Name: Seat Number: Sciper:

CS-307 Final Exam
Solutions

Please do not turn this page until instructed to do so.

Please write your seat number at the top of each page.

You have 150 minutes in total to answer all questions.

Please write clearly and concisely, using a blue or black pen. Show all work for full credit.

There is an empty sheet in the end which you can use as scratch paper. Please use that first
and only ask for extra sheets if you need more.

Total number of pages: 15

Problem Points

Miscellaneous (24 points)

Synchronization and Lock Elision (24 points)

GPUs (23 points)

Multithreaded Processors (29 points)

Total (100 points)

CS-307 Final Exam December 19th, 2023

Seat Number:

Miscellaneous
1. The 4C cache miss model:
a. Listand briefly explain the four types of cache misses. [4 points]

a. Cold/Compulsory misses: Misses on the first access to data elements
Capacity misses: Misses because the dataset is bigger than the cache capacity
Conflict misses: Misses because data elements compete for the same position
in the cache, while other parts are empty

d. Coherence misses: Misses because of other cores taking away a cached data
element

[0.5 points for miss type, 0.5 points for correct explanation]

b. In the table below, mark how increasing each of the parameters affects each
type individually while other parameters are kept constant. You need to first
label the first row based on your answer to the previous part. You should put
“+” (increases), “-” (decreases), or “=" (unchanged) to indicate the effect of
each parameter. Please note each correct answer gets you 0.5 points and for
every two wrong answers we deduct 1 point. [8 points]

Type 1: Type 2: Type 3: Type 4:
Cold Capacity Conflict Coherence
Cache capacity = - - =
Cache block size - + + +
Number of cores = = = +
Associativity = = - =

CS-307 Final Exam December 19th, 2023 2

Seat Number:

2. We have learnt about the directory-based coherence protocols, along with various
hardware designs for directories. Based on the same, briefly explain the following:

a. What do directories track? Why is that useful? [2 points]

Directories track which private cache contains a cache block. This is useful
because it allows direct cache-to-cache communication.

b. What are sparse directories? What is the benefit over duplicated tag
directories? [2 point]

Sparse directories contain more sets and less ways compared to the aggregated
private cache sets and ways respectively. This is done by using bits from the
tag. Having less ways reduces the number of comparisons for each access,
thus reducing the power requirement.

c. What is the problem with sparse directories? Briefly describe a possible
solution. [2 points]

As sparse directories use bits from the tag, this can result in contention as the
used bit might not be evenly distributed across all the cached blocks. A
possible solution is to overprovision the number of sets or ways.

CS-307 Final Exam December 19th, 2023 3

Seat Number:

3. We are entering the era of post-Moore computing. Vendors such as Intel and AMD
are building products with accelerators not just for Al but also for various software
bottlenecks. Consider a program that is composed of 20% memory operations, 60%
arithmetic operations, and 20% logic operations. There are a total of 10000 operations
in the program. There are no dependencies between different types of operations.

The latencies of each type of operation are as follows:
Memory operation = 20 clock cycles

Arithmetic operation = 5 clock cycles

Logic operation = 10 clock cycles

a. What is the execution time (in cycles) when the program is executed on a
single core? [2 points]

(0.2*20 + 0.6*5 + 0.2*10)*10000 = 90000

b. Assume you have two separate possible choices to optimize the program:
I. Use a better load-store unit to speed up memory accesses by 4x
I1. Use a SIMD unit of width 10 for arithmetic operations
What is the execution time (in cycles) in each case? [2 points]

(0.2*20/4 + 0.6*5 + 0.2*10)*10000 = 60000
(0.2*20 + 0.6*5/10 + 0.1*10)*10000 = 63000

c. You are given access to an accelerator containing 1000 arithmetic units. Each
arithmetic unit executes arithmetic operations 5x faster. However, you need
two new additional “accelerator operations” for each arithmetic operation to
use the accelerator. Assume the latency of each accelerator operation is 1
clock cycle, what is the execution time (in cycles)? [2 points]

