
Shared Memory Multiprocessors

314 DRAFT: Parallel Computer Architecture 9/10/97

cause an invalidation, but the rest can simply accumulate in the block and be transferred in one
bus transaction on a flush or a write-back. Sophisticated update schemes might attempt to delay
the update to achieve a similar effect (by merging writes in the write buffer), or use other tech-
niques to reduce traffic and improve performance [DaS95]. However, the increased bandwidth
demand, the complexity of supporting updates, the trend toward larger cache blocks and the
pack-rat phenomenon with sequential workloads underly the trend away from update-based pro-
tocols in the industry. We will see in Chapter 8 that update protocols also have some other prob-

lems for scalable cache-coherent architectures, making it less attractive for microprocessors to
support them.

5.6 Synchronization

A critical interplay of hardware and software in multiprocessors arises in supporting synchroni-
zation operations, mutual exclusion, point-to-point events and global events, and there has been
considerable debate over the years on what hardware primitives should be provided in multipro-
cessor machines to support these synchronization operations. The conclusions have changed
from time to time, with changes in technology and machine design style. Hardware support has
the advantage of speed, but moving functionality to software has the advantage of flexibility and
adaptability to different situations. The classic work of Dijkstra [Dij65] and Knuth [Knu66]
shows that it is possible to provide mutual exclusion with only atomic read and write operations
(assuming a sequentially consistent memory). However, all practical synchronization operations
rely on some atomic read-modify-write machine primitive, in which the value of a memory loca-

Figure 5-28 Upgrade and update rates for invalidate, update, and mixed protocols

1Mbyte, 64byte, 4-way, and k=4

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

LU
/i

nv

LU
/u

p

O
ce

an
/in

v

O
ce

an
/m

ix

O
ce

an
/u

pd

R
ay

tr
ac

e/
in

v

R
ay

tr
ac

e/
up

M
is

s
R

at
e UPGMR

FSMR
TSMR
CAPMR
COLDMR

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

R
ad

ix
/in

v

R
ad

ix
/m

ix

R
ad

ix
/u

pd

M
is

s
R

at
e UPGMR

FSMR
TSMR
CAPMR
COLDMR

[ARTIST: Please remove FSMR, TSMR, CAPMR and COLDMR from legend, and please change the only remaining
one, (UPGMR) to Upgrade/Update].

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 315

tion is read, modified and written back atomically without intervening accesses to the location by
other processors. Simple or sophisticated synchronization algorithms can be built using these
primitives.

The history of instruction set design offers a glimpse into the evolving hardware support for syn-
chronization. One of the key instruction set enhancements in the IBM 370 was the inclusion of a
sophisticated atomic instruction, the compare-and-swap instruction, to support synchronization
in multiprogramming on uniprocessor or multiprocessor systems. The compare&swap compares
the value in a memory location with the value in a specified register, and if they are equal swaps
the value of the location with the value in a second register. The Intel x86 allows any instruction
to be prefixed with a lock modifier to make it atomic, so with the source and destination being
memory operands much of the instruction set can be used to implement various atomic opera-
tions involving even more than one memory location. Advocates of high level language architec-
ture have proposed that the user level synchronization operations, such a locks and barriers,
should be supported at the machine level, not just the atomic read-modify-write primitives; i.e.
the synchronization “algorithm” itself should be implemented in hardware. The issue became
very active with the reduced instruction set debates, since the operations that access memory
were scaled back to simple loads and stores with only one memory operand. The SPARC
approach was to provide atomic operations involving a register and a memory location, e.g., a
simple swap (atomically swap the contents of the specified register and memory location) and a
compare-and-swap, while MIPS left off atomic primitives in the early instruction sets, as did the
IBM Power architecture used in the RS6000. The primitive that was eventually incorporated in
MIPS was a novel combination of a special load and a conditional store, described below, which
allow higher level synchronization operations to be constructed without placing the burden of full
read-modify-write instructions on the machine implementor. In essence, the pair of instructions
can be used to implement atomic exchange (or higher-level operations) instead of a single
instruction. This approach was later incorporated in the PowerPC and DEC Alpha architectures,
and is now quite popular. Synchronization brings to light an unusually rich family of tradeoffs
across the layers of communication architecture.

