut aussi
renverser le sens de la propagation, en utilisant la règle de Bayes :

p(A|B) =
p(A,B)

p(B)
=
p(B|A)p(A)

p(B)

= αp(B|A)p(A)

où on remplace p(B), qui n’est normalement pas connu, par 1/α, car α peut être
trouvé après coup en normalisant p(A|B)+p(¬A|B) = 1. On peut ainsi calculer
p(A) étant donné n’importe quel nombre d’effets B en les intégrant ceux-ci
l’un après l’autre. Par exemple, pour un événement Y qui a k conséquences
X1...., Xk :

p(Y |X1, .., Xk) = αp(Y )

k∏
i=1

p(Xi|Y ) (6.2)

où l’on obtient α simplement par le fait que la somme des probabilités pour
toutes les valeurs possibles de Y doit être égale à 1 :

α[p(Y )

k∏
i=1

p(Xi|Y ) + (1− p(Y ))

k∏
i=1

p(Xi|¬Y )] = 1

C’est en raison de cette utilisation de la règle de Bayes qu’on appelle souvent
de tels réseaux des réseaux bayésiens (Bayesian networks).
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Reprenons notre exemple de la maison intelligente. La question la plus intéres-
sante est de distinguer entre la présence du propriétaire et celle du cambrioleur.
Supposons que les détecteurs M et V sont actifs, mais pas E. En utilisant le
modèle causal, nous pouvons obtenir :

p(C|M,¬E, V ) = αc p(C)︸︷︷︸
=0.01

p(M |C)︸ ︷︷ ︸
=0.9

(1− p(E|C)︸ ︷︷ ︸
=0.5

) p(V |C)︸ ︷︷ ︸
=0.5

= 2.25 · 10−3αc

et nous pouvons obtenir αc :

p(¬C|M,¬E, V ) = αc p(¬C)︸ ︷︷ ︸
=0.99

p(M |¬C)︸ ︷︷ ︸
=0.5

(1− p(E|¬C)︸ ︷︷ ︸
=0.5

) p(V |¬C)︸ ︷︷ ︸
=0.0005

= 1.2375 · 10−4αc

⇒ αc = 1/(0.00225 + 0.00012375) = 1/0.00237375 = 421.27

et donc conclure p(C|M,¬E, V ) = 0.948.

Par contre, le calcul analogue pour la présence du propriétaire :

p(P |M,¬E, V ) = αp p(P )︸︷︷︸
=0.5

p(M |P )︸ ︷︷ ︸
=0.9

(1− p(E|P )︸ ︷︷ ︸
=0.99

) p(V |P )︸ ︷︷ ︸
=0.001

= 0.0000045αp

et

p(¬P |M,¬E, V ) = αp p(¬P )︸ ︷︷ ︸
=0.5

p(M |¬P )︸ ︷︷ ︸
=0.01

(1− p(E|¬P )︸ ︷︷ ︸
=0.005

) p(V |¬P )︸ ︷︷ ︸
=0.005

= 0.000024875αp

⇒ αp = 1/(0.000045 + 0.0000495) = 1/0.000029375 = 34042.55

et donc p(P |M,¬E, V ) = 0.153. Le système peut donc bien utiliser l’informa-
tion que seul le cambrioleur est susceptible de briser la vitre pour obtenir une
meilleure estimation. Il est évident qu’on peut ainsi construire des systèmes
d’alarme qui intègrent de nombreux capteurs et évitent des fausses alertes en
utilisant le comportement habituel des habitants. Cette technique d’inférence,
qu’on appelle aussi « naive Bayes », est très répandue dans la pratique.

Le raisonnement bayésien permet également de combiner des inférences dans
le sens de la causalité et dans le sens opposé. Par exemple, considérons une
châıne :

A B C

avec les propositions suivantes :

A = « il y a une épidémie de méningite »
B = « le patient a la méningite »
C = « le patient a mal à la tête »

et
p(B|A) = 1/100, p(B|¬A) = 1/50 000, p(C|B) = 0.5, p(C) = 1/20
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Dans le cas où il n’y a pas d’épidémie, nous avons p(B) = p(B|¬A) = 1/50 000
et la règle de Bayes donne le résultat :

p(B|C) =
p(C|B)p(B)

p(C)

=
0.5/50 000

1/20

= 1/5000

Donc, la méningite n’est pas facilement associée à un mal de tête. Par contre,
s’il y a une épidémie, p(B) = 1/100 et le calcul donne p(B|C) = 0.1.

La propagation des probabilités peut se concevoir comme une propagation
de « messages » entre les nœuds du graphe causal : des message du type π(B)
qui arrivent au nœud B depuis les parents (A), dans le sens de la causalité, et
des message du type λ qui arrivent depuis les descendants (C), dans le sens
inverse.

Considérons d’abord le cas où A et C sont observés avec certitude. On peut
alors calculer :

p(B)← απ(B)λ(B) (6.3)

où

π(B) = p(B|A)

λ(B) = p(C|B)

α = constante de normalisation

Afin de pouvoir facilement calculer la constante de normalisation, il convient
de propager pour chaque événement une combinaison de valeurs (p(vrai), p(faux)).
Cela permet à tout moment d’appliquer la normalisation pour obtenir des pro-
babilités.

Comme la châıne causale assure que A et C sont conditionnellement indé-
pendants étant donné B, le calcul correspond à :

p(B) = p(B|A,C)

= p(C|A,B)
p(B|A)

p(C|A)

= p(B|A)︸ ︷︷ ︸
π

p(C|B))︸ ︷︷ ︸
λ

1

p(C|A)︸ ︷︷ ︸
α

d’où on peut déjà savoir que α = 1
p(C|A) . En général, on peut déterminer α par

une normalisation normalisation qui assure que p(B) + p(¬B) = 1 :

p(B) + p(¬B)

= α(p(C|A,B)p(B|A) + p(C|A,¬B)p(¬B|A))

= α(p(C,B|A) + p(C,¬B|A))

= αp(C|A)
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ce qui nous donne également α = 1/p(C|A), mais s’applique de manière géné-
rale indépendamment de la complexité du calcul.

Si les valeus de A et C ne sont pas connues exactement, mais par des distri-
butions de probabilité P (A) et P (C), on peut appliquer le même calcul dans
une propagation (belief propagation). On décompose π(B) = P (B|A) · π(A) =∑
a∈A p(a)P (B|a) et λ(B) = P (C|B) · λ(B) =

∑
c∈C P (c|B)p(c) et applique le

même calcul de la formule 6.3.
La propagation s’applique également si il y a plusieurs déscendants. Consi-

dérons un nœud Y qui a un parent U et k descendants X1..Xk :

YU

X1

Xk

On calcule pour chaque valeur y de Y :

p(y) = α · π(y) · λ(y)

où

• π(y) =
∑
u p(y|u)πY (u),

où πY (U) est le message reçu de U et contient une probabilité pour chaque
valeur u de U .

• λ(Y ) =
∏k
j=1 λXj (y),

où λXj (y) est le message reçu de Xj .

• α est un facteur de normalisation pour que la somme des p(y) pour toutes
les valeurs de Y soit = 1.

et on envoie les messages :

• au parent U : λX(u) =
∑
x λ(x)p(x|u)

• aux descendants Yj : πYj (x) = απ(x)
∏
i 6=j λYj (x)

Si Y n’a aucun parent, alors π(y) est la probabilité à priori de y. Si Y est
une feuille, l’ensemble X est vide, et donc le produit λ(Y ) = 1. Si Y est observé,
alors p(y) est la probabilité après l’observation, et λ(y) est la distribution de
probabilités de y.

Notons cependant qu’une structure où un événement à plusieurs causes
possibles, comme suit :

B

A

C

D
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conduit à une dépendance conditionnelle qui bloque le châınage de la propaga-
tion des probabilités. A et C sont indépendants, mais deviennent dépendants
quand B est connu :

p(A|C) = p(A|¬C) = p(A)

p(A|B,C) 6= p(A|C)

L’intuition est la suivante : si A explique déjà B, C devient moins probable
comme explication. Donc, il y a une dépendance entre A et C. Cette dépendance
s’étend aussi aux effets de B, comme par exemple D. On dit alors que B et ses
descendants sont des nœuds qui bloquent le chemin entre A et C, et il n’est en
général pas possible de propager des probabilités sur de telles structures.

Une propagation locale des influences à travers une telle structure, par
exemple pour le calcul de P (A) à partir de P (B), n’est possible que si toutes
les autres causes sont indépendantes dans le graphe, dans l’exemple que A et C
sont indépendants tant que B n’est pas connu. Dans un tel cas, on peut calculer
P (A,B,C) = P (B|A,C)P (A)P (C) et P (A|B) par marginalisation des valeurs
de C : P (A|B) =

∑
x∈C P (A|B,C) = α

∑
x∈C P (A,B,C). Une telle indépen-

dance existe notamment aussi si les valeurs des autres causes sont connues
exactement, ou bien si on n’a aucune information (même indirecte) sur leur
valeur.

Si une telle indépendance n’est pas donnée, par exemple parce qu’il existe
des chemins causaux entre une autre variable Z et A et entre Z et C, la solution
est plus complexe. Pour une solution exacte, un graphe causal qui contient une
telle structure doit être transformé en un graphe qui ne la contient pas par des
méthodes de clustering. L’alternative est une solution approximative par une
simulation, ce que nous allons voir plus tard. La méthode du clustering consiste
en deux étapes :

1) Transformation du graphe en un graphe moral : pour tout nœud qui a
plusieurs parents, on « marie » les parents en ajoutant un arc.

2) On regroupe les cliques dans le graphe résultant en clusters et on construit
un supernœud pour chacun.

La propagation devra alors utiliser la distribution jointe de probabilités de
tous ces événements, et devient vite très coûteuse.

Dans l’exemple, de la figure 6.3, le clustering pourrait générer deux nœuds :

N1 = {O, Y, Z}
N2 = {X,Y, Z}

liés par un lien causal qui exprime les probabilités conjointes de ces combi-
naisons d’événements. Si les méthodes de clustering rendent la technique des
réseaux bayésiens parfaitement générale, ils augmentent considérablement la
complexité des réseaux et sont de ce fait difficiles à appliquer.

Une alternative au clustering est de calculer les probabilités par une simu-
lation des différents cas de figure qui peuvent se présenter dans le réseau et
de leurs fréquences d’occurrence. Cette méthode a eu beaucoup de succès en
pratique, bien qu’elle ne soit pas garantie de produire des résultats corrects.
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X

O Y

Z

Chemin1

Chemin2

Fig. 6.3 Exemple d’une partie d’un réseau qui contient un cycle.

6.3.4 Chemins de causalité multiples

Même si les réseaux bayesiens réduisent fortement la complexité de l’inférence
probabiliste, les distributions de probabilité conditionelle qu’on doit y formu-
ler demeurent parfois très complexes. Considérons notre système d’alarme : si
l’on devait y ajouter une vingtaine d’autres capteurs, comme on le ferait dans
une grande maison, la distribution P (A|{capteurs}) serait beaucoup trop com-
plexe pour être calculée explicitement lors de la propagation, comme l’exige
l’opération 6.1. Une telle explosion survient chaque fois qu’il existe des chemins
causaux multiples entre les causes et leurs conséquences.

Comme le calcul explicite de la distribution de probabilité jointe n’est pas
un but en soi, mais un moyen pour le calcul, on peut utiliser d’autres méthodes.
Une méthode qui s’est largement imposée consiste à réaliser une simulation du
raisonnement sur un grand nombre de cas de figure précis. Pour estimer P (A|C)
dans un réseau Bayesien qui comporte plusieurs nœuds intermédiaires, on peut
utiliser l’algorithme de simulation suivant :

1) Ordonner les nœuds par ordre causal.

2) Générer des instances d’état du réseau en commençant par les nœuds sans
parents, et en suivant les châınes causales :

• générer une valeur pour chaque descendant X dès que tous les pa-
rents ont obtenus une valeur, selon la distribution P (X|{parents}) du
réseau ;

• itérer jusqu’à ce que toutes les variables aient une valeur.

3) Enregistrer la fréquence des paires de valeurs pour C et A jusquà ce qu’un
nombre suffisant de valeurs aient été obtenu.

4) Estimer P (A,C), et donc P (A|C) = P (A,C)/P (C), par la fréquence ob-
servée.

Dans l’exemple du système d’alarme, on simulerait différents comportements
du propriétaire et du cambrioleur, selon les probabilités données. Rappelons la
structure du graphe :
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nœud parents descendants
P {} {M,E}
C {} {M,E, V }
M {P,C} {A}
E {P,C} {A}
V {C} {A}
A {M,E, V } {}

On commence par générer un échantillon pour P et C selon leur distribution à
priori. Ensuite on génère aléatoirement des valeurs précises pour chaque variable
descendante, en accord avec les probabilités conditionelles telles qu’elles figurent
dans le réseau. On répète ensuite ce processus un grand nombre de fois pour que
les probabilités se stabilisent. Par exemple, on pourrait générer les échantillons :

P C (M,E,V) A
1 1 0 (1,0,0) 1
2 0 0 (0,0,0) 0

...
50 0 1 (1,0,1) 1

...

pour finalement estimer les probabilités selon les fréquences. Si parmi 10 000
échantillons, on en trouve 53 dans lesquels le propriétaire a déclenché l’alarme
sur 754 dans lequels le propriétaire était présent, on peut estimer :

p(A|P ) =
count(A,P )

count(P )
=

53

754
= 0.07

Si on trouve 4 échantillons dans lesquels le cambrioleur a déclenché l’alarme
sur 5 où il était présent, cela nous donne :

p(A|C) =
count(A,C)

count(C)
=

4

5
= 0.8

Le point faible est évidement que sur les 10 000 échantillons, on n’en a utilisé
que 5 pour estimer p(A|C) ! En pratique, il convient donc de ne simuler que les
scénarios qui ont effectivement un intérêt, ou en tout cas de surpondérer ces
événements. Ici, on aimerait surpondérer les événements où le cambrioleur est
présent.

Dans un cas où la variable dont nous voulons surpondérer la probabilité n’a
pas de parents, cela peut se faire facilement : on ne génère que les échantillons
avec les valeurs voulues, c’est-à-dire ici les échantillons où le cambrioleur est
présent. Dans le cas présent, on peut se limiter aux cas où le cambrioleur est
présent et générer un nombre d’échantillons beaucoup plus significatif que les
5 qu’on a obtenu par un échantillonage purement aléatoire.

Que faire, cependant, si on veut changer la pondération d’une variable dé-
pendante, comme M ? On devrait traduire cela en une condition sur les parents,
C et P , mais il n’y a pas de calcul systématique qui nous permet de générer
des échantillons de C et P qui aboutissent sur la distribution voulue de M .
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Dans un tel cas, il convient de générer une séquence d’échantillons, dont
chacun est fonction du précédent. Comme les échantillons forment une châıne
de Markov (dans laquelle chaque élément dépend uniquement du précedent),
on parle alors de Markov Chain Monte Carlo (MCMC). La technique la plus
connue est celle de l’échantillonage de Gibbs (Gibbs sampling).

Dans cette méthode, on fixe les variables connues à leur valeur, et ne les
fait jamais varier. Pour toutes les autres variables, on génère à chaque itéra-
tion de nouvelles valeurs en fonction des valeurs des variables voisines. Dans un
réseau bayésien, une variable xi est conditionellement indépendant de toutes
les autres variables étant donnée sa couverture de Markov (Markov blanket)
MB(xi), définie comme ses parents, descendants directs et parents de ces des-
cendants. Comme ces variables ont toutes des valeurs connues, on peut calculer
la distribution de xi étant donné l’état de toutes les variables du réseau :

P (xi|MB(xi)) = αP (xi|parents)
∏

Yi∈descendants(Xi)

P (yi|parents(Yi))

où α est un facteur de normalisation qui reflète les probabilités des variables
de MB(xi) et qui sera calculé tel que

∑
xi
P (xi|MB(xi)) = 1.

À chaque itération, on choisit donc une variable xi dont la valeur n’est pas
fixée par une pondération et génère l’état suivant en lui attribuant une nouvelle
valeur selon la distribution calculée ci-dessus. La mise à jour se déroule dans
un ordre tel que les parents prennent les valeurs de l’itération courante, tandis
que leurs descendants gardent les valeurs de l’itération précédente tant qu’ils ne
sont pas mis à jour. On appelle cette manière de procéder l’échantillonage selon
Gibbs (Gibbs sampling). On peut montrer que la distribution des échantillons
générés par le Gibbs sampling converge vers celle qu’on pourrait observer dans
le sous-ensemble des échantillons d’une simulation complète dont les variables
fixes possèdent les valeurs voulues.

On procède aussi parfois en deux phases : stabilisation des distributions,
puis échantillonage.

Dans notre exemple, supposons que nous voulons estimer p(A|C,M). On ne
génère alors que des échantillons où les valeurs de C et M sont fixées à 1 :

(C,M) P E V A
1 (1,1) 0 1 0 1
2 (1,1) 1 1 0 0
3 (1,1) 0 0 1 1
4 (1,1) 0 0 1 1
5 (1,1) 1 0 1 0

...

L’estimation de la probabilité p(A|C,M) se fait simplement en comptant la
fréquence de A ; par exemple si on a observé A = 1 dans 55 échantillons sur
100 :

⇒ Pr(A|C,M) =
count(A)

nombre d’echantillons
=

55

100
= 0.55

On peut appliquer ces techniques soit pour effectuer une inférence spécifique,
soit pour faire une sorte de compilation d’un réseau complexe, dont on élimine
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les variables intermédiaires pour ne garder que la relation conditionelle entre
les variables dont la valeur est fixée à l’entrée et le résultat final. Par exemple,
pour un diagnostic médical, on pourrait extraire la distribution conditionelle
p(maladie|symptômes visibles) afin de pouvoir l’appliquer de manière efficace
sans passer par toute la châıne causale.

6.3.5 Applications

Les réseaux bayésiens ont connu un fort succès pratique, notamment dans des
applications de diagnostic. Leur utilité repose sur deux observations. La pre-
mière est qu’il est très facile pour un expert d’identifier les liens qui devraient
figurer dans le réseau. La deuxième est que les résultats obtenus, c’est-à-dire
la proposition qui est jugée la plus probable, sont très peu sensibles au choix
précis des probabilités : les performances du système sont acceptables même si
les probabilités sont estimées de manière grossière.

Parmi de nombreuses applications, on trouve :

• des systèmes de diagnostic médical,

• des systèmes de diagnostic de réacteurs d’avions,

• la plupart des filtres anti-spam,

• les divers assistants dans les logiciels de Microsoft.

Littérature

La logique floue a été présentée dans [21] et a ensuite été mentionnée dans
de nombreuses autres publications. La modélisation et l’inférence dans les ré-
seaux probabilistes bayésiens sont décrites dans [22], qui est la référence la plus
connue, et aussi dans [23]. Le livre de Koller et Friedman [24] est une reférence
très complète sur les techniques d’inférence Bayesiens, et celui de Darwiche [25]
est un ouvrage plus compact et axé sur la pratique.

Les aspects liés à la modélisation de la causalité sont décrites dans un ex-
cellent livre de Pearl [26].

Outils - domaine public

Il existe de nombreux outils pour le raisonnement et la construction de réseaux
bayésiens. Citons par exemple les Bayesian Network tools in Java (BNJ) :

http://sourceforge.net/projects/bnj

On peut mentionner également les extensions pour des programmes comme
Maple.

Pour l’utilisation pratique de l’inférence probabiliste, il convient souvent de
compiler le modèle pour permettre une inférence rapide. Le logiciel Ace est un
tel compilateur :

http://reasoning.cs.ucla.edu/ace/
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Outils - commercial

Les techniques de raisonnement incertain et surtout les méthodes des réseaux
bayésiens font partie de toutes les logiciels d’Intelligence Artificielle commercia-
lisés par les grands fournisseurs tels que IBM, Microsoft ou HP. Comme societé
qui commercialise un outil spécifique pour les réseaux Bayesiens, citons Hugin
Expert (http://www.hugin.com).

Application : voitures autonomes

Conduire une voiture peut être un plaisir, mais aujourd’hui, pour beau-
coup, il s’agit plutôt d’une corvée dont on aimerait bien se passer. Qui
n’aimerait pas avoir son propre chauffeur et utiliser le temps du parcours
à travailler ou faire une sieste ?

Le progrès de la technologie a été rapide : lors d’un premier concours de
l’agence de recherche US DARPA en 2004, aucun des véhicules n’a réussi
à traverser plus de 5% du parcours de 150 miles dans le désert. Déjà
une année après, une VW modifée par une équipe de Stanford a effectué
le trajet en moins de 7 heures. En 2009, la même équipe, reprise par
Google, lançait les premières voitures autonomes sur les routes publiques
en Californie. On parle d’une commercialisation à large échelle avant 2020.

La technologie qui a rendu possible cette performance est celle des ré-
seaux bayésiennes. Les voitures reconnaissent leur position, les panneaux
et autres participants par des capteurs et systèmes de vision. L’informa-
tion est assemblée dans un réseau bayésien pour donner une image précis
de la situation du vehicule et du traffic, et ainsi permettre la planification
du mouvement.

L’inférence bayésienne est essentielle pour réussir l’intégration cohérente
des informations des capteurs et la situation dynamique du traffic qui
nécessite une adaptation constante du modèle par des inférences logiques.
Par des années d’essais, Google a construit une base de connaissances assez
complète des situations qui peuvent se produire dans le traffic habituel, ce
qui en fait un conducteur « système expert » chevronné !

(Source : Google Self-Driving Car Project : How it works
https ://www.google.com/selfdrivingcar/how/ (chargée le 26.5.2016))

6.4 Exercices

Exercice 6.1 Première partie - Réseaux Bayésiens

La première série d’exercices traitera des réseaux bayésiens, mais sans pro-
grammation. Le but est de passer en revue les principes du raisonnement pro-
babiliste, la modélisation des liens de causalité et l’inférence dans un réseau
bayésien.
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Dans la deuxième partie, vous modifierez le moteur d’inférence à châınage
avant avec variables que nous avons développé dans les exercices des chapitres
précédents afin de prendre en compte la possibilité d’incertitudes dans les faits
et les règles.

Exercice 6.1.1 Raisonnement probabiliste

Après votre bilan de santé annuel, vous recevez par courrier les résultats de
vos examens : vous avez été testé positif à une maladie grave. Les taux de
faux positifs et négatifs sont de 1 %, c’est-à-dire que la probabilité que le test
classifie un patient sain comme étant malade ou un malade comme étant sain
est de 0.01. Par bonheur, cette maladie est extrêmement rare : elle ne frappe
qu’une personne sur dix mille.

Question 1. À l’aide d’un raisonnement probabiliste, expliquez pourquoi la
rareté de la maladie est une chance pour vous. Indication : utilisez la règle
d’inférence bayésienne, T = Test et M = Maladie constituant les événements
concernés.

Exercice 6.1.2 Causalité

Les liens de causalité expriment des relations du type si A = 1, alors B = 1,
c’est-à-dire, selon le formalisme de la logique propositionnelle, des règles du
type A ⇒ B, A et B étant deux prédicats booléens. Lorsque le raisonnement
est incertain, la causalité peut être établie via un raisonnement probabiliste :

(A⇒ B) devient (A⇒ B avec probabilité P (B|A))

L’inférence bayésienne
(1)

consiste alors généralement à partir d’une obser-
vation sur B afin d’établir la probabilité selon laquelle A est vrai, c’est-à-dire
que l’on remonte la châıne de causalité. Cet exercice a pour but de vous donner
une idée de la raison pour laquelle cela est généralement le cas.

Considérons une petite histoire. L’inspecteur Smith se trouve à Priory School
(2)

.
Il attend le détective Holmes et son ami, le docteur Watson, pour enquêter sur
la disparition d’un professeur. Mais ils sont en retard. Tous deux ont la répu-
tation d’être mauvais conducteurs et l’inspecteur Smith se demande si la route
est gelée, ce qui leur causerait certainement de gros ennuis. Il téléphone à sa
secrétaire, Miss Lovelace, qui l’informe que le Dr Watson a effectivement eu un
accident. Voici leur conversation :

Smith — Un accident ? Bien, la route étant probablement gelée, il
est probable que Holmes ait aussi eu un accident !

Lovelace — La route, gelée ? Non, certainement pas : il ne fait pas si
froid et les routes ont été sablées.

Smith — Pas de chance pour Watson alors. Attendons Holmes encore
dix minutes. . .

(1)
http://www.ai.mit.edu/courses/6.825/fall02/pdf/6.825-lecture-15.pdf

(2)
https://en.wikipedia.org/wiki/The_Adventure_of_the_Priory_School
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Le lendemain, l’épouse de Watson, Mary, lit le journal. Elle découvre l’ac-
cident de son mari et apprend que le professeur de Priory School a été sauvé
et les ravisseurs arrêtés. Voici ses pensées :

— Ils ont arrêté les ravisseurs ? Alors, Holmes n’a probablement pas
eu d’accident, donc la route n’était probablement pas gelée.

Elle lit ensuite qu’il ne faisait pas si froid et que les routes avaient été sablées.
Elle se dit :

— Décidément, Holmes a évité l’accident.

Modélisation du problème

Question 1. Formalisez les relations entre les événements de cette petite histoire
à l’aide d’un réseau bayésien à quatre nœuds :

• I=Route-Gelée

• H=Accident-Holmes

• W=Accident-Watson

• S=Professeur-Sauvé

Question 2 (Inférence déductive). Si l’on connâıt la probabilité de l’événement
I, P (I) :

• Comment peut-on calculer les probabilités P (H) et P (W ) des événements
H et W ? De quelles informations faut-il disposer quant aux relations entre
I, H et W ?

• Comment peut-on calculer la probabilité P (S) de l’événement S ? Quelles
informations nous faut-il sur les relations entre I, H, W et S ?

Question 3 (Inférence abductive). Comment peut-on exprimer la probabilité de
l’événement I lorsqu’on sait si l’événement W s’est produit ou pas (W = 1 ou
W = 0) ? Si l’on connâıt P (I), quelles informations nous faut-il sur la relation
entre I et W pour calculer cette probabilité ?

Question 4 (Déduction et abduction). Si on connâıt P (I) :

• Comment peut-on exprimer la probabilité de l’événement H lorsqu’on sait
si l’événement W s’est produit ou pas ? Quelles informations nous faut-il
sur les relations entre I, W et H pour calculer cette probabilité ?

• Comment peut-on exprimer la probabilité de H lorsqu’on sait si les événe-
ments W et S se sont produits ou pas ? Quelles informations nous faut-il
sur les relations entre I, H, W et S pour calculer cette probabilité ?

• Comment peut-on exprimer la probabilité de H lorsqu’on sait si les évé-
nements I, W et S se sont produits ou pas ? Quelles informations nous
faut-il sur les relations entre I, H, W et S pour calculer cette probabilité ?
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Calcul probabiliste

Ajoutons maintenant les informations sur les relations de ce réseau. Sachant
qu’il est probable que la route soit gelée et que Holmes et Watson soient de
mauvais conducteurs, nous considérerons que :

P (I = 1) = 0.7
P (H = 1|I = 1) = 0.9, P (W = 1|I = 1) = 0.7
P (H = 1|I = 0) = 0.1, P (W = 1|I = 0) = 0.5

Ensuite, sachant que la présence de Holmes est essentielle pour la résolution
d’une affaire, nous considérerons que :

P (S = 1|H = 1,W = 1) = 0.1
P (S = 1|H = 1,W = 0) = 0.2
P (S = 1|H = 0,W = 1) = 0.8
P (S = 1|H = 0,W = 0) = 1

Question 5. Complétez les tableaux des probabilités conditionnelles P (H|I) et
P (W |I).

P (H|I) I = 1 I = 0 P (W |I) I = 1 I = 0
H = 1 W = 1
H = 0 W = 0

Question 6. À partir de ces tableaux, calculez les probabilités que Holmes et
Watson aient eu un accident, P (H = 1) et P (W = 1).

Question 7. Dès que Miss Lovelace l’a informé que Watson a eu un accident,
Smith déduit que les routes sont probablement gelées. Calculez la probabilité
P (I = 1|W = 1).

Question 8 (Dépendance). Ensuite, il en déduit que Holmes a probablement eu
un accident aussi. Quelle est la probabilité P (H = 1|W = 1) ? Comparez-la
avec P (H = 1) : H et W sont deux événements dépendants.

Question 9 (Indépendance conditionnelle). Dès que Miss Lovelace l’informe que
les routes ne sont pas gelées, Smith revient sur ses conclusions. Quelle est la
probabilité P (H = 1|W = 1, I = 0) ? Comparez-la avec P (H = 1|I = 0) : H et
W sont deux événements indépendants, étant donné I.

Question 10. Complétez le tableau de la probabilité conditionnelle P (S|W,H) :

P (S|W,H) H = 1, W = 1 H = 1, W = 0 H = 0, W = 1 H = 0, W = 0
S = 1
S = 0

Question 11 (Causes multiples). À partir de ce tableau, calculez la probabilité
que le professeur ait été sauvé, P (S = 1).

Question 12. En découvrant l’accident de son mari et le dénouement de l’affaire
de la Priory School, Mary conclut que Holmes a évité l’accident. Quelle est la
probabilité P (H = 1|W = 1, S = 1) ?



134 Systèmes à base de connaissances

Question 13 (Abduction avec plusieurs conséquences). Ensuite, elle déduit que
les routes n’étaient pas gelées. Quelle est la probabilité P (I = 1|W = 1, S = 1) ?

Question 14. Finalement, elle découvre l’état des routes et déduit que Holmes
n’a certainement pas eu un accident. Quelle est la probabilité P (H = 1|I =
0,W = 1, S = 1) ?

Question 15 (Dépendance conditionnelle). Et si Mary n’était pas au courant
de l’accident de Watson ? Quelle est la probabilité P (H = 1|I = 0, S = 1) ?
Comparez-la avec P (H = 1|I = 0,W = 1, S = 1) : H et W sont deux événe-
ments dépendants, étant donnés I et S.

Question 16. Finalement, quelle cause pourrait expliquer l’accident de Watson ?
Peut-être ses pneus sont-ils trop vieux ? Modifiez le réseau en ajoutant le nœud
V=Vieux-Pneus-Watson.

Question 17. Comment peut-on exprimer la probabilité de l’événement V dès
lors qu’on sait si les événements I et W se sont produits ou pas ? Si l’on connâıt
P (V ), de quelles informations faut-il disposer sur les relations entre I, W et V
pour calculer cette probabilité ?

Solutions à la page 356

Exercice 6.2 Deuxième partie - Facteurs de Certitude

Dans cet exercice, nous allons modifier notre moteur d’inférence à châınage
avant de façon à intégrer la notion d’incertitude dans les faits et les règles.
Les modules ci-dessous représentent le squelette du programme que nous allons
développer.

Notez que le code de cette série s’appuie sur des modules développés dans
les chapitres précédents. Nous ne les reproduisons pas ici, mais il est nécessaire
de pouvoir les importer. Veillez à organiser vos dossiers en conséquence.

Module .../moteur_avec_variables_fc/facteurs_certitude.py :

def fc ou(fc1 , fc2 ):
print('à compléter')

def fc et (fc1 , fc2 ):
print('à compléter')

Module .../moteur_avec_variables_fc/regle_avec_variables_fc.py :

from .facteurs certitude import fc et

class RegleAvecVariables FC:
def init ( self , conditions , conclusion, fc=1.0):

print('à compléter')
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def depend de(self, fait , methode):
envs = {}

for condition in self .conditions :
# Si au moins une des conditions retourne un environnement,
# nous savons que la proposition satisfait une des conditions.
env = methode.pattern match(fait, condition, {})
if env != methode.echec:

envs[condition] = env

return envs

def satisfaite par ( self , faits , cond, env, env fc , methode):
print('à compléter')

def repr ( self ):
return '{} => {}, {}'.format(str(self.conditions),

str( self .conclusion),
str( self . fc ))

Module .../moteur_avec_variables_fc/connaissance_fc.py :

from .facteurs certitude import fc ou
from moteur avec variables fc. regle avec variables fc import RegleAvecVariables FC

class BaseConnaissances FC:
def init ( self ):

self . faits = {}
self . regles = []

def ajoute un fait( self , fait ):
print('à compléter')

def ajoute faits ( self , faits ):
for fait in faits :

self . ajoute un fait ( fait )

def ajoute une regle( self , description ):
print('à compléter')

def ajoute regles ( self , descriptions ):
for description in descriptions :

self . ajoute une regle(description)

Module .../moteur_avec_variables_fc/chainage_avant_avec_variables_fc.py :

from moteur sans variables.chainage import Chainage
from moteur avec variables. filtre import Filtre

class ChainageAvantAvecVariables FC(Chainage):
def init ( self , connaissances, methode=None):

Chainage. init ( self , connaissances)

if methode is None:
self .methode = Filtre()

else:
self .methode = methode
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def instancie conclusion ( self , regle , envs et fcs ):
print('à compléter')

def chaine( self ):
print('à compléter')

Module .../exemple_animaux.py :

from sys import argv, exit
from moteur avec variables fc. regle avec variables fc import RegleAvecVariables FC
from moteur avec variables fc.connaissance fc import BaseConnaissances FC
from moteur avec variables.unificateur import Unificateur
from moteur avec variables. filtre import Filtre
from moteur avec variables fc.chainage avant avec variables fc import

ChainageAvantAvecVariables FC

regles = [
([( ' placentaire ' , '?x' )], ( 'mammifère', '?x')),
([( 'marsupial', '?x' )], ( 'mammifère', '?x')),
([( 'monotrème', '?x' )], ( 'mammifère', '?x')),
([( ' placentaire−1', '?x' )], ( ' placentaire ' , '?x' )),
([( 'genre−placentaire', '?x' )], ( ' placentaire ' , '?x' )),
([( 'a−des−poils', '?x' ), ( 'a−des−bébés−formes', '?x'),

( 'température−stable', '?x' )],
( ' placentaire−1', '?x' ), 9.0/10.0),

([( 'a−des−poils', '?x' ), ( 'a−des−bébés−foetaux', '?x'),
( 'température−stable', '?x' )],

( 'marsupial', '?x' ), 95.0/100.0),
([( 'a−des−oeufs', '?x'), ( 'a−des−poils', '?x' ),

( 'température−stable', '?x' )],
( 'monotrème', '?x')),

([( ' singe ' , '?x' )], ( 'genre−placentaire', '?x' )),
([( 'primate', '?x' )], ( ' singe ' , '?x' )),
([( ' l émurien', '?x' )], ( ' singe ' , '?x' )),
([( 'chimpanzé', '?x' )], ( 'primate', '?x' )),
([( ' gorille ' , '?x' )], ( 'primate', '?x' )),
([( 'canidé' , '?x' )], ( 'genre−placentaire', '?x' )),
([( 'chien ' , '?x' )], ( 'canidé' , '?x' )),
([( ' loup' , '?x' )], ( 'canidé' , '?x' )),
([( ' lycaon' , '?x' )], ( 'canidé' , '?x' )),
([( ' fé lin ' , '?x' )], ( 'genre−placentaire', '?x' )),
([( 'chat' , '?x' )], ( ' fé lin ' , '?x' )),
([( ' lion ' , '?x' )], ( ' fé lin ' , '?x' )),
([( ' tigre ' , '?x' )], ( ' fé lin ' , '?x' )),
([( ' tigre−du−bengale', '?x')], ( ' tigre ' , '?x' )),
([( ' tigre−de−l−himalaya', '?x')], ( ' tigre ' , '?x' )),
]

if len(argv) < 2 or argv[1].lower() not in ('a' , 'b' ):
print('On attend au moins un arguments: A ou B')
exit (1)

if argv [1]. lower() == 'a':
faits initiaux = [

(( 'a−des−poils', 'blaireau ' ),),
(( 'a−des−bébés−formes', 'blaireau'),),
(( 'température−stable', 'blaireau ' ),),
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(( 'a−des−poils', 'é cureuil ' ),),
(( 'a−des−bébés−formes', 'écureuil'),),
(( 'température−stable', 'é cureuil ' ),),
(( 'chimpanzé', 'cheetah' ),),
(( ' gorille ' , 'bozo' ),),
(( ' singe ' , 'babouin' ),),
(( ' singe ' , 'paresseux' ),),
(( 'chien ' , ' bill ' ),),
(( ' loup' , ' loup−1'),),
(( ' lycaon' , ' lycaon−1'),),
(( 'chat' , ' mistigri ' ),),
(( ' lion ' , 'minet' ),),
(( ' tigre−du−bengale', 'tigre−du−bengale−1'),),
(( 'a−des−poils', 'kangourou'),),
(( 'a−des−bébés−foetaux', 'kangourou'),),
(( 'température−stable', 'kangourou'),),
(( 'a−des−oeufs', 'ornythorinque' ),),
(( 'a−des−oeufs', 'nouveau−spécimen'), 5.0/10.0),
(( 'a−des−poils', 'ornythorinque' ),),
(( 'température−stable', 'nouveau−spécimen'), 9.0/10.0),
(( 'température−stable', 'ornythorinque' ),),

]
elif argv [1]. lower() == 'b':

faits initiaux = [
(( 'a−des−oeufs', 'nouveau−spécimen'), 5.0/10.0),
(( 'température−stable', 'nouveau−spécimen'), 9.0/10.0),
(( 'a−des−poils', 'nouveau−spécimen'), 9.0/10.0),
(( 'a−des−poils', 'é cureuil ' ),),
(( 'a−des−bébé−formes', 'écureuil'),),
(( 'température−stable', 'é cureuil ' ),),
(( 'a−des−poils', 'un−spécimen−qui−ressemble−à−un−écureuil'), 0.9),
(( 'a−des−bébé−formes', 'un−spécimen−qui−ressemble−à−un−écureuil'), 0.7),
(( 'température−stable', 'un−spécimen−qui−ressemble−à−un−écureuil'), 0.8),

]

bc = BaseConnaissances FC()
bc. ajoute faits ( faits initiaux )
bc. ajoute regles ( regles )

moteur = ChainageAvantAvecVariables FC(connaissances=bc, methode=Filtre())
moteur.chaine()

moteur. affiche solutions ()

if len(argv) > 2 and argv[2].lower() == 'trace':
moteur. affiche trace ()

Exercice 6.2.1 Manipulation des facteurs de certitude

Dans cet exercice, nous aurons besoin de pouvoir combiner les facteurs de cer-
titude de faits entrant dans une relation logique les uns avec les autres. Com-
mencez donc par compléter la fonction fc_et de facteurs_certitude.py, qui
prend comme paramètres deux facteurs de certitude devant exister conjointe-
ment et qui retourne le minimum des deux. Cette fonction sera utilisée par la
méthode RegleAvecVariables_FC.satisfaite_par, que nous verrons ci-dessous,
pour calculer le facteur de certitude associé à un ensemble de conditions.
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Dans le même module, codez aussi une fonction fc_ou qui prend comme
paramètres les facteurs de certitude de deux faits identiques par leur contenu
(même proposition) et qui retourne le facteur de certitude résultant. Cette fonc-
tion sera utilisée par la méthode BaseConnaissances_FC.ajoute_un_fait pour
réaliser la mise à jour des facteurs de certitude.

Exercice 6.2.2 Le faits et les règles

Des facteurs de certitude doivent être associés aux faits et aux règles. Le langage
Python ne permettant pas d’utiliser des structures au sens des struct du C,
nous ferons usage de tuples de la forme (fait, fc), où fait est le fait que l’on
veut définir et fc un facteur de certitude. Nous aurons ainsi par exemple :

fait = (('père' , 'Jean', 'Paul'), 9/10)

D’une façon analogue, la classe RegleAvecVariables_FC implémentera une
règle avec trois attributs :

• conditions : la liste des conditions de la règle ;

• conséquence : la conséquence de la règle ;

• fc : le facteur de certitude associé à la règle.

Nous aurons ainsi par exemple :

regle = RegleAvecVariables FC([('père', '?x' , '?z' ), ( 'père' , '?z' , '?y' )],
( 'grand−père', '?x' , '?y' ),
8/10)

RegleAvecVariables_FC s’inspire donc de la classe RegleAvecVariables du
moteur de châınage avant en lui ajoutant un attribut self.fc, qui contiendra
la valeur du facteur de certitude associé. Le constructeur de la règle, que vous
devez compléter, devra prendre trois arguments, en accord avec la définition
ci-dessus. Pour simplifier la création de nouvelles règles, vous pouvez stipuler
que l’argument correspondant au facteur de certitude soit optionnel, avec une
valeur par défaut de 1.0.

La méthode RegleAvecVariables.satisfaite_par : La méthode depend_de de
la classe RegleAvecVariables peut être reprise telle quelle. Il faut en revanche
modifier la méthode satisfaite_par de sorte qu’elle prenne comme arguments :

• La liste des faits déjà connus ;

• La condition testée avec succès par depend_de ;

• L’environnement résultant de l’appel à depend_de ;

• Le facteur de certitude associé au fait qui a déclenché la règle ;

• La classe de pattern matching (filtre ou unificateur) utilisée.

La valeur de retour doit être une liste de pairs d’environnements, accom-
pagnés chacun par le facteur de certitude associé. Le facteur de certitude d’un
nouvel environnement est donné par le minimum des facteurs de cet environ-
nement et du fait passé en argument à l’appel de la fonction pattern_match qui
a conduit à la découverte du nouvel environnement.
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Prenons par exemple (par simplification, les faits et règles ne sont pas écrits
selon le format interne) :

règle = ([( 'vole ' , '?x' , '?y' ), ( ' est−découvert', '?x' )],
( 'en−prison', '?x' , 'pour−vol−de', '?y'), 8/10)

faits = [
(( 'vole ' , 'Jean', 'bijoux' ), 9/10),
(( 'vole ' , 'Paul', 'voiture ' ), 8/10),
(( ' est−découvert', 'Paul'), 6/10),
(( ' est−découvert', 'Jean'), 8/10))
]

# Fait déclencheur :
fait declencheur = (('est−découvert', 'Jean'), 8/10)

# Paires de conditions et environnements retournées par règle.depend de :
envs = {('est−découvert', '?x') : {'?x' : 'Jean'}}

# L'essai de la règle par le moteur àchâınage avant doit provoquer l 'appel
# suivant de règle. satisfaite par :
satisfaite par ( faits , ( ' est−découvert', `?x'), {'?x' : 'Jean'}, 8/10))
−> [({'?x': 'Jean', '?y' : 'bijoux'}, 8/10)]

La base de connaissances : La base de connaissances BaseConnaissances_FC doit
aussi être modifiée en adaptant les méthodes ajoute_un_fait et ajoute_une_regle
aux nouvelles définitions des faits et des règles :

• ajoute_un_fait(((’père’, ’Jean’, ’Paul’), 9/10)) ajoute le fait (’pè-

re’, ’Jean’, ’Paul’) à la base de connaissances avec un facteur de cer-
titude de 9/10 ;

• ajoute_un_fait((’père’, ‘Paul’, ’Marc’)) ajoute le fait (’père’, ’Paul’,

’Marc’) à la base de connaissances avec une facteur de certitude de 1 (va-
leur par défaut) ;

• ajoute_une_regle(([(’père’, ’ ?x’, ’ ?z’), (’père’, ’ ?z’, ’ ?y’)],

(’grand-père’, ’ ?x’, ’ ?y’), 8/10)) ajoute une règle à la base de connais-
sances avec un facteur de certitude de 8/10 ;

• ajoute_une_regle(([(’père’, ’ ?x’, ’ ?z’), (’père’, ’ ?z’, ’ ?y’)],

(’grand-père’, ’ ?x’, ’ ?y’))) ajoute une règle à la base de connaissances
avec un facteur de certitude de 1.

La fonction ajoute_un_fait continue de jouer le même rôle que par le passé :
elle ajoute un fait à la base des faits si celui-ci n’est pas déjà connu. Cependant,
elle doit être modifiée pour tenir compte des facteurs de certitude. En effet, si
le fait à ajouter n’est pas nouveau (il a donc été démontré auparavant par
un chemin différent), il faut mettre à jour le facteur de certitude associé pour
refléter la nouvelle valeur de certitude. Utilisez la méthode fc_ou dans ce cas.
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Exercice 6.2.3 Le moteur d’inférence à châınage avant avec variables

La méthode ChainageAvantAvecVariables.instancie_conclusion : Comme au-
paravant, la méthode instancie_conclusion de la classe ChainageAvantAvec-

Variables_FC doit instancier la conséquence d’une règle au moyen d’une liste
d’environnements. Cependant, les nouveaux faits doivent maintenant se voir
affecter un facteur de certitude, qui dépendra du facteur de certitude de la
règle et de celui qui résulte des conditions. Elle doit donc prendre en paramètre
une liste de paire d’environnements associés à leurs facteurs de certitude, et
retourner les instanciations de la conclusion, munies chacune de leur facteur de
certitude.

Prenez bien en compte la formule de calcul du facteur de certitude résultant
de l’application d’une règle. Exemple :

règle = ([( 'vole ' , '?x' , '?y' ), ( ' est−découvert', '?x' )],
( 'en−prison', '?x' , 'pour−vol−de', '?y'), 8/10)

instancie conclusion (règle ,
[({ '?x' : 'Jean', '?y' : 'bijoux'}, 8/10),
({ '?x' : 'Paul', '?y' : 'voiture '}, 6/10)])

−> [(('en−prison', 'Jean', 'pour−vol−de', 'bijoux'), 16/25),
(( 'en−prison', 'Paul', 'pour−vol−de', 'voiture'), 12/25)]

La méthode ChainageAvantAvecVariables_FC.chaine :Les faits dont le facteur de
certitude est négatif ne doivent pas être utilisés comme déclencheurs, même s’ils
sont consignés dans la base des faits. Implémentez donc la méthode de châınage
avant chaine de ChainageAvantAvecVariables_FC en tenant compte des modifi-
cations apportées aux autres fonctions et en vous inspirant de l’algorithme
suivant :

ChainageAvantAvecVariables FC(faits depart, regles)
1. solutions <− liste vide
2. Q <− faits depart
3. WHILE Q n'est pas vide DO
4. q <− premier(Q)
5. Q <− reste(Q)
6. IF q n'est pas dans solutions THEN
7. ajouter q à solutions
8. IF le facteur de certitude fc de q est plus grand que 0 THEN
9. FOR EACH règle r de regles DO
10. envs <− toute les paires de conditions et environnements issues

du pattern matching réussi entre q et les conditions de r
11. FOR chaque condition cond et environnement env de envs DO
12. envs1 <− toutes les paires environnements et fcs é tablis

par le pattern matching des conditions restantes
de r étant donné env

13. FOR chaque environnement env1 et facteur fc1 de envs1 DO
14. instances <− instanciation de la conclusion de r selon

env1 et fc1
15. ajouter instances en queue de Q
16. END FOR
17. END FOR
18. END FOR
19. END IF
20. END IF
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21. END WHILE
22. RETURN solutions
END ChainageAvantAvecVariables FC

Test du programe

Le module exemple_animaux.py contient des règles et des faits modélisant une
petite partie d’un arbre de classification des mammifères. Après avoir écrit
votre programme, testez-le sur le premier exemple en ajoutant l’option A. Vous
pouvez afficher la trace en utilisant l’option trace.

python3 exemple animaux.py A
python3 exemple animaux.py A trace

Le module contient un deuxième exemple que vous pouvez exécuter avec la
commande :

python3 exemple animaux.py B
python3 exemple animaux.py B trace

Solutions à la page 361





Deuxième partie

Le raisonnement basé sur
modèles





L’informatique classique procède selon le principe de la déduction : des en-
trées bien définies sont transformées en un ou plusieurs résultats. La transforma-
tion elle-même s’effectue de manière indépendante du contexte ; un programme
fonctionne de la même manière dans toutes les situations.

En Intelligence Artificielle, on considère en plus la possibilité qu’un pro-
gramme déductif puisse être appris en observant un grand nombre de paires
entrées-résultats. Par exemple, on peut programmer une voiture autonome par
un apprentissage à partir d’observations portant sur le comportement d’un
conducteur humain.

Cependant, le résultat souhaité dépendra souvent du contexte et des objec-
tifs ; souvent aussi, on ne possède pas d’expérience antérieure qui puisse servir
de modèle. Une voiture autonome peut ainsi se retrouver rentrer dans des si-
tuations pour lesquelles aucune expérience n’est disponible, par exemple sur
des chantiers ou lors d’accidents de la route.

Dans de tels cas, il faut chercher une nouvelle solution en utilisant comme
modèle les connaissances déductives programmées ou apprises dans des situa-
tions analogues et plus fréquentes. Il s’agit d’imaginer des situations hypothé-
tiques dont on ne possède aucune experience préalable et d’en tirer la meilleure
solution du point de vue des objectifs que l’on s’est donnés. Cette capacité
d’imagination est une des caractéristiques qui expliquent la puissance de l’in-
telligence humaine.

En termes plus formels, on cherche alors un ensemble de paramètres qui,
associés à un modèle, rendront possibles des conclusions qui répondent aux
exigences du problème. Le raisonnement déductif part d’un modèle et de para-
mètres pour trouver des conclusions :

modèle ∧ paramètres ` conclusions

Dans le cas qui nous intéresse, nous disposons d’un modèle et de conclusions et
nous cherchons les paramètres qui rendront valide la dérivation des conclusions :

modèle ∧ conclusions ` paramètres

Par exemple,

• Dans une tâche de diagnostic portant sur un dispositif en panne, on pos-
sède un modèle du fonctionnement du dispositif et, comme conclusions, les
observations de son comportement actuel. On cherche comme paramètres
les composantes défectueuses qui expliquent ce comportement.

• Dans un problème de planification, le modèle consiste en l’ensemble des
opérateurs plus la situation de départ. Les conclusions sont les objectifs à
atteindre. On cherche comme paramètres une séquence d’opérateurs qui
garantisse que les buts seront atteints.

Souvent, ce raisonnement implique aussi une optimisation : on cherche le diag-
nostic le plus probable, ou bien le plan le plus efficace.

Ce type de raisonnement logique s’appelle l’abduction ; on parle aussi de
raisonnement basé sur des modèles ou de résolution de problèmes. L’abduction
n’est correcte que si on fait l’hypothèse d’un monde clos, c’est-à-dire si toutes
les possibilités d’obtenir les conclusions sont supposées connues. Par exemple,
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si on découvre un nouveau type de défaut d’un dispositif, un diagnostic qui n’a
pas pris en compte cette possibilité ne sera plus correct. Toutes les méthodes
pour résoudre un problème abductif font cette hypothèse du monde clos, et il
existe des différences importantes entre les méthodes quant à la façon de la
mettre en œuvre.

Dans le raisonnement basé sur des modèles, qui donne son titre à cette par-
tie, l’hypothèse d’un monde clos n’est prise en compte qu’au moment où le pro-
blème est résolu. L’abduction se fait donc directement sur la base du modèle, qui
pourrait également s’utiliser de façon déductive. Cela veut dire que le modèle
peut changer entre différentes applications du système sans qu’une reprogram-
mation soit nécessaire. Le prix à payer pour cette avantage est cependant que
l’abduction exige toujours une recherche entre les différentes valeurs possibles
des paramètres. Les principaux algorithmes d’abduction reposent donc sur des
algorithmes de recherche.

Dans cette deuxième partie, nous passerons d’abord en revue des algo-
rithmes de recherche généraux et ensuite des algorithmes adaptés à une classe
plus restreinte de problèmes abductifs, celle des problèmes de satisfaction de
contraintes. Enfin, nous examinerons deux applications, le diagnostic et la pla-
nification. Le diagnostic est le plus simple car dans ce cas, l’espace des solutions
possibles est clos : il se limite aux combinaisons des différentes composantes.
Par contre, la planification est un problème ouvert, car il n’y a aucune limite
aux nombre d’opérations requises.



Chapitre 7

Résolution de problèmes par

recherche

Comme nous l’avons déjà souligné dans l’introduction, les systèmes basés sur
la connaissance utilisent des méthodes de résolution différentes de celles pro-
posées par l’algorithmique classique. Ces méthodes s’appliquent aussi bien à
des problèmes admettant plusieurs solutions qu’à ceux qui n’en ont aucune.
Dans les systèmes algorithmiques par contre, pour tout problème, c’est une
solution unique qui est atteinte par un traitement direct. Les systèmes basés
sur la connaissance atteignent généralement un but en cherchant une solution
satisfaisante dans un espace d’alternatives. La recherche peut retourner une,
plusieurs ou même aucune solution.

Un processus de recherche est constitué de deux parties : un générateur de
solutions et un évaluateur du progrès effectué. Le moteur à châınage-avant, vu
précédemment, constitue l’exemple le plus simple de systèmes de recherche.
Il génère les solutions possibles en appliquant à la base de données la règle
d’inférence du modus ponens. L’évaluateur, pour sa part, contrôle si le but
désiré est atteint ou pas. Ce processus présente en fait deux inconvénients :

• Le mécanisme à châınage-avant est incapable de discerner des alternatives
mutuellement exclusives : tous les éléments de la base de faits se doivent
d’être simultanément valides. Cela implique également qu’il est impossible
de formuler des règles disjonctives de la forme : C ⇒ A ou B.

• Les états intermédiaires sur le chemin menant à la solution ne sont pas
évalués. La recherche est donc complètement aveugle jusqu’au moment où
la solution est effectivement atteinte.

Dans ce qui suit, nous verrons par quelles extensions il est possible d’éli-
miner ces deux problèmes. Le premier problème peut être contourné par la
construction d’un graphe de recherche explicite des différents environnements
d’alternatives, ce qui a déjà été utilisé dans l’algorithme de châınage arrière.
La solution au second problème consiste à utiliser des heuristiques d’évaluation
permettant de décider quelle partie du graphe il faut explorer.

7.1 Arbres et graphes de recherche

L’espace exploré par un processus de recherche est en fait un arbre constitué
de nœuds et d’arcs. Chaque nœud représente une étape d’inférence : un envi-
ronnement de buts dans un système à châınage arrière, ou bien une solution
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abstraite ou partielle. Les arcs correspondent aux applications des règles qui
transforment une solution partielle en une autre.

L’arbre de recherche décrit par la figure 7.1 montre une partie de l’espace
exploré en vue de résoudre le problème des quatre reines. Le but de ce problème
est de placer les reines sur un échiquier de seize cases de telle sorte qu’elles ne
soient pas en conflit, selon les règles du jeu d’échec (deux reines ne peuvent
occuper la même ligne, la même colonne ou la même diagonale). La recherche
de la figure 7.1 commence par une configuration alignant les 4 reines sur la
première ligne. Les règles sont des transformations d’équivalence déplaçant une
reine jusqu’à une position voisine au sein de sa colonne. Pour générer tous les
successeurs d’un nœud dans l’arbre, il suffit de lui appliquer toutes les règles
possibles. Notons qu’une telle recherche ne peut se faire par simple châınage-
avant, car les états résultants sont mutuellement incompatibles (une même reine
occupe plusieurs positions en même temps).

... ...

......

......

......

Solution

...

Fig. 7.1 Partie d’un arbre de recherche pour le problème des 4 reines.

Si deux règles s’appliquent dans un ordre différent à un nœud de l’arbre, la
situation résultante est identique. L’existence potentielle de tels cycles signifie
que l’espace de recherche n’est pas vraiment un arbre, mais plutôt un graphe
d’alternatives. Une plus grande économie peut être réalisée par détection ex-
plicite des cycles dans le graphe de recherche, ce qui évite d’explorer plusieurs
fois des nœuds identiques.

Le graphe de recherche peut être représenté implicitement par une fonction
succ(n) qui retourne une liste des successeurs liés par un arc au nœud n. En gé-
néral, la fonction succ correspond à l’application de toutes les règles d’inférence
au nœud n.
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Un algorithme de recherche commence toujours avec un ou plusieurs nœuds
initiaux. Il se termine avec la génération d’un nœud final qui remplit une condi-
tion de terminaison qui l’identifie comme étant une solution au problème. En
général, la recherche s’arrête dès qu’une solution est trouvée, et un algorithme
est optimal s’il trouve une solution dans un temps minimal.

La solution au problème peut être donnée par :

• la description du nœud final : par exemple un placement des quatre reines ;

• le chemin qui mène d’un nœud initial au nœud final : par exemple, dans un
problème de planification où l’on désire connâıtre la séquence d’opérations
à effectuer.

Dans le deuxième cas, il existe un deuxième critère d’optimalité, celui du
coût total des opérations sur le chemin trouvé. On n’admet alors que des algo-
rithmes qui trouvent effectivement la solution optimale au problème.

7.2 Algorithmes de recherche en profondeur-d’abord (DFS)
et en largeur-d’abord (BFS)

Il existe deux techniques extrêmes d’exploration d’un arbre de recherche : la re-
cherche en profondeur-d’abord (Depth First Search, ou DFS) et la recherche en
largeur-d’abord (Breadth First Search, ou BFS). La première tente d’atteindre
la solution le plus vite possible en explorant immédiatement les successeurs de
tout nœud généré, alors que la seconde étend l’arbre en générant les nœuds
couche par couche.

L’algorithme de recherche en profondeur-d’abord est décrit par la figure 7.2,
et la figure 7.3 met en évidence son fonctionnement sur un exemple.

À chaque étape, l’algorithme met à jour la file des nœuds non explorés.
C’est toujours le premier nœud de la file qui est étendu. Les nœuds résultants
sont ajoutés en tête de la file de sorte qu’ils soient explorés en premier dans les
étapes ultérieures. Dans l’exemple de la figure 7.3, l’algorithme explore donc

1: Function Recherche-DFS (Noeud-initial)

2: Q ← (Noeud-initial)

3: repeat

4: n ← first(Q), Q ← rest(Q)

5: if n est un noeud but, return n

6: S ← succ(n)

7: Q ← append(S, Q)

8: until Q est vide

9: return ECHEC

Fig. 7.2 Algorithme de recherche en profondeur-d’abord.
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Fig. 7.3 Exemple d’une recherche en profondeur-d’abord. La numérotation indique
la séquence d’exploration des nœuds.

tout d’abord les nœuds 1 à 4. Lorsqu’il n’existe aucun successeur, l’algorithme
poursuit son exploration en étendant le prochain nœud non encore visité. En
d’autres termes, il effectue un retour-arrière au niveau précédent. Les passages
des nœuds 4 à 5 et 5 à 6 sont des exemples de tels retours-arrière.

Les avantages de la stratégie profondeur-d’abord sont la simplicité de son
implémentation et le fait que l’algorithme ne requiert que très peu de mémoire :
uniquement le chemin entre le nœud initial et le nœud courant ainsi que les
alternatives non explorées sur ce chemin doivent être mémorisés.

L’un des problèmes majeurs de cette méthode de recherche se pose lorsque
le graphe contient des cycles. Cette possibilité est donnée lorsque les opérateurs
permettent des opérations réversibles. Par exemple, s’il était possible de revenir
sur le placement d’une reine après l’avoir posée, l’arbre de recherche pourrait
contenir, entre autres, le cycle décrit par la figure 7.4. L’algorithme peut alors
boucler à l’infini sans trouver de solutions. Il est toutefois possible de remédier
à cette situation en détectant les cycles et en évitant d’étendre des nœuds déjà
visités lors d’une étape précédente. Cela risque cependant de faire exploser
le temps de calcul, car chaque nœud doit être comparé à tous ceux qui l’ont
précédé.

Une alternative à la recherche en profondeur-d’abord est donnée par la mé-
thode de recherche en largeur-d’abord, dont l’algorithme est décrit par la fi-
gure 7.5, et la figure 7.6 donne un exemple de fonctionnement.

Du point de vue algorithmique, la seule différence entre les recherches en
largeur et en profondeur-d’abord réside dans le fait que les successeurs d’un
nœud sont placés en fin de file au lieu d’être insérés en tête (ligne 7 de la
figure 7.5). Cette modification implique que l’algorithme ne visite un nœud
donné de la couche (n + 1) qu’après avoir exploré tous ceux de la couche n,
comme le montre la numérotation de la figure 7.6. Cela signifie que la re-
cherche en largeur-d’abord nécessite beaucoup plus d’espace mémoire que celle
en profondeur-d’abord vu que l’ensemble des nœuds d’un niveau donné devient
rapidement important. En revanche, l’algorithme en largeur-d’abord trouvera
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Fig. 7.4 Une situation où l’algorithme de recherche en profondeur-d’abord entre dans
une boucle infinie.

1: Function Recherche-BFS (Noeud-initial)

2: Q ← (Noeud-initial)

3: repeat

4: n ← first(Q), Q ← rest(Q)

5: if n est un noeud but, return n

6: S ← succ(n)

7: Q ← append(Q, S)

8: until Q est vide

9: return ECHEC

Fig. 7.5 Algorithme de recherche en largeur-d’abord.

toujours une solution, s’il en existe une, et cette solution sera de surcrôıt op-
timale : ce sera la solution nécessitant le moins d’applications de règle. Par
contre, l’algorithme largeur-d’abord exige beaucoup de mémoire, car tous les
nœuds d’une même couche doivent être mémorisés.
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Fig. 7.6 Exemple d’une recherche en largeur-d’abord. La numérotation indique
l’ordre dans lequel les nœuds sont explorés.

7.3 Recherche en profondeur limitée

La recherche en largeur-d’abord a le défaut qu’elle utilise beaucoup de mé-
moire. Pour cette raison, elle n’est presque jamais utilisée en pratique, et on
applique surtout la recherche en profondeur-d’abord. Celle-ci présente cepen-
dant le problème que le chemin trouvé peut être loin d’être optimal. Même si
une solution peut être atteinte en générant peu de nœuds, si elle ne se trouve
pas sur le premier chemin visité, la recherche peut se perdre en examinant des
nœuds d’une grande profondeur sans trouver une solution.

On peut corriger ce problème si on savait déjà d’avance à quelle profondeur
l va se situer la solution dans l’arbre de recherche. On peut alors limiter à l la
profondeur d’un nœud pour la recherche en profondeur-d’abord à l. Dès qu’un
nœud atteint cette profondeur, on ne génère aucun successeur. On obligera ainsi
l’algorithme de revenir en arrière et d’examiner également les autres nœuds, un
peu comme le ferait la recherche en largeur d’abord. Cela nous donne l’algo-
rithme DLS (depth-limited search) qui prend comme paramètre la profondeur
maximale l :

1: Function DLS (Noeud-initial,l)

2: depth-limit(noeud-initial) ← l

3: Q ← (Noeud-initial)

4: repeat

5: n ← first(Q), Q ← rest(Q)

6: if n est un noeud but, return n

7: S ← succ(n)

8: for nn ∈ S do

9: depth-limit(nn) ← depth-limit(n)-1

10: if depth-limit(nn) ≥ 0 then Q ← append(nn,Q)

11: until Q est vide

12: return ECHEC
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Malheureusement, en général on ne connâıt pas d’avance la bonne valeur
de l. Une valeur trop petite ferait que l’algorithme manque la solution, tandis
qu’une valeur trop élevée signifierait un coût de recherche excessif.

On peut pallier cet inconvénient par la méthode appelée iterative deepening,
c’est-à-dire en commençant avec une valeur petite pour l qui sera augmentée si
on ne trouve pas de solution :

Function Iterative-deepening(Noeud-initial)

l← 2

repeat

solution← DLS(l)

l← l + 1

until solution 6= {}
Comme cet algorithme répète toujours la recherche de tous les niveaux pré-

cédents, on pourrait penser qu’il est peu efficace. Cependant, on peut montrer
que la complexité, exprimée en nombre de nœuds de l’espace exploré, ne dé-
passe pas le double de ce qu’on aurait obtenu si on avait commencé avec la
bonne valeur de la limite l. Cela est dû à la croissance exponentielle des nœuds
dans chaque couche de l’arbre de recherche. Supposons que chaque nœud a b
successeurs. Le nombre de nœuds dans un arbre de profondeur k est alors :

c(k) = 1 + b+ ...+ bk =
bk+1 − 1

b− 1

Si la première solution se trouve à la profondeur l, l’algorithme a exploré
tous les espaces de profondeur l, l − 1, ..., 1. Donc la complexité totale est :

l∑
i=1

c(i) =
1

b− 1

l∑
i=1

(bi+1 − 1)

=
bl+1

b− 1

[
(

l−1∑
i=0

b−i)− l

]

≤ (bl+1 − 1)

(b− 1)

(1− b−l)
(1− 1/b)

< c(l) · 2

pour autant que b ≥ 2. Donc, on obtient une méthode qui utilise peu de mé-
moire, trouve la solution la moins profonde et dont la complexité n’est pas
plus que doublée par rapport à une méthode qui connâıt la bonne profondeur
d’avance. L’algorithme du iterative deepening est donc très souvent appliquée
en pratique.

7.4 Détection explicite de cycles

Afin d’éviter la répétition de traitements précédemment effectués et de contour-
ner les boucles infinies de la recherche en profondeur-d’abord, il est utile de
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pouvoir détecter explicitement si un nœud donné a déjà été visité plus tôt.
Cette détection de cycles nécessite la maintenance d’une liste de nœuds déjà
explorés. En ajoutant cette liste C à la structure de l’algorithme de recherche
en profondeur-d’abord, on obtient l’algorithme modifié de la figure 7.7.

