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A b s t r a c t  

The power of first class continuations is demonstrated by 
implementing a variety of coroutine mechanisms using only 
continuations and functional abstraction. The importance 
of general abstraction mechanisms such as continuations is 
discussed. 

I Introduction 

A variety of coroutine mechanisms have been proposed, 
some so complicated that there has been significant confu- 
sion over their semantics [Marlin 80]. Yet most languages 
provide no coroutine mechanism, and do not provide suf~- 
cient power to allow the user to define one. In this paper we 
demonstrate that a wide variety of coroutine mechanisms 
may easily be defined by the user given a single control 
abstraction, called a continuation. The power of contln- 
uations stems from their first class nature: they may be 
passed to and returned from functions, be stored in data 
structures, and have indefinite extent. 

In Scheme 84 [Friedman, et at. 84] the call-with-current- 
continuation expression of the form ( c a l l / c c  Ezp) ap- 
plies the function which results from evaluating Ezp to the 
continuation of the entire ca11/ce  expression. This contin- 
uation is a first class functional object that ,  when invoked, 
returns the value of its single parameter as the value of the 
entire ca11/c¢ expression. The control and environment 
information associated with continuations is recorded in 
storage that is dynamically allocated. It is reclaimed only 
when all references to the continuation have been aban- 
doned. This allows complete management of the control 
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behavior of the computation, including arbitrary backtrack- 
ing and other forms of context switching such as inter- 
rupt driven multiproceming [Wand 80]. (In GEDANKEN 
[Reynolds 1970], labels are also first class control objects, 
but are less general than continuations; they refer only to 
statements, rather than to arbitrary points within an ex- 
pression. Reynolds also notes that GEDANKEN labels may 
be used to implement coroutines.) 

In the next section we provide an overview of Scheme 
84, a Scheme dialect which provides first class functional 
and continuation objects. We then demonstrate how a basic 
coroutine mechanism may be defined in Scheme 84 using 
contlnuations. This basic mechanism is then elaborated 
to provide additional features, such as a simple interface 
between a group of coroutines and a stream. Finally, we 
conclude with a discussion of the importance of powerful 
abstractions, such as first class continuations, for language 
extensibility. 

2 A n  O v e r v i e w  of  S c h e m e  S4 

Scheme was designed and first implemented at MIT in 1975 
by Gerald Jay Sussman and Guy Lewis Steele, Jr. [Steele 
& Sussman 78, Sussman & Steele 75] as part of an effort 
to understand the actor model of computation [Hewitt 77]. 
Scheme may be described as a dialect of Lisp that is ap- 
plicative order, lex.ically scoped, and properly ta~l-recursive. 
Most importantly, Scheme--unlike all other Lisp diMects-- 
treats functions and continuations as first class objects. 

A subset of Scheme 84 [Friedman st at. 84] is composed 
of the following syntactic constructs: 

(expression) ::-- 
(constant) 
(identifier) 
(syntactic extension) 
(lambda (({identifier))) ((expression))) 
(if (expression) (expression) (expression)) 
(set! (identifier) (expression)) 
(call/cc (expression)) 
(application) 

(syntactic extension) ::-- ((keyword) ((expression))) 

(application) ::= ((expression) ((expression)}) 
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lambda is the sole binding operator of this subset and eval- 
uates its expressions sequentially, returning the value of the 
last. s e t !  side-effects an existing identifier binding or ini- 
tialize~, a global identifier, c a l l / c c  is described below. An 
application evaluates its expressions (in an unspecified or- 
der) and applies the value of the first expression to a list 
of arguments formed from the values of the remaining ex- 
pre~ions.  

Scheme 84 provides a syntactic preprocessor that  ex- 
amines the first object in each expression. If the object is a 
syntactic extension (macro) keyword, the procedure asso- 
ciated with the indicated syntactic extension is invoked on 
the expression, and the expression is replaced by the result- 
ing transformed expression. If the object is not a keyword 
or core expression identifier ( l n b d a ,  i f ,  etc.), then it is 
assumed that  the expression is a normal function applica- 
tion. 

We use a few syntactic extensions, l e t  makes local 
identifier bindings, d e f i n e  changes an existing identifier 
binding or initializes a global identifier. 

(rec I E) - ( l e t  ( [ I  ' * ] )  ( s e t !  I E ) )  

evaluates E in an environment which binds I to the value of 
E itself, t Evaluating E should not result in dereferencing 
I .  This presents no problem in the usual case when E 
evaluates to a closure. 