(0.2*20 + 0.6*1/1000 + 0.6*2*1 + 0.2*10)*10000 = 72006

CS-307 Final Exam December 19th, 2023 4

Seat Number:

Synchronization and Lock Elision

4. Consider a processor that implements load-linked/store-conditional (LL/SC)
functionalities using the following two functions:

int 1l(int *ptr);
bool sc(int new val, int *ptr); // returns false if SC fails

We provide you with the following do lock function to acquire a lock using the
two functions above. Assume that for the 1ock, 0 represents the unlocked state and 1
represents the locked state.

Line 1 void do lock (int *lock) {
Line 2 while (true) {

Line 3 if (11 (lock))
Line 4 continue;
Line 5 if (sc(l, lock))
Line 6 break;

Line 7 }

Line 8 }

Now consider the case where two cores, i.e., Core0 and Corel, are trying to acquire
the same 1ock using the do lock function.

a. What actions are performed by Core0 when it executes the first i £ block
(Lines 3 and 4)? [3 points]

Load the latest value of the lock [1 point], set the link register to the address of
the lock [1 point], and retry if the lock is already held [1 point].

b. What actions are performed by Core0 when it executes the second i f block
(Lines 5 and 6)? [3 points]

Check if the link register is still set [1 point] and perform the store to hold the
lock if it is the case [1 point]. Otherwise retry [1 point].

c. Explain how the do 1lock function can guarantee that at most one core can
hold the lock simultaneously. [4 points]

The first i £ block ensures that a core can only grasp a lock when it is
currently unlocked [1 point], while the second i £ block ensures that there is
only one core that can bring the lock from the unlocked state to the locked
state [1 point]. Even when the two cores are simultaneously updating the lock,
due to cache coherence, only one core can perform the store first, which will
clear the link register of the other core, making its SC failed without touching
the lock [2 points].

CS-307 Final Exam December 19th, 2023 5

Seat Number:

5. Consider the following object modification code executing on a multiprocessor with
speculative Hardware Lock Elision (HLE) support. Assume that two CPU cores,
Core0 and Corel, are running this code in parallel. You may assume that each core
has an ROB of eight entries.

Modify Object:
call get obj addr # Call get obj addr

The return value 1is
saved in r3
Lock:
ts rl, [LCK] # T&S the global lock
bnz Lock # If lock held, retry
Critical:
1d r2, [r3] # Load object wvalue
addi r2,10 # Modify (addition)
mult r2,5 # Modify (multiplication)
sub r2,2 # Modify (subtraction)
st [r3],r2 # Write new value
Unlock:
st [LCK], O # Free the lock

a. Assume that the function get object addr returns the addresses of two
different cache blocks for Core0 and Corel. Does the speculative HLE succeed
for both cores? Explain why or why not. [4 points]

Because the critical section does not attempt to write to the same address,
speculation for both cores succeeds.

b. Assume that the function get object addr returns the same address for
Core0 and Corel. Does the speculative HLE succeed for both cores? Explain
why or why not. [4 points]

Because both cores are attempting to write to the same address, the cores will

detect coherence activity for the same memory location, and rollback their state
to the t s instruction. Thus, the speculation will not succeed.

CS-307 Final Exam December 19th, 2023 6

Seat Number:

c. Assume that each core now has an ROB of four entries. Does the speculative
HLE succeed in this case? Explain why or why not. [3 points]

Because the cores need to keep instruction in speculative state in their ROB, the
ROB size should be sufficiently large for all instructions in the critical section.
Because the ROB size of 4 cannot keep all instructions in the critical section of
the given function, the speculation will fail.

d. Explain how processors can ensure forward progress while supporting HLE. [3
points]

When speculation fails multiple times, the cores turn off lock elision and the
instruction ts is executed as read-modify-write without speculation.

