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Abstract

The power of first class continuations is demonstrated by
implementing a variety of coroutine mechanisms using only
continuations and functional abstraction. The importance
of general abstraction mechanisms such as continuations is
discussed.

1 Introduction

A variety of coroutine mechanisms have been proposed,
some so complicated that there has been significant confu-
sion over their semantics [Marlin 80]. Yet most languages
provide no coroutine mechanism, and do not provide suffi-
cient power to allow the user to define one. In this paper we
demonstrate that a wide variety of coroutine mechanisms
may easily be defined by the user given a single control
abstraction, called a contsnuation. The power of contin-
uations stems from their first class nature: they may be
passed to and returned from functions, be stored in data
structures, and have indefinite extent.

In Scheme 84 [Friedman, et al. 84] the call-with-current-
continuation expression of the form (call/cc Ezp) ap-
plies the function which results from evaluating Ezp to the
continuation of the entire call/cc expression. This contin-
uation is a first class functional object that, when invoked,
returns the value of its single parameter as the value of the
entire call/cc expression. The control and environment
information associated with continuations is recorded in
storage that is dynamically allocated. It is reclaimed only
when all references to the continuation have been aban-
donad. This allows complete management of the control
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behavior of the computation, including arbitrary backtrack-
ing and other forms of context switching such as inter-
rupt driven multiprocessing {Wand 80]. (In GEDANKEN
[Reynolds 1970], labels are also first class control objects,
but are less general than continuations; they refer only to
statements, rather than to arbitrary points within an ex-
pression. Reynolds also notes that GEDANKEN labels may
be used to implement coroutines.)

In the next section we provide an overview of Scheme
84, a Scheme dialect which provides first class functional
and continuation objects. We then demonstrate how a basic
coroutine mechanism may be defined in Scheme 84 using
continuations. This basic mechanism is then elaborated
to provide additional features, such as a simple interface
between a group of coroutines and a stream. Finally, we
conclude with a discussion of the importance of powerful
abstractions, such as first class continuations, for language
extensibility.

2 An Overview of Scheme 84

Scheme was designed and first implemented at MIT in 1975
by Gerald Jay Sussman and Guy Lewis Steele, Jr. [Steele
& Sussman 78, Sussman & Steele 75] as part of an effort
to understand the actor model of computation [Hewitt 77].
Scheme may be described as a dialect of Lisp that is ap-
plicative order, lexically scoped, and properly tail-recursive..
Most importantly, Scheme—unlike all other Lisp dialects—
treats functions and continuations as first class objects.

A subset of Scheme 84 [Friedman et al. 84] is composed
of the following syntactic constructs:

{expression) i:=
{constant)
| (identifier)
| (syntactic extension)
| (1ambda ( {(identifier)} ) {{expression)} )
| (1 (expression) {expression) {expression) )
| (8ot} (identifier) {expression) )
| (call/ce (expression) )
| {application)
(syntactic extension) ::= ({keyword) {{expression)} )

{application) ::= ( (expression) {{expression)} )
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lambda is the soie binding operator of this subset and eval-
uates its expressions sequentially, returning the value of the
last. set! side-effects an existing identifier binding or ini-
tializes a global identifier. call/cc is described below. An
application evaluates its expressions (in an unspecified or-
der) and applies the value of the first expression to a list
of arguments formed from the values of the remaining ex-
pressions.

Scheme 84 provides a syntactic preprocessor that ex-
amines the first object in each expression. If the object is a
syntactic extension (macro) keyword, the procedure asso-
ciated with the indicated syntactic extension is invoked on
the expression, and the expression is replaced by the result-
ing transformed expression. If the object is not a keyword
or core expression identifier (1ambda, if, etc.), then it is
assumed that the expression is a normal function applica-
tion.

We use a few syntactic extensions. let makes local
identifier bindings. define changes an existing identifier
binding or initializes a global identifier.

(rec I E) = (et ([J '*]) (set! I E))

evaluates E in an environment which binds I to the value of
E itself.t Evaluating E should not result in dereferencing
I. This presents no problem in the usual case when E
evaluates to a closure.

(case Tag [A; E,] ... [A, E,))

evaluates T'ag and then returns the value of the first E;
such that A; matches the value of Tag.

call/cc evaluates its argument and applies it to the
current continuation represented as a functional object of
one argument.t In order to specify the current continua-
tion at any point in a computation, a continuation seman-
tics is necessary. We provide such a semantics with the
meta-circular Scheme 84 interpreter in Figure 1. The value
passed to the continuation is the result of the computation
up to the point where it is invoked.

