Midterm exam 2025: Solutions
Quantum Computation

Please pay attention to the presentation of your answers! (2 points)

Exercise 1 Outputs of quantum circuits (12 points)

a) Consider the following 3-qubit quantum circuit U:
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What is the output of the circuit U when the input is an element |z, y, z) of the computa-
tional basis?
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The states at different points in the circuit are |¢1) = |z, y, 2y @ 2), |2) = |T,7, 2y @ 2) ,
s) = 2,9, 7y ® 2y @ z) and [¢py) = |2,y TY D 2y ® 2) = |v,y, 2 DY S 2).

b) Consider now the following circuit:
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What is/are the possible output(s) of the first 2 qubits of the circuit (i.e., the ones following
the gates H) and their corresponding probabilities?
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We have |¢) = |001). The subsequent states can be computed as follows:
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and finally:
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We see that the probability of |¢4) = |1,1) equals 1. Therefore the only possible output
state is |1, 1).



c) How would these output probabilities be modified if the circuit U were replaced by a
single Toffoli gate?

Solution:

The states [¢);) and [¢)5) remain the same as in part (b). The subsequent states can be
computed as follows:
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We can compute the probabilities as P(|00)) = 1, P(|01)) = 1, P(|10)) = 1, and P(|11)) = 1.

Exercise 2 True or false? (16 points)

For each question, 1 pt for the correct answer, 3 pts for the justification. If you think the
statement is correct, then prove it; otherwise, provide a counter-example.

a) Let |p) be a single qubit state and |¢) ® |p) be the (product) state of two qubits. A
measurement in the computational basis is performed on the two qubits. Then the proba-
bility of observing the two qubits in the same state is necessarily greater than or equal to
the probability of observing them in different states.
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Solution: True. Let |p) = a|0) +b]1). Then |¢) ® |¢) = a?|00) + ab|01) + ba |10) + b* |11),
S0

(@)
P(|00) or [11)) = |a|* + [b]* > 2|al?|b|* = P(]01) or |10))
where (a) follows from the inequality (|a|* — [b*)? > 0.

b) Classically, the output of a XOR gate is always equal to 0 if its two inputs are identical.
It is also the case that the output target qubit of a CNOT gate is always |0) if its two input
qubits are in a product state |¢) ® |¢).

Solution: False. Consider |¢) = \/LE(|O> +[1)). We have
1 1
CNOT (l)®lp)) = CNOT 5(]00)+]01)+[10)+[11)) = 5(]00)+]01)+[11)+[10)) = [2)®[:)

In this case, the target qubit is |1) with probability 1 if measured.

c) If the input to the following circuit:
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is in an entangled state, then so is its output.

Solution: False. Let us compute the unitary matrix U corresponding to the circuit. We
have

U= (H®I)CNOT (H ®I)

10 1 0\ /1000 /10 1 0 1 1 1 -1
~1fo1 0o 1fforoo|for 0o 1| 1[1 1 -1 1
210 -1 oflooo1]|10 -1 0] 21 -1 1 1

01 0 -1/)\oo10/\o1 0 -1 -1 1 1 1

Since U is unitary, an input state corresponding to any of the rows of U will lead to
an element in the computational basis. We can verify that a states corresponding to
the rows of U are entangled. For example, the first row of U leads to the state |¢) =

$(a]00) 4+ b[01) 4 ¢[10) 4+ d[11)) with (a,b,c,d) = (1,1,1,—1). However, det (Z Z) # 0.
Hence |¢) is an entangled state that gives the output state |00) which is a product state.

Another simpler solution is the following: as all the considered gates are their own inverses
(H" = H and CNOT' = CNOT), one can show that the proposition is false by showing that
for an input product state |00), the output is entangled.



d) The following circuit:

is equivalent to a CNOT gate.

Solution: True.

For an input state |z, y) in the computational basis, we can compute the output of the circuit
as follows:
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Another simpler solution is the following: let |z,y) be the input (basis) state:

- if x = 0, then the controlled Z gate is inactive, and two H gates cancel, so the output is
10, y)

- if z = 1, then the controlled Z gate is active, so the second qubit |y) goes through the gates
HZ H which are equivalent to an X gate, so the output is |1,7) in this case.

Therefore the above circuit is equivalent to a CNOT gate.



Exercise 3 Matriz representation (5 points)

LetU:i3

o 0

V31 ) be the matrix representation of the 1-qubit gate U.

What is the matrix representation of the following 2-qubit gate? (in the computational basis
{100}, [01) , [10), [11)})
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Solution: The matrix representation V' of the circuit can be written as:

Ut 0\ (I 0\ (U 0\ _(UTU 0 0
V:(I®UT)0N0T(1®U>:(0 UT> (o X> (o U) :( 0 UTXU):(O UTXU)

and
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Hence, Lo . .
0 1 0 0
V=100 —2v2/3 -13
00 —1/3 2v2/3

Exercise 4 Communication with quantum bits (15 points)

Consider the following problem: Alice is in possession of a 2-bit vector a = (ag,a;) € {0, 1}?
and Bob is in possession of another 2-bit vector b = (b, b;) € {0,1}%. They would like to
exchange information about the vectors a and b.

To this end, Alice builds the following 2-qubit circuit:
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where the action of the gate U, on a basis state |z) ® |y) is described as:

Ua (|z) @ |y)) = |7) @ |y © az)

Alice then sends the 2-qubit output state [¢)) of the above circuit to Bob.
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a) Compute the state |1)).

Solution:

The states can be computed successively as follows:
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Bob then uses the state |1)) as input to the following circuit:

—

where the action of the gate U, is similar to the action of the gate U, described above.
b) Compute the 2-qubit output state |¢)') of the above circuit.

Solution:




We can compute the states |¢}) and |¢)’) as follows:

U1 = U ) = 5 ((~1)(U, |00) — Uy 01)) + (~1)* (T 10) — T 1))
= 2 ((=1)%(10,Bo) — [0.B0)) + (~1)°*([1,B1) — [1,B1))
= 2 ((=1)%710) @ (10) ~ 1)) + (~1)"*" [1) @ (0) 1))
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Bob then measures the first qubit (that is, the top qubit) of the output state |¢’).

cl) What can he deduce on the relation between the 2-bit vectors a and b if the measured
state is [0)7

Solution: If the measured state is [0), then we have either ag = by, a1 = by or ag = bo, a1 =
bi. So, either a and b are equal or they are complements of each other.

c2) And likewise, what can he deduce on the relation between a and b if the measured state
is [1)7

Solution: In this case, we deduce that ag = by, a; # by or ag # by, a; = b;. Therefore, only
one of the bits of a and b are equal.