1: Function DFS-cycle(Noeud-initial)

2: Q ← (Noeud initial)

3: C ← vide

4: repeat

5: n ← first(Q), Q ← rest(Q)

6: if n n’est pas membre de C then

7: if n est un noeud but, return n

8: ajouter n à C

9: S ← succ(n)

10: Q ← append(S, Q)

11: until Q est vide

12: return ECHEC

Fig. 7.7 Algorithme de recherche en profondeur-d’abord avec détection de cycles.

Avant d’étendre un nœud donné, l’algorithme de recherche en profondeur-
d’abord modifié contrôle qu’il n’a jamais été visité. Si un nœud a fait l’objet
d’une précédente exploration, et que, par conséquent, ses successeurs ont déjà
été générés, les expansions ultérieures de ce nœud sont simplement abandon-
nées. Même s’il évite les cycles, ce traitement est sous-optimal. En effet, il se
peut très bien que le nouveau chemin emprunté par l’algorithme pour atteindre
le nœud soit plus court que le chemin original. Une version plus efficace consis-
terait à n’abandonner l’exploration du nœud que si son coût est plus élevé que
celui d’au moins une de ses précédentes explorations. Nous verrons plus loin
comment tenir compte de telles considérations.

7.5 Recherche d’une solution optimale

Souvent, on ne veut pas seulement trouver une solution, mais trouver la solution
qui a le moindre coût. Un modèle de coût couramment utilisé est de supposer
que chaque génération de successeurs rajoute un coût c(n′, n). Donc, si n est
successeur de n′, alors le coût g(n) :

g(n) = c(n′, n) + g(n′) = c(n′, n) +
∑

n′,n′′∈ancetres(n)

c(n′, n′′)

Ce modèle s’applique par exemple à la planification, en supposant que chaque
expansion correspond à une action au plan incomplet, et le coût du plan est
égal à la somme des coûts des actions.
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Une manière simple de trouver la solution optimale est de générer toutes les
solutions possibles et retenir celles qui ont le moindre coût. On peut exploiter
le fait que le coût augmente avec la profondeur de recherche pour éliminer
des possibilités qui ne peuvent pas être optimales avant de les générer : dès
que le coût de la solution partielle dépasse le coût d’une solution complète,
celle-ci ne pourra pas faire partie d’une solution optimale car son coût sera
forcément plus élevé. Cette observation nous mène à la méthode branch-and-
bound, qui consiste à modifier l’algorithme DFS pour que chaque fois qu’un
nœud est trouvé, l’algorithme mémorise si son coût est meilleur que le meilleur
trouvé et ne génère plus de successeurs. On continue alors la recherche au-delà
du premier nœud but jusqu’à ce que la liste OPEN devienne vide. La figure 7.8
montre l’algorithme résultant.

1: Function Recherche-DFS-BB (Noeud-initial)

2: Q ← (Noeud-initial) ; c ←∞ ; s ← ECHEC

3: repeat

4: n ← first(Q), Q ← rest(Q)

5: if n est un noeud but then

6: if coût(n) < c then c ← coût(n) ; sol ← n

7: else

8: S ← succ(n)

9: for m ∈ S do

10: if coût(m) < c then Q ← append(m, Q)

11: until Q est vide

12: return sol

Fig. 7.8 Algorithme DFS modifié pour optimisation par branch-and-bound.

L’algorithme DFS-BB s’avère pourtant toujours très gourmand en temps de
calcul, car il génère une grande partie de tous les nœuds de recherche possibles
dont beaucoup sont loin de la solution optimale. Il serait bien de mieux guider
la recherche vers la meilleure solution par exemple en choisissant des opérateurs
de moindre coût d’abord, ou en utilisant les opérateurs qui rapprochent le plus
rapidement du but. Ceci est l’idée de la recherche heuristique et notamment de
l’algorithme A*, décrit par la figure 7.9.

Le comportement de A* se trouve entre les deux extrêmes de la recherche
en profondeur-d’abord et la recherche en largeur-d’abord. La seule différence
entre l’algorithme de recherche en profondeur-d’abord et celui de recherche en
largeur-d’abord est liée à l’ordre selon lequel les nouveaux nœuds sont ajoutés
à la file Q des nœuds à explorer. Pour A*, les nouveaux nœuds ne sont pas
simplement rajoutés à Q, mais ils sont fusionnés de telle sorte que Q soit tou-
jours ordonnée par ordre croissant d’une certaine fonction d’évaluation f. La
fonction d’évaluation f(n) se calcule en sommant deux facteurs : le coût g(n) de
transformation du nœud initial en nœud n, et une estimation heuristique h(n)
du coût de la transformation de n en un nœud but. La fonction d’évaluation
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1: Function Recherche-A*(Noeud-initial)

2: Q ← (Noeud initial)

3: C ← vide

4: repeat

5: n ← first(Q), Q ← rest(Q)

6: if n 6∈ C, ou n ≡ n’ ∈ C mais g(n) < g(n’) then

7: if n est un noeud but, return n

8: ajouter n à C

9: S ← succ(n)

10: S ← sort(S,f)

11: Q ← merge(S, Q, f)

12: until Q est vide

13: return ECHEC

Fig. 7.9 A*, un algorithme de recherche heuristique optimal.

donne une estimation du coût total d’un chemin menant du nœud initial à un
nœud but en passant par le nœud n. En explorant les nœuds par ordre croissant
de cette estimation, l’algorithme privilégie les nœuds les plus prometteurs, c’est
à dire ceux qui ont le plus de chance d’aboutir à une solution optimale.

Comme exemple d’une recherche heuristique, considérez le graphe de la fi-
gure 7.10. La figure montre entre parenthèses l’estimation heuristique de chaque
nœud et sur les arcs le coût associé à l’opération.

a(10)

b(12)

c(4)
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e(4)

f(7 )

g(4)

h
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Fig. 7.10 Exemple d’une recherche heuristique.
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La recherche par A* procédera alors dans comme suit (les valeurs d’évalua-
tion de chaque nœud sont indiquées entre parenthèses) :

1. Q = (a(10)) ⇒
2. Q = (d(8),c(12),b(19)) ⇒
3. Q = (k(9),l(10),c(12),i(14),b(19)) ⇒
4. Q = (l(9),m(10),c(12),i(14),e(16),b(19)) ⇒
5. Q = (m(10),n(11),c(12),i(14),e(16),b(19)) ⇒
6. Q = (n(10),c(12),i(14),e(16),b(19)) ⇒
solution !

Notons que l’algorithme A* admet qu’on puisse trouver un nouveau chemin
à un nœud n qui a déjà été visité et se trouve donc sur la liste C. Si le nœud n

n’a pas encore été étendu, il suffit alors de mettre à jour son coût, son chemin
et sa position dans Q. Cela se fait à l’étape 3 de la trace ci-dessus, où le chemin
d → l est remplacé par d → k → l, qui est moins coûteux. Si la valeur
heuristique du nœud k avait été h(k) = 4 au lieu de 2, on aurait étendu l avant
k. Dans ce cas, on aurait dû également mettre à jour les évaluations de toutes
les conséquences de l au moment où l’on trouve le nouveau chemin par k.

Une caractéristique importante de A* apparâıt quand l’estimation heuris-
tique h(n) sous-estime toujours le coût de transformation de n en un nœud
but. Dans ce cas, on peut prouver que le premier nœud but trouvé par l’algo-
rithme sera toujours la solution optimale au problème. La recherche peut donc
s’arrêter, puisque l’on sait qu’aucune solution meilleure ne peut être trouvée
lors d’explorations ultérieures.

Si la fonction h(n) remplit en plus la restriction de monotonicité :

|h(n1)− h(n2)| ≤ c(n1, n2)

où c(n1, n2) est le coût de l’arc qui lie n1 et n2, alors on peut garantir que
l’algorithme découvre chaque nœud par le chemin optimal, c’est-à-dire que les
chemins trouvés par l’algorithme ne doivent jamais être révisés.

Le comportement de la recherche dépend fortement de la formulation des
fonctions h et c. Plus h se rapproche des coûts réels, plus l’algorithme converge
rapidement. En fait, si l’estimation fournie par h est totalement exacte, l’algo-
rithme n’explore aucun nœud inutile. Une bonne façon de trouver une heuris-
tique est de considérer une version simplifiée du problème dont on peut facile-
ment trouver une solution. Par exemple, lors d’une recherche dans un graphe,
on peut ignorer la contrainte qu’on peut se déplacer uniquement à travers les
arcs du graphe et permettre aussi d’autres mouvements. Dans le problème des
reines, on peut ignorer certaines possibilités qu’ils peuvent se capturer. Le coût
de la solution du problème simplifié est alors une heuristique qui sous-estime
le coût de la solution au vrai problème.

Dans les problèmes où le coût c n’a pas grande importance, on peut choisir
c(n) = 0. En revanche, l’estimation heuristique du nombre de transformations
à effectuer avant d’atteindre le but reste très utile pour accélérer le processus de
recherche. Finalement, on peut remarquer que la recherche en largeur-d’abord
n’est autre que A* avec c(n) = nombre de transformations déjà effectuées et
h(n) = 0.
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Comme pour la recherche en largeur-d’abord, l’algorithme A∗ peut devenir
très gourmand en mémoire à cause de la liste Q. On peut alors appliquer des
techniques similaires à l’iterative deepening :

• dans le beam search, on garde seulement les n meilleurs nœuds de Q et
on écarte les autres. C’est la manière la plus simple de limiter les besoins
en mémoire. Cette méthode ne garantit pas que la solution optimale soit
trouvée.

• Iterative Deepening A∗ : on effectue une recherche en profondeur-d’abord
jusqu’à un certain seuil de la fonction d’évaluation. Si aucune solution
n’est trouvée, on augmente le seuil par petites incrémentations. La pre-
mière solution trouvée sera alors optimale.

• Memory-bounded A∗ : ces techniques sont plus complexes. Elles permettent
d’« oublier » et de régénérer des nœuds de Q.

Littérature

Les principaux algorithmes de recherche sont traités dans des introductions
à l’algorithmique. L’article [27] donne un résumé des techniques. La méthode
de l’iterative deepening a été présentée pour la première fois dans [28]. L’algo-
rithme A∗ a été introduit dans [29] et l’optimalité de l’algorithme a été discutée
dans [30]. La référence [31] présente une version adaptée à un espace mémoire
limité.

Application : Routage de véhicules autonomes

Pour transporter des pièces et des matériaux entre les machines qui les
traitent, les usines modernes utilisent souvent des véhicules autonomes.
Ceux-ci sont habituellement programmés par des règles de comportement
qui définissent une façon de traiter les tâches sans collisions. Les règles
doivent être développées pour les situations spécifiques par des experts
hautement qualifiés. De plus, il est difficile de concevoir des règles qui
fonctionnent même en présence d’imprévus comme des pannes de véhi-
cules.

L’entreprise Lookahead Decisions a remplacé un système à règles par une
méthode qui cherche les meilleures combinaisons de chemins par recherche
heuristique (A*). Par rapport aux comportements fixes, cette méthode a
amélioré le débit de 83%, le temps moyen pour réaliser des tâches de 25%
et aussi le nombre d’arrêts de véhicules (une mesure de leur usure) de
48%. En plus, le nouveau système résiste mieux aux changements et ne
demande pas d’expert pour la mise à jour des règles de comportement.

(Source : Lookahead Decisions Case Study : Real-time routing of automa-
ted guided vehicles, www.lookaheaddecisions.com, 2003.)
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7.6 Exercices

Exercice 7.1 Résolution de problèmes par recherche

Dans cette série d’exercices, vous allez vous familiariser avec les trois principaux
algorithmes de recherche :

• en profondeur-d’abord (DFS),

• en largeur-d’abord (BFS),

• par A?.

À titre d’exemple, vous les utiliserez pour découvrir un chemin entre deux villes
étant donné leurs positions géographiques et les routes qui les connectent.

Modules squelettes

Les modules qui suivent constituent le squelette des programmes que vous allez
implémenter. Les deux derniers modules, exemple_carte_simple.py et exemple_

carte_suisse.py, permettront de les tester.

Module .../moteurs_recherche/element.py :

class Element:
def init ( self , nom=''):

print('à compléter')

def distance( self , element):
return 1

def eq ( self , autre):
print('à compléter')

def hash ( self ):
return hash(str(self))

def repr ( self ):
return '{}'.format(self.nom)

Module .../moteurs_recherche/ville.py :

from math import sqrt
from .element import Element

class Ville (Element):
def init ( self , x, y, nom=''):

Element. init ( self , nom)
print('à compléter')

def distance( self , ville ):
print('à compléter')

def eq ( self , autre):
print('à compléter')
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def hash ( self ):
return hash(str(self))

def repr ( self ):
return '{}({}, {})' .format(self.nom, self .x, self .y)

Module .../moteurs_recherche/espace.py :

from copy import copy

class Espace:
def init ( self , elements=None, arcs=None):

self .elements = []
if elements is not None:

self .elements = sorted(self.elements, key=lambda e: e.nom)

self . arcs = []
if arcs is not None:

self . ajoute arcs(arcs)

def ajoute arcs( self , arcs ):
print('à compléter')

def trouve voisins ( self , element):
print('à compléter')

def repr ( self ):
rep = ''
for element in self .elements:

rep += '{}, '.format(element)
rep += 'avec voisins: '
voisins = self . trouve voisins (element)
rep += ', ' . join(map(str, voisins))
rep +='\n'

return rep

Module .../moteurs_recherche/noeud.py :

from math import sqrt

class Noeud:
def init ( self , element, parent=None, cout=0, cout f=0):

print('à compléter')

def repr ( self ):
rep = '<{}, {}, {}>'.format(self.element,

round(self.cout),
round(self.cout f))

return rep

Module .../moteurs_recherche/recherche.py :

from .noeud import Noeud

class Recherche:
echec = 'échec'
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def init ( self , espace, optimisee=False):
self .espace = espace
self .optimisee = optimisee

def recherche( self , depart, but):
# L'heuristique à utiliser ( utile uniquement pour A\∗).
self .h = lambda e: e.distance(but)

noeud depart = Noeud(depart, None, 0, self.h(depart))
noeud but = Noeud(but)

return self.recherche chemin(noeud depart, noeud but)

def recherche chemin(self , noeud depart, noeud but):
print('à compléter')

def trouve chemin(self, noeud):
chemin = []
while noeud is not None:

chemin.insert(0, noeud.element)
noeud = noeud.parent

return chemin

def detecte cycle( self , trace , noeud):
return noeud.element in trace

def trouve successeurs( self , noeud):
print('à compléter')

def ajoute successeurs( self , queue, successeurs ):
# Nous retournons une liste vide pour éviter de déclencher une exception,
# mais cette méthode doit être surchargée dans les sous−classes.
return []

Module .../moteurs_recherche/bfs.py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheBFS(Recherche):
def ajoute successeurs( self , queue, successeurs ):

print('à compléter')

Module .../moteurs_recherche/dfs.py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheDFS(Recherche):
def ajoute successeurs( self , queue, successeurs ):

print('à compléter')
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Module .../moteurs_recherche/astar.py :

from moteurs recherche.recherche import Recherche
from moteurs recherche.noeud import Noeud

class RechercheAStar(Recherche):
def detecte cycle( self , trace , noeud):

print('à compléter')

def ajoute successeurs( self , queue, successeurs ):
print('à compléter')

Module .../exemple_carte_simple.py :

from moteurs recherche.element import Element
from moteurs recherche.ville import Ville
from moteurs recherche.espace import Espace
from moteurs recherche.dfs import RechercheDFS
from moteurs recherche.bfs import RechercheBFS
from moteurs recherche.astar import RechercheAStar

# Les éléments dans l'espace de recherche ( les villes ).
elements = {

'A': Ville (0, 16, 'A'),
'B': Ville (5, 13, 'B'),
'C': Ville (0, 10, 'C'),
'D': Ville (5, 8, 'D'),
'E': Ville (11, 18, 'E'),
'F': Ville (15, 13, 'F'),
'G': Ville (29, 18, 'G'),
'H': Ville (26, 0, 'H'),
' I ' : Ville (12, 10, ' I ' ),
'J' : Ville (17, 7, 'J' ),
'K': Ville (11, 3, 'K'),
'L' : Ville (22, 16, 'L'),
'M': Ville (25, 12, 'M'),
'N': Ville (24, 6, 'N'),
'O': Ville (20, 0, 'O'),
'P': Ville (5, 0, 'P'),

}

# Les arcs liant les é l éments (les routes).
arcs = [

(elements[ 'A' ], elements[ 'B' ]),
(elements[ 'A' ], elements[ 'E' ]),
(elements[ 'B' ], elements[ 'C' ]),
(elements[ 'B' ], elements[ 'E' ]),
(elements[ 'B' ], elements[ 'D' ]),
(elements[ 'C' ], elements[ 'D' ]),
(elements[ 'C' ], elements[ 'P' ]),
(elements[ 'D' ], elements[ ' I ' ]),
(elements[ 'D' ], elements[ 'K' ]),
(elements[ 'E' ], elements[ 'F' ]),
(elements[ 'E' ], elements[ 'L' ]),
(elements[ 'F' ], elements[ ' I ' ]),
(elements[ 'F' ], elements[ 'L' ]),
(elements[ 'F' ], elements[ 'M']),
(elements[ 'G' ], elements[ 'H' ]),
(elements[ 'G' ], elements[ 'L' ]),
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(elements[ 'G' ], elements[ 'M']),
(elements[ ' I ' ], elements[ 'J' ]),
(elements[ 'J' ], elements[ 'K' ]),
(elements[ 'J' ], elements[ 'N' ]),
(elements[ 'K' ], elements[ 'O' ]),
(elements[ 'K' ], elements[ 'P' ]),
(elements[ 'M'], elements[ 'N' ]),
(elements[ 'N' ], elements[ 'O' ]),
(elements[ 'B' ], elements[ ' I ' ]),
(elements[ 'B' ], elements[ 'F' ]),
(elements[ 'P' ], elements[ 'O'])

]

# L'espace de recherche.
espace = Espace(elements.values(), arcs)
print('L\'espace de recherche:\n{}'.format(espace))

print('Recherche DFS:')
dfs = RechercheDFS(espace, False)
chemin = dfs.recherche(elements['A' ], elements[ 'P' ])

print('Chemin: {}'.format(chemin))

#################################################

print('\nRecherche BFS:')
bfs = RechercheBFS(espace, False)

chemin = bfs.recherche(elements['A' ], elements[ 'P' ])
print('Chemin: {}'.format(chemin))

#################################################

print('\nRecherche A∗:')
astar = RechercheAStar(espace, False)
chemin = astar.recherche(elements['A' ], elements[ 'P' ])

print('Chemin: {}'.format(chemin))

Module .../exemple_carte_suisse.py :

from moteurs recherche.element import Element
from moteurs recherche.ville import Ville
from moteurs recherche.espace import Espace
from moteurs recherche.dfs import RechercheDFS
from moteurs recherche.bfs import RechercheBFS
from moteurs recherche.astar import RechercheAStar

# Les éléments dans l'espace de recherche ( les villes ).
elements = {

'Lausanne': Ville (110, 260, 'Lausanne'),
'Genève': Ville (40, 300, 'Genève'),
'Sion' : Ville (200, 300, 'Sion' ),
'Neuchâtel': Ville (150, 170, 'Neuchâtel'),
'Bern': Ville (210, 280, 'Bern'),
'Basel' : Ville (230, 65, 'Basel' ),
'Fribourg' : Ville (175, 200, 'Fribourg' ),
'Zürich' : Ville (340, 90, 'Zürich' ),
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'Aarau': Ville (290, 95, 'Aarau'),
'Luzern': Ville (320, 155, 'Luzern'),
'St−Gallen': Ville (85, 455, 'St−Gallen'),
'Thun': Ville(235, 210, 'Thun'),

}

# Les arcs liant les é l éments (les routes).
arcs = [

(elements[ 'Lausanne'], elements[ 'Genève']),
(elements[ 'Sion' ], elements[ 'Lausanne']),
(elements[ 'Neuchâtel' ], elements[ 'Lausanne']),
(elements[ 'Fribourg' ], elements[ 'Lausanne']),
(elements[ 'Fribourg' ], elements[ 'Bern' ]),
(elements[ 'Sion' ], elements[ 'Thun']),
(elements[ 'Neuchâtel' ], elements[ 'Bern' ]),
(elements[ 'Basel' ], elements[ 'Bern' ]),
(elements[ 'Zürich' ], elements[ 'Aarau']),
(elements[ 'Zürich' ], elements[ 'Luzern' ]),
(elements[ 'Bern' ], elements[ 'Aarau']),
(elements[ 'Bern' ], elements[ 'Luzern' ]),
(elements[ 'Luzern' ], elements[ 'Aarau']),
(elements[ 'St−Gallen'], elements[ 'Zürich' ]),
(elements[ 'Thun'], elements[ 'Bern' ]),
(elements[ 'Basel' ], elements[ 'Zürich' ]),

]

# L'espace de recherche.
espace = Espace(elements.values(), arcs)
print('L\'espace de recherche:\n{}'.format(espace))

print('Recherche DFS:')
dfs = RechercheDFS(espace, False)
chemin = dfs.recherche(elements['Lausanne'], elements[ 'Zürich' ])

print('Chemin: {}'.format(chemin))

#################################################

print('\nRecherche BFS:')
bfs = RechercheBFS(espace, False)
chemin = bfs.recherche(elements['Lausanne'], elements[ 'Zürich' ])

print('Chemin: {}'.format(chemin))

#################################################

print('\nRecherche A∗:')
astar = RechercheAStar(espace, False)
chemin = astar.recherche(elements['Lausanne'], elements[ 'Zürich' ])

print('Chemin: {}'.format(chemin))
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Exercice 7.1.1 Classes de base

La classe Element

Dans cet exercice, vous devrez manipuler des éléments situés dans un espace
de recherche — plus précisément, des villes dans un espace à deux dimensions.
L’espace de recherche est muni d’une notion de distance appliquable à chaque
paire d’éléments. L’objectif des algorithmes de recherche que nous allons pro-
grammer sera de trouver le chemin le plus court entre deux éléments.

La classe Element du module element.py représentera donc un élément gé-
nérique placé dans un espace de recherche. Cet élément sera caractérisé par
un seul attribut, self.nom. Commencez par compléter le constructeur de la
classe, qui doit initialiser cet attribut au moyen d’une valeur passée en para-
mètre. Ensuite, complétez la méthode __eq__, qui doit vérifier l’égalité entre
l’élément courant et un autre. Deux éléments seront réputés égaux (__eq__ re-
tourne True) lorsqu’ils possèdent des noms égaux. Notez que Element contient
aussi une fonction qui retourne la distance entre l’élément courant et un autre
élément. Cette fonction n’a ici qu’une implémentation triviale et devra être
surchargée de manière appropriée dans les sous-classes.

La classe Ville

La classe Element nous fournit un modèle que les éléments de recherche doivent
spécialiser. Notre but dans cet exercice est de trouver des chemins entre des
villes, qui sont des éléments dans un espace à deux dimensions. Nous définissons
donc une sous-classe Ville, qui étend Element en lui ajoutant deux attributs :

• x : la position de l’élément sur l’axe des x ;

• y : la position de l’élément sur l’axe des y.

Commencez par coder le constructeur de la classe, qui doit initialiser ces
attributs à partir des valeurs passées en paramètre. Ensuite, surchargez la
méthode d’égalité __eq__, afin qu’elle compare les noms et les coordonnées.
Finalement, surchargez la fonction de distance, afin de retourner la distance
euclidienne entre deux villes. Pour cette dernière opération, vous pouvez uti-
liser l’opérateur de mise à la puissance de Python, qui est ** (par exemple :
3**2 == 9). En outre, from math import sqrt permet d’importer uniquement la
fonction racine carrée du module math.

La classe Espace

Dans l’espace de recherche, chaque élément sera lié à d’autre éléments placés
à proximité — ses voisins. Par exemple, si l’espace de recherche représente
une carte de la Suisse, Lausanne sera parmi les éléments voisins de Genève.
Nous indiquerons la proximité entre deux éléments par un tuple (element_1,

element_2). Du point de vue formel, un tuple représente ainsi un arc dans le
graphe constitué par les éléments et leurs relations de vicinité.

Nous utiliserons la classe Espace pour représenter un espace de recherche.
Espace stockera tous ses éléments dans une liste self.elements et tous ses arcs
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dans self.arcs. Le constructeur initialise les listes d’éléments et d’arcs, soit
avec des collections passées en paramètre, soit comme des listes vides lorsqu’il
est appelé sans arguments.

La classe contient aussi les méthodes suivantes, que vous devez implémenter :

• ajoute_arcs(self, arcs) : prend en argument une collection de tuples (a,

b) représentant des arcs, qu’elle ajoute aux collections de l’objet courant.
(Cette méthode n’est pas absolument indispensable, car les listes peuvent
aussi bien être remplies lors de la construction, mais il est parfois plus
pratique et plus lisible d’ajouter des arcs par le biais d’une méthode.).

• trouve_voisins(self, element) : retourne la liste de tous les voisins d’un
élément (par exemple, si l’arc (a, b) est le seul de l’espace e : e.voisins(a)
doit retourner [b].

La classe Noeud

Lors de la recherche, chaque Element sera modélisé par un nœud dans un arbre
de recherche. Chaque nœud contiendra une référence sur un élément. Les nœuds
seront créés de façon dynamique au cours de l’exploration de l’espace de re-
cherche par l’algorithme.

Nous avons donc besoin d’une classe Noeud (squelette disponible dans
noeud.py), permettant de modéliser un nœud. Cette classe contiendra quatre
attributs :

• element : une référence sur un objet de type Element.

• cout_c : contient le coût c(n), c’est-à-dire le coût depuis le nœud de départ
jusqu’au nœud en question. Il s’agit de la somme minimale des longueurs
des arcs entre l’élément référencé par le nœud de départ et l’élément ré-
férencé par le nœud courant. Dans notre cas, la longueur d’un arc est
donnée par la distance entre ses deux éléments.

• cout_f : contient le coût f(n), c’est-à-dire le coût heuristique utilisé par
l’algorithme A?, qui est égal à c(n) + h(n). Dans notre cas, la fonction
heuristique h(n) calcule la distance euclidienne entre l’élément contenu
par le nœud courant et l’élément but ; le coût heuristique modélise ainsi
la distance au but, de manière à privilégier l’exploration du nœud le plus
prometteur ;

• parent : le nœud parent du nœud courant, c’est-à-dire le nœud qui a
conduit au nœud courant durant la recherche.

Écrivez donc un constructeur qui initialise ces quatre attributs à partir de
valeurs passées en paramètres.

Exercice 7.1.2 Algorithmes de recherche

Nous allons maintenant développer un outil de recherche qui implémente les
trois principaux algorithmes : DFS (Depth-first search : Recherche en profondeur-
d’abord), BFS (Breadth-first search : Recherche en largeur-d’abord) et A? (Re-
cherche par A?).
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Le principe de tout algorithme de recherche est de trouver un élément but
(dans notre exemple, la ville de destination) à partir d’un élément initial (la ville
de départ). Lors de l’exploration de l’espace des éléments, la recherche traverse
un arbre constitué de nœuds qui sont liés à leurs nœuds successeurs. Chaque
nœud de recherche correspond à une étape dans la recherche. L’exploration
d’un nœud de recherche permet, s’il en a, de trouver ses successeurs — qui
deviennent de nouveaux nœuds de recherche.

Les algorithmes que nous allons étudier ne se différencient que par la gestion
de la liste des nœuds ouverts Q :

• DFS (en profondeur-d’abord) : place les nouveaux nœuds en tête de Q ;

• BFS (en largeur-d’abord) : place les nouveaux nœuds en queue de Q ;

• A? : insère les nouveaux nœuds de telle sorte que Q soit toujours ordonnée
selon le coût heuristique croissant de ces nœuds.

Le pseudocode de l’algorithme de recherche vous est donné ci-dessous :

Recherche(noeud depart, noeud but, methode)
1. Q <− [noeud depart]
2. WHILE Q n'est pas vide DO
3. n <− premier(Q)
4. Q <− reste(Q)
5. IF n == noeud but THEN
6. RETURN chemin de noeud depart àn
7. ELSE
8. S <− successeurs de n
9. Q <− AjouterSuccesseurs(Q, S, methode)

10. END IF
11. END WHILE
12. RETURN échec
END Recherche

Comme vous pouvez le constater, l’algorithme de base est le même quelle
que soit la méthode utilisée (DFS, BFS et A?). La seule différence réside dans
la façon d’ajouter les successeurs à la liste Q. Plus concrètement, la fonction qui
ajoute les successeurs à Q est définie comme suit :

AjouteSuccesseurs(Q, S, methode)
1. IF methode == DFS THEN
2. RETURN S + Q
3. ELSE IF methode == BFS THEN
4. RETURN Q + S
5. ELSE IF methode == A∗ THEN
6. Q <− Q + S
7. Q <− Q trié par coût heuristique
8. RETURN Q
9. ELSE

10. RETURN échec
11. END IF
END AjouteSuccesseurs

Les classes de recherche

L’algorithme de recherche doit être implémenté dans la classe Recherche de re-

cherche.py. Un constructeur de la classe, qui initialise le graphe de recherche,
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vous est déjà donné. Nous avons également donné une fonction d’interface
recherche, qui prend en paramètres deux éléments, crée deux nœuds de re-
cherche contenant ces éléments et les passe en arguments à la méthode re-

cherche_chemin. C’est dans celle-ci que vous devez implémenter l’algorithme.
Appelez les méthodes trouve_successeurs et ajoute_successeurs aux étapes 8
et 9 de l’algorithme. Afin de retourner le chemin depuis le nœud de départ,
appelez la méthode trouve_chemin, qui vous est déjà donnée.

Ensuite, complétez la méthode trouve_successeurs. Cette méthode doit re-
tourner une liste contenant tous les successeurs d’un nœud passé en paramètre.
La méthode doit retourner tous les éléments voisins de l’élément encapsulé par
le nœud courant, eux-mêmes contenus dans de nouveaux nœuds de recherche
(sauf le parent du nœud courant, pour éviter les cycles...). Notez qu’en créant
ces nouveaux nœuds, vous devez aussi initialiser leurs coûts, à partir du coût du
nœud courant et en utilisant la fonction heuristique self.h. Cette dernière est
initialisée à l’aide d’une fonction lambda dans la méthode d’interface recherche.

Ensuite, vous pouvez passer à la méthode ajoute_successeurs. Il convient
d’implémenter cette méthode différemment pour chacun des trois algorithmes,
dans les sous-classes de Recherche : RechercheDFS (dfs.py), RechercheBFS (bfs.py)
et RechercheAStar (astar.py)

Test du programme

Testez vos algorithmes sur les fichiers exemple_carte_simple.py et exemple_

carte_suisse.py.

python3 exemple carte simple.py
python3 exemple carte suisse.py

Qu’en concluez-vous ? Quelle est l’importance de l’heuristique utilisée par
A? ? Regardez surtout le nombre de nœuds de recherche examinés. Que pouvez-
vous conclure sur les algorithmes en regardant la longueur des chemins (en
nombre de villes traversées) ?

Pourquoi l’algorithme DFS boucle-t-il à l’infini sur les deux cartes ? Testez
maintenant en commentant le code appelant l’algorithme DFS. Quel résultat
obtenez-vous ?

Exercice 7.1.3 Algorithmes de recherche avec détection de cycles

Comme vous avez pu le constater, l’algorithme n’est pas très efficace car, dans
un espace de recherche cyclique, certains nœuds peuvent être visités à plusieurs
reprises. Pire, l’algorithme peut se retrouver prisonnier d’une boucle infinie.

Détecter et éviter les cycles nécessitent de maintenir une liste des nœuds
déjà explorés. Dans le cas du DFS et du BFS, l’algorithme devra contrôler si ce
nœud est déjà présent dans la liste avant de chercher ses successeurs. Lorsque
c’est le cas, nous savons que les successeurs ont déjà été construits, et il n’est
pas utile de recommencer. L’algorithme A? est un peu plus compliqué de ce
point de vue : on doit revisiter un nœud si et seulement si le coût f(n) est
inférieur au coût f(n) du nœud la dernière fois qu’il a été exploré
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En résumé, l’algorithme de recherche optimisé est le suivant :

RechercheOptimisee(noeud depart, noeud but, methode)
1. Q <− [noeud depart]
2. C <− []
3. WHILE Q non vide DO
4. n <− premier(Q), Q <− reste(Q)
5. IF n == noeud but THEN
6. RETURN chemin de noeud depart àn
7. ELSE
8. IF n not in C or

(n=n' in C and f(n)<f(n') and methode is ”A∗”) THEN
9. S <− successeurs de n

10. Q <− AjouterSuccesseurs(Q, S, methode)
11. ajoute n dans C
12. END IF
13. END IF
14. END WHILE
15. RETURN échec
END RechercheOptimisee

En vous basant sur le pseudocode ci-dessus, implémentez l’algorithme de re-
cherche optimisé. Vous devrez d’abord implémenter la méthode detecte_cycle,
qui teste si un nœud a déjà été exploré, étant donné le nœud courant et la col-
lection trace des nœuds déjà explorés. Notez que vous devez surcharger cette
méthode dans la classe RechercheAStar, afin de tolérer les cycles qui permettent
de trouver un chemin plus court.

Nous vous recommandons de ne pas implémenter une nouvelle méthode
recherche_chemin, mais de modifier la version existante afin de traiter le cas
où l’attribut de la classe self.optimisee prend la valeur True. En outre, afin
d’optimiser la détection des cycles, nous vous suggérons d’implémenter trace

comme un dictionnaire qui associe chaque élément au nœud de recherche qui
le contient.

Lorsque vous avez terminé, vous pouvez tester à nouveau votre programme.
Qu’observez-vous cette fois ?

Exercice 7.1.4 Labyrinthe

À titre d’exercice supplémentaire, vous pouvez tester votre implémentation
en lui faisant découvrir un chemin entre deux points d’un labyrinthe. Pour
simplifier, vous coderez ce dernier sous la forme d’une matrice de caractères L,
telle que L[i][j] prenne la valeur ’x’ si la cellule (i,j) est occupée et ne peut
pas être explorée.

Vous pouvez ensuite implémenter une méthode qui traduira cette matrice
en un objet Espace, qui contiendra les déplacements possibles depuis chaque
cellule (par exemple, en haut, en bas, à gauche et à droite si les cellules voisines
sont libres). Appliquez les trois algorithmes de recherche pour construire le
chemin conduisant d’un point quelconque à un autre et comparez les résultats.

Solutions à la page 365





Chapitre 8

Satisfaction de contraintes

On peut observer que les algorithmes de recherche généraux ont une complexité
exponentielle en la taille du problème. Cela n’est souvent pas acceptable, et on
doit alors chercher des heuristiques valables pour le domaine en question qui
permettent souvent de résoudre le problème spécifique avec un temps de calcul
beaucoup plus raisonnable.

Il serait alors intéressant de définir un cadre limité de problèmes qui soit à
la fois suffisamment spécifique pour admettre des heuristiques efficaces, mais
aussi suffisamment général pour s’appliquer à une large gamme d’applications
pratiques. Le paradigme de la satisfaction de contraintes est un tel modèle qui
a rencontré beaucoup de succès en pratique.

Un problème de satisfaction de contraintes (PSC) se caractérise comme suit :

• Le problème peut être décrit par un ensemble de variables. Une solution
est donnée par l’affectation d’une valeur à chaque variable. La plupart des
problèmes auxquels s’intéresse l’IA (comme la conception, la planification
ou encore la programmation logique) sont susceptibles d’être formalisés
de cette manière.

• La valeur d’une variable appartient à un domaine, qui est soit un ensemble
fini de valeurs discrètes (satisfaction symbolique), soit un ensemble d’in-
tervalles numériques (satisfaction continue).

• Les contraintes de consistance agissent sur les variables. On distingue les
contraintes unaires, qui déterminent la valeur d’une seule variable, les
contraintes binaires qui concernent les combinaisons des valeurs de deux
variables et les contraintes multiples qui concernent des combinaisons de
plus de deux variables.

Cette formulation est applicable à de nombreux problèmes pratiques. Citons
par exemple :

• Dans l’ordonnancement et la planification de tâches, le but est de trou-
ver un ensemble d’actions qui respecte les contraintes dérivant du but à
atteindre et des moyens à disposition. Les variables sont alors les tâches,
leurs domaines, les ressources et les intervalles de temps durant lesquels
celles-ci peuvent s’effectuer. Les contraintes exigent qu’aucune ressource
ne puisse être affectée à deux tâches simultanément et que les tâches
doivent être accomplies dans les délais.
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• Dans la conception ou configuration, le but est de trouver un ensemble de
composants et de connections qui respectent toutes les contraintes fonc-
tionnelles. Les variables sont alors les fonctionnalités, leurs domaines les
composants qui peuvent les réaliser, et les contraintes de la compatibilité,
le respect des coûts, etc.

• Dans la vision, le but est de trouver une interprétation qui soit consis-
tante avec les observations. Les variables sont alors les observations, leurs
domaines les interprétations et les contraintes des contraintes de compa-
tibilité entre observations et interprétations.

8.1 Définition des problèmes de satisfaction de
contraintes (PSC)

Étant donné la généralité du problème, il est utile de définir des méthodes gé-
nérales pour le résoudre de manière efficace. Formellement, un PSC = (X,D,C)
s’exprime de la manière suivante :

Étant donné :

• Les variables X = x1, x2, ..., xn.

• Les domaines D = D1, D2, ..., Dn associés aux variables.

• Les contraintes C = C1(xk, xl, ...), C2, ..., Cm, qui restreignent les
combinaisons de valeurs possibles pour les variables sur lesquelles
elles portent.

Trouver :

Toutes les solutions :
{x1 = vk, x2 = vl, ..., xn = vo} telles que toutes les contraintes
soient satisfaites.

Dans ce livre, nous traitons uniquement des techniques pour variables à
valeurs discrètes, c’est-à-dire que les domaines D1, ..., Dn sont des ensembles
finis de valeurs. Il existe des différences importantes entre des problèmes à
domaines finis et des problèmes à domaines infinis.

Dans le cas où toutes les contraintes sont binaires, on peut formuler le
problème comme un graphe où les nœuds sont les variables et les arcs sont des
contraintes entre ces variables. On parle alors d’un graphe ou d’un réseau de
contraintes.

Le formalisme des PSC a permis de développer un grand nombre d’heu-
ristiques et de méthodes efficaces valables pour tout problème formalisé sous
cette forme. On a même développé des langages de programmation logique par
contraintes tels que PROLOG 3 et Eclipse.

Un premier exemple d’un PSC est l’allocation de ressources à des tâches
échelonnées dans le temps (fig. 8.1). On a ici un certain nombre de tâches (T1
à T4), dont chacune peut être exécutée par une ressource parmi un ensemble
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restreint. Le but est alors de trouver une assignation des ressources aux tâches
de manière à ce qu’aucune ressource n’effectue plus d’une tâche en même temps.
Le problème se formule facilement comme PSC :

• Variables x1..xn correspondant aux tâches T1, T2..Tn
(valeur = une ressource).

• Domaines = ressources qui peuvent effectuer la tâche. Par exemple, D1 =
{B,C}.

• Contraintes = deux tâches se chevauchant dans le temps ne peuvent être
effectuées par la même ressource.

temps

T1(x1)
D1={B,C}

D2={A,C}

D3={B,C}

D4={A,B}

T2(x2)

T3(x3) T4(x4)

Fig. 8.1 Quatre tâches T1 à T4 à effectuer avec 3 ressources.

Ce problème peut être résolu par un algorithme de generate-and-test : es-
sayer toutes les combinaisons des valeurs admissibles pour les variables et rete-
nir celles qui respectent toutes les contraintes. Pour l’exemple de la figure 8.1,
on a deux ressources possibles pour chacune des quatre tâches, donc il y a
24 = 16 combinaisons de ressources pour T1T2T3T4 :

(BABA) (BABB) (BACA) (BACB)
(BCBA) (BCBB) (BCCA) (BCCB)

(CABA) (CABB) (CACA) (CACB)

(CCBA) (CCBB) (CCCA) (CCCB)

En vérifiant les contraintes de non-simultanéité pour chaque combinaison,
on peut observer que seule la combinaison BBAC satisfait toutes les contraintes
et est donc une solution. Il est évident que la complexité d’une solution four-
nie par generate-and-test est toujours exponentielle par rapport au nombre de
variables. Un PSC typique implique un grand nombre de variables, ce qui rend
cette méthode inapplicable. Des algorithmes plus efficaces ont donc été définis.

L’idée sous-jacente à presque toutes les méthodes de satisfaction de
contraintes consiste à vérifier les contraintes sur des instanciations partielles
de valeurs à un sous-ensemble de variables. Une instanciation partielle est une
solution partielle seulement si toutes les contraintes entre les variables aux-
quelles on a assigné une valeur sont satisfaites. Une instanciation partielle n’est
alors étendue que si elle est une solution partielle.

Cela donne lieu à une recherche où les nœuds sont des solutions partielles
et la fonction de successeur consiste à assigner une prochaine valeur à l’une
des variables qui n’a pas encore de valeur. On vérifie alors les contraintes pour
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(_._._._)

(B,_,_,_) (C,_,_,_)

(B,A,_,_) (B,C,_,_) (C,A,_,_)

(B,A,C,_)

(C,C,_,_)

(B,A,B,_) (B,C,B,_) (B,C,C,_)

(B,A,C,A) (B,A,C,B)

(C,A,B,_) (C,A,C,_)

(C,A,B,B)(C,A,B,A)

Fig. 8.2 Arbre de recherche pour la résolution d’un problème d’allocation de res-
sources par une recherche en profondeur-d’abord.

filtrer les nœuds qui ne sont pas consistants. La figure 8.2 montre l’arbre de
recherche résultant pour l’exemple de la figure 8.1.

Il existe un certain nombre d’heuristiques pour rendre encore plus efficace
une telle recherche. Si la recherche évite d’explorer plus loin des instanciations
inconsistantes, les tests d’inconsistance ne peuvent s’appliquer que dans l’ordre
d’instanciation des variables. À chaque backtrack, on perd l’information sur
les combinaisons consistantes de valeurs pour les dernières variables instan-
ciées. Donc, il arrive souvent que l’algorithme explore plusieurs fois la même
combinaison contradictoire de valeurs.

Pour pallier ce désavantage, on pourrait imaginer une application d’un fil-
trage uniforme sur toutes les variables et non seulement sur celles qui sont déjà
instanciées. C’est l’idée des algorithmes de consistance partielle : d’abord limiter
l’espace de recherche à un sous-ensemble prometteur en éliminant des combinai-
sons de valeurs qui dans aucun cas ne peuvent respecter toutes les contraintes.
Ce processus peut s’appliquer comme prétraitement avant ou entre différentes
étapes de recherche. Par exemple, imaginons qu’une contrainte implique que la
valeur T1 = A ne puisse jamais faire partie d’une solution. On éliminera alors
ce choix et la recherche ne va plus considérer du tout l’assignation T1 = A.
Comme l’élimination d’une valeur en entrâıne souvent l’élimination d’autres,
on parle d’une propagation des contraintes.

8.2 Formulation d’un réseau de contraintes binaires

La plupart des travaux traitent des contraintes binaires qui s’avèrent les plus
adaptées à la propagation. Un problème de satisfaction de contraintes binaires
peut alors être représenté par un graphe où :

• les nœuds sont les variables,

• les arcs représentent les contraintes.

On appelle ceci un réseau de contraintes. Par exemple, le problème d’al-
location de ressources de la figure 8.1 donnera lieu au réseau de contraintes
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x1∈{B,C} x2∈{A,C}

x3∈{B,C}

x4∈{A,B}

≠

≠ ≠

≠

≠

Fig. 8.3 Réseau de contraintes pour l’exemple de l’allocation de ressources.

de la figure 8.3. Pour cet exemple, toutes les contraintes sont des contraintes
d’inégalité (6=) signifiant que les valeurs assignées aux deux variables doivent
être différentes.

Si la représentation comme graphe est bien adaptée à un réseau de contraintes
binaires, la plupart des problèmes pratiques conduisent à des contraintes mul-
tiples. Pourvu qu’il s’agisse d’un problème à valeurs discrètes, il existe deux
méthodes pour transformer un réseau n-aire en un réseau binaire : la projection
et la transformation en réseau dual.

Une contrainte impliquant plus de deux variables peut être approximée
par un réseau de contraintes binaires, sa projection. La figure 8.4 montre un
exemple : la contrainte R est représentée par trois contraintes à deux variables
en retenant les combinaisons de valeurs qui figurent dans la liste des combinai-
sons admises par R.

R = 

(a,b,c)
(a,c,b)
(b,b,b)
(b,b,c)
(b,c,b)
(b,c,c)

(x,y,z)

(a,b,b)
(a,c,c)

(a,b,c)
(a,c,b)
(b,b,b)
(b,b,c)
(b,c,b)
(b,c,c)

(x,y,z)

R' =  

(x,y)∈
{(a,b), (a,c), 
(b,b), (b,c)}

(y,z)∈
{(b,b), (b,c), 
(c,b), (c,c)}

(x,z)∈
{(a,b), (a,c), 
(b,b), (b,c)}

x

y

Projection
Relation
représentée:

z

Fig. 8.4 Projection d’une contrainte R à trois variables. Le réseau de trois
contraintes qui en résulte admet deux combinaisons de valeurs en plus : (a, b, b) et
(a, c, c).

Cependant, une perte d’information s’ensuit souvent d’une projection : dans
l’exemple, le réseau qui en résulte admet en effet deux combinaisons de valeurs
en trop ! Cette perte d’information est inévitable : une relation à n variables
avec des domaines de taille m représente un volume d’information de mn bits.
Sa projection consiste en n·(n−1)/2 contraintes dont chacune ne représente que
m2 bits d’information. Comme en général mn < n · (n−1)/2 ·m2, l’information
de la contrainte à n variables ne peut pas être complètement représentée.
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La deuxième possibilité consiste à transformer l’hypergraphe du PSC avec
contraintes à variables multiples en un problème binaire équivalent en construi-
sant un graphe dual GD au réseau de contraintes G :

• nœuds de GD = contraintes de G,

• arcs de GD = ensembles de variables en commun : la contrainte exige que
les instanciations soient les mêmes des deux côtés.

On peut montrer qu’il n’y a alors aucune perte d’informations : le PSC
transformé admet exactement les mêmes solutions que le problème original.

La figure 8.5 montre un exemple d’un PSC avec des contraintes à plus de 2
variables.

x={a,b,c} w={a,b,c}

y∈{a,b,c} z∈{a,b,c}

(w,y,z)

(a,a,a)
(a,a,b)
(a,b,a)
(a,b,b)
(c,a,b)
(c,b,a)

Solution:
(w,x,y,z)=(a,b,b,b)

(a,b,c)
(a,c,b)
(b,b,b)
(b,b,c)
(b,c,b)
(b,c,c)

(x,y,z)

Fig. 8.5 Un problème impliquant des contraintes à variables multiples.

Sa transformation en graphe dual donnera deux nœuds :

1) α = (x, y, z) ∈
{(a, b, c), (a, c, b), (b, b, b), (b, b, c), (b, c, b), (b, c, c)}

2) β = (w, y, z) ∈
{(a, a, a), (a, a, b), (a, b, a), (a, b, b), (c, a, b), (c, b, a)}

et une contrainte :

C : y(α) = y(β), z(α) = z(β) : {((b, b, b), (a, b, b)}
et il y a une seule combinaison qui satisfait la contrainte :

α = (b, b, b), β = (a, b, b)

Comme il est alors possible de transformer tout PSC discret en un problème
à contraintes binaires, nous nous concentrerons par la suite sur les réseaux de
contraintes binaires uniquement. Nous ne considérons explicitement des algo-
rithmes pour des contraintes non binaires que pour le cas de variables continues,
où une telle transformation n’est pas possible.
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8.3 Solution d’un PSC par recherche

Tout PSC discret peut être résolu par un algorithme de recherche : on énu-
mère toutes les combinaisons imaginables de valeurs des variables, et on retient
celles qui respectent les contraintes. Cependant, un PSC comporte souvent
des centaines de variables, dont les domaines peuvent également prendre une
taille considérable. Un algorithme de recherche sans aucune optimisation serait
donc tellement inefficace que l’on ne peut envisager une telle solution. Dans le
contexte des PSC, on utilise donc des heuristiques spécifiques qui permettent
une recherche plus efficace.

En fait, il y a deux types de méthodes pour la résolution d’un PSC par re-
cherche. Le premier prend comme base un algorithme de recherche en profondeur-
d’abord et y ajoute certaines heuristiques et méthodes de propagation de labels
qui le rendent beaucoup plus efficace. Le deuxième type de méthode s’inspire de
l’optimisation et se base sur une modification itérative d’une assignation com-
plète pour minimiser et finalement éliminer tout conflit avec les contraintes. Il
s’agit donc d’une propagation de valeurs.

8.3.1 Méthodes basées sur la recherche en profondeur-d’abord

Pour résoudre un PSC, on peut utiliser un algorithme de recherche en profondeur-
d’abord où :

• nœud de recherche = instanciation de variables x1 = v1, x2 = v2, ..., xk =
vk (k est la profondeur du nœud dans l’arbre de recherche, le nœud racine
étant par convention à la profondeur 0) ;

• fonction de successeur = instanciation de la variable xk+1 = vk+1 de
manière à respecter toutes les contraintes avec x1, ..., xk ;

• nœud initial = instanciation vide ;

• nœud but = instanciation de toutes les variables x1, ..., xn.

La figure 8.6 montre comment l’algorithme de recherche en profondeur-
d’abord (aussi appelé « backtrack ») peut être adapté à la résolution d’un PSC.
La recherche peut être rendue plus efficace par :

• les valeurs considérées : pour limiter leur choix, on utilise les méthodes du
forward checking ou du lookahead, basées sur la consistance partielle des
contraintes ;

• l’ordre d’instanciation des variables : on utilise des heuristiques basées sur
la structure du réseau de contraintes.

En pratique, ces méthodes conduisent à des améliorations très sensibles de
l’efficacité des algorithmes.
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x = tableau de n variables, rempli jusqu’à k
d = domaines des variables

1: Function DFS(x,d,k)

2: if k > n then

3: return x

4: else

5: for v ∈ d[k] do

6: consistent ← true

7: for i ← 1 to k-1 do

8: if ¬ consistent(v,x[i],C(i,k)) then consistent ← false

9: if consistent then

10: x[k] ← v

11: rest ← DFS(x,d,k)

12: if rest 6= :echec then return rest

13: return :echec

Fig. 8.6 Algorithme pour la solution d’un PSC par recherche en profondeur-d’abord.

Comme exemple, considérez à nouveau le problème d’allocation de res-
sources que montre la figure 8.7.

Nous avons les variables et domaines :

D1 = {B,C}
D2 = {A,C}
D3 = {B,C}
D4 = {A,B}

et les contraintes :

C(x1, x2) : {(B,A), (B,C), (C,A)}
C(x1, x3) : {(B,C), (C,B)}
C(x1, x4) : {(B,A), (C,B), (C,A)}
C(x2, x3) : {(A,B), (A,C), (C,B)}
C(x2, x4) : {(A,B), (C,A), (C,B)}

L’algorithme DFS sera alors appelé avec d = [(B,C),(A,C),(B,C),(A,B)]

et trouve la solution en 12 pas, comme le montre la figure 8.8.

Backjumping

Si l’assignation à xk+1 échoue, il faut changer au moins une variable qui y est
liée par une contrainte. Dans la trace de la figure 8.8, le premier retour-arrière
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x1∈{B,C} x2∈{A,C}

x3∈{B,C}

x4∈{A,B}

≠

≠ ≠

≠

≠

Fig. 8.7 Problème d’allocation de ressources.

Pas k x[1] x[2] x[3] x[4]
1 1 B - - -
2 2 B A - -
3 3 B A C -
4 4 B A C * retour-arrière !
5 3 B A * - retour-arrière !
6 2 B C - -
7 3 B C * - retour-arrière !
8 2 B * - - retour-arrière !
9 1 C - - -
10 2 C A - -
11 3 C A B -
12 4 C A B B solution !

Fig. 8.8 Trace de l’exécution du DFS simple. Les « * » indiquent qu’il n’y a aucune
valeur qui n’est pas en conflit avec les assignations déjà effectuées.

aurait pu directement revenir sur x2, puisque aucune contrainte lie x3 et x4.
Ceci est l’idée de la règle du backjumping :

Quand il n’y a pas de valeur consistante pour la variable xk+1, revenir
directement à la dernière variable qui a une contrainte avec xk+1.

Dans l’exemple, cela évite le pas 5. La méthode peut être rendue encore plus
ciblée dans le conflict-directed backjumping :

Quand il n’y a pas de valeur consistante pour la variable xk+1, revenir
à la dernière variable qui avait un conflit avec une des valeurs du
domaine de xk+1.

Forward checking

Si le backjumping produit un gain d’efficacité dans le cas où un retour-arrière
a effectivement lieu, le forward checking a pour but d’éviter à l’avance des
instanciations inconsistantes en appliquant le critère de la consistance des arcs
pendant la recherche.
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Il exige qu’on ajoute un label l[i] à chaque variable, qui sera initialement
égal à son domaine. La règle du forward checking met à jour ces labels en
appliquant la règle suivante :

À chaque instanciation d’une variable xk, éliminer toutes les valeurs
inconsistantes avec xk des labels des variables qui ne sont pas encore
instanciées.

Lookahead et consistance des arcs

Le forward checking est très semblable à la consistance des arcs, mais diffère
car la propagation n’est appliquée qu’aux contraintes impliquant la dernière
variable assignée. Si on étend cette méthode pour continuer la propagation ré-
cursivement, l’heuristique s’appelle le lookahead. Si en plus on fait une itération
jusqu’à ce qu’il n’y a plus de changement, on obtient la consistance des arcs à
chaque pas de la recherche. Les versions plus poussées ont l’avantage d’éliminer
au maximum le besoin de recherche, mais elles sont elles-mêmes coûteuses à
appliquer. En pratique, il semblerait que les heuristiques plus poussées soient
avantageuses pour des grands problèmes.

Comme le montre la trace de la figure 8.9, le forward checking permet de
résoudre l’exemple avec uniquement deux retours-arrière. La trace du lookahead
(fig. 8.10) donne un résultat encore meilleur : un seul retour-arrière suffit.

k x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]

0 - - - - B,C A,C B,C A,B
1 B - - - C A,C C A
2 B A - - C C C - retour-arrière !
2 B C - - C - - A retour-arrière !
1 C - - - - A B A,B
2 C A - - - - B B
3 C A B - - - - B
4 C A B B - - - - solution !

Fig. 8.9 Trace de la recherche avec forward checking.

k x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]

0 - - - - B,C A,C B,C A,B
1 B - - - - A C - retour-arrière !
1 C - - - - A B B
2 C A - - - - B B
3 C A B - - - - B
4 C A B B - - - - solution !

Fig. 8.10 Trace de la recherche avec lookahead.
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Ordonnancement des variables

L’autre possibilité pour influencer la recherche consiste à influencer l’ordre dans
lequel on considère l’assignation des variables. Il y a plusieurs heuristiques
d’ordre qui sont proposées dans la littérature. Parmi les plus importantes, on
trouve :

• dynamic variable ordering (DVO) : prendre la variable non instanciée dont
le label est le plus petit (combinaison avec forward checking/lookahead) ;

• min-width ordering : prendre la variable non instanciée connectée au plus
petit nombre de variables non instanciées ;

• max-degree ordering : prendre la variable la plus connectée dans le graphe
original ; ceci est un ordre statique qui ne dépend pas de l’état de la
recherche.

Les deuxième et troisième heuristiques sont souvent couplées à la première :
dans les cas où l’ordre produit n’est pas unique, on utilise la deuxième puis
la troisième heuristique pour décider. Cette combinaison est, selon l’état des
connaissances en 1996, la plus performante pour les problèmes pratiques.

La figure 8.11 montre la trace d’une recherche qui utilise uniquement l’heu-
ristique DVO en combinaison avec le forward checking. Maintenant, un seul
retour-arrière suffit pour trouver la solution. Ce résultat peut encore être amé-
lioré en utilisant en plus l’heuristique min-width, comme le montre la figure 8.12
qui trouve la solution sans aucun retour-arrière. Pour cet exemple, on ne peut
pas faire mieux !

Pas x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]
0 - - - - B,C A,C B,C A,B
1 B - - - C A,C C A
2 B - C - - A - A
3 B A C - - - - - retour-arrière !
4 C - - - - A B A,B
5 C A - - - - B B
6 C A B - - - - B
7 C A B B - - - - solution !

Fig. 8.11 Trace de la recherche utilisant le dynamic value ordering (DVO).

Sur un exemple très simple comme celui que nous avons vu ici, les gains
en performance qui sont obtenus grâce à ces algorithmes ne sont pas très im-
pressionnants. Cependant, sur des grands problèmes, il est normal de voir des
gains très importants qui rendent possibles la solution de grands systèmes de
contraintes. Comme résultats théoriques comparatifs, on peut retenir :

• la recherche par retour-arrière simple est la moins efficace ;

• l’heuristique du backjumping (simple) est meilleure, mais visite au moins
autant de nœuds que le forward checking et est donc strictement moins
puissante que celui-ci ;.
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Pas x[1] x[2] x[3] x[4] l[1] l[2] l[3] l[4]
0 - - - - B,C A,C B,C A,B
1 - - B - C A,C C A,B
2 C - B - - A - A,B
3 C A B - - - - B
4 C A B B - - - - solution !

Fig. 8.12 Trace de la recherche utilisant l’heuristique DVO suivie de l’heuristique
min-width.

• le forward checking et sa version plus poussée du lookahead sont les meilleures
heuristiques ;

• le conflict-directed backjumping peut améliorer la performance du forward
checking.

8.3.2 Méthodes itératives

À côté des méthodes de recherche incrémentale, qui ne considèrent que des so-
lutions partielles consistantes, il existe des méthodes itératives qui commencent
avec n’importe quelle assignation de valeurs et effectuent des changements lo-
caux pour éliminer les conflits avec les contraintes l’un après l’autre. Ceci corres-
pond plutôt à la propagation de valeurs. Nous allons examiner deux algorithmes
de ce type :

• l’heuristique min-conflicts,

• le recuit simulé.

Les différences entre les méthodes itératives se situent dans la manière dont
les changements locaux sont faits. Ils peuvent se faire :

• de manière déterministe (min-conflicts), c’est-à-dire qu’il y a un critère
fixe et que le changement se fait toujours quand ce critère est satisfait ;

• probabiliste (recuit simulé), c’est-à-dire que le critère ne donne que les
probabilités pour un changement.

Pour toutes les méthodes itératives, la performance dépend essentiellement
du choix des valeurs initiales : si elles sont proches d’une solution, il y a évi-
demment moins de pas qui restent à faire. Ceci rend difficile la comparaison
des performances observées sur ces algorithmes avec la recherche incrémentale.

L’idée de l’heuristique min-conflicts est de changer à chaque étape l’assigna-
tion de la variable qui réduira le plus le nombre total de conflits. La figure 8.13
montre l’algorithme qui en résulte. Le choix de la variable à changer se fait
dans le pas 10 ; on compare le nombre de conflits qui existeront après avoir
changé la valeur de la variable. La figure 8.14 montre la trace d’une exécution
sur l’exemple de la figure 8.7 que nous avons déjà traité auparavant.

L’heuristique min-conflicts correspond directement à la procédure du hill-
climbing bien connue dans l’optimisation. Elle est donc susceptible d’amener
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X = variables
V = valeurs
C = contraintes

1: Function min-conflicts(X,V,C)

2: for i ← 1 to max-tries do

3: V ← assignation aléatoire

4: for j ← 1 to max-steps do

5: nconf ← check(V,C)

6: if nconf = 0 then

7: return solution V

8: else

9: trouver k tel que changer v[k] donne un nombre minimal de conflits

10: changer v[k]

11: retourner solution partielle V

Fig. 8.13 Algorithme min-conflicts.

1er pas :
Assignation initiale : (x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflits : c(x1,x3) et c(x2,x4)

variable conflits nombre total
changée avec de conflits
x1 → C c(x2,x4) 1
x2 → C c(x1,x3) 1
x3 → C c(x2,x4) 1
x4 → B c(x1,x3),c(x1,x4) 2

accepter (x1 → C) : (x1 = C, x2 = A, x3 = B, x4 = A)
⇒ 1 conflit : c(x2,x4)

2e pas :
variable conflits nombre total
changée avec de conflits
x1 → B c(x1,x3), c(x2,x4) 2
x2 → C c(x1,x2) 1
x3 → C c(x1,x3),c(x2,x4) 2
x4 → B - 0

accepter (x4 → B) : (x1 = C, x2 = A, x3 = B, x4 = B)
⇒ solution !

Fig. 8.14 Solution d’un PSC par l’algorithme min-conflicts.
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la recherche vers des minima locaux. La figure 8.15 montre une trace où en
acceptant un changement différent mais aussi valable que celui de la figure 8.14,
l’algorithme tombe dans un minimum local où il n’y a aucun changement local
qui apporte une réduction du nombre de conflits. C’est pour cette raison qu’on
admet un certain nombre d’essais destinés à donner plusieurs chances de trouver
une solution. Il semblerait par contre qu’en pratique, ces minima locaux ne
présentent que peu de problèmes. La méthode de solution de PSC par min-
conflicts est utilisée par exemple pour l’ordonnancement et la planification du
télescope spatial HUBBLE.

1er pas :
Assignation initiale : (x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflits : c(x1,x3) et c(x2,x4)

variable conflits nombre total
changée avec de conflits
x1 → C c(x2,x4) 1
x2 → C c(x1,x3) 1
x3 → C c(x2,x4) 1
x4 → B c(x1,x3),c(x1,x4) 2

accepter (x2 → C) : (x1 = B, x2 = C, x3 = B, x4 = A)
⇒ 1 conflit : c(x1,x3)

2e pas :
variable conflits nombre total
changée avec de conflits
x1 → C c(x1,x2) 1
x2 → A c(x1,x3),c(x2,x4) 2
x3 → C c(x2,x3) 1
x4 → B c(x1,x3),c(x1,x4) 2

aucun changement réduisant le nombre de conflits ⇒ fin

Fig. 8.15 Un autre exemple où l’algorithme min-conflicts s’arrête dans un minimum
local et ne trouve donc pas la solution, bien qu’elle existe.

Notons finalement qu’on pourrait également utiliser l’heuristique
min-conflicts pour un ordonnancement des valeurs dans la recherche incrémen-
tale. Elle consisterait alors à considérer d’abord la valeur qui aura le moins de
possibilités de conflits avec les variables qui restent encore à instancier.

Pour éviter le problème des minima locaux, la méthode du recuit simulé
admet qu’on puisse accepter, avec une probabilité faible, des changements qui
n’améliorent pas la qualité de la solution. Cet algorithme est inspiré de la phy-
sique et plus particulièrement du processus de la solidification des verres. Il
utilise une température T qui donne la probabilité d’accepter un changement
qui n’améliore pas la solution ; en choisissant 0 ≤ T ≤ 1, on peut utiliser T
comme une probabilité. Cette température, et donc la probabilité, est décrois-
sante en fonction des itérations. La figure 8.16 montre l’algorithme, très simi-
laire à l’algorithme min-conflicts. La figure 8.17 montre une trace d’exécution
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Tableau T = liste de probabilités décroissantes

1: Function recuit(X,V,C)

2: V ← assignation aléatoire

3: T[max-steps] ← plan de réduction de ”température”

4: for j ← 1 to max-steps do

5: nconf ← check(V,C)

6: if nconf = 0 then return V

7: V’ ← V avec une valeur v[k] changée aléatoirement

8: if check(V’,C) < check(V,C) then

9: V ← V’

10: else

11: if random(0..1)<T[j] then V ← V’

12: return solution partielle V

Fig. 8.16 Algorithme du recuit simulé.

Assignation initiale : (x1 = B, x2 = A, x3 = B, x4 = A)
⇒ 2 conflits : c(x1,x3) et c(x2,x4)

changement conflits mieux ? accepter ? assignation
x2 → C c(x1,x3) oui oui B,C,B,A
x4 → B c(x1,x3),c(x1,x4) non oui B,C,B,B
x1 → C c(x1,x2) oui oui C,C,B,B
x3 → C c(x1,x2),c(x1,x3),c(x2,x3) non non C,C,B,B
x2 → A - oui oui C,A,B,B

Fig. 8.17 Trace d’exécution du recuit simulé sur l’exemple de la figure 8.7.

de l’algorithme, à nouveau sur l’exemple de la figure 8.7. Dans cet exemple, on
a supposé que la température prend les valeurs suivantes, selon les itérations :
T=(0.7,0.5,0.3,0.1,0.01,0.001).