In a continuation semantics, every recursive procedure
receives a continuation parameter. Rather than simply re-
turn, the procedure either passes its result directly to this
continuation, or passes the continuation (possibly embel-
lished) to some other procedure. For example, consider
meaning (Figure 1). The constant, identifier, and lambda
expressions pass their values directly to the continuation k.
In the 1f case, meaning is recursively invoked on the test-
pt (predicate) of the expression in the current environment,
and with a new continuation, denoted by a lambda expres-
sion, which will be passed the value of the test-pt. De-
pending on this value, meaning is invoked on the then-pt
or else-pt with the original continuation k of the if ex-
pression.

t = indicates that an expression of the form on the left is
transfcrmed into one of the form on the right, and brackets
are interchangeable with parentheses.

$ Using this primitive we can define catch, a version of
Landin’s J operator [Landin 65, Reynolds 72,Sussman 75].
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3 Implementation of Coroutines

Heretofore, coroutine languages have generally been state-
ment oriented, and the resume statement which transfers
control from one coroutine to another could not return a
value. Thus coroutines have had to communicate infor-
mation through shared free variables. Because Scheme is
expression oriented, we must associate some value with the
resume expression. What better candidate for this value
than a value passed by the resuming coroutine? Though
shared variables may still be necessary for some types of
communication, such resume values suffice in most cases
for inter-coroutine communication.

Thus, in our Scheme implementation of coroutines, re-
sume will be a function of two arguments: the coroutine to
be resumed, and the value to be passed to the resumed
coroutine. This value becomes the value of the resume ex-
pression by which the receiving coroutine last relinquished
control.

We implement a coroutine as a procedure with some lo-
cal state. Each coroutine must have its own private resume
function, because the resume function records the current
state of the coroutine’s computation (its continuation!) in
a variable local to the coroutine. This variable is called
LCS, for Local Control State. Since the LCS variable is
part of the implementation of our coroutine facility, and
not part of the programmer’s abstraction of coroutines, the
LCS variable should not be in the scope of the program-
mer’s coroutine code. This goal will be achieved using the
scoping mechanisms of Scheme.

We implement the coroutine abstraction with a func-
tion make-coroutine that takes as its argument another
function, which contains the programmer’s coroutine code.
make-coroutine then passes to this function a resume
function. Thus make-coroutine will be of type

(resume-function — z) — y

for some types z and y that we have not yet elaborated.

The result of make-coroutine is a procedural object
with a private variable, LCS, which holds the current state
of its computation (obtained with call/cc). Each time
the coroutine object is invoked, it receives a value, which is
sent to the continvation LCS. Thus the interface returned by
make-coroutine should look like (lambda (v) (LCS v)),
closed in an environment in which LCS is properly bound.
This function receives a value v and sends it to the cur-
rent (application time) value of LCS, as desired. (Note that
the interface could not be simply LCS, which would always
use the closure-time value of LCS.) Since make-coroutine
returns a function of one argument, its type is

(resume-function — z) — (value — z).

Each time a coroutine is resumed (including the first
time) it must also receive a value, 8o we further require that
the argument to make-coroutire be a function which ac-
cepts a resume function and returns a function of one argu-
ment, a receiver that accepts the initial value with which the
coroutine is to be resumed. The type of make-coroutine
is now



(define meaning
(lambda (e r k) ; e = expression, r = environment, k = continuation
{case (type-of-expression e)
{constant (k e)]
[identifier (k (R~lookup e r))]
[lambda (k (lambda (actuals k)
(evaluate-all (body-pts e)
(extend-env r (formals-pt e) actuals)
)]
[1f (meaning (test-pt e) r
(lambda (v) (if v (meaning (then-pt e) r k)
(meaning (else-pt e) r k))))]
[set! (meaning (val-pt e) r
(lambda (v) (k (store! (L-lookup (id-pt e) r) v))))]
[call/cc (meaning (fn-pt e) r
(lambda (f)
(t
(1ist (lambda (actuals dummy) (k (car actuals))))
K)))]
[application (meaning-of-all (comb-parts e) r
(lambda (vals) ((car vals) (cdr vals) k)))])))

(define evaluate-all
(lambda (exp-list r k)
(meaning (car exp-list) r
(1f (ull? (cdr exp-list))
k
(lambda (v) (evaluate-all (cdr :cxp-list) r k))))))

(define meaning-of-all
(lambda (exp-list r k)
(meaning (car exp-list) r
(lambda (v) (if (null? (cdr exp-list))
(k (coms v nil))
(meaning-of-all (cdr exp-list) r
(lambda (vr) (k (coms v vr)))))))))

Figure 1. Meta-circular interpreter for a subset of Scheme 84

(resume-function — (value — z)) — (value — z). Our implementation starts as:
Here 2 represents the type of value returned by the corou- (define make-coroutine
tine. In the simplest view of coroutines, they just resume (lambda (f)
one another and never return a value; so at this time the (call/ce
type of z is immaterial. Later we will give a meaningful (lambda (maker)
semantics to values returned by coroutines. (let ([LCS °#*])
Thus the following expression returns a new coroutine (let ([resume
procedure that executes Body, with resume bound to the (lu(:bd;l;dut val)
local resuming function and init bound to the value with ca (la::dn (self)
which the co(routme is initially resumed or invoked. (set! LCS self)
make-coroutine (dest val))))])
(lambda (resume) (let ([receiver (f resume)])
(lambda (init) Body))) 77?7
INNN
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resume grabs the current state of the computation, stores
it in LCS, and invokes the destination with the given value,
as desired.