(case  Tag [AI El] . . .  JAn En] )  

evaluates Tag and then returns the value of the first E~ 
such that  Ai matches the value of Tag. 

c a l l / c c  evaluates its argument and applies it to the 
current continuation represented as a functional object of 
one argument.t  In order to specify the current continua- 
tion at any point in a computation, a e o n t i ~ t i o n  seman- 
tics is necessary. We provide such a semantics with the 
meta-c i rcul~ Scheme 84 interpreter in Figure 1. The value 
passed to the continuation is the result of the computation 
up to the point where it is invoked. 

In a continuation semantics, every recureive procedure 
receives a continuation parameter. Rather than simply re- 
turn, the procedure either passes its result directly to this 
continuation, or passes the  continuation (possibly embel- 
lished) to some other procedure. For example, consider 
meaning (Figure 1). The constant, identifier, and lambda 
expressions pass their values directly to the continuation k. 
In the i f  case, meaning is recursively invoked on the t e s t -  
p t  (predicate) of the expression in the current environment, 
and with a new continuation, denoted by a lambda expres- 
sion, which will be passed the value of the t e s t - p t .  De- 
pending on this value, meaning is invoked on the t h e n - p t  
or e l e e - p t  with the original continuation k of the i f  ex- 
pression. 

1' = indicates that  an expression of the form on the left is 
transformed into one of the form on the right, and brackets 
are interchangeable with parentheses. 

:~ Using this primitive we can define ca tch ,  a version of 
Landin's J operator [Landin 65, Reynolds 72,Suesman 75]. 

3 I m p l e m e n t a t i o n  o f  C o r o u t i n e s  

Heretofore, coroutine languages have generally been state- 
ment oriented, and the resume statement which transfers 
control from one coroutine to another could not return a 
value. Thus coroutines have had to communicate infor- 
marion through shared free variables. Because Scheme is 
expression oriented, we must associate some value with the 
resume expression. What better  candidate for this value 
than a value passed by the resum/ng coroutine? Though 
shared variables may still be necessary for some types of 
communication, such resume values sufBce in most cases 
for inter-coroutine communication. 

Thus, in our Scheme implementation of coroutines, r e -  
s u e  will be a function of two arguments: the coroutine to 
be resumed, and the value to be passed to the resumed 
coroutine. This value becomes the value of the resume ex- 
pression by which the receiving coroutine last relinquished 
control. 

We implement a coroutine as a procedure with some lo- 
cal state. Each coroutine must have its own private resume 
function, because the resume function records the current 
state of the coroutine's computation (its continuation!) in 
a variable local to the coroutine. This variable k called 
LCS, for Local Control State. Since the LCS variable is 
part  of the implementation of our coroutine facility, and 
not part  of the programmer's abstraction of coroutines, the 
LCS variable should not be in the scope of the program- 
mer's coroutine code. This goal will be achieved using the 
scoping mechanisms of Scheme. 

We implement the coroutJne abstraction with a func- 
tion make-co rou t ine  that  takes as its argument another 
function, which contains the programmer's coroutine code. 
make -co rou t ine  then pa~es  to this function a resume 
function. Thus make-corou t ine  will be of type 

(resume-/unction ~ z) ~ y 

for some types z and y that  we have not yet elaborated. 

The result of n a k e - c o r o u t i n e  is a procedural object 
with a private variable, LCS, which holds the current state 
of its computation (obtained with c a l l / c c ) .  Each time 
the coroutine object is invoked, it receives a value, which is 
sent to the continuation LCS. Thus the interface returned by 
make-coroutine should look like (lambda (v) (LCS v ) ) ,  
closed in an environment in which LC8 is properly bound. 
This function receives a value v and sends it to the cur- 
rent (application time) value of LCS, as desired. (Note that  
the interface could not be simply LCS, which would always 
use the closure-time value of LCS.) Since a a k e - c o r o u t i n e  
returns a function of one argument, its type is 

(resu,~e- /u ,~ct ion --. z )  --.  (~at, ,e --~ z ) .  