8.4 Solution par propagation

Une autre manière de résoudre des problèmes de satisfaction de contraintes
est par une propagation locale d’informations suivant la structure du réseau de
contraintes. De telles méthodes, en général de complexité polynômiale dans la
taille du problème, peuvent s’utiliser comme pré-traitement avant une recherche
ou parfois même comme seul algorithme de solution.
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Le terme propagation de contraintes est utilisé pour plusieurs différentes
méthodes bien distinctes. Par exemple, il peut s’agir de :

• la propagation de valeurs,

• la relaxation de valeurs,

• la propagation de labels,

• la propagation de contraintes à proprement dit.

Clarifions un peu ces différentes notions.

Propagation de valeurs

Étant donné un PSC (X,D,C) où :

• certaines variables {xi} ont des valeurs vi,

• les valeurs des autres variables {xj} sont inconnues.

On utilise les contraintes pour attribuer des valeurs consistantes aux {xj}.
Ceci est possible surtout avec des contraintes fonctionnelles, comme x = y+ z.
En général, les contraintes ne permettent pas de déduire des valeurs uniques. On
doit alors faire un choix arbitraire de valeurs, et la convergence de la procédure
n’est pas garantie.

Relaxation de valeurs

Étant donné un PSC (X,D,C) où :

• toutes les variables {xi} ont chacun une valeur vi,

• les valeurs ne sont pas consistantes avec les contraintes.

On change incrémentalement les valeurs de certaines variables pour arri-
ver à une solution consistante avec toutes les contraintes. La procédure peut
suivre un régime de minimisation du nombre de conflits et revient alors à une
optimisation. Les problèmes qui se posent sont :

• il n’est pas certain de trouver la meilleure solution,

• on ne peut pas distinguer des solutions multiples,

• il y a une forte possibilité de cycles.

Une variation de la relaxation est l’algorithme Tabou, dont l’élément im-
portant est qu’on mémorise des étapes précédentes pour éviter qu’il y ait des
cycles.

Propagation de labels

Étant donné un PSC (X,D,C) où :

• chaque variable xi a un label li ⊆ Di,

• les labels indiquent les valeurs considérées comme encore consistantes.
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On change itérativement les labels des variables pour éliminer toutes les
valeurs ne pouvant être consistantes.

Le résultat d’une telle propagation est un ensemble de labels qui remplissent
un certain degré de consistance. La consistance des nœuds est vérifiée si toutes
les valeurs du label li respectent toutes les contraintes unaires C(xi). La consis-
tance des arcs concerne des paires de deux variables xi et xj ainsi que la
contrainte C(xi, xj) les liant. Une valeur de xi = vi ∈ li ne peut faire par-
tie d’une solution du PSC que s’il existe au moins une valeur xj = vj ∈ lj telle
que C(vi, vj) soit respectée. On peut donc éliminer toutes les valeurs de li et
lj qui ne respectent pas la contrainte. Par application itérative sur toutes les
contraintes, on obtient des labels qui satisfont la consistance des arcs.

1: Function REVISER (i,j,C)

2: modifiée ← faux

3: for chaque x ∈ li do

4: if aucun y ∈ lj tel que C(x, y) then

5: li ← li \ x
6: modifiée ← vrai

7: return modifiée

Fig. 8.18 Fonction élémentaire pour la consistance des arcs : REVISER(i,j,Cij)
effectue le raffinement de Cij et sera appelée pour toutes les contraintes jusqu’à ce
qu’il n’y ait plus de changement.

Ceci est le fonctionnement de l’algorithme de Waltz, le premier algorithme
à introduire la notion de propagation de contraintes. Il consiste à appliquer
REVISER (i, j, Cij) (fig. 8.18) à toutes les combinaisons de variables i et j
jusqu’à ce que le résultat soit faux pour toutes les combinaisons. Par exemple,
si nous avons le PSC suivant :

Variables : x1, x2, x3
Domaines = labels initiaux
l1 = {a, b, c, d},
l2 = {a, b, c, d},
l3 = {a, b, c, d}
Contraintes :
C1(x1, x2) = {(a, b), (a, c), (c, d)},
C2(x1, x3) = {(a, b), (b, c), (c, d)},
C3(x2, x3) = {(a, b), (a, c), (d, d)}

la propagation des labels effectuée par l’algorithme de Waltz sera la suivante :

1) C1(x1) ⇒ l1 = {a, c}
C1(x2) ⇒ l2 = {b, c, d}

2) C2(x1) ⇒ l1 = {a, c}
C2(x3) ⇒ l3 = {b, d}
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3) C3(x2) ⇒ l2 = {d}
C3(x3) ⇒ l3 = {d}

4) C1(x1) ⇒ l1 = {c}

ce qui donne déjà une solution unique sans aucune recherche :

x1 = c, x2 = d, x3 = d

La propagation de contraintes

Dans la propagation de contraintes à proprement parler, il s’agit de déterminer
incrémentalement les contraintes implicites entre variables qui résultent de la
composition des contraintes d’un PSC. À partir de contraintes à k variables,
on construit donc des contraintes à (k+1) variables qui représentent les com-
binaisons consistantes de valeurs de ces (k+1) variables. On termine avec une
seule contrainte qui englobe toutes les variables et représente toutes les solu-
tions globalement consistantes. Cette opération ressemble fortement au « join »
connu dans les bases de données.

Comme exemple, considérons le PSC que montre la figure 8.3. Il contient
uniquement des contraintes à 2 variables, la propagation des contraintes
construit d’abord un PSC dont les contraintes impliquent 3 variables :

x2x3x4= 

{ABB,ACB,CBA,CBB}

x1x3x4= 

{BCA,CBA,CBB}

x1={B,C}

x2={A,C}

x3={B,C} x4={A,B}

x1x2x3= 

{BAC,CAB}

x1x2x4= 

{BCA,CAB}

et ensuite une seule contrainte à 4 variables :

C(x1, x2, x3, x4) = {(C,A,B,B)}

Dans le cas d’un PSC à k variables, la procédure s’arrêtera avec une seule
contrainte à k variables qui contient toutes les solutions. On appelle alors le
PSC (k-1)-consistant.

8.5 Consistance et complexité de la recherche

Si une utilisation des algorithmes de propagation peut être de trouver directe-
ment une solution à un PSC, une autre possibilité est de les utiliser pour un
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pré-traitement du problème avant ou pendant sa solution par recherche. Ceci
est notamment utile pour les algorithmes de consistance. Il est évident que ces
méthodes peuvent servir à réduire le temps que met un algorithme de la re-
cherche pour trouver une solution. Maintenant, nous allons établir des relations
précises entre la forme d’un réseau de contraintes, le degré de consistance et la
complexité de recherche nécessaire pour trouver une solution.

Trouver toutes les solutions à un PSC général est un problème de com-
plexité exponentielle, puisque le nombre de solutions qu’admet le PSC peut
être en croissance exponentielle avec le nombre de variables du problème ; dans
ce cas, la complexité de les énumérer toutes ne peut pas être moins qu’exponen-
tielle. Par contre, pour trouver une seule solution, on peut espérer de limiter la
complexité à un temps polynomial.

Nous allons considérer les notions de consistance suivantes :

• consistance des nœuds : toutes les valeurs admissibles pour un nœud sa-
tisfont l’ensemble des contraintes unaires sur ce nœud ;

• consistance des arcs : pour chacune des valeurs admissibles pour un nœud
xi, il existe des valeurs admissibles pour les autres nœuds xj telle que
chaque contrainte entre xi et xj est satisfaite.

Pour chacune de ces notions de consistance, nous allons examiner la com-
plexité de recherche d’une solution dans un réseau qui remplit cette consistance.

8.5.1 Consistance des nœuds

Si les variables associées au problème prennent leurs valeurs dans un domaine
discret, l’ensemble des valeurs admissibles pour une variable peut être repré-
senté sous la forme d’une liste. Pour satisfaire les contraintes unaires (consis-
tance des nœuds), il suffit alors de disposer d’un algorithme qui élimine sim-
plement de ces listes les valeurs engendrant une inconsistance. Par contre, les
garanties que peut donner la consistance de nœuds ne sont pas très fortes :
pour le cas d’un réseau sans contraintes entre variables, la consistance des
nœuds donne une garantie que n’importe quelle combinaison de valeurs est une
solution admissible.

8.5.2 Consistance des arcs

L’algorithme le plus simple pour réaliser la consistance des arcs est l’algo-
rithme de Waltz. Il consiste à appliquer itérativement une procédure REVISER

(fig. 8.18) à toutes les contraintes jusqu’au moment où aucune modification
ne peut être apportée (état stationnaire). L’algorithme est terminé quand les
appels à REVISER ont retourné faux pour toutes les paires de nœuds (i, j).

La complexité de l’algorithme de Waltz peut être estimée comme suit. Consi-
dérons m contraintes, n variables dont les domaines ont la taille maximale d. À
chaque itération, REVISER est appliquée au plus 2m fois, une fois dans chaque
direction. Pour que l’itération ne s’arrête pas, il faut enlever au moins une va-
leur. Il ne peut donc pas y avoir plus que n · d itérations. Donc, la complexité
totale ne peut pas dépasser O(m · n · d).
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La propagation de Waltz peut être facilement généralisée à des contraintes à
n variables : REVISER doit alors veiller à ce que pour chaque valeur du label Li,
il existe toujours une combinaison de valeurs admises par les labels des autres
(n− 1) variables pour que la contrainte soit respectée.

Pour des réseaux de contraintes binaires qui ont la topologie d’un arbre,
c’est-à-dire qui n’ont pas de cycles, la consistance des arcs garantit qu’on peut
trouver une solution de manière très efficace par une recherche sans retour-
arrière :

x

y z

En commençant par un nœud initial quelconque x, on affecte des valeurs
aux variables couche par couche. La consistance des arcs garantit alors qu’à
chaque étape le label d’une variable w contient au moins une valeur qui est
consistante avec la valeur qui a été choisie pour son unique nœud parent. Une
solution peut ainsi être trouvée avec un temps de calcul linéaire en fonction du
nombre de variables. Même si cette classe de PSC n’est pas la seule qui peut
être résolue en temps polynomial, elle est la plus importante car elle est facile à
caractériser. Il existe d’ailleurs des méthodes de transformation qui permettent
de regrouper des variables d’un PSC dans des méta-variables qui alors forment
un arbre entre elles. Un tel clustering permet de réduire la complexité de la
recherche qui n’est désormais exponentielle que dans la taille des clusters.

8.6 Contraintes globales

Dans le cas de grands problèmes pratiques, on rencontre souvent des structures
de contraintes relativement régulières qui créent une grande complexité lors
de la résolution par recherche. Considérons par exemple un problème d’alloca-
tion de ressources où il s’agit d’assigner quatre tâches simultanées x1..x4 aux
ressources {a, b, c, d, e} en respectant les domaines suivants :

• x1 ∈ {a, b, c, d}
• x2 ∈ {a, b}
• x3 ∈ {a, b, c}
• x4 ∈ {a, c}

La contrainte qu’aucune ressource ne puisse être assignée à deux tâches peut
être représentée par un ensemble de contraintes binaires d’inégalité entre les
variables. Cependant, cela conduit à un grand effort de recherche, parce que
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pour les trois premières valeurs de x1, c.à.d. a, b et c, l’algorithme doit effectuer
la recherche jusqu’à x4 pour trouver qu’il n’y a aucune solution. Les algorithmes
de consistance locale n’effectuent aucune réduction avant la dernière étape et
ne sont donc pas efficaces.

Une alternative serait de reconnâıtre qu’on trouve ici une structure spéciale
qu’on peut appeler alldifferent (tous différents). On peut alors formuler ainsi
une contrainte additionnelle que l’on nomme contrainte globale :

alldifferent(x1, x2, x3, x4)

L’intérêt de cette contrainte globale est que l’on peut formuler un algorithme
de propagation spécialisé et plus efficace qui la prend en compte.

Représentons la structure d’une contrainte alldifferent par un graphe qui
contient comme nœuds :

• les variables,

• les valeurs de leurs domaines.

et un arc qui lie chaque variable avec toutes les valeurs de son domaine (voir
fig. 8.19).

x1 x2 x3 x4

a b c d

Fig. 8.19 Représentation de la contrainte alldifferent comme graphe. Les arcs qui
peuvent apparâıtre dans un matching maximal sont indiquées en gras.

Une assignation de valeurs aux variables peut être représentée par un mat-
ching de taille maximale qui associe tous les nœuds variables aux nœuds valeurs.
Il existe un algorithme efficace qui permet de trouver tous les arcs qui peuvent
participer à un tel matching. Pour l’exemple, ils sont identifiées par des traits
gras dans la figure 8.19.

Un tel filtrage permet d’éliminer dès le départ les valeurs a, b et c du do-
maine de x1, et donc de trouver une solution de manière beaucoup plus efficace.
Il pourrait également s’appliquer lors de la recherche, par exemple pour un for-
ward checking, et ainsi obtenir des gains de performance impressionnants.

Pour profiter de telles possibilités, les outils de programmation par contrain-
tes mettent à disposition de nombreuses contraintes globales dont la propaga-
tion est implémentée par des algorithmes spécialisés. Citons par exemple le
global cardinality constraint, qui permet d’indiquer que chaque valeur doit être
assignée à au moins x et au plus y variables parmi un certain ensemble. D’autres
exemples sont de nombreuses contraintes de cycles qui se réfèrent à l’existence
et à des propriétés de cycles dans les assignations des variables.
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8.7 Satisfiabilité

Le problème de la satisfiabilité (SAT) se définit comme suit :

Étant donné

• un ensemble de littéraux x1, ..., xn

• et un ensemble de clauses ±xi ∨ ±xj ∨ ... ∨ ±xk,

trouver une assignation de valeurs xi = vi ∈ {vrai, faux} pour tous les xi tel
que toutes les clauses soient vraies.

Pour des clauses de longueur trois ou plus, la satisfiabilité est un problème
de complexité NP.

Il est évident que la satisfiabilité est un cas spécial de problème de satis-
faction de contraintes. Cependant, il existe deux simplifications : toutes les
variables ont le même domaine de deux valeurs uniquement, et les contraintes
ont une forme restreinte. On peut ainsi utiliser des méthodes spécifiques pour
la résolution de ces problèmes.

Comme pour les PSC, il existe des méthodes complètes, basées sur la re-
cherche et l’inférence, et des méthodes itératives qui sont incomplètes. Elles
fonctionnent essentiellement comme les PSC.

Un algorithme de recherche construit une assignation de valeurs à toutes les
variables (littéraux) de façon incrémentale. Cependant :

• On remplace le forward checking par unit propagation. Suite à l’assignation
d’une valeur vi à une variable xi, on peut substituer cette valeur dans tous
les clauses. Il y aura alors :

– des clauses qui contiennent xi et où la valeur vi satisfait la clause ; ces
clauses sont désormais satisfaites et ne doivent plus être considérées ;

– des clauses qui contiennent xi, et où la valeur vi ne satisfait pas la
clause ; on peut éliminer xi de la clause ; si elle ne contient désormais
aucune variable, on a trouvé une contradiction qui nécessite un back-
track ;

– des clauses qui ne contiennent pas xi et ne sont donc pas affectées.

Cette propagation est en général beaucoup plus forte que dans le cas d’un
PSC.

• On remplace également le dynamic variable ordering par une heuristique
qui sélectionne la prochaine variable basée sur son occurrence dans les
clauses qui ne sont pas encore satisfaites. Par exemple, on prend la variable
qui apparâıt dans le plus grand nombre de clauses pas encore satisfaites.

Un algorithme itératif commence avec une assignation aléatoire de valeurs
aux variables. Pour améliorer le nombre de conflits, un changement d’assigna-
tion doit forcement affecter une clause qui n’est pas satisfaite. Une technique
utilisée peut consister à sélectionner une clause non satisfaite et à changer l’as-
signation d’une des variables. On répète ce processus jusqu’à ce qu’une solution
soit trouvée. Cette méthode ne peut pas tomber dans des optima locaux, mais
elle peut résulter en une boucle infinie. Pour éviter cela, il suffit de choisir les
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clauses à changer de façon aléatoire : un boucle infinie apparâıtra alors avec
une probabilité très petite. La méthode peut donc être complète. Par contre,
si le problème n’admet pas de solution, elle ne s’arrêtera jamais.

8.8 Optimisation sous contraintes

Le paradigme de la satisfaction de contraintes peut être étendu à celui de l’op-
timisation en exigeant que la solution trouvée ne soit non seulement conforme
à toutes les contraintes, mais également la meilleure suivant un certain cri-
tère d’optimisation. En fait, la recherche de solution optimale se retrouve dans
presque toutes les applications pratiques. Des méthodes d’optimisation font
donc partie de pratiquement tous les outils de programmation par contraintes.

Du point de vue formel, le critère d’optimisation est normalement défini
comme une fonction de coût qui se calcule comme la somme des valeurs de
diverses relations. On peut ainsi compléter la definition d’un PSC comme suit :

Étant donné :

• les variables X = x1, x2, ..., xn ;

• les domaines D = D1, D2, ..., Dn associés aux variables ;

• les contraintes C = C1(xk, xl, ...), C2, ..., Cm, qui restreignent les
combinaisons de valeurs possibles pour les variables sur lesquelles
elles portent ;

• les relations R = R1(xk, xl, ...), R2, ..., Rl, où chacune donne un
coût pour chaque combinaison de valeurs des arguments ;

Trouver :

la solution :
{x1 = vk, x2 = vl, ..., xn = vo} telle que toutes les contraintes
soient satisfaites et que la somme R1 + R2 + ...+ Rl soit mi-
nimale parmi tous les assignations consistantes.

L’optimisation sous contraintes est une alternative plus générale à la pro-
grammation linéaire. Si la programmation linéaire et ses variantes discrètes
développées en recherche opérationnelle présentent un avantage en efficacité,
l’optimisation sous contraintes admet des contraintes et des relations arbi-
traires. Cette dernière est donc plus généralement applicable.

Il existe parfois des problèmes où des algorithmes efficaces permettent d’op-
timiser l’un ou l’autre aspect isolé, mais pas leur combinaison. Par exemple,
dans l’optimisation de transports, il peut être important de chercher à la fois
le chemin le plus court et un ordonnancement optimal. L’optimisation sous
contraintes permet de combiner ces deux critères.

L’algorithme de recherche en profondeur-d’abord pour la solution de PSC
peut être adapté à l’optimisation en introduisant le mécanisme de branch-and-
bound. Le principe est le suivant :

• On maintient pour chaque nœud de recherche (c.à.d. une assignation par-
tielle) une borne inférieure BI(n) sur le coût d’une assignation consistante
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qui contient l’assignation partielle. La borne inférieure se calcule comme
la somme des coûts de toutes les relations qui peuvent être évaluées étant
donné les assignations déjà faites. Pour une relation où uniquement une
partie des variables a une valeur, on compte le coût le plus bas qui est
possible étant donné les assignations déjà fixées.

• L’algorithme maintient également une borne supérieure BS qui est initia-
lisée à +∞. Chaque fois qu’on trouve une assignation complète, si le coût
c est inférieur à BS, on met à jour BS ← c, et on mémorise l’assignation
comme la solution provisoire.

• Tout nœud n tel que BI(n) ≥ BS ne peut pas conduire à une meilleure
solution que la solution provisoire et est donc abandonné.

• S’il ne reste aucun nœud non exploré, la solution provisoire est la solution
optimale avec coût BS.

Il est également possible de généraliser à l’optimisation les techniques de
forward checking, de lookahead et de la consistance des arcs.

L’adaptation des algorithmes itératifs pour trouver une solution optimale
est plus simple : au lieu de minimiser uniquement les violations de contraintes,
on associe à chaque violation de contrainte un coût qui se rajoute au coût de
la solution. On choisit alors les modifications qui réduisent le plus possible le
coût de la solution.

Une variante de l’optimisation sous contraintes est la satisfaction partielle
de contraintes. Dans cette variante, on considère que toute contrainte peut être
violée avec un certain coût. On cherche alors la solution qui minimise le coût
de tous les violations. On peut transformer un tel problème en un problème
d’optimisation sous contraintes en considérant chaque contrainte comme une
relation qui aurait un coût de zéro pour toutes les assignations admises et un
coût de c pour toutes celles qui ne sont pas admises. On parle alors aussi de
préférences ou de soft constraints.

Littérature

Plusieurs livres sur la programmation par contraintes sont apparus récemment.
La collection [32] est la plus complète et couvre pratiquement tous les sujets.
Les livres [33] et [34] présentent des approches plus spécifiques, le premier avec
un accent sur la programmation dynamique et le deuxième avec un accent sur
la programmation logique par contraintes.

L’idee de la consistance locale et plus particulièrement la consistance des
arcs a été introduit dans [35]. La combinaison du forward checking et dynamic
variable ordering a été introduite en 1980 dans [36], et le fait que la consistance
des arcs garantit une recherche sans retour-arrière a été démontré dans [37] et
développé dans [38]. On ne connâıt pas l’inventeur du principe de la recherche
locale, mais le recuit simulé a été introduit dans [39] et le GSAT dans [40].
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Outils - domaine public

Il existe de nombreux outils pour la satisfaction de contraintes, mais beaucoup
sont vieux ou mal documentés. Le système Choco est un développement récent
qui est beaucoup utilisé :

http://choco.sourceforge.net/

Application : Gestion de production d’automobiles

Appartenant à la société Nissan, l’usine de Sunderland (UK) était déjà
considérée comme l’usine de voitures la plus efficace d’Europe. L’usine
fabriquait deux modèles sur ses deux châınes de production.

En 1999, Nissan voulait y produire un troisième modèle, mais sans aug-
menter le nombre de châınes de production. On a réussi à le faire grâce
à l’introduction d’un outil d’ordonnancement basé sur la satisfaction de
contraintes. La technologie a permis de gérer les contraintes qui résultent
du fait que trois modèles sont produits simultanément sur deux châınes
de production, ce qui n’était pas possible avec les outils de la recherche
opérationnelle.

Nissan a ainsi augmenté le nombre de voitures produit par année de
236 000 a 337 000 sans introduire de nouveaux équipements. L’alterna-
tive, la construction d’une troisième châıne de production, aurait coûté
plus de cinq cent millions de dollars ! De plus, avec le nouveau système,
la planification est beaucoup plus souvent respectée : si, avant, seulement
3% des voitures étaient produites selon le plan, en utilisant la satisfaction
de contraintes, ce taux est passé à 95%.

(Source : ILOG SA : Success Story : Nissan, http://www.ilog.com)

8.9 Exercices

Exercice 8.1 Première partie - Algorithme de Backtrack

Dans cette série d’exercices, vous allez programmer des algorithmes destinés à
résoudre des problèmes de satisfaction de contraintes :

• la consistance de nœuds et d’arcs,

• l’algorithme de recherche par backtracking.

Dans la série suivante, vous appliquerez ces algorithmes au jeu du Sudoku.

Modules squelettes

Les modules moteur_psc suivants contiennent le squelette du programme que
nous allons développer. Le module exemple_backtracking.py permettra de le
tester.
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Module .../moteur_psc/variable.py :

class Variable:
def init ( self , nom, domaine, val=None):

self .nom = nom
self .domaine = domaine
self . val = val

def taille domaine( self ):
return len(self.domaine)

def eq ( self , that):
return self.nom == that.nom

def hash ( self ):
return sum(map(ord, self.nom))

def repr ( self ):
return '{} = {}, domaine: {}'.format(self.nom, self.val , self .domaine)

Module .../moteur_psc/contrainte.py :

class Contrainte:
def init ( self , variables ):

self . variables = tuple(variables)

def dimension(self ):
return len(self. variables )

def est valide ( self ):
return False

def repr ( self ):
return 'Contrainte: {}'.format(self.variables)

def eq ( self , that):
return self. variables == that.variables

def hash ( self ):
return sum([v. hash for v in self. variables ])

class ContrainteUnaire(Contrainte):
def init ( self , var, op):

Contrainte. init ( self , (var ,))
self .op = op

def est valide ( self , val ):
print('à compléter')

class ContrainteBinaire(Contrainte):
def init ( self , var1, var2, op):

Contrainte. init ( self , (var1, var2))
self .op = op

def est valide ( self , var, val ):
print('à compléter')

def est possible ( self , var):
print('à compléter')



Satisfaction de contraintes 197

def reviser ( self ):
print('à compléter')

Module .../moteur_psc/moteur_psc.py :

class PSC:
def init ( self , variables , contraintes ):

self . variables = variables
self . contraintes = contraintes

self . iterations = 0
self . solutions = []

def consistance noeuds(self ):
print('à compléter')

def consistance arcs( self ):
print('à compléter')

def consistance avec vars precedentes( self , k):
print('à compléter')

def backtracking(self , k=0, une seule solution=False):
print('à compléter')

def affiche solutions ( self ):
print('Recherche terminée en {} itérations ' .format(self. iterations ))

if len( self . solutions ) == 0:
print('Aucune solution trouvée')
return

for sol in self . solutions :
print('Solution')
print('========')
for (nom, var) in sorted(sol.items()):

print('\tVariable {}: {}' .format(nom, var))

Module .../exemple_backtracking.py :

from moteur psc.variable import Variable
from moteur psc.contrainte import ContrainteUnaire, ContrainteBinaire
from moteur psc.psc import PSC

variables = [
Variable( 'a' , [2, 3]),
Variable( 'b' , list (range(12))),
Variable( 'c ' , list (range(3))),
Variable( 'd' , list (range(3))),
Variable( 'e ' , list (range(12))),
]

contraintes = [
ContrainteUnaire(variables [1], lambda x: x < 4),
ContrainteBinaire(variables [0], variables [1], lambda x, y: x != y),
ContrainteBinaire(variables [1], variables [2], lambda x, y: x != y),
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ContrainteBinaire(variables [1], variables [3], lambda x, y: x != y),
ContrainteBinaire(variables [1], variables [4], lambda x, y: x != y),
ContrainteBinaire(variables [2], variables [3], lambda x, y: x != y),
ContrainteBinaire(variables [2], variables [4], lambda x, y: x != y),
ContrainteBinaire(variables [3], variables [4], lambda x, y: x != y),
ContrainteBinaire(variables [4], variables [0], lambda x, y: x < y),

]

psc = PSC(variables, contraintes)

psc.consistance noeuds()
psc. consistance arcs ()
psc.backtracking(0, False)

psc. affiche solutions ()

Exercice 8.1.1 Consistance des nœuds et des arcs

Les modules variable.py et contrainte.py contiennent les classes Variable et
Contrainte, ainsi que les sous-classes de cette dernière, ContrainteUnaire et
ContrainteBinaire. Le module psc.py implémente la classe PSC - une librairie
pour la gestion d’un ensemble de variables et de contraintes, ainsi que pour la
résolution d’un système de contraintes.

Comme vous pouvez le constater, les fonctions consistance_noeuds et consis-
tance_arcs la classe PSC ne sont pas implémentées. Vous pouvez commencer par
compléter ces fonctions, en suivant les indications suivantes :

• La fonction consistance_noeuds doit appeler la méthode est_valide de la
classe ContrainteUnaire, que vous devez aussi compléter.

• La fonction consistance_arcs doit appeler la méthode reviser de la classe
ContrainteBinaire, dans laquelle vous devez implémenter l’algorithme de
Waltz (consistance d’arcs). Comme les contraintes binaires sont bidirec-
tionnelles, vous devrez implémenter la fonction reviser de telle sorte que
les domaines des deux variables de la contrainte soient réduits (si possible)
par l’appel à reviser.

• À son tour, la méthode reviser s’appuie sur les méthodes est_valide et
est_possible de la classe ContrainteBinaire, que vous devez aussi com-
pléter.

Exercice 8.1.2 Algorithme du backtrack

Le Backtracking est un algorithme de recherche en profondeur-d’abord avec les
charactéristiques suivantes :

• un nœud de recherche est une instanciation de variables x1 = v1, x2 = v2,
..., xk = vk (où k est la profondeur du nœud dans l’arbre de recherche),

• la fonction de successeur ajoute une nouvelle instanciation xk+1 = vk+1

de manière à respecter toutes les contraintes pour les variables x1, ..., xk,

• le nœud initial est une instanciation vide,

• un nœud but consiste en une instanciation de toutes les variables x1, ...,
xn.
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L’algorithme de recherche, dont nous vous donnons le pseudo-code ci-dessous,
doit ainsi être implémenté dans la méthode backtracking de la classe PSC :

solutions <− []
variables <− [v1, v2, ..., vn]

Backtracking(k, une seule solution)
1. IF k >= n THEN
2. IF NOT une seule solution THEN
3. ajouter la solution actuelle à solutions
4. ELSE
5. RETURN solutions = [solution actuelle]
6. END IF
7. ELSE
8. v <− variables[k]
9. FOR EACH valeur de domaine d de la variable v DO
10. assigner la valeur d à la variable v
11. vé rifier la consistance de v=d avec les variables précédentes
12. IF v=d est consistant THEN
13. reste <− Backtracking(k+1, une seule solution)
14. IF reste != échec THEN
15. RETURN reste
16. END IF
17. END IF
18. END FOR
19. END IF
20. RETURN échec
END Backtracking

backtracking prend deux paramètres :

• k : la profondeur courante (commence à 0),

• une_seule_solution : si vrai, alors retourne la première solution trouvée,
sinon retourne toutes les solutions possibles.

Les étapes 11 et 12 de l’algorithme ci-dessus seront implémentées à l’aide de la
fonction consistance_avec_vars_precedentes de la classe PSC, que vous devez
aussi compléter.

Les solutions seront stockées dans la variable de classe self.solutions, cha-
cune étant représentée par un dictionnaire qui associera le nom de la variable
à sa valeur. Comme ces solutions sont conservées dans un champ de la classe,
il n’est donc pas indispensable de les retourner. En outre, au lieu de retourner
une valeur spéciale en cas d’échec, la méthode backtracking peut se terminer
simplement sans valeur de retour.

5

Test du programme

Une fois que vous avez terminé, vous pouvez tester votre implémentation sur
le module exemple_backtracking.py :

python3 exemple backtracking.py
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Exercice 8.1.3 Permutations

S’il vous reste du temps, vous pouvez utiliser l’algorithme du backtrack pour
afficher toutes les permutations possibles des entiers de 0 à N . Par permutation,
nous entendons une solution dont les clés seront des indices et les valeurs, des
entiers de 0 à N . Chacune de ces solutions doit contenir chaque valeur une fois
et une fois seulement. Vous devrez donc définir un système de contraintes pour
vous assurer que cette condition soit respectée. Testez votre implémentation
pour plusieurs valeurs de N . (Ne choisissez pas des valeurs trop élevées pour
N , faute de quoi l’algorithme risque de tourner pendant des heures.)

Essayez ensuite d’imaginer d’autres contraintes pour restreindre l’ensemble
des solutions et implémentez-les. Par exemple, on peut exiger que deux valeurs
consécutives ne soient jamais toutes deux paires ou toutes deux impaires.

Solutions à la page 370

Exercice 8.2 Deuxième partie - Forward Checking

Dans cette série, vous allez programmer de nouveaux algorithmes de résolution
de systèmes de contraintes, plus sophistiqués que ceux de la leçon précédente :

• les heuristiques du Variable Ordering et du Dynamic Variable Ordering,

• programmer l’heuristique du Forward Checking.

Vous les testerez ensuite sur le jeu du Sudoku.

Modules squelettes

Commencez par copier les modules suivants, qui implémentent partiellement le
code de l’exercice. Le module moteur_psc_heuristique fournit le squelette du
programme que nous allons développer. Les modules exemple_forward_checking.py
et exemple_sudoku.py sont là pour vous permettre de tester votre programme.

Module .../moteur_psc_heuristique/variable_avec_label.py :

from moteur psc.variable import Variable

class VariableAvecLabel(Variable):
def init ( self , nom, domaine, val=None):

Variable. init ( self , nom, domaine, val)

# Le label est initialement égal au domaine.
self . label = domaine[:]

def repr ( self ):
return '{} = {}, domaine: {}, label: {}' .format(self.nom,

self . val ,
self .domaine,
self . label )
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Module .../moteur_psc_heuristique/contrainte_avec_propagation.py :

from moteur psc.contrainte import ContrainteBinaire

class ContrainteAvecPropagation(ContrainteBinaire):
def init ( self , var1, var2, op):

ContrainteBinaire. init ( self , var1, var2, op)

def reviser ( self ):
# Nous appliquons d'abord la méthode reviser() de la classe−mère pour
# réviser les domaines de chaque variable.
domaines modifies = ContrainteBinaire.reviser( self )

# Puis, s' il y a lieu , nous nous assurons que les labels sont toujours
# identiques aux domaines.
if domaines modifies:

for var in self . variables :
var. label = var.domaine[:]

return domaines modifies

def propage(self , var):
print('à compléter')

Module .../psc_heuristique/moteur_psc_heuristique.py :

from moteur psc.psc import PSC

class PSCHeuristique(PSC):

def init ( self , variables , contraintes ):
PSC. init ( self , variables , contraintes)

self . reinitialise ()

def reinitialise ( self ):
self . initialise labels ()
self . solutions = []
self . iterations = 0

def initialise labels ( self ):
for var in self . variables :

var. label = var.domaine[:]

def consistance noeuds(self ):
# Nous appelons d'abord la méthode de la classe−mère PSC pour réduire
# les domaines.
PSC.consistance noeuds(self)

# Puis, nous nous assurons que les labels sont identiques aux domaines.
self . initialise labels ()

def variable ordering( self ):
print('à compléter')

def dynamic variable ordering(self , k):
print('à compléter')
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def propagation consistante( self , k):
print('à compléter')

def forward checking(self , k=0, une seule solution=False):
print('à compléter')

Module .../sudoku.py :

from moteur psc heuristique.variable avec label import VariableAvecLabel
from moteur psc.contrainte import ContrainteUnaire
from moteur psc heuristique.contrainte avec propagation import

ContrainteAvecPropagation
from moteur psc heuristique.psc heuristique import PSCHeuristique

class Sudoku:
def init ( self , grille , taille =9, sous taille =3):

if taille % sous taille != 0:
raise ValueError('Taille et sous−taille de grille incompatibles. ')

self . taille = taille
self . sous taille = sous taille

# Génère une variable par case.
self . variables = [VariableAvecLabel('{}{}'.format(i, j),

list (range(1, self . taille + 1)))
for i in range(self. taille ) for j in range(self. taille )]

# Initialise les cases dont les valeurs sont connues.
for i in range(self. taille ):

for j in range(self. taille ):
# Si la case est instanciée avec une valeur valide ,
# assigne la variable et restreint son domaine àla valeur initiale .
if isinstance(grille [ i ][ j ], int):

if not (1 <= grille[ i ][ j ] <= self. taille ):
raise ValueError('Valeur invalide dans la grille de départ. ')

var = self . variables [ i ∗ self . taille + j]
var.val = grille [ i ][ j ]
var.domaine = [grille [ i ][ j ]]
var. label = [ grille [ i ][ j ]]

self . contraintes = []
self . genere contraintes ()

def genere contraintes sous grille ( self , x, y):
# Parcours de la sous−grille.
for i in range(x, x + self. sous taille ):

for j in range(y, y + self. sous taille ):
# Pour chaque case qui n'est ni dans la même ligne i ni dans la même
# colonne j, on ajoute une contrainte. ( les autres cases sont couvertes
# par les contraintes de lignes et de colonnes.)
for k in range(x, x + self. sous taille ):

for l in range(y, y + self. sous taille ):
if i != k and j != l:

self . contraintes .append(
ContrainteAvecPropagation(self.variables[ i ∗ self .

taille + j ],
self . variables [k ∗ self .

taille + l ],
lambda x,y: x != y)
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)

def genere contraintes( self ):
self . contraintes = []

for i in range(0, self . taille ):
for j in range(0, self . taille ):

# Contraintes sur les case d'une ligne.
for k in range(j + 1, self . taille ):

self . contraintes .append(
ContrainteAvecPropagation(self.variables[ i ∗ self . taille + j ],

self . variables [ i ∗ self . taille + k],
lambda x,y: x != y)

)
# Contraintes sur les cases d'une colonne.
for k in range(j + 1, self . taille ):

self . contraintes .append(
ContrainteAvecPropagation(self.variables[ j ∗ self . taille + i ],

self . variables [k ∗ self . taille + i ],
lambda x,y: x != y)

)

# Contrainte sur les cases d'une sous−grille.
# Le troisième argument de range permet de régler l'incrément.
# Ex.: range(0, 5, 2) génère la séquence 0, 3.
# range(10, 5, −1) génère la séquence 10, 9, 8, 7, 6.
# '//' est l 'opérateur de division entière.
for i in range(0, self . taille , self . taille // self . sous taille ):

for j in range(0, self . taille , self . taille // self . sous taille ):
self . genere contraintes sous grille ( i , j)

def resoudre( self , methode):
psc = PSCHeuristique(self.variables, self . contraintes)
psc.consistance noeuds()
psc. consistance arcs ()

if methode == 'forward checking':
psc.forward checking(une seule solution=True)

elif methode == 'backtracking':
psc. variable ordering ()
psc.backtracking(une seule solution=True)

else:
raise ValueError('Méthode inconnue: ' + str(methode))

print('Méthode: ' + methode)
print('Recherche terminée en {} itérations ' .format(psc.iterations))
for i in range(self. taille ):

for j in range(self. taille ):
nom = '{}{}'.format(i, j)
self . variables [ i ∗ self . taille + j ]. val = psc.solutions [0][ nom]

def repr ( self ):
def val(e):

if e is None:
return '−'

else:
return e

ret = ''
for i in range(self. taille ):
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for j in range(self. taille ):
ret += '{} '.format(val(self. variables [ i ∗ self . taille + j ]. val))

ret += '\n'

return ret

Module .../exemple_forward_checking.py :

from moteur psc heuristique.variable avec label import VariableAvecLabel
from moteur psc.contrainte import ContrainteUnaire
from moteur psc heuristique.contrainte avec propagation import

ContrainteAvecPropagation
from moteur psc heuristique.psc heuristique import PSCHeuristique

variables = [
VariableAvecLabel('a', [2, 3]),
VariableAvecLabel('b', list (range(12))),
VariableAvecLabel('c', list (range(3))),
VariableAvecLabel('d', list (range(3))),
VariableAvecLabel('e', list (range(12))),
]

contraintes = [
ContrainteUnaire(variables [1], lambda x: x < 4),
ContrainteAvecPropagation(variables[0], variables [1], lambda x, y: x != y),
ContrainteAvecPropagation(variables[1], variables [2], lambda x, y: x != y),
ContrainteAvecPropagation(variables[1], variables [3], lambda x, y: x != y),
ContrainteAvecPropagation(variables[1], variables [4], lambda x, y: x != y),
ContrainteAvecPropagation(variables[2], variables [3], lambda x, y: x != y),
ContrainteAvecPropagation(variables[2], variables [4], lambda x, y: x != y),
ContrainteAvecPropagation(variables[3], variables [4], lambda x, y: x != y),
ContrainteAvecPropagation(variables[4], variables [0], lambda x, y: x < y),

]

psc = PSCHeuristique(variables, contraintes)

psc.consistance noeuds()
psc. consistance arcs ()
psc. variable ordering ()

psc.backtracking()

print('Backtracking avec variable ordering: ')
psc. affiche solutions ()

psc. reinitialise ()
psc.forward checking()

print('Forward checking: ')
psc. affiche solutions ()

Module .../exemple_sudoku.py :

from sys import argv, exit
from moteur psc heuristique.variable avec label import VariableAvecLabel
from moteur psc.contrainte import ContrainteUnaire
from moteur psc heuristique.contrainte avec propagation import
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ContrainteAvecPropagation
from moteur psc heuristique.psc heuristique import PSCHeuristique
from sudoku import Sudoku

grilleA = [
[ 9 , '−', '−', '−', '−', '−', '−', '−', 2],
[ 3 , '−', 7 , 1 , '−', '−', 4 , '−', 8],
[ '−', 1 , '−', '−', 5 , 4 , '−', 6 , '−' ],
[ '−', '−', 1 , '−', '−', '−', '−', 7 , '−' ],
[ '−', '−', 4 , '−', '−', '−', 9 , '−', '−' ],
[ '−', 2 , '−', '−', '−', '−', 8 , '−', '−' ],
[ '−', 8 , '−', 3 , 2 , '−', '−', 4 , '−' ],
[ 7 , '−', 3 , '−', '−', 6 , 2 , '−', 1],
[ 4 , '−', '−', '−', '−', '−', '−', '−', 5]

]

grilleB = [
[ '−', '−', '−', '−', '−', '−', '−', '−', '−' ],
[ '−', '−', 7 , 8 , 3 , '−', 9 , '−', '−' ],
[ '−', '−', 5 , '−', '−', 2 , 6 , 4 , '−' ],
[ '−', '−', 2 , 6 , '−', '−', '−', 7 , '−' ],
[ '−', 4 , '−', '−', '−', '−', '−', 8 , '−' ],
[ '−', 6 , '−', '−', '−', 3 , 2 , '−', '−' ],
[ '−', 2 , 8 , 4 , '−', '−', 5 , '−', '−' ],
[ '−', '−', '−', '−', 9 , 6 , 1 , '−', '−' ],
[ '−', '−', '−', '−', '−', '−', '−', '−', '−']

]

if len(argv) < 3:
print('On attend deux arguments: grille (A ou B) ' +\

'et méthode (forward checking ou backtracking)')
exit (1)

if argv [1]. lower() == 'a':
sudoku = Sudoku(grilleA)

elif argv [1]. lower() == 'b':
sudoku = Sudoku(grilleB)

else:
print('Le premier argument doit être A ou B')
exit (1)

if argv[2] in ( 'backtracking' , 'forward checking'):
methode = argv[2]

else:
print('Le second argument doit être forward checking ou backtracking')
sys. exit (1)

print('Grille ' + argv[1])
print(sudoku)

sudoku.resoudre(methode)

print(sudoku)

Comme les méthodes que vous allez programmer dans cet exercice sont une
extension du code des chapitres précédents, il est plus commode de les im-
plémenter dans des classes-filles, qui héritent des classes que nous avons déjà
développées. Nous vous fournissons ainsi la classe VariableAvecLabel, qui étend
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la classe Variable, la classe ContrainteAvecPropagation, qui étend la classe
ContrainteBinaire, et la classe PSCHeuristique, qui hérite de la classe PSC.

Exercice 8.2.1 Variable ordering

Dans le cas du Backtracking, comme vous avez pu le constater, les variables
sont instanciées les unes après les autres dans l’ordre où elles apparaissent dans
self.variables. L’heuristique du Variable Ordering consiste à trier ces variables
de façon à instancier d’abord celles dont le domaine est le plus restreint. L’idée
est de commencer par les variables les plus restrictives, car ce sont celles-ci qui
ont le plus de chance d’aboutir à une instanciation inconsistante, et donc à un
backtrack.

Le premier exercice consiste à implémenter cet algorithme dans la classe
PSCHeuristique. Pour trier les variables, vous pouvez appeler la méthode sort()

de la liste self.variables en passant comme paramètre key une fonction lambda
qui retourne la taille du domaine. Vous pouvez vous inspirer de la documenta-

tion disponible ici
(1)

.

Vous pouvez ensuite tester votre algorithme sur le fichier exemple_forward_

checking.py en vérifiant s’il améliore la performance du Backtracking.

Exercice 8.2.2 Algorithme du forward checking

Des heuristiques peuvent aussi être employées afin d’améliorer la recherche par
rapport au Backtracking. Vous allez ainsi programmer l’heuristique connue sous
le nom de Forward Checking. Elle a pour but d’éviter à l’avance des instancia-
tions inconsistantes en appliquant le critère de la consistance des arcs pendant
la recherche. Pour cela, il faut ajouter à chaque variable un attribut self.label,
qui sera initialement égal au domaine de celle-ci. Le forward checking met alors
à jour ces labels en appliquant la règle suivante : à chaque instanciation d’une
variable xk, on retire toutes les valeurs inconsistantes avec xk des labels des
variables qui ne sont pas encore instanciées.

Dans la méthode forward_checking de la classe PSCHeuristique, programmez
donc l’algorithme ci-dessous :

solutions <− []
variables <− [v1, v2, ..., vn]

ForwardChecking(k, une seule solution)
1. IF k >= n THEN
2. IF NOT une seule solution THEN
3. ajouter la solution actuelle à solutions
4. ELSE
5. RETURN solutions = [solution actuelle]
6. END IF
7. ELSE
8. v <− variables[k]
9. sauvegarde labels <− labels des variables vk, ..., vn
10. FOR EACH valeur de label d de la variable v DO
11. assigner la valeur d à la variable v
12. réduire le label de v à la seule valeur d

(1)
http ://wiki.python.org/moin/HowTo/Sorting
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13. propager v=d aux labels des variables suivantes
14. IF v=d est consistant THEN
15. reste <− ForwardChecking(k+1, une seule solution)
16. IF reste != échec THEN
17. RETURN reste
18. END IF
19. END IF
20. labels des variables <− sauvegarde labels
21. END FOR
22. END IF
23. RETURN échec
END ForwardChecking

La méthode forward_checking prend deux paramètres :

• k : la profondeur courante (commence à 0),

• une_seule_solution : si True, retourne la première solution trouvée, sinon
retourne toutes les solutions.

Les solutions seront stockées dans la variable de classe self.solutions. Chaque
solution sera représentée par un dictionnaire qui, à un nom de variable donné,
associera la valeur de cette variable.

Les étapes 13 et 14 de l’algorithme ci-dessus sont à implémenter à l’aide
de la fonction propagation_consistante de la classe PSCHeuristique, que vous
devez compléter. Pour chaque contrainte portant sur la variable courante et
sur au moins une deuxième variable non encore instanciée, cette fonction doit
appeler la méthode propage de la contrainte pour tenter de réduire le label de
la deuxième variable.

Vous devez aussi implémenter la méthode propage de la classe ContrainteA-

vecPropagation. Pour chaque valeur possible de la deuxième variable, propage
vérifiera si cette valeur est consistante avec la contrainte et la retirera du label
de la variable si ce n’est pas le cas. Les deux méthodes propagation_consistante
et propage devront retourner True si les contraintes peuvent être satisfaites, et
False si au moins une des variables non encore instanciées n’a plus aucune
valeur possible dans son label après propagation.

Lorsque vous avez terminé, vous pouvez tester votre implémentation du
forward checking sur le fichier exemple_forward_checking.py en vérifiant s’il
améliore la performance du Backtracking.

Exercice 8.2.3 Dynamic variable ordering

L’heuristique du variable ordering ne trie la liste des variables qu’une seule fois,
avant la recherche. Le Dynamic Variable Ordering est une heuristique encore
plus efficace, qui trie la liste des variables par ordre croissant de la taille du label
à chaque étape de la recherche. L’idée est donc de retrier la liste des variables
à chaque étape k, mais seulement à partir de la position k (car les variables
précédentes ont déjà été instanciées).

Implémentez cette heuristique dans la classe PSCHeuristique, et appelez-la
dans l’algorithme du forward checking entre les lignes 7 et 8 du pseudocode ci-
dessus. Notez que vous n’avez pas besoin de trier toute la liste. En supposant
que vous êtes à l’étape k, il est plus efficace de chercher la variable possédant
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le plus petit label à partir de la position k et de l’échanger avec la variable
d’indice k. Pour échanger les valeurs de deux variables a et b en Python, vous
pouvez utiliser la syntaxe a, b = b, a.

Testez finalement à nouveau votre algorithme sur le fichier exemple_forward_
checking.py, et comparez les résultats.

Exercice 8.2.4 Sudoku

Afin de comprendre ces algorithmes plus en détail, testez-les sur le fichier
exemple_sudoku.py, qui contient deux grilles de Sudoku. Essayez la grille A,
puis la grille B. Que constatez-vous ?

python3 exemple sudoku.py A forward checking
python3 exemple sudoku.py B forward checking

Essayez maintenant d’utiliser le Backtracking. Que constatez-vous ?

python3 exemple sudoku.py A backtracking
python3 exemple sudoku.py B backtracking

Solutions à la page 373



Chapitre 9

Diagnostic

Effectuer un diagnostic d’un système défaillant est une tâche fréquente et pré-
sente un grand domaine d’application de l’intelligence artificielle. Des outils
automatiques sont utiles car :

• le problème est clairement défini et peut donc être résolu par un pro-
gramme,

• le diagnostic nécessite souvent un raisonnement complexe qui dépasse les
capacités des personnes confrontées au problème,

• une panne, par exemple dans un réseau électrique ou dans une installation
industrielle, est souvent très coûteuse et doit être réparée dans un délai
aussi bref que possible.

Un algorithme de diagnostic automatique prend comme entrées un modèle
du comportement du système (MS) et des observations de ce comportement
(OBS). Il doit produire un ensemble de candidats de diagnostic (CAND), dans
lequel chaque candidat indique une combinaison de composants défectueux.
L’algorithme peut trier les candidats selon la probabilité qu’ils constituent le
bon diagnostic. Une autre fonctionnalité peut être de proposer des observations
ou mesures qui permettent d’affiner l’ensemble des candidats.

Un système est défaillant si son comportement n’est pas consistant avec son
modèle :

MS ∪OBS ` ⊥(Contradiction)

Nous allons d’abord considérer des méthodes qui expliquent les observations,
c’est-à-dire que :

MS ∪ CAND ` OBS
Il est évident que ce problème est un problème abductif et non pas déductif.

La difficulté principale pour un algorithme de diagnostic est que pour un
certain ensemble d’observations, il y a souvent une grande variété de causes
possibles. Par exemple, il y a beaucoup de raisons pour lesquelles une lampe
peut ne pas s’allumer quand on enclenche l’interrupteur : l’ampoule peut être
cassée ou mal vissée, la lampe peut avoir un mauvais contact ou la prise peut
manquer de courant. Uniquement la prise en compte d’autres observations per-
met de rétrécir cet ensemble de possibilités.

Ce processus est difficile à modéliser par un raisonnement déductif comme
l’exprime un système de règles. Un tel raisonnement impliquerait que chaque
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observation peut rajouter de nouveaux candidats au lieu d’en éliminer. En fait,
l’implémentation d’un processus de raisonnement abductif pose des difficultés
liées au fait qu’il n’y a pas de correspondance directe avec un raisonnement
déductif. Dans ce chapitre, nous allons voir trois manières de résoudre ce pro-
blème :

• par abduction explicite,

• par transformation en un problème déductif,

• par raisonnement incertain.

Ces techniques s’appliquent aussi à l’implémentation d’autres moteurs d’in-
férence abductifs, et le diagnostic peut être considéré comme un exemple d’un
tel processus.

Par la suite, nous allons considérer un diagnostic basé sur la notion de
consistance au lieu d’abduction. Cette technique est spécifique au diagnostic.

9.1 Trois manières d’implémenter un diagnostic

Considérons le circuit électrique de la figure 9.1. Le circuit contient trois am-
poules a1, a2 et a3 dont on peut observer le fonctionnement. Ces ampoules
sont connectées à une source de courant. Nous supposons que cette dernière ne
tombe jamais en panne. La connexion est faite par quatre câbles c1, c2, c3 et
c4 qui peuvent être défectueux, ce qu’on ne peut pas observer directement. Le
problème est de trouver quels câbles sont défectueux.

c2

c3

c4

a2a1 a3

c1

src

Fig. 9.1 Circuit électrique dont on souhaite un diagnostic.

La modélisation des dispositifs joue un rôle important, car elle fixe la granu-
larité du diagnostic. Le modèle doit se situer au bon niveau pour identifier avec
suffisamment de précision les composants défectueux. Normalement, on mo-
délisera comme composants des unités qui peuvent être remplacées. En même
temps, le modèle doit être aussi abstrait que possible pour limiter la complexité
du raisonnement. Dans l’exemple, on suppose qu’on peut échanger les ampoules
ou bien réparer les câbles individuellement.
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Le problème peut être formalisé en logique comme suit. Nous décrivons le
circuit et sa topologie par les propositions suivantes :

ampoule(a1),ampoule(a2),ampoule(a3)

câble(c1),câble(c2),câble(c3),câble(c4)

connexion(c1,src,a3),connexion(c2,src,a1),

connexion(c2,src,a2),connexion(c3,a1,src),

connexion(c4,a2,src),connexion(c4,a3,src)

Pour les prédicats qui figurent dans ces propositions, on peut formuler les
règles suivantes, valables pour n’importe quel circuit :

ampoule(x) ∧ cable(y) ∧ connexion(y,src,x) ∧ défectueux(y)

⇒ éteint(x)

ampoule(x) ∧ cable(y) ∧ connexion(y,x,src) ∧ défectueux(y)

⇒ éteint(x)

Grâce à ces règles, par déduction on peut tirer les inférences suivantes :

défectueux(c1) ⇒ éteint(a3)

défectueux(c2) ⇒ éteint(a1)

défectueux(c2) ⇒ éteint(a2)

défectueux(c3) ⇒ éteint(a1)

défectueux(c4) ⇒ éteint(a2)

défectueux(c4) ⇒ éteint(a3)

qui décrivent les effets d’un câble défectueux.

À partir de l’état des composants, ces règles permettent donc de déduire les
observations sur l’état des ampoules. Or, ce que nous voulons atteindre, c’est
la possibilité de déduire l’état des composants à partir des observations sur
l’état des ampoules. Nous allons décrire ci-après trois manières de réaliser un
tel diagnostic.

9.1.1 Diagnostic par abduction explicite

Une première possibilité pour trouver un diagnostic de ce circuit est un raison-
nement abductif explicite. On fera alors l’hypothèse du monde clos en supposant
que seuls les quatre câbles peuvent être défectueux. Soient les observations :

éteint(a1), allumé(a2), éteint(a3)

On fera alors une recherche entre toutes les combinaisons de câbles défectueux
imaginables en retenant celles pour lesquelles le modèle du circuit (développé
ci-dessus) prédit les observations qui ont été faites. La recherche est formulée
comme suit :

• un nœud de recherche représente un ensemble de défauts,

• le nœud initial est l’ensemble vide,

• la fonction de successeur consiste à ajouter un défaut,

• le critère de terminaison consiste à ce que les défauts permettent de dé-
duire les observations.
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La figure 9.2 montre une trace de recherche pour l’exemple cité ci-dessus.
Dans l’exemple, uniquement la combinaison :

défectueux(c1) ∧ défectueux(c3)

peut donner lieu aux observations. Il peut y avoir de nombreuses solutions
qui expliquent les mêmes observations. Pour un diagnostic, on aimerait avoir
l’explication la plus simple : elle est la plus probable, et montre la manière
la plus simple de résoudre le problème. L’algorithme de recherche doit donc
fournir la solution la plus simple, c.à.d. celle qui est la plus proche du nœud
initial. L’algorithme A∗ est souvent utilisé pour satisfaire ce critère.

{}
(1,1,1)

{c1}
(1,1,0)

{c2}
(0,0,1)

{c3}
(0,1,1)

{c4}
(1,0,0)

{c1,c2}
(0,0,0)

{c1,c3}
(0,1,0)

{c1,c4}
(1,0,0)

Fig. 9.2 Exemple d’une recherche pour trouver un diagnostic.

Notons que l’exactitude de la réponse dépend d’une hypothèse d’un monde
clos : toutes les combinaisons de défauts possibles doivent être explorées lors
de la recherche. Cette hypothèse doit cependant être faite uniquement au mo-
ment de la recherche. On peut donc changer les connaissances entre différentes
instances de diagnostic.

9.1.2 Transformation en déduction

Une deuxième possibilité consiste à effectuer la recherche de diagnostic pour
toutes les observations possibles. On peut donc construire un tableau de toutes
les hypothèses justifiées selon les observations. Pour le circuit exemple, on ob-
tient (1 = marche, 0 = éteint) :

a1 a2 a3 Diagnostic
1 1 1 {}
1 1 0 c1
1 0 0 c4
1 0 1 -
0 0 1 c2
0 1 1 c3
0 1 0 c3 ∧ c1
0 0 0 (c1 ∧ c2) ∨ (c3 ∧ c4) ∨ (c2 ∧ c4)
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Dans certains cas, il se peut que d’autres éléments soient également en
panne : par exemple, les observations 1 0 0 peuvent aussi s’expliquer par une
panne simultanée de c1 et c4. Les hypothèses données dans le tableau sont
des hypothèses minimales dans le sens que toute hypothèse qui explique les
observations doit au moins la contenir. Notons que cela implique également
qu’elles sont des conclusions nécessaires des observations. Elles peuvent donc
être transformées en règles, comme nous le verrons ci-dessous.

Il est important d’observer qu’une telle construction n’est valide que sous
la condition d’une hypothèse de monde clos. Si, par exemple, on admettait
également que les ampoules mêmes peuvent être défectueuses, l’espace des pos-
sibilités serait plus grand. Un diagnostic qui se base sur ce tableau sera donc
forcement dépendant de la validité de cette hypothèse, et tout changement
de connaissances qui viole l’hypothèse de monde clos oblige de recalculer le
tableau.

Le tableau qui donne la liste de tous les cas de figures possibles sous l’hypo-
thèse d’un monde clos peut être exploité pour construire un système déductif
pour le diagnostic de ce circuit :

1) éteint(a3) ∧ ¬ éteint(a2) ⇒ défectueux(c1)

2) éteint(a1) ∧ éteint(a2) ∧ ¬ éteint(a3) ⇒ défectueux(c2)

3) éteint(a1) ∧ ¬ éteint(a2) ⇒ défectueux(c3)

4) éteint(a2) ∧ éteint(a3) ∧ ¬ éteint(a1) ⇒ défectueux(c4)

5) éteint(a1) ∧ éteint(a2) ∧ éteint(a3) ⇒
(défectueux(c1) ∧ défectueux(c2)) ∨ ...

Ces règles correspondent alors à un système expert ou un programme conven-
tionnel pour le diagnostic de ce circuit précis sous l’hypothèse d’un certain en-
semble de défauts possibles. Un tel système pourrait par exemple être fourni
par un constructeur de machines avec son produit. L’établissement des règles
peut être obtenu par la programmation classique. Cependant, si le circuit est
modifié ou si de nouveaux défauts sont possibles, le système doit être com-
plètement réécrit. Le système fournira en plus des résultats faux s’il se trouve
dans une situation où l’hypothèse du monde clos n’est pas vérifiée, par exemple
quand il y a un court-circuit.

9.1.3 Abduction par raisonnement incertain

Une autre possibilité de résoudre un problème abductif est d’explicitement re-
présenter l’incertitude qui résulte du fait que l’abduction n’est pas bien fondée.
On peut l’exprimer en utilisant des chiffres de certitude (CF), qui sont plus ou
moins équivalents à des probabilités. Chaque règle et chaque fait porteront un
CF, et l’abduction peut alors être approximée par des règles déductives. Pour
cet exemple, on pourrait formuler les règles incertaines comme suit :

1) ampoule(x) ∧ câble(y) ∧ connexion(y,src,x) ∧ éteint(x)
CF=0.5⇒ défectueux(y)

2) ampoule(x) ∧ câble(y) ∧ connexion(y,x,src) ∧ éteint(x)
CF=0.5⇒ défectueux(y)



214 Le raisonnement basé sur modèles

3) ampoule(x) ∧ câble(y) ∧ connexion(y,src,x) ∧ ¬ éteint(x)
CF=−1.0⇒ défectueux(y)

4) ampoule(x) ∧ câble(y) ∧ connexion(y,x,src) ∧ ¬ éteint(x)
CF=−1.0⇒ défectueux(y)

en notant qu’un chiffre de certitude négatif représente la probabilité de la né-
gation.

Si nous appliquons ces règles à l’observation où toutes les trois lampes sont
éteintes, nous aurons :

éteint(a3) ⇒ :

défectueux(c1),CF=0.5

défectueux(c4),CF=0.5

éteint(a1) ∧ éteint(a2) ⇒ :

défectueux(c2),CF=0.75 (2 règles)

défectueux(c3),CF=0.5

défectueux(c4),CF=0.5

Nous allons examiner les formules à utiliser pour un tel raisonnement ainsi
que le problème général du raisonnement incertain en détail plus tard.

Notons ici qu’une des utilités d’un raisonnement incertain est qu’il permet de
formuler des règles déductives indépendantes du contexte pour des problèmes de
nature abductive. Il est donc très intéressant pour la mise au point de systèmes
intelligents.

9.2 Diagnostic basé sur la consistance

Un diagnostic par abduction doit prédire le comportement défectueux qui est
observé. Cela le rend bien sûr plus crédible, mais il peut être trop difficile à
obtenir. Par exemple, un circuit logique défectueux a un comportement très
complexe et il peut être très coûteux de caractériser exactement ce comporte-
ment. En plus, en pratique, il n’est pas important de connâıtre la défaillance
exacte, mais plutôt d’identifier correctement le composant en cause.

Considérons par exemple un circuit arithmétique comme le montre la fi-
gure 9.3. Le circuit peut avoir des défaillances très complexes qui font que le
résultat du calcul est faux uniquement pour certaines entrées. Pour un diag-
nostic, il n’est normalement pas important de connâıtre ces détails, car on ne
pourra qu’échanger des modules entiers. Il est donc suffisant de savoir quels
sont les modules qui ont des défaillances.

Formellement, cette idée peut s’exprimer comme suit. Au lieu d’expliquer les
observations, un candidat au diagnostic doit spécifier les composants à enlever
du modèle du système pour le rendre consistant avec les observations, c’est-à-
dire :

(MS − CAND) ∪OBS 6` ⊥
Appelons cela un diagnostic basé sur la consistance.
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x=?

y=?

z=?

Fig. 9.3 Modèle de circuit digital constitué de deux additionneurs et de trois multi-
plicateurs.

Dans l’exemple de la figure 9.3, supposons que les trois unités de multi-
plication et les deux unités d’additions sont des composants qui peuvent être
échangés de façon indépendante. Le diagnostic sera donc exprimé en termes de
ces composants.

Chaque composant aura des lois de comportement. Notons qu’on modélise
uniquement le comportement correct – aucun modèle d’un comportement dé-
faillant est requis. Dans l’exemple de la figure 9.3, l’unité de multiplication
M1 aura un comportement décrit par la loi x = A ∗ C. Utilisant les lois de
comportement, on peut calculer des prédictions sur la base des observations.
Par exemple, dans la figure 9.3, on peut calculer F = 12 à partir des observa-
tions A = 3, B = 2, C = 2, D = 3. Cette prédiction peut être justifiée par un
comportement correct des trois composants M1, M2 et A1.

Un candidat de diagnostic sera une combinaison de composants défectueux.
Le diagnostic se base sur le principe suivant. Si un composant est défectueux,
aucune des prédictions justifiées par son comportement correct n’est valable.
Un candidat est donc valable si toutes les prédictions du modèle qui contre-
disent une observation dépendent d’un composant qui fait partie du diagnostic
candidat.

Dans l’exemple de la figure 9.3, supposons que la mesure de F est 10 et non
pas 12, comme prédit par le modèle. On appelle une telle paire un symptôme.
La déduction F = 12 est valable à condition que M1,M2 et A1 fonctionnent
correctement. Étant donnée cette divergence, tous les composants de l’ensemble
{M1,M2, A1} ne peuvent pas fonctionner correctement. On appelle cette com-
binaison un conflit. Les défaillances candidates se traduiraient par les candidats
suivants :

{M1}, {M2}, {A1},
{M1,M2}, {M1, A1}, {M2, A1}

et {M1,M2, A1}
Cependant, en général on ne s’intéresse qu’aux candidats minimaux qui

contiennent un minimum de composants. Dans cet exemple, les candidats mi-
nimaux sont :

D = {{M1}, {M2}, {A1}}
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Par propagation, la mesure F = 10 conduira aussi à d’autres conflits. Par
exemple, sous l’hypothèse que M1 fonctionne, le modèle prédit x = 6. En même
temps, M3 nous donne z = 6, avec A2 et G=12 nous obtenons y = 6, et avec
F = 10 et A1 nous obtenons x = 4 avec la justification que {A1, A2,M3}
fonctionnent tous. On aura donc le conflit C2 entre x = 4 et la prédiction
du modèle x = 6 qui implique les composants : {A1, A2,M1,M3}. Il est donc
important qu’un moteur d’inférence, par exemple un moteur de châınage avant,
fasse toutes les inférences possibles pour obtenir tous les symptômes et, par
conséquent, tous les conflits.

Un candidat de diagnostic doit rendre consistants tous les conflits. Cela
veut dire qu’il doit contenir au moins un élément de chaque conflit. Lors d’un
diagnostic, on découvre les conflits séquentiellement en prenant des mesures,
et on aimerait donc maintenir l’ensemble des candidats de façon incrémentale
aussi. Cela est possible par une procédure en deux étapes :

• générer un nouvel ensemble de candidats qui contient pour chaque candi-
dat CAND et chaque composant c du conflit un candidat C ′ = CAND ∪
{c},

• filtrer l’ensemble des nouveaux candidats en éliminant tous ceux qui sont
en double ou qui ne sont pas minimaux, c’est-à-dire éliminer tous les
candidats X qui sont des sur-ensembles stricts d’un autre candidat Y
(X ⊇ Y ).