The tricky part of this implementation is setting LCS
to the correct initial continuation, which should Jook like
(lambda (v) (receiver v)). We can create a continu-
ation like this by doing a call/cc in the context (re-
ceiver (call/cc (lambda (initk) ...))). Havingcre-
ated this continuation, we can store it in LCS and then exit
from make-coroutine by invoking the continuation maker
(which we were clever enough to grab when we entered
make-coroutine). The value which we should return to
the maker is just (lambda (v) (LCB v)), as we decided
before. Now we have:

(define make-coroutine
(lambda (f)
(call/cce
(lambda (maker)
(let ([LCE °**])
(let ([resume
(lambda (dest val)
(call/cc
(lambda (self)
(set! LCS self)
(dest val))N)
(let ([receiver (f resume)])
(receiver
(call/ce
(lambda (initk)
(set! LCS initk)
(maker
(lambda (v)
(LCs M)
NN

The last call/cc expression, however, is just (resume
maker (lambda (v) (LCS v)))! Also, receiver is used
only once, so we can substitute (2 resume) for its use. The
last let expression may then be replaced by

((£ resume) (resume maker (lambda (v) (LCS v)))).

The currying of £, which has so far been valuable in the
logical development of make-coroutine, is superfluous (ex-
cept by those who like currying for its own sake, or who
have other reasons for its use). Uncurrying £, the type of
make-coroutine becomes

(resume-function X value — z) — (value — 2)

and we have our final version:

(define make-coroutine
(lambda (2)
(call/cc
(lambda (maker)
(let ([LCS °*])
(let ([resume
(lambda (dest val)

(call/cc
(lambda (k)
(set! LCS k)

(dest val))))])
(f resume
(resume maker
(lambda (v) (LCS v))))
(error ‘'coroutine-fell-off-end)

NNN

As noted above, coroutines generally call one another
in turn, but what if one just returns a value? (Remem-
ber, in our implementation they are procedures, and any
procedure can return a value.) The (error °‘coroutine-
fell-off-end) expression above ensures that something
predictable happens in this case.

If textual abstraction is preferred to functional abstrac-
tion, and one is always willing to call the resume-function
resume and the initial value init-value, then one may use
the syntactic extension:

(coroutine E) =
(make-coroutine
(lambda (resume init-value) E))

4 Extensions of the Coroutine Mechanism

Dahl and Hoare [72] describe an extension to the basic
coroutine mechanism described above, which they incor-
rectly perceive as that of Simula [Marlin 80]. In addition to
the continuation LCS of the last point at which the corou-
tine relinquished contro!, each coroutine also records its
caller continuation, CC. A coroutine may be invoked by ei-
ther a resume or a call operation. In the latter case, the
continuation of the caller is recorded in the CC of the called
coroutine. When one coroutine resumes another, the ¢C
of the resumer becomes the CC of the resumed coroutine.
A coroutine can then invoke its caller continuation by an
explicit detach operation, or by simply returning a value.
To implement Dahl-Hoare style coroutines, we repre-
sent coroutines not as functions of one argument (a value
to be passed to the LCS) but as a function of two argu-
ments, a value and a caller continuation. The caller contin-
uation is recorded in the CC variable of the resumed or called
coroutine, and the value is then passed to the LCS as be-
fore. The resume procedure now passes both the resumer’s
caller-continuation and the resumer value to the destina-
tion coroutine. The new detach procedure also grabs the
current continuation and saves it in LCS, and then simply
invokes CC with the given value. The functional argument
f of make-coroutine now receives this detach-function, as
well as the resume-function and initial value. See Figure 2.
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(define make-coroutine
(lambda (f)
(call/cc
(lambda (maker)

(let ([LCS **] [CC **])
(let ([resume (lambda (dest val)

(call/cc
(lambda (k)
(set! LCS k)
(dest CC val))))]

[detach (lambda (val)

(call/cc
(lambda (k)
(set! LCS k)
(cc val))N1)

(detach ((f resume detach)

(call/cce
(lembda (k)
(set! LCS k)

(maker (lambda (cont val)
(set! CC cont)
(LCS val)))NINNINN

Figure 2. Dahl-Hoare Style Coroutine

One can enter a group of coroutines in this discipline
by using the function call, which receives the destination
coroutine and a value to pass to it, grabs the current con-
tinuation, and passes this continuation and the given value
to the called coroutine.