Each time a coroutine is resumed (including the first 
time) it must also receive a value, so we further require that  
the argument to make-corou t ine  be a function which ac- 
cepts a resume function and returns a function of one argu- 
ment, a receirer that accepts the initial value with which the 
coroutlne is to be resumed. The type of make-co rou t ine  
is now 
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(define meaning 
(lambda (e r k) ; • - expresalon, r - environment, k - continuation 

~caee ( type-of-expression e) 
[constant (k el] 
[ i d e n t i f i e r  (k (R-lookup • r ) ) ]  
[lnmbda (k (lnmbda (actuale k) 

(eva lua te -a l l  (body-pts e) 
(extend-any r (formale-pt e) actuals)  
k)))] 

[ i f  (meaning ( t e s t -p t  e) r 
(lambd~ (v) ( i f  v (meaning (then-pt e) r k) 

(meaning (e lse-pt  e)  r k ) ) ) ) ]  
[set!  (meaning (val-pt  el r 

(lambda (v) (k (s tore!  (L-lookup (Id-pt  e) r) v ) ) ) ) ]  
[ca11/cc (meaning (fn-pt  e) r 

(lambda (f) 
(f 

( l l s t  (inmbda (actuals dne~y) (k (car ac tua l s ) ) ) )  
k)))] 

[appl icat ion (meaning-of-all  (comb-parts e) r 
(lambda (vale) ((car  vale) (cdr vale) k ) ) ) ] ) ) )  

(define eva lua te -a l l  
(lambda (exp- l i s t  r k) 

(meaning (car exp- l i s t )  r 
( i f  (null7 (cdr exp- l i s t ) )  

k 
(lambda (v) (eva lua te-a l l  (cdr ~xp-l iat)  r k ) ) ) ) ) )  

(define meaning-of-all  
(lambda (exp- l i s t  r k) 

(meaning (car exp- l i s t )  r 
(lambda (v) ( i f  (null7 (cdr exp- l i s t ) )  

(k (cons v n i l ) )  
(meaning-of-all  (cdr exp- l t s t )  r 

(la~bda (vr) (k (cone v v r ) ) ) ) ) ) ) ) )  

Figure I .  Meta-circular interpreter for a subset of Scheme 84 

( resume-[unct ioa  .--+ (value ---* z )  ) .--* ( vai=e -..* z ) .  

Here z represents the type of wlue returned by the corou- 
tine. In the simplest view of coroutines, they just resume 
one another and never return a value; so at this time the 
type of z is immaterial. Later we will give a meaningful 
semantics to values returned by coroutines. 

Thus the following expression returns a new coroutine 
procedure that executes Body, with resume bound to the 
local resuming function and i n t t  bound to the value with 
which the coroutine is initially resumed or invoked. 

(make-coroutlne 
(lnmbda (resume) 

( lubda (lnit)  Body))) 

Our implementation starts as: 

(define aake-corontlne 
(lambda (f) 

( c a n l c c  
(lambda (maker) 

( le t  ([LCS '*])  
( let ([resume 

(lubda (deaf val) 
(ca111cc 

(lnmbda (sel f )  
(setJ LCS sel~) 
(deaf val) )) ) ] ) 

( le t  ( [ receiver  (f resume)]) 
777 
) ) ) ) ) ) )  
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resume grabs the current state of the computation, stores 
it in LCS, and invokes the destination with the given value, 
as desired. 

The tricky part of this implementation is setting LCS 
to the correct initial continuation, which should look like 
(laml~la (v) ( r e c e i v e r  v)) .  We can create a continu- 
ation like this by doing a c a l l / c c  in the context ( r e -  
c e i v e r  (ca11/cc (lambda ( i n i t k )  . . . ) ) ) .  Havingcre- 
sled this continuation, we can store it in LCS and then exit 
from make-corout ine  by invoking the continuation maker 
(which we were clever enough to grab when we entered 
make-coroutine).  The value which we should return to 
the maker is just (lambda (v) (LCS v)) ,  as we decided 
before. Now we have: 

(define make-corout ine  
(lambda (f)  

( c a l l / c c  
(lumMa (maker) 

( l e t  ([LCS ' * ] )  
( l e t  ([resume 

(lumlxla (deal  va l )  
( c a l l / c c  

(lambda ( se l f )  
( se t !  LCB s e l f )  
(deal  v a l ) ) ) ) ] )  

( l e t  ( [ r e c e i v e r  (f  resume)])  
(receiver 

( c a l l / c c  
(lambda (ini~;k) 

( se t !  LCS t n t t k )  
(maker 

(lambda (v) 
(LCS v) ) )  

) ) ) ) ) ) ) ) ) )  

The last c a l l l c c  expression, however, is just (resume 
maker (lambda (v) (LCS v ) ) ) !  Also, receiver is used 
only once, so we can substitute (f  resume) for its use. The 
last l e t  expression may then be replaced by 

( ( f  resume) (resume maker (lamMa (v) (LOS v ) ) ) ) .  