Par exemple, pour l’ensemble de candidats :

D1 = {{M1}, {M2}, {A1}}

et le nouveau conflit {A1, A2,M1,M3}, on génère d’abord un nouvel ensemble :

D′ = { {M1, A1}, {M2, A1}, {A1}
{M1, A2}, {M2, A2}, {A1, A2}
{M1}, {M2,M1}, {A1,M1}
{M1,M3}, {M2,M3}, {A1,M3} }

Ensuite, on élimine les candidats qui ne sont pas minimaux, et on obtient
ainsi le diagnostic :

D2 = {{M1}, {A1}, {M2,M3}, {A2,M2}}

Il faut noter cependant qu’un composant défectueux n’a pas forcément tou-
jours un comportement anormal. Par exemple, un multiplicateur défectueux
qui omettrait le dernier bit du résultat aurait en apparence un comportement
correct lorsque le résultat est pair, l’erreur n’étant visible que lorsqu’il est im-
pair. Cela signifie en fait que si un diagnostic constitué de l’ensemble D de
composants défectueux explique une divergence, tout sur-ensemble contenant
D est aussi un diagnostic correct. Cependant, le proposer comme diagnostic se-
rait trop pessimiste : on ne soupçonnera pas des composants d’avoir un défaut
sans qu’ils aient été impliqués dans un symptôme de défaillance.
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Notons enfin qu’une mesure donnée n’est utilisée par le système que si elle
est en désaccord avec une prédiction issue du modèle. Cela peut parfois ne
pas sembler très naturel si l’on considère qu’une observation en accord avec le
modèle atteste du fonctionnement correct de certains composants. En basant
le diagnostic sur la notion de circonscription, il est possible de tenir compte de
ces considérations positives afin d’exonérer certains composants.

Un processus typique de diagnostic ne se poursuit pas jusqu’à ce qu’il n’y
ait plus qu’un candidat unique, il s’achève plutôt dès qu’un candidat particulier
se révèle beaucoup plus probable que les autres. Un critère simple de détection
d’un tel candidat pourrait consister en un comptage : s’il persiste un candi-
dat contenant un seul composant défectueux, il sera choisi comme le meilleur
candidat. Mais une façon plus efficace de procéder consiste plutôt à calculer
explicitement la probabilité d’occurrence de chaque candidat et d’arrêter la
recherche dès que l’un d’entre eux semble plus probable que les autres.

Ce calcul est basé sur les probabilités de défaillance P (c) de chaque compo-
sante c et l’hypothèse d’indépendance de défauts. Si on considère qu’un candi-
dat X décompose les composantes en deux sous-ensembles :

{ D(X) = composantes défectueuses } et
{ N(X) = composantes non défectueuses }

on peut alors calculer la probabilité d’un candidat X comme

P (X) =
∏
c∈D(X) P (c) ·

∏
c∈N(X)(1− P (c))

Dès qu’il y a un candidat dont la probabilité est particulièrement élevée, le
diagnostic peut être considéré comme terminé.

9.3 Proposition de mesures

Dans la plupart des cas, un système de diagnostic a la possibilité de proposer
par lui-même les mesures à effectuer sur le dispositif à l’étape suivante. Le sys-
tème doit en particulier proposer d’effectuer les mesures permettant d’aboutir à
la meilleure discrimination dans l’ensemble courant des candidats. De telles pro-
positions de mesures sont basées sur des informations relatives aux ensembles
candidats, établies elles-mêmes par le biais de mesures. Une mesure de ces
informations est donnée par la théorie de l’information :

I(X;Y ) = E(X)− E(X|Y ) = I(Y ;X) = E(Y )− E(Y |X)

où I(X;Y ) est l’information que la mesure de Y donne sur la valeur de X.
Cette information est d’ailleurs, par un théorème remarquable de la théorie de
l’information, aussi égale à I(Y ;X). E(X) est l’entropie de X :

E(X) =
∑
i

−P (xi)log(P (xi))

et E(X|Y ) est l’entropie de X étant donnée la mesure de Y :

E(X|Y ) =
∑
j

P (yj)

{∑
i

−P (xi|yj)log(P (xi|yj))

}
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La mesure de Y est optimale si elle donne le maximum d’informations sur
les candidats potentiels, c’est-à-dire si elle maximise la somme de I(X;Y ) pour
l’ensemble courant des candidats possibles. Si on suppose que E(Y ) est la même
pour tout Y , l’information est maximisée lorsque E(Y |X) est minimisée, et
par conséquent, proposer une mesure optimale revient à calculer E(Y |X) pour
toutes les mesures possibles de Y et à conserver celle qui est minimale. E(Y |X)
est calculée à partir des probabilités des résultats possibles de mesure pour Y
étant donné l’ensemble courant des candidats.

L’entropie de la valeur d’une mesure Y se calcule par la formule suivante :

E(Y ) = −
∑
k

p(Y = valk) ∗ log(p(Y = valk))

La probabilité de mesurer la valeur k pour la variable i se calcule de la
manière suivante :

p(vari = valik) =
∑
c∈Pik

p(c) +
∑
c∈Ui

p(c)/m

ou Pik est l’ensemble de candidats qui prédisent la valeur k pour la variable
i, et Ui regroupe les candidats qui ne donnent aucune valeur pour la mesure
i. Pour que le calcul soit correct, il faut cependant normaliser les probabilités
pour que ∑

CAND

p(CAND) = 1

comme on sait qu’un des candidats doit être correct.

Dans notre exemple, les différents candidats prédisent des valeurs différentes
pour les mesures X,Y et Z. Si on suppose que pour tous les composants,
la probabilité de panne est de 0.01, on obtient les prédictions et probabilités
suivantes :

Candidat Prévision Probabilité Normalisé
{M1} xyz = (4, 6, 6) 0.01 0.495
{A1} xyz = (6, 6, 6) 0.01 0.495
{M2, A2} xyz = (6, 4, 6) 10−4 0.005
{M2,M3} xyz = (6, 4, 8) 10−4 0.005

et donc les probabilités des différentes valeurs :

Mesure Justifications Candidats Probabilité
X = 4 ({M2, A1}, {M3, A1, A2}) {M1} 0.495
X = 6 ({M1}) {A1}, {M2, A2}, {M2,M3} 0.505
Y = 6 ({M2}, {M3, A2}) {M1}, {A1} 0.99
Y = 4 ({M1, A1}) {M2, A2}, {M2,M3} 0.01
Z = 6 ({M3}, {M2, A2}) {M1}, {A1}, {M2, A2} 0.995
Z = 8 ({M1, A1, A2}) {M2,M3} 0.005

où il faut observer qu’un candidat prédit une mesure si au moins une des
justifications de la mesure ne contient aucun élément qui fait partie du candidat.
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On obtient donc les entropies :

X : −P (6)log(P (6))− P (4)log(P (4)) =

−0.505log(0.505)− 0.495log(0.495) = 0.99993bit

Y : −P (6)log(P (6))− P (4)log(P (4)) = 0.0808bit

Z : −P (6)log(P (6))− P (8)log(P (8)) = 0.0454bit

et on décide donc de mesurer X.

9.4 Modèles de défaillances

La technique de diagnostic basée sur la consistance souffre d’un problème fon-
damental dû à l’absence de modélisation des comportements anormaux, et qui
engendre parfois des diagnostics candidats physiquement inconcevables. Un
exemple d’une telle situation est donné par la figure 9.4, où la plupart des
candidats inclut des défaillances physiquement irréalisables. De tels problèmes
peuvent être résolus en utilisant des modèles de défaillances décrivant toutes
les défaillances possibles dont est susceptible de souffrir un composant donné.
Un comportement défectueux général est admis comme candidat dans le seul
cas où le modèle de défaillances n’admet aucun des candidats possibles.

W1 W2

B1

B2

B3

W4W3

W5 W6

OFF

OFF

S

Fig. 9.4 Exemple pour lequel le processus général de GDE produit un diagnostic
inacceptable. Il existe 22 candidats minimaux, incluant la prédiction selon laquelle
la batterie ainsi que l’ampoule B3 sont défectueuses : la batterie ne produit pas de
courant et B3 est allumée sans courant. En éliminant ces défaillances physiquement
impossibles, l’ensemble des candidats se restreint à seulement 4 candidats.

Le diagnostic utilisant les modèles des défaillances procède en introduisant
successivement les différentes défaillances dans l’ordre de leur probabilité, et
en choisissant le premier qui explique le comportement observé. L’hypothèse
d’une certaine défaillance est ainsi justifiée par le seul fait qu’il n’y a pas d’autre
explication plus convaincante, ce qui constitue une forme de raisonnement par
défaut.
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Littérature

Les principes du diagnostic développés ici sont issus d’une synthèse de nom-
breux éléments. Le concept du diagnostic basé sur la consistance fut introduit
dans [41], et la collection [42] réunit plusieurs travaux dans cette direction. Le
papier plus récent [43] présente une vision à plus long terme de l’utilisation du
diagnostic dans un contexte de systèmes autonomes.

Outils

Application : Diagnostic de systèmes spatiaux

En 1999, le vaisseau Mars Polar Lander faisait sa descente vers la surface
de Mars. La descente était guidée par un altimètre jusqu’à une altitude de
quarante mètres. Ensuite, le moteur freinait l’appareil et devait s’arrêter
au moment où des capteurs placés dans les pieds détectaient le contact avec
le sol. Or, la vibration a endommagé l’un de ces capteurs qui détectait le
contact en permanence, ce qui a provoqué l’arrêt du moteur. La sonde est
alors tombée de son altitude de quarante mètres. Le résultat, c’est qu’elle
ne fonctionnait plus. Les ingénieurs n’avaient pas prévu tous les défauts
possibles...

La même année, un autre vaisseau, la sonde Deep Space 1, subissait éga-
lement un certain nombre de problèmes. Par exemple, une vanne d’une de
ses fusées risquait de se bloquer, provoquant ainsi un dysfonctionnement
du moteur. Heureusement, la sonde était équipée du système Livingstone,
un outil de diagnostic basé sur modèles. Celui-ci aurait non seulement dé-
tecté le problème, mais également trouvé la manière de reconfigurer les
vannes pour rendre le moteur à nouveau fonctionnel.

(Source : Wade Roush : Immobots take control, MIT Technology Review
Dec. 2002/Jan. 2003, pp. 36-41.

Brian Williams et al. : Model-based Programming of Fault-Aware Systems,
AI Magazine 24(4), 2003, pp. 61-75.)

9.5 Exercices

Exercice 9.1 Diagnostic d’un réseau par abduction explicite

Dans cet exercice, vous allez programmer un exemple d’abduction explicite.
Pour ce faire, nous considérerons un réseau électrique formé d’un ensemble de
blocs recevant des signaux les uns des autres. Chaque bloc prend deux signaux
en entrée et produit une seule sortie. Le but, en supposant qu’une panne est
survenue, est de découvrir quels sont les blocs qui ne fonctionnent pas.
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Fig. 9.5 Exemple d’un réseau.

Considérons un exemple concret illustré à la figure 9.5. Nous décrivons ce
réseau de la manière suivante :

circuit = Circuit()

circuit . ajouter bloc( 'B1', 'a' , 'b' , ' f ')
circuit . ajouter bloc( 'B2', 'a' , 'c ' , 'y')
circuit . ajouter bloc( 'B3', ' f ' , 'y' , 'g')

Or sur ces blocs, on peut faire des observations. Par exemple, pour signaler
que la sortie g n’est pas correcte, on invoque circuit.observe_incorrect(’g’) ;
pour annoncer que la sortie f fonctionne normalement, on utiliserait cir-

cuit.observe_correct(’f’). Nous verrons plus loin ces méthodes en détail.

Modules squelettes

Avant toute chose, voici le squelette du programme que nous allons développer.
Nous discuterons des cinq premiers modules dans les paragraphes qui suivent.
Les deux derniers, exemple_1.py et exemple_2.py, sont des modules de tests qui
vous permettront de vérifier votre implémentation. Nous vous recommandons
de respecter la structure des dossiers telle qu’elle est exprimée dans les noms
des modules, sous peine de devoir modifier les import.

Module .../reseau/bloc.py :

class Bloc:
def init ( self , nom, entree 1, entree 2 , sortie ):

self .nom = nom
self . entree 1 = entree 1
self . entree 2 = entree 2
self . sortie = sortie

def lt ( self , autre):
if not isinstance(autre, Bloc):

raise ValueError(”Seul un bloc peut être comparé àun bloc.”)
return self.nom < autre.nom

def eq ( self , autre):
if not isinstance(autre, Bloc):

raise ValueError(”Seul un bloc peut être comparé àun bloc.”)
return autre.nom == self.nom

def hash ( self ):
return hash(self.nom)
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def repr ( self ):
return 'Bloc({})'.format(self.nom)

Module .../reseau/circuit.py :

from .bloc import Bloc
from .disjonction import Disjonction
from .conjonction import Conjonction

class Circuit :
def init ( self ):

self .blocs = {}
self . conflits = []
self .no goods = []

def ajouter bloc( self , nom, entree 1, entree 2 , sortie ):
bloc = Bloc(nom, entree 1, entree 2, sortie )
self .blocs [ sortie ] = bloc

def observe incorrect( self , signal ):
chemin = self.trouver un chemin(signal)
conflit = self .traduire chemin en disjonction(chemin)
self . conflits .append(conflit)

def observe correct( self , signal ):
chemin = self.trouver un chemin(signal)
for el in chemin:

self .no goods.append(Conjonction([el]))

def trouver un chemin(self, signal ):
chemin = []
sorties = [signal ]
while len(sorties) > 0:

sortie = sorties .pop(−1)
bloc = self .blocs .get( sortie )
if bloc is not None:

chemin.append(bloc)
sorties .append(bloc.entree 1)
sorties .append(bloc.entree 2)

return chemin

def traduire chemin en disjonction( self , chemin):
return Disjonction([Conjonction([etape]) for etape in chemin])

Module .../reseau/conjonction.py :

class Conjonction(frozenset):
def or ( self , autre):

elements = list( self )
elements.extend(autre)
return Conjonction(elements)

def repr ( self ):
elements = [str(element) for element in sorted(self)]
conj = ' & '. join(elements)
if len(elements) > 1:

return '({})'.format(conj)
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else:
return conj

Module .../reseau/disjonction.py :

class Disjonction(set):
def combiner(self, disjonction ):

if len( self ) == 0:
return disjonction

elif len(disjonction) == 0:
return self

ret = Disjonction()
for conj 1 in self :

for conj 2 in disjonction :
ret .add(conj 1 | conj 2)

return ret

def repr ( self ):
if len( self ) == 0:

return '()'
elements = [str(element) for element in sorted(self)]
return ' | ' . join(elements)

Module .../reseau/abduction.py :

from .disjonction import Disjonction
from .conjonction import Conjonction

class Abduction:

def init ( self , conflits , no goods):
self . conflits = conflits
self .no goods = no goods

def combiner conflits observations ( self , disjonctions ):
print('à compléter')

def retire subsumes( self , conjonctions):
print('à compléter')

def retire no goods( self , conjonctions, no goods):
print('à compléter')

def calcule conflit minimal ( self , afficher etapes =False):
# 1. Combine les conflits.
conflit minimal = self . combiner conflits observations ( self . conflits )
if afficher etapes : print('Conflit combiné :' , conflit minimal)

# 3. Supprime les candidats subsumés.
conflit minimal = self .retire subsumes(conflit minimal)
if afficher etapes : print('Non subsumés :', conflit minimal)

# 4. Supprime les candidats contenant les no−goods.
conflit minimal = self . retire no goods(conflit minimal , self .no goods)
if afficher etapes : print('Sans no−goods :', conflit minimal)
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return conflit minimal

Module .../exemple_1.py :

from reseau.circuit import Circuit
from reseau.bloc import Bloc
from reseau.abduction import Abduction

circuit = Circuit()

circuit . ajouter bloc( 'B1', 'a' , 'b' , ' f ')
circuit . ajouter bloc( 'B2', 'a' , 'c ' , 'y')
circuit . ajouter bloc( 'B3', ' f ' , 'y' , 'g')

circuit . observe incorrect ( ' f ')
circuit . observe incorrect ( 'g')

abduc = Abduction(circuit.conflits , circuit .no goods)

conflit minimal = abduc.calcule conflit minimal( afficher etapes =True)

print('Conflit minimal :')
print(conflit minimal)

Module .../exemple_2.py :

from reseau.circuit import Circuit
from reseau.bloc import Bloc
from reseau.abduction import Abduction

circuit = Circuit()

circuit . ajouter bloc( 'B1', 'a' , 'b' , ' f ')
circuit . ajouter bloc( 'B2', 'a' , 'c ' , 'g')
circuit . ajouter bloc( 'B3', 'c ' , 'd' , 'h')
circuit . ajouter bloc( 'B4', 'c ' , 'e ' , ' i ')

circuit . ajouter bloc( 'B5', ' f ' , 'h' , ' j ')
circuit . ajouter bloc( 'B6', 'g' , ' i ' , 'k')

circuit . ajouter bloc( 'B7', ' j ' , 'k' , ' l ')

circuit . observe incorrect ( ' l ')
circuit . observe correct( ' j ')

abduc = Abduction(circuit.conflits , circuit .no goods)

conflit minimal = abduc.calcule conflit minimal( afficher etapes =True)

print('Conflit minimal :')
print(conflit minimal)
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Abduction

Chaque observation génère un conflit. Un conflit est un ensemble d’éléments
qui ne peuvent pas fonctionner tous en même temps. À partir de ces conflits,
l’abduction explicite va générer des listes de candidats. Un ensemble de candi-
dats est une liste d’éléments qui peuvent expliquer les observations. Donc, si
on a un conflit entre a, b et c, on dira qu’un candidat parmi a, b, ou c doit être
fautif.

Nous représenterons les candidats sous la forme de conjonctions exprimant
un ET logique. La conjonction de A, B, et C s’interpète donc comme A∧B∧C.
Nous définissons ainsi une classe Conjonction, qui hérite de la classe frozenset

de Python. Il s’agit d’une collection immutable, non ordonnée et ne pouvant
contenir qu’une instance d’un object donné. Elle possède une méthode spéciale
importante pour nous : __or__, qui permet d’utiliser la syntaxe conj = conj_1

| conj_2 pour créer une conjonction portant sur tous les éléments présents dans
conj_1 ou dans conj_2 (ou éventuellement dans les deux).

Un ensemble de candidats sera une disjonction de conjonctions (un OU lo-
gique), que nous représenterons par la classe Disjonction. Cette dernière spécia-
lise la classe set de Python. Si conj_1 = Conjonction([’A’, ’B’]) et conj_2 =

Conjonction([’D’, ’E’]) sont deux conjonctions, c’est-à-dire deux candidats,
correspondant à (A ∧ B) et (D ∧ E), leur disjonction Disjonction([conj_1,

conj_2]) exprimera le fait (A∧B)∨ (D ∧E). Disjonction contient essentielle-
ment la méthode combine, qui combine l’objet courant avec une autre disjonc-
tion afin de produire une nouvelle disjonction contenant toutes les conjonctions
qui résultent de l’union deux-à-deux des conjonctions des disjonctions origi-
nales.

Nous aurons également besoin d’une liste de nogoods, c’est-à-dire de valeurs
contradictoires. Un nogood est une liste d’éléments qui ne peuvent être présents
en même temps. Par exemple, si Conjonction([’A’, ’E’]) est un nogood, cela
signifie que A et E ne peuvent être la source du problème en même temps.

La classe Abduction formalise le processus abstrait de l’abduction. Elle
contient les deux attributs self.conflits et self.no_goods pour les conflits et
les nogoods. Sa méthode principale calcule_conflit_minimal est une fonction
générale qui permet de trouver les candidats minimaux. Nous vous en donnons
le code. calcule_conflit_minimal procède en quatre étapes :

1) elle génère un ensemble de combinaisons de candidats à partir des candi-
dats de chaque conflit,

2) elle supprime les candidats subsumés,

3) et enfin elle supprime les candidats contenant les nogoods.

Chacune de ces étapes est réalisée par une méthode spécialisée. Ce sont ces
méthodes que vous devez implémenter en suivant les descriptions que nous vous
donnons :

• combiner_conflits_observations : combine itérativement tous les candi-
dats pour chaque conflit. Cette fonction doit s’appuyer sur
Disjonction.combine.



226 Le raisonnement basé sur modèles

• retire_subsumes : enlève les candidats qui sont subsumés. Par exemple,
(a ∧ b ∧ c) ∨ (a) ∨ (b ∧ c) ∨ (b ∧ c ∧ d) doit donner (a) ∨ (b ∧ c).

• retire_no_goods : enlève les candidats qui contiennent un nogood.

class Abduction:
...

def combiner conflits observations ( self , disjonctions ):
...

def retire subsumes( self , conjonctions):
...

def retire no goods( self , conjonctions, no goods):
...

Blocs et circuits

Une fois le moteur d’abduction créé, nous pouvons l’appliquer à notre exemple
du réseau électrique. Tout d’abord, nous devons définir une classe Bloc, qui
modélise un bloc. Elle possède un attribut nom, qui identifie chaque bloc, et
trois attributs correspondant aux identifiants des deux entrées et de la sortie.
Les blocs sont assemblés en un réseau modélisé par la classe Circuit. Cette
dernière contient trois attributs self.blocs, self.conflits, self.no_goods, qui
recueilleront respectivement les blocs, les conflits et les nogoods. Les deux der-
niers attributs sont des listes standards, le premier est un dictionnaire dans
lequel chaque bloc est identifié par son signal de sortie.

La méthode ajouter_bloc de Circuit permet de construire le circuit en
ajoutant des blocs un à un, étant donné leurs noms et les identifiants de leurs
entrées et sorties. observe_incorrect notifie l’observation d’un signal erroné,
observe_correct en revanche garanti qu’un signal fonctionne convenablement.
trouver_un_chemin et traduire_chemin_en_disjonction permettent de définir un
conflit une fois qu’un signal défectueux à été enregistré. La première méthode
collecte toutes les causes possibles de l’observation, et la seconde les traduit en
une disjonction de conjonctions, c’est-à-dire un conflit.

Étant donné un circuit, il suffit ensuite de passer le contenu de ses attributs
conflits et no_goods à un moteur d’abduction, et d’appeler calcule_conflit_

minimal pour trouver le conflit minimal susceptible d’expliquer les observations.

Test du programme

Vous pouvez tester maintenant votre solution sur les deux modules de test
exemple_1.py et exemple_2.py. Essayez en outre de créer des réseaux plus com-
pliqués, en introduisant davantage de blocs.

Solutions à la page 376



Chapitre 10

Génération de plans

Les humains sont capables de planifier des actions en vue d’atteindre un ob-
jectif. Pour de nombreuses tâches, comme la programmation d’un robot auto-
nome, l’ordinateur est amené à s’inspirer de cette activité intelligente propre
à l’homme. Pour qu’un robot puisse fonctionner correctement, il doit évidem-
ment être en mesure de formuler des plans et de les exécuter pour atteindre
les objectifs souhaités. Nous nous intéressons dans ce qui suit à ce problème
particulier pour lequel nombre de travaux ont été réalisés. Nous illustrerons les
méthodes au moyen de l’exemple de STRIPS qui est l’un des premiers travaux
dans ce domaine. Il présente l’intérêt d’être à la base de plusieurs mécanismes
présents dans les systèmes de planification actuels.

Le problème de planification se pose de façon très nette pour la gestion
des procédures impliquant des humains et des machines qui ont un degré de
complexité tel qu’il est difficile d’en avoir une vision d’ensemble. Nombre de
systèmes pratiques sont en effet impossibles à gérer proprement, car on ne peut
développer des plans d’action optimaux pour les opérations à réaliser. Prenons
pour exemple le cas d’une mission spatiale : il existe des centaines de buts à
réaliser pendant le laps de temps relativement court de la mission. De plus,
dans le cas où les problèmes rencontrés n’ont jamais été étudiés auparavant, il
faudra pouvoir très vite modifier les plans pour s’accommoder des particularités
inattendues. Un autre exemple peut être pris des processus industriels de grande
envergure, comme la construction d’avions. Ceux-ci impliquent souvent des
millions d’opérations différentes qui nécessitent une planification automatique
par ordinateur.

Il est très intéressant d’utiliser des systèmes basés sur la connaissance dans
le domaine de la planification, parce que, d’une part, la tâche en elle-même
est compliquée et, d’autre part, elle ne peut être traitée algorithmiquement.
En pratique, les systèmes de planification sont développés sur la base de règles
heuristiques établies par des experts.

10.1 Représentation d’un environnement changeant

Un système de planification doit représenter un monde dont il est lui-même
l’agent des changements effectués : le monde ne reste pas inchangé comme c’est
le cas pour un système de diagnostic. Lorsqu’une action donnée d’un plan est
exécutée, on dit que le monde change de situation. Pour enchâıner correctement
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les actions d’un plan, le modèle du monde doit donc pouvoir distinguer les
différentes situations auxquelles il peut être confronté durant l’exécution du
plan.

Comme exemple, considérons le monde des blocs, illustré par la figure 10.1.
Chaque état du monde est représenté par une situation, qui est une descrip-
tion partielle de l’état en calcul des prédicats. Ces représentations utilisent les
prédicats suivants :

• ON(x,y) : le bloc x se trouve directement au-dessus du bloc y.

• ONTABLE(x) : le bloc x se trouve sur la table.

• CLEAR(x) : il n’y a rien sur le bloc x.

• HOLDING(x) : la main tient le bloc x.

• HANDEMPTY : la main est vide.

A

B

C

A

B

C

ON(A,B)

ON(B,C)

CLEAR(A)

HANDEMPTY

ONTABLE(C)

HOLDING(A)

ON(B,C)

CLEAR(B)

ONTABLE(C)

Fig. 10.1 Deux états du monde des blocs et leur représentation sous la forme de
situations en calcul de prédicats.

Les deux états illustrés dans la figure 10.1 sont logiquement incompatibles
entre eux : HANDEMPTY est en contradiction avec HOLDING(A). Par conséquent,
la représentation doit distinguer les deux situations. Le calcul de situations,
développé pour le système de planification de robots STRIPS, est un exemple
de modèle d’environnement capable d’intégrer la notion de changement de si-
tuation. Dans ce modèle chaque nouvelle situation créée par l’exécution d’un
plan est indexée par un symbole particulier. Tous les prédicats utilisés pour
modéliser un état du monde sont modifiés de sorte à incorporer comme nouvel
argument la situation dans laquelle ils s’appliquent. Lorsque l’on passe d’une
situation S1 à une situation S2, la plupart des prédicats valides dans S1 le
restent dans S2, mais ce fait doit cependant être explicitement déduit à partir
d’un ensemble d’axiomes cadres. Le problème relatif à la formulation de ces
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axiomes est généralement désigné sous le nom de problème de cadres. Le terme
de cadre établit en fait une analogie avec les changements de situations et de
cadres (décors) dans un film : de nombreuses situations ont lieu dans un cadre
quasi identique. Le passage d’un cadre à un autre se fait par l’intermédiaire
d’une action, modélisée comme l’application d’un opérateur.

La façon la plus naturelle de formuler des axiomes cadres consiste à utiliser
la règle par défaut suivante : tout ce qui n’est pas explicitement mentionné dans
la description d’un opérateur demeure inchangé après son exécution. Cette règle
a été adoptée dans le calcul de situations, qui spécifie explicitement pour chaque
opérateur la liste DELETE des propositions qui ne seront plus valides après son
exécution et la liste ADD des propositions qui au contraire deviendront valides.

En plus, pour appliquer une action, il faut respecter certaines précondi-
tions. Par exemple, pour qu’un robot puisse saisir un objet, il faut satisfaire au
préalable que l’objet soit dégagé et que la main du robot soit libre. La trans-
formation qui résulte de l’action établit une nouvelle situation dans laquelle le
robot porte l’objet. Dans le formalisme de STRIPS, cela s’exprime au moyen
d’un opérateur PICKUP(x), où x est une variable qui représente l’objet à
saisir :

PICKUP(x)
PRECONDITIONS (P) = HANDEMPTY, CLEAR(x),ONTABLE(x)

DELETE (D) = HANDEMPTY, CLEAR(x), ONTABLE(x)

ADD (A) = HOLDING(x)

Les autres opérateurs utilisés dans le monde des blocs sont :

• PUTDOWN(x) :
P= HOLDING(x), D = P,
A= ONTABLE(x), CLEAR(x), HANDEMPTY

• PUTON(x,y) :
P = HOLDING(x), CLEAR(y), D = P,
A = HANDEMPTY, ON(x,y), CLEAR(x)

• UNSTACK(x,y) :
P = HANDEMPTY, ON(x,y), CLEAR(x),
D = P, A = HOLDING(x), CLEAR(y)

La principale difficulté posée par cette formulation vient du fait que le
nombre de prédicats qui doivent figurer dans les listes ADD, DELETE et
PRECONDITIONS devient rapidement très important. Cela est particulièrement
vrai lorsque des propositions additionnelles peuvent être ajoutées aux listes par
le biais de règles d’inférences : la liste DELETE d’un opérateur doit alors aussi
supprimer toutes les conséquences inférées sur la base de faits qui ne sont plus
vrais.

La représentation que nous venons de voir est formalisée dans le langage
PDDL (Planning Domain Definition Language) qui a permis de standardiser
l’interface aux algorithmes de planification et ainsi de les comparer sur différents
problèmes test.
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10.2 Planification par châınage arrière

L’algorithme de planification est lancé avec une situation initiale et une situa-
tion but, qui, comme toute expression de situation, ne donnent qu’une des-
cription partielle des états à transformer. La planification se fait par châınage-
arrière à partir du but, de façon analogue au système à châınage-arrière utilisé
par les systèmes experts. La raison pour laquelle on utilise le châınage-arrière
est qu’en général, le nombre d’actions possibles à partir d’un certain état est
beaucoup plus grand que le nombre d’actions qui peuvent servir aux buts cou-
rants ; donc, la recherche en châınage arrière est beaucoup plus efficace.

La figure 10.2 montre un exemple d’une réduction effectuée par un tel pro-
cessus. L’utilisation de cette stratégie se justifie par le fait que les systèmes
de planification comme STRIPS sont basés sur une analyse des objectifs et
des moyens (moyens-buts) qui requiert de lier une opération à un but donné.
Comme il n’existe généralement aucun opérateur permettant d’atteindre di-
rectement le but en un seul pas d’inférence, STRIPS réduit itérativement les
buts en sous-buts jusqu’à satisfaire la situation initiale. Il est à noter que la
classification des opérateurs par rapport aux buts qu’ils permettent de réaliser
est implicitement obtenue par le contenu des listes ADD.

A

BC

ON(A,B)
CLEAR(A)
CLEAR(C)

Opérateur: PUTON(A,B)

Analyse moyens-buts

A: {ON(A,B), CLEAR(A)}: à enlever!
P, D: {CLEAR(B), HOLDING(A)}: à ajouter!

Situation précédente:

   CLEAR(B)
   HOLDING(A)
   CLEAR(C)

A

BC

Fig. 10.2 Châınage arrière pour réduire la situation but à une situation sous-but.

La réduction d’une situation but S en une situation sous-but S′ s’effectue
en planifiant l’application d’un opérateur O transformant S′ en S. Dans le
contexte de STRIPS, une description de S′ s’obtient comme suit (fig. 10.2) :

• les buts (propositions de la description partielle de l’état) existant dans
S sont unifiés avec les propositions de la liste ADD de l’opérateur O ne
figurant pas dans S′,
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• les propositions de la précondition de O qui n’apparaissent pas dans S′,
ou qui font partie de la liste DELETE, sont ajoutées comme sous-buts à la
description de S′,

• toutes les autres propositions sont reportées dans S.

Comme la description des situations S et S′ en terme de buts à atteindre
n’est que partielle, il est possible que le processus de régression génère des
descriptions ambiguës de situations, ce qui peut conduire à de nouveaux bran-
chements. Si nous considérons, par exemple l’application de l’opérateur :

UNSTACK(x,y)

P = D = HANDEMPTY, CLEAR(x), ON(x,y)

A = HOLDING(x), CLEAR(y)

pour atteindre le but HOLDING(A) en présence d’un autre but CLEAR(C), l’ins-
tanciation de l’opérateur fixera x = A, mais aucune valeur pour y. Si y = C, ce
que le système de planification ne peut pas savoir, on n’aura plus besoin d’une
action pour obtenir CLEAR(C) ; si y 6= C, il faut le maintenir comme but. La
régression de CLEAR(C) impliquera donc la disjonction (y=c) ∨ CLEAR(C). Les
deux possibilités doivent être poursuivies séparément.

La planification construit la châıne d’opérations en appliquant un algorithme
de recherche tel que l’algorithme A*. Par exemple, supposons que le but est de
construire une tour de trois blocs, décrite par la situation :

ON(A,B), ON(B,C)

à partir de la situation :

ON(C,A), CLEAR(B), CLEAR(C)

L’arbre de recherche qui résulte pour ce problème est décrit par la fi-
gure 10.3. A l’exception du premier niveau, la trace ne montre pas tous les
chemins possibles, mais uniquement le chemin qui conduit à la solution. L’arbre
de recherche complet est beaucoup plus grand et contient de nombreux chemins
inutiles.

Pour minimiser le coût du plan résultant, on utilise l’algorithme A* où le
coût se compose des coûts des opérateurs impliqués dans le plan, et la fonc-
tion heuristique peut se baser sur la différence entre la situation actuelle et la
situation but.

Notons l’importance de détecter des situations qui sont en fait contradic-
toires aussitôt que possible afin d’éviter des recherches inutiles. La détection
des inconsistances est aussi importante pour éviter des plans inconsistants qui
peuvent être générés sinon. Par exemple, considérons la situation but précé-
dente :

ON(A,B), ON(B,C)

En appliquant l’opérateur PUTON(B,C), on obtient la situation sous-but
contradictoire (et physiquement impossible) :

ON(A,B), HOLDING(B), CLEAR(C)



232 Le raisonnement basé sur modèles

A

B

C

ON(A,B)
ON(B,C)

ON(B,C)
HOLDING(A)
CLEAR(B)

ON(A,B)
HOLDING(B)
CLEAR(C)

PUTON(A,B) PUTON(B,C)

Contradiction: ON(A,B), HOLDING(B)

PICKUP(A)

PUTON(B,C)

HOLDING(B)
CLEAR(C)
CLEAR(A)

PICKUP(B)

HOLDING(C)
CLEAR(B)
CLEAR(A)

PUTDOWN(C)

UNSTACK(C,A)

A
B

C

A

B

C

A

B

C

ABC

AB

C

AB

C

ON(B,C)
CLEAR(B)
CLEAR(A)
HANDEMPTY

CLEAR(B)
CLEAR(C)
CLEAR(A)
HANDEMPTY

ON(C,A)
CLEAR(C)
CLEAR(B)
HANDEMPTY

Fig. 10.3 Arbre de recherche pour la construction d’une tour de 3 blocs.
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à laquelle on peut cependant appliquer la séquence d’opérateurs PICKUP(B),
PUTON(A,B) et PICKUP(A) pour obtenir la situation initiale parfaitement consis-
tante :

CLEAR(A), CLEAR(B), CLEAR(C)

Si l’inconsistance n’est pas détectée, le système considérerait ce plan comme
une solution, bien qu’il soit physiquement impossible à réaliser ! Il est donc
important d’arrêter la recherche aussitôt qu’un état inconsistant est détecté.

Notons également quelques lacunes de l’analyse moyens-buts qui est à la base
de l’algorithme de planification. Une première lacune concerne la formulation
de la représentation. Supposons que celle-ci inclut un prédicat ABOVE(x,y) qui
spécifie que x se trouve quelque part au-dessus de y. Une tour de 3 blocs A, B,

C pourrait alors être spécifiée par les buts :

ABOVE(A,C) ∧ ON(A,B)

Or, l’analyse moyens-buts est incapable de trouver les opérateurs qui per-
mettent d’atteindre cette combinaison de buts : le but ABOVE(A,C) ne permet
que de proposer un opérateur PUTON(A,C), mais pas l’opérateur PUTON(B,C) qui
serait nécessaire pour atteindre ce but en combinaison avec le but ON(A,B). Un
autre problème concerne le fait qu’il est impossible d’introduire dans un plan
l’utilisation d’objets non mentionnés dans le but. Ce problème est plus pro-
fondément lié au problème théorique faisant qu’une planification permettant
l’introduction d’éléments supplémentaires n’est pas calculable par un ordina-
teur.

10.3 Macro-opérateurs

Dans STRIPS, les séquences d’actions réalisant un type particulier de buts,
peuvent être précalculées et stockées sous forme de macro-opérateurs (MACROP).
Un macro-opérateur permet au système de planification de décrire les plans à un
niveau plus élevé que celui donné par des opérateurs élémentaires. Les MACROP
sont représentés par des tables triangulaires, ayant l’aspect décrit par l’exemple
de la figure 10.4.

0

1

2

3

4

5

6

1

2

3

4

5

6

7

HOLDING (C)

UNSTACK (C,A)

PUTDOWN (C)

PICKUP (B)

PUTON (B,C)
CLEAR(C)

HANDEMPTY

HOLDING(B)

HANDEMPTY

CLEAR(B)

HANDEMPTY
CLEAR (C)
ON(C,A)

ONTABLE(B)
CLEAR (B)

ONTABLE(A) CLEAR(A)
PICKUP(A)

PUTON (A,B)
HOLDING(A)

ON(A,B) ON(B,C)ONTABLE(C)

Fig. 10.4 Exemple de tables triangulaires utilisées par STRIPS.
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La table triangulaire que montre cette figure représente un plan pour
construire une tour de trois blocs A, B et C. On peut le réappliquer comme un
macro-opérateur suivant :

P = D = HANDEMPTY,CLEAR(C),ON(C,A),ONTABLE(B),CLEAR(B),ONTABLE(A)

A = ON(B,C), ON(A,B), ONTABLE(C)

Sur la diagonale de la table triangulaire figurent les séquences d’actions
du plan. Chaque colonne située en-dessous d’une action donne la description
des situations qui s’ajoutent par l’exécution de cette action. Sur les lignes sont
spécifiées les propositions supprimées par exécution des actions de la diagonale.

Considérées plus attentivement, ces tables triangulaires présentent une par-
ticularité intéressante : l’ensemble total des propositions ajoutées et supprimées
par la séquence d’opérateurs, peut être entièrement lu sur la colonne 0 (liste
DELETE de MACROP) et sur la dernière ligne (liste ADD de MACROP). Tout ceci
établit le fait que les tables triangulaires constituent une structure adéquate
pour la représentation d’opérateurs plus abstraits que ceux utilisés à la base.

10.4 La complexité du problème de la planification

Le problème de générer un plan utilisant le formalisme du calcul des situa-
tions a été analysé en informatique théorique. On considère en fait le problème
PLANMIN : est-ce qu’il existe un plan pour un certain problème donné avec une
longueur d’au plus k opérateurs ? Si le nombre d’opérateurs ou d’objets n’est
pas fini, le problème ne peut pas être résolu par une machine de Turing et il
est inutile de parler de sa complexité. Autrement, le problème de la planifica-
tion peut se réduire directement à différentes versions du halting problem pour
machines de Turing.

La figure 10.5 montre différentes classes du problème et leur complexité.
Chaque classe est caractérisée par des conditions sur les opérateurs et parfois
les buts :

• 0,1,2,* indique le nombre de pré(post)conditions,

• + veut dire que la condition doit être une proposition sans négation,

• g buts veut dire que le nombre de buts ne dépasse pas une constante g.

Le cas le plus général ainsi que trois sous-classes indiquées dans la figure 10.5
sont équivalents à une machine de Turing et donc PSPACE-complets. Les cas
qui peuvent être résolus en temps polynomial se limitent à des opérateurs sans
préconditions ou bien à un nombre limité de buts et au plus une précondition
par opérateur – autrement, on pourrait construire des sous-buts et surmonter
la limitation du nombre de buts. Ces cas ne sont en général pas intéressants
dans la pratique.

On voit donc que la planification est un problème très difficile et pour sa
résolution, on doit compter sur de bonnes méthodes heuristiques comme elles
ont été développées dans le cadre de moteurs d’inférence ou de la satisfaction
de contraintes. Nous allons donc voir comment profiter de ces outils pour la
planification.
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1 precond.
* postconds.
g buts

0 precond.
1 postcond.

0 precond.
2 +postconds.

* +preconds.
1 postcond.

1 + precond.
1 + postcond.

0 precond.
2 postconds.

0 precond.
3 +postconds

0 precond.
* postconds.

* preconds.
1 postcond.

* preconds.
* postconds.

1 precond.
* postconds.

2 + preconds.
2 postconds.

P

NP

PSPACE

Fig. 10.5 Hiérarchie de complexité du problème PLANMIN.

10.5 Planification par inférence logique

Un problème de planification peut également être posé comme un problème
d’inférence, ce qui permet d’utiliser un moteur d’inférence quelconque comme
base du système. Une manière de faire cela consiste à ajouter à chaque prédicat
utilisé pour décrire une situation un argument qui indique la situation dans
laquelle le prédicat est valable :

ON(A,B,S1)

et en définissant une fonction d’évolution des états :

S1 = apply(PUTON(A,B), S0)

Au lieu de formuler les opérateurs avec des listes ADD, DELETE, etc., on formule
des règles d’inférence comme ceci :

(CLEAR(x,s) ∧ HOLDING(y,s)) ⇒
(ON(y,x,apply(PUTON(y,x),s)) ∧ ....

Un plan sera alors construit de la manière suivante. Supposons que nous partons
de la situation initiale S0 :

ONTABLE(A,S0), ON(B,C,S0), HANDEMPTY(S0)



236 Le raisonnement basé sur modèles

et que nous cherchons à satisfaire le but ON(A,B,x), où la variable x désigne
une éventuelle situation finale que le système ne connâıt pas encore. Si toutes
les règles d’inférence sont bien formulées, un moteur d’inférence retournera par
exemple le résultat :

x = apply(PUTON(A,B),

apply(PICKUP(A),

apply(PUTDOWN(B),

apply(UNSTACK(B,C),S0))))

ce qui est une substitution de la variable x qui rendra le résultat sous la forme
d’une conséquence de la situation initiale.

Cependant, cette manière de résoudre le problème pose à nouveau le pro-
blème des cadres : pour chaque combinaison de prédicat P et d’opérateur O,
on est obligé de formuler des règles d’inférences qui indiquent si P reste va-
lable ou non dans la situation qui résulte de l’application de l’opérateur O. Si
nous pensions, par exemple, à tous les blocs qui peuvent se trouver ailleurs sur
une table pendant l’exécution d’un plan, il est évident que le nombre de règles
qu’on aurait à formuler serait énorme. Il faut donc formuler des axiomes cadres,
c’est-à-dire des règles générales du type :

(∀ P) (P 6= CLEAR) ∧ (P 6= ...) ⇒
(P(s) ⇒ P(apply(PUTON(x,y),s)))

Malheureusement, il s’agit là d’une règle du calcul de prédicats de deuxième
ordre, ce qui ne peut pas être utilisé dans une procédure d’inférence algorith-
mique. Une issue à cela est de générer un individu pour chaque prédicat utilisé
dans la planification et de l’associer à un état spécifique par un prédicat HOLDS :

HOLDS(ON(A,B),S0)

ce qui fait que les axiomes de cadre deviennent des règles de 1er ordre :

(∀ P) (TYPE(P) 6= CLEAR) ∧ (TYPE(P) 6= ...) ⇒
(HOLDS(P,s) ⇒ HOLDS(P,(apply(PUTON(x,y),s))))

La formulation logique du problème de la planification permet son inté-
gration avec d’autres considérations, notamment le raisonnement temporel qui
permet de planifier des opérations qui se déroulent en parallèle.

10.6 Buts multiples

Quand un problème de planification implique plusieurs buts à réaliser en même
temps, on peut souvent exécuter les actions qui y mènent dans n’importe quel
ordre. La planification par A∗ effectue une recherche linéaire entre les différentes
séquences d’états, ce qui conduit à une explosion combinatoire de nœuds de
recherche. La figure 10.6 en montre un exemple : les quatre actions de poser une
ampoule et un couvercle sur deux lampes (gauche et droite) peuvent s’exécuter
dans six ordres différents, qui seront tous distingués lors d’une recherche par
A∗.



Génération de plans 237

Ampoule
gauche

Ampoule
droite

Couvercle
gauche

Couvercle
droit

Ampoule
gauche

Ampoule
gauche

Ampoule
droite

Ampoule
droite

Ampoule
gauche

Ampoule
gauche

Ampoule
gauche

Ampoule
droite

Ampoule
droite

Ampoule
droite

Couvercle
droit

Couvercle
droit

Couvercle
droit

Couvercle
droit

Couvercle
droit

Couvercle
gauche

Couvercle
gauche

Couvercle
gauche

Couvercle
gauche

Couvercle
gauche

Fig. 10.6 Plans linéaires pour mettre ampoules et couvercles.

L’idée de la planification non linéaire est de séparer la sélection des actions
qui feront partie du plan de leur ordonnancement dans une séquence précise.
Un plan non linéaire est un graphe dont les nœuds sont des actions et les arcs
représentent des contraintes sur l’ordre des opérations. Par exemple, on repré-
sentera les différentes séquences pour mettre les ampoules et les couvercles par
un seul plan non-linéaire (fig. 10.7). Dans des situations comme celle-ci, où
certaines actions peuvent être exécutées dans n’importe quel ordre, la planifi-
cation non linéaire permet une représentation plus compacte. C’est un exemple
de l’idée du least commitment, c’est-à-dire de ne pas faire de choix avant que
ce soit vraiment nécessaire.

début

fin

Ampoule
gauche

Ampoule
droite

Couvercle
gauche

Couvercle
droit

Fig. 10.7 Plan non linéaire pour ampoules et couvercles.
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Il existe de nombreux algorithmes pour la génération de plans non linéaires.
Ils impliquent une recherche relativement complexe d’opérateurs et construisent
les contraintes d’ordonnancement par une analyse des préconditions et des
conséquences des opérations. Au lieu d’entrer dans les détails de ces algo-
rithmes, nous allons montrer une manière de traduire un problème de pla-
nification en un problème de satisfaction de contraintes, plus précisément en
un problème de satisfiabilité (SAT). Cela permet ensuite l’application des al-
gorithmes efficaces de PSC que nous avons vus.

Le plan construit par cette technique sera exprimé dans une autre repré-
sentation qui est une séquence linéaire d’états, où l’on associe à chaque état
un ensemble d’actions qui peuvent toutes s’exécuter en parallèle. La figure 10.8
en montre un exemple. On peut montrer que s’il existe un plan non-linéaire, il
existe aussi un plan sous cette forme. Donc ce choix n’affecte pas la généralité
de l’approche.

s0

s1

s2

ampoule
gauche

ampoule
droite

couvercle
gauche

couvercle
droit

Fig. 10.8 Une représentation alternative d’un plan non-linéaire : une séquence
d’états avec des actions qui peuvent s’exécuter en parallèle.

La méthode repose sur deux hypothèses :

• On connâıt une longueur maximale l du plan, c’est-à-dire le nombre maxi-
mal d’états. Cela peut être satisfait de manière analogue à la recherche en
iterative deepening : on choisit d’abord une limite petite que l’on augmente
si aucune solution n’est trouvée.

• On a déterminé par avance toutes les actions qui pourraient être néces-
saires pour obtenir un plan d’actions complet.

Nous allons maintenant décrire un problème de satisfaction de contraintes
dont n’importe quelle solution correspond à un plan valable pour atteindre les
conditions buts. Le PSC ne contiendra que des variables booléennes, c’est-à-
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dire des variables dont la valeur sera choisie entre vrai et faux. On appelle un
tel PSC un problème de satisfiabilité (SAT).

En partant de la limite l sur la longueur, on définit d’abord la séquence
d’états S1, S2, ..., Sl+1. Le dernier état représente l’état final qui n’admet plus
aucune action. Pour chaque état, le PSC contient deux types de variables :

• pour chaque action qui pourrait faire partie du plan, il existe une variable
qui prendra la valeur vrai si l’action est exécutée dans cet état et faux

si elle ne l’est pas,

• pour chaque propriété qui caractérise les états dans le formalisme STRIPS,
il existe une variable qui indique si la propriété est vraie ou fausse dans
cet état.

Notons que les valeurs des variables qui correspondent aux actions défi-
nissent un plan sous le format de la figure 10.8.

Considérons à nouveau l’exemple des lampes. Il existe quatre actions :

mettre ampoule gauche/droite ' ag/ad

mettre couvercle gauche/droite ' cg/cd

et supposons qu’il y ait trois états : s0,s1,s2. Le PSC aura alors les variables
suivantes pour les actions :

ag(s0),ad(s0),cg(s0),cd(s0)

ag(s1),ad(s1),cg(s1),cd(s1)

En plus, supposons qu’on représente les états par quatre propositions :

posée ampoule gauche/droite ' pag/pad

posé couvercle gauche/droite ' pcg/pcd

On aura alors en plus les variables :

pag(s0),pad(s0),pcg(s0),pcd(s0)

pag(s1),pad(s1),pcg(s1),pcd(s1)

pag(s2),pad(s2),pcg(s2),pcd(s2)

Le deuxième élément d’un PSC, ce sont les contraintes sur les valeurs des
variables :

• Chaque variable qui représente une action a des contraintes avec chaque
variable qui représente une précondition dans le même état. Elles assurent
que si l’action est exécutée, alors les préconditions doivent être satisfaites.
On a donc l’expression logique :

action ⇒ précondition

Par exemple, pour mettre l’ampoule gauche (ag), il faut que le couvercle
gauche ne soit pas encore posé (¬ pcg), donc :

ag(s0) ⇒ ¬ pcg(s0)

et ainsi pour toutes les autres instances de ag. Notons que cette expression
sera représentée comme une contrainte, c’est-à-dire comme matrice de
valeurs admissibles :
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pcg

ag vrai faux
vrai 0 1
faux 1 1

• Des contraintes analogues existent pour les postconditions et les suppres-
sions de chaque action, donc par exemple :

ag(s0) ⇒ pag(s1)

• Les conditions initiales donnent lieu à des contraintes sur les variables
du premier état. Par exemple, si au début on n’a rien posé, on aura les
contraintes :

C1:pag(s0)=faux;

C2:pad(s0)=faux;

C3:pcg(s0)=faux;

C4:pcd(s0)=faux;

• Les buts deviennent des contraintes sur les variables du dernier état, par
exemple :

C1:pag(s2)=vrai;

C2:pad(s2)=vrai;

C3:pcg(s2)=vrai;

C4:pcd(s2)=vrai;

• Les axiomes de cadre seront également exprimés par des contraintes. Rap-
pelons que les axiomes de cadre expriment le fait que si une variable d’état
n’est pas touchée par une action, alors sa valeur au prochain état doit res-
ter inchangée. Il est équivalent de dire que si la valeur change, il doit y
avoir eu une action qui en est responsable. Donc, pour toute paire d’états
successifs, et toute variable d’état, il existe une contrainte entre les va-
riables correspondantes et toutes les actions qui peuvent l’affecter :

si la valeur de la variable change, une des actions doit l’avoir comme
postcondition.

Par exemple, si le couvercle est posé alors qu’il ne l’était pas avant, cela
doit être parce qu’on l’a posé ; s’il n’est plus posé, c’est une contradiction,
car il n’y a pas d’opérateur pour l’enlever. On peut exprimer cela par les
contraintes suivantes :

¬ pcg(s0) ∧ pcg(s1) ⇒ cg(s0)

pcg(s0) ∧ ¬ pcg(s1) ⇒ ⊥

• Supposons qu’une action a1 ait la précondition p et une autre action a2
ait une postcondition ¬p. Si les deux actions sont exécutés simultanément,
il pourra y avoir un conflit car a2 annulera la précondition de a1. Donc,
il faut établir une contrainte d’exclusion mutuelle (mutex) entre a1 et
a2, et en général entre toute paire d’actions tel que l’une influence la
précondition de l’autre.
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Le problème de satisfaction de contraintes qu’on aura ainsi défini n’admettra
comme solution qu’un plan valable. Pour l’exemple, une solution (qui corres-
pond à la figure 10.8) pourrait être :

pag(s0) = faux; pad(s0) = faux; pcg(s0) = faux; pcd(s0) = faux;

ag(s0) = vrai; ad(s0) = vrai; cg(s0) = faux; cd(s0) = faux;

pag(s1) = vrai; pad(s1) = vrai; pcg(s1) = faux; pcd(s1) = faux;

ag(s1) = faux; ad(s1) = faux; cg(s1) = vrai; cd(s1) = vrai;

pag(s2) = vrai; pad(s2) = vrai; pcg(s2) = vrai; pcd(s2) = vrai;

Notons que si le nombre de variables parâıt élevé, il ne crôıt que de façon
linéaire avec le nombre d’états, d’opérateurs et de variables d’état. Il reste donc
mâıtrisable même pour de grands problèmes de planification.

Bien entendu, il peut y avoir plusieurs solutions et donc plusieurs plans.
Il est d’ailleurs possible d’ajouter d’autres critères, par exemple on pourrait
ajouter des contraintes pour tenir compte de la disponibilité des ressources. Cela
permettra alors de planifier l’exécution de certaines opérations en parallèle, ce
qui correspond plus à la réalité dans beaucoup de problèmes industriels tels
que la productique. Il s’agit alors de satisfaire deux types de contraintes :

• précédence : un opérateur qui satisfait la précondition d’un autre doit
venir avant ;

• ressource : deux opérations qui utilisent la même ressource ne peuvent pas
être exécutées en même temps.

En général, la planification non-linéaire permet d’améliorer de façon signi-
ficative l’efficacité de traitement d’un système de planification. Cela s’explique
par le fait que l’effort de calcul le plus important, l’ordonnancement des tâches,
peut se faire en utilisant des méthodes de satisfaction de contraintes plus ef-
ficaces que les méthodes de recherche simples. Il existe des techniques très
efficaces qui permettent de résoudre des problèmes de satisfiabilité avec des
millions de variables et rendent donc possible des plans très complexes.

10.7 Extensions pour améliorer la flexibilité

Opérateurs avec variables

Si la planification non linéaire permet déjà de profiter du principe du least com-
mitment en ce qui concerne l’ordre des opérations, les opérateurs sont toujours
complètement instanciés, c’est-à-dire que les objets auxquels ils se réfèrent sont
décidés au moment de la sélection de l’opérateur. Pour pousser le principe du
least commitment plus loin, on pourrait aussi imaginer d’avoir des opérateurs
contenant des variables, par exemple :

PUTON(A, ?x)

... UNSTACK(A, ?x)
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pour entreposer A sur un autre bloc et libérer la main. Cela évitera de formuler
un grand nombre d’alternatives pour tous les différents endroits où on pourrait
entreposer le bloc A.

Cependant, les variables qu’on introduit ainsi doivent satisfaire à des
contraintes pour éviter des situations inconsistantes. Dans l’exemple, ?x ne peut
pas être égal à A ni à un bloc qui est utilisé dans une autre opération. Ces
contraintes peuvent s’intégrer facilement dans un système de planification par
satisfaction de contraintes.

Opérateurs avec disjonctions

Une autre possibilité est qu’un opérateur puisse contenir des disjonctions. S’il
s’agit d’une disjonction des préconditions, par exemple A ∨ B, on peut rem-
placer l’opérateur par deux copies identiques ayant comme préconditions A et
B seules. Si, par contre, il s’agit d’une disjonction de postconditions, cela veut
dire qu’il peut y avoir plusieurs contextes pour poursuivre la planification. Cela
pourrait se produire par exemple si l’opérateur implique une mesure dont le ré-
sultat est incertain. Dans ce cas, il n’est pas possible de trouver une formulation
équivalente sans disjonctions. En fait, de telles disjonctions conduisent à une
explosion combinatoire des possibilités qui est à éviter si possible.

Planification hiérarchique

Souvent, le domaine dans lequel se fait la planification admet une structuration
hiérarchique. La figure 10.9 montre un exemple d’une telle décomposition. En
développant un plan à plusieurs niveaux d’abstraction, on peut exploiter cette
structure pour améliorer l’efficacité de la planification. On construit d’abord
un plan au plus haut niveau d’abstraction. On définit ainsi une suite de sous-
problèmes à résoudre aux niveaux inférieurs. C’est évidemment plus efficace,
mais peut cacher certaines possibilités et rendre donc le processus incomplet.
Par exemple, il se peut que l’on doive reconfirmer le voyage de retour pendant
le séjour, mais la décomposition ne permettrait pas d’intercaler une telle action
dans la planification du séjour.

Voyage
aller

maison –>
aéroport

Séjour
Voyage
retour

vol
aéroport –>
destination

Fig. 10.9 Exemple d’une structuration hiérarchique.

Pour éviter ce genre d’interférence, on a developpé des techniques qui
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construisent une hiérarchie sans interférences en analysant les dépendences vi-
sibles par les préconditions et postconditions des opérateurs. Par exemple, le
système Fast Downward [52] construit ainsi un graphe causal au dessus de la
structure du problème de satisfaction de contraintes. Ce graphe est alors la base
d’heuristiques pour la résolution du problème de satisfaction de contraintes en
tirant profit de son hiérarchie ainsi découverte. Cette technique permet des
gains importants en complexité par rapport aux heuristiques générales pour la
satisfaction de contraintes.

En pratique, la plupart des systèmes de planification utilisés actuellement
sont de type non linéaire. Ils s’appliquent à une large variété de problèmes,
citons par exemple :

• la planification de missions spatiales (DEVISER),

• les opérations d’un porte-avions (SIPE),

• l’opération d’un ensemble d’ascenseurs (Schindler).

En raison de l’énorme économie de ressources induite par une planification
intelligente, c’est dans le domaine de la planification que l’apport de l’IA s’est
particulièrement démarqué.

Littérature

La planification a été l’un des premiers problèmes considérés par l’IA. Le pa-
pier [44] considère les problèmes principaux de modélisation et formule le pro-
blème des cadres. [45] introduit le système de planification STRIPS, et [46] ana-
lyse le calcul de situations qui est sous-jacent à pratiquement tous les travaux
sur la planification. [47] fait une analyse de la complexité de calcul inhérente
au problème de la planification.

[48] présente la planification non linéaire qui s’est développée pendant les
années 1980 et 1990. La dernière génération d’algorithmes de planification basés
sur les contraintes a été introduite dans [50] pour l’algorithme Graphplan et [49]
pour le système Satplan. La méthode décrite dans ce chapitre prend également
des éléments de [51]. La methode hiérachique du fast downward est décrite
dans [52].

On trouve une bonne synthèse récente dans le livre de Geffner et Bonet [53].

Outils - domaine public

Les systèmes de planification ont plusieurs générations et il existe de nombreux
logiciels qui sont maintenant dépassés. Un système qui est relativement proche
de l’état de l’art et similaire à la technique présenté ici est Satplan et son
successeur Madagascar, disponibles ici :

http://users.ics.aalto.fi/rintanen/satplan.html

Une méthode qui gagne en efficacité en exploitant les structures hiérachiques
du problème est le système Fast Downward dont le développeur se trouve à
l’Université de Basle :
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http://www.fast-downward.org/

Il existe aussi un site qui regroupe les développements qui se sont faits autour
du formalisme de représentation PDDL :

http://planning.domains/

Application : Planification des mouvements d’ascenseurs

Les gratte-ciel contiennent une multitude d’ascenseurs qui doivent servir
de nombreuses demandes. Quand tous les ascenseurs sont réglés par un
même régime simple, on peut observer qu’ils ont tendance à tous servir les
mêmes étages en même temps. C’est évidemment inutile, parce qu’un seul
ascenseur est suffisant pour accueillir toutes les personnes qui attendent
sur un étage. La société Schindler a mis au point un système de plani-
fication, basé sur un formalisme STRIPS et traduit en PSC, qui planifie
les mouvements de tous les ascenseurs de façon coordonnée. Ainsi, pour
chaque étage il n’y aura qu’un seul ascenseur qui viendra chercher les per-
sonnes qui y attendent. Le système réduit le temps de parcours des usagers
entre 10 et 50%, permet d’économiser une partie des ascenseurs ou d’in-
troduire des ascenseurs à plusieurs étages pour multiplier la capacité sans
prendre plus de surface au bâtiment.

(Source : Jana Koehler et Daniel Ottiger : An AI-Based Approach to
Destination Control in Elevators, AI Magazine 23(3), 2002, pp. 59-78.)

10.8 Exercices

Exercice 10.1 Planification - Modélisation

L’objectif de cette série d’exercices consistera à planifier la traversée d’un
groupe de cannibales et de missionnaires de la rive gauche à la rive droite
d’une rivière. Ceux-ci disposent pour ce faire d’un bateau à deux places, qui ne
peut être piloté que par un missionnaire. Nous supposons qu’il y a en tout deux
missionnaires M1 et M2 et deux cannibales C1 et C2. La traversée ne peut se
faire qu’en empruntant un unique bateau B.

Cette série se compose de deux parties. Dans la première partie, corres-
pondant à l’exercice 1, vous devrez concevoir sur papier un modèle PSC qui
représente le problème de planification donné au paragraphe précédent et qui
permette de le résoudre au moyen d’algorithmes de résolution de PSC. Dans la
seconde partie, vous implémenterez ce modèle en Python et vous le résoudrez
en appliquant le module PSC implémenté au cours des exercices précédents.

Notez qu’il n’est pas nécessaire de lire l’énoncé de la deuxième partie pour
accomplir la première. Vous pourriez en fait éprouver une certaine difficulté à
comprendre cet énoncé avant d’avoir lu la solution de la première partie, étant
donné qu’il y fait référence.
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Modules squelettes

Les modules qui suivent constituent le squelette du programme que nous allons
développer. exemple_missionnaires.py sert en particulier à définir le problème
et vous permettra de tester votre implémentation lorsque vous aurez terminé.

Module .../moteur_psc_planification/axiomecadre.py :

from moteur psc.contrainte import Contrainte

class ContrainteAxiomeCadre(Contrainte):
def init ( self , var pre, ops, var post):

Contrainte. init ( self , (var pre, var post) + tuple(ops))

self .var pre = var pre
self .var post = var post
self .vars ops = ops

def est valide ( self , var, val ):
print('à compléter')

def propage(self , var):
print('à compléter')

def reviser ( self ):
return False

def repr ( self ):
return 'Axiome de cadre:\n\t{}\n\t{}\n\t{}'.format(self.var pre,

[op for op in self .vars ops ],
self .var post)

Module .../moteur_planification/operateur.py :

class Operateur:
def init ( self , nom, precond, postcond):

self .nom = nom

self .precond = precond
self .postcond = postcond

def repr ( self ):
return self.nom

Module.../moteur_planification/etat.py :

from moteur psc heuristique.variable avec label import VariableAvecLabel

class Etat:
def init ( self , no etat, propositions , operateurs, etat prec=None):

self .no etat = no etat
self . etat prec = etat prec

self .operateurs = { op.nom: op for op in operateurs }

self . vars initiales = {}
self . vars finales = {}
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self . construire vars operateurs (operateurs)
self . construire vars propositions (propositions)

def construire vars operateurs ( self , ops):
self .vars operateurs = {}

for op in ops:
var nom = '{} état {}'.format(op.nom, self.no etat)
self .vars operateurs[op.nom] = VariableAvecLabel(var nom,

[True, False ])

def construire vars propositions ( self , props):
print('à compléter')

def variables ( self ):
return (list( self . vars initiales .values()) +

list ( self . vars finales .values()) +
list ( self .vars operateurs.values ()))

Module .../moteur_planification/planification.py :

from moteur psc.contrainte import ContrainteUnaire
from moteur psc heuristique.contrainte avec propagation import

ContrainteAvecPropagation
from moteur psc heuristique.psc heuristique import PSCHeuristique
from moteur psc planification.axiomecadre import ContrainteAxiomeCadre
from .etat import Etat

class Planification :
def init ( self , propositions , operateurs,

mutex propositions, mutex operateurs,
depart, but, nb etats ):

self .operateurs = operateurs
self .mutex propositions = mutex propositions
self .mutex operateurs = mutex operateurs

self .depart = depart
self .but = but

self .nb etats = nb etats

self .propositions = propositions

self . etats = []
self . construire etats ()

self .psc = PSCHeuristique(self.variables (), self . construire contraintes ())

def construire etats ( self ):
print('à compléter')

def variables ( self ):
# Utiliser un set évite les doublons entre variables finales et
# initiales .
variables = set()
for etat in self . etats :

variables .update(etat.variables ())
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return list(variables)

def construire contraintes ( self ):
return (self . construire contraintes propositions () +

self . construire contraintes operateurs () +
self . construire contraintes conditions () +
self . construire contraintes axiomes cadre () +
self . construire contraintes initiales () +
self . construire contraintes finales ())

def construire contraintes propositions ( self ):
print('à compléter')

def construire contraintes operateurs ( self ):
print('à compléter')

def construire contraintes conditions ( self ):
print('à compléter')

def construire contraintes axiomes cadre( self ):
print('à compléter')

def construire contraintes initiales ( self ):
print('à compléter')

def construire contraintes finales ( self ):
print('à compléter')

def resoudre( self ):
self .psc.consistance noeuds()
self .psc. consistance arcs ()
self .psc. variable ordering ()

self .psc.forward checking(0, True)
self . sol = self .psc. solutions

return self. sol

def affice solutions ( self ):
print('Recherche terminée en {} itérations ' .format(self.psc. iterations ))

if len( self .psc. solutions ) == 0:
print('Aucune solution trouvée')
return

for sol in self .psc. solutions :
print('Solution')
print('========')
for etat in self . etats :

print('État {}: ' .format(etat.no etat))
print(' Propositions initiales : ')
for nom, var in sorted(etat. vars initiales .items()):

if sol [var.nom]:
print(' ' + nom)

print(' Opérateurs:')
for nom, var in sorted(etat.vars operateurs.items()):

if sol [var.nom]:
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print(' ' + nom)

print(' Propositions finales : ')
for nom, var in sorted(etat. vars finales .items()):

if sol [var.nom]:
print(' ' + nom)

print()

Module .../exemple_missionnaires.py :

from moteur planification.operateur import Operateur
from moteur planification. planification import Planification

def format g(acteur):
return 'g({})'.format(acteur)

def format d(acteur):
return 'd({})'.format(acteur)

def format dg(bateau, pilote):
return 'dg({}, {})' .format(bateau, pilote)

def format gd(bateau, pilote, passager):
return 'gd({}, {}, {})' .format(bateau, pilote, passager)

bateaux = ['B']
missionnaires = ['M1', 'M2']
cannibales = ['C1', 'C2']

acteurs = bateaux + missionnaires + cannibales

# Ajoute les propositions pour la position des acteurs.
propositions = []
print('à compléter')

# Ajoute les opérateurs de déplacement.
operateurs = []
print('à compléter')

# Ajoute les mutex de proposition (un acteur ne peut pas être sur les deux rives
# simultanément).
mutex propositions = []
print('à compléter')

# Ajoute les mutex d'opérateurs.
mutex operateurs = []
print('à compléter')

# Ajoute les contraintes initiales (tous les acteurs à gauche).
depart = []
print('à compléter')

# Ajoute les contraintes finales (but: tous les acteurs à droite ).
but = []
print('à compléter')

# Transforme le problème de planification en PSC.
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plan = Planification(propositions , operateurs,
mutex propositions, mutex operateurs,
depart, but,
nb etats=5)

plan.resoudre()

plan. affice solutions ()

Veillez à respecter la structure des dossiers telle qu’elle est reflétée dans
les noms des modules ci-dessus, sous peine de devoir modifier les instructions
import.