The focus of this section is how synchronization operations can be implemented on a bus-based
cache-coherent multiprocessor. In particular, it describes the implementation of mutual exclusion
through lock-unlock pairs, point-to-point event synchronization through flags, and global event
synchronization through barriers. Not only is there a spectrum of high level operations and of low
level primitives that can be supported by hardware, but the synchronization requirements of
applications vary substantially. Let us begin by considering the components of a synchronization
event. This will make it clear why supporting the high level mutual exclusion and event opera-
tions directly in hardware is difficult and is likely to make the implementation too rigid. Given
that the hardware supports only the basic atomic state transitions, we can examine role of the user
software and system software in synchronization operations, and then examine the hardware and
software design tradeoffs in greater detail.

5.6.1 Components of a Synchronization Event

There are three major components of a given type of synchronization event:

an acquire method: a method by which a process tries to acquire the right to the synchroniza-
tion (to enter the critical section or proceed past the event synchronization)

Shared Memory Multiprocessors

316 DRAFT: Parallel Computer Architecture 9/10/97

a waiting algorithm: a method by which a process waits for a synchronization to become
available when it is not. For example, if a process tries to acquire a lock but the lock is not
free (or proceed past an event but the event has not yet occurred), it must somehow wait until
the lock becomes free.
a release method: a method for a process to enable other processes to proceed past a synchro-
nization event; for example, an implementation of the UNLOCK operation, a method for the
last processes arriving at a barrier to release the waiting processes, or a method for notifying a
process waiting at a point-to-point event that the event has occurred.

The choice of waiting algorithm is quite independent of the type of synchronization: What should
a processor that has reached the acquire point do while it waits for the release to happen? There
are two choices here: busy-waiting and blocking. Busy-waiting means that the process spins in a
loop that repeatedly tests for a variable to change its value. A release of the synchronization event
by another processor changes the value of the variable, allowing the process to proceed. Under
blocking, the process does not spin but simply blocks (suspends) itself and releases the processor
if it finds that it needs to wait. It will be awoken and made ready to run again when the release it
was waiting for occurs. The tradeoffs between busy-waiting and blocking are clear. Blocking has
higher overhead, since suspending and resuming a process involves the operating system, and
suspending and resuming a thread involves the runtime system of a threads package, but it makes
the processor available to other threads or processes with useful work to do. Busy-waiting avoids
the cost of suspension, but consumes the processor and memory system bandwidth while wait-
ing. Blocking is strictly more powerful than busy waiting, because if the process or thread that is
being waited upon is not allowed to run, the busy-wait will never end.1 Busy-waiting is likely to
be better when the waiting period is short, whereas, blocking is likely to be a better choice if the
waiting period is long and if there are other processes to run. Hybrid waiting methods can be
used, in which the process busy-waits for a while in case the waiting period is short, and if the
waiting period exceeds a certain threshold, blocks allowing other processes to run. The difficulty
in implementing high level synchronization operations in hardware is not the acquire and release
components, but the waiting algorithm. Thus, it makes sense to provide hardware support for the
critical aspects of the acquire and release and allow the three components to be glued together in
software. However, there remains a more subtle but very important hardware/software interaction
in how the spinning operation in the busy-wait component is realized.

5.6.2 Role of User, System Software and Hardware

Who should be responsible for implementing the internals of high-level synchronization opera-
tions such as locks and barriers? Typically, a programmer wants to use locks, events, or even
higher level operations and not have to worry about their internal implementation. The imple-
mentation is then left to the system, which must decide how much hardware support to provide
and how much of the functionality to implement in software. Software synchronization algo-
rithms using simple atomic exchange primitives have been developed which approach the speed
of full hardware implementations, and the flexibility and hardware simplification they afford are

1. This problem of denying resources to the critical process or thread is one problem that is actually made
simpler in with more processors. When the processes are timeshared on a single processor, strict busy-wait-
ing without preemption is sure to be a problem. If each process or thread has its own processor, it is guaran-
teed not to be a problem. Realistic multiprogramming environments on a limited set of processors fall
somewhere in between.