The currying of f ,  which has so far been valuable in the 
logical development of make-coroutine,  is superfluous (ex- 
cept by those who like currying for its own sake, or who 
have other reasons for its use). Uncurrying f ,  the type of 
make-corout ine  becomes 

(resume-/unction x va/ue --* z) -"  (va/ue ---. =) 

and we have our final version: 

(def ine  eake-corout in .s  
(lambda (f)  

(ca11/cc 
(lambda (maker) 

( l e t  ([LCS "*]) 
(let (rr.ssume 

(lambda (de-st va l )  
(cu111cc 

(1aroMa (k) 
(set ! LCS k) 
(de.st v a l ) ) ) )  ] ) 

( f  resume 
(reeume maker 

(lambda (v) (LCS v ) ) ) )  
( e r r o r  ' c o r o u t i n e - f e l l - o f f - e n d )  
) ) ) ) ) )  

As noted above, coroutines generally call one another 
in turn, but what if one just returns a value? (Remem- 
ber, in our implementation they are procedures, and any 
procedure can return a value.) The ( e r r o r  ' c o r o u t i n e -  
f e l l - o f f - e n d )  expression above ensures that something 
predictable happens in this case. 

If textual abstraction is preferred to functional abstrac- 
tion, and one is always willing to call the resume-function 
resume and the initial value i n i t - v a l u e ,  then one may use 
the syntactic extension: 

(corou~ine E) ---- 
(make-coroutine 

(lambda (resume i n i t - v a h e )  E ) )  

• Ex tens ions  of" the  Co~out ine  M e c h a n i s m  

Dahl and Hoare [72] describe an extension to the basic 
coroutine mechanism described above, which they incor- 
rectly perceive as that of Simula [Marlin 80]. In addition to 
the continuation LCS of the last point at which the corou- 
tine relinquished control, each coroutine also records its 
caller continuatio~ CC. A coroutine may be invoked by ei- 
ther a resume or a ca//operation. In the latter case, the 
continuation of the caller is recorded in the CC of the c~led 
coroutine. When one coroutine resumes another, the CC 
of the resumer becomes the CC of the resumed coroutine. 
A coroutine can then invoke its caller continuation by an 
explicit de t~h  operation, or by simply returning a value. 

To implement Dahl-Hoare style coroutines, we repre- 
sent coroutines not as functions of one argument (a value 
to be passed to the LCS) but as a function of two argu- 
ments, a value and a caller continuation. The caller contin- 
uation is recorded in the CC variable of the resumed or called 
coroutine, and the value is then passed to the LCS as be- 
fore. The resume procedure now passes both the resumer's 
caller-continuation and the resumer value to the destina- 
lion coroutlne. The new detach procedure also grabs the 
current continuation and saves it in LCS, and then simply 
invokes CC with the given value. The functional argument 
f of make-corout ine now receives this detach-function, as 
well as the resume-function and initial value. See Figure 2. 
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(de f ine  make=coroutine 
(lambda (f)  

(ca l l l cc  
(lambda (maker) 

( l e t  ([LCS '*] [CC '* ] )  
( l e t  ([resume (lambda (dear va l )  

( c a l l / c c  
(lambda (k) 

( se t !  LCS k) 
(deer CC v a l ) ) ) )  ] 

[detach (lambda (val)  
( c a l l / c c  

(lambda (k) 
( se t !  LCS k) 
(cc v a l ) ) ) ) ] )  

(detach ( ( f  resu,Re detach) 
( c a l l / c c  

(lambda (k) 
( se t !  LCS k) 
(maker (la~bda (cont va l )  

(set! CC cont) 
(LCS v a l ) ) ) ) ) ) ) ) ) ) ) ) )  

Figure ~. Dahl-Hoare Style Coroufine 

One can enter a group of coroutines in this discipline 
by using the function c a l l ,  which receives the destination 
coroutine and a value to pass to it, grabs the current con- 
tinuation, and passes this continuation and the given value 
to the called coroutine. 

(de f ine  c a l l  
(lambda (dear val)  

( c a l l / c c  
(lambda (k) (dear k v a l ) ) ) ) )  

In some situations, it may be necessary to pass control 
to, and return control from, a group of coroutines with- 
out need for the generality of the Dahl-Hoare style facility 
just discussed. In our implementation, the fact that corou- 
tines are invoked not by a primitive resume operation, but 
by application to a standard functional object (the resume- 
function), allows us to easily achieve other forms of control. 
For example, by creating a corout]ne that simply exports 
its resume-function, we can create an interface between a 
group o5 corout]nes and other parts of a program. To ac- 
complish this, we define a coroutine i n t e r f a c e  that passes 
its resume-function to its initial value: 

(def ine  i n t e r f a c e  
(corou t ine  ( i n i t - v a l u e  resume))) 

(Recall that co rou t ine  is a syntactic extension that binds 
i n i t - v a l u e  and rearms.) By passing this coroutine a con- 
tinuation as its initial value, we can obtain the coroutine's 
resume-function at any point in a program. 

