
Midterm exam 2025: Solutions
Quantum Computation

Please pay attention to the presentation of your answers! (2 points)

Exercise 1 Outputs of quantum circuits (12 points)

a) Consider the following 3-qubit quantum circuit U :

|x〉 |?〉

|y〉 |?〉

|z〉 |?〉

X X

X X

What is the output of the circuit U when the input is an element |x, y, z〉 of the computa-
tional basis?

Solution:

|x〉 |x〉

|y〉 |y〉

|z〉 |x⊕ y ⊕ z〉

X X

X X

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

The states at different points in the circuit are |ψ1〉 = |x, y, xy ⊕ z〉 , |ψ2〉 = |x, y, xy ⊕ z〉 ,
|ψ3〉 = |x, y, xy ⊕ xy ⊕ z〉 and |ψ4〉 = |x, y, xy ⊕ xy ⊕ z〉 = |x, y, x⊕ y ⊕ z〉.

b) Consider now the following circuit:

|0〉

|0〉

|0〉

H

U

H

H H

X H
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What is/are the possible output(s) of the first 2 qubits of the circuit (i.e., the ones following
the gates H) and their corresponding probabilities?

Solution:

|0〉

|0〉

|0〉

H

U

H

H H

X H

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

We have |ψ1〉 = |001〉. The subsequent states can be computed as follows:

|ψ2〉 = H⊗3 |ψ1〉 =

1

2

∑
x,y∈{0,1}

|x, y〉

⊗ 1√
2

(|0〉 − |1〉) =
1

23/2

∑
x,y∈{0,1}

|x, y〉 ⊗ |0〉 − |x, y〉 ⊗ |1〉

|ψ3〉 = U |ψ2〉 =
1

23/2

∑
x,y∈{0,1}

U |x, y〉 ⊗ |0〉 − U |x, y〉 ⊗ |1〉

=
1

23/2

∑
x,y∈{0,1}

|x, y〉 ⊗ |x⊕ y〉 − |x, y〉 ⊗ |x⊕ y〉 =
1

2

∑
x,y∈{0,1}

(−1)x⊕y |x, y〉 ⊗ 1√
2

(|0〉 − |1〉)

and finally:

|ψ4〉 = (H⊗2 ⊗ I) |ψ3〉 =
1

2

∑
x,y∈{0,1}

(−1)x⊕yH⊗2 |x, y〉 ⊗ 1√
2

(|0〉 − |1〉)

=
1

2

∑
x,y∈{0,1}

(−1)x⊕y

1

2

∑
u,v∈{0,1}

(−1)ux⊕vy |u, v〉

⊗ 1√
2

(|0〉 − |1〉)

=

1

4

∑
x,y,u,v∈{0,1}

(−1)x⊕y⊕ux⊕vy |u, v〉

⊗ 1√
2

(|0〉 − |1〉)

=

−1

4

∑
x,y,u,v∈{0,1}

(−1)x⊕y⊕ux⊕vy |u, v〉

⊗ 1√
2

(|0〉 − |1〉)

=

−1

4

∑
x,y,u,v∈{0,1}

(−1)ūx⊕v̄y |u, v〉

⊗ 1√
2

(|0〉 − |1〉)

We see that the probability of |ψ4〉 = |1, 1〉 equals 1. Therefore the only possible output
state is |1, 1〉.
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c) How would these output probabilities be modified if the circuit U were replaced by a
single Toffoli gate?

Solution:

|0〉

|0〉

|0〉

H H

H H

X H

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

The states |ψ1〉 and |ψ2〉 remain the same as in part (b). The subsequent states can be
computed as follows:

|ψ3〉 = CCNOT |ψ2〉 =
1

23/2

∑
x,y∈{0,1}

CCNOT |x, y〉 ⊗ |0〉 − CCNOT |x, y〉 ⊗ |1〉

=
1

23/2

∑
x,y∈{0,1}

|x, y〉 ⊗ |xy〉 − |x, y〉 ⊗ |xy〉 =
1

2

∑
x,y∈{0,1}

(−1)xy |x, y〉 ⊗ 1√
2

(|0〉 − |1〉)

and

|ψ4〉 = (H⊗2 ⊗ I) |ψ3〉 =
1

2

∑
x,y∈{0,1}

(−1)xyH⊗2 |x, y〉 ⊗ 1√
2

(|0〉 − |1〉)

=
1

2

∑
x,y∈{0,1}

(−1)xy

1

2

∑
u,v∈{0,1}

(−1)ux⊕vy |u, v〉

⊗ 1√
2

(|0〉 − |1〉)

=

1

4

∑
x,y,u,v∈{0,1}

(−1)xy⊕ux⊕vy |u, v〉

⊗ 1√
2

(|0〉 − |1〉)

We can compute the probabilities as P(|00〉) = 1
4
, P(|01〉) = 1

4
, P(|10〉) = 1

4
, and P(|11〉) = 1

4
.