(define call
(lambda (dest val)
(call/cc
(lambda (k) (dest k val)))))

In some situations, it may be necessary to pass control
to, and return control from, a group of coroutines with-
out need for the generality of the Dahl-Hoare style facility
just discussed. In our implementation, the fact that corou-
tines are invoked not by a primitive resume operation, but
by application to a standard functional object (the resume-
function), allows us to easily achieve other forms of control.
For example, by creating a coroutine that simply exports
its resume-function, we can create an interface between a
group of coroutines and other parts of a program. To ac-
complish this, we define a coroutine interface that passes
its resume-function to its initial value:

(define interface
(coroutine (init-value resume)))

(Recall that coroutine is a syntactic extension that binds
init-value and resume.) By passing this coroutine a con-
tinuation as its initial value, we can obtain the coroutine’s
resume-function at any point in a program.

(let ([interface-resume (call/cc interface)l)
L)

By invoking this resume-function with another coroutine

and a value, the indicated coroutine will be resumed with
the indicated value. The resumed coroutine may then re-
sume other coroutines, with control being passed around
within some coroutine group uiitil it is desired that control
return to the point at which the group was entered. It is
then only necessary for one of the coroutines to resume the
interface coroutine via (resume interface Value). This
causes control to return to the caller of the interface-resume
function, with some indicated resume value. (Of course a
group of coroutines could have several interface coroutines
of this sort if required.)

As an example of the use of this mechanism, consider
the problem of generating a stream of values, where the con-
secutive values are produced by a group of coroutines. We
represent a stream as a pair (cons Value Thunk), where
Value is the first element of the stream and Thunk is a
function of no arguments which, when invoked, will return
a similar representation of the rest of the stream. Assum-
ing that corout is the name of the coroutine group member
that is to be resumed first in order to initiate computation
of the next stream element (and assuming that the value
with which corout is resumed is irrelevant) the next stream
may be obtained by

(cons (interface-resume corout nil) thunk)

where thunk is a function of no arguments which, when
invoked, will return the representation of the rest of the
stream. After corout has been resumed by interface-
coroutine, any member of the coroutine group can then
return v as the next stream element by executing (resume
interface v). Thus a coroutine-generated stream may be
constructed by
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(let ([interface-resume (call/cc interface)])

((rec thunk
(lambda ()
(cons (interface-resume corout nil)

thunk)))))

The stream interface example is of particular impor-
tance because in many situations where coroutines have
been employed, streams are more appropriate. Yet corou-
tines are clearly more general than streams. When the
transfer of control among coroutines is linear, that is

A=3B= . 232=>.>B=>4A

(read => as “resumes”), information is passed in only one
direction, and each coroutine divides easily into segments
between resumes, then a much more transparent solution
may generally be obtained by using streams rather than
coroutines. Conway’s problem [Conway 63|, the classic ex-
ample for coroutines, is of this form. The relationship be-
tween coroutines and streams is analogous to that between
imperative and applicative programming. If a problem can
without undue difficulty be expressed in a purely side-effect-
free form, such a solution is usually more transparent and
it is well worth the effort to obtain. However, if state tran-
sitions are inherent to the problem being solved, clarity is
often lost by attempting to force a solution that is side-
effect-free.

Thus we would like to be able to use streams wher-
ever appropriate, but have the more powerful but less dis-
ciplined coroutine facility available when needed. If part
of a problem yields to a stream implementation, but some
segment of the problem is best solved with coroutines, with
a coroutine-stream interface at our disposal we can com-
bine both techniques in the same program, using each as
appropriate.

§ Conclusion

We have demonstrated that the first class functional and
control objects of Scheme 84 allow us to implement a corou-
tine facility, rather than having to incorporate a coroutine
mechanism in the core language. We also have the freedom
o extend the basic coroutine mechanisms in a variety of
ways and to interface coroutines with other language fea-
tures in ways suitable to a given problem or class of prob-
lems.

We believe that a primary responsiblity of language
designers is to provide a flexible basis for the creation of
abstractions suitable for various classes of problems. The
presence of first class continuations in Scheme 84 provides
such a basis for the creation of control abstractions such as
coroutines. If a mechanism as complicated as coroutines is
included in a language design, it will be more complicated
than is required for most applications, yet still lack features
desirable for some applications. For instance, many corou-
tine applications do not need the complexity of a detach
mechanism, and it is unlikely that even a very elaborate
coroutine mechanism will provide as clean a stream inter-

face as the one developed here. By using a clean base lan-
guage with powerful and orthogonal reflection mechanisms
(such as call/cc), the programmer is able to create control
structures far better tuned to the problem at hand.
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