Exercice 10.1.1 Modélisation sur papier

Avant de commencer à coder, vous devez modéliser le problème de planification
sous forme de PSC. Pour ce faire, il convient de procéder en deux étapes :

• définition du problème de planification en termes de propositions et d’opé-
rateurs,

• définition d’un PSC correspondant, en termes de variables et de contraintes
sur ces variables.

Définition du problème de planification

Un problème de planification peut être défini par trois éléments :

• Un ensemble de propositions qui décrivent complètement l’état du monde
à un moment donné. Certaines de ces propositions peuvent être mutuel-
lement exclusives. Il faut alors expliciter les contraintes d’exclusion.

• Deux ensembles d’instanciations partielles de ces propositions, qui dé-
crivent respectivement l’état initial et l’état final, qui est le but à atteindre.

• Un ensemble d’opérateurs qui permettent de faire évoluer le monde d’un
état à un autre.

Rappelons qu’une proposition est, par définition, une affirmation portant
sur l’état d’une partie du monde et qui peut être vraie ou fausse. Les opéra-
teurs, quant à eux, se définissent comme des actions dont l’exécution nécessite
que certaines propositions (leurs préconditions) soient vraies ou fausses et qui
ont pour conséquence d’imposer à certaines propositions (leurs postconditions)
d’être vraies ou fausses.

Pour commencer, proposez donc une définition d’un problème de planifica-
tion qui corresponde à la description informelle du problème telle qu’elle vous
est donnée en introduction.

Privilégiez un modèle simple, qui ne contienne pas trop d’opérateurs su-
perflus. Par exemple, il est inutile d’introduire des opérateurs pour décrire le
fait qu’un missionnaire ou un cannibale embarque sur le bateau ou qu’il en
débarque. Pour chaque acteur, vous pouvez utiliser une proposition indiquant
s’il se trouve ou non sur la rive gauche et une autre proposition indiquant s’il
se trouve ou non sur la rive droite.
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Définition d’un PSC correspondant

Par définition, un PSC est décrit par :

• un ensemble de variables, qui prennent des valeurs dans des domaines
définis,

• un ensemble de contraintes sur ces variables, qui définissent les combinai-
sons de valeurs admissibles.

Proposez un modèle PSC pour le problème de planification. Les variables
doivent décrire complètement les propositions et les opérateurs lors de chaque
état. Les contraintes, quant à elles, doivent exprimer les propriétés et les limita-
tions du problème. Par exemple, un bateau ne peut contenir que deux acteurs
au maximum, et l’un d’eux (le pilote) doit être un missionnaire. Ou encore, le
bateau doit initialement être à gauche pour pouvoir faire la traversée de gauche
à droite.

Afin de reformuler le problème de planification sous la forme d’un PSC, vous
devrez faire une hypothèse sur le nombre d’états nécessaires pour l’existence
d’un plan aboutissant à une solution (c’est-à-dire sur le nombre d’applications
successives d’opérateurs). Notez que votre modèle PSC n’est pas obligé de se
limiter aux contraintes unaires ou binaires. Il peut comporter des contraintes
n-aires avec n > 2. Par exemple, les contraintes correspondant aux axiomes de
cadre.

Solutions à la page 378

Exercice 10.2 Planification - Implémentation

Exercice 10.2.1 Construction du problème de planification

Le module exemple_missionnaires.py contient une routine qui, pour commen-
cer, définit les acteurs, opérateurs, mutex et conditions de départ et de fin du
problème, puis construit le problème de planification en utilisant la classe Plani-

fication du module planification.py. Une fois l’objet Planification construit,
sa méthode resoudre utilise les outils de résolution de PSC développés les séries
précédentes pour résoudre le problème.

Construction des propositions : rédigez le code nécessaire pour contruire les
propositions du problème. Une proposition doit être simplement représentée
par une string. Stockez toutes les propositions dans la liste propositions.

Construction des opérateurs : construisez à présent les opérateurs du problème,
qui seront représentés par la classe Operateur du module operateur.py. Le
constructeur de cette classe prend comme arguments trois paramètres :

• le nom de l’opérateur à créer (similaire à la représentation des proposi-
tions,

• la liste des préconditions (une liste de propositions),

• la liste des postconditions (une liste de propositions).



Génération de plans 251

Spécification des mutex de propositions : ajoutez le code nécessaire à construire
les mutex de propositions et qui les stockera dans une liste sous forme de tuples
(prop1, prop2). prop1 et prop2 sont ainsi deux propositions qui ne doivent pas
être vraies en même temps.

Spécification des mutex d’opérateurs : ajoutez ensuite le code qui définira les
mutex d’opérateurs avec le même format que les mutex de propositions, c’est-
à-dire comme une liste de tuples (op1, op2), avec op1 et op2 deux opérateurs
qui ne doivent pas être exécutés en même temps.

Déclaration des contraintes initiales et finales : spécifiez maintenant les contrain-
tes initiales et finales du problème de planification avec deux listes de tuples
(proposition, valeur).

Exercice 10.2.2 Implémentation des axiomes de cadre, états et planificateur

Les modules axiomecadre.py, etat.py et planification.py contiennent les classes
et les algorithmes qui permettent de modéliser un problème de planification
comme un PSC, avant de résoudre celui-ci pour trouver un plan valide. Le mo-
dule PSC utilisé sera celui qui a été développé au cours de la série d’exercices
8.2 (p. 200).

La classe ContrainteAxiomeCadre

Cette classe, définie dans axiomecadre.py, est une sous-classe de la classe
Contrainte et implémente une contrainte d’axiome de cadre pour un état Si
donné et une proposition prop donnée :

Si prop(Si) = False et prop(Si+1) = True, alors, pour au moins un
opérateur op qui a prop comme postcondition, on a op(Si) = True.

Cette contrainte est une contrainte n-aire qui porte sur plus de deux variables.
Ces variables sont les attributs de la classe :

• var_pre est la variable prop(Si),

• var_post est la variable prop(Si+1),

• vars_ops est la liste des variables correspondant aux opérateurs qui ont
prop comme postcondition.

La méthode est_valide : il vous faut tout d’abord implémenter la méthode
est_valide. Notez que contrairement au cas des contraintes unaires et binaires,
cette méthode peut être appelée alors que toutes les variables de la contrainte
ne sont pas encore instanciées (c’est-à-dire même quand leur valeur est None).
Traitez donc ce cas en premier et faites une hypothèse de présomption de va-
lidité : la contrainte est présumée valide tant qu’on n’a pas pu prouver qu’elle
était violée (c’est-à-dire tant qu’au moins une de ses variables n’est pas encore
instanciée).
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La méthode propage : implémentez ensuite la méthode propage. Cette méthode
est appelée juste après qu’une valeur ait été choisie pour une variable de la
contrainte. Elle tente alors de propager les conséquences de ce choix aux va-
riables non encore instanciées de la contrainte pour réduire leurs labels. En
effet, il est possible que l’assignation d’une valeur à une variable rende incom-
patibles certaines valeurs des labels des variables non encore instanciées. Cette
méthode doit retourner True si et seulement si aucune inconsistance n’a été
découverte.

Imaginons par exemple que la seule variable déjà instanciée est prop(Si) =
False, et qu’on désire propager aux variables d’opérateurs les conséquences de
l’assignation prop(Si+1) = False. Il est clair que la contrainte sera alors toujours
vérifiée et que la méthode retournera True sans avoir pu découvrir aucune valeur
incompatible dans les labels des variables d’opérateurs. Inversement, si l’on
choisit l’assignation prop(Si+1) = True, on peut en déduire qu’au moins un
des labels des variables d’opérateurs doit contenir la valeur True. Si ce n’est
pas le cas, cette assignation est inconsistante. Si seulement une des variables
d’opérateurs possède un label qui contient True, alors on peut d’ores et déjà
conclure que seule la valeur True est possible pour cette variable et on peut
retirer la valeur False de son label.

Comme vous le soupçonnez peut-être déjà sur la base de cet exemple, l’im-
plémentation d’un algorithme de propagation performant pour une contrainte
n-aire s’avère être un problème difficile dans le cas général, surtout si l’on veut
accélérer la recherche en découvrant le plus tôt possible les inconsistances et
en réduisant au maximum les labels des variables non encore instanciées.

Dans cet exercice, nous vous proposons d’en implémenter une version simple,
peu performante mais suffisante pour le problème de planification qui nous
occupe. Cette implémentation paresseuse consiste à ne tenter de réduire les
labels et de détecter les inconsistances que lorsqu’il ne reste plus qu’une seule
variable de la contrainte qui ne soit pas encore instanciée. Lorsque c’est le
cas, vérifiez simplement les valeurs du label de cette variable une par une et
retirez du label celles qui ne respectent pas la contrainte. Retournez True si et
seulement si le label résultant n’est pas vide. Dans le cas contraire, lorsqu’au
moins deux variables de la contraintes ne sont pas encore instanciées, utilisez
la même hypothèse de présomption de validité que pour la méthode est_valide

et retournez systématiquement True sans vous mettre en peine de réduire les
labels de ces variables.

Remarque sur la méthode reviser : notez que l’implémentation de la fonction
reviser qui vous est fournie retourne simplement False, c’est-à-dire qu’elle
n’essaie pas de réduire les domaines des variables en appliquant la consistance
des arcs. La raison en est que la consistance des arcs n’est pas définie pour des
contraintes n-aires. Pour ces contraintes, on parle plutôt de consistance des arcs
généralisée (Generalized Arc Consistency, ou GAC) : pour chaque valeur du do-
maine de chaque variable, il doit exister une combinaison de valeurs pour toutes
les autres variables qui satisfasse la contrainte. Mais dans l’exemple simple qui
nous occupe, il n’est pas nécessaire d’implémenter la GAC, de même qu’il n’est
pas nécessaire d’implémenter une méthode de propagation très performante.
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La classe Etat

Un état contient six attributs :

• vars_initiales : une liste de variables correspondant aux propositions au
début de l’état (égales à celles qui existent à la fin de l’état précédent).
Cette « liste » est en fait un dictionnaire qui associe les propositions à
leurs variables respectives.

• vars_finales : un dictionnaire de variables associées aux propositions à la
fin de l’état (égales à celles du début de l’état suivant).

• vars_operateurs : un dictionnaire de variables associées aux opérateurs
pour cet état.

• no_etat : le numéro de l’état, inclus dans l’intervalle [0, Planification.nb_
etats).

• etat_prec : l’objet Etat qui précède l’état courant dans le plan.

Le constructeur vous est donné, et appelle les méthodes construire_vars_

operateurs et construire_vars_propositions, qui remplissent les attributs
vars_operateurs, et vars_initiales et vars_finales respectivement.

La première de ces méthodes est déjà implémentée. Vous devez coder la
seconde en vous inspirant de la première. Nommez les variables à l’aide du
numéro de l’état au début duquel se trouve la variable. N’oubliez pas que les
variables finales d’un état doivent être les mêmes que les variables initiales de
l’état suivant.

La classe Planification

La classe Planification est la classe centrale du planificateur. Elle transforme
un problème de planification en un PSC afin de découvrir un plan valide. Cette
classe possède les attributs suivants :

• propositions, operateurs, mutex_propositions, mutex_operateurs, depart
et but, qui correspondent aux listes construites dans exemple_

missionnaires.py,

• nb_etats : le nombre d’états dans le plan, c’est-à-dire la longueur de celui-
ci,

• etats : la liste des états du problème,

• psc : l’instance de PSC qui représente le problème modélisé en PSC.

Les méthodes de la classe : vous allez maintenant implémenter les méthodes de
la classe Planification. Ce sont les suivantes :

• contruire_etats : construit tous les états de la planification et les ajoute à
la liste self.etats. Faites en sorte que la liste soit triée par ordre croissant
du numéro de l’état.

• constuire_contraintes_propositions : construit les contraintes binaires
d’exclusion mutuelle entre propositions.
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• construire_contraintes_operateurs : construit les contraintes binaires
d’exclusion mutuelle entre opérateurs.

• construire_contraintes_initiales et construire_contraintes_finales :
ajoutent les contraintes initiales sur les propositions de l’état 0 et les
contraintes finales sur les propositions de l’état final.

• constuire_contraintes_conditions : ajoute les contraintes de pré- et post-
conditions entre propositions et opérateurs.

• construire_contraintes_axiomes_cadre : ajoute les contraintes d’axiomes
de cadre en utilisant la classe ContrainteAxiomeCadre.

Test du programme

Finalement, testez votre programme en lançant exemple_missionaires.py.

Solutions à la page 385



Troisième partie

Apprentissage automatique





Un aspect important de l’intelligence est la capacité d’apprendre de nouvelles
connaissances sur la base d’exemples issus de l’observation du monde. Parmi les
trois modes d’inférence, l’apprentissage correspond à l’induction, c’est-à-dire à
des raisonnement qui tirent des conclusions universelles à partir de prémisses
particulières. Par exemple, si nous considérons les propositions :

a) oiseau(Tweety)
b) vole(Tweety)
c) (∀ x) oiseau(x) ⇒ vole(x)

l’induction construit la règle c) à partir de a) et b).
On ne peut pas garantir que le résultat d’une telle inférence soit correct sauf

si on ajoute l’hypothèse d’un monde clos :

Tous les exemples ont été considérés, et il n’existe donc aucun contre-
exemple aux règles pour autant qu’elles soient consistantes avec ces
exemples.

En général, on ne peut garantir cette propriété qu’avec une certaine pro-
babilité. Même si cette probabilité augmente avec le nombre d’exemples, on
n’atteint jamais une certitude absolue. Par contre, il existe une théorie de l’ap-
prentissage qui permet de donner des bornes à la probabilité qu’un résultat soit
correct en fonction du nombre d’exemples utilisés dans l’apprentissage (expli-
quée à la section 12.2).

On peut distinguer deux types d’apprentissage :

• L’apprentissage supervisé : on fournit au système des exemples avec la
bonne classification ou la bonne prédiction ; le système doit alors repro-
duire cette classification ou prédiction aussi bien que possible. L’appren-
tissage supervisé s’applique par exemple à l’apprentissage de règles pour
reconnâıtre les mauvais payeurs ou les conditions de dysfonctionnement
d’un appareil.

• L’apprentissage non supervisé : le système doit lui-même proposer une
classification raisonnable, par exemple pour optimiser ses propres critères
de performance du système. L’apprentissage non-supervisé peut ainsi ser-
vir à grouper les clients d’un site web en classes typiques pour optimiser
leur structure d’accès ou à classifier de segments de génome pour distin-
guer les portions importantes de celles qui ne le sont pas.

L’apprentissage supervisé vise à obtenir un modèle capable de prédire une
variable-« cible » pour de nouveaux exemples, en utilisant un ensemble d’exemples
pour lesquels la valeur de cette variable est déjà connue. On distingue entre
la classification, dans laquelle la variable-cible est catégorique, et la régres-
sion, dans laquelle la variable-cible prend des valeurs numériques. Les modèles
peuvent en outre se diviser en deux catégories :

• des modèles simples, appelées également paramétriques, qui couvrent tous
les exemples avec une seule expression, dont il s’agit de trouver les para-
mètres,

• des modèles structurés, appelés également non paramétriques, dans les-
quels on décompose l’ensemble des exemples en sous-ensembles afin d’ap-
prendre une classification simple pour chacun d’entre eux.
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L’apprentissage non-supervisé ne s’appuie pas sur des variables-cibles préa-
lablement données, mais vise à obtenir un modèle qui regroupe des exemples
similaires. Il est particulièrement utile quand on dispose d’une grande quantité
de données non-interprétées. Le but de l’apprentissage est alors de découvrir la
structure inhérente à ces données, en général sous la forme d’un regroupement
en classes similaires (des clusters).

Comme l’apprentissage s’observe avant tout chez les êtres vivants, plusieurs
techniques s’inspirent de la biologie. Nous considérons ainsi notamment les ré-
seaux de neurones artificiels, qui imitent la structure du cerveau sous une forme
idéalisé, et les algorithmes génétiques. Tous les deux permettent un apprentis-
sage supervisé.

Littérature

Parmi les nombreux ouvrages qui traitent de l’apprentissage automatique, citons-
en deux : le livre de Bishop [54] et celui de Murphy [55]. [56] presente le domaine
sous un angle de la statistique.

Certains livres sont accompagnés de logiciels qui permettent d’expérimenter
avec les techniques : par exemple, [57] présente la bôıte à outils open-source
WEKA, une collection qui contient pratiquement tous les algorithmes d’appren-
tissage. Elle constitue un outil extraordinaire pour construire des applications
de l’apprentissage automatique.

Pour une perspective de l’influence que les techniques d’apprentissage pro-
mettent sur l’informatique, le livre de Domingos [58] est intéressant.



Chapitre 11

Induction de modèles

paramétriques à partir

d’exemples

Dans ce chapitre, nous allons nous occuper de l’apprentissage d’un seul modèle
simple qui doit couvrir du mieux possible tous les exemples fournis à l’entrée.
Un modèle simple est une forme type qui contient certains paramètres, comme
par exemple :

• un polynôme d’un certain degré k,

• une expression logique,

• un hyperplan dans un espace de traits qui sépare des exemples positifs et
négatifs.

Apprendre un modèle simple revient en général à déterminer les paramètres
de la classification qui donnent la meilleure approximation des exemples consi-
dérés. Par exemple, il existe des techniques pour trouver les paramètres d’un
polynôme qui réduisent au minimum l’erreur d’approximation d’un ensemble
de points de mesure, où l’on exprime l’erreur par la somme des carrés des
différences. On parle donc aussi d’un apprentissage paramétrique.

Considérons d’abord l’apprentissage d’expressions logiques tels que des règles.
Le but de l’apprentissage est donc de construire une règle du type :

condition logique ⇒ classification

où la condition logique décrit un concept ou l’ensemble des situations pour
lesquelles classification est vraie. L’apprentissage construit donc une clas-
sification qui permet de classer une situation en instance ou non-instance du
concept.

Par exemple, supposons que vous fassiez un voyage dans un pays tropical, où
la nourriture a tendance à contenir des piments très piquants. Vous souhaitez
alors utiliser vos expériences des types de piments :

grand,allongé,rouge,piquant

grand,rond,vert,¬piquant
petit,allongé,jaune,¬piquant
petit,allongé,rouge,piquant

petit,rond,rouge,¬piquant
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pour trouver une règle :

allongé,rouge ⇒ piquant

qui vous permettra à l’avenir d’éviter les piments trop piquants.

À l’entrée du système d’apprentissage, nous avons donc un ensemble d’exemples
classés :

• un ensemble P d’instances d’un concept et

• un ensemble N de non-instances du concept.

L’apprentissage a alors pour but de trouver une description logique qui
couvre toutes les instances de P et aucune instance de N .

11.1 Représentation

Les exemples peuvent être représentés par des traits, qui sont soit des attributs
à valeurs binaires (vrai/faux) :

piquant,rouge,...

des attributs à valeurs multiples :

couleur = {rouge,bleu,vert},longueur ∈ [1..4.5]

ou des relations :

(couleur ?x rouge),...

Le choix des traits à utiliser dans la représentation est essentiel pour la per-
formance du système d’apprentissage. Le problème est complexe car il n’y a pas
de critère qui permette à coup sûr de savoir si un attribut est important pour la
classification ou pas. Souvent, l’utilité des attributs peut se révéler uniquement
dans leur combinaison. Considérons par exemple trois attributs x, y, z ∈ [−1..1]
qui sont dérivés du contenu de textes e-mail. Le message est considéré comme
un spam si x · y · z > 0. Par contre, aucun des attributs x, y et z ni aucune
paire d’entre eux n’a de corrélation avec le spam. Dans ce cas, il est impossible
de déterminer l’importance de ces attributs sans les considérer tous ensemble.
En général, pour être sûr de considérer tous les attributs importants, il faudra
examiner toutes les combinaisons et leur pertinence pour la tâche d’apprentis-
sage, ce qui revient à une recherche combinatoire coûteuse. Malheureusement,
on ne connâıt pas à ce jour de meilleure méthode, et le problème de la sélection
d’attributs reste un important problème ouvert !

La représentation la plus générale d’une description apprise serait une ex-
pression logique quantifiée :

homme(?x) ∧ (∃?y)père(?x, ?y)

Mais ce genre de descriptions n’est en général pas applicable à cause de la
complexité de l’apprentissage. Il est plus réaliste d’utiliser une expression sans
quantificateurs :

homme(?x) ∧ père(?x, Charles)
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Or toute expression sans quantificateurs possède une forme normale, sous la
forme d’une disjonction de conjonctions :

(p1 ∧ p2 ∧ p3) ∨ (p4 ∧ p2) ∨ (p1 ∧ p5 ∧ p6)

En interprétant chaque conjonction comme un sous-concept, la forme nor-
male se réduit à un ensemble de sous-concepts. Si on divise au préalable les
exemples en sous-ensembles correspondant aux différents sous-concepts, on peut
alors apprendre les conjonctions qui représentent ces sous-concepts en appli-
quant à chaque sous-ensemble un algorithme adapté à l’apprentissage d’une
conjonction d’attributs. C’est l’idée de base des classifications structurées que
nous verrons plus en détail dans le chapitre 12.

11.2 Biais

L’apprentissage peut en principe être effectué par un algorithme de recherche
qui parcourt l’espace de toutes les descriptions possibles. En fait, pour le pro-
blème général on ne connâıt aucun autre algorithme. Considérons cependant
la complexité d’une telle recherche. L’apprentissage d’un concept divise les
exemples en deux sous-classes : membres et non-membres. Si les instances sont
décrites par k attributs binaires différents, il y a alors 2k instances différentes
possibles :

a1 a3a2 ak

0/1 0/1 0/1 0/1

et donc 22
k

manières différentes d’attribuer l’ensemble des instances à une
classes ou à l’autre :

0/1 0/1 0/1 0/1

i1 i2 i3 i(2^k)

Par exemple, avec 10 attributs, il y aura plus de 10300 possibilités. Une recherche
exhaustive à travers toutes ces possibilités est clairement exclue.

Pour combler ces lacunes, on introduit des biais dans la recherche sous-
jacente à l’apprentissage. Ces biais peuvent se situer à trois niveaux :

• Dans la représentation même : on limite par exemple les descriptions consi-
dérées à des conjonctions d’attributs et de négation d’attributs. Nous dé-
finissons alors pour chaque attribut trois valeurs possibles (positif, négatif
ou absent). Cela donne lieu à un espace de descriptions qui comprend 3k

possibilités.

• Dans la recherche : on utilise des heuristiques qui privilégient des descrip-
tions simples qui sont souvent plus adéquates.

• Par le domaine d’application : souvent, certaines combinaisons d’attri-
buts peuvent être exclues à priori en s’appuyant sur la connaissance du
domaine dans lequel se déroule l’apprentissage. Par exemple, pour recon-
nâıtre un mauvais payeur le prénom ne devrait jouer aucun rôle.
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11.3 Apprentissage par recherche

Un processus de recherche se définit par deux éléments : les nœuds et la fonc-
tion de successeur. Dans le cas de l’apprentissage de descriptions conjonctives,
les nœuds correspondront à des descriptions candidates, et la fonction de suc-
cesseur soit à une spécialisation, soit à une généralisation de cette description.
Chaque nœud sera filtré par les ensembles P (instances du concept) et N (non-
instances du concept) ; toute description qui :

• n’est pas satisfaite par un exemple de P ou

• est satisfaite par un exemple de N
n’est pas valable et ne sera plus développée par la suite.

La spécialisation et la généralisation sont deux règles opposées qui donnent
lieu à des algorithmes très différents. La spécialisation part d’un concept général
(au début, une description vide) qui s’applique à n’importe quel exemple. On
ajoute ensuite des attributs qui en limitent l’applicabilité jusqu’à ce que la
description ait atteint un maximum de spécificité.

La généralisation fonctionne dans le sens inverse : on part d’un exemple
précis et on retire des attributs jusqu’à ce que la description soit suffisam-
ment générale pour couvrir l’ensemble des exemples positifs. Dans les deux cas,
chaque description aura plusieurs successeurs et l’algorithme effectuera donc
une recherche.

11.3.1 Apprentissage par spécialisation

Pour l’apprentissage par spécialisation, on commence avec une description vide
et on y ajoute des attributs jusqu’à ce que la description ne couvre plus aucun
exemple négatif. On applique donc un algorithme de recherche, par exemple en
profondeur d’abord ou en largeur d’abord, dans lequel :

• les nœuds sont des descriptions candidates (conjonctions d’attributs),

• les successeurs d’un nœud sont obtenus en rajoutant un attribut de plus
à la description,

• le nœud initial est une description vide,

• un nœud final est une description qui couvre tous les exemples de P, et
aucun exemple de N .

Notons qu’on peut éliminer les nœuds qui ne couvrent pas tous les exemples
de P, car il ne serait pas possible de les couvrir en spécialisant encore la des-
cription. Aucun de leurs successeurs ne pourrait donc être un nœud final.

En pratique, l’apprentissage par spécialisation n’est pas toujours très effi-
cace, car il implique une recherche peu ciblée parmi de nombreuses descriptions
possibles. Il est surtout utilisé quand il s’agit d’apprendre des descriptions par-
tielles pour construire des classifications structurées.

11.3.2 Apprentissage par généralisation

Dans l’apprentissage par généralisation, il convient de construire comme des-
cription de départ une description D0, constituée par l’intersection de tous les
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attributs communs à tous les exemples positifs. Aucun sur-ensemble de D0 ne
pourra s’appliquer à tous les exemples positifs, et donc toute description valable
D doit être un sous-ensemble : D ⊆ D0.

Ainsi, on peut savoir tout de suite que si D0 couvre également un exemple
négatif, il n’existe pas de description conjonctive valable !

Par exemple, pour les piments :

grand,allongé,rouge,piquant

grand,rond,vert,¬piquant
petit,allongé,jaune,¬piquant
petit,allongé,rouge,piquant

petit,rond,rouge,¬piquant
les attributs partagés par tous les exemples positifs sont les suivants :

D0 = allongé, rouge

On peut ensuite simplifier D0 pour trouver une description qui ne couvre
aucun exemple négatif. Cela peut se faire ici aussi par un algorithme de re-
cherche. Dans ce cas cependant, les successeurs sont obtenus par généralisation
en écartant des attributs. Une description correspond à un nœud final si elle
ne couvre plus aucun exemple négatif.

Au lieu de commencer par la conjonction des attributs communs, on peut
aussi débuter la recherche par des exemples spécifiques, appelés des noyaux.
Cela permet de trouver un résultat partiel même quand il n’existe pas de des-
cription conjonctive qui couvre tous les exemples. Une telle recherche est sur-
tout intéressante si, outre la règle de généralisation simple qui consiste à ôter
des attributs un à un, on applique également d’autres règles de généralisation,
telles que :

• changer des constantes en variables :
Nom=François ⇒ Nom=x

• monter dans un arbre de généralisation de concepts :
type = Macintosh ⇒ type = pomme ⇒ type = fruit

En admettant de nouveaux prédicats, on peut aussi :

• ajouter une disjonction d’intervalles :
[1..5] ⇒ [1..5] ∨ [7..10]

• fermer un intervalle :
[1..4] ∨ [5..10] ⇒ [1..10]

• trouver les extrêmes d’un ordre partiel :
ON(A,B),ON(B,C) ⇒ LOWEST(C), HIGHEST(A)

L’avantage de ces règles, dont la plupart sont utilisables soit en généralisa-
tion soit en spécialisation, est qu’on peut parfois trouver des descriptions pour
des jeux d’exemples qui n’admettraient autrement aucune possibilité de des-
cription conjonctive. Par exemple, supposons une nouvelle instance positive :

petit,allongé,vert,piquant
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qui fait qu’il n’y a aucune description conjonctive qui réponde à nos critères,
c’est-à-dire qui recouvre tous les exemples positifs. En utilisant une hiérarchie
où les couleurs rouge,vert sont une instance de foncé, on peut généraliser à

allongé,foncé

qui est ainsi une description valable du concept des piments piquants.

Néanmoins, il y aura des cas où il sera impossible de trouver une seule
description conjonctive. Par exemple, si nous avons les exemples positifs P :

grand,allongé,rouge,piquant

petit,allongé,rouge,piquant

petit,rond,vert,piquant

et les exemples négatifs N :

grand,rond,vert,¬piquant
petit,allongé,jaune,¬piquant
petit,rond,rouge,¬piquant

il n’y a aucune conjonction d’attributs qui réponde aux critères d’une descrip-
tion valable, et il faut avoir utiliser des classifications structurées que nous
allons voir au chapitre 12.

11.4 Frontières de décision

On a souvent affaire à des attributs qui ne sont pas des propositions logiques,
mais qui prennent des valeurs dans des domaines continus. Par exemple, pour
détecter les dysfonctionnements d’une machine, on part de mesures continues
telles que des pressions, températures, etc. L’apprentissage doit alors apprendre
des frontières de décision dans un espace à plusieurs dimensions continues, et on
ne peut pas les apprendre par une recherche entre différentes descriptions. Par
contre, il existe des algorithmes spécialisés pour apprendre de telles frontières.

On se limite en général à des frontières linéaires. La figure 11.1 en montre
un exemple. Ces frontières se décrivent sous le format général suivant :

w1 · x1 + w2 · x2 + ...wn · xn ≥ s

ou, en remplaçant le seuil s par −w0 :

δ(W,X) = w0 · 1 + w1 · x1 + w2 · x2 + ...wn · xn ≥ 0

Un exemple décrit par le vecteur X est alors classé selon qu’il se trouve d’un
côté ou de l’autre de la frontière :

C(X) =

{
1(+) si δ(W,X) ≥ 0
0(−) autrement

S’il existe une telle frontière qui sépare les deux classes, on dit qu’elles sont
linéairement séperables.
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(–0.3,–0.45)

(–1,–0.35)

Fig. 11.1 Frontières de décision dans un espace continu.

Le problème est alors comment apprendre une telle frontière à partir d’ex-
emples. Un premier algorithme est donné par la règle du perceptron, qui s’inspire
d’un ancien modèle du fonctionnement d’un neuron humain. L’algorithme du
perceptron, décrit à la figure 11.2, est très simple : on commence avec une règle
quelconque et on s’en sert pour classifier les exemples. Chaque fois que la règle
se trompe, on applique une correction qui consiste simplement à ajouter ou à
déduire l’exemple du vecteur des poids. Le seuil w0 reste égal à 1. Le paramètre
σ indique la vitesse de convergence désirée ; il peut conduire à des problèmes de
stabilité s’il est trop élevé. On peut prouver que si les classes sont linéairement
séparables, et il est en fait possible de trouver une (seule) frontière de décision
linéaire qui sépare les exemples des différentes classes, la règle du perceptron en
trouvera une. Cependant, si une telle frontière n’existe pas, la règle ne converge
vers aucun résultat.

1: Function PERCEPTRON(P,N )

2: W ← (1,0,0,...,0)

3: for Xi ∈ P ∪N do

4: if C(W,Xi) 6= class(Xi) then

5: if class(Xi) = + then

6: W ← W + σ ·Xi

7: else

8: W ← W - σ ·Xi

9: return W

Fig. 11.2 Règle du perceptron pour l’apprentissage d’une seule frontière de décision
linéaire.
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La trace suivante donne un exemple du fonctionnement de la règle du per-
ceptron, avec σ = 1 :

Exemple Winit Class. Wmodif

(0.4,0.8) + (0,0) - (0.4,0.8)
(0.35,0.25) - (0.4,0.8) - (0.4,0.8)
(0.9,0.3) - (0.4,0.8) - (0.4,0.8)

(-0.75,0.75) + (0.4,0.8) - (-0.35,1.55)
(-1,-0.35) + (-0.35,1.55) - (-1.35,1.2)
(-0.3,-0.45) - (-1.35,1.2) - (-1.35,1.2)
(-1,-0.35) + (-1.35,1.2) - (-2.35,0.85)
(0.4,0.8) + (-2.35,0.85) - (-1.95,1.65)

....

On peut observer qu’un seul exemple doit passer plusieurs fois, et que la conver-
gence peut être très lente.

Si la règle du perceptron est utile parce qu’elle a la garantie de converger vers
une frontière adéquate lorsqu’une telle frontière existe, elle ne débouche pas
forcément sur la meilleure solution. Parmi les différentes frontières possibles,
on préférerait en effet trouver celle qui maximise la séparation des exemples,
comme le montre la figure 11.3. On souhaite donc trouver des poids W tels
que :

• pour toutes les instances positives, la distance δ à la frontière est > δ0,

• pour toutes les instances négatives, la distance δ < −δ0 et

• δ0 est maximal.

x1

x2

1–1

–1

1

+

–

+

–

+ –

(–0.75,0.75)

(0.4,0.8)

(0.35,0.25)
(0.9,0.3)

(–0.3,–0.45)

(–1,–0.35)

delta0

W

Fig. 11.3 La meilleure frontière de décision est celle qui maximise la distance entre
les exemples.
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Ce choix assure que la frontière sépare au mieux les exemples, et s’avère le
meilleur critère en pratique. Elle est donc la solution d’un problème d’optimi-
sation quadratique :

• objectif : maximiser δ0 = minimiser |W |2

• contraintes :
pour tout exemple positif, X ·W > δ0
pour tout exemple négatif, X ·W < −δ0

Un tel problème peut être résolu en temps polynomial par rapport au
nombre d’exemples, donc de façon assez efficace. On peut observer que dans
la solution optimale, certains exemples se trouveront à une distance δ0 de la
surface de décision. On appelle les vecteurs entre la surface de décision et ces
exemples les plus proches des vecteurs de support (support vectors), et la mé-
thode s’appelle donc support vector machine (SVM).

Lorsque les exemples ne sont pas séparables par une frontière linéaire, on
peut soit :

• Admettre que certains exemples ne sont pas correctement classifiés. On
peut alors déduire la somme des erreurs de δ0 lors de la maximisation de
la surface et ainsi optimiser une combinaison des critères.

• Introduire une transformation non linéaire qui les rend séparables (Kernel
function).

Le recours à une fonction de noyau (kernel function) est souvent considéré
comme un élément principal des SVM. Il consiste à transformer les coordonnées
en appliquant une fonction non linéaire φ(x) et ainsi à projeter les exemples
dans un autre espace d’exemples. Dans l’exemple de la figure 11.4, on peut
utiliser les fonctions :

x′1 = φ(x1) = x21

x′2 = φ(x2) = x22

pour rendre séparables les exemples positifs et négatifs qui ne l’étaient pas selon
les coordonnées initiales.

+
–

+

–
+

–
+

–

x2

x1

+
–

+

–
+

–

+
–

x2 ́

x1́

Fig. 11.4 L’application d’une fonction de noyau rend séparables les exemples positifs
et négatifs.
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Notons que l’optimisation qui est sous-jacente à la construction d’une SVM
n’utilise que les produits scalaires de vecteurs :

minφ(W ) · φ(W )

sous les contraintes définies par les exemples Xi :

φ(Xi) · φ(W ) > 1 ou < −1 selon la classe de l’exemple.

On n’a donc pas vraiment besoin de construire φ(W ) et φ(Xi) ; il suffit
de construire leur produit scalaire. On remplace donc φ(X) · φ(Y ) par une
fonction de noyau K(X,Y), et on peut alors considérer des fonctions noyaux
particulièrement simples, comme par exemple :

K(X,Y ) = (X · Y )2 ⇒ φ = (x21,
√

(2)x1x2, x
2
2)

K(X,Y ) = x21y
2
1 + 2x1y1x2y2 + x22y

2
2 = φ(X) · φ(Y )

Les contraintes de la SVM s’expriment alors sur la fonction noyau :

min K(W,W ), sous contraintes K(Xi,W ) > 1/ < −1

et on n’a jamais besoin de construire φ.

Ceci est particulièrement intéressant pour certaines fonctions noyaux, par exemple
la Radial basis function :

K(X,Y ) = e−|X−Y |
2/2σ2

pour laquelle φ serait d’une dimensionnalité infinie. Il est donc heureux que
l’on puisse se passer de la calculer explicitement. En général, on choisit comme
fonctions noyaux des expressions qui mesurent la similarité entre exemples. La
radial basis function en montre un bon exemple, car elle prend des valeurs
d’autant plus élevées que les vecteurs arguments sont plus semblables.

Les support vector machines sont beaucoup utilisées en pratique, surtout pour
la reconnaissance de formes, mais également dans de nombreuses applications
de classification.

11.5 Régression

La régression est une technique statistique qui a pour but de prédire la valeur
d’une variable aléatoire y sur la base d’un ensemble de variables x1, .., xk. On
parle aussi d’une explication de la valeur de y en termes des xi. La forme la
plus connue est la régression linéaire, dans laquelle le modèle prend la forme :

y = w0 + w1x1 + ...+ wkxk + L

où L est une erreur résiduelle. L’apprentissage d’un tel modèle doit donc trouver
les paramètres wi qui minimisent L sur l’ensemble des exemples.

Le plus souvent, on suppose que l’erreur résiduelle pour l’exemple i est
distribuée selon une distribution Gaussienne :

p(i) = p(L(i)) = αe−wL(i)
2
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Selon le principe de la maximisation de vraisemblance, on choisit les paramètres
du modèles de façon à maximiser la probabilité Πip(i) d’observer l’ensemble
des exemples. Comme il est plus simple de maximiser une somme, et comme la
fonction du logarithme est monotone, il est préférable de maximiser

∑
i log p(i)

à la place. Dans le cas d’une distribution Gaussienne, cela revient à minimiser :∑
i

log p(i) ∝
∑
i

L(i)2

ce qui est aussi connu comme l’approximation des moindres carrés.

Les wi qui correspondent à une telle approximation aux moindres carrés
peuvent être obtenus en résolvant un système de k équations linéaires. La fi-
gure 11.5 montre un exemple de régression linéaire.

L4

L3
L1

x

y

Fig. 11.5 Exemple d’une régression linéaire pour trouver un modèle qui couvre quatre
exemples. L’erreur résiduelle est la somme des L1, .., L4.

La régression peut aussi s’étendre facilement à une approximation par poly-
nômes, car un polynôme est une fonction linéaire dans un espace qui inclut les
termes polynomiaux xi · xj comme dimensions supplémentaires. Par exemple,
pour 2 traits x1 et x2, une régression polynômiale de degré 2 :

y = w0 + w1x1 + w2x2 + w11x
2
1 + w12x1x2 + w22x

2
2 + L

est linéaire dans un espace de 5 au lieu de 2 dimensions. On peut ainsi étendre
la régression linéaire à des courbes plus complexes, et obtenir un modèle avec
moins d’erreur. Pour le même exemple que montre la figure 11.5, on peut
par exemple obtenir une erreur beaucoup plus faible, comme le montre la fi-
gure 11.6.

Cependant, un tel procédé a tendance à produire des modèles peu vraisem-
blables, qui obtiennent de bons résultats sur les exemples utilisés pour l’ap-
prentissage, mais pas sur de nouveaux exemples (comme les cercles dans la
figure 11.6). Il y a en fait un compromis à faire entre :

• le biais du modèle : la capacité du modèle à représenter la réalité,

• la variance de l’apprentissage : erreur du modèle induite par une courbe
déterminée trop fortement par les erreurs d’observation.
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L3

x

y

Fig. 11.6 Exemple d’une régression polynomiale pour trouver un modèle qui couvre
quatre exemples. L’erreur résiduelle est beaucoup plus faible, mais d’autres exemples
tels que les cercles produisent une erreur nettement plus grande.

Un modèle trop complexe va introduire trop de variance, un phénomène qu’on
appelle le surapprentissage (overfitting). Pour éviter ce phénomène, on introduit
une régularisation, qui va pénaliser des modèles peu vraisemblables.

La régularisation peut être vue comme un remplacement du critère de maxi-
misation de la vraisemblance P (X|W ) par un critère de maximisation de la
probabilité du modèle lui-même :

p(W |X) = p(X|W )
p(W )

p(X)

Comme p(X) n’est pas influencé par W , il suffit de choisir W pour minimiser :

− ln p(X|W )− ln p(W )

ce qui revient à modifier le critère des maximisation de la vraisemblance par
l’ajout du terme ln p(W ), qu’on appelle régularisateur. Son influence dépend
de la probabilité qu’on attribue au modèle W :

• si tous les W sont equiprobables, il n’a pas d’influence ;

• si on s’attend à ce que les wi soient distribués selon Gaussienne avec
moyenne 0, alors le régularisateur sera

∑
k −w2

k ; ceci est le cas le plus
courant ;

• si la distribution des wi est Laplacienne (exponentielle), alors le régulari-
sateur sera

∑
k −wk ; ce cas s’appelle LASSO ;

• d’autres distributions supportent d’autres régularisateurs.

Le régularisateur permet de combattre le surapprentissage de manière simple
et efficace. Des instruments analogues sont également utilisés dans d’autres
techniques d’apprentissage, en imposant une penalité pour des modèles com-
plexes. Leur justification est souvent moins claire que dans le cas de la régres-
sion.
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11.6 Classification par régression logistique

Pour appliquer la régression à la classification, il faut fixer y à deux valeurs
discrètes, par exemple 0 ou 1. Ceci ne correspond évidement plus à l’hypothèse
d’une erreur Gaussienne, et il convient donc d’introduire une transformation
de y :

• D’abord, on rend y continu en utilisant la probabilité p(y = 1|X). Comme
on peut le voir dans l’exemple de la figure 11.7, la régression linéaire donne
toujours une fonction qui dépasse l’intervalle [0..1], et qui peut donc pas
toujours être interprétée comme probabilité.

• Ensuite, on limite le domaine à l’intervalle [0..1] par la transformation
logistique :

p(y = 1|X) =
ew0+w1x1+...+wkxk

1 + ew0+w1x1+...+wkxk

Cette opération limite le domaine à l’intervalle [0..1] par une transforma-
tion sigmöıde, comme montré dans la figure 11.7, où le modèle serait :

p(y = 1|x) =
ew0+w1x

1 + ew0+w1x

La classification par régression logistique apprend donc les paramètres wi du
modèle qui minimisent les erreurs sur l’ensemble des exemples fournis. Plus pré-
cisément, nous souhaitons trouver les paramètres w qui sont les plus probables
étant donnés les exemples D, c’est-à-dire maximiser :

p(W |D) = p(D|W )
p(W )

p(D)

par la règle de Bayes. Comme p(D) n’est pas influencé par w, il suffit de maximi-
ser le produit des deux autres termes. Il s’avère d’ailleurs là aussi plus pratique
de maximiser leur logarithme :

ln p(D|W ) + ln p(W )

5 10 15 20 25 30 35 40 x = poids

y=1

y=0

régression linéaire

régression logistique

Fig. 11.7 Régression de la classe y (1=chien, 0 = chat) en fonction du trait x
(poids).
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Considérons d’abord une probabilité uniforme pour tous les choix de w. Le
terme p(w0, w1, ..., wk) = c est constant et peut être ignoré. On doit donc
maximiser :

p(D|W ) =
∏
i

p(y = yi|W,Xi)

où i varie sur tous les exemples. On observe que :

p(y = 0|X) = 1− eW ·X

1 + eW ·X
=

1

1 + eW ·X

et

p(y = +1|X) =
eW ·X

1 + eW ·X
=

1

1 + e−(W ·X)

et donc

p(y = yi|X) =
1

1 + e(1−2yi)(W ·Xi)

La maximisation de la probabilité revient donc à choisir w pour maximiser :∑
i

− ln(1 + e(1−2yi)(W ·Xi) (11.1)

et existe des routines d’optimisation convexe qui peuvent fournir la solution
optimale de façon stable et efficace.

La régression logistique est utilisée avec énormément de succès pour ap-
prendre des modèles probabilistes de données. On s’intéresse non seulement au
classificateur, mais également à la caractérisation de l’influence des variables
xi qui est mise en évidence par les coefficients de régression correspondents wi.

11.7 Classification probabiliste

La classification näıve Bayesienne, (naive Bayes) est une autre forme de classi-
fication, similaire à la régression linéaire, et qui fait appel aux techniques d’infé-
rence probabiliste introduites au chapitre 6. Elle s’applique lorsqu’une structure
causale avec une seule cause Y , qui ne peut être observée directement, produit
k conséquences Xi observables, de sorte que ces conséquences sont toutes condi-
tionnellement indépendantes étant donné Y . C’est-à-dire lorsque :

P (Xi|Y,Xj , j 6= i) = P (Xi|Y )

et que les conséquences peuvent être observées. La figure 11.8 en montre un
exemple.

Dans ce cas, on sait que P (Y ) est proportionnel au produit des probabilités
conditionnelles. Nous reprenons ici l’équation 6.2 du chapitre 6 :

p(Y |X1, .., Xk) = αp(Y )

k∏
i=1

p(Xi|Y )
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Y

X3X1 XkX2

Fig. 11.8 Réseau causal d’une cause Y avec k conséquences Xi.

De manière similaire à la régression, elle permet la prédiction de P (Y |X), mais
l’apprentissage peut alors se faire par une simple estimation des probabilités
conditionnelles p(Xi|Y ), par exemple sur la base des fréquences des effets Xi

quand la cause Y est également présente.

Par exemple, pour prédire si un e-mail est du spam ou pas (Y ), on peut consi-
dérer l’ensemble des noms et adjectifs (Xi) du message comme des effets causés
par le type du message. Sur la base d’un échantillon de messages déjà triés
en spam et non-spam, il suffit d’estimer les probabilités p(Xi|Y ), par exemple
en calculant la fréquence de chaque mot dans les deux classes. On peut alors
estimer la probabilité qu’un message précis soit du spam en appliquant l’équa-
tion 6.2 ci-dessus. Pour trier les messages en fonction de cette probabilité, il
suffit de les comparer entre elles et on n’a donc pas besoin de connâıtre p(Y ) qui
est identique pour chaque message. Cette technique est très largement utilisée
dans des filters à spam.

Littérature

La méthode d’induction par spécialisation ou généralisation est décrite en dé-
tail dans [59]. Le perceptron a été introduit pour la première fois par Ro-
senblatt [60], puis développé par de nombreux autres auteurs. Un survol des
techniques se trouve dans [61]. Les support vector machines ont été introduites
par Vapnik [62].

Le livre de Bishop [54] donne des détails sur la régression logistique.

Application : Filtre à spam pour e-mails

L’envoi de messages non sollicités (ce que l’on appelle spam) constitue un
grave problème pour tout utilisateur d’e-mail d’aujourd’hui. SpamAssassin
est un logiciel gratuit qui est très largement utilisé pour le filtrage du
spam. Le logiciel est aussi intégré comme noyau dans de nombreux outils
commerciaux de gestion d’e-mail.
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Comme la plupart des outils anti-spam, SpamAssassin permet d’apprendre
la classification spam/non-spam sur la base d’exemples de messages clas-
sifiés par l’utilisateur. Certains logiciels se contentent d’apprendre des cor-
rélations statistiques (comme la méthode Bayésienne näıve). Dans sa troi-
sième version, SpamAssassin obtient une meilleure performance en utili-
sant l’algorithme du perceptron pour apprendre une pondération de dif-
férents critères. D’autres études ont montré que la performance pourrait
être encore améliorée en utilisant une support vector machine ; cependant
son implémentation est trop complexe pour un outil qui se veut simple.

(Source : http://spamassassin.apache.org/)

11.8 Exercices

Exercice 11.1 Apprentissage avec attributs discrets

Supposons que l’on veuille apprendre à reconnâıtre les champignons vénéneux
sur la base des exemples suivants :

Ordre chapeau couleur du chapeau pied lamelles décision
1 convexe brun épais étroites poison
2 convexe brun fuselé larges ok
3 en cloche pourpre épais larges poison
4 convexe pourpre épais étroites poison
5 en cloche gris fuselé larges ok
6 en cloche gris épais étroites poison
7 convexe gris fuselé larges ok
8 en cloche pourpre fuselé larges ok

Répondez aux questions suivantes :

1) Donnez une ou plusieurs descriptions conjonctives pour les champignons
non-vénéneux. Laquelle de ces descriptions est la meilleure ?

2) Pourquoi est-ce qu’on ne prend pas simplement l’intersection de tous les
attributs que partagent les champignons non-vénéneux ?

3) Supposons que l’on rajoute l’exemple suivant :

Ordre chapeau couleur du chapeau pied lamelle décision
...

9 convexe gris fuselé étroit poison

Pouvez-vous trouver une description conjonctive de la classe des champi-
gnons non vénéneux ? Quel critère permet de répondre à cette question
facilement ?
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4) Supposons qu’on prenne note également de la couleur de la partie supé-
rieure des champignons, en distinguant les valeurs rouge, brun, blanc et
noir.

Peut-on utiliser ce nouvel attribut pour apprendre une classification conjonc-
tive ? Quel technique permettrait de le faire (pensez aux similarités entre
couleurs).

Solution à la page 392

Exercice 11.2 Apprentissage avec attributs numériques

La séparation d’exemples décrits par des attributs numériques exige qu’il soit
possible de séparer les exemples positifs et négatifs par une frontière linéaire.
Même dans les cas où une frontière linéaire n’existe pas, il est souvent possible
d’en trouver une en rajoutant des coordonnées redondantes.

Quelle transformation de coordonnées rendrait ces distributions linéaire-
ment séparables ?

1) Les exemples positifs occupent une bande de largeur 2 autour de l’axe Y
(coordonnées X entre entre −1 et 1).
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2) Même bande, mais tournée de 45 degrés autour de l’origine.
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3) Intérieur du cercle de rayon 1 centré en (2,2).
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Solution à la page 392



Chapitre 12

Apprentissage de classifications

structurées

Souvent, il est impossible de trouver une seule classification simple qui donne
une performance suffisante sur l’ensemble des exemples. Dans le cas où nous
avons les exemples positifs P :

grand,allongé,rouge,piquant

petit,allongé,rouge,piquant

petit,rond,vert,piquant

et les exemples négatifs N :

grand,rond,vert,¬piquant
petit,allongé,jaune,¬piquant
petit,rond,rouge,¬piquant

il n’existe aucune classification simple sous forme de conjonction d’attributs
qui donne le résultat correct sur tous les exemples.

On peut alors appliquer le principe de diviser pour régner : en séparant
les exemples dans des sous-ensembles, on peut apprendre des classifications
simples plus fiables pour chacun de ces sous-ensembles. Lors de la classification
de nouveaux exemples, on appliquera le même critère de séparation pour décider
quelle classification simple est à appliquer.

Nous considérons trois méthodes pour l’apprentissage d’une description struc-
turée. La première consiste à modifier les méthodes d’apprentissage de classi-
fications logiques simples afin d’apprendre des classifications disjonctives. La
deuxième consiste à construire des arbres de décision, et la troisième est le
boosting qui apprend une combinaison de classifications.

12.1 Apprentissage de classifications disjonctives

Il y a deux manières d’adapter l’algorithme d’apprentissage de classifications
logiques pour apprendre des concept disjonctifs :

1) Admettre des hypothèses h qui ne soient pas satisfaites par tous les exemples
positifs. La description sera alors une disjonction qui, dans son ensemble,
couvrira l’ensemble des exemples positifs.

2) Admettre des hypothèses h qui ne soient pas satisfaites par certains exemples
négatifs. La description sera alors une liste de décision, une hiérarchie
d’exceptions.
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Apprentissage de disjonctions

La figure 12.1 montre un algorithme simple qui implémente la première solu-
tion. Il construit successivement des descriptions D qui couvrent une partie X
des exemples positifs, tout en excluant l’ensemble des exemples négatifs, et les
accumule dans TERMS. Chaque fois qu’une description a été trouvée, on peut
éliminer les exemples X qui sont couverts par cette description de l’ensemble
PSET des exemples. La description finale sera alors une disjonction entre les
descriptions de TERMS. Pour apprendre les descriptions individuelles, on uti-
lise un apprentissage par spécialisation comme décrit dans le chapitre précé-
dent. Cependant, comme on veut apprendre des descriptions qui ne couvrent
pas tous les exemples, on ne peut pas partir de l’ensemble des attributs de tous
les exemples positifs, mais il faut commencer avec une description vide.

1: Function DISJONCT(P,N )

2: PSET ← P
3: TERMS ← {}
4: repeat

5: D ← Description qui couvre X ⊆ PSET mais aucun n ∈ N
6: PSET ← PSET - X

7: TERMS ← TERMS ∪ D

8: until PSET = {}
9: return TERMS

Fig. 12.1 Algorithme pour l’apprentissage de descriptions disjonctives.

Sur l’exemple donné ci-dessus, l’algorithme trouve la description { ( allongé
∧ rouge ) ∨ ( petit ∧ rond ∧ vert ) } par les deux étapes suivantes :

1) X = { { grand,allongé,rouge }, { petit,allongé,rouge } }
TERMS = { allongé ∧ rouge }
PSET = { petit,rond,vert }

2) X = { { petit,rond,vert } }
TERMS = { (allongé ∧ rouge) ∨ (petit ∧ rond ∧ vert) }
PSET = {}

Le résultat de cet algorithme simple dépend très fortement du choix des sous-
ensembles X couverts par chaque partie de la description. Un algorithme plus
performant pourrait être obtenu par une recherche entre différents choix pour
ces sous-ensembles.

Apprentissage avec exceptions

Une autre manière de traiter les concepts disjonctifs consiste à utiliser une
description qui admette des exceptions. Ainsi, dans l’exemple cité plus haut,
l’exemple { petit,rond,vert,piquant } devient une exception à la règle !
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En général, on peut représenter des exceptions par une liste de décisions. Il
s’agit d’une liste de règles :

D = (conj1 ⇒ c1, conj2 ⇒ c2, ...., cn)

où conji est une conjonction d’attributs et ci une classification.

La règle qui donne la classification ci a la priorité sur ci+1 : les règles
sont parcourues dans l’ordre et la première règle qui est déclenchée donne la
classification. Le dernier élément est une classification par défaut. Par l’ordre
des règles, la règle ci agit comme exception à la règle ci+1 : tous les cas auxquels
s’applique ci ne seront plus considérés par ci+1.

La figure 12.2 montre un algorithme pour l’apprentissage automatique d’une
telle liste de décision. Il part d’un ensemble E qui contient tous les exemples
(positifs et négatifs). Il construit itérativement des descriptions partielles des
exemples de la classe C qui ne sont pas encore correctement classifiés par la
DLIST courante. Il se peut que ce processus entre dans un boucle infinie, qui
construit toujours la même description. Dans ce cas, on peut sélectionner un
attribut A qui divise l’ensemble MISSED des exemples mal classés en deux
parties M1 et M2, et trouver des descriptions pour chacune d’entre elles qui
seront alors rajoutées en tête de DLIST . Si ces descriptions sont à nouveau
identiques à d’autres qui se trouvent déjà dans DLIST , on applique le même
processus récursivement jusqu’à ce que les descriptions soient différentes.

1: Function DL(E)

2: DLIST ← {<classe par défaut>}
3: repeat

4: MISSED ← p ∈ P ∪N pas correctement classifié par DLIST

5: C ← classe la plus commune de MISSED

6: D ← conjonction qui couvre le plus d’instances de C∈MISSED

7: if D 6= first(DLIST) then

8: DLIST ← cons(D ⇒ C,DLIST)

9: else

10: sélectionner un attribut A qui divise MISSED en M1 et M2

11: récursion sur M1 et M2

12: until MISSED = {}
13: return DLIST

Fig. 12.2 Algorithme pour l’apprentissage d’une liste de décision.

Dans le cas d’un seul concept, on considère qu’il y a deux classes : membres
et non-membres. Dans l’exemple des piments déjà cité plus haut, ces deux
classes seront piquant et ¬ piquant :

a) grand,allongé,rouge,piquant
b) petit,allongé,rouge,piquant
c) petit,rond,vert,piquant
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d) grand,rond,vert,¬piquant
e) petit,allongé,jaune,¬piquant
f) petit,rond,rouge,¬piquant

L’algorithme choisira piquant comme classification par défaut et donc comme
valeur initiale de DLIST ; ce choix est arbitraire car piquant et ¬piquant ap-
paraissent avec la même fréquence. L’algorithme procédera alors selon les étapes
suivantes :

1) MISSED = (d,e,f)

D = rond

DLIST = (rond ⇒ ¬ piquant,piquant)

2) MISSED = (c,e)

D = petit ∧ rond ∧ vert

DLIST =

(petit ∧ rond ∧ vert ⇒ piquant, rond ⇒ ¬ piquant,piquant)

3) MISSED = (e)

D = petit ∧ jaune ∧ allongé

DLIST =

(petit ∧ jaune ∧ allongé ⇒ ¬ piquant, ...)

12.2 Apprentissage d’arbres de décision : l’algorithme ID3

Le deuxième type de description structurée qui peut être appris automati-
quement est celui des arbres de décision ou, plus précisément, des arbres de
classification. Un arbre de classification, par exemple celui de la figure 12.3,
est une structure qui permet de déterminer de façon univoque la classe (ou le
concept) d’un exemple x.

Les différents éléments d’un arbre de classification ont la signification sui-
vante :

• chaque nœud non terminal correspond à un test P (x) qui évalue le prédicat
P sur l’exemple x,

• chaque feuille désigne une classe.

grand(x)

vert(x)

c1 c2

Exemple x à classifier

c3

rouge(x)

c4

oui non

Fig. 12.3 Exemple d’un arbre de classification.
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L’arbre peut être assimilé à une entrevue avec un expert. Pour classifier un
exemple, il faut parcourir l’arbre de la racine aux feuilles, chaque nœud inter-
médiaire correspondant à une question de l’expert. Chaque réponse du client
détermine alors la question suivante de l’expert, soit le chemin à emprunter
dans l’arbre : si la réponse est affirmative, il faut prendre le chemin de gauche,
sinon celui de droite. Une conversation respectant l’arbre de classification de la
figure 12.3 pourrait être :

Expert : Votre exemple est-il grand ?
Vous : Oui.
Expert : Votre exemple est-il vert ?
Vous : Non.
Expert : Alors la classe de votre exemple est c2.

Plus formellement, l’arbre doit être parcouru selon l’algorithme suivant (x
est l’exemple à classifier et N est la racine de l’arbre) :

1: Function CLASSIFY(x,N)

2: while N n’est pas terminal do

3: if PN (x) then

4: N := noeud gauche

5: else

6: N := noeud droite

7: return la classe de N .

où PN est le prédicat associé au nœud intermédiaire N .

Il est à remarquer que la description d’une classe c se déduit directement de
l’arbre de classification : c’est la conjonction de tous les tests que l’on a effectués
lors du parcours de l’arbre, de la racine à la feuille identifiant la classe c. Chaque
terme de la description est soit le prédicat P associé au nœud intermédiaire si
l’on est parti sur la gauche après le nœud, soit le complément du prédicat ¬P
si l’on est allé sur la droite. Ainsi, la description de c2 de la figure 12.3 est :

Dc2 : grand(x) ∧ ¬vert(x)

L’algorithme ID3 (fig. 12.4) est une méthode pour construire un arbre de
classification optimal, c’est-à-dire l’arbre qui permet de classer un exemple en
effectuant, en moyenne, un minimum de tests. Pour ce faire, ID3 construit
l’arbre de manière incrémentale en créant à chaque étape une feuille de l’arbre
partiel courant :

• Si le parcours de la racine à cette feuille n’est possible que pour les
exemples d’une seule classe ci, elle constitue une feuille de l’arbre final et
elle est libellée avec la classe ci. Les instances pour lesquelles le parcours
aboutit à ce nœud seront classifiées ainsi et ne seront bien évidemment
plus prises en compte pour la suite de la construction de l’arbre.

• Sinon, la feuille correspond à un nœud intermédiaire de l’arbre final. Un
prédicat Pj doit alors être choisi pour définir le test associé au nœud.
Pj doit être sélectionné de manière à laisser aussi peu d’incertitude que
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1: Function ID3(E)

2: if E = {} then

3: return NIL

4: else

5: if ∀ e ∈ E classe(e)=c then

6: return c

7: else

8: P ← attribut ∈A qui reduit le plus l’entropie de la classe

9: L ← {e|e ∈ E et P(e) = succès}
10: R ← {e|e ∈ E et P(e) = échec }
11: N ← noeud vide, N.P ← P

12: N.left ← ID3(L), N.right ← ID3(R)

13: return N

Fig. 12.4 L’algorithme ID3.

possible sur la classe de l’exemple après le test. Nous verrons par la suite
qu’un critère d’entropie permet d’effectuer ce choix. Le prédicat Pj choisi
ne pourra bien évidemment plus être utilisé par ses nœuds descendants.

Dans les exemples que nous avons pris ci-dessus, les prédicats sont booléens
et ne donnent comme réponse que vrai ou faux, créant ainsi un arbre de décision
binaire. On peut généraliser les questions posées dans les nœuds en prenant
en compte toutes les valeurs possibles d’un attribut. Par exemple, pour une
question sur l’attribut hauteur ?, on aurait comme valeurs possibles grand,
moyen ou petit. L’algorithme ID3 doit alors construire plusieurs branches à la
place des seules branches L et R. Ainsi, un prédicat booléen ne représente que
le cas spécial d’un attribut aux deux valeurs, vrai ou faux.

Choisir de façon intelligente les attributs qui seront testés à chaque nœud de
l’arbre constitue un élément clé de ID3. Pour obtenir un arbre compact, il faut
qu’on choisisse des attributs pertinents, qui réduisent rapidement l’incertitude
restant quant à la classe.

La théorie de l’information fournit une mesure précise de l’incertitude ap-
pelée entropie. Si l’on applique ce concept à notre problème de classification,
l’entropie est une mesure de l’incertitude liée à la classification d’un exemple.
Cette mesure est importante car elle nous permet de quantifier le degré d’opti-
malité d’un arbre de décision.

Mathématiquement, si un exemple appartient à l’une des n classes c1, . . . ,
cn et que la probabilité qu’un exemple fasse partie de la classe ci est p(ci),
l’entropie de la classification H(C) est :

H(C) = −
n∑
i=1

p(ci) · log2 p(ci)
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L’entropie d’une classification après avoir utilisé un testA (qui normalement
correspond à la présence d’un certain attribut) nous permet de décider quel test
il faut effectuer : le test retenu doit être celui qui entrâıne la plus petite entropie,
soit le moins d’incertitude.

Soit H(C|A) l’entropie de la classification après avoir utilisé A. Afin de
calculer la valeur de H(C|A), il faut tout d’abord déterminer l’entropie de
chaque sous-arbre généré par le test A. Dans le cas général, un test A peut
fournir m résultats différents a1, . . . , am. L’entropie du sous-arbre où A vaut
aj est définie par :

H(C|aj) = −
n∑
i=1

p(ci|aj) · log2 p(ci|aj)

p(ci|aj) étant la probabilité qu’un exemple appartienne à la classe ci si le test
A fournit aj .