CS-307 Final Exam December 19th, 2023 7

Seat Number:

GPUs

6. Consider the 2D thread organization in the CUDA programming paradigm as shown
below, what are X, Y and Z? [3 points]

Y

Z

X = Grid, Y = Thread Block, Z = Thread [1 point for each]

7. For the following vector addition kernel and the corresponding kernel launch code,
answer each of the questions below, assuming the code is running on a GPU similar to
the ones mentioned in the lectures and n is 10000.

1 _ global__ void elemWiseMult (float* X, float* Y, float* Z, int n)
2 {

3 inti=threadldx.x + blockDim.x * blockldx.x;
4

5 intstride = blockDim.x * gridDim.x;

6 while(i<n}{

7 Z[i] = X[i] + YIi];

8 | += stride;

9 1}

10 }

11

12 int vectMult (float* X, float* Y, float* Z, int n)
13 {

14 /I Parameter "n" is the length of arrays X, Y, and Z.

15 intsize = n * sizeof (float);

16 float* X _d, Y _d, Z d;

17 cudaMalloc ((void **)&X_d, size);

18 cudaMalloc ((void **)&Y _d, size);

19 cudaMalloc ((void **)&Z_d, size);

20 cudaMemcpy (X_d, X, size, cudaMemcpyHostToDevice);
21 cudaMemcpy (Y _d, Y, size, cudaMemcpyHostToDevice);
22

23 elemWiseMult<<<8, 1024>>> (X _d, Y_d, Z_d, n);

24 cudaMemcpy (Z, Z_d, size, cudaMemcpyDeviceToHost);
24 }

CS-307 Final Exam December 19th, 2023 8

Seat Number:

a. How many warps are there in each thread block? [2 points]
1024

32

b. How many threads will be created for the grid launched in line 23? [2 points]
TotalThreads = NumberOfBlocks * BlockSize = 8 x 1024 = 8192

c. Is there any control-flow divergence during the execution of the kernel?
Explain why or why not. If so, identify the block number(s) and warp
number(s) experiencing control-flow divergence. Also, identify the line
number(s) at which control-flow diverges for the warp(s) you have identified.
[7 points]

Yes.

We have 8,192 threads. All threads will iterate at least one iteration to process
8,192 elements. During the last iteration, only 10,000 — 8,192 = 1,808 threads
will be active. These threads form 56.5 warps. So, all threads in all the first 56
warps will be active. Warps 0-31 on block 0 have no divergence. The 25th warp
in Block 1 will have control divergence. All remaining 199 warps will see all
their threads inactive and thus see no control divergence.

[1 point identifying there is divergence;

2 points for explaining why there is divergence;

2 points for the correct block and warp number;

2 points for identifying the correct line at which the divergence occurs]

CS-307 Final Exam December 19th, 2023 9

Seat Number:

8. True or false? Briefly explain your reason for each choice. [9 points]
a. Cache hierarchies in GPUs are primarily designed to reduce memory access
latency.

1 point for each correct choice, and 2 points for each correct explanation.

False. [1 point]

GPUs embrace many-core compute devices which give data-parallel and
compute-intensive, or throughput-oriented programs a significant performance
benefit compared to CPUs. To run a program on GPU, first the data has to be
moved to GPU’s memory. This data transfer along with the kernel launch incur
a latency overhead which isn’t tolerable for latency-critical programs that have
tight latency requirements in the order of tens of microseconds to a few
milliseconds. However, CPUs have less but more powerful cores and they have
fast access to data residing in their caches and memories, making them a better
fit for latency-critical programs. [2 points]

b. Each thread running on a GPU has its own execution context.

False. [1 point]

On a CPU, a thread has its own execution context: Instruction stream, stack,
program counter. However, on a GPU, all threads share an execution context
(including stack) and all threads in a program have the same instruction stream.

c. Thread divergence between two warps degrades performance.

