

Quantum computation : additional slides

1º) Groups, subgroups, equivalence classes

Lagrange's theorem

along with examples !

2º) Euler's Totient function φ

Main properties & a simple lower bound

Finite group

= finite set $G = \{g_1, g_2, \dots, g_n\}$ equipped with
internal operation $g_1, g_2 \mapsto g_1 \cdot g_2$ s.t.

- 1) $(g \cdot g') \cdot g'' = g \cdot (g' \cdot g'')$ $\forall g, g', g'' \in G$ associativity
- 2) $\exists e \in G$ s.t. $g \cdot e = e \cdot g = g$ $\forall g \in G$ neutral el.
- 3) $\forall g \in G, \exists g' \in G$ s.t. $g \cdot g' = g' \cdot g = e$ inverse

On top of that, we say that G is abelian
if $g \cdot g' = g' \cdot g$ $\forall g, g' \in G$.

Subgroup

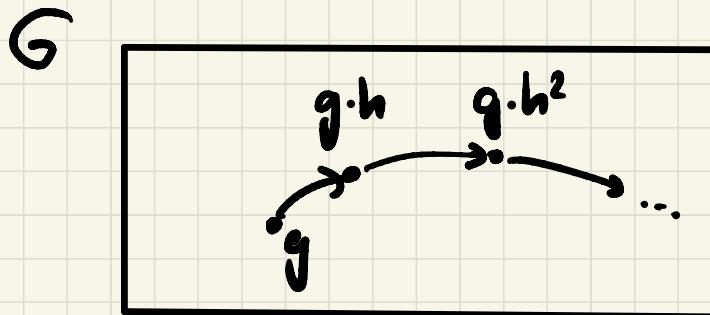
= set $\emptyset \neq H \subset G$ s.t. if $h, h' \in H$, then $h \cdot h' \in H$
and if $h \in H$, then $h^{-1} \in H$

From this definition, it follows that H is a group,
contains the neutral element e , and the
associativity law holds inside H .

NB: $H = \{e\}$ & $H = G$ are always subgroups of G

Equivalence classes of a subgroup $H \subset G$

$E_g = \{g \cdot h : h \in H\}$ = set reachable from an element g acting by all possible elements of H :



If G is abelian, then $E_g = \{h \cdot g : h \in H\}$

Fundamental property

If $g \neq g' \in G$, then either $E_g = E_{g'}$ or $E_g \cap E_{g'} = \emptyset$

This is a direct consequence of Lagrange's Theorem:

(i) Let $g, g' \in G$; then either $E_g = E_{g'}$ or $E_g \cap E_{g'} = \emptyset$

(ii) The number of equivalence classes of H

is equal to $\frac{|G|}{|H|}$, i.e. $|H|$ divides $|G|$.

Notation: The set of equivalence classes of H is also denoted as G/H (the quotient group) (so observe that $|G/H| = |G|/|H|$)

Proof of Lagrange's Thm:

(i) Let $g, g' \in G$. If $E_g \cap E_{g'} = \emptyset$, there is nothing to prove; assume therefore $\bar{g} \in E_g \cap E_{g'}$. By def., $\exists h, h' \in H$ s.t. $\bar{g} = g \cdot h = g' \cdot h'$

So $g' = g \cdot \underbrace{h \cdot (h')^{-1}}_{\in H} \in E_{g'} ; \text{ i.e. } E_{g'} \subset E_g \}$

Likewise, $g = g' \cdot \underbrace{h' \cdot h^{-1}}_{\in H} \in E_{g'} ; \text{ i.e. } E_g \subset E_{g'} \#(i)$