( l e t  ( [ i n t e r f a c e - r e s u m e  ( c a l l / c c  i n t e r f a c e ) i )  
. . . )  

By invoking this resume-function with another coroutine 

and a value, the indicated coroutine will be resumed with 
the indicated value. The resumed coroutine may then re- 
sume other coroutines, with control being passed around 
within some coroutine group until it is desired that control 
return to the point at which the group was entered. It is 
then only necessary for one of the coroutines to resume the 
interface coroutine via (resume i n t e r f a c e  Value). This 
causes control to return to the caller of the interface-resume 
function, with some indicated resume value. (Of course a 
group of coroutines could have several interface coroutines 
of this sort if required.) 

As an example of the use of this mechanism, consider 
the problem of generating a stream of values, where the con- 
secutive values are produced by a group of coroutines. We 
represent a stream as a pair (cons Value Thu~),  where 
Value is the first element of the stream and Thunk is a 
function of no arguments which, when invoked, will return 
a similar representation of the rest of the stream. Assum- 
ing that corout  is the name of the coroutine group member 
that is to be resumed first in order to initiate computation 
of the next stream element (and assuming that the value 
with which corout  is resumed is irrelevant) the next stream 
may be obtained by 

(cons ( i n t e r f ace - r e sume  corout n i l )  thunk) 

where thunk is a function of no arguments which, when 
invoked, will return the representation of the rest of the 
stream. After corout  has been resumed by i n t e r f a c e -  
corout ine ,  any member of the coroutlne group can then 
return v as the next stream element by executing (restate 
i n t e r f a c e  v). Thus a coroutine-generated stream may be 
constructed by 
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( l e t  ( [ in ter face- resume (ca11/cc interface)]) 
( ( rec  thunk 

(lambda 0 
(cons ( in terface-resume corout n i l )  

thunk))))) 

face as the one developed here. By using a clean base lan- 
guage with powerful and orthogonal reflection mechanisms" 
(such as call/cc), the programmer is able to create control 
structures far better tuned to the problem at hand. 

The stream interface example is of particular impor- 
tance because in many situations where coroutines have 
been employed, stre,~mj are more appropriate. Yet corou- 
tines are clearly more general than streams. When the 
transfer of control among coroutines is linear, that is 

A=~B=~. . .=~Z=~. . .=#B=~A 

(read =~ as "resumes'), information is passed in only one 
direction, and each coroutine divides easily into segments 
between resumes, then z much more transparent solution 
may generally be obtained by using streams rather than 
coroutines. Conway's problem [Conway 63], the classic ex- 
ample for coroutines, is of~this form. The relationship be- 
tween coroutines and streams is analogous to that between 
imperative and applicative programming. If a problem can 
without undue difficulty be expressed in a purely side-effect- 
free form, such a solution is usually more transparent and 
it is well worth the effort to obtain. However, if state tran- 
sitions are inherent to the problem being solved, clarity is 
often lost by attempting to force a solution that is side- 
effect-free. 

Thus we would like to be able to use streams wher- 
ever appropriate, but have the more powerful but less dis- 
clplined coroutine facility available when needed. If part 
of a problem yields to a stream implementation, but some 
segment of the problem is best solved with coroutines, with 
a coroutine-stream interface at our disposal we can com- 
bine both techniques in the same program, using each as 
appropriate. 

5 Conclusion 

We have demonstrated that the first class functional and 
control objects of Scheme 84 allow us to implement a corou- 
tins facility, rather than having to incorporate a coroutine 
mechanism in the core language. We also have the freedom 
to extend the basic coroutine mechanisnm in a variety of 
ways and to interface coroutines with other language fea- 
tures in ways suitable to a given problem or class of prob- 
lems. 

We believe that a primary responslblity of language 
deslguers is to provide a flexible basis for the creation of 
abstractions suitable for various classes of problems. The 
presence of first class continuations in Scheme 84 provides 
such a bask for the creation of control abstractions such as 
coroutines. If a mechanism as complicated as coroutines is 
included in a language design, it will be more complicated 
than is required for most applications, yet still lack features 
desirable for some applications. For instance, many corou- 
fine applications do not need the complexity of a detach 
mechanism, and it is unlikely that even a very elaborate 
coroutine mechanism will provide as clean a stream inter- 
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