Exercise 2 True or false? (16 points)

For each question, 1 pt for the correct answer, 3 pts for the justification. If you think the
statement is correct, then prove it; otherwise, provide a counter-example.

a) Let |ϕ〉 be a single qubit state and |ϕ〉 ⊗ |ϕ〉 be the (product) state of two qubits. A
measurement in the computational basis is performed on the two qubits. Then the proba-
bility of observing the two qubits in the same state is necessarily greater than or equal to
the probability of observing them in different states.
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Solution: True. Let |ϕ〉 = a |0〉+ b |1〉. Then |ϕ〉⊗ |ϕ〉 = a2 |00〉+ ab |01〉+ ba |10〉+ b2 |11〉,
so

P(|00〉 or |11〉) = |a|4 + |b|4
(a)

≥ 2|a|2|b|2 = P(|01〉 or |10〉)
where (a) follows from the inequality (|a|2 − |b|2)2 ≥ 0.

b) Classically, the output of a XOR gate is always equal to 0 if its two inputs are identical.
It is also the case that the output target qubit of a CNOT gate is always |0〉 if its two input
qubits are in a product state |ϕ〉 ⊗ |ϕ〉.

Solution: False. Consider |ϕ〉 = 1√
2
(|0〉+ |1〉). We have

CNOT (|ϕ〉⊗|ϕ〉) = CNOT
1

2
(|00〉+|01〉+|10〉+|11〉) =

1

2
(|00〉+|01〉+|11〉+|10〉) = |ϕ〉⊗|ϕ〉

In this case, the target qubit is |1〉 with probability 1
2

if measured.

c) If the input to the following circuit:

H H

is in an entangled state, then so is its output.

Solution: False. Let us compute the unitary matrix U corresponding to the circuit. We
have

U = (H ⊗ I) CNOT (H ⊗ I)

=
1

2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 =
1

2


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1


Since U is unitary, an input state corresponding to any of the rows of U will lead to
an element in the computational basis. We can verify that a states corresponding to
the rows of U are entangled. For example, the first row of U leads to the state |ψ〉 =

1
2
(a |00〉 + b |01〉 + c |10〉 + d |11〉) with (a, b, c, d) = (1, 1, 1,−1). However, det

(
a b
c d

)
6= 0.

Hence |ψ〉 is an entangled state that gives the output state |00〉 which is a product state.

Another simpler solution is the following: as all the considered gates are their own inverses
(H† = H and CNOT† = CNOT), one can show that the proposition is false by showing that
for an input product state |00〉, the output is entangled.
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d) The following circuit:

H Z H

is equivalent to a CNOT gate.

Solution: True.

|x〉

|y〉 H Z H

|ψ1〉 |ψ2〉 |ψ3〉

For an input state |x, y〉 in the computational basis, we can compute the output of the circuit
as follows:

|ψ1〉 = (I ⊗H) |x, y〉 =
1√
2

(|x, 0〉+ (−1)y |x, 1〉)

|ψ2〉 = CZ |ψ1〉 =
1√
2

(CZ |x, 0〉+ (−1)yCZ |x, 1〉)

=
1√
2

(
|x, 0〉+ (−1)x⊕y |x, 1〉

)
= |x〉 ⊗ 1√

2

(
|0〉+ (−1)x⊕y |1〉

)
and

|ψ3〉 = (I ⊗H) |ψ2〉 = |x〉 ⊗ 1√
2

(
H |0〉+ (−1)x⊕yH |1〉

)
= |x〉 ⊗ 1

2

(
(1 + (−1)x⊕y) |0〉+ (1− (−1)x⊕y) |1〉

)
= |x, x⊕ y〉

Another simpler solution is the following: let |x, y〉 be the input (basis) state:

- if x = 0, then the controlled Z gate is inactive, and two H gates cancel, so the output is
|0, y〉

- if x = 1, then the controlled Z gate is active, so the second qubit |y〉 goes through the gates
HZH which are equivalent to an X gate, so the output is |1, y〉 in this case.

Therefore the above circuit is equivalent to a CNOT gate.
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Exercise 3 Matrix representation (5 points)

Let U = 1√
3

(
1

√
2

−
√

2 1

)
be the matrix representation of the 1-qubit gate U .

