
Quantum computation : additional slides

10) Groups , subgroups , equivalence classes

Lagrange's theorem

along with examples !

20) Euler's totient function 4
Main properties & a simple lover bound



Finite
group

= finite set G = 591 , 92 , ..., gu] equipped with
internal operation gr , g21 < gigg St.

1) (g .g) .g" = g
. (gig") Eg,gig"G associativity

2) JeeG sr. ge = e . g = g VgeG neutral el.

3) VgeG , JgG Sr
. g .g =gig =e inverse

On top of that , we say that G is abelian

if g .g = gig Vg ,g 6.



Subgrap
= set & +HCG SU if h,

heh
,
then hih'H

and if hel
,
then heH

From this definition,
it follows that I is a group,

contains the neutral element
,
and the

associativity law holds inside H.

NB : H = Se2 & H = 6 are always subgroups of 6



Equivalence classes of a subgroup HCG

Eg = Eg .h : heH] = set reachable from an

element o acting by all possible elements of H:

6
g .h g .h?

·
->-

...

If 6 is abelian
,
when Eg = Eh .g : heH)



Fundamental property

If gig in G , when either Eg=Eg or EglEg=&

This is a direct consequence of Lagranges thin :

(i) Let g ,ge 6 ; then either Eg= Eg- on EghEg=

(ii)The number of equivalence classes of M

is equal to ,
ie. IH divides 16



Notation : The set of equivalence classes of H
is also denoted as G/H (the quaient group

(so observe that 16/H1 = 161/IH1)

Proof of Lagrange's Hum :

(i) Let g ,g - 6 . If Eg1Eg- =0 ,
there is

nothing to prove ; assume thereforet Eg+Eg
By def,7h,

hel s.
t. 5= g. h = g

:h



So g= g.h EEg ; ie . EgC 3
likewise

, g = g:heEg ; i. EgC#(i)
(ii)Egl = /H) Fg because the mapping

SM Eg is bijectivea

So (6/n) . (H) = 16)
# (ii)

(thanks to part i)



Here are same"pickoes" :

G
Eg2 6F ar

M
·

93) · ga·

e

NB : ·The equivalence classes ofI form a

partition of G

· H = subgrap ? Check first that IH) divides (6) !



Examples
1) Let us first consider G = (50 , 133, 4)
with the group (abelian) operation

xey = (x
,eyn , xyz, ys)

Note that even though we use a multi-

plicative notation for groups , here the

operation is simply the xor (addition mod 2).



Likewise
,
the inverse of an element>

is simply equal to itself as xex =o.

In this example , G is more than a

group : it is also a vector space

of dimension 3.
We can also define the dual of a

subspace U : H =Eye6 : yx = o Exem 3
I dat product

notorthogonal (# inner product)



19) H = 5(000) ,
(001] is a sub of 6,grou

(f subspace)
with s equivalence classes :

Flood = H E(roa = He(100

Econo = HQ(ord) E(en0) = H0(110)

6H = E Floor , EGoo , Elonos , #(20))
H
+

= \(000) ,
(00)

,
(010)

,
(110)

H has dimension 1
,

Ht has dimension 2



1b) H = Span5(100) , losol3
also a

subgrap
=3(00d ,Goo , Cond ,

(10) of G

Flood = H
, E(oon) = HG(001)

6/H = E Floral
,
Econt]

H+ = E(000) , (001)] dinH =2
,
dimH

This seems all intuitive and matching
perfectly , but wait for the next example !



1c) H = Span & (110), (001)] again
a subgrap

= [(000) , (2nd) , Coor, (111)) of 6

Flood = H
, E(00 = H(100)

6 /n = <Flood , E(00))
di H = 2

,
din H + = 1

but H
+

= 5(000) ,
(110)3 [CH ! ]

this surprising fact comes from the( ↳fact that x .y is not an inner product



2) More generally , we may have
· 6 =(5013",#) set of length n binary vectors

equipped with addition mod 2
· H = k-dimensional subspace of 6 : (H) =2

· In this case
,
G will be divided

into 16/M1 =2""equivalence classes
· And H+ = (n-k) - dim subspace , (H=2-



3) G = (2 ,
+) the set of integer numbers

equipped with the usual addition

H = r . I with r some positive integer

eg .
classes : Fo = H

, Eq = Eq + nr :nex)

01 q + r - 1

6(4 =2/r2 = [0 , 1. . . ., r-1)
,
(64)=r

↓

integers modulo



4) 6 = z(my = 20 , 1...-,
M -1)

H = & multiples ofr between o & R.1 3 ( fixed)

= subgrap of G ifand only ifr divides M

Note that is this case
,
G/H is isomorphic

to 2/r2



Euler's totient function 4

Lef : Let N2 1 be an integer

P(N) : = # [02kN -1 : gcd(k,
N) = 1)

Ex = 4(8) = # 41 ,
3
,
5
,
73 = 4

q (10)=[2 ,
3
,
7

,
93 = 4

4 (18) = #31 ,
5
,
7

,
11

,
13

, 173 = 6



More generally :

· g(pl = P-1 if P is prime

· 4 (p .Q) = (-1) . (Q - 1) if P
,
Q are prime

· 4(PK) = PK-1(p- 1) if P is prime & K21

·((N) = PE (P-1) · Pekm- (P2-1) ... PeFe-(pe-e)
if N = P, p. - - - Peke is the (unique)

prime factor decomposition of i



Proposition

4(N) =) FNz2

Proof

If N= PEp ... per
,
then

((N) = P( -)P
*(1- ) --- Per(r -4)

=N(1-)
= N(1-/(1++)
j =1



So y(n) = N- (1-)+
Numerator:(1-5)(-)
=..

-
Denainder :#(1+5) (expandheproduct

j=1

- 1 + In(n) = 2(n (N)

This leads to the desired inequality . #