False [1 point]. Thread divergence within a warp degrades performance because
all the threads share the same instruction (SIMT); and thread divergence across
warps has no effect on performance. [2 points]

CS-307 Final Exam December 19th, 2023 10

Seat Number:

Multithreaded Processors

9. Consider a 4-way superscalar processor executing two types of workloads A & B
repeatedly. Table 1 (in page 13) shows the instruction pattern for each type of workload
separately when executed once.

Assume all pipeline slots and consequently, all instructions, have the same
functionality. The given scheduling in Table 1 is dictated by dependencies. The naming
convention of the instructions in Table 1 is illustrated with this example: 9A (7A) means
it is the 9th instruction of a workload of type A and has a dependency on the 7th
instruction of the same workload of type A. lIdle cycles among instructions are
generated by data dependence.

We want to add hardware multithreading to improve performance, measured in total
workloads executed per second. Each thread executes one type of workload one after
the other. A new workload cannot start executing before the previous workload of the
same type finishes. Assume that if the number of instructions that can be executed in a
specific clock cycle exceed the number of available pipeline slots, then priority is to be
given in ascending order to instructions. Also assume that one clock cycle is 1 ms.

a. Fill in Table 2 and Table 3 (in page 15) to show how the following two scheduling
strategies will reschedule instructions:

I. FGMT with compulsory round robin scheduling at every cycle starting with
cycle 0 allocated to the thread executing type A workloads [4 points]

I1. SMT with a 1:1 split in the pipeline slots between the two threads for every
cycle (i.e., pipeline slots 0 and 1 are always allocated to the thread executing
type A workloads, and pipeline slots 2 and 3 are always allocated to the thread
executing type B workloads) [4 points]

b. What is the total number of workloads executed per second in each of the two
cases? Explain your solution. [4 points]

FGMT: [2 points]

Approach 1:

There are 1000 cycles in 1 second, 500 each for type A and B workloads

Type A workloads take 6 cycles to finish and Type B workloads take 4 cycles
So Workloads per second (WPS) = 500/6 + 500/4 = 208.3

Approach 2:

The smallest unit that repeats = 2*LCM(4, 6) = 12*2 = 24 cycles

So, in 24 cycles, 3 type B workloads finish and 2 type A workloads finish, and
this unit of 5 workloads keep repeating, so WPS = (5/24)*1e3 = 208.3

SMT: [2 points]

Type A and Type B workloads start and finish together in 10 cycles
So, WPS = (2/10)*1e3 = 200

CS-307 Final Exam December 19th, 2023 11

Name:

Seat Number:

Sciper:

CS-307 Final Exam

Table 1: Instruction patterns

December 19th, 2023

Cycle0 [Cyclel |[Cycle2 |Cycle3 |[Cycled4 |Cycle5 | Cycle6 | Cycle7
Pipeline Slot 0 1A 3A (1A) | 6A (5A) 7A (6A) 9A (7A)
Pipeline Slot 1 2A 4A (1A) 8A (6A) 10A (8A)
Pipeline Slot 2 5A (2A) 11A (8A)
Pipeline Slot 3
Pipeline Slot 0 1B 4B (3B) 7B (6B) 8B (7B)
Pipeline Slot 1 2B 5B (3B) 9B (7B)
Pipeline Slot 2 3B 6B (3B) 10B

(7B)
Pipeline Slot 3
Time

12

Name:

CS-307 Final Exam

Seat Number:

December 19th, 2023

Sciper:

13

Name: Seat Number: Sciper:

Cycle0 [Cyclel [Cycle2 |Cycle3 |Cycle4 [Cycle5 [Cycle6 |Cycle7 |Cycle8 [Cycle9 |Cycle 10

Pipeline Slot 0 1A 1B 3A 4B 6A B A 8B 1B 9A
Pipeline Slot 1 2A 2B 4A 5B 8A 9B 2B 10A
Pipeline Slot 2 3B 5A 6B 10B 3B 11A
Pipeline Slot 3

Table 2: FGMT scheduling.