What is the matrix representation of the following 2-qubit gate? (in the computational basis
{|00〉 , |01〉 , |10〉 , |11〉})

U U †

Solution: The matrix representation V of the circuit can be written as:

V = (I⊗U †)CNOT (I⊗U) =

(
U † 0
0 U †

)(
I 0
0 X

)(
U 0
0 U

)
=

(
U †U 0

0 U †XU

)
=

(
I 0
0 U †XU

)
and

U †XU =
1

3

(
1 −

√
2√

2 1

)(
0 1
1 0

)(
1

√
2

−
√

2 1

)
=

1

3

(
−
√

2 1

1
√

2

)(
1

√
2

−
√

2 1

)
=

1

3

(
−2
√

2 −1

−1 2
√

2

)
Hence,

V =


1 0 0 0
0 1 0 0

0 0 −2
√

2/3 −1/3

0 0 −1/3 2
√

2/3



Exercise 4 Communication with quantum bits (15 points)

Consider the following problem: Alice is in possession of a 2-bit vector a = (a0, a1) ∈ {0, 1}2

and Bob is in possession of another 2-bit vector b = (b0, b1) ∈ {0, 1}2. They would like to
exchange information about the vectors a and b.

To this end, Alice builds the following 2-qubit circuit:

|0〉

|0〉

H

Ua

X H

where the action of the gate Ua on a basis state |x〉 ⊗ |y〉 is described as:

Ua (|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ ax〉

Alice then sends the 2-qubit output state |ψ〉 of the above circuit to Bob.
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a) Compute the state |ψ〉.

Solution:

|0〉

|0〉

H

Ua

X H

|ψ1〉 |ψ2〉

The states can be computed successively as follows:

|ψ1〉 = |01〉 ,

|ψ2〉 =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉)

|ψ〉 = Ua |ψ2〉 =
1

2
(|0, a0〉 − |0, a0〉+ |1, a1〉 − |1, a1〉)

=
1

2

(
(−1)a0 |0〉 ⊗ (|0〉 − |1〉) + (−1)a1 |1〉 ⊗ (|0〉 − |1〉)

)
=

1√
2

(
(−1)a0 |0〉+ (−1)a1 |1〉

)
⊗ 1√

2

(
|0〉 − |1〉

)

Bob then uses the state |ψ〉 as input to the following circuit:

Ub

H

where the action of the gate Ub is similar to the action of the gate Ua described above.

b) Compute the 2-qubit output state |ψ′〉 of the above circuit.

Solution:

Ub

H

|ψ′1〉
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We can compute the states |ψ′1〉 and |ψ′〉 as follows:

|ψ′1〉 = Ub |ψ〉 =
1

2

(
(−1)a0(Ub |00〉 − Ub |01〉) + (−1)a1(Ub |10〉 − Ub |11〉)

)
=

1

2

(
(−1)a0(|0, b0〉 −

∣∣0, b0

〉
) + (−1)a1(|1, b1〉 −

∣∣1, b1

〉
)
)

=
1

2

(
(−1)a0⊕b0 |0〉 ⊗ (|0〉 − |1〉) + (−1)a1⊕b1 |1〉 ⊗ (|0〉 − |1〉)

)
=

1√
2

(
(−1)a0⊕b0 |0〉+ (−1)a1⊕b1 |1〉

)
⊗ 1√

2
(|0〉 − |1〉)

and

|ψ′〉 = (H ⊗ I) |ψ′1〉 =
1√
2

(
(−1)a0⊕b0H |0〉+ (−1)a1⊕b1H |1〉

)
⊗ 1√

2
(|0〉 − |1〉)

=
1

2

(
{(−1)a0⊕b0 + (−1)a1⊕b1} |0〉+ {(−1)a0⊕b0 − (−1)a1⊕b1} |1〉

)
⊗ 1√

2
(|0〉 − |1〉)

Bob then measures the first qubit (that is, the top qubit) of the output state |ψ′〉.

c1) What can he deduce on the relation between the 2-bit vectors a and b if the measured
state is |0〉?

Solution: If the measured state is |0〉, then we have either a0 = b0, a1 = b1 or a0 = b̄0, a1 =
b̄1. So, either a and b are equal or they are complements of each other.

c2) And likewise, what can he deduce on the relation between a and b if the measured state
is |1〉?

Solution: In this case, we deduce that a0 = b0, a1 6= b1 or a0 6= b0, a1 = b1. Therefore, only
one of the bits of a and b are equal.
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