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 317

very attractive. As with other aspects of the system design, the utility of faster operations depends
on the frequency of the use of those operations in the applications. So, once again, the best
answer will be determined by a better understanding of application behavior.

Software implementations of synchronization constructs are usually included in system libraries.
Many commercial systems thus provide subroutines or system calls that implement lock, unlock
or barrier operations, and perhaps some types of other event synchronization. Good synchroniza-
tion library design can be quite challenging. One potential complication is that the same type of
synchronization (lock, barrier), and even the same synchronization variable, may be used at dif-
ferent times under very different runtime conditions. For example, a lock may be accessed with
low-contention (a small number of processors, maybe only one, trying to acquire the lock at a
time) or with high-contention (many processors trying to acquire the lock at the same time). The
different scenarios impose different performance requirements. Under high-contention, most pro-
cesses will spend time waiting and the key requirement of a lock algorithm is that it provide high
lock-unlock bandwidth, whereas under low-contention the key goal is to provide low latency for
lock acquisition. Since different algorithms may satisfy different requirements better, we must
either find a good compromise algorithm or provide different algorithms for each type of syn-
chronization among which a user can choose. If we are lucky, a flexible library can at runtime
choose the best implementation for the situation at hand. Different synchronization algorithms
may also rely on different basic handware primitives, so some may be better suited to a particular
machine than others. A second complication is that these multiprocessors are often used for mul-
tiprogrammed workloads where process scheduling and other resource interactions can change
the synchronization behavior of the processes in a parallel program. A more sophisticated algo-
rithm that addresses multiprogramming effects may provide better performance in practice than a
simple algorithm that has lower latency and higher bandwidth in the dedicated case. All of these
factors make synchronization a critical point of hardware/software interaction.

5.6.3 Mutual Exclusion

Mutual exclusion (lock/unlock) operations are implemented using a wide range of algorithms.
The simple algorithms tend to be fast when there is little contention for the lock, but inefficient
under high contention, whereas sophisticated algorithms that deal well with contention have a
higher cost in the low contention case. After a brief discussion of hardware locks, the simplest
algorithms for memory-based locks using atomic exchange instructions are described. Then, we
discuss how the simplest algorithms can be implemented by using the special load locked and
conditional store instruction pairs to synthesize atomic exchange, in place of atomic exchange
instructions themselves, and what the performance tradeoffs are. Next, we discuss more sophisti-
cated algorithms that can be built using either method of implementing atomic exchange.

Hardware Locks

Lock operations can be supported entirely in hardware, although this is not popular on modern
bus-based machines. One option that was used one some older machines was to have a set of lock
lines on the bus, each used for one lock at a time. The processor holding the lock asserts the line,
and processors waiting for the lock wait for it to be released. A priority circuit determines which-
gets the lock next when there are multiple requestors. However, this approach is quite inflexible
since only a limited number of locks can be in use at a time and waiting algorithm is fixed (typi-
cally busy-wait with abort after timeout). Usually, these hardware locks were used only by the
operating system for specific purposes, one of which was to implement a larger set of software

Shared Memory Multiprocessors

318 DRAFT: Parallel Computer Architecture 9/10/97

locks in memory, as discussed below. The Cray xMP provided an interesting variant of this
approach. A set of registers were shared among the processors, including a fixed collection of
lock registers[**XMP**]. Although the architecture made it possible to assign lock registers to
user processes, with only a small set of such registers it was awkward to do so in a general pur-
pose setting and, in practice, the lock registers were used primarily to implement higher level
locks in memory.

Simple Lock Algorithms on Memory Locations

Consider a lock operation used to provide atomicity for a critical section of code. For the acquire
method, a process trying to obtain a lock must check that the lock is free and if it is then claim
ownership of the lock. The state of the lock can be stored in a binary variable, with 0 representing
free and 1 representing busy. A simple way of thinking about the lock operation is that a process
trying to obtain the lock should check if the variable is 0 and if so set it to 1 thus marking the lock
busy; if the variable is 1 (lock is busy) then it should wait for the variable to turn to 0 using the
waiting algorithm. An unlock operation should simply set the variable to 0 (the release method).
Assembly-level instructions for this attempt at a lock and unlock are shown below (in our
pseudo-assembly notation, the first operand always specifies the destination if there is one).