Pour calculer l’entropie de la classification H(C|A) après le test A, il suffit
de prendre la moyenne pondérée des entropies de tous les sous-arbres du test :

H(C|A) =

m∑
j=1

p(aj) ·H(C|aj)

L’algorithme ID3 choisit alors à chaque itération le test A qui fournit la
valeur la moins élevée de H(C|A). En pratique, ce critère revient le plus souvent
à diviser les instances restantes de manière aussi égale que possible.

Pour illustrer le fonctionnement de ID3, considérons les exemples suivants :

a) grand,allongé,rouge,piquant
b) petit,allongé,rouge,piquant
c) petit,rond,vert,piquant
d) grand,rond,vert,¬piquant
e) petit,allongé,jaune,¬piquant
f) petit,rond,rouge,¬piquant

La figure 12.5 montre comment les différents attributs conduisent à répartir
les exemples. La qualité de ces répartitions peut être chiffrée par l’entropie
moyenne des ensembles restants. Par exemple, pour l’attribut rouge, nous avons
les probabilités :

Pr(vrai) = 0.5 (a,b,f), Pr(faux) = 0.5 (c,d,e)

et les probabilités conditionnelles que le piment soit piquant ou non :

Pr(piquant|rouge) = 0.66, Pr(¬ piquant|rouge) = 0.33
Pr(piquant|¬rouge) = 0.33, Pr(¬ piquant|¬rouge) = 0.66

L’incertitude sur la classification qui reste dans le cas où rouge est vrai est
alors :

H(C|rouge = vrai) = −
∑

v∈{piq.,¬piq.}

Pr(v|rouge = vrai) · log2(Pr(v|rouge = vrai))

= −0.66 log2(0.66)− 0.33 log2(0.33)

= 0.92 bit
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x

x

= poivron piquant

= poivron non piquant

a

b

c

d

e

f

grand/petit: allongé/rond:

a

b

c

d

e

f

rouge:

a

b

c

d

e

f

a

b

c

d

e

f

vert: jaune:

a

b

c

d

e

f

Fig. 12.5 Répartition des exemples selon les différents attributs.

et le même résultat sera obtenu pour H(C|rouge = faux). L’entropie moyenne
se calcule comme la moyenne pondérée sur les deux valeurs de rouge, c’est-à-
dire :

H(C|rouge) = H(C|rouge = vrai) · Pr(rouge = vrai) +

H(C|rouge = faux) · Pr(rouge = faux)

= 0.5 · 0.92 + 0.5 · 0.92 = 0.92 bit

L’arbre est alors construit itérativement en appliquant les mêmes calculs à
chaque sous-ensemble. Dans cet exemple, nous avons trois étapes :

1) (a,b,c,d,e,f)
grand, petit ou vert : incertitude moyenne restante : 1 bit
rond,allongé ou rouge : incertitude moyenne restante : 0.92 bit
jaune : incertitude moyenne restante 0.81 bit
⇒ choisir jaune

2) (a,b,c,d,f)
grand ou petit : incertitude moyenne restante 0.955
rond ou allongé : incertitude moyenne restante 0.554
rouge ou vert : incertitude moyenne restante 0.955
⇒ choisir rond

3) (c,d,f)
grand ou petit : incertitude moyenne restante 0.66 bit
rouge ou vert : incertitude moyenne restante 0.66 bit
⇒ choisir vert

4) (c,d)
grand ou petit : incertitude moyenne restante 0 bit ⇒ petit
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Fig. 12.6 L’arbre de classification résultant de l’application de ID3 sur l’exemple.

La figure 12.6 montre l’arbre qui résulte de cette exécution de ID3.

Une petite lacune de l’algorithme tel qu’il a été présenté est que le cri-
tère d’entropie privilégie des prédicats à beaucoup de valeurs. Cela n’a pas
d’importance dans l’exemple que nous avons vu, car tous les attributs ont des
valeurs binaires (vrai/faux). Mais ce sera important pour des attributs à va-
leurs multiples ou même numériques. Il est alors possible de compenser cet
effet en divisant la réduction d’incertitude par le nombre de branches générées,
c’est-à-dire en choisissant le prédicat A qui maximise :

H(C)−H(C|A)

|valeurs(A)|

Si l’entropie est le critère le plus habituellement utilisé pour la construction
d’un arbre de décision, il en existe d’autres, qui peuvent se révéler utiles. Dans
le cas des classifications numériques, on peut notamment minimiser la variance
de la classe pour les différents valeurs d’un attribut :

1/n

n∑
i=1

(ci − c)2

Une autre possibilité, pour n’importe quel type de classification, consiste à
minimiser la fraction d’exemples n’appartenant pas à la classe la plus fréquente :

1/n|{ci|ci 6= classe la plus fréquente}|

ID3 est un algorithme qui existe depuis longtemps et qui a prouvé sa grande
efficacité dans de nombreuses applications pratiques. Cependant, il présente
certaines lacunes importantes :
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• Certaines décisions peuvent être dues aux hasards de la sélection des
exemples, quand ces derniers sont peu nombreux.

• La classification de nouveaux exemples n’est pas toujours adéquate. En
fait, il arrive souvent que la performance d’un arbre de classification soit
pire que la stratégie qui consiste à assigner à tout exemple la classe la plus
fréquente.

• Les arbres de classification qui en résultent sont souvent difficiles à inter-
préter.

Les deux premiers problèmes sont étroitement liés et sont tous les deux
une conséquence du phénomène du surapprentissage (overfitting). La dernière
lacune peut souvent être résolue en remplaçant l’arbre par un jeu de règles
équivalent. Après quelques considérations sur la qualité d’un apprentissage en
général, nous montrons deux solutions qui sont souvent utilisées aujourd’hui.

Qualité de l’apprentissage

Le critère statistique utilisé par ID3 peut conduire à choisir des prédicats qui
n’ont aucune signification. Par exemple, si la lettre attachée à chaque exemple
serait aussi considérée comme un attribut, un prédicat très puissant serait :

indice de l’exemple ≤ “c”⇒ piquant

indice de l’exemple ≥ “d”⇒ ¬piquant
Comme il est clair, dans cet exemple, qu’il n’existe aucune relation entre

l’indice et la classification, on peut s’attendre à ce que l’arbre donne de très
mauvais résultats pour de nouveaux exemples. Dans ce cas, il est évident que
la numérotation n’est pas significative. Mais comment faire dans le cas où l’on
n’a vraiment aucune information quant à la relation entre attributs et classifi-
cation ?

Il existe en fait une théorie qui permet de chiffrer la qualité qu’on peut
espérer d’un résultat d’apprentissage en fonction de sa complexité et du nombre
d’exemples fournis en entrée : la théorie PAC. Ces trois lettres sont l’abréviation
de :

• Probablement :
la classification est approximativement correcte avec probabilité δ.

• Approximativement :
la probabilité d’erreur de classification est inférieure à ε.

• Correct.

L’idée principale de la théorie est que la situation où un prédicat sans im-
portance a une forte corrélation avec le résultat peut se produire uniquement
dans le cas où le nombre d’exemples n’est pas assez élevé. Dans l’exemple de
la numérotation, il serait rare dans un grand ensemble d’exemples que tous les
exemples positifs viennent avant tous les exemples négatifs.

Le résultat principal de la théorie PAC suppose que l’algorithme rend un
résultat correct sur tous les exemples fournis pour l’apprentissage. On fournit
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alors N exemples, dont distribution exemples correspond à la réalité, et on
cherche à apprendre un concept parmi |P | possibilités. La théorie donne alors
une relation entre N, |P |, δ et ε qui est valable pour n’importe quel algorithme
d’apprentissage.
Cette relation est obtenue comme suit. Supposons que h ∈ P ait un taux
d’erreur qui dépasse ε. Cela veut dire que la probabilité que h soit néanmoins
correct sur les N exemples est

Pr(correct(h,N)) < (1− ε)N

En supposant que l’algorithme d’apprentissage n’a pas de biais parmi les
descriptions possibles, la condition PAC est satisfaite si et seulement si la pro-
babilité qu’il existe un h qui soit correct surN exemples, mais a un taux d’erreur
> ε sur de nouveaux exemples est < δ :

δ > |P | · (1− ε)N

Cette relation permet alors d’obtenir une limite sur N nécessaire pour ga-
rantir une borne δ0 sur δ :

N ≥ log(δ0/|P |)
log(1− ε)

Donc, par exemple, si le nombre de descriptions possibles |P | crôıt de
façon simplement exponentielle avec le nombre d’attributs, alors le nombre
d’exemples requis crôıt de façon linéaire avec la complexité de la description.
Cela est le cas notamment des descriptions conjonctives que nous avons vues
précédemment. Ce sont donc des descriptions qui peuvent être apprises de ma-
nière efficace. Par contre, pour les arbres de classification, la croissance du
nombre d’arbres possibles par rapport au nombre d’attributs est exponentielle
par rapport au carré du nombre d’exemples, et donc le nombre d’exemples
requis augment bien plus vite.

Par exemple, pour un domaine avec dix attributs, il y a au plus :

|P | = 11 · 102 · 94 · 88... · 22
9

= 2, 6579 · 1035

arbres différents possibles
(1)

. Donc, si on veut en plus atteindre une erreur de
classification ε < 0.001 avec une probabilité δ < 0.01, la formule nous donne,
pour le nombre d’exemples requis :

N ≥ ln(δ/|P |)
ln(1− ε)

= 86 131

ce qui est déjà un nombre très important pour un domaine aussi simple. Si,
par contre, nous nous contentons d’une erreur de classification ε ≤ 0.05, il ne
faudra plus que 1680 exemples.

En général, comme 22
9

est plus grand que chacun des 10 autres facteurs de
la somme, c’est ce dernier élément qui est déterminant pour la complexité (qui
est donc doublement exponentielle par rapport au nombre d’attributs).

(1)
Cela se calcule comme suit : on a le choix entre 10 attributs ou rien du tout pour le
premier nœud, 9 attributs ou rien = 10 possibilités pour chacun des deux nœuds du 2e

niveau, 9 possibilités pour chacun des 4 nœuds du 3e niveau, et ainsi de suite.
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Élaguer un arbre de décision

Dans le contexte des arbres de classification, le problème de l’overfitting ap-
parâıt surtout près des feuilles de l’arbre, quand la taille des sous-ensembles
utilisés pour construire les dernières parties de l’arbre devient trop peu impor-
tante pour assurer la qualité de la classification. Dans ce cas, on peut souvent
obtenir de meilleurs résultats en assignant à tous les exemples la classe la plus
probable de l’ensemble. Dans le cas idéal, on arrêterait la procédure ID3 au mo-
ment où le nombre d’exemples restants ne suffit plus pour garantir une bonne
qualité de classification. Cependant, il est difficile de faire cela car on ne connâıt
pas encore les performances de l’arbre qui en résulteraient. On procède donc
plutôt par élagage d’un arbre une fois qu’il est complètement construit.

L’idée de l’élagage est de comparer la performance de l’arbre élagué avec
celle de l’arbre original sur de nouveaux exemples. Cependant, comment peut-
on effectuer cette comparaison sans disposer de nouveaux exemples ? On peut
utiliser l’estimation suivante, qui provient de la statistique. Supposons que éla-
guer un nœud n implique E erreurs sur les N exemples du jeu original qui sont
attribués à ce nœud. Supposons de plus que les erreurs pour chaque exemple
sont statistiquement indépendantes :

Pr(E erreurs) = Pr(erreur)E · (1− Pr(erreur))(N−E)

La statistique permet alors de donner des bornes sur Pr(erreur) qui assurent
un certain degré de confiance. Par exemple, si un arbre de classification fait
zéro erreur sur six exemples, la probabilité d’erreur avec un degré de confiance
> 25% est 0.206. On peut ensuite comparer cela avec le nombre d’erreurs
qui apparaissent si on remplace l’arbre qui classifie ces six exemples par une
classification uniforme. Si en fait la classification uniforme est meilleure, on
coupe l’arbre à partir de ce nœud.

Arbre ⇒ Règles

Les décisions de l’arbre sont toujours liées à une séquence de tests. Comme
chaque nœud de l’arbre dépend alors de tous les nœuds qui le précèdent, on
ne peut pas l’interpréter en soi. Il serait plus pratique de disposer de règles qui
soient valables indépendamment du contexte, par exemple :

jaune ⇒ ¬ piquant

¬ jaune ∧ ¬ rond ⇒ piquant

¬ jaune ∧ rond ∧ ¬ vert ⇒ ¬ piquant

....

Un premier jeu de règles peut être généré facilement en observant que chaque
parcours de l’arbre génère une règle indépendante. Pour l’arbre de la figure 12.6,
nous avons les parcours et donc les règles suivantes :

1. jaune ⇒ ¬ piquant

2. ¬ jaune ∧ ¬ rond ⇒ piquant

3. ¬ jaune ∧ rond ∧ ¬ vert ⇒ ¬ piquant

4. ¬ jaune ∧ rond ∧ vert ∧ petit ⇒ piquant
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5. ¬ jaune ∧ rond ∧ vert ∧ ¬ petit ⇒
¬ piquant

Cependant, ces règles sont beaucoup trop compliquées, car certaines des
conditions ne sont pas nécessaires. On peut alors les simplifier comme suit :

3’. rond ∧ ¬ vert ⇒ ¬ piquant

4’. rond ∧ vert ∧ petit ⇒ piquant

4”. vert ∧ petit ⇒ piquant

5’. rond ∧ vert ∧ ¬ petit ⇒ ¬ piquant

5”. vert ∧ ¬ petit ⇒ ¬ piquant

Les simplifications peuvent être trouvées automatiquement en traitant une
règle à la fois. On écarte itérativement un prédicat à la fois et on examine si la
règle reste valide sur l’ensemble des exemples. S’il n’y a que très peu d’exemples
qui ne satisfont pas la règle modifiée, on peut parfois tolérer ces exceptions avec
une justification similaire à celle du élagage de l’arbre.

L’apprentissage inductif dont sont capables certains types de réseaux de
neurones possède des caractéristiques semblables à ID3. Cependant, comme
l’ensemble des neurones est fixe, la profondeur de la classification n’est pas
adaptée automatiquement à la précision requise pour classer tous les exemples.
Ainsi, dans certains cas, la classification construite par de tels réseaux est surdé-
terminée et permet donc également de compléter des informations manquantes.
Par contre, si le nombre de neurones s’avère insuffisant, le réseau n’apprendra
jamais une classification suffisamment précise pour classer correctement tous
les exemples.

12.3 Bagging et boosting : combinaison de différentes
techniques d’apprentissage

La troisième méthode pour l’apprentissage de classifications structurées consiste
à combiner différents classificateurs par les méthodes du bagging et boosting. Il
s’agit de techniques très générales qui permettent d’apprendre de façon ciblée
des classifications simples qui peuvent s’intégrer dans une seule classification
structurée.

Le bagging et le boosting font appel à des méthodes dites méthodes d’ap-
prentissage faibles, qui apprennent des classifications simples, et dont on exige
que le taux d’erreur soit inférieur à 50%, étant donné une certaine distribu-
tion de la probabilité des exemples. De telles méthodes ne sont pas difficiles à
construire, puisque la plupart des méthodes d’apprentissage d’une description
simple remplissent ce critère.

La méthode d’apprentissage simple prend ainsi comme entrée

• n exemples (xi, ci), i ∈ 1..n ; ci ∈ {0, 1},

• une distribution de probabilités pi,
∑n
i=1 pi = 1,
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et doit fournir une classification simple h(x) avec une probabilité d’erreur in-
férieure à 50% :

ε =

n∑
i=1

pi|h(xi)− ci| < 0.5

Le bagging consiste à appliquer un certain nombre n de méthodes d’ap-
prentissage faibles, choisies de façon aléatoire et à réaliser un vote parmi les
classificateurs : si au moins k sur n classificateurs donnent un résultat positif,
on conclut à une classification positive, autrement elle reste négative.

Dans le cas du boosting, on choisit les méthodes d’apprentissage faibles de
façon plus ciblée. L’algorithme ADABOOST construit k classifications simples
en choisissant chaque fois une distribution de probabilité des exemples qui mette
l’accent sur les exemples mal classés par les classifications déjà apprises.

Initialement, tous les n exemples auront le même poids wi = 1/n. L’algo-
rithme est une itération pour t ∈ 1..k des opérations suivantes :

for i ∈ 1..n do

pi ← wi∑n
i=1 wi

h← résultat de la méthode faible, où les fréquences des examples
sont données par les pi

erreur ε←
∑n
i=1 pi|h(xi)− ci|

βt ← ε
(1−ε)

for i ∈ 1..n do

wi ← wiβ
1−|h(xi)−ci|

La première étape consiste à calculer les probabilités des exemples en nor-
malisant la distribution des poids. On applique ensuite la méthode faible et on
mesure le taux d’erreur ε sur les exemples avec leur distribution. Le facteur β
qui sera associé à cette classification est calculé en fonction de ce taux d’erreur.
Ensuite, les poids wi sont mis à jour de façon à réduire le poids des exemples
qui sont correctement classés. Lors de l’itération suivante, l’algorithme se fo-
calisera donc sur les exemples pour lesquels la classification n’est pas encore
correcte.

Le classificateur final consiste en une classification structurée, qui combine
les différents classificateurs multipliés par leur poids :

hf (x) =

{
1 si

∑k
j=1(− log βj)(hi(x)− 1/2) ≥ 0

0 sinon

On peut garantir que l’on obtient par cette méthode une classification de
plus en plus fiable.

Considérons le boosting sur le problème de classification de piments suivant :

1) grand,allongé,rouge,piquant
2) petit,allongé,rouge,piquant
3) petit,rond,vert,piquant
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4) grand,rond,jaune,¬piquant
5) petit,allongé,jaune,¬piquant
6) grand,rond,rouge,¬piquant

Supposons que nous utilisons un seul attribut qui prédit piquant ou ¬piquant
avec une fiabilité d’au moins 50% et que nous apprenons ainsi 3 classifications
faibles :

1) h1 : allongé ⇒ piquant

erreurs ε1 β1 w1 w2 w3 w4 w5 w6

3,5 1/3 1/2 1/12 1/12 1/6 1/12 1/6 1/12

⇒ P = (1/8, 1/8, 1/4, 1/8, 1/4, 1/8)

2) h2 : jaune ⇒ ¬ piquant

erreurs ε2 β2 w1 w2 w3 w4 w5 w6

6 1/8 1/7 1/84 1/84 1/42 1/84 1/42 1/12

⇒ P = (1/14, 1/14, 1/7, 1/14, 1/7, 1/2)

3) h3 : petit ⇒ piquant

erreurs ε3 β3 w1 w2 w3 w4 w5 w6

5 1/7 1/6 1/84 1/84 1/42 1/84 1/42 1/12

Le résultat est donc la classification :

hf (x)

= log(2)h1(x) + log(7)h2(x) + log(6)h3(x)− log(2) + log(7) + log(6)

2
= 0.69h1(x) + 1.95h2(x) + 1.8h3(x)− 2.22

Considérons la performance de la classification structurée sur les exemples :

Exemple h1 h2 h3 hf
1) grand,allongé,rouge,piquant 1 1 0 0.42 → 1
2) petit,allongé,rouge,piquant 1 1 1 2.22 → 1
3) petit,rond,vert,piquant 0 1 1 1.53 → 1
4) grand,rond,jaune,¬piquant 0 0 0 -2.22 → 0
5) petit,allongé,jaune,¬piquant 1 0 1 0.27 → 1
6) grand,rond,rouge,¬piquant 0 1 0 -0.27 → 0

Même si dans ce cas, il reste toujours une erreur de classification, le boosting
est une méthode très utilisée en pratique.

Une autre variante du boosting, appelée Martingale boosting, est apparue
récemment. Dans cette méthode, on considère les classificateurs faibles dans un
ordre et choisit le prochain classificateur en fonction du résultat des classifica-
tions précedentes, et plus précisement sur la base du nombre de classifications
positives obtenues par les classificateurs précédents. Lors de l’apprentissage
également, on apprend les classificateurs sur les sous-ensembles d’exemples qui
ont obtenu un certain nombre de classifications positives par les classificateurs
précédents. Cette méthode est dans un certain sens une combinaison entre un
arbre de classification et le boosting, mais la croissance du nombre de nœuds
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est plus faible que pour les arbres de décision. On peut prouver que si chaque
classificateur correspond au critère d’une méthode d’apprentissage faible, le
résultat convergera rapidement vers une classification fiable des exemples.

La figure 12.7 montre schématiquement une séquence de classificateurs qui
pourrait être apprise par Martingale boosting sur notre exemple. Un exemple
commence son parcours en haut à gauche. Chaque fois qu’un classificateur
rend un résultat positif, on continue vers la droite, autrement vers la gauche.
Les flèches en traits pointillés correspondent à un test nul qui échoue toujours
(comme la classification est déjà parfaite).

allongé
¬allongé

petit

¬petit
(rouge,vert)

jaune

¬vert
vert

0 1 2

Fig. 12.7 Séquence de classificateurs obtenue par Martingale boosting pour l’exemple
des piments.

Les exemples seront alors classés comme suit (notons que les exemples ne
suivent pas tous les mêmes classificateurs) :

Exemple h1 h2 h3 score
1) grand,allongé,rouge,piquant 1 1 - 2
2) petit,allongé,rouge,piquant 1 1 - 2
3) petit,rond,vert,piquant 0 1 1 2
4) grand,rond,jaune,¬piquant 0 0 - 0
5) petit,allongé,jaune,¬piquant 1 0 0 1
6) grand,rond,rouge,¬piquant 0 0 - 0

En classifiant tous les piments avec au moins deux votes positifs comme pi-
quants, on obtient donc un résultat correct.

Littérature

L’algorithme ID3 a été présenté dans [64]. La théorie PAC a été publiée
dans [65]. Le boosting a été introduit à l’origine dans [66], puis amélioré dans [67].
Le Martingale boosting présenté dans ce chapitre a été publié pour la première
fois dans [68].
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Application : Prédiction de pannes de réseaux électriques

Le réseau de distribution d’électricité de la ville de New York contient de
nombreux câbles très vieux, qui risquent de causer des courts-circuits lors
de périodes de fortes demande. Pour maintenir la stabilité du réseau, il est
important de remplacer ces câbles avant qu’ils ne lâchent sous la tension.
La compagnie Consolidated Edison, fournisseuse d’électricité pour la plus
grande partie de la ville, possède une procédure pour tester les câbles
et détecter s’il faut les remplacer. Mais souvent c’est l’application même
du test qui rend les câbles défectueux. Cette procédure a donc un coût
important.

En 2005, la société a introduit un système d’apprentissage basé sur le
boosting qui détecte les câbles les plus à risque sur la base de 150 attributs
comme leur âge, leur type, leur charge habituelle et leur comportement
en fonction de la charge. Le système utilise une version de boosting qui
s’appelle Martingale boosting pour apprendre à établir un classement des
câbles dont le risque de panne est le plus élevé. Tous les câbles qui sont
effectivement tombés en panne se trouvaient dans la moitié que le système
avait classée comme la plus à risque. De plus, 75% des pannes concernaient
25% des câbles classés comme les plus à risque.

En focalisant l’attention sur les câbles les plus à risque, le système a fait
économiser des dizaines de millions de dollars de coûts à la société ConE-
dison. Une amélioration supplémentaire de la performance est attendue,
ainsi qu’une utilisation plus grande de cette technique.

(Source : Philip Gross et al. : Predicting Electricity Distribution Feeder
Failures Using Machine Learning Susceptibility Analysis, IAAI-06, pp.
1705-1711, 2006.)

12.4 Exercices

Exercice 12.1 Les arbres de décision (ID3)

Si vous voulez investir dans une compagnie informatique et que vous deman-
dez conseil à un expert financier, avant de vous répondre, celui-ci vous posera
toute une série de questions concernant l’entreprise. Il voudra connâıtre le type
de concurrence à laquelle elle est confrontée, son âge, son secteur d’activité,
etc. En admettant que vous possédiez de nombreux exemples de profils d’en-
treprise accompagnés des conclusions de l’expert, vous auriez en quelque sorte
à votre disposition une partie de son expertise. Il serait intéressant de pouvoir
la réutiliser sans avoir toujours recours à lui lorsque vous souhaitez analyser de
nouvelles entreprises.

Un arbre de décision est une structure qui est souvent utilisée pour repré-
senter des connaissances. Il permet justement de remplacer un expert humain
lorsque l’on désire connâıtre la nature d’une certaine caractéristique d’un ob-
jet, caractéristique que nous appellerons la ‘classe’ de cet objet. Il s’agit d’une
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structure en arbre qui modélise le cheminement intellectuel de l’expert et dans
laquelle :

• Chaque nœud intermédiaire correspond à une question portant sur une
propriété de l’objet. Nous appelons une telle propriété un « attribut ».

• Chaque arête correspond à une valeur de cet attribut.

• Chaque nœud terminal correspond à une collection d’objets appartenant
à la même classe. Cette classe est donc associée au nœud. La même classe
peut se manifester dans plusieurs nœuds terminaux.

En parcourant cet arbre, c’est-à-dire en répondant aux questions des nœuds
intermédiaires et en suivant les arêtes correspondantes, on parvient à un nœud
terminal qui nous renseigne sur la classe de l’objet.

Modules squelettes

Voici tout d’abord les squelettes de fichiers Python qui vous permettront de réa-
liser l’exercice. Les deux modules exemple_profits.py et exemple_maladies.py

vous permettront de tester votre programme :

Module moteur_id3/noeud_de_decision.py :

class NoeudDeDecision:
def init ( self , attribut , donnees, enfants=None):

self . attribut = attribut
self .donnees = donnees
self .enfants = enfants

def terminal( self ):
return self.enfants is None

def classe ( self ):
if self .terminal():

return self.donnees [0][0]

def classifie ( self , donnee):
rep = ''
if self .terminal():

rep += 'Alors {}'.format(self.classe (). upper())
else:

valeur = donnee[self. attribut ]
enfant = self .enfants[valeur ]
rep += 'Si {} = {}, '.format(self.attribut , valeur .upper())
rep += enfant. classifie (donnee)

return rep

def repr arbre( self , level =0):
rep = ''
if self .terminal():

rep += '−−−'∗level
rep += 'Alors {}\n'.format(self.classe ().upper())
rep += '−−−'∗level
rep += 'Décision basée sur les données:\n'
for donnee in self .donnees:
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rep += '−−−'∗level
rep += str(donnee) + '\n'

else:
for valeur , enfant in self .enfants.items():

rep += '−−−'∗level
rep += 'Si {} = {}: \n'.format(self.attribut , valeur .upper())
rep += enfant.repr arbre(level+1)

return rep

def repr ( self ):
return str(self . repr arbre( level =0))

Module moteur_id3/id3.py :

from math import log
from .noeud de decision import NoeudDeDecision

class ID3:
def construit arbre( self , donnees):

# Nous devons extraire les domaines de valeur des
# attributs , puisqu' ils sont nécessaires pour
# construire l 'arbre.
attributs = {}
for donnee in donnees:

for attribut , valeur in donnee[1].items():
valeurs = attributs.get(attribut)
if valeurs is None:

valeurs = set()
attributs [ attribut ] = valeurs

valeurs .add(valeur)

arbre = self . construit arbre recur (donnees, attributs )

return arbre

def construit arbre recur ( self , donnees, attributs ):
print('à compléter')

def partitionne( self , donnees, attribut , valeurs ):
print('à compléter')

def p aj( self , donnees, attribut , valeur ):
print('à compléter')

def p ci aj ( self , donnees, attribut , valeur , classe ):
print('à compléter')

def h C aj(self , donnees, attribut , valeur ):
print('à compléter')

def h C A(self, donnees, attribut , valeurs ):
print('à compléter')
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Module exemple_profits.py :

from moteur id3.noeud de decision import NoeudDeDecision
from moteur id3.id3 import ID3

# Les données d'apprentissage.
donnees = [

[ 'down', {
'age' : 'old ' ,
'competition': 'no' ,
'type' : 'software '

}],
[ 'down', {

'age' : ' midlife ' ,
'competition': 'yes ' ,
'type' : 'software '

}],
[ 'up', {

'age' : ' midlife ' ,
'competition': 'no' ,
'type' : 'hardware'

}],
[ 'down', {

'age' : 'old ' ,
'competition': 'no' ,
'type' : 'hardware'

}],
[ 'up', {

'age' : 'new',
'competition': 'no' ,
'type' : 'hardware'

}],
[ 'up', {

'age' : 'new',
'competition': 'no' ,
'type' : 'software '

}],
[ 'up', {

'age' : ' midlife ' ,
'competition': 'no' ,
'type' : 'software '

}],
[ 'up', {

'age' : 'new',
'competition': 'yes ' ,
'type' : 'software '

}],
[ 'down', {

'age' : ' midlife ' ,
'competition': 'yes ' ,
'type' : 'hardware'

}],
[ 'down', {

'age' : 'old ' ,
'competition': 'yes ' ,
'type' : 'hardware'

}],
]
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id3 = ID3()
arbre = id3.construit arbre(donnees)
print('Arbre de décision : ')
print(arbre)
print()

print('Exemplification : ')
print(arbre. classifie ({

'age' : ' midlife ' ,
'competition': 'no' ,
'type' : 'hardware'}))

Module exemple_maladies.py :

from moteur id3.noeud de decision import NoeudDeDecision
from moteur id3.id3 import ID3

# Les données d'apprentissage.
donnees = [

[ 'angine−érythémateuse', {
' fi èvre' : ' élevée ' ,
'amygdales': ' gonflées ' ,
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'oui' ,
'mal−au−ventre': 'non',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'normales',
'yeux': 'normaux'}

],
[ 'angine−pultacée', {

' fi èvre' : ' élevée ' ,
'amygdales': 'points−blancs',
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'oui' ,
'mal−au−ventre': 'non',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'normales',
'yeux': 'normaux'}

],
[ 'angine−diphtérique', {

' fi èvre' : ' l égère ' ,
'amygdales': 'enduit−blanc',
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'oui' ,
'mal−au−ventre': 'non',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'normales',
'yeux': 'normaux'}

],
[ 'appendicite' , {

' fi èvre' : ' l égère ' ,
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'amygdales': 'normales',
'ganglions' : 'non',
'gêne−à−avaler': 'non',
'mal−au−ventre': 'oui',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'normales',
'yeux': 'normaux'}

],
[ 'bronchite' , {

' fi èvre' : ' l égère ' ,
'amygdales': 'normales',
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'non',
'mal−au−ventre': 'non',
'toux' : 'oui ' ,
'rhume': 'oui ' ,
' respiration ' : 'gênée' ,
' joues ' : 'normales',
'yeux': 'normaux'}

],
[ 'coqueluche', {

' fi èvre' : ' l égère ' ,
'amygdales': 'normales',
'ganglions' : 'non',
'gêne−à−avaler': 'oui' ,
'mal−au−ventre': 'non',
'toux' : 'oui ' ,
'rhume': 'oui ' ,
' respiration ' : 'gênée' ,
' joues ' : 'normales',
'yeux': 'normaux'}

],
[ 'pneumonie', {

' fi èvre' : ' élevée ' ,
'amygdales': 'normales',
'ganglions' : 'non',
'gêne−à−avaler': 'non',
'mal−au−ventre': 'non',
'toux' : 'oui ' ,
'rhume': 'non',
' respiration ' : 'rapide' ,
' joues ' : 'rouges' ,
'yeux': 'normaux'}

],
[ 'rougeole' , {

' fi èvre' : ' l égère ' ,
'amygdales': 'normales',
'ganglions' : 'non',
'gêne−à−avaler': 'oui' ,
'mal−au−ventre': 'non',
'toux' : 'oui ' ,
'rhume': 'oui ' ,
' respiration ' : 'normale',
' joues ' : 'normales',
'yeux': ' larmoyants'}

],
[ 'rougeole' , {
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' fi èvre' : ' l égère ' ,
'amygdales': 'normales',
'ganglions' : 'non',
'gêne−à−avaler': 'oui' ,
'mal−au−ventre': 'non',
'toux' : 'oui ' ,
'rhume': 'oui ' ,
' respiration ' : 'normale',
' joues ' : 'taches−rouges',
'yeux': ' larmoyants'}

],
[ 'rubéole' , {

' fi èvre' : ' l égère ' ,
'amygdales': 'normales',
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'non',
'mal−au−ventre': 'non',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'taches−rouges',
'yeux': 'normaux'}

],
[ 'rubéole' , {

' fi èvre' : 'non',
'amygdales': 'normales',
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'non',
'mal−au−ventre': 'non',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'taches−rouges',
'yeux': 'normaux'}

],
[ 'rubéole' , {

' fi èvre' : 'non',
'amygdales': 'normales',
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'non',
'mal−au−ventre': 'non',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'normales',
'yeux': 'normaux'}

],
]

id3 = ID3()
arbre = id3.construit arbre(donnees)
print('Arbre de décision : ')
print(arbre)
print()

print('Exemplification : ')
print(arbre. classifie ({

' fi èvre' : 'non',
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'amygdales': 'normales',
'ganglions' : 'oui ' ,
'gêne−à−avaler': 'non',
'mal−au−ventre': 'non',
'toux' : 'non',
'rhume': 'non',
' respiration ' : 'normale',
' joues ' : 'normales',
'yeux': 'normaux'}))

L’algorithme ID3

ID3 est un algorithme de construction d’arbres de décision qui vise à minimiser
le nombre de questions à poser. Il construit un arbre de décision à partir d’un
ensemble de données constituées d’objets décrits par leurs attributs et leur
classe. L’algorithme est le suivant :

ID3(données, attributs)
1. IF données est vide THEN
2. RETURN NULL
3. ELSE IF toutes les données font partie de la même classe THEN
4. # Nœud terminal
5. RETURN un nœud terminal contenant tous les données
6. ELSE
7. # Nœud intermédiaire
8. A <− l'attribut minimisant l'entropie de la classification
9. valeurs <− liste des valeurs possibles pour A
10. FOR v IN valeurs DO
11. # Partitionnement:
12. partitions [v] <− les données qui ont v comme valeur pour A
14. # Calcul des sous−nœuds
15. enfants[v] <− ID3(partitions[v], attributs − A)
16. END FOR
17. RETURN un nœud avec enfants comme successeurs
18. END IF
END ID3

Bien évidemment, la qualité de l’arbre de décision construit par ID3 dépend
des données ; plus elles sont variées et nombreuses, plus la classification de
nouveaux objets sera fiable.

Structures de données

Voyons les structures de données dont nous aurons besoin. Nous représente-
rons les donnée d’apprentissage (un objet avec sa classe) sous forme de listes
composées du nom de la classe et d’un dictionnaire {attribut : valeur} :

donnée ::= [val−classe,
{attribut−1: val−attribut−1,
... ,
attribut−k: val−attribut−k}]

où k est le nombre d’attributs. Chaque donnée doit spécifier une valeur pour
chaque attribut. Vous pouvez trouver des exemples de telles données d’appren-
tissage dans les modules de test exemples_maladies.py et exemples_profits.py.

Nous utiliserons aussi :
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• un dictionnaire qui fait correspondre chaque attribut à son domaine de
valeurs :

attributs ::= {attribut−1: [val−attribut−1−1, ...],
...,
attribut−k: [val−attribut−1−k, ...]}

• une liste contenant toutes les classes des données d’apprentissage :

classes ::= [val−classe−1, ...]

La classe NoeudDeDecision

Les nœuds de l’arbre de décision seront modélisés par la classe NoeudDeDecision.
La classe contient trois champs :

• attribut : l’attribut de partitionnement d’un nœud. Ce champ vaut None

pour un nœud terminal.

• donnees : la liste des données qui tombent dans la sous-classification du
nœud.

• enfants : un dictionnaire associant un fils (sous-nœud) à chaque valeur de
l’attribut du nœud. Ce champ vaut None pour un nœud terminal.

Exercice 12.1.1 L’entropie

La classe ID3 du module id3.py implémente l’algorithme ci-dessus. Elle contient
une méthode qui construit un arbre de décision à partir des données d’appren-
tissage. Cette méthode s’appuie à son tour sur une méthode utilitaire qui calcule
l’entropie conditionnelle de la classe étant donné un attribut qui partitionne les
données.

L’entropie est une mesure de l’information, ou plutôt de l’incertitude, à
l’égard de la classification d’un objet. ID3 utilise cette mesure comme une
heuristique visant à minimiser la taille de l’arbre de décision, ne conservant à
chaque étape que l’information absolument nécessaire pour classer un objet.
Chaque fois que l’on doit choisir un attribut pour partitionner les données, on
privilégie ainsi celui qui génère une classification dont l’entropie est minimale.

Nous notons H(C|A) l’entropie de la classification après avoir partitionné
les données selon la valeur de l’attribut A. Sa valeur est donnée par l’équation :

H(C|A) =

M∑
j=1

p(aj)H(C|aj)

où aj est une valeur de l’attribut A, M est le nombre total de valeurs possibles
de A et p(aj) est la probabilité que la valeur de l’attribut A soit aj .
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H(C|aj) est l’entropie de la classification parmi les données pour lesquelles
l’attribut A prend la valeur aj . Elle est définie par l’égalité :

H(C|aj) = −
N∑
i=1

p(ci|aj) log2 p(ci|aj)

oùN est le nombre de classes différentes, et p(ci|aj) la probabilité conditionnelle
qu’un objet appartienne à la classe ci sachant que son attribut A vaut aj .

Dans la classe ID3, écrivez donc une méthode p_aj, avec quatre arguments :
self, donnees, attribut et valeur. Cette méthode doit retourner la probabilité
p(attribut=valeur), c’est-à-dire la probabilité p(aj), sur la base de donnees,
que l’attribut attribut vaille valeur.

De façon similaire, écrivez une deuxième méthode p_ci_aj qui prenne un
argument de plus : classe. Cette méthode doit retourner la probabilité condi-
tionnelle p(classe=classe|attribut=valeur), c’est-à-dire la probabilité p(ci|aj)
qu’une donnée appartienne à la classe classe lorsque son attribut attribut vaut
valeur. Cette probabilité devra être calculée par rapport aux objets de donnees.

Ensuite, écrivez une méthode h_C_aj, avec quatre arguments : self, donnees,
attribut et valeur, qui retourne l’entropie de la sous-classification H(C|aj),
où aj est la valeur valeur de l’attribut attribut. Aidez-vous de la deuxième
équation ci-dessus. (Lorsque p = 0, le résultat de p log2 p est indéfini. Il faut
alors prendre la limite et traiter ce cas comme p log2 p = 0.)

Finalement, écrivez une méthode h_C_A, qui prenne quatre arguments : self,
donnees, attribut et valeurs, et retourne l’entropie H(C|A) de la classification
des objets de donnees après avoir choisi l’attribut attribut. Aidez-vous de la
première équation ci-dessus.

Exercice 12.1.2 La méthode partitionne

Dans la même classe, écrivez une méthode partitionne qui prendra trois para-
mètres (outre self) :

• donnees : les données d’apprentissage à partitionner ;

• attribut : l’attribut A de partitionnement ;

• valeurs : une liste contenant les valeurs aj de l’attribut A.

La méthode doit retourner un dictionnaire qui associe à chaque valeur aj de
A une liste contenant les données pour lesquelles A vaut aj . (Si une certaine
valeur aj n’apparâıt pas dans donnees, la partition correspondante vaudra []).

Exercice 12.1.3 La méthode construit_arbre_recur

Nous pouvons maintenant passer à la construction de l’arbre proprement dite.
Pour cela, écrivez une méthode construit_arbre_recur, qui doit accepter trois
paramètres :

• self : la classe ID3 ;

• donnees : les données de la sous-classification courante ;

• attributs : les attributs encore disponibles pour partitionner les exemples.
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Cette méthode doit construire un arbre de décision en suivant l’algorithme
ID3, dont le pseudo-code vous a été donné ci-dessus. Nous vous suggérons
d’utilisez la méthode h_C_A pour construire une liste qui associe un attribut à
son entropie, puis de choisir l’attribut dont l’entropie est la plus petite. Utilisez
la méthode partitionne pour partitionner les exemples selon les valeurs de cet
attribut.

Notez que construit_arbre_recur est appelée par construit_arbre, qui sert
d’interface. Le code de cette dernière vous est donné et consiste en une routine
qui extrait les domaines des attributs, avant de les passer à construit_arbre_recur.

Test du programme

Vous pouvez maintenant tester votre module avec les modules d’exemple :

• exemple_profits.py : présente des profils d’entreprises informatiques avec
leurs espérances de profit ;

• exemple_maladies.py : essaie de trouver de quelle maladie souffre un en-
fant.

Utilisez les méthodes repr_arbre et __repr__ de la classe NoeudDeDecision

afin d’afficher l’arbre de décision résultant de construit_arbre. Essayez d’utili-
ser l’arbre de décision comme un expert humain de manière interactive à l’aide
de la méthode classifie de la classe NoeudDeDecision.

Solutions à la page 393





Chapitre 13

Apprentissage non supervisé

Pour l’apprentissage de hiérarchies de classification, ainsi que pour l’apprentis-
sage de descriptions caractéristiques, il est nécessaire que l’utilisateur indique
pour chaque exemple la classe dont celui-ci est l’instance. Cette forme d’ap-
prentissage est dite supervisée. On pourrait aussi imaginer que l’algorithme
d’apprentissage décide lui-même des classes qui existent et de la classification
de chaque exemple. Cet apprentissage, dit non supervisé, a donc pour but de
former automatiquement des classes, processus appellé clustering.

L’apprentissage non supervisé a de nombreuses applications pratiques, sur-
tout pour l’analyse de données et la découverte de nouvelles connaissances. Par
exemple :

• dans un site web, on peut appliquer le clustering pour trouver des classes
d’utilisateurs similaires ; on peut ainsi améliorer le site en leur offrant des
chemins d’accès spécifiques ;

• dans un système de recherche d’informations, on peut regrouper les docu-
ments par sujets et ainsi les retrouver de manière plus fiable qu’avec une
recherche par mots-clés ;

• dans un système d’analyse d’images, on peut séparer les différents objets
représentés dans une image ;

• en bio-informatique, on peut appliquer le clustering ou des algorithmes
génétiques afin de classer des segments d’ADN similaires pour en recon-
nâıtre la structure ;

• dans les sciences naturelles, on peut formuler des hypothèses de lois ou
des théorèmes.

13.1 Apprentissage de sous-classes

L’apprentissage de sous-classes consiste à trouver une manière de regrouper des
exemples en sous-classes naturelles, appellées des clusters. Certains regroupe-
ments montrent une plus grande cohérence que d’autres. Par exemple, étant
donné les exemples :

A : grand,allongé,rouge
B : grand,rond,rouge
C : petit,rond,vert
D : petit,rond,rouge
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on formers plutôt les groupes {A,B} et {C,D} que {A,C} et {B,D}, car la
description des classes serait beaucoup plus complexe dans le second cas.

Apprendre une sous-division implique une recherche parmi un certain
nombre d’alternatives possibles pour sélectionner celle qui couvre les exemples
de la meilleure manière. Cependant, dans la plupart de cas, cette recherche se-
rait beaucoup trop complexe : pour n exemples, il y a kn manières de les repartir
en k clusters, ce qui rend une recherche exhaustive beaucoup trop complexe.

Le clustering fournit des méthodes pour regrouper les exemples en clusters
de manière que chaque cluster contienne des exemples similaires. La base de ce
processus est une mesure de distance d(x1, x2) entre exemples. En général, les
algorithmes de clustering sont des heuristiques, qui fonctionnent par approxi-
mations afin de garantir une complexité de calcul linéaire, ou presque linéaire,
par rapport au nombre d’exemples.

Pour appliquer une méthode de clustering adéquate, il faut typiquement
suivre les étapes suivantes :

• définir une représentation des exemples ;

• définir la mesure de similarité entre exemples, c’est-à-dire la distance
(ou proximité) de deux exemples suivant le domaine d’application ; par
exemple, pour des points sur un espace à deux dimensions, on utilise la
distance euclidienne ;

• la phase du clustering proprement dit consiste alors à regrouper les exemples
similaires entre eux suivant l’algorithme choisi.

Il existe deux types de clustering qui se distinguent par le critère de similarité
qui est appliqué :

• Similarité transitive : on considère que si x est similaire à y, et y est simi-
laire à z, alors x, y et z devraient faire partie du même cluster, même si
x n’est pas similaire à z. Ce type de similarité se présente souvent quand
il s’agit de partitionner des données, par exemple lors de la ségmenta-
tion d’objets dans une image ou la classification d’espèces en biologie. On
représente généralement cette similarité sous forme de graphe.

• Similarité non-transitive : on considère que tous les exemples qui font par-
tie d’un cluster doivent être similaires les uns aux autres. Cela veut dire
que chaque cluster représente un prototype qui pourrait se substituer à
n’importe lequel des exemples grâce à sa similarité. Ce type de similarité se
présente quand il s’agit de simplifier des données en les résumant par des
exemples prototypes, comme dans la classification, la recherche d’informa-
tions ou la recommendation, et de manière plus générale le data mining
de régularités à partir d’une grande quantité de données. On représente
généralement cette similarité par une mesure géométrique.

La partie gauche de la figure 13.1 montre un exemple où la transitivité de
la similarité est nécessaire pour obtenir le clustering indiqué, tandis que dans
l’exemple de droite tous les exemples sont suffisamment similaires pour que
cette propriété ne soit pas nécessaire.
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Fig. 13.1 À gauche, le clustering nécessite une similarité transitive, tandis que
l’exemple de droite n’a pas besoin de cette propriété.

Il existe principalement trois grands groupes d’algorithmes de clustering :
le clustering hiérarchique, le clustering de partitionnement, et le clustering
probabiliste. Le premier créée une hiérarchie de regroupements, tandis que le
deuxième définit un seul regroupement. Le troisième associe à chaque exemple
une probabilité d’appartenance à chaque cluster. Nous les expliquons ci-après.

13.2 Clustering hiérarchique

Les algorithmes de clustering hiérarchique peuvent suivre deux approches
suivant le type de structures de données crées au départ :

• Les méthodes par agglomération attribuent tout d’abord à chaque exemple
un seul cluster. Cela signifie que pour n exemples, nous créons d’abord n
clusters. Ces derniers sont alors fusionnés les uns après les autres jusqu’à ce
qu’il n’en reste plus qu’un seul, qui couvre tous les exemples. L’algorithme
peut s’arrêter lorsqu’il ne reste plus qu’un certain nombre de clusters, selon
un seuil prédéfini.

• Les méthodes par division suivent le procédé inverse. Elles partent d’un
cluster unique, qui englobe tous les exemples existants. Ce cluster est alors
divisé au fur et à mesure suivant des critères précis.

Dendrogramme

Le clustering hiérarchique est une méthode qui construit une hiérarchie de
clusters de manière à ce que ceux-ci soient regroupés à nouveau en clusters à
un niveau supérieur. Le résultat sera ce que l’on nomme un dendrogramme. Un
dendrogramme représente différents regroupements d’exemples et de niveaux
de similarité (fig. 13.3). Il peut être coupé à différents niveaux, donnant lieu
à différents clusters. Pour le montrer, considérons les exemples du plan de la
figure 13.2. Pour le moment, nous faisons abstraction des trois clusters dessinés.

La figure 13.3 illustre le dendrogramme résultant d’un algorithme hiérar-
chique appliqué aux exemples de ce plan. Le bas du dendrogramme représente
un clustering maximal, où chaque cluster ne contient qu’un seul exemple. Le
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Fig. 13.2 Exemples dans un plan avec trois clusters.
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Fig. 13.3 Le dendrogramme correspondant à la figure 13.2.

haut montre le cluster qui regroupe tous les exemples. Si l’on prend la coupe en
pointillé sur la figure 13.3, on obtient les trois regroupements représentés par
les ovales de la figure 13.2.

Méthode par agglomération : single-link et complete-link

La manière la plus simple de construire un dendrogramme consiste à procéder
par agglomération. Le schéma général est le suivant :

1) placer chaque exemple dans son propre cluster (singleton),

2) trouver la paire de clusters la plus similaire, étant donnée une définition
de distance entre clusters, et la fusionner en un seul cluster,

3) calculer la distance entre ce nouveau cluster et tous les autres clusters,

4) répéter les pas 2 et 3 jusqu’à ce qu’il n’existe plus qu’un seul cluster
contenant tous les exemples.
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Sur la base de ce procédé général, il existe deux algorithmes principaux : le
single-link et le complete-link. Ils se différencient par leur manière de calculer
la distance entre deux clusters (étape 3) :

• dans l’algorithme single-link, la distance entre deux clusters est le mi-
nimum des distances entre toutes les paires d’exemples composées d’un
élément de chaque cluster,

• dans l’algorithme complete-link, on prend le maximum des distances entre
toutes les paires d’exemples appartenant à des clusters différents.

Il est intéressant de constater que ces deux algorithmes, qui sont très simi-
laires, donnent des regroupements qui peuvent être de qualité très différente.
La figure 13.4 illustre ce phénomène. Les exemples ont déjà été regroupés dans
trois clusters 1, 2 et 3, et la question est alors de décider s’il faut regrouper
cluster 1 avec 2 ou avec 3. Si on applique le critère single-link, on doit comparer
les distances dsl(1, 2) et dsl(1, 3), et on regroupe donc 1 avec 3. Par contre, par
le critère complete-link, on doit clairement regrouper 1 et 2.

Comme le single-link n’a besoin que d’une seule paire de membres similaires
pour établir la connexion entre deux clusters, il se prête bien à des mesures de
similarité transitives. Par contre, le complete-link exige que tous les membres
soient similaires et ne suppose donc aucune transitivité de la mesure de simi-
larité.
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Fig. 13.4 Différence entre les critères single-link et complete-link.

Méthode par division

Si les algorithmes par agglomération s’efforcent de regrouper les exemples les
plus similaires, les algorithmes par division se focalisent sur les dissimilarités
en séparant les exemples les moins similaires.

Ces méthodes partent d’une représentation des similarités sous forme de
graphe complet, dont les sommets correspondent aux exemples et dont chaque
arête porte un poids égal à la similarité entre les exemples qu’elle lie. On di-
vise alors le graphe en construisant des coupes qui contiennent des arêtes de
poids minimal. Cela implique que la mesure de similarité soit considerée comme
transitive, comme dans le critère single-link dans le clustering agglomératif.
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L’algorithme le plus simple est basé sur les arbres couvrants. Avant de
l’expliquer, rappelons quelques notions. Soit un graphe connecté et non dirigé.
Un arbre couvrant (en anglais spanning tree) de ce graphe est un sous-graphe qui
1) est un arbre et 2) connecte tous les sommets. Un graphe peut avoir plusieurs
arbres couvrants. Si un poids est attribué à chaque arête, on peut calculer le
poids total de chaque arbre couvrant. Parmi tous les arbres couvrants possibles
d’un graphe, l’arbre couvrant de poids minimal (en anglais minimal spanning
tree, abrégé MST) est celui dont le poids est le plus faible pour tous les arbres
couvrants.

Un algorithme de clustering peut utiliser cela pour créer un partitionnement.
Il s’agit d’une méthode par division, qui procède en deux étapes principales :

• on crée tout d’abord l’arbre couvrant de poids minimum sur le graphe des
exemples existants ;

• on efface l’arête dont le poids est le plus grand, afin de créer deux clusters ;
cette deuxième étape est répétée jusqu’à obtenir un clustering satisfaisant
selon un critère fixé d’avance.

La figure 13.5 montre comment appliquer cette méthode. Sur la base des
exemples positionnés dans le plan, on établit un arbre couvrant de poids mini-
mum. L’arête dont la longueur est la plus grande se trouve entre C et D. En
l’éliminant, on obtient deux sous-graphes, qui définissent deux clusters.

X1

X2

Arête de longueur maximale

A

B
C D

E

F

G H
I

2

2

6 2.3

4.5

2
2

2

Fig. 13.5 Algorithme utilisant un arbre couvrant de poids minimal.

Il existe de nombreux algorithmes pour trouver un MST. Les meilleurs ob-
tiennent une solution en un temps presque linéaire dans le nombre d’arêtes
(donc quadratique dans le nombre d’exemples), et sa complexité n’est donc pas
plus élevée que l’évaluation de toutes les similarités entre exemples qui est à la
base du clustering.

Cependant, la méthode a deux points faibles :

• elle minimise le poids minimal des arêtes traversées par une coupe, mais
ne prend pas en considération la somme des poids, qui peut parfois être
plus significative,
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• elle ne permet pas d’équilibrer la taille des sous-graphes qui résultent du
fractionnement, et peut donc conduire à des arbres très inhomogènes.

Pour combler ces lacunes, on fait appel à des méthodes de coupe à poids
minimal de la théorie des graphes. Ces méthodes permettent de minimiser la
somme des poids des arêtes qui traversent une coupe, et non seulement le
minimum des poids comme c’est le cas quand on utilise un MST. Cependant,
la complexité de tels algorithmes est nettement plus élevée : la méthode la
plus courante, celle de Ford-Fulkerson, a un temps de calcul quadratique dans
le nombre d’arêtes, et est donc beaucoup plus élevé que l’approche basée sur
le MST. De plus, cette méthode a tendance à sélectionner des coupes très
déséquilibrées, qui isolent des petits groupes de noeuds.

On utilise donc une méthode de clustering spectral (spectral clustering), qui
fait une approximation de la coupe à poids minimal et en même temps minimise
la différence entre la taille des parties qui sont construites. Elle utilise une re-
présentation du graphe de similarité sous forme de deux matrices quadratiques
avec une rangée/colonne pour chaque nœud :

• la matrice W , qui représente les poids w des arrêtes entre noeuds et

• la matrice diagonale D, qui représente le degré (nombre d’arrêtes) de

chaque noeud.
(1)

On considère alors la matrice Laplacienne normalisée du graphe :

L = I −D−1W

et plus précisément ses valeurs propres, qu’on suppose triées dans l’ordre crois-
sant :

e1 < e2 < ... < en

La matrice Laplacienne normalisée d’un graphe connexe a les propriétés sui-
vantes :

• la première valeur propre e1 = 0 ;

• la deuxième valeur e2 est associée à un vecteur propre qui définit une
coupe entre deux sous-graphes C1 et C2 ; cette coupe minimise (approxi-
mativement) le critère NCut :(∑

a∈cut
w(a)

)
·

(
1∑

a∈C1
w(a)

+
1∑

a∈C2
w(a)

)

de sorte que les composantes positives du vecteur correspondent aux
nœuds de C1 et les composantes négatives à ceux de C2.

(1)
Comme le critère de coupe utilise la somme des poids, on suppose qu’on réduit le nombre
d’arêtes en supprimant celles dont le poids est très faible, et qui ne comptent que très
peu dans le poids total d’une coupe. Ceci permet de réduire la complexité.
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Ce vecteur propre s’appelle aussi le vecteur de Fiedler (Fiedler vector). Le cri-
tère qu’il optimise prend en compte à la fois le poids de la coupe et l’équilibrage
de la taille des deux parties, exprimée chacune par la somme des similarités
entre les exemples qu’elle contient. Par application récursive, on peut donc
construire sur cette base un clustering hiérarchique bien équilibré.

Une autre façon d’interpréter le vecteur de Fiedler consiste à le prendre
comme une projection du graphe sur un axe, de sorte que les deux clusters
se trouvent sur les moitiés positives et négatives de cet axe. On peut se de-
mander quelle pourrâıt être la signification des vecteurs propres associés aux
prochaines valeurs propres. Elles définissent en fait une projection du graphe
dans d’autres dimensions, de telle sorte que les 2 − (K + 1)-ème vecteurs dé-
finissent une projection en k dimensions, qui découpe le graphe en k clusters
de points proches les uns des autres. On peut donc trouver une partition dite
spectrale en k clusters, qui applique la transitivité de la similarité en utilisant
des algorithmes de clustering de partitionnement dans l’espace défini par les
k vecteurs propres. Ces algorithmes, notamment l’algorithme k-means, seront
décrits dans la prochaine section.

Plus précisément, pour obtenir k clusters, on construit une matrice H de
n rangées et k colonnes, qui consistent en des k vecteurs propres associées
aux valeurs propres e2, .., ek+1. Ensuite, on procède au clustering des exemples
dont les coordonnées sont données par les rangées de H, en utilisant comme
similarité l’inverse de la distance Euclidienne. Ce clustering utilise l’algorithme
k-means, décrit ci-dessous. L’avantage est qu’on peut obtenir un clustering de
partitionnement avec un critère de similarité transitif, comme dans le cas de la
segmentation d’image.

13.3 Clustering de partitionnement

Le clustering de partitionnement construit une partition unique des exemples,
et non pas une structure hiérarchique. L’algorithme de clustering le plus connu
et le plus appliqué est justement un algorithme de partitionnement : le k-means.

Algorithme k-means

Pour appliquer le k-means, on doit choisir au départ le nombre k de clusters
que l’on veut construire. Comme initialisation, on choisit alors k noyaux cj , qui
sont des exemples distincts, qui vont chacun caractériser un cluster Cj .

L’algorithme procède alors par itération :

• associer chaque exemple xi au cluster dont le noyau est le plus proche,
c’est-à-dire au Cj tel que d(cj , xi) est minimale,

• pour chaque cluster Cj , remplacer le noyau par l’exemple qui est le plus
au centre des exemples du cluster, c’est-à-dire par le xc ∈ Cj tel que∑

xi∈Cj

d(xc, xi)
2

est minimal.
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Après un certain nombre d’itérations, l’arrangement devrait se stabiliser
et on obtient alors un regroupement en clusters. Notons qu’il s’agit d’un al-
gorithme approximatif, qui ne donne aucune garantie quant à la qualité du
résultat.

L’algorithme que nous venons de décrire est en fait la variante k-médöıds
de k-means. L’algorithme k-means proprement dit s’applique uniquement à des
attributs continus. Le noyau d’un cluster se calcule alors par les moyennes des
attributs des instances qui en font partie. L’algorithme k-médöıds que nous
présentons est une variante qui s’applique également à des attributs discrets,
et nous allons utiliser le terme k-means pour cette variante.

Comme exemple, considérons la situation suivante, dans laquelle les exemples
ne sont pas encore classés :

?
?

?
?

?
?

?

?

?
?

?

?

?

À l’initialisation, supposons que nous choisissons au hasard trois noyaux
(indiqués en noir) et que nous classons les exemples ainsi :

a

b

c

a

a

a
a

a

a

b

b

c
c

Ensuite, nous recalculons les noyaux :

a

b

c

a

a

a
a

a

a

b

b

c
c
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et nous classons les exemples à nouveau :

b

c

a

a

a
a

b

b

c
c

b
b

b

Après un nouveau calcul des noyaux :

c

a

a

a
a

b

b

c
c

b
b

b

b

et un reclassement des exemples :

c

a

a

a
a

b

c
c

b
b

b

c

c

nous avons construit un regroupement raisonnable en trois clusters.

L’application de k-means demande à l’utilisateur de faire le bon choix de k
ainsi que des k noyaux d’apprentissage de départ. Il est également important
d’utiliser une bonne mesure de distance, qui ait une signification réelle. Par
exemple, pour des attributs symboliques ou logiques, la distance pourrait être
le nombre d’attributs différents.

13.4 Clustering probabiliste

Nous avons passé en revue deux grands groupes de méthodes de clustering : le
clustering hiérarchique et le clustering de partitionnement. Ces méthodes gé-
nèrent des partitions dans lesquelles chaque exemple n’appartient qu’à une et
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une seule partition à la fois. Or, il existe aussi des applications pour lesquelles
on souhaiterait disposer d’une certaine flexibilité dans le résultat, notamment
en attribuant un exemple à plusieurs clusters à la fois. C’est ce que réalise
le clustering probabiliste. Cette méthode permet à un exemple d’appartenir à
plusieurs clusters, en utilisant une fonction qui définit une probabilité d’appar-
tenance.

Prenons l’exemple illustré à la figure 13.6. Un algorithme déterministe at-
tribuerait chaque exemple à un seul cluster, par exemple H1 ou H2. Un algo-
rithme probabiliste, quant à lui, définirait deux clusters F1 et F2, et attribuerait
à chaque exemple une probabilité d’appartenance. Pour notre exemple, nous
aurions :

• F1 = (1,0.9), (2,0.8), (3,0.7), (4,0.6), (5,0.55), (6,0.2), (7,0.2), (8,0.0),
(9,0.0)

• F2 = (1,0.0), (2,0.0), (3,0.0), (4,0.1), (5,0.15), (6,0.4), (7,0.35), (8,1.0),
(9,0.9)

L’exemple 4 aurait alors une probabilité d’appartenance à F1 de 0.6 et une
probabilité d’appartenance à F2 de 0.1.

X1

X2

3

2
1

4

5

7

8

6 9

H1
H2

F1 F2

Fig. 13.6 Un exemple de clustering probabiliste.

Le modèle le plus courant est donné par un mélange de Gaussiennes tel
qu’illusté par la figure 13.7 pour une seule dimension t. Dans un tel modèle,
chaque cluster Cj est représenté par une distribution Gaussienne centrée sur
Yj avec variance σ2

j . La probabilité qu’une instance appartenent au cluster Cj
est égal à l’instance Xi est alors estimée comme :

P (Xi|j) =
1

σj
√

2π
e
− 1

2

(
d(Xi,Yj)

σj

)2

où d(X,Y ) est la distance entre Xi et Yj (dans le cas de la Figure 13.7, la
différence en t).

Par exemple, t pourrait représenter le poids dans un ensemble de personnes,
et on aimerait que l’algorithme trouve qu’il y a deux populations, les « o » (qui
sont les femmes) et les « x » (qui sont les hommes).
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xooo ooo oo x xxxxxx

p

tY1 Y2

Fig. 13.7 Un exemple d’un mélange de Gaussiennes dans une seule dimension t.
Y1 est le centre de la distribution des « o », Y2 le centre des « x ». Chaque courbe
Gaussienne indique la probabilité que le processus génère une instance de la classe
correspondante avec cette valeur de t.

Pour classer une instance donnée, nous aimerions connâıtre la probabilité
qu’elle appartienne à une des classes. Nous exprimons l’appartenance par une
variable latente zi ∈ {1, .., k}, et la probabilité d’appartenance est alors :

P (zi = j|Xi) =
p(zi = j)

p(Xi)
P (Xi|j) (13.1)

ce qui permet d’utiliser le modèle pour la classification des instances.

Pour apprendre le modèle, nous appliquons le principle du maximum de
vraisemblance : nous cherchons

• pour chaque cluster, les paramètres Yj et σj ainsi que

• pour chaque exemple, la probabilité d’appartenance p(zi = j),

de façon à maximiser la probabilité de l’ensemble des instances :

p(Xi) =

k∑
j=1

P (Xi|j)p(zi = j)

Nous nous trouvons cependant confronté au problème de la poule et de l’œuf :

• supposons que nous connaissions pour chaque instance le cluster zi auquel
elle appartient, nous pouvons alors trouver les paramètres des distribu-
tions Gaussiennes qui maximisent la probabilité des instances en calculant
Yj comme moyenne des Xi avec zi = j,

• supposons que nous connaissions les paramètre des distributions, alors
nous pouvons estimer les valeurs les plus probables des zi par l’équa-
tion 13.1.

Nous pouvons résoudre ce problème en utilisant un algorithme très similaire à k-
means, l’algorithme de maximisation de l’espérance (expectation maximisation,
EM). L’algorithme commence par une initialisation aléatoire des paramètres
des clusters et de la distribution p(zi = j), et consiste ensuite en une itération
de deux étapes :
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• Espérance : pour chaque exemple Xi, on calcule la probabilité Lt(i, j)
d’appartenance à chaque cluster Cj , étant données les valeurs courantes
des paramètres à l’itération t :

Lt(i, j) =
pt(zi = j)g(Xi, σ

t
j , Y

t
j )∑k

l=1 p
t(zi = l)g(Xi, σtl , Y

t
l )

où g(X,σ, Y ) est la fonction de distribution Gaussienne centrée en Y avec
variance σ, appliquée à X :

g(X,σ, Y ) =
1

σ
√

2π
e−

1
2 ( d(X,Y )

σ )
2

et d(X,Y ) est la distance entre X et Y , par exemple la distance Eucli-
dienne

√∑
i(xi − yi)2.

• Maximisation : pour chaque cluster, on recalcule le centre et la variance
de la distribution de façon à maximiser la probabilité des exemples :

Y t+1
j =

∑n
i=1 L

t(i, j)Xi∑n
i=1 L

t(i, j)

et

σt+1
j =

∑n
i=1 L

t(i, j)d2(Xi, Yj)∑n
i=1 L

t(i, j)

et la probabilité d’appartenance :

pt+1
j =

1

n

n∑
i=1

Lt(i, j)

Comme pour l’algorithme k-means, l’algorithme se termine quand il n’y a que
peu de changement dans la classification.

On peut garantir que l’algorithme converge vers un optimum local. Il peut
cependant en exister plusieurs, et l’on n’est pas sûr d’aboutir au meilleur. On
applique donc souvent cet algorithme à plusieurs reprises, avec différentes initia-
lisations, et on retient le résultat qui obtient les meilleures probabilités P (Xi).
Si on obtient ainsi différents modèles avec des probabilités similaires, cela si-
gnifie que les données ne suffisent pas pour identifier un seul modèle correct.

