Exercise Set 3: Solution
Quantum Computation

Exercise 1 Deutsch’s algorithm

(a) The 4 oracle gates Uy are given respectively by:

(1) For fi(x) =0: (2) For fao(x) =1:
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(b) The Deutsch circuit is the following:
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Let us analyze the various states:
e Initially, the state of the 2 qubits is |¢y) = |0) ® |1).

o After passage through the first Hadamard gates, the state becomes
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o After passage through the quantum oracle Uy, the state becomes
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e Then, after passage of the first qubit through the Hadamard gate on the right, the
state becomes:
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after some reordering.
e Let us now analyze the state |¢3) in the two cases f(0) = f(1) and f(0) # f(1):
— In the case where f(0) = f(1) = z, say, we get:

i) = 573 (10.2) = 0.3) + [0.2) = 10.7) ) = = (10.2) ~ [0.7)

— In the case where f(0) = z and f(1) =7, say, we get:
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e So finally, measuring the value of the first qubit, we obtain either |0) or |1) (each
time with probability 1), which allows us to decide between the two alternatives.

Exercise 2 Bernstein-Vazirani’s algorithm

(a) We reuse here the same circuit as in the lecture for the Deutsch-Josza algorithm:

+
=] =]

A

=]

The only thing that changes here is the prior information we have on the function f.
The output state of the circuit (before the measurement) is given by
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So after the measurement of the first n qubits, the outcome is state |y) with probability
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which is equal to 1 if y = @ and 0 in all the other cases. Therefore the result.

(b) When adding bit b to the picture, we obtain

2
_ 1 b®d z-(aty)
prob(ly)) = |5 D (1ol
z€{0,1}"
2 2
1 x-(a 1 T-(a
= 27(—1)b Y (Fprewm) = on > (=nynlew
ze{0,1}n z€{0,1}"

(i) The probabilities remain therefore the same as in the absence of b (which just adds
a global phase), so the vector a can be equally determined.

(ii) On the contrary, b remains unknown with this scheme.

Exercise 3 Construction of the Toffoli gate with C-NOT, H, T and S gates
Using the first hint, we see that the circuit outputs the tensor product state [1) given by
1) = Tler) @ SXOTTXOT |¢p) @ HTXOTTX2T XTI X2 H |t).

We then verify explicitly all the cases of ¢; and cy. The calculation largely uses the fact that
all the quantum gates here are unitary (e.g., TTT = T'T = I); in particular, the gates X
and H are involutory, i.e., X2 = H?> = I.

For ¢; = 0, we have
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For ¢; =1 and ¢y = 0, let us follow the second hint:
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and use this to compute
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Finally, for ¢; = ¢o = 1, we compute, using repeatedly (1):
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Finally, this gives
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as expected.