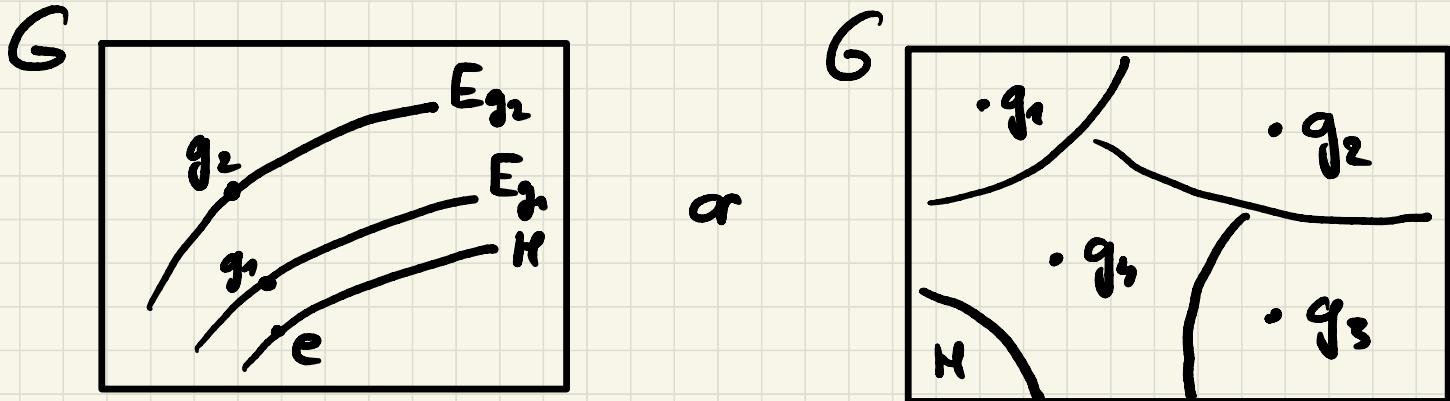
(ii) $|E_g| = |H| \quad \forall g$ because the mapping

$\begin{cases} H \longrightarrow E_g \\ h \longmapsto g \cdot h \end{cases}$ is bijective

So $|G/H| \cdot |H| = |G| \quad \#(ii)$

(Thanks to part i)

Here are some "pictures":



NB: • The equivalence classes of H form a

partition of G

• $H = \text{subgroup}$? check first that $|H|$ divides $|G|$!

Examples

1) Let us first consider $G = (\{0,1\}^3, \oplus)$

with the group (abelian) operation

$$x \oplus y = (x_1 \oplus y_1, x_2 \oplus y_2, x_3 \oplus y_3)$$

Note that even though we use a multiplicative notation for groups, here the operation is simply the XOR (addition mod 2).

Likewise, the inverse of an element x is simply equal to itself as $x \oplus x = 0$.

In this example, G is more than a group : it is also a vector space of dimension 3.

We can also define the dual of a subspace H : $H^+ = \{y \in G : y \cdot x = 0 \ \forall x \in H\}$

not orthogonal

(dot product
≠ inner product)

1a) $H = \{(000), (001)\}$ is a subgroup of G ,
(& subspace)
with 4 equivalence classes:

$$E_{(000)} = H$$

$$E_{(100)} = H \oplus (100)$$

$$E_{(010)} = H \oplus (010) \quad E_{(110)} = H \oplus (110)$$

$$G/H = \{E_{(000)}, E_{(100)}, E_{(010)}, E_{(110)}\}$$

$$H^\perp = \{(000), (100), (010), (110)\}$$

H has dimension 1, H^\perp has dimension 2

$$16) H = \text{span} \{ (100), (010) \}$$

$$= \{ (000), (100), (010), (110) \}$$

also a
subgroup
of G

$$E_{(000)} = H, E_{(001)} = H \oplus (001)$$

$$G/H = \{ E_{(000)}, E_{(001)} \}$$

$$H^\perp = \{ (000), (001) \} \quad \text{dim } H=2, \text{dim } H^\perp=1$$

This seems all intuitive and matching perfectly, but wait for the next example!

$$1c) H = \text{span} \{ (110), (001) \}$$

against
a subgroup
of G

$$= \{ (000), (110), (001), (111) \}$$

$$E_{(000)} = H, \quad E_{(100)} = H \oplus (100)$$

$$G/H = \{ E_{(000)}, E_{(100)} \}$$

$$\dim H = 2, \dim H^\perp = 1$$

$$\underline{\text{but}} \quad H^\perp = \{ (000), (110) \} \quad [\subset H !]$$

(This surprising fact comes from the
fact that $\mathbf{x} \cdot \mathbf{y}$ is not an inner product)

2) More generally, we may have

- $G = (\{0,1\}^n, \oplus)$ set of length n binary vectors equipped with addition mod 2