13.5 Apprentissage semi-supervisé

Souvent, on a la possibilité d’assigner des étiquettes à une petite partie des
données à disposition, mais une grande partie reste sans étiquette. On aime-
rait donc appliquer à la fois un apprentissage supervisé sur les données dont
on connâıt la classification et un apprentissage non-supervisé sur le reste des
données. L’apprentissage semi-supervisé permet de le faire.
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x
classe 1 classe 2

frontière non-superviséefrontière supervisée

frontière semi-supervisée

Fig. 13.8 L’apprentissage semi-supervisé part d’un ensemble d’exemples dont cer-
tains seulement sont déjà classées.

La figure 13.8 illustre l’intuition sous-jacente à l’apprentissage semi-supervisé
[75]. On peut voir l’apprentissage semi-supervisé de deux manières :

• Un apprentissage supervisé qui utilise en plus les exemples non-classifiés.
Le principe est que la classification apprise doit être aussi peu ambiguë
que possible sur les exemples non-classifiées. Par exemple, lorsqu’il s’agit
de construire une frontière de décision, on aimerait que celle-ci soit aussi
éloignée que possible des exemples non-classifiés. Dans la figure 13.8, une
analyse de la distribution permet ainsi de placer la frontière entre les deux
classes d’une façon plus précise.

• Un apprentissage non-supervisé qui utilise en plus les exemples classées.
Dans ce cas, on suppose que des exemples similaires doivent avoir la même
classe, et on utilise donc les exemples classifiés comme contraintes pour
la formation des clusters. Dans la figure 13.8, on sait que les exemples
classifiés font partie de clusters différents et ceci permet de distinguer la
bonne manière de les regrouper.

Pour le premier type, la technique la plus courante est de modifier la fonction
d’optimisation d’une SVM (fig. 11.3) de façon à ce que, non seulement, on
maximise la distance aux exemples classifiés les plus proches, mais également,
dans une moindre mesure, la distance aux exemples non-classifiés. Ceci évite
que la frontière soit placée dans une région dense, comme c’est le problème
dans l’exemple de la figure 13.8.

Pour le deuxième type, on utilise habituellement les exemples classifiés
comme noyaux des clusters, et étend ces derniers à partir d’eux. Ce principe
s’applique évidement à des algorithmes comme k-means, mais également de
façon plus large. Par exemple, si nous avons à construire un dictionnaire de
mots positifs et négatifs, nous pouvons commencer avec les mots « bon » et
« mauvais » et ensuite rajouter à chaque classe les mots qui sont similaires,
c’est-à-dire qui apparaissent souvent dans la même phrase.

L’apprentissage semi-supervisé rencontre un grand succès en pratique et se
trouve encore en plein développement.
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Littérature

Les articles [69] et [70] sont des synthèses largement citées portant sur les
algorithmes de clustering.

L’algorithme EM a été introduit à l’origine par [71] et est décrit également
dans des livres généraux tels que celui de Bishop [54].

Le clustering spectral a été originalement introduit dans [72] et [73] ; [74]
est un tutorial qui en explique les différents variantes.

[75] est un bon résumé des techniques d’apprentissage semi-supervisé.

Outils - domaine public

La bibliothèque WEKA réunit pratiquement tous les algorithmes d’apprentissage
dans un seul cadre et est très commode pour construire rapidement des appli-
cations pratiques :

http://www.cs.waikato.ac.nz/ml/weka/

Il existe de nombreux autres outils, comme par exemple des environnements de
programmation liés à l’inductive logic programming. La plupart sont disponibles
dans le domaine public.

Application : Recommandation de produits

L’apprentissage non-supervisé, et plus particulièrement le clustering, est
une méthode classique du marketing. En regroupant les produits qui sont
souvent achetés ensemble, ou par les mêmes personnes, on peut savoir
comment mieux les positionner dans un magasin, ou comment organiser
la publicité.

Le clustering est utilisé dans les sites d’e-commerce afin de les rendre
plus faciles à naviguer (les produits similaires sont regroupés sur la même
page) ou pour donner des recommandations. Par exemple, Amazon.com
donne une recommandation de produits qui sont susceptibles d’intéresser
le client. Cela est fait sur la base des produits qu’il a déjà achetés et des
groupes de produits achetés par d’autres clients.

Pour rendre ce processus plus efficace, Amazon utilise un processus de
collaborative filtering qui est une forme de clustering spécifique pour la
recommandation.

(Source : Greg Linden, Brenth Smith, Jeremy York : Amazon.com Recom-
mendations, IEEE Internet Computing 7(1), pp. 76-80, 2003.)
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13.6 Exercices

Exercice 13.1 Clustering

La notion de clustering recouvre un ensemble de procédés qui permettent, à
partir d’une base de données, de regrouper les données similaires en agrégats,
ou clusters, afin de réduire leur complexité apparente et de mettre à jour leur
structure. Les classifications ainsi obtenues peuvent ensuite être utilisées dans
diverses applications. Par exemple,

• en bio-informatique, des méthodes de clustering sont utilisées pour grou-
per les espèces d’êtres vivants similaires, afin de pouvoir généraliser à tout
le groupe les propriétés connues d’une espèce particulière ; par exemple,
un traitement efficace contre un certain agent pathogène peut s’avérer
aussi efficace à l’égard d’autres micro-organismes du même cluster.

• dans le domaine de la vision, le nombre de pixels de différentes nuances
de gris dans une image peut être réduit en regroupant plusieurs pixels en
un même cluster et en leur attribuant une nuance de gris commune ;

• la classification des utilisateurs d’un site internet à partir de leurs habi-
tudes de consultation du site peut permettre de concevoir des interfaces
différentes pour chaque classe, adaptées à leurs attentes spécifiques ; de
façon similaire, la classification du contenu d’un site internet peut aider à
décider comment diviser ce contenu en rubriques thématiques.

Dans cette série d’exercices, nous vous proposons de travailler avec deux
sortes de données :

• une liste de maladies avec leurs symptômes ; la classification de ces mala-
dies doit permettre d’identifier des groupes d’affections similaires, suscep-
tibles d’être traitées par des traitements similaires ;

• une liste d’entreprises actives dans le domaine de l’informatique, dont une
classification en différents groupes doit permettre d’identifier les concur-
rents proches sur le marché.

Modules squelettes

Voici pour commencer les modules partiellement implémentés qui serviront de
base à nos exercices. Le dernier constitue un module de test.

Module .../moteurs_clustering/cluster.py :

class Cluster:
def init ( self , donnees, nom=''):

self .donnees = []
self .ajoute donnees(donnees)
self .nom = nom

def ajoute donnee(self , donnee):
self .donnees.append(donnee)
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def ajoute donnees(self , donnees):
for donnee in donnees:

self .ajoute donnee(donnee)

Module .../moteurs_clustering/cluster_mean.py :

from .cluster import Cluster

class ClusterMean(Cluster):
def init ( self , donnees, nom):

Cluster. init ( self , donnees, nom)
self .noyau = self.donnees[0] if len( self .donnees) > 0 else None

def centre( self , dist f ):
print('à compléter')

def vide( self , garde noyau=False):
if garde noyau:

self .donnees = [self .noyau]
else:

self .donnees = []
self .noyau = None

def repr ( self ):
rep = 'Cluster {}: \n' .format(self.nom)
for donnee in self .donnees:

indent = '−−−>' if donnee == self.noyau else ' '∗4
rep += '{}{}\n'.format(indent, donnee)

return rep

Module .../moteurs_clustering/cluster_hierarchique.py :

from .cluster import Cluster

class ClusterHierarchique(Cluster):
def init ( self , donnees, gauche=None, droite=None):

Cluster. init ( self , donnees)
self .gauche = gauche
self . droite = droite

def est terminal( self ):
return self.gauche is None and self.droite is None

def repr hierarchie ( self , level =0):
if self . est terminal ():

rep = ' '∗( level−1) + '|−−−' + str(self.donnees[0]) + '\n'
else:

rep = ' '∗ level + '|−−−' + '\n'

if self .gauche is not None:
rep += self.gauche. repr hierarchie ( level +1)

if self . droite is not None:
rep += self.droite . repr hierarchie ( level +1)

return rep

def repr ( self ):
return 'Cluster racine: \n{}'.format(self. repr hierarchie ( level =0))
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Module .../moteurs_clustering/clustering.py :

class Clustering:
def init ( self ):

self . clusters = []

def initialise clusters ( self , donnees):
return []

def revise clusters ( self ):
return []

def fini ( self , anciens clusters ):
return False

def itere ( self , donnees):
# Sauvegarde des clusters.
anciens clusters = []
self . initialise clusters (donnees)

# Continue le clustering tant que les nouveaux clusters ont changé par
# rapport à l ' it ération précédente.
while not self. fini ( anciens clusters ):

anciens clusters = self . clusters [:]
self . revise clusters ()

Module .../moteurs_clustering/clustering_kmeans.py :

from .cluster mean import ClusterMean
from .clustering import Clustering

class ClusteringKMeans(Clustering):
def init ( self , k, dist f ):

super(). init ()
self .k = k
self . dist f = dist f

def noyaux(self, clusters ):
return [cluster.noyau for cluster in clusters ]

def initialise clusters ( self , donnees):
print('à compléter')

def fini ( self , anciens clusters ):
print('à compléter')

def revise clusters ( self ):
print('à compléter')

def affiche clusters ( self ):
print('\n' . join ([str( cluster ) for cluster in self . clusters ]))

Module .../moteurs_clustering/clustering_hierarchique.py :

from .cluster hierarchique import ClusterHierarchique
from .clustering import Clustering

class ClusteringHierarchique(Clustering):
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liens = {
' single ' : min,
'complete': max,

}

def init ( self , type lien , dist f ):
super(). init ()
self . dist f = dist f
# Permet d'utiliser min ou max de manière générique en fonction du
# paramètre type lien.
self . lien = self . liens [ type lien ]

def fusionne clusters ( self , cluster1 , cluster2 ):
donnees = cluster1.donnees + cluster2.donnees
return ClusterHierarchique(donnees, cluster1, cluster2 )

def calcule distance ( self , cluster1 , cluster2 ):
print('à compléter')

def initialise clusters ( self , donnees):
print('à compléter')

def fini ( self , anciens clusters ):
print('à compléter')

def revise clusters ( self ):
print('à compléter')

def affiche clusters ( self ):
print('\n' . join ([str( cluster ) for cluster in self . clusters ]))

Module .../exemple_clustering.py :

from sys import argv, exit
from moteurs clustering.clustering kmeans import ClusteringKMeans
from moteurs clustering.clustering hierarchique import ClusteringHierarchique

def distance(donnee1, donnee2):
if len(donnee1) != len(donnee2):

raise Exception('Les deux données doivent avoir le même nombre d\'attributs.')

return sum(attrib1 != attrib2 for attrib1, attrib2 in zip(donnee1, donnee2))

def est entier positif (s ):
” Teste si une string représente un entier positif . ”

try:
return int(s) > 0

except ValueError:
return False

profits = [
( 'down', 'old ' , 'no' , 'software ' ),
( 'down', 'midlife ' , 'yes ' , 'software ' ),
( 'up', ' midlife ' , 'no' , 'hardware'),
( 'down', 'old ' , 'no' , 'hardware'),
( 'up', 'new', 'no' , 'hardware'),
( 'up', 'new', 'no' , 'software ' ),
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( 'up', ' midlife ' , 'no' , 'software ' ),
( 'up', 'new', 'yes ' , 'software ' ),
( 'down', 'midlife ' , 'yes ' , 'hardware'),
( 'down', 'old ' , 'yes ' , 'software ' ),

]

maladies = [
( 'angine−érythémateuse', 'élevée' , ' gonflées ' , 'oui ' , 'oui ' , 'non', 'non',
'non', 'normale', 'normales', 'normaux'),

( 'angine−pultacée', ' élevée ' , 'points−blancs', 'oui ' , 'oui ' , 'non', 'non',
'non', 'normale', 'normales', 'normaux'),

( 'angine−diphtérique', ' l égère ' , 'enduit−blanc', 'oui ' , 'oui ' , 'non', 'non',
'non', 'normale', 'normales', 'normaux'),

( 'appendicite' , ' l égère ' , 'normales', 'non', 'non', 'oui ' , 'non',
'non', 'normale', 'normales', 'normaux'),

( 'bronchite' , ' l égère ' , 'normales', 'oui ' , 'non', 'non', 'oui ' ,
'oui ' , 'gênée' , 'normales', 'normaux'),

( 'coqueluche', ' l égère ' , 'normales', 'non', 'oui ' , 'non', 'oui ' ,
'oui ' , 'gênée' , 'normales', 'normaux'),

( 'pneumonie', 'élevée ' , 'normales', 'non', 'non', 'non', 'oui ' ,
'non', 'rapide' , 'rouges' , 'normaux'),

( 'rougeole' , ' l égère ' , 'normales', 'non', 'oui ' , 'non', 'oui ' ,
'oui ' , 'normale', 'normales', ' larmoyants'),

( 'rougeole' , ' l égère ' , 'normales', 'non', 'oui ' , 'non', 'oui ' ,
'oui ' , 'normale', 'taches−rouges', ' larmoyants'),

( 'rubéole' , ' l égère ' , 'normales', 'oui ' , 'non', 'non', 'non',
'non', 'normale', 'taches−rouges', 'normaux'),

( 'rubéole' , 'non', 'normales', 'oui ' , 'non', 'non', 'non',
'non', 'normale', 'taches−rouges', 'normaux'),

( 'rubéole' , 'non', 'normales', 'oui ' , 'non', 'non', 'non',
'non', 'normale', 'normales', 'normaux'),

]

if len(argv) < 4:
print('On attend trois arguments: ' +

'type des exemples (”profits ”, ”maladies”), ' +
'nombre de clusters (pour le clustering k−means), '
'type de lien (”single ”, ”complete”, pour le clustering hiérarchique) ')

exit (1)

if argv [1]. lower() == 'profits ' :
donnees = profits

elif argv [1]. lower() == 'maladies':
donnees = maladies

else:
print('Type des exemples accepté : profits ou maladies')
exit (1)

if not est entier positif (argv [2]):
print('Nombre de clusters accepté : entier positif ')
exit (1)

k = int(argv[2])

if argv [3]. lower() not in (' single ' , 'complete'):
print('Type de lien accepté : single ou complete')
exit (1)
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type lien = argv[3]

clustering = ClusteringKMeans(k, distance)
clustering . itere (donnees)

print('Clustering k−means:')
clustering . affiche clusters ()

clustering = ClusteringHierarchique(type lien, distance)
clustering . itere (donnees)

print('Clustering hiérarchique: ')
clustering . affiche clusters ()

L’algorithme général de clustering

Les deux algorithmes de clustering que vous allez implémenter sont des algo-
rithmes itératifs, qui construisent des clusters en suivant l’algorithme général
ci-dessous :

clusters <− liste vide

Clustering(données)
1. anciens clusters <− liste vide
2. clusters <− initialise clusters (données)
3. WHILE NOT fini(anciens clusters) DO
4. anciens clusters <− sauvegarde des clusters
5. clusters <− revise clusters( clusters )
6. END WHILE
END Clustering

La classe Cluster

La classe Cluster représente un cluster défini par un nom (optionnel) et par
une liste de données. Cette classe contient donc deux attributs :

• donnees : la liste des données du cluster,

• nom : le nom (optionnel) du cluster.

Cette classe contient aussi des méthodes utilitaires qui permettent d’ajouter
des données aux clusters.

La classe Clustering

La classe Clustering implémente l’algorithme général de clustering que nous
avons vu ci-dessus. La méthode itere implémente cet algorithme en appelant
trois méthodes : initialise_clusters, revise_clusters et fini ; elle joue donc
le rôle d’un wrapper pour ces trois méthodes. itere initialise les clusters, puis
les révise de manière itérative jusqu’à ce qu’ils soient stabilisés, et ne changent
plus d’une itération à l’autre.

Clustering impose une structure générale que ses sous-classes sont contraintes
de respecter. Afin d’obtenir le comportement désiré pour le clustering k-means
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et le clustering hiérarchique, les méthodes initialise_clusters, revise_clusters
et fini doivent cependant être implémentées différemment dans chaque sous-
classe.

Exercice 13.1.1 Le clustering k-means (clustering de partitionnement)

L’algorithme k-means part d’une liste de noyaux, qui sont des données au-
tour de chacune desquelles sera construit un cluster. Au cours d’une itération,
chaque donnée est réaffectée au cluster du noyau duquel elle est le plus proche.
Chaque cluster est ensuite recentré autour d’un nouveau noyau. L’algorithme
se termine quand l’ensemble des noyaux n’a pas changé d’une itération à la
suivante. Il existe plusieurs méthodes pour recentrer un noyau, qui donnent
lieu à différentes variantes de l’algorithme. Dans cet exercice, nous applique-
rons une variante adaptée à l’usage de données discrètes, qui est aussi appelée
algorithme des k-médöıdes.

La classe ClusterMean

La classe ClusterMean étend la classe mère Cluster avec un attribut noyau qui
doit aussi faire partie de la liste des données du cluster. Le constructeur initialise
cet attribut au premier élément de la liste de données.

La méthode principale à implémenter est centre, qui met à jour le noyau
d’un cluster afin que celui-ci soit au centre des données du cluster. Le nouveau
noyaux sera la donnée qui minimise la somme quadratique des distances aux
autres données du cluster. En d’autres termes, le noyau xn du cluster C doit
minimiser l’expression suivante :∑

x∈C
d(xn, x)2

C’est pour cette raison que la méthode prend un argument dist_f, qui est la
fonction de distance entre deux données d’un cluster. La distance que nous
utiliserons sera calculée comme le nombre d’attributs différents dans les tuples
représentant les éléments à comparer (voir exemple_clustering.py).

À plusieurs reprises, vous allez devoir parcourir une liste pour trouver l’élé-
ment qui minimise une certaine fonction. En Python, ceci peut être implémenté
en une seule ligne, grâce à la fonction min(liste, key=fonction), qui prend en
paramètres une liste d’éléments et une fonction que l’on cherche à minimiser.
Par exemple, pour trouver l’élément de la liste [1, 2, -3] qui a le plus pe-
tit carré, on peut utiliser la ligne de code m = min([1, 2, -3], key=lambda x :

x**2).

La classe ClusteringKMeans

La classe ClusteringKMeans étend la classe mère Clustering afin d’implémenter
l’algorithme k-means. Elle ajoute deux nouveaux attributs :

• k : le nombre des clusters à construire,

• dist_f : la fonction de distance entre deux éléments.
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Le constructeur de la classe prend ainsi en arguments le nombre de clusters
souhaités et la fonction de distance.

Comme nous l’avons vu ci-dessus, les méthodes principales à implémen-
ter sont initialise_clusters, revise_clusters et fini. La méthode initia-

lise_clusters prend en argument la liste des données à regrouper. Elle initia-
lise la liste self.clusters de sorte que celle-ci contienne k clusters avec comme
noyaux les k premiers éléments de la liste de données. Tous les autres éléments
sont affectés au premier cluster.

La méthode revise_clusters s’exécute en deux étapes :

• calcul des nouveaux clusters : initialisation des clusters avec uniquement
les noyaux, calcul des distances de chaque élément aux noyaux et ajout
de l’élément dans le cluster le plus proche ;

• pour chaque cluster ainsi obtenu, le noyau est mis à jour afin d’être au
centre du cluster.

La méthode fini prend en argument la liste des anciens clusters. Elle com-
pare cette liste avec les clusters actuels, afin de tester si l’algorithme a convergé.
Afin d’implémenter cette méthode, vous pouvez comparer les listes de noyaux
de ces deux ensembles de clusters : les noyaux ne changent pas si et seulement
si les clusters restent les mêmes.

Astuce : Afin d’implémenter ces deux dernières méthodes, vous pouvez vous
aider des méthodes vide de la classe ClusterMean, qui vide un cluster avec l’op-
tion de garder son noyau, et noyaux de la classe ClusteringKMeans, qui retourne
les noyaux d’une liste de clusters.

Exercice 13.1.2 Le clustering hiérarchique

À la différence du clustering de partitionnement, le clustering hiérarchique par
agglomération construit une classification en clusters de plus en plus larges,
qui peut se présenter sous la forme d’un dendrogramme. La classification hié-
rarchique ainsi obtenue est organisée en groupes et en sous-groupes, afin de
discerner les agrégats de similarité grossière des agrégats de similarité plus
fine.

L’algorithme part d’un ensemble de clusters ne contenant chacun qu’une
seule donnée, et, lors de chaque itération, fusionne les deux clusters les plus
similaires. L’algorithme se termine quand toutes les données ont été regroupées
en un seul cluster. La mesure de similitude entre deux clusters peut être calcu-
lée de différentes façons. Dans cet exercice, nous vous en proposons deux : la
distance single-link et la distance complete-link. La distance single-link définit
la similitude de deux clusters comme la plus courte distance entre deux données
de ces clusters. À l’inverse, le complete-link considère la plus longue distance.
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La classe ClusterHierarchique

La classe ClusterHierarchique représente un cluster (un nœud) dans le dendro-
gramme (un arbre binaire) construit par le clustering hiérarchique. Elle contient
deux nouveaux attributs :

• gauche : le sous-cluster de gauche,

• droite : le sous-cluster de droite.

La classe ClusteringHierarchique

La classe ClusteringHierarchique implémente le clustering hiérarchique. Elle
étend la classe mère Clustering avec deux nouveaux attributs :

• type_lien : le type de distance entre deux clusters (’single’ ou ’comple-

te’),

• dist_f : la fonction de distance entre deux données.

Le constructeur de la classe prend en arguments la fonction de distance entre
deux données et le type de distance entre deux clusters.

Les méthodes principales que vous devez implémenter sont initialise_

clusters, revise_clusters, clusters_distances et fini. La méthode initia-

lise_clusters initialise la liste self.clusters de sorte qu’elle contienne un
cluster (un nœud) pour chaque donnée de la liste passée en argument.

La méthode revise_clusters cherche les deux clusters les plus proches et
les fusionne en un seul grâce à la méthode fusion de la même classe, qui re-
tourne le nouveau nœud. Elle les retire ensuite de la liste des clusters pour y
ajouter le produit de leur fusion. Cette méthode s’appuie sur la méthode cal-

cule_distance, qui doit, selon le type de lien indiqué, retourner le minimum ou
le maximum des distances entre chaque paire des données des deux clusters.
Selon que la distance entre deux clusters est définie comme le minimum des
distances entre chaque paire d’éléments ou comme le maximum, on obtient en
effet une distance de type single-link ou de type complete-link.

Rappelons que c’est la méthode Clustering.itere qui implémente l’algo-
rithme général de clustering, et qui joue le rôle d’un wrapper pour les mé-
thodes initialise_clusters et revise_clusters. Dans le cas du clustering hié-
rarchique, itere va donc initialiser les clusters, puis les fusionner de manière
itérative jusqu’à ce qu’il ne reste qu’un seul élément dans la liste self.clusters.
Cet élément constituera la racine de la hiérarchie construite par le clustering.
La méthode fini, quant à elle, arrête l’algorithme quand la taille de la liste des
clusters est réduite à un seul élément.

Test du programme

Une fois que vous avez terminé l’implémentation des méthodes manquantes,
il ne vous reste plus qu’à tester ces deux algorithmes sur les deux exemples
fournis : maladies et profits d’enterprises.
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Pour le clustering k-means, faites varier le nombre de clusters (ainsi que
l’initialisation des clusters et leurs noyaux, si vous êtes motivés). Que pensez-
vous de la qualité des clusters ? Les données classifiées dans un même cluster
sont-elles toujours très similaires ? Est-il facile de choisir le nombre de clusters ?

Pour le clustering hiérarchique, quelles différences obtenez-vous si vous al-
ternez entre les méthodes single-link et complete-link ? Que pensez-vous de la
qualité des clusters ainsi obtenus, en comparaison avec l’algorithme k-means ?

Solutions à la page 396





Chapitre 14

Apprentissage bio-inspiré

L’apprentissage est une caratéristique de nombreux êtres vivants. Il n’est donc
pas surprenant que l’observation du monde naturel nous fournisse des sources
d’inspiration. Deux techniques principales sont ainsi calquées sur des modèles
biologiques :

• les réseaux de neurones artificiels, qui forment une structure imitant les
réseaux de neurones du cerveau et

• les algorithmes génétiques, qui réalisent un processus d’optimisation en
simulant l’évolution des organismes.

Dans les deux cas, bien que ces techniques s’inspirent de la nature, elles
utilisent des modèles simplifiés, qui sont bien adaptés à l’implémentation infor-
matique, mais assez éloignés de modèles biologiques corrects.

14.1 Réseaux de neurones artificiels

Nous avons déjà vu au chapitre 11 la méthode du perceptron pour la classifi-
cation binaire. Le perceptron a été inspiré par le fonctionnement des neurones,
dont il constitue un modèle fortement simplifié, qui néglige notamment la dy-
namique temporelle à l’œuvre dans les neurones biologiques.

Étant donnée cette analogie, il est naturel de regrouper de tels éléments de
calcul dans un réseau qui imite le réseau qu’on retrouve dans le cerveau humain.
Un tel réseau est bien plus puissant qu’un seul perceptron et peut implémenter
des frontières de décision plus complexes. En outre, il peut réaliser d’un seul
coup des classifications ou prédictions multiples, tandis que le perceptron est
limité à séparer deux classes.

La version la plus simple d’un tel réseau utilise deux couches de neurones,
comme montré dans la figure 14.1. On y trouve :

• une couche d’entrées e1, .., en, qui représentent chacune une valeur d’acti-
vation d’un trait dans la situation ou dans l’exemple courant ; ces valeurs
sont transmises à

• une couche de neurones cachés (hidden units) H1, ..,Hk, qui reçoivent
des entrées depuis les neurones de la couche d’entrées et fournissent les
résultats vers

• une couche de neurones de sortie O1, .., Om, qui retournent les résultats
du réseau, par exemple des classifications ou des prédictions.
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Fig. 14.1 Exemple d’un réseau de neurones artificiels multicouche.
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Fig. 14.2 Fonctionnement d’un neurone artificiel.

La couche cachée permet de construire des traits complexes en fournissant
différentes classifications des entrées, qui peuvent être combinées de différentes
manières par la couche de sortie. Ceci donne à une telle architecture, même
avec seulement deux niveaux, une puissance largement supérieure à celle d’un
seul perceptron.

À l’instar du perceptron, un neurone artificiel (fig. 14.2) calcule la somme
de ses entrées ei, pondérées par les poids de connexion, et ajoute un biais w0 :

x =
∑

ei∈entrees
wiei + w0

Ensuite, on applique une fonction non-linéaire, dite fonction d’activation, pour
obtenir la valeur de sortie. Cette fonction peut être une simple fonction de seuil
(threshold) :

f(x) =

{
1 si x > 0
0 si x ≤ 0
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ou une fonction sigmöıde :

f(x) =
1

1 + e−x

ou bien une fonction redresseur (rectifier) :

f(x) = max(0, x)

La fonction sigmöıde est identique à la transformation logistique (voir sect. 11.6)
et assure que la fonction d’activation prend des valeurs dans l’intervalle [0..1].
Un réseau à 2 couches présente donc une équivalence avec une regression logis-
tique. La fonction redresseur est surtout importante dans un réseau possédant
de nombreuses couches, où elle permet un meilleur apprentissage, comme nous
le verrons par la suite.

La classification ou prédiction effectuée par le réseau est déterminée par
les poids wij . Dans l’exemple de la figure 14.1, le neurone caché H1 calcule
f(w11 · e1 + w21 · e2), et la sortie O3 est obtenue par f(v13 · H1 + v23 · H2 +
v33 ·H3). En choisissant convenablement les connections et les poids, on peut
donc construire une très large gamme de fonctions. En pratique, des réseaux de
neurones artificiels peuvent représenter pratiquement toutes les fonctions, soit
pour la classification, soit pour la régression et la prédiction, à condition qu’ils
soient suffisement complexes.

L’apprentissage d’un réseau de neurones artificiels consiste donc à détermi-
ner les poids qui permettront la meilleure performance sur les exemples fournis
en entrée. Pour la couche de sortie, il est possible d’appliquer l’algorithme du
perceptron, ou, plus généralement, la descente de gradient stochastique. Par
contre, pour les couches cachées, on ne connâıt pas directement l’erreur à at-
tribuer à un neurone particulier. On peut cependant déterminer cette erreur
par rétropropagation (back-propagation), en calculant la variation de l’erreur
en fonction de chacun des poids sous la forme du gradient de la fonction d’ac-
tivation.

Comme le montre la figure 14.3, on utilise les erreurs observées sur la couche
de sortie ε1, .., εm pour mettre à jour les poids et rétropropager les erreurs vers
la couche précédente. Chaque neurone artificiel (fig. 14.4) effectue les deux
opérations suivantes :

1) correction de wi par gradient

gi =
δεj
δwi

=
df

dx

δx

δwi
=
df

dx
ei

∆wi = −αεgi (α ∈ [0..1] = taux d’apprentissage)

2) rétropropagation de l’erreur vers la couche cachée par gradient

ri =
δε

δei
=
δf

δx

δx

δe
=
δf

δx
wi

εci =
∑
j rijεj (somme sur tous les neurones j connectées)
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Fig. 14.3 Apprentissage dans un réseau multicouches par rétropropagation des er-
reurs de sortie.
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ε
ε2 = ε*r2
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Fig. 14.4 Rétropropagation sur un neurone.

La rétropropagation dépend alors de facon cruciale de la forme du gradient
de la fonction d’activation f utilisée par le neurone artificiel. Pour la fonction de
seuil du percepton, le gradient est soit infini soit zéro, et ne permet donc aucune
rétropropagation. Heureusement, d’autres fonctions sont mieux adaptées :

• pour la fonction sigmöıde f(x) = 1
1+e−x , le gradient peut se calculer en

utilisant la valeur de la fonction même :

δf

δx
=

e−x

(1 + e−x)2
= f(x)(1− f(x))

• pour la fonction redresseur, le gradient est encore plus simple : f(x) =
max(0, x) :

δf

δx
=

{
1 si x > 0
0 si x ≤ 0

Chaque neurone effectue donc la rétropropagation de l’erreur vers les neurones
qui lui fournissent ses entrées. Ces neurones somment les erreurs qu’ils reçoivent
à leur sortie et appliquent également à leur tour la même procédure.
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Comme dans le cas du perceptron, on applique cet algorithme itérativement
à des exemples sélectionnés de façon aléatoire. On obtient donc ainsi une des-
cente de gradient stochastique. L’algorithme se termine quand le réseau atteint
un taux d’erreurs acceptable.

Bien qu’une grande partie des applications de réseaux de neurones artificiels
se contentent de deux couches (comme dans la figure 14.1), la rétropropagation
en autorise un nombre nettement plus élevé, par exemple une trentaine. On
parle alors de réseau profond (deep neural net) dont l’apprentissage constitue
le deep learning. Dans un tel réseau profond, l’apprentissage est cependant
beaucoup plus lent et nécessite une grande quantité de données.

Les réseaux profonds sont donc utiles surtout pour des applications dans
lesquelles on dispose de données abondantes, comme la vision, la reconnais-
sance de la parole, ou des jeux qui peuvent être répetés indéfiniment (comme
le programme AlphaGo, qui est ainsi devenu champion du monde de Go). Les
couches multiples se révèlent utiles, car elles permettent de créer une hiérachie
de détecteurs de traits de plus en plus complexes. Ainsi, dans un système de
vision, on peut observer que les premières couches apprennent à reconnâıtre des
traits simples, comme des lignes et des formes géométriques, qui seront ensuite
composées pour former des détecteurs de formes plus complexes, tels que des
éléments de visages, dans des couches supérieures.

Le développement de réseaux profonds a longtemps été empêché par le pro-
blème du gradient disparaissant (vanishing gradient) : la derivée de la fonction
sigmöıde restant toujours inférieure à 1, le signal d’erreur rétropropagé d’une
couche à l’autre devient de plus en plus faible. L’utilisation de la fonction redres-
seur a permis d’éliminer ce problème et ainsi d’entrâıner des réseaux beaucoup
plus profonds.

Un deuxième problème lié à la complexité de l’apprentissage est que la
descente de gradient conduit vers un minimum local, et que dans un grand
réseau il n’est pas facile de recommencer avec différents points de départ. On
utilise alors la méthode du dropout pour créer des variations aléatoires, qui
permettent d’échapper aux minima locaux. Elle consiste à enlever au hasard
quelques neurones lors du calcul du gradient. L’apprentissage s’arrête alors
uniquement si le résultat est robuste à l’égard des variations produites par
cette méthode, ce qui donne des résultats plus proches de l’optimum.

Le deep learning est en fait une technique très ancienne, qui a été mise
au point dans les années 1980 et qui a suscité un vif intérêt à cette époque
déjà. Pendant longtemps, la technique n’a cependant fourni que des résultats
médiocres. On pense aujourd’hui que cela était dû au manque de données et
de puissance de calcul. Depuis 2010, le deep learning a accumulé de nombreux
succès, en particulier dans les domaines de la vision et de la reconnaissance
automatique de la parole. Des progrès supplémentaires ont été obtenus par l’in-
tégration du deep learning avec d’autres techniques d’Intelligence Artificielle,
ce qui a rendu possibles des applications dans d’autres domaines. Par exemple,
le programme AlphaGo, qui intègre des réseaux profonds dans un système de
planification avec adversaire, a été capable de battre le champion du monde
de Go.
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Fig. 14.5 Ambigüıté du classificateur appris par deep learning : le réseau entrainé
sur des guitares et des pingouins admet également d’autres structures à la place.

Lors de l’utilisation des techniques du deep learning, on ne peut plus vrai-
ment interpréter les contenus appris par le réseau comme de nouvelles connais-
sances explicites. Il est donc aussi difficile de vérifier et de garantir que ces
connaissances sont effectivement correctes. Par exemple, un réseau entrâıné
pour reconnâıtre des guitares et des pingouins pourra également admettre des
images plus abstraites comme étant de tels objets (fig. 14.5). Si on veut utiliser
un système qui repose sur le deep learning pour la prise de décisions impor-
tantes, cette imprévisibilité peut poser de sérieux problèmes.

14.2 Algorithmes génétiques

Les algorithmes génétiques s’inspirent de l’évolution biologique et restent en
effet très proches de celle-ci. L’idée est de chercher un résultat d’apprentis-
sage en faisant évoluer une population de plusieurs modèles possibles, dont les
qualités sont mises en compétition. Cette technique peut permettre d’éviter de
rester bloqué dans des optima locaux. Les algorithmes génétiques permettent
l’apprentissage et la découverte d’une structure qui satisfait un critère d’éva-
luation donné. L’apprentissage se fait par une recherche incrémentale et impose
donc très peu de restrictions sur les modèles qui peuvent être appris.

En entrée, un algorithme génétique dispose :

• d’une population initiale de n solutions potentielles ; chaque solution est
représentée par un « chromosome », qui est une version codée de toutes
ses caractéristiques sous la forme d’une châıne de symboles (en s’inspirant
de la biologie) ;

• d’une fonction f d’évaluation des solutions ; f n’est pas forcément une
fonction mathématique des chromosomes, elle peut aussi consister en une
simulation de la performance des solutions dans le problème auquel elles
doivent être appliquées ; cela permet de modéliser le principe de « sélection
naturelle ».
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À chaque itération, l’algorithme génère de nouvelles solutions en appliquant
des opérateurs de mutation et de combinaison sur des membres de la population
courante. Ces opérateurs s’inspirent également de la biologie :

• la mutation change un élément du chromosome de manière aléatoire,

• la combinaison de deux chromosomes crée un nouveau chromosome com-
binant des éléments des deux premiers.

Une nouvelle population est constituée à partir de la population courante en
éliminant certaines solutions peu performantes et en en créant de nouvelles
par mutation et combinaison. Par exemple, la génération suivante pourrait se
constituer de :

• k solutions dont la fonction d’évaluation est la plus élevée (c’est à ce
niveau qu’est effectuée la sélection naturelle) et

• un nombre (n− k) de solutions choisies au hasard parmi les autres.

L’application itérative de la procédure conduit à l’optimisation de la popu-
lation selon le critère d’évaluation choisi au départ.

Comme exemple d’une application, considérons un fabricant de chocolat
qui veut optimiser la qualité de ses produits. On suppose que la qualité du
chocolat dépend fortement de la quantité de sucre et de cacao ajoutés dans la
pâte. La forme précise de cette relation, comme la montre la figure 14.6, est
cependant inconnue et peut être évaluée uniquement en produisant les chocolats
correspondants et en les mettant en vente.
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Fig. 14.6 La qualité du chocolat en fonction de la quantité de sucre et de cacao dans
la pâte.
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Une solution peut être représentée par un « chromosome » :

5 3

quantité de 

sucre

quantité de 

cacao

 

Les opérateurs sont alors :

• la mutation : la quantité de sucre ou de cacao augmente ou décrôıt de 1,

• la combinaison z de deux chromosomes x et y : sucre(z) = sucre(x),
cacao(z) = cacao(y).

Pour un problème dont la fonction d’évaluation est simple, comme celle de
la figure 14.6, la mutation suffit pour obtenir la meilleure solution. Elle équivaut
à un processus de hill-climbing couramment utilisé en optimisation.
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Fig. 14.7 Une fonction d’évaluation qui nécessite la combinaison en plus de la mu-
tation.

Par contre, si la fonction d’évaluation contient des minima ou maxima lo-
caux, la combinaison est nécessaire pour les surmonter. La figure 14.7 montre
un exemple d’une fonction d’évaluation dans laquelle les très bonnes solutions
de la partie centrale sont entourées d’un « fossé » de zéros, qui les sépare des
solutions médiocres des bords. Il est difficile, voire impossible, pour l’optimi-
sation basée sur des critères locaux, de traverser le « fossé » constitué par les
valeurs 0, car toute mutation qui se rapprocherait du bon résultat prendrait
d’abord une valeur zéro et serait éliminée.
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La combinaison permet de trouver un bon résultat en combinant deux so-
lutions qui sont chacune localement optimales :

(5 1) avec (1 5) ⇒ (5 5)

Ce phénomène est typique des applications d’algorithmes génétiques. L’opéra-
teur de combinaison est donc essentiel pour leur performance. Pour bien exploi-
ter cet opérateur, il est important de maintenir une certaine diversité dans la
population. Il peut donc être utile d’encourager explicitement cette diversité,
par exemple en modifiant la fonction d’évaluation pour favoriser des distri-
butions plus variées. On peut ainsi remplacer la fonction f(s) par la somme
f(s) + g(s), où g(s) caractérise le degré d’individualité :

g(s) =
1∑

i
1

d2(s,si)

Les algorithmes génétiques sont souvent utilisés pour effectuer une optimi-
sation dans des domaines où la fonction d’optimisation est peu claire, et qui
nécessitent donc cette forme d’apprentissage au lieu d’un calcul direct de la
solution optimale. Les applications sont très variées et incluent par exemple
l’optimisation de la forme de turbines ou l’optimisation de stratégies de négo-
ciation sur des marchés financiers.

Littérature

Le livre général [54] contient une bonne introduction aux réseaux de neurones
artificiels. Le livre [76] entre en plus de détail dans le deep learning.

Les livres [77] et [78] introduisent les algorithmes génétiques ; de nombreuses
publications existent quant à leurs applications.
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Chapitre 3

Algorithmes d’inférence

Exercice 3.1 : Inférence à châınage avant sans variables

Module .../moteur_sans_variables/regle_sans_variables.py :

class RegleSansVariables:
def init ( self , conditions , conclusion):

self .conditions = set(conditions)
self .conclusion = conclusion

def depend de(self, fait ):
return fait in self .conditions

def satisfaite par ( self , faits ):
return self.conditions . issubset ( faits )

def repr ( self ):
return '{} => {}'.format(str(list(self.conditions)),

str( self .conclusion))

Module .../moteur_sans_variables/chainage_avant_sans_variables.py :

from .chainage import Chainage

class ChainageAvantSansVariables(Chainage):
def chaine( self ):

queue = self.connaissances. faits [:]
self . reinitialise ()

while len(queue) > 0:
fait = queue.pop(0)

if fait not in self . solutions :
self . solutions .append(fait)
self . trace .append(fait)

# Vérifie si des règles sont déclenchées par le nouveau fait.
for regle in self .connaissances. regles :

if regle .depend de(fait) and regle. satisfaite par ( self . solutions ):
queue.append(regle.conclusion)
self . trace .append(regle)

return self. solutions

Exercice 3.2 : Moteur d’inférence à châınage avant avec variables

Module .../moteur_avec_variables/proposition_avec_variables.py :

def est atomique(proposition):
return type(proposition) == type('')
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def est une variable (proposition, marqueur='?'):
return est atomique(proposition) and proposition[0] == marqueur

def tete(proposition):
if est atomique(proposition):

raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:

return proposition[0]
else:

raise Exception(”Proposition vide: Impossible de la segmenter.”)

def corps(proposition):
if est atomique(proposition):

raise Exception(”Proposition atomique: Impossible de la segmenter.”)
elif len(proposition) > 0:

return proposition[1:]
else:

raise Exception(”Proposition vide: Impossible de la segmenter.”)

def lister variables (proposition):
variables = set()
if est atomique(proposition):

if est une variable (proposition):
variables .add(proposition)

else:
for sous prop in proposition:

variables .update( lister variables (sous prop))
return variables

Module .../moteur_avec_variables/regle_avec_variables.py :

class RegleAvecVariables:
def init ( self , conditions , conclusion):

self .conditions = conditions
self .conclusion = conclusion

def depend de(self, fait , methode):
envs = {}

for condition in self .conditions :
# Si au moins une des conditions retourne un environnement,
# nous savons que la proposition satisfait une des conditions.
env = methode.pattern match(fait, condition, {})
if env != methode.echec:

envs[condition] = env

return envs

def satisfaite par ( self , faits , cond, env, methode):
envs = [env]

# On n'a pas besoin de tester ``cond`` car cela a été fait dans l 'appel
# à``depend de`` qui précède l'appel à cette méthode.
conditions a tester = [cond1 for cond1 in self .conditions if cond1 != cond]

# Pour chaque condition dans la liste des conditions, si la liste
# des environnements n'est pas vide, on y ajoute les environnements
# qui permettent de satisfaire une des conditions.
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for cond1 in conditions a tester :
envs nouveaux = []

for fait in faits :
for env1 in envs:

env1 = methode.pattern match(fait, cond1, env1)
if env1 != methode.echec:

envs nouveaux.append(env1)

# Si au moins une condition n'est pas satisfaite ,
# la règle ne l ' est pas non plus.
if len(envs nouveaux) == 0:

return []

envs = envs nouveaux

return envs

def repr ( self ):
return '{} => {}'.format(str(self.conditions), str( self .conclusion))

Module .../moteur_avec_variables/chainage_avant_avec_variables.py :

from moteur sans variables.chainage import Chainage
from . filtre import Filtre

class ChainageAvantAvecVariables(Chainage):
def init ( self , connaissances, methode=None):

Chainage. init ( self , connaissances)

if methode is None:
self .methode = Filtre()

else:
self .methode = methode

def instancie conclusion ( self , regle , envs):
return [self .methode.substitue(regle.conclusion, env) for env in envs]

def chaine( self ):
queue = self.connaissances. faits [:]
self . reinitialise ()

while len(queue) > 0:
fait = queue.pop(0)

if fait not in self . solutions :
self . trace .append(fait)
self . solutions .append(fait)

# Vérifie si des règles sont déclenchées par le nouveau fait.
for regle in self .connaissances. regles :

cond envs = regle.depend de(fait, self .methode)
for cond, env in cond envs.items():

# Remplace l'environnement par ceux qui satisfont
# toutes les conditions de la règle et pas seulement la
# première condition.
envs = regle. satisfaite par ( self . solutions , cond, env,
self .methode)
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# Ajoute la conclusion de la règle instanciée pour tous
# les environnements possibles.
if len(envs) > 0:

queue.extend(self . instancie conclusion ( regle , envs))
self . trace .append(regle)

return self. solutions

Module .../moteur_avec_variables/filtre.py :

from .proposition avec variables import est atomique, est une variable, tete , corps

class Filtre :
echec = 'échec'

def substitue( self , pattern, env):
if est atomique(pattern):

if pattern in env:
return env[pattern]

else:
return pattern

pattern subst = ()

for sous pattern in pattern:
sous pattern subst = self . substitue(sous pattern, env)
pattern subst = pattern subst + (sous pattern subst,)

return pattern subst

def filtre ( self , datum, pattern):
if len(pattern) == 0 and len(datum) == 0:

return {}

if len(pattern) == 0 or len(datum) == 0:
return Filtre.echec

if est atomique(pattern):
if datum == pattern:

return {}
if est une variable (pattern):

return {pattern: datum}

return Filtre.echec

if est atomique(datum):
return Filtre.echec

datum tete = tete(datum)
pattern tete = tete(pattern)
datum reste = corps(datum)
pattern reste = corps(pattern)

tete env = self . filtre (datum tete, pattern tete)

if tete env == Filtre.echec:
return Filtre.echec
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pattern reste = self . substitue(pattern reste , tete env)
reste env = self . filtre (datum reste, pattern reste)

if reste env == Filtre.echec:
return Filtre.echec

tete env.update(reste env)

return tete env

def pattern match(self, datum, pattern, env=None):
if env is not None:

env = env.copy()
else:

env = {}

pattern = self . substitue(pattern, env)
resultat = self . filtre (datum, pattern)
if resultat == Filtre.echec:

return Filtre.echec

env.update(resultat)
return env

Module .../moteur_avec_variables/unificateur.py :

from .proposition avec variables import est atomique, est une variable, tete , corps

class Unificateur :
echec = 'échec'

def substitue( self , pattern, env):
if est atomique(pattern):

if pattern in env:
return self. substitue(env[pattern ], env)

else:
return pattern

pattern subst = ()

for sous pattern in pattern:
sous pattern subst = self . substitue(sous pattern, env)
pattern subst = pattern subst + (sous pattern subst, )

return pattern subst

def unifie ( self , prop1, prop2):
if len(prop1) == 0 and len(prop2) == 0:

return {}
if len(prop1) == 0 or len(prop2) == 0:

return Unificateur.echec

# Une des deux propositions est un atome => on essaie de le matcher.
if est atomique(prop1) or est atomique(prop2):

if prop1 == prop2:
return {}
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if not est atomique(prop1):
prop1, prop2 = prop2, prop1

if est une variable (prop1):
if prop1 in prop2:

return Unificateur.echec
else:

return {prop1: prop2}

if est une variable (prop2):
return {prop2: prop1}

# Dans les autres cas, l ' unification est un échec.
return Unificateur.echec

# Aucune des propositions n'est atomique : on unifie récursivement.
prop1 tete = tete(prop1)
prop2 tete = tete(prop2)
prop1 reste = corps(prop1)
prop2 reste = corps(prop2)
tete env = self . unifie (prop1 tete, prop2 tete)
if tete env == Unificateur.echec:

return Unificateur.echec

prop1 reste = self . substitue(prop1 reste, tete env)
prop2 reste = self . substitue(prop2 reste, tete env)
reste env = self . unifie (prop1 reste, prop2 reste)
if reste env == Unificateur.echec:

return Unificateur.echec

tete env.update(reste env)
return tete env

def pattern match(self, prop1, prop2, env=None):
if env is not None:

prop1 = self . substitue(prop1, env)
prop2 = self . substitue(prop2, env)
env = env.copy()

else:
env = {}

resultat = self . unifie (prop1, prop2)
if resultat == Unificateur.echec:

return Unificateur.echec

env.update(resultat)
return env
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Chapitre 4

Représentation structurée des connaissances

Exercice 4.1 Modélisation

Il faut modéliser tous les concepts qui figurent dans le problème, c.à.d. les
concepts suivants :

personne, contribuable, salarié, indépendant, faible, moyen,

élevé, <12, 12−18
Le modèle contiendra également toutes les relations :

enfant, âge, revenu, loyer, trajet

Finalement, certains concepts font partie d’une hiérarchie :

contribuable v personne

salarié v contribuable

indépendant v contribuable

Exercice 4.2 Déductions

Les classes qui ont droit aux quatre déductions peuvent être modélisées par les
expressions suivantes :

1) déduction-enfant = contribuable u∃ enfant

2) déduction-loyer = contribuable u loyer.élevé u revenu.faible

3) déduction-trajet = salarié u trajet.élevé

4) déduction-pension = indépendant t (salarié u revenu.élevé)

Exercice 4.3 Raisonnement (1)

La classe de Charles est décrite par l’expression :

(salarié u enfant.Jacques u trajet.élevé u loyer.élevé u
revenu.faible)

Charles a droit à trois déductions : déduction-enfant, déduction-trajet,

et déduction-loyer

On trouve déduction-enfant en utilisant de la T-box d’abord le fait qu’un
salarié est un contribuable :

salarié v contribuable

pour construire une réécriture de l’expression qui décrit Charles, et ensuite la
définition de la classe

déduction-enfant = contribuable u∃ enfant

pour réécrire le but.

La procédure de subsumption sera alors appliquée pour montrer :

(contribuable u enfant.Jacques u trajet.élevé u loyer.élevé

u revenu.faible) v (contribuable u∃ enfant)



350 L’intelligence artificielle par la pratique

La même réécriture pourra être utilisée pour montrer la subsumption avec
déduction-trajet, et la subsumption avec déduction-loyer peut être trou-
vée sans réécriture.

Exercice 4.4 Raisonnement (2)

Pour la version a), on peut caractériser la classe de ceux qui perdent par :

contribuable u loyer.élevé u revenu.faible u ¬∃ enfant.âge.12−18
et de ceux qui gagnent :

contribuable u loyer.élevé u ¬ revenu.faible u∃ enfant.âge.12−18
Pour la version b), on peut caractériser la classe de ceux qui perdent par :

contribuable u loyer.élevé u revenu.faible u <2.enfant

et ceux qui gagnent par :

contribuable u loyer.élevé u ¬ revenu.faible u >1.enfant

Pour la version a), la logique AL est suffisante. Pour la version b), la pos-
sibilité d’introduire des restrictions de nombre est nécessaire, ce qui rend le
raisonnement beaucoup plus complexe.
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Chapitre 5

Raisonnement basé sur des règles
et systèmes experts

Exercice 5.1 Comparaison du châınage avant et arrière

1) En châınage avant, il suffit de lancer le système pour trouver tous les faits
qui peuvent être établis d’après la base des faits initiaux et les règles.
Ensuite on examine le contenu de la base de faits pour voir les faits qui
correspondent à notre requête. On peut envisager que l’examen du contenu
de la base de faits se fasse au moyen d’un mécanisme de pattern matching.
Pour le châınage arrière, il suffit de fournir au système le but à satisfaire :

• Requête 1 : Bonifier(Bourgogne, ?Année-Vin,2007)

• Requête 2 : Eliminer( ?Vin, ?Année-Vin)

2) Bonifier(Bourgogne,1995,2007) est la requête à laquelle nous nous inté-
ressons. Voici les règles qui sont appliquées :

REGLE 4)
BUT: Bonifier(Bourgogne,1995,2007)
consequence−regle: Bonifier(Bourgogne,?Année−Vin,?Année−Vin+10)
−>ECHEC

REGLE 6)
BUT: Bonifier(Bourgogne,1995,2007)
SOUSBUTS:
− 2006 > 1900 −> SUCCES
− 2006 < 2020 −> SUCCES
− NOT Déclasser(Bourgogne,1995,2007)

REGLE 2)
BUT: Déclasser(Bourgogne,1995,2007)
SOUSBUTS:
− 2007 − 1995 > 20−>ECHEC
−>ECHEC
REGLE 5)
BUT: Déclasser(Bourgogne,1995,2007)
SOUSBUTS:
− 2006 < 2020 −> SUCCES
− 2006 > 1900 −> SUCCES
− Déclasser(Bourgogne, 1995, 2006)

REGLE 5)
BUT: Déclasser(Bourgogne, 1995, 2006)
SOUSBUTS:
− 2005< 2020 −> SUCCES
− 2005> 1900 −> SUCCES
− Déclasser(Bourgogne, 1995, 2005) ... jusqu'à 1900 ... −> ECHEC
−> ECHEC
−>ECHEC
−>SUCCESS

− Bonifier(Bourgogne,1995,2006)
REGLE 4)
BUT:Bonifier(Bourgogne,1995,2006)



352 L’intelligence artificielle par la pratique

SOUSBUTS:
− Stock−Vin(Bourgogne,1995) −> SUCCES
− 2006 − 1995 > 10 −> ECHEC
−> ECHEC
REGLE 6)
BUT: Bonifier(Bourgogne,1995,2006)
SOUSBUTS:
− 2005 > 1900 −> SUCCES
− 2005 < 2020 −> SUCCES
− NOT Déclasser(Bourgogne,1995,2006)

REGLE 2)
BUT: Déclasser(Bourgogne,1995,2006)
...
−> ECHEC
−> SUCCES

− Bonifier(Bourgogne,1995,2005)
REGLE 4)
BUT: Bonifier(Bourgogne,1995,2005)
SOUSBUTS:
− Stock−Vin(Bourgogne,1995) −> SUCCES
− 2005 − 1995 = 10 −> SUCCES
−> SUCCES
−> SUCCES

−> SUCCES

3) Si on enclenche le système en châınage avant, le mécanisme d’inférence va
essayer de déduire tous les faits possibles en unifiant l’ensemble des règles
avec les faits de la base (faits initiaux et faits inférés). Dans le cas de notre
exemple, le système va surcharger la base de faits avec des informations
inutiles, en déduisant pour chaque année tous les vins qui seront bons cette
année-là (et ce jusqu’à 2020). Or, si un vin est bon une certaine année, il le
restera tant qu’il n’est pas déclassé. Déduire explicitement qu’il sera bon
toutes les années suivantes est inutile. Imaginons que le nombre de bons
vins soit important, le nombre de faits inférés risque d’être très grand et
va considérablement ralentir le fonctionnement de notre système expert.
Ces séries d’inférences sont d’autant plus inutiles qu’elles n’ont rien à voir
avec la requête qui nous intéresse, c.à.d. quels sont les vins à éliminer.

4) Les règles 1), 2), 5), 7) et 8) permettent de déduire tous les vins à déclasser
et à éliminer en utilisant le châınage avant. Cela peut-être constaté en
partant du fait Eliminer et en regardant quelles sont les seules règles qui
peuvent être successeurs de ce type de faits dans un processus de châınage
arrière.

5) Dans le cas du châınage arrière, l’absence de cette condition va faire cycler
le système à l’infini pour certaines requêtes : par exemple, si on désire
savoir si le Bourgogne 1983 est un bon vin, la règle 4) ne sera jamais
satisfaite car il n’y a pas de Bourgogne 1983 en stock et le système va
donc récursivement essayer d’appliquer la règle 6) puis la règle 4) sans
jamais s’arrêter.

6) Si toutes les règles sont appliquées en châınage arrière, les vins déclassés
sont à déduire à nouveau à chaque fois que l’on veut savoir si un vin
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particulier est bon. De plus, on va essayer de satisfaire à plusieurs reprises
les mêmes sous-buts, par exemple : Stock-Vin( ?Vin, ?Année-Vin) qui est
impliqué dans les règles 1), 2) 3) et 4). Il est clair que si la satisfaction
d’un sous-but est onéreuse, on aimerait éviter de le recalculer plusieurs
fois.

7) Ce qu’on veut montrer, c’est qu’un processus de décision est souvent com-
posé de parties en châınage avant et de parties en châınage arrière. Le
choix du mécanisme d’inférence est souvent lié à la nature des requêtes
(certaines requêtes se prêtent mieux au châınage avant et d’autres au châı-
nage arrière). En principe, si les règles ont été conçues avec suffisamment
de soin pour éviter les problèmes de cycles, on peut indifféremment utili-
ser l’un ou l’autre type de châınage pour satisfaire une requête. Cela ne
veut pas dire que les coûts (en capacité mémoire et en temps) soient les
mêmes. C’est pour cela qu’en pratique, les systèmes experts sont souvent
hybrides.

Exercice 5.2 Programmation du châınage arrière

Module .../moteur_chainage_arriere/noeud.py :

from moteur avec variables.proposition avec variables import ∗

class Noeud:
def init ( self , but, sous but courant, sous buts a tester , profondeur):

self .but = but
self .sous but courant = sous but courant
self . sous buts a tester = sous buts a tester
self .profondeur = profondeur

def est terminal( self ):
return len(self.sous but courant) == 0 and len(self.sous buts a tester) == 0

def est solution ( self ):
variables = lister variables ( self .but)
return self. est terminal () and len(variables) == 0

def successeur( self , env, nouveaux sous buts, unificateur ):
# Les sous−buts àexplorer sont composés par les sous−buts
# encore ouverts et les nouveaux sous−buts (cas d'une règle).
sous buts = nouveaux sous buts[:]
sous buts.extend(self . sous buts a tester )

if len(sous buts) > 0:
premier sous but = sous buts[0]

else:
premier sous but = ()

if len(sous buts) > 1:
reste sous buts = sous buts[1:]

else:
reste sous buts = []

successeur = Noeud(
unificateur . substitue( self .but, env),
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unificateur . substitue(premier sous but, env),
[ unificateur . substitue(sous but, env) for sous but in
reste sous buts ],

self .profondeur + 1
)

return successeur

def description standardisee(noeud):
sous buts = [noeud.sous but courant] if len(noeud.sous but courant) > 0 else []
sous buts.extend(noeud.sous buts a tester)
sous buts = sorted(sous buts, key=lambda prop: prop)
but et sous buts = [noeud.but] + sous buts

return but et sous buts

def repr ( self ):
return '<{},{},{},{}>'.format(self.but,

self .sous but courant,
self . sous buts a tester ,
self .profondeur)

Module .../moteur_chainage_arriere/chainage_arriere.py :

from moteur sans variables.chainage import Chainage
from .noeud import Noeud
from .noeuds testes import NoeudsTestes

class ChainageArriere(Chainage):
def init ( self , connaissances, unificateur ):

self .connaissances = connaissances
self . unificateur = unificateur

def successeurs( self , noeud):
nouveaux noeuds = []

if noeud.est terminal():
return nouveaux noeuds

# On se limite aux faits et aux règles intéressants à examiner.
# En effet, si le sous−but examiné commence par 'grand−pere',
# alors il est inutile de considérer des noeuds commençant
# par 'oncle' par exemple.
regles interessantes = self .connaissances. choisir regles interessantes (noeud.

sous but courant, self . unificateur )
faits interessants = self .connaissances. choisir faits interessants (noeud.

sous but courant)

# On parcourt les règles intéressantes.
for regle in regles interessantes :

# Tentative d'unification entre le sous−but sélectionné
# et la consequence de la règle .
env = self . unificateur . unifie (noeud.sous but courant,

regle .conclusion)
if env != self . unificateur .echec:

nouveau noeud = noeud.successeur(env,
regle .conditions ,
self . unificateur )
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nouveaux noeuds.append(nouveau noeud)

# On parcourt les faits intéressants .
for fait in faits interessants :

# Tentative d'unification entre le sous−but sélectionné et le fait .
env = self . unificateur . unifie (noeud.sous but courant, fait )
if env != self . unificateur .echec:

nouveau noeud = noeud.successeur(env, [], self . unificateur )
nouveaux noeuds.append(nouveau noeud)

# Retourne les nouveaux noeuds ainsi trouvés.
return nouveaux noeuds

def backchain(self , noeud depart):
# Liste des noeuds à tester .
queue = [noeud depart]
# Liste des noeuds déjà testés.
noeuds testes = NoeudsTestes()
# Liste des solutions .
self . solutions = set()

# Tant qu'il y a des noeuds à tester dans la liste ,
while len(queue) > 0:

# on sélectionne le noeud suivant.
noeud = queue.pop(0)
self . trace .append(noeud)
# Si le noeud n'appartient pas encore à la liste des noeuds
# déjà testés, on l 'y ajoute pour éviter les cycles .
if noeud not in noeuds testes:

noeuds testes.ajoute(noeud)
# Si le noeud est une solution, on l 'ajoute à celles qu'on a
# déjà trouvées.
if noeud.est solution ():

self . solutions .add(noeud.but)
else:

# On obtient des noeuds supplémentaires par châınage arrière.
successeurs = self . successeurs(noeud)
successeurs .extend(queue)
queue = successeurs

# Retourne la liste des solutions au problème.
return self. solutions

def chaine( self , pattern):
# Retourne les solutions par châınage arrière.
noeud depart = Noeud(pattern, pattern, [], 0)
solutions = self .backchain(noeud depart)

return solutions
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Chapitre 6

Traitement de l’information incertaine

Exercice 6.1 Réseaux de Bayes

6.1.1 Raisonnement probabiliste

Question 1. Informellement, la probabilité que vous soyez malade est toujours
proportionnelle à la probabilité de cette maladie. Ainsi, sur 10’000 personnes,
l’une d’entre elle sera effectivement malade et sera diagnostiquée comme telle
par le test avec 99 % de chance. Cependant, pour les 9’999 personnes res-
tantes, le test se trompera dans 1 % des cas. Environ 100 personnes seront
donc positives au test bien que n’étant pas malade. Globalement, vous avez
donc seulement 1 % de risque d’être effectivement malade si le test est positif.

Plus formellement, soit T la variable représentant le résultat du test, et M
la variable représentant la maladie. Par définition des taux de faux négatifs et
de faux positifs, on a P (T = 1|M = 1) = 1−P (T = 0|M = 1) = 1−0.01 = 0.99
et P (T = 0|M = 0) = 1 − P (T = 1|M = 0) = 1 − 0.01 = 0.99. Cependant,
P (M = 1) = 0.0001 puisque la maladie ne frappe qu’une personne sur 10’000.
La probabilité qui nous intéresse est P (M = 1|T = 1), puisque nous souhaitons
déterminer le risque que vous soyez effectivement malade sachant que votre test
a été positif. Or,

P (M = 1|T = 1) =
P (T = 1|M = 1) · P (M = 1)

P (T = 1|M = 1) · P (M = 1) + P (T = 1|M = 0) · P (M = 0)

=
0.99 · 0.0001

0.99 · 0.0001 + 0.01 · 0.9999

= 0.009804

Comme ce chiffre demeure très faible, vous ne devez pas forcément vous
inquiéter. Bien sûr, cette conclusion est due à la faible fréquence de la maladie
dans la population.

6.1.2 Causalité

Modélisation du problème

Question 1. Le réseau bayésien (fig. 1) possède les nœuds :

• I=Route-Gelée

• H=Accident-Holmes

• W=Accident-Watson

• S=Professeur-Sauvé

et les arcs :

• I → H et I → W , car l’état des routes influence les accidents de Holmes
et de Watson.

• W → S et H → S, car les accidents de Holmes et de Watson influencent
la résolution de l’affaire.
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I

WH

S
Fig. 1 Le réseau bayésien avec les noeuds : I=Route-Gelée, H=Accident-Holmes,
W=Accident-Watson, S=Professeur-Sauvé

Question 2 (Inférence déductive).

• Pour calculer P (H), il nous faut connâıtre P (H|I) :

P (H = h) = P (H = h|I = 1)P (I = 1) + P (H = h|I = 0)P (I = 0)

Il en va de même de la probabilité P (W ), pour laquelle il faut connâıtre
P (W |I) :

P (W = w) = P (W = w|I = 1)P (I = 1) + P (W = w|I = 0)P (I = 0)

• Pour calculer P (S), il nous faut en plus P (S|H,W ) :

P (S = s) =∑
i,h,w∈{1,0}

P (S = s|H = h,W = w)P (H = h|I = i)P (W = w|I = i)P (I = i)

Question 3 (Inférence abductive). La probabilité que nous cherchons est P (I|W ).
Pour la calculer, il nous faut P (W |I). Par la règle de Bayes, nous avons :

P (I = i|W = w) =
P (W = w|I = i)P (I = i)

P (W = w)

Question 4 (Déduction et abduction) :

• On cherche P (H|W ). Il nous faut donc P (W |I) et P (H|I) :

P (H = h|W = w) =
∑

i∈{1,0}

P (H = h|I = i)P (I = i|W = w)

• On cherche P (H|W,S). Il nous faut donc en plus P (S|H,W ) :

P (H = h|W = w, S = s) = αP (S = s|H = h,W = w)P (H = h|W = w)
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On détermine α = 1
P (S=s|W=w) de sorte que :∑

h∈{1,0}
P (H = h|W = w, S = s) = 1

• On cherche P (H|I,W, S) :

P (H = h|I = i,W = w, S = s) = αP (S = s|H = h,W = w)P (H = h|I = i)

On détermine α = 1
P (S=s|I=i,W=w) de sorte que :∑

h∈{1,0}

P (H = h|I = i,W = w, S = s) = 1

Calcul probabiliste

Question 5.

P (H|I) I = 1 I = 0 P (W |I) I = 1 I = 0
H = 1 0.9 0.1 W = 1 0.7 0.5
H = 0 0.1 0.9 W = 0 0.3 0.5

Question 6.