[-1 for an incorrect cycle, -1 for not following constraints, -0.5 for not showing repeated instructions, -4 for incorrect threading model]

Cycle0 [Cyclel |Cycle2 [Cycle3 [Cycle4 |Cycle5 |Cycle6 |Cycle7 |Cycle8 |Cycle9 | Cycle 10 |

Pipeline Slot 0 1A 3A 5A 6A 7A A 11A 1A
Pipeline Slot 1 2A 4A 8A 10A 2A
Pipeline Slot 2 1B 3B 4B 6B 7B 8B 10B 1B
Pipeline Slot 3 2B 5B 9B 2B

Table 3: SMT scheduling

CS-307 Final Exam December 19th, 2023

Name: Seat Number: Sciper:

10. Consider the single-threaded processor pipeline shown in the figure below.

Fetch : Decode/ | Execute : D-Cache/ : RegWrite :
: Reg Read : . Store Buffer :

PC

\I/

Regs

\
___/
S
\

\ A
\

™ Regs
D~

I-Cache D-Cache

a. What components must be replicated to support fine-grained multithreading
correctly? Explain. [4 points]

The register file and the PCs must be replicated to support FGMT. Both these
structures hold a thread context and cannot be shared. [2 point for reg file, 2 points
for PC, each has 1 point for mentioning and 1 point for the explanation]

b. What components should be augmented to efficiently support fine-grained
multithreading? Explain. [4 points]

The D-cache and I-caches should be augmented to support FGMT. Running
multiple threads on a processor can cause contention for cache space. Thus, an
FGMT processor would ideally add more cache to accommodate the working-sets
of multiple threads. [2 points for D-, 2 points for I-cache, each has 1 point for
mentioning and 1 point for the explanation]

CS-307 Final Exam December 19th, 2023 15

Seat Number:

11. A superscalar processor runs at the clock frequency of 2 GHz with an average cache
miss latency of 20 ns. The processor implements Coarse-Grained Multithreading
(CGMT) with the policy to switch threads on each cache miss. The overhead of the
switching is 10 cycles. Assume that the pipeline depth refers to the number of stages
between the fetch and the retire stage.

a.

Given the above information, what is the upper bound of the pipeline depth for
CGMT to provide a performance benefit? [3 points]

Thread Switch + Pipeline Fill Time < Blocking Latency
10 cycles + Pipeline Depth <20 ns * 2 GHz
Pipeline Depth < 30 stages

[2 points: getting blocking latency equation right]
[1 point: getting the math right]

What happens if the processor uses a pipeline deeper than the value calculated
in the previous part? [3 points]

If the processor uses a pipeline deeper than the calculated value, then the
processor won’t be able to hide the latency of the stall events [2 points], leading
to overall lower throughput [1 points].

An alternative architecture of the processor has a pipeline depth of 10 with a
reduced average cache miss latency of 12 ns and reduced clock frequency of
1.5 GHz. Is CGMT still a good choice? Explain. [3 points]

Thread Switch = 10 cycles
Pipeline Fill Time = 10 cycles
Blocking Latency = 12 ns * 1.5 GHz = 18 cycles

Thread Switch + Pipeline Fill Time (20) is larger than Blocking Latency (18),
hence CGMT is not worth it.

[2 points: getting the equation and the math right]

[1 point: final conclusion]

CS-307 Final Exam December 19th, 2023 16

Seat Number:

CS-307 Final Exam

December 19th, 2023

17

	CS-307 Final Exam
	Solutions
	Please do not turn this page until instructed to do so.
	Please write your seat number at the top of each page.
	You have 150 minutes in total to answer all questions.
	Please write clearly and concisely, using a blue or black pen. Show all work for full credit.
	Total number of pages: 15
	Multithreaded Processors