- $H = k$ -dimensional subspace of G : $|H| = 2^k$

- In this case, G will be divided

into $|G/H| = 2^{n-k}$ equivalence classes

- And $H^\perp = (n-k)$ -dim subspace, $|H^\perp| = 2^{n-k}$

3) $G = (\mathbb{Z}, +)$ the set of integer numbers
equipped with the usual addition

$H = r \cdot \mathbb{Z}$ with r some positive integer

eq. classes: $E_0 = H$, $E_q = \{q + n \cdot r : n \in \mathbb{Z}\}$

$$0 \leq q \leq r-1$$

$G/H = \mathbb{Z}/r\mathbb{Z} = \{0, 1, \dots, r-1\}$, $|G/H| = r$
integers modulo r

$$4) G = \mathbb{Z}/M\mathbb{Z} = \{0, 1, \dots, M-1\}$$

$$H = \{ \text{multiples of } r \text{ between } 0 \text{ & } M-1 \} \text{ (r fixed)}$$

= subgroup of G if and only if r divides M

Note that in this case, G/H is isomorphic

$$\text{to } \mathbb{Z}/r\mathbb{Z}$$

Euler's totient function φ

Def: Let $N \geq 1$ be an integer

$$\varphi(N) := \#\{0 \leq k \leq N-1 : \gcd(k, N) = 1\}$$

Ex: $\varphi(8) = \#\{1, 3, 5, 7\} = 4$

$$\varphi(10) = \#\{1, 3, 7, 9\} = 4$$

$$\varphi(18) = \#\{1, 5, 7, 11, 13, 17\} = 6$$

More generally:

- $\varphi(P) = P-1$ if P is prime
- $\varphi(P \cdot Q) = (P-1) \cdot (Q-1)$ if P, Q are prime
- $\varphi(P^k) = P^{k-1}(P-1)$ if P is prime & $k \geq 1$
- $\varphi(N) = P_1^{k_1-1}(P_1-1) \cdot P_2^{k_2-1}(P_2-1) \cdots P_e^{k_e-1}(P_e-1)$
if $N = P_1^{k_1} \cdot P_2^{k_2} \cdots P_e^{k_e}$ is the (unique)
prime factor decomposition of N

Proposition

$$\varphi(N) \geq \frac{N}{4 \ln(N)} \quad \forall N \geq 2$$

Proof

If $N = p_1^{k_1} \cdot p_2^{k_2} \cdots p_e^{k_e}$, then

$$\varphi(N) = p_1^{k_1} \left(1 - \frac{1}{p_1}\right) p_2^{k_2} \left(1 - \frac{1}{p_2}\right) \cdots p_e^{k_e} \left(1 - \frac{1}{p_e}\right)$$

$$= N \prod_{j=1}^e \left(1 - \frac{1}{p_j}\right)$$

$$= N \prod_{j=1}^e \left(1 - \frac{1}{p_j^2}\right) / \left(1 + \frac{1}{p_j}\right)$$

$$\text{So } \varphi(n) = N \cdot \prod_{j=1}^e \left(1 - \frac{1}{p_j^2}\right) \Big/ \prod_{j=1}^e \left(1 + \frac{1}{p_j}\right)$$

$$\text{Numerator : } \prod_{j=1}^e \left(1 - \frac{1}{p_j^2}\right) \geq \prod_{i=2}^N \left(1 - \frac{1}{i^2}\right)$$

$$\begin{aligned} &= \prod_{i=2}^N \frac{i^2 - 1}{i^2} = \prod_{i=2}^N \frac{(i-1)(i+1)}{i^2} = \frac{1 \cdot 3}{2^2} \cdot \frac{2 \cdot 4}{3^2} \cdot \frac{3 \cdot 5}{4^2} \cdots \frac{(N-1)(N+1)}{N^2} \\ &= \frac{N+1}{2N} \geq \frac{1}{2} \end{aligned}$$

$$\text{Denominator : } \prod_{j=1}^e \left(1 + \frac{1}{p_j}\right) \leq \sum_{i=1}^N \frac{1}{i} \quad \begin{matrix} \text{(expand the)} \\ \text{product} \end{matrix}$$

$$\leq 1 + \ln(N) \leq 2 \ln(N)$$

This leads to the desired inequality. #