P (H = 1) = P (H = 1|I = 1)P (I = 1) + P (H = 1|I = 0)P (I = 0)

= 0.9 · 0.7 + 0.1 · 0.3 = 0.66

P (W = 1) = P (W = 1|I = 1)P (I = 1) + P (W = 1|I = 0)P (I = 0)

= 0.7 · 0.7 + 0.5 · 0.3 = 0.64

Question 7.

P (I = 1|W = 1) =
P (W = 1|I = 1) · P (I = 1)

P (W = 1)

=
0.7 · 0.7

0.64
∼= 0.766

Il en résulte que P (I = 0|W = 1) ∼= 0.234.

Question 8 (Dépendance).

P (H = 1|W = 1) = P (H = 1|I = 1) · P (I = 1|W = 1)

+ P (H = 1|I = 0) · P (I = 0|W = 1)

= 0.9 · 0.766 + 0.1 · 0.234 ∼= 0.713

On peut constater que la probabilité d’accident de Holmes a augmenté suite
à la connaissance de l’accident de Watson, car cet accident laisse supposer que
la route peut être gelée. H et W sont deux événements dépendants.
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Question 9 (Indépendance conditionnelle). Si l’on sait que la route n’est pas
gelée, I = 0 et l’accident de Watson n’a plus d’influence sur la probabilité
d’accident de Holmes. En effet, l’accident de Watson n’a pas d’effet sur la
probabilité que la route soit gelée puisque celle-ci est connue avec certitude.
Ainsi, on a : P (H = 1|I = 0,W = 1) = P (H = 1|I = 0) = 0.1, sachant que I,
H et W sont deux événements indépendants.

Question 10.

P (S|W,H) H = 1, W = 1 H = 1, W = 0 H = 0, W = 1 H = 0, W = 0
S = 1 0.1 0.2 0.8 1
S = 0 0.9 0.8 0.2 0

Question 11 (Causes multiples).

P (S = s) =
∑

i,h,w∈{1,0}

P (S = s|H = h,W = w)P (H = h|I = i)

P (W = w|I = i)P (I = i)

= 0.1 · (0.9 · 0.7 · 0.7 + 0.1 · 0.5 · 0.3)

+ 0.2 · (0.9 · 0.3 · 0.7 + 0.1 · 0.5 · 0.3)

+ 0.8 · (0.1 · 0.7 · 0.7 + 0.9 · 0.5 · 0.3)

+ 1 · (0.1 · 0.3 · 0.7 + 0.9 · 0.5 · 0.3)

= 0.3896

Question 12.

P (H = 1|W = 1, S = 1) = αP (S = 1|H = 1,W = 1)P (H = 1|W = 1)

= α · 0.1 · 0.713 = α · 0.0713

P (H = 0|W = 1, S = 1) = αP (S = 1|H = 0,W = 1)P (H = 0|W = 1)

= α · 0.8 · 0.287 = α · 0.23

Il faut que α · (0.0713 + 0.23) = 1, donc on trouve α ∼= 3.319, P (H = 1|W =
1, S = 1) ∼= 0.237 et P (H = 0|W = 1, S = 1) ∼= 0.763.

Question 13 (Abduction avec plusieurs conséquences).

P (I = 1|W = 1, S = 1) =
∑

h∈{1,0}

P (I = 1|H = h,W = 1)P (H = h|W = 1, S = 1)

=
∑

h∈{1,0}

P (H = h|I = 1)P (W = 1|I = 1)P (I = 1)

P (H = h|W = 1)P (W = 1)

P (H = h|W = 1, S = 1)

=
0.9 · 0.7 · 0.7
0.713 · 0.64

· 0.237 +
0.1 · 0.7 · 0.7
0.287 · 0.64

· 0.763

= 0.229 + 0.204 = 0.433
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Question 14.

P (H = 1|I = 0,W = 1, S = 1) = αP (S = 1|H = 1,W = 1)P (H = 1|I = 0)

= α · 0.1 · 0.1 = α · 0.01

P (H = 0|I = 0,W = 1, S = 1) = αP (S = 1|H = 0,W = 1)P (H = 0|I = 0)

= α · 0.8 · 0.9 = α · 0.72

Il faut que α · (0.01 + 0.72) = 1, donc on trouve α = 1.370 et P (H = 1|I =
0,W = 1, S = 1) = 0.014 et P (H = 0|I = 0,W = 1, S = 1) = 0.986.

Question 15 (Dépendance conditionnelle).

P (H = 1|I = 0, S = 1) = αP (S = 1|H = 1, I = 0)P (H = 1|I = 0)

= α ·
∑

w∈{1,0}

P (S = 1|H = 1,W = w) · P (W = w|I = 0) · P (H = 1|I = 0)

= α · (0.1 · 0.5 + 0.2 · 0.5) · 0.1 = α · 0.015

P (H = 0|I = 0, S = 1) = αP (S = 1|H = 0, I = 0)P (H = 0|I = 0)

= α ·
∑

w∈{1,0}

P (S = 1|H = 0,W = w) · P (W = w|I = 0) · P (H = 0|I = 0)

= α · (0.8 · 0.5 + 1 · 0.5) · 0.9 = α · 0.81

Il faut que α · (0.015 + 0.81) = 1, donc on trouve α = 1.21 et P (H = 1|I =
0, S = 1) = 0.02 et P (H = 0|I = 0, S = 1) = 0.98. Donc, si en plus on sait
que Watson a eu un accident, la probabilité que Holmes en ait eu un aussi
redescend un peu. Ainsi, H et W sont des événements dépendants sachant que
S et I.

Question 16. On ajoute le noeud V=Vieux-Pneus-Watson et l’arc V →W (fig.
2).

I

WH

S

V

Fig. 2 Le nouveau réseau bayésien avec les noeuds : I=Route-Gelée, H=Accident-
Holmes, W=Accident-Watson, S=Professeur-Sauvé, V=Vieux-Pneus-Watson
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Question 17. On cherche P (V |I,W ). Il nous faut donc P (W |I, V ) :

P (V = v|I = i,W = w) = αP (W = w|I = i, V = v)P (V = v)

On détermine α = 1
P (W=w|I=i) de sorte que :∑
v∈{1,0}

P (V = v|I = i,W = w) = 1

Exercice 6.2 Facteurs de certitude

Module .../moteur_avec_variables_fc/facteurs_certitude.py :

def fc ou(fc1 , fc2 ):
if fc1 > 0.0 and fc2 > 0.0:

return fc1 + fc2 − (fc1 ∗ fc2)
elif fc1 < 0.0 and fc2 < 0.0:

return fc1 + fc2 + (fc1 ∗ fc2)
else:

return (fc1 + fc2) / (1.0 − min(abs(fc1), abs(fc2)))

def fc et (fc1 , fc2 ):
return min(fc1, fc2)

Module .../moteur_avec_variables_fc/regle_avec_variables_fc.py :

from .facteurs certitude import fc et

class RegleAvecVariables FC:
def init ( self , conditions , conclusion, fc=1.0):

self .conditions = conditions
self .conclusion = conclusion
self . fc = fc

def depend de(self, fait , methode):
envs = {}

for condition in self .conditions :
# Si au moins une des conditions retourne un environnement,
# nous savons que la proposition satisfait une des conditions.
env = methode.pattern match(fait, condition, {})
if env != methode.echec:

envs[condition] = env

return envs

def satisfaite par ( self , faits , cond, env, env fc , methode):
envs et fcs = [(env, env fc )]
conditions a tester = [cond1 for cond1 in self .conditions if cond1 != cond]
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for cond1 in conditions a tester :
nouveaux envs et fcs = []

for fait , fait fc in faits :
for env1, env fc1 in envs et fcs :

env1 = methode.pattern match(fait, cond1, env1)
if env1 != methode.echec:

fc mix = fc et(env fc1, fait fc )
nouveaux envs et fcs.append((env1, fc mix))

if len(nouveaux envs et fcs) == 0:
return []

envs et fcs = nouveaux envs et fcs

return envs et fcs

def repr ( self ):
return '{} => {}, {}'.format(str(self.conditions),

str( self .conclusion),
str( self . fc ))

Module .../moteur_avec_variables_fc/connaissance_fc.py :

from .facteurs certitude import fc ou
from moteur avec variables fc. regle avec variables fc import RegleAvecVariables FC

class BaseConnaissances FC:
def init ( self ):

self . faits = {}
self . regles = []

def ajoute un fait( self , fait ):
if len( fait ) == 2:

prop, fc = fait
elif len( fait ) == 1:

prop, fc = fait [0], 1.0
else:

raise ValueError(”Fait mal formé: ” + str(fait ))

fc deja present = self . faits .get(prop)
if fc deja present is not None:

nouveau fc = fc ou(fc, fc deja present )
self . faits [prop] = nouveau fc

else:
self . faits [prop] = fc

def ajoute faits ( self , faits ):
for fait in faits :

self . ajoute un fait ( fait )

def ajoute une regle( self , description ):
if len(description) == 2:

regle = RegleAvecVariables FC(description[0], description [1])
elif len(description) == 3:

regle = RegleAvecVariables FC(description[0], description [1], description [2])
else:
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raise ValueError(”Une règle doit avoir deux ou trois é l éments. Reçu ” +
str(description ))

self . regles .append(regle)

def ajoute regles ( self , descriptions ):
for description in descriptions :

self . ajoute une regle(description)

Module .../moteur_avec_variables_fc/chainage_avant_avec_variables_fc.py :

from moteur sans variables.chainage import Chainage
from moteur avec variables. filtre import Filtre

class ChainageAvantAvecVariables FC(Chainage):
def init ( self , connaissances, methode=None):

Chainage. init ( self , connaissances)

if methode is None:
self .methode = Filtre()

else:
self .methode = methode

def instancie conclusion ( self , regle , envs et fcs ):
nouveaux faits = []

for env, env fc in envs et fcs :
prop = self .methode.substitue(regle.conclusion, env)
nouveau fait = (prop, max(0.0, env fc) ∗ regle . fc)
nouveaux faits.append(nouveau fait)

return nouveaux faits

def chaine( self ):
queue = [p for p in self .connaissances. faits .items()]
self . reinitialise ()

while len(queue) > 0:
fait , fait fc = queue.pop(0)

if ( fait , fait fc ) not in self . solutions :
self . trace .append((fait, fait fc ))
self . solutions .append((fait, fait fc ))

# Si le facteur de certitude du fait est supérieur à 0.0
if fait fc > 0.0:

# on vérifie si des règles sont déclenchées par le nouveau fait.
for regle in self .connaissances. regles :

envs = regle.depend de(fait, self .methode)

for cond, env in envs.items():
# On remplace l'environnement par ceux qui satisfont toutes
# les conditions de la règle et pas seulement la première
# condition.
envs1 = regle. satisfaite par ( self . solutions , cond, env,
fait fc , self .methode)
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# On ajoute à la queue la conclusion de la règle instanciée
# selon chaque environnement possible.
if len(envs1) > 0:

queue.extend(self . instancie conclusion ( regle , envs1))
self . trace .append(regle)

return self. solutions
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Chapitre 7

Résolution de problèmes par recherche

Exercice 7.1 Codage des classes de bases

Module .../moteurs_recherche/element.py :

class Element:
def init ( self , nom=''):

self .nom = nom

def distance( self , element):
return 1

def eq ( self , autre):
return self.nom == autre.nom

def hash ( self ):
return hash(str(self))

def repr ( self ):
return '{}'.format(self.nom)

Module .../moteurs_recherche/ville.py :

from math import sqrt
from .element import Element

class Ville (Element):
def init ( self , x, y, nom=''):

Element. init ( self , nom)
self .x = x
self .y = y

def distance( self , ville ):
return sqrt((self .x−ville .x)∗∗2 + (self .y−ville .y)∗∗2)

def eq ( self , autre):
if not isinstance(autre, Ville):

return False
return self.x == autre.x and self.y == autre.y and self.nom == autre.nom

def hash ( self ):
return hash(str(self))

def repr ( self ):
return '{}({}, {})' .format(self.nom, self .x, self .y)

Module .../moteurs_recherche/espace.py :

from copy import copy

class Espace:
def init ( self , elements=None, arcs=None):
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self .elements = []
if elements is not None:

self .elements = sorted(self.elements, key=lambda e: e.nom)

self . arcs = []
if arcs is not None:

self . ajoute arcs(arcs)

def ajoute arcs( self , arcs ):
for element 1, element 2 in arcs :

if not element 1 in self .elements:
self .elements.append(element 1)

if not element 2 in self .elements:
self .elements.append(element 2)

if not (element 1, element 2) in self . arcs :
self . arcs .append((element 1, element 2))

self .elements = sorted(self.elements, key=lambda e: e.nom)

def trouve voisins ( self , element):
voisins = []

for element 1, element 2 in self . arcs :
if element 1 == element:

voisins .append(element 2)
if element 2 == element:

voisins .append(element 1)

voisins = sorted(voisins, key=lambda v: v.nom)

return voisins

def repr ( self ):
rep = ''
for element in self .elements:

rep += '{}, '.format(element)
rep += 'avec voisins: '
voisins = self . trouve voisins (element)
rep += ', ' . join(map(str, voisins))
rep +='\n'

return rep

Module .../moteurs_recherche/noeud.py :

from math import sqrt

class Noeud:
def init ( self , element, parent=None, cout=0, cout f=0):

self .element = element
self .parent = parent
self .cout = cout
self . cout f = cout f

def repr ( self ):
rep = '<{}, {}, {}>'.format(self.element,

round(self.cout),
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round(self.cout f))
return rep

Module .../moteurs_recherche/recherche.py :

from .noeud import Noeud

class Recherche:
echec = 'échec'

def init ( self , espace, optimisee=False):
self .espace = espace
self .optimisee = optimisee

def recherche( self , depart, but):
# L'heuristique à utiliser ( utile uniquement pour A\∗).
self .h = lambda e: e.distance(but)

noeud depart = Noeud(depart, None, 0, self.h(depart))
noeud but = Noeud(but)

return self.recherche chemin(noeud depart, noeud but)

def recherche chemin(self , noeud depart, noeud but):
queue = [noeud depart]
iterations = 0
trace = {}

while len(queue) > 0:
noeud = queue.pop(0)

if self .optimisee and self. detecte cycle (trace , noeud):
continue

iterations += 1
print('Itération {}: {}' .format(iterations, noeud))

if noeud.element == noeud but.element:
return self.trouve chemin(noeud)

else:
trace [noeud.element] = noeud
successeurs = self . trouve successeurs(noeud)
queue = self. ajoute successeurs(queue, successeurs)

return Recherche.echec

def trouve chemin(self, noeud):
chemin = []
while noeud is not None:

chemin.insert(0, noeud.element)
noeud = noeud.parent

return chemin

def detecte cycle( self , trace , noeud):
return noeud.element in trace

def trouve successeurs( self , noeud):
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successeurs = []
voisins = self .espace. trouve voisins (noeud.element)
for voisin in voisins :

# Évite les cycles à deux éléments a − b − a − b ...
if noeud.parent is not None and noeud.parent.element == voisin:

continue

# Coût jusqu'au noeud successeur = coût jusqu'au noeud courant +
# distance entre les deux noeuds.
distance = noeud.element.distance(voisin)
cout = noeud.cout + distance

# Coût estimé = coût jusqu'au noeud successeur + coût estimé entre
# le noeud successeur et le but.
cout f = cout + self.h(voisin)

successeur = Noeud(voisin, noeud, cout, cout f)
successeurs .append(successeur)

return successeurs

def ajoute successeurs( self , queue, successeurs ):
# Nous retournons une liste vide pour éviter de déclencher une exception,
# mais cette méthode doit être surchargée dans les sous−classes.
return []

Module .../moteurs_recherche/bfs.py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheBFS(Recherche):
def ajoute successeurs( self , queue, successeurs ):

return queue + successeurs

Module .../moteurs_recherche/dfs.py :

from .recherche import Recherche
from .noeud import Noeud

class RechercheDFS(Recherche):
def ajoute successeurs( self , queue, successeurs ):

return successeurs + queue

Module .../moteurs_recherche/astar.py :

from moteurs recherche.recherche import Recherche
from moteurs recherche.noeud import Noeud

class RechercheAStar(Recherche):
def detecte cycle( self , trace , noeud):

if noeud.element not in trace:
return False

autre = trace[noeud.element]
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return autre.cout f <= noeud.cout f

def ajoute successeurs( self , queue, successeurs ):
queue = queue + successeurs
queue = sorted(queue, key=lambda n: n.cout f)

return queue
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Chapitre 8

Satisfaction de contraintes

Exercice 8.1 Consistance des nœuds et des arcs

Module .../moteur_psc/contrainte.py :

class Contrainte:
def init ( self , variables ):

self . variables = tuple(variables)

def dimension(self ):
return len(self. variables )

def est valide ( self ):
return False

def repr ( self ):
return 'Contrainte: {}'.format(self.variables)

def eq ( self , that):
return self. variables == that.variables

def hash ( self ):
return sum([v. hash for v in self. variables ])

class ContrainteUnaire(Contrainte):
def init ( self , var, op):

Contrainte. init ( self , (var ,))
self .op = op

def est valide ( self , val ):
return self.op(val)

class ContrainteBinaire(Contrainte):
def init ( self , var1, var2, op):

Contrainte. init ( self , (var1, var2))
self .op = op

def est valide ( self , var, val ):
var1, var2 = self . variables

if var1 == var:
return self.op(val, var2.val)

elif var2 == var:
return self.op(var1.val , val)

else:
# var n'est pas une des variables de la contrainte .
raise ValueError('Mauvaise variable: ' + var.nom + '. ' +

'On attendrait ' + var1 + ' ou ' + var2)

def est possible ( self , var):
if var not in self . variables :

# var ne fait pas partie des variables de la contrainte
var1, var2 = self . variables
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raise ValueError('Mauvaise variable: ' + var.nom + '. ' +
'On attendrait ' + var1 + ' ou ' + var2)

for val in var.domaine:
if self . est valide (var, val ):

# Il suffit d'une valeur valide .
return True

# Aucune valeur val du domaine n'a retourné True pour
# est valide(var, val ).
return False

def reviser ( self ):
domaines modifies = False

# reversed() retourne l ' inverse d'une liste ou d'un tuple.
# Les paires sont donc (var1, var2) et (var2, var1).
# Les tuples ne sont pas identiques mais ils contiennent des références
# sur les mêmes objets Variable (modifier var1 dans le premier tuple\
# modifie var1 dans le second).
for var1, var2 in ( self . variables , reversed(self.variables )):

ancienne valeur = var1.val
for val in var1.domaine[:]:

var1.val = val

if not self . est possible (var2):
var1.domaine.remove(val)
domaines modifies = True

var1.val = ancienne valeur

return domaines modifies

Module .../moteur_psc/moteur_psc.py :

class PSC:
def init ( self , variables , contraintes ):

self . variables = variables
self . contraintes = contraintes

self . iterations = 0
self . solutions = []

def consistance noeuds(self ):
for contrainte in self . contraintes :

if contrainte .dimension() == 1:
# Nous créons un nouveau domaine en ne gardant que les
# valeurs valides.
# Le plus simple est d' utiliser la ` list comprehension' avec
# une condition.
contrainte . variables [0]. domaine = [var for var in contrainte. variables [0].
domaine if contrainte . est valide (var)]

def consistance arcs( self ):
refaire = False
for contrainte in self . contraintes :

if contrainte .dimension() == 2 and contrainte.reviser():
refaire = True
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if refaire :
self . consistance arcs ()

def consistance avec vars precedentes( self , k):
for contrainte in self . contraintes :

# Si la variables courante est concernée.
if self . variables [k] in contrainte . variables :

for i in range(k):
# Si n'importe laquelle des variables précédentes est concernée.
if self . variables [ i ] in contrainte . variables :

if contrainte . est valide ( self . variables [k ], self . variables [k ]. val ):
break

else:
return False

# Toutes les contraintes sont valides .
return True

def backtracking(self , k=0, une seule solution=False):
if len( self . solutions ) == 1 and une seule solution:

return

self . iterations += 1
# On est parvenu àune solution.
if k >= len(self.variables ):

sol = {}
for var in self . variables :

sol [var.nom] = var.val
if len( self . solutions ) == 0 or not une seule solution:

self . solutions .append(sol)
else:

var = self . variables [k]
for val in var.domaine:

var.val = val
if self . consistance avec vars precedentes(k):

# On continue l'algorithme sur la variable k+1.
self .backtracking(k=k+1, une seule solution=une seule solution)

var.val = None

def affiche solutions ( self ):
print('Recherche terminée en {} itérations ' .format(self. iterations ))

if len( self . solutions ) == 0:
print('Aucune solution trouvée')
return

for sol in self . solutions :
print('Solution')
print('========')
for (nom, var) in sorted(sol.items()):

print('\tVariable {}: {}' .format(nom, var))
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Exercice 8.2 Consistance des nœuds et des arcs

Module .../moteur_psc_heuristique/contrainte_avec_propagation.py :

from moteur psc.contrainte import ContrainteBinaire

class ContrainteAvecPropagation(ContrainteBinaire):
def init ( self , var1, var2, op):

ContrainteBinaire. init ( self , var1, var2, op)

def reviser ( self ):
# Nous appliquons d'abord la méthode reviser() de la classe−mère pour
# réviser les domaines de chaque variable.
domaines modifies = ContrainteBinaire.reviser( self )

# Puis, s' il y a lieu , nous nous assurons que les labels sont toujours
# identiques aux domaines.
if domaines modifies:

for var in self . variables :
var. label = var.domaine[:]

return domaines modifies

def propage(self , var):
var1, var2 = self . variables

if var == var1:
fixe = var1
variable = var2

elif var == var2:
variable = var1
fixe = var2

else:
raise ValueError('Var est ' + var.nom + '. ' +

'on attendrait ' + var1.nom + ' ou ' + var2.nom)

# On ne garde que les valeurs du label pour lesquelles variable
# reste valide .
for val in variable . label [:]:

if not self . est valide (variable , val ):
variable . label .remove(val)

# S'il existe au moins une valeur possible, l 'assignation est consistante .
return len(variable.label) > 0

Module .../psc_heuristique/moteur_psc_heuristique.py :

from moteur psc.psc import PSC

class PSCHeuristique(PSC):

def init ( self , variables , contraintes ):
PSC. init ( self , variables , contraintes)

self . reinitialise ()

def reinitialise ( self ):
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self . initialise labels ()
self . solutions = []
self . iterations = 0

def initialise labels ( self ):
for var in self . variables :

var. label = var.domaine[:]

def consistance noeuds(self ):
# Nous appelons d'abord la méthode de la classe−mère PSC pour réduire
# les domaines.
PSC.consistance noeuds(self)

# Puis, nous nous assurons que les labels sont identiques aux domaines.
self . initialise labels ()

def variable ordering( self ):
self . variables . sort(key=lambda x: len(x.domaine))

def dynamic variable ordering(self , k):
index = k
taille plus petit label = len(self . variables [index]. label )

for i in range(k+1, len(self.variables )):
if len( self . variables [ i ]. label ) < taille plus petit label :

index = i
taille plus petit label = len(self . variables [ i ]. label )

if k != index:
self . variables [k ], self . variables [index] = self . variables [index], self . variables [k]

def propagation consistante( self , k):
# Pour chaque contrainte portant sur la variable courante,
for contrainte in self . contraintes :

if self . variables [k] in contrainte . variables :
# si la contrainte porte sur une des variables suivantes,
for i in range(k+1, len(self.variables )):

if self . variables [ i ] in contrainte . variables :
# on propage la nouvelle assignation.
if contrainte .propage(self . variables [k ]):

break
else:

# La contrainte ne peut pas être satisfaite .
return False

return True

def forward checking(self , k=0, une seule solution=False):
if len( self . solutions ) == 1 and une seule solution:

return

self . iterations += 1
if k >= len(self.variables ):

sol = {}
for var in self . variables :

sol [var.nom] = var.val
self . solutions .append(sol)

else:
self .dynamic variable ordering(k)
variable = self . variables [k]
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# Conserve une copie des labels de départ.
sauvegarde labels = { var: var. label [:] for var in self . variables }

for val in sauvegarde labels[ variable ]:
variable . val = val
variable . label = [val ]
if self .propagation consistante(k):

# Continue l'algorithme sur la variable k+1.
self .forward checking(k=k+1, une seule solution=une seule solution)
for var in self . variables :

var. label = sauvegarde labels[var]
variable . val = None
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Chapitre 9

Diagnostic

Exercice 9.1 Diagnostic d’un réseau par abduction explicite

Module .../reseau/abduction.py :

from .disjonction import Disjonction
from .conjonction import Conjonction

class Abduction:

def init ( self , conflits , no goods):
self . conflits = conflits
self .no goods = no goods

def combiner conflits observations ( self , disjonctions ):
combinaison = Disjonction()
for disjonction in disjonctions :

combinaison = combinaison.combiner(disjonction)
return combinaison

def retire subsumes( self , conjonctions):
sans subsumes = Disjonction()

for conjonction in sorted(conjonctions, key=lambda expl: len(expl)):
conserver = True
for conj in sans subsumes:

if conj. issubset (conjonction):
conserver = False
break

if conserver:
sans subsumes.add(conjonction)

return sans subsumes

def retire no goods( self , conjonctions, no goods):
sans no goods = Disjonction()

for conjonction in conjonctions:
conserver = True
for no good in no goods:

if no good.issubset(conjonction):
conserver = False
break

if conserver:
sans no goods.add(conjonction)

return sans no goods

def calcule conflit minimal ( self , afficher etapes =False):
# 1. Combine les conflits.
conflit minimal = self . combiner conflits observations ( self . conflits )
if afficher etapes : print('Conflit combiné :' , conflit minimal)
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# 3. Supprime les candidats subsumés.
conflit minimal = self .retire subsumes(conflit minimal)
if afficher etapes : print('Non subsumés :', conflit minimal)

# 4. Supprime les candidats contenant les no−goods.
conflit minimal = self . retire no goods(conflit minimal , self .no goods)
if afficher etapes : print('Sans no−goods :', conflit minimal)

return conflit minimal
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Chapitre 10

Génération de plans

Exercice 10.1 Modélisation

Planification : Modélisation sur papier

Il existe souvent différentes façons de modéliser un problème de planification
donné sous la forme d’un Problème de Satisfaction de Contraintes. Le modèle
que nous vous proposons ici correspond à celui qui est décrit dans le chapitre
10.6 du cours. Si vous avez développé une solution différente, il est cependant
possible qu’elle soit tout aussi valide.

Définition du problème de planification

Rappelons qu’un problème de planification est défini par les éléments suivants :

• Une liste de propositions qui décrivent l’état du monde.

• Une liste d’opérateurs qui décrivent les actions qui peuvent être exécutées
pour changer l’état du monde. Chaque opérateur possède des précondi-
tions et des postconditions.

• Des conditions initiales, qui décrivent complètement l’état initial du monde
en termes de propositions.

• Des conditions finales, qui décrivent complètement ou partiellement l’état
du monde désiré en termes de propositions.

• Des mutex, qui stipulent des contraintes d’exclusion mutuelle entre les
propositions et entre les opérateurs. Les mutex de propositions sont des
paires de propositions qui ne peuvent être vraies en même temps. Par
exemple, un missionnaire ne peut pas simultanément se trouver sur la rive
gauche et sur la rive droite. Les mutex d’opérateurs définissent les paires
d’opérateurs qui ne peuvent être exécutés en même temps. Par exemple,
un même bateau ne peut pas être piloté à la fois par le missionnaire M1

pour transporter le canibale C1 et par M2 pour transporter C2.

Dans notre problème de planification, nous considérons trois types d’ac-
teurs :

• Les bateaux, qui correspondent au type B. Dans notre exemple, il n’y a
qu’un seul bateau, dénoté par B.

• Les missionnaires, qui correspondent au type M . Il y a deux missionnaires,
M1 et M2.

• Les cannibales, qui correspondent au type C. Il y a deux cannibales, C1

et C2.

Le choix des propositions du problème de planification doit permettre de décrire
complètement la position de chaque acteur.
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Notre problème présente aussi deux types d’actions possibles :

• traversée du fleuve depuis la rive gauche jusqu’à la rive droite,

• traversée du fleuve depuis la rive droite jusqu’à la rive gauche.

Chacun de ces deux types d’actions peut faire intervenir un certain nombre
d’acteurs. Par exemple, une traversée ne peut avoir lieu qu’à l’aide d’un bateau
(c’est-à-dire un acteur de type B). Seul un missionnaire (c’est-à-dire un acteur
de type M) peut conduire le bateau. Le bateau ne peut contenir qu’un passager
supplémentaire, qui peut être indifféremment de type M (un missionnaire) ou
de type C (un cannibale). La liste des opérateurs du problème de planification
doit couvrir toutes les combinaisons d’acteurs pour les deux types d’actions.

Choix des propositions du problème de planification

Afin de décrire la position d’un acteur, nous vous proposons d’utiliser deux pro-
positions, correspondant aux deux positions possibles de l’acteur (rive gauche
ou rive droite). Pour un acteur A donné, nous introduisons donc les deux pro-
positions suivantes :

• g(A) est vraie si et seulement si l’acteur A est sur la rive gauche,

• d(A) est vraie si et seulement si l’acteur A est sur la rive droite.

Ces deux propositions peuvent vous sembler redondantes, puisque A est
nécessairement sur la rive droite s’il n’est pas sur la rive gauche (d(A) est vraie si
g(A) est fausse et vice-versa). Nous avons cependant choisi cette représentation
car elle se généralise aisément à des problèmes plus compliqués, dans lesquels
un acteur peut occuper plus de deux positions.

Choix des opérateurs du problème de planification

Comme nous l’avons indiqué plus haut, des opérateurs seront nécessaires pour
modéliser la traversée du fleuve par des groupes d’acteurs. Pour un état donné,
les opérateurs seront les suivants :

• gd(B,M,A) est l’opérateur décrivant la traversée du fleuve de gauche
à droite, à bord du bateau B, piloté par le missionnaire M , avec pour
passager A (qui peut par ailleurs être de type M ou C). Les préconditions
de cet opérateur sont que les propositions g(B), g(M) et g(A) doivent être
vraies. Les postconditions sont que les propositions d(B), d(M) et d(A)
doivent être vraies.

• dg(B,M) est l’opérateur décrivant la traversée de droite à gauche du mis-
sionnaire M à bord du bateau B. Les préconditions de cet opérateur sont
que les propositions d(B) et d(M) doivent être vraies. Les postconditions
sont que les propositions g(B) et g(M) doivent être vraies.

Le choix a été fait dans ce modèle de ne pas tenir compte de la possibilité
pour un bateau de faire la traversée de droite à gauche avec un passager en plus
du pilote. Ce choix limite l’éventail des plans valides possibles. Il a l’avantage de
correspondre à un problème de planification plus petit, plus facile à résoudre,
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et qui générera des plans plus courts (puisqu’il n’est alors pas permis de perdre
du temps à faire traverser un cannibale dans un sens, puis dans l’autre sens).
Dans cet exercice, sachant que les deux cannibales sont sur la rive gauche
dans l’état initial, il est très facile de constater qu’il existe un plan valide qui
ne fait jamais traverser un cannibale de la rive droite à la rive gauche. Il faut
cependant se rappeler, que, dans le cas d’un problème plus général, un tel choix
de modélisation pourrait déboucher sur un problème de planification infaisable,
quand bien même le problème initial serait soluble.

Conditions initiales du problème de planification

Au début, tous les acteurs sont sur la rive gauche. Les conditions initiales sont
donc les suivantes :

g(B) = g(M1) = g(M2) = g(C1) = g(C2) = True

Conditions finales du problème de planification

Le but est de faire passer tous les acteurs du côté droit de la rivière. Les
conditions finales sont donc les suivantes :

d(B) = d(M1) = d(M2) = d(C1) = d(C2) = True

Mutex de propositions du problème de planification

Les mutex de propositions sont des paires de propositions qui ne peuvent être
vraies en même temps. Dans notre problème, pour chaque acteur A, nous avons
le mutex suivant :

[g(A), d(A)]

En effet, un acteur ne peut se trouver en même temps sur la rive gauche et sur
la rive droite.

Mutex d’opérateurs du problème de planification

Les mutex d’opérateurs sont des paires d’opérateurs qui ne peuvent être exé-
cutés en même temps. Dans notre problème, pour chaque paire d’opérateurs
distincts op1 et op2, si les deux opérateurs ont un acteur en commun (qu’il soit
de type B, M ou C), alors on a le mutex suivant :

[op1, op2]

Dans le cas où l’acteur en commun est de type B, ce mutex traduit le fait
qu’un même bateau ne peut pas contenir deux équipages différents en même
temps. Dans le cas où l’acteur en commun est de type M ou C, et si l’on a
plusieurs bateaux à disposition, un même missionnaire ou un même cannibale
ne peut se trouver sur deux bateaux différents en même temps.
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Description du modèle PSC pour le problème de planification

Rappelons qu’un plan non linéaire est constitué d’une séquence d’états S0,
S1, ..., Sn, chaque état Si étant décrit par des propositions qui sont vraies ou
fausses au début de l’état, un ensemble d’opérateurs qui sont exécutés pendant
cet état et des propositions qui sont vraies ou fausses à la fin de l’état (après
l’exécution des opérateurs), et qui correspondent aux propositions du début de
l’état suivant.

Un opérateur est caractérisé par des préconditions, c’est-à-dire des proposi-
tions qui doivent être vraies au début de l’état Si pour que l’opérateur puisse
être exécuté durant Si, et des postconditions, c’est-à-dire des propositions qui
devront être vraies au début de l’état Si+1.

Choix des variables PSC pour les propositions

Pour chaque état Si, avec i = 0...n+1, et chaque acteur A, le PSC contiendra les
variables booléennes suivantes, qui correspondent aux propositions du problème
de planification introduites plus haut :

• g(A,Si) = True si et seulement si l’acteur A est sur la rive gauche à la fin
de l’état Si−1 et au début de l’état Si,

• d(A,Si) = True si et seulement si l’acteur A est sur la rive droite à la fin
de l’état Si−1 et au début de l’état Si.

Choix des variables PSC pour les opérateurs

Pour chaque état Si, avec i = 0...n, et chaque opérateur op (par exemple,
dg(B,M1)), le PSC contiendra la variable booléenne op(Si), qui indiquera si
oui ou non l’opérateur est exécuté dans l’état Si.

Expression des contraintes du PSC

Il existe six types de contraintes qui doivent être vérifiées pour qu’un plan soit
valide :

• les contraintes sur l’état initial,

• les contraintes sur l’état final,

• les préconditions et les postconditions des opérateurs,

• les axiomes de cadre,

• les mutex de propositions,

• les mutex d’opérateurs.

Contraintes PSC correspondant aux contraintes sur l’état initial. Tous les ac-
teurs sont initialement sur la rive gauche. Par conséquent, les contraintes sur
l’état initial prennent une forme très simple, qui est la suivante :

g(B,S0) = g(M1, S0) = g(M2, S0) = g(C1, S0) = g(C2, S0) = True
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Contraintes PSC correspondant aux contraintes sur l’état final. Les contraintes
sur l’état final sont comparables aux contraintes sur l’état initial, à la différence
fondamentale près qu’il faut définir lequel des états S0, S1, ..., Sn correspond
à cet état final. En d’autres termes, il faut choisir par avance la longueur des
plans solutions que l’on veut considérer, c’est-à-dire le nombre total d’états.

Si l’on ne considère que des plans très courts, il est possible que l’on n’ob-
tienne aucune solution, car il peut n’exister aucun plan qui parvienne à passer
de l’état initial à l’état final avec si peu d’états intermédiaires. Si en revanche on
autorise des plans très longs, la taille du PSC et la complexité de sa résolution
explosent. Traditionnellement, on commence donc par des plans courts, et on
augmente progressivement leur taille tant qu’aucune solution n’est découverte.

Dans notre cas, le problème se résout très facilement à la main. On peut donc
tricher et choisir le nombre d’états en sachant qu’il existe un plan solution qui
le contient. Les étapes suivantes constituent ainsi une solution possible, sachant
que le but à atteindre est d’avoir tous les acteurs sur la rive droite :

• gd(B,M1, C1),

• dg(B,M1),

• gd(B,M1, C2),

• dg(B,M1),

• gd(B,M1,M2).

Il suffit donc de cinq étapes, soit cinq états (sans compter l’état initial S0)
pour obtenir l’état final désiré. On choisira donc S5 comme état final. Les
contraintes sur l’état final sont par conséquent les suivantes :

d(B,S5) = d(M1, S5) = d(M2, S5) = d(C1, S5) = d(C2, S5) = True

Contraintes PSC correspondant aux contraintes de préconditions et de post-
conditions des opérateurs. Reprenons les deux types d’opérateurs introduits
précédemment et explicitons leurs préconditions et postconditions en termes
de variables du PSC :

• L’opérateur gd(B,M,A) a pour préconditions que g(B), g(M) et g(A)
doivent toutes être vraies. Les postconditions stipulent que d(B), d(M) et
d(A) doivent toutes être vraies.

• L’opérateur dg(B,M) a pour préconditions que d(B) et d(M) doivent être
vraies. Les postconditions stipulent que g(B) et g(M) doivent être vraies.

On n’a pas mentionné ici les suppressions de chaque opérateur. Par exemple,
une autre postcondition de dg(B,M) est que d(B) doit être fausse. Il n’est ce-
pendant pas nécessaire d’expliciter ces postconditions négatives, car elles seront
automatiquement imposées par les mutex de propositions introduits précédem-
ment et présentés en détail plus bas.

En termes de PSC, ces préconditions et postconditions prennent la forme
des contraintes suivantes sur les variables du PSC, pour chaque état Si avec
i = 0...n et chaque opérateur op :
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• pour chaque proposition prop qui est une postcondition de l’opérateur op,
on a : op(Si)⇒ prop(Si+1) ;

• pour chaque proposition prop qui est une précondition de l’opérateur op,
on a : op(Si)⇒ prop(Si).

On utilise ici la notation ⇒ pour indiquer l’implication logique. Ainsi, si
prop est une postcondition de l’opérateur op, alors op(Si) ⇒ prop(Si+1) est
équivalent à « si op(Si) = True, alors prop(Si+1) = True ». Ceci traduit bien le
fait que si l’opérateur op est exécuté dans l’état Si, alors sa postcondition prop
doit être vraie à la fin de l’état Si, c’est-à-dire au début de l’état Si+1.

Contraintes PSC correspondant aux axiomes de cadreLes axiomes de cadre sti-
pulent que si aucun opérateur ne vient, dans l’état Si, modifier une proposition
prop, alors elle reste identique à l’état Si+1. De manière équivalente : si la
valeur d’une proposition change d’un état Si à l’état suivant Si+1, c’est que
l’opérateur op(Si) y est pour quelque chose. Par exemple, si g(C1, Si) = True

et g(C1, Si+1) = False, alors op(Si) est nécessairement l’un des deux opérateurs
suivants : gd(B,M1, C1) ou gd(B,M2, C1).

Remarquez que cette contrainte est de formulation relativement complexe,
et en particulier qu’elle implique plus de deux variables : prop(Si), prop(Si+1),
et les variables pour l’état Si de tous les opérateurs qui ont prop comme précon-
dition ou postcondition. Plus précisément, les contraintes d’axiomes de cadre
prennent les deux formes suivantes, pour chaque état Si, et pour chaque pro-
position prop :

• si prop(Si) = False et prop(Si+1) = True, alors pour au moins un opéra-
teur op qui a prop comme postcondition, on a op(Si) = True,

• si prop(Si) = True et prop(Si+1) = False, alors pour au moins un opéra-
teur op qui a prop comme postcondition négative, on a op(Si) = True.

Comme indiqué précédemment, il n’est pas nécessaire de considérer le
deuxième cas, qui comporte une postcondition négative. En effet, si nous pre-
nons l’exemple de la proposition d(M1), lorsque celle-ci passe de True à False, il
n’est pas nécessaire de vérifier que l’opérateur dg(M1) est exécuté, puisqu’alors
les contraintes de mutex de propositions imposeront que g(M1) passe (à l’in-
verse) de False à True. Le premier cas ci-dessus suffit alors pour assurer que
dg(M1) soit exécuté.

Rappelons que ces contraintes ne sont pas simplement unaires ou binaires,
mais qu’elles ont une multiplicité plus grande que deux. Il faut donc aussi
modifier le module PSC pour qu’il puisse manipuler de telles contraintes.

Contraintes PSC correspondant aux mutex de propositionsLes mutex de propo-
sitions sont des contraintes qui stipulent que deux propositions sont mutuelle-
ment exclusives, c’est-à-dire qu’elles sont incompatibles et ne peuvent pas être
vraies en même temps. Par exemple, on ne peut pas avoir g(M1) et d(M1)
vraies en même temps, puisque le missionnaire M1 ne peut pas se trouver à la
fois sur la rive droite et sur la rive gauche.
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Plus généralement donc, pour chaque état Si, et pour chaque acteur A (de
n’importe quel type), le modèle PSC contiendra les contraintes suivantes :

g(A,Si) NAND d(A,Si)

Cette contrainte autorise virtuellement qu’un acteur puisse n’être ni sur la
rive gauche, si sur la rive droite (g(A,Si) = d(A,Si) = False). Mais, dans la
pratique, cette situation ne pourra pas se produire. Ceci peut se démontrer
par récurrence : Nous partons du principe que les contraintes sur l’état initial
décrivent complètement la situation initiale. C’est-à-dire qu’au début de l’état
0, un acteur est nécessairement sur une rive donnée. Considérons maintenant
l’état k, et supposons qu’un acteur se trouve sur la rive gauche (g(A) = True)
au début de cet état (le raisonnement est tout aussi valide si l’on remplace
« gauche » par « droite » et « droite » par « gauche »). Deux possibilités se
présentent alors pour les opérateurs exécutés dans l’état k : 1) aucun opérateur
n’a g(A) comme précondition, et alors les contraintes d’axiomes de cadre vont
imposer que g(A) reste vraie à la fin de l’état ; 2) au moins un opérateur a g(A)
comme précondition, et alors les contraintes de postconditions vont imposer
que d(A) soit vraie à la fin de l’état. Dans les deux cas, la rive sur laquelle se
trouve l’acteur à la fin de l’état est clairement définie.

Contraintes PSC correspondant aux mutex d’opérateurs. De manière analogue
aux mutex de propositions, chaque mutex d’opérateur [op1, op2] va donner lieu,
pour chaque état Si, à la contrainte suivante :

op1(Si) NAND op2(Si)

Résumé du modèle PSC

Au bout du compte, voici le modèle que nous obtenons :

Variables :

1) Variables booléennes g(A,Si), pour chaque acteur A et chaque état Si.

2) Variables booléennes d(A,Si), pour chaque acteur A et chaque état Si.

3) Variables booléennes op(Si), pour chaque opérateur op et chaque état Si.

Contraintes :

1) Contraintes sur l’état initial :

g(B,S0) = g(M1, S0) = g(M2, S0) = g(C1, S0) = g(C2, S0) = True

2) Contraintes sur l’état final :

d(B,S5) = d(M1, S5) = d(M2, S5) = d(C1, S5) = d(C2, S5) = True

3) Contraintes de préconditions et postconditions des opérateurs, pour chaque
état Si et chaque opérateur op :
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• Pour chaque proposition prop qui est une postcondition de l’opérateur
op : op(Si)⇒ prop(Si+1).

• Pour chaque proposition prop qui est une précondition de l’opérateur
op : op(Si)⇒ prop(Si).

4) Contraintes d’axiomes de cadre, pour chaque état Si et chaque proposition
prop :

• Si prop(Si) = False et prop(Si+1) = True, alors pour au moins un
opérateur op qui a prop comme postcondition, on a op(Si) = True

5) Contraintes de mutex de propositions, pour chaque état Si et pour chaque
acteur A :

g(A,Si) NAND d(A,Si)

6) Contraintes de mutex d’opérateurs, pour chaque état Si, et pour chaque
paire d’opérateurs distincts op1 et op2 qui ont un acteur en commun :

op1(Si) NAND op2(Si)

Dans ce PSC, toutes les variables sont booléennes. Typiquement, plutôt
qu’un algorithme PSC, on utiliserait un algorithme SAT pour résoudre ce genre
de problèmes. Un algorithme SAT est en effet spécialisé dans la résolution de
PSC exprimés sous la forme de clauses (des expressions qui peuvent être vraies
ou fausses) ne comportant que des variables booléennes.

Exercice 10.2 Implémentation

Module .../moteur_psc_planification/axiomecadre.py :

from moteur psc.contrainte import Contrainte

class ContrainteAxiomeCadre(Contrainte):
def init ( self , var pre, ops, var post):

Contrainte. init ( self , (var pre, var post) + tuple(ops))

self .var pre = var pre
self .var post = var post
self .vars ops = ops

def est valide ( self , var, val ):
ancienne valeur = var.val
var.val = val

# On part du principe que la contrainte est valide si au moins une
# variable n'est pas instanciée.
for var2 in self . variables :

if var2.val is None:
var.val = ancienne valeur
return True

valide = False
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# Si toutes les variables sont instanciées et qu'une variable passe de
# False à True.
if self .var pre. val == False and self.var post.val == True:

# Vérifie qu'au moins un des opérateurs est appliqué.
for op in self .vars ops:

if op.val == True:
valide = True
break

else:
valide = True

var.val = ancienne valeur
return valide

def propage(self , var):
var2 = None
for var i in self . variables :

if var i . val is None:
if var2 is None:

var2 = var i
else:

# Il reste plus d'une variable à instancier .
return True

# Teste les valeurs du label pour la dernière variable non instanciée.
for val in var2. label [:]:

if not self . est valide (var2, val ):
var2. label .remove(val)

return len(var2.label) > 0

def reviser ( self ):
return False

def repr ( self ):
return 'Axiome de cadre:\n\t{}\n\t{}\n\t{}'.format(self.var pre,

[op for op in self .vars ops ],
self .var post)

Module.../moteur_planification/etat.py :

from moteur psc heuristique.variable avec label import VariableAvecLabel

class Etat:
def init ( self , no etat, propositions , operateurs, etat prec=None):

self .no etat = no etat
self . etat prec = etat prec

self .operateurs = { op.nom: op for op in operateurs }

self . vars initiales = {}
self . vars finales = {}

self . construire vars operateurs (operateurs)
self . construire vars propositions (propositions)

def construire vars operateurs ( self , ops):
self .vars operateurs = {}
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for op in ops:
var nom = '{} état {}'.format(op.nom, self.no etat)
self .vars operateurs[op.nom] = VariableAvecLabel(var nom,

[True, False ])

def construire vars propositions ( self , props):
if self .no etat > 0:

self . vars initiales = self . etat prec . vars finales

for prop in props:
var nom = '{} état {}'.format(prop, self.no etat + 1)
self . vars finales [prop] = VariableAvecLabel(var nom,

[True, False ])
if self .no etat == 0:

var nom = '{} état 0'.format(prop)
self . vars initiales [prop] = VariableAvecLabel(var nom,

[True, False ])

def variables ( self ):
return (list( self . vars initiales .values()) +

list ( self . vars finales .values()) +
list ( self .vars operateurs.values ()))

Module .../moteur_planification/planification.py :

from moteur psc.contrainte import ContrainteUnaire
from moteur psc heuristique.contrainte avec propagation import ContrainteAvecPropagation
from moteur psc heuristique.psc heuristique import PSCHeuristique
from moteur psc planification.axiomecadre import ContrainteAxiomeCadre
from .etat import Etat

class Planification :
def init ( self , propositions , operateurs,

mutex propositions, mutex operateurs,
depart, but, nb etats ):

self .operateurs = operateurs
self .mutex propositions = mutex propositions
self .mutex operateurs = mutex operateurs

self .depart = depart
self .but = but

self .nb etats = nb etats

self .propositions = propositions

self . etats = []
self . construire etats ()

self .psc = PSCHeuristique(self.variables (), self . construire contraintes ())

def construire etats ( self ):
self . etats .append(Etat(0, self .propositions , self .operateurs, None))

for i in range(1, self .nb etats ):
self . etats .append(Etat(i, self .propositions ,

self .operateurs, self . etats [−1]))
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def variables ( self ):
# Utiliser un set évite les doublons entre variables finales et
# initiales .
variables = set()
for etat in self . etats :

variables .update(etat.variables ())

return list(variables)

def construire contraintes ( self ):
return (self . construire contraintes propositions () +

self . construire contraintes operateurs () +
self . construire contraintes conditions () +
self . construire contraintes axiomes cadre () +
self . construire contraintes initiales () +
self . construire contraintes finales ())

def construire contraintes propositions ( self ):
contraintes = []
nand = lambda x,y: not (x and y)

# Construction des contraintes générées par les mutex de propositions
# ∗∗pour chaque état∗∗.
for mutex in self .mutex propositions:

for etat in self . etats :
contr = ContrainteAvecPropagation(etat.vars initiales[mutex[0]],

etat . vars initiales [mutex[1]],
nand)

contraintes .append(contr)
# Les mutex de propositions doivent aussi être valides pour les
# variables finales du dernier état .
if etat .no etat == (self.nb etats − 1):

contr = ContrainteAvecPropagation(etat.vars finales[mutex[0]],
etat . vars finales [mutex[1]],
nand)

contraintes .append(contr)

return contraintes

def construire contraintes operateurs ( self ):
contraintes = []
nand = lambda x,y: not (x and y)

for mutex in self .mutex operateurs:
for etat in self . etats :

contr = ContrainteAvecPropagation(etat.vars operateurs[mutex[0].nom],
etat .vars operateurs[mutex[1].nom],
nand)

contraintes .append(contr)

return contraintes

def construire contraintes conditions ( self ):
contraintes = []
# Contraintes générées par les pré− et post−conditions.
# Implication logique.
imp = lambda x,y: (not x) or y
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for etat in self . etats :
for op in self .operateurs:

for precond in op.precond:
contr = ContrainteAvecPropagation(etat.vars operateurs[op.nom],

etat . vars initiales [precond],
imp)

contraintes .append(contr)
for postcond in op.postcond:

contr = ContrainteAvecPropagation(etat.vars operateurs[op.nom],
etat . vars finales [postcond],
imp)

contraintes .append(contr)

return contraintes

def construire contraintes axiomes cadre( self ):
contraintes = []

for etat in self . etats :
for prop in self .propositions :

vars ops = [etat .vars operateurs[op.nom]
for op in self .operateurs
if prop in op.postcond]

contr = ContrainteAxiomeCadre(etat.vars initiales[prop],
vars ops,
etat . vars finales [prop])

contraintes .append(contr)
return contraintes

def construire contraintes initiales ( self ):
contraintes = []
for contrainte in self .depart:

eq = lambda x: x == contrainte[1]
contr = ContrainteUnaire(self.etats [0]. vars initiales [ contrainte [0]], eq)
contraintes .append(contr)

return contraintes

def construire contraintes finales ( self ):
contraintes = []

for contrainte in self .but:
eq = lambda x: x == contrainte[1]
contr = ContrainteUnaire(self.etats [−1]. vars finales [ contrainte [0]], eq)
contraintes .append(contr)

return contraintes

def resoudre( self ):
self .psc.consistance noeuds()
self .psc. consistance arcs ()
self .psc. variable ordering ()

self .psc.forward checking(0, True)
self . sol = self .psc. solutions

return self. sol

def affice solutions ( self ):
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print('Recherche terminée en {} itérations ' .format(self.psc. iterations ))

if len( self .psc. solutions ) == 0:
print('Aucune solution trouvée')
return

for sol in self .psc. solutions :
print('Solution')
print('========')
for etat in self . etats :

print('État {}: ' .format(etat.no etat))
print(' Propositions initiales : ')
for nom, var in sorted(etat. vars initiales .items()):

if sol [var.nom]:
print(' ' + nom)

print(' Opérateurs:')
for nom, var in sorted(etat.vars operateurs.items()):

if sol [var.nom]:
print(' ' + nom)

print(' Propositions finales : ')
for nom, var in sorted(etat. vars finales .items()):

if sol [var.nom]:
print(' ' + nom)

print()

Module .../exemple_missionnaires.py :

from moteur planification.operateur import Operateur
from moteur planification. planification import Planification

def format g(acteur):
return 'g({})'.format(acteur)

def format d(acteur):
return 'd({})'.format(acteur)

def format dg(bateau, pilote):
return 'dg({}, {})' .format(bateau, pilote)

def format gd(bateau, pilote, passager):
return 'gd({}, {}, {})' .format(bateau, pilote, passager)

bateaux = ['B']
missionnaires = ['M1', 'M2']
cannibales = ['C1', 'C2']

acteurs = bateaux + missionnaires + cannibales

# Ajoute les propositions pour la position des acteurs.
propositions = []
for acteur in acteurs:

propositions .append(format g(acteur))
propositions .append(format d(acteur))

# Ajoute les opérateurs de déplacement.



Solutions des exercices 391

operateurs = []
for bateau in bateaux:

for pilote in missionnaires :
# Déplacements du bateau sans passagers (droite àgauche).
operateurs.append(Operateur(

format dg(bateau, pilote ),
[format d(bateau), format d(pilote )],
[format g(bateau), format g(pilote )])
)

for passager in missionnaires + cannibales:
# Déplacements du bateau avec passagers (gauche àdroite).
if passager != pilote :

operateurs.append(Operateur(
format gd(bateau, pilote , passager),
[format g(bateau), format g(pilote ), format g(passager)],
[format d(bateau), format d(pilote), format d(passager)])
)

# Ajoute les mutex de proposition (un acteur ne peut pas être sur les deux rives
# simultanément).
mutex propositions = []
for acteur in acteurs:

mutex propositions.append((format g(acteur), format d(acteur)))

# Ajoute les mutex d'opérateurs.
mutex operateurs = []
for i in range(len(operateurs)):

for j in range(i+1, len(operateurs)):
for acteur in acteurs:

if ((format d(acteur) in operateurs[ i ]. precond or
format g(acteur) in operateurs[ i ]. precond)
and
(format d(acteur) in operateurs[ j ]. precond or
format g(acteur) in operateurs[ j ]. precond)):

mutex operateurs.append((operateurs[i], operateurs[ j ]))
break

# Ajoute les contraintes initiales (tous les acteurs à gauche).
depart = []
for acteur in acteurs:

depart.append((format g(acteur), True))

# Ajoute les contraintes finales (but: tous les acteurs à droite ).
but = []
for acteur in acteurs:

but.append((format d(acteur), True))

# Transforme le problème de planification en PSC.
plan = Planification(propositions , operateurs,

mutex propositions, mutex operateurs,
depart, but,
nb etats=5)

plan.resoudre()

plan. affice solutions ()
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Chapitre 11

Induction de classifications simples
à partir d’exemples

Exercice 11.1 Attributs discrets

1) Les descriptions conjonctives suivantes sont possibles :

• fuselé ∧ large,
• fuselé.

Le plus court le mieux : c’est donc fuselé qui est la meilleure solution.

2) On ne prend pas l’intersection de tous les attributs que partagent les
champignons venimeux, parce qu’on obtiendrait une description qui est
trop spécifique, c’est-à-dire fuselé ∧ large.

3) Après l’ajout du nouvel exemple, il n’existe pas de description conjonc-
tive de la classe des champignons non venimeux, parce qu’il n’y a aucun
attribut qui est partagé par tous les exemples.

4) Non, on ne peut pas utiliser ce nouvel attribut pour apprendre une clas-
sification conjonctive, parce qu’aucune valeur de l’attribut n’est vraie
pour tous les exemples d’une même classe. Cependant, si on regroupe
{rouge, brun} = coloré, alors les champignons colorés sont ceux qui sont
venimeux.

Exercice 11.2 Attributs numériques

1) Il faut rajouter la coordonnée x2 qui permet la séparation par la frontière
x2 ≤ 1.

2) La bande se caractérise par le fait que y−x se situe entre -1 et 1, donc (y−
x)2 ≤ 1. Elle peut s’exprimer par les trois coordonnées supplémentaires
x2, xy, y2 : x2 − 2xy + y2 ≤ 1

3) L’intérieur du cercle se caractérise par l’inégalité : (x− 2)2 + (y− 2)2 < 1
ou de manière équivalente : 4x+ 4y−x2−y2 > 7, donc nous avons besoin
des coordonnées x2, y2, x, y.
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Chapitre 12

Apprentissage de classifications
structurées

Exercice 12.1 Les arbres de décision (ID3)

Module moteur_id3/id3.py :

from math import log
from .noeud de decision import NoeudDeDecision

class ID3:
def construit arbre( self , donnees):

# Nous devons extraire les domaines de valeur des
# attributs , puisqu' ils sont nécessaires pour
# construire l 'arbre.
attributs = {}
for donnee in donnees:

for attribut , valeur in donnee[1].items():
valeurs = attributs.get(attribut)
if valeurs is None:

valeurs = set()
attributs [ attribut ] = valeurs

valeurs .add(valeur)

arbre = self . construit arbre recur (donnees, attributs )

return arbre

def construit arbre recur ( self , donnees, attributs ):

def classe unique(donnees):
if len(donnees) == 0:

return True
premiere classe = donnees[0][0]
for donnee in donnees:

if donnee[0] != premiere classe :
return False

return True

if donnees == []:
return None

# Si toutes les données restantes font partie de la même classe,
# on peut retourner un noeud terminal.
elif classe unique(donnees):

return NoeudDeDecision(None, donnees)

else:
# Sélectionne l ' attribut qui réduit au maximum l'entropie.
h C As attribs = [( self .h C A(donnees, attribut, attributs [ attribut ]),

attribut) for attribut in attributs ]

attribut = min(h C As attribs, key=lambda h a: h a[0])[1]
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# Crée les sous−arbres de manière récursive.
attributs restants = attributs.copy()
del attributs restants [ attribut ]

partitions = self . partitionne(donnees, attribut , attributs [ attribut ])

enfants = {}
for valeur , partition in partitions .items():

enfants[valeur ] = self . construit arbre recur (partition ,
attributs restants )

return NoeudDeDecision(attribut, donnees, enfants)

def partitionne( self , donnees, attribut , valeurs ):
partitions = {valeur: [] for valeur in valeurs}

for donnee in donnees:
partition = partitions [donnee[1][ attribut ]]
partition .append(donnee)

return partitions

def p aj( self , donnees, attribut , valeur ):
# Nombre de données.
nombre donnees = len(donnees)

# Permet d'éviter les divisions par 0.
if nombre donnees == 0:

return 0.0

# Nombre d'occurrences de la valeur a j parmi les données.
nombre aj = 0
for donnee in donnees:

if donnee[1][ attribut ] == valeur:
nombre aj += 1

# p(a j) = nombre d'occurrences de la valeur a j parmi les données /
# nombre de données.
return nombre aj / nombre donnees

def p ci aj ( self , donnees, attribut , valeur , classe ):
# Nombre d'occurrences de la valeur a j parmi les données.
donnees aj = [donnee for donnee in donnees if donnee[1][attribut] == valeur]
nombre aj = len(donnees aj)

# Permet d'éviter les divisions par 0.
if nombre aj == 0:

return 0

# Nombre d'occurrences de la classe c i parmi les données pour lesquelles
# A vaut a j.
donnees ci = [donnee for donnee in donnees aj if donnee[0] == classe]
nombre ci = len(donnees ci)

# p(c i|a j) = nombre d'occurrences de la classe c i parmi les données
# pour lesquelles A vaut a j /
# nombre d'occurrences de la valeur a j parmi les données.
return nombre ci / nombre aj
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def h C aj(self , donnees, attribut , valeur ):
# Les classes attest ées dans les exemples.
classes = list(set([donnee[0] for donnee in donnees]))

# Calcule p(c i|a j) pour chaque classe c i .
p ci ajs = [ self . p ci aj (donnees, attribut , valeur , classe )

for classe in classes ]

# Si p vaut 0 −> plog(p) vaut 0.
return −sum([p ci aj ∗ log(p ci aj, 2.0)

for p ci aj in p ci ajs
if p ci aj != 0])

def h C A(self, donnees, attribut , valeurs ):
# Calcule P(a j) pour chaque valeur a j de l ' attribut A.
p ajs = [ self .p aj(donnees, attribut , valeur) for valeur in valeurs ]

# Calcule H C aj pour chaque valeur a j de l'attribut A.
h c ajs = [ self .h C aj(donnees, attribut, valeur)

for valeur in valeurs ]

return sum([p aj ∗ h c aj for p aj, h c aj in zip(p ajs, h c ajs )])
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Chapitre 13

Apprentissage non supervisé

Exercice 13.1 Clustering

Module .../moteurs_clustering/clustering_kmeans.py :

from .cluster mean import ClusterMean
from .clustering import Clustering

class ClusteringKMeans(Clustering):
def init ( self , k, dist f ):

super(). init ()
self .k = k
self . dist f = dist f

def noyaux(self, clusters ):
return [cluster.noyau for cluster in clusters ]

def initialise clusters ( self , donnees):
if len(donnees) < self.k:

raise Exception('Il faut au moins {} données'.format(self.k))

# Crée les clusters autour des noyaux, qui sont les premières k données.
noyaux = [(donnees[i], str( i + 1)) for i in range(self.k)]
self . clusters = [ClusterMean([noyau[0]], noyau[1]) for noyau in noyaux]

# Ajoute toutes les autres données au premier cluster.
self . clusters [0]. ajoute donnees(donnees[self .k :])

def fini ( self , anciens clusters ):
return self.noyaux(self . clusters ) == self.noyaux(anciens clusters)

def revise clusters ( self ):
# Extrait toutes les données des anciens clusters, sauf les noyaux.
donnees = []
for cluster in self . clusters :

donnees.extend([d for d in cluster .donnees if d != cluster .noyau])

# Réinitialise les nouveaux clusters aux noyaux des anciens clusters.
for cluster in self . clusters :

cluster .vide(garde noyau=True)

# Assigne chaque donnée au cluster du noyau duquel il est le
# plus proche.
for donnee in donnees:

distances = [( self . dist f (donnee, cluster .noyau), cluster )
for cluster in self . clusters ]

cluster = min(distances, key=lambda x: x[0])[1]
cluster .ajoute donnee(donnee)

# Recentre le noyau de chaque nouveau cluster.
for cluster in self . clusters :

cluster .centre( self . dist f )
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def affiche clusters ( self ):
print('\n' . join ([str( cluster ) for cluster in self . clusters ]))

Module .../moteurs_clustering/clustering_hierarchique.py :

from .cluster hierarchique import ClusterHierarchique
from .clustering import Clustering

class ClusteringHierarchique(Clustering):
liens = {

' single ' : min,
'complete': max,

}

def init ( self , type lien , dist f ):
super(). init ()
self . dist f = dist f
# Permet d'utiliser min ou max de manière générique en fonction du
# paramètre type lien.
self . lien = self . liens [ type lien ]

def fusionne clusters ( self , cluster1 , cluster2 ):
donnees = cluster1.donnees + cluster2.donnees
return ClusterHierarchique(donnees, cluster1, cluster2 )

def calcule distance ( self , cluster1 , cluster2 ):
distances = []
for donnee1 in cluster1.donnees:

for donnee2 in cluster1.donnees:
distances .append(self. dist f (donnee1, donnee2))

return self. lien (distances)

def initialise clusters ( self , donnees):
# Construit les clusters terminaux : un par donnée.
# Les clusters seront ensuite fusionnés pour créer la hiérarchie .
self . clusters = [ClusterHierarchique([donnee]) for donnee in donnees]

def fini ( self , anciens clusters ):
return len(self. clusters ) == len(anciens clusters)

def revise clusters ( self ):
if len( self . clusters ) == 1:

return

# Calcule la distance entre chaque paire de clusters .
distances = []
for cluster1 in self . clusters :

for cluster2 in self . clusters :
if cluster1 != cluster2 :

distance = self . calcule distance ( cluster1 , cluster2 )
distances .append((distance, cluster1 , cluster2 ))

# Trouve les deux clusters les plus proches.
paire = min(distances, key=lambda x: x[0])
cluster1 = paire[1]
cluster2 = paire[2]
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# Fusionne ces deux clusters.
nouveau cluster = self . fusionne clusters ( cluster1 , cluster2 )
self . clusters .remove(cluster1)
self . clusters .remove(cluster2)
self . clusters .append(nouveau cluster)

def affiche clusters ( self ):
print('\n' . join ([str( cluster ) for cluster in self . clusters ]))
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déduction, 6
deep learning, 335
deep neural net, 335
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élagage, 288
enregistrement, 68
entités, 67
entropie, 282
environnements, 80
exceptions, 278
expectation maximisation, 316
explication, 83

facteurs de certitude, 114
factorisation, 44
filtrage, 40
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sigmöıde, 333

forme normale, 31
formules bien formées, 25
forward checking, 179
frames, 68
frontières de décision, 264

General Problem Solver, 8
generate-and-test, 173
Gibbs sampling, 128
gradient disparaissant, 335
graphe de recherche, 147
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d’inférence, 28
du perceptron, 265

régression, 257, 268
logistique, 271

régularisation, 270
relaxation de valeurs, 186
représentation structurée des

connaissances, 67
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