lock: ld register, location /* copy location to register */
cmp location, #0 /* compare with 0 */
bnz lock /* if not 0, try again */
st location, #1 /* store 1 into location to mark it locked */
ret /* return control to caller of lock */

and

unlock: st location, #0 /* write 0 to location */
ret /* return control to caller */

The problem with this lock, which is supposed to provide atomicity, is that it needs atomicity in
its own implementation. To illustrate this, suppose that the lock variable was initially set to 0, and
two processes P0 and P1 execute the above assembly code implementations of the lock opera-
tion. Process P0 reads the value of the lock variable as 0 and thinks it is free, so it enters the crit-
ical section. Its next step is to set the variable to 1 marking the lock as busy, but before it can do
this process P1 reads the variable as 0, thinks the lock is free and enters the critical section too.
We now have two processes simultaneously in the same critical section, which is exactly what the
locks were meant to avoid. Putting the store of 1 into the location just after the load of the loca-
tion would not help. The two-instruction sequence—reading (testing) the lock variable to check
its state, and writing (setting) it to busy if it is free—is not atomic, and there is nothing to prevent
these operations from different processes from being interleaved in time. What we need is a way
to atomically test the value of a variable and set it to another value if the test succeeded (i.e. to
atomically read and then conditionally modify a memory location), and to return whether the
atomic sequence was executed successfully or not. One way to provide this atomicity for user
processes is to place the lock routine in the operating system and access it through a system call,
but this is expensive and leaves the question of how the locks are supported for the system itself.
Another option is to utilize a hardware lock around the instruction sequence for the lock routine,
but this also tends to be very slow compared to modern processors.

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 319

Hardware Atomic Exchange Primitives

An efficient, general purpose solution to the lock problem is to have an atomic read-modify-write
instruction in the processor’s instruction set. A typical approach is to have and atomic exchange
instruction, in which a value at a location specified by the instruction is read into a register, and
another value—that is either a function of the value read or not—is stored into the location, all in
an atomic operation. There are many variants of this operation with varying degrees of flexibility
in the nature of the value that can be stored. A simple example that works for mutual exclusion is
an atomic test&set instruction. In this case, the value in the memory location is read into a speci-
fied register, and the constant 1 is stored into the location atomically if the value read is 0 (1 and
0 are typically used, though any other constants might be used in their place). Given such an
instruction, with the mnemonic t&s, we can write a lock and unlock in pseudo-assembly lan-
guage as follows:

lock: t&s register, location /* copy location to reg, and if 0 set location to 1 */
bnz register, lock /* compare old value returned with 0 */

/* if not 0, i.e. lock already busy, try again */
ret /* return control to caller of lock */

and

unlock: st location, #0 /* write 0 to location */
ret /* return control to caller */

The lock implementation keeps trying to acquire the lock using test&set instructions, until the
test&set returns zero indicating that the lock was free when tested (in which case the test&set has
set the lock variable to 1, thus acquiring it). The unlock construct simply sets the location associ-
ated with the lock to 0, indicating that the lock is now free and enabling a subsequent lock opera-
tion by any process to succeed. A simple mutual exclusion construct has been implemented in
software, relying on the fact that the architecture supports an atomic test&set instruction.

More sophisticated variants of such atomic instructions exist, and as we will see are used by dif-
ferent software synchronization algorithms. One example is a swap instruction. Like a test&set,
this reads the value from the specified memory location into the specified register, but instead of
writing a fixed constant into the memory location it writes whatever value was in the register to
begin with. That is, it atomically exchanges or swaps the values in the memory location and the
register. Clearly, we can implement a lock as before by replacing the test&set with a swap
instruction as long as we ensure that the value in the register is 1 before the swap instruction is
executed.

Another example is the family of so-called fetch&op instructions. A fetch&op instruction also
specifies a location and a register. It atomically reads the value of the location into the register,
and writes into the location the value obtained by applying to the current value of the location the
operation specified by the fetch-and-op instruction. The simplest forms of fetch&op to imple-
ment are the fetch&increment and fetch&decrement instructions, which atomically read the cur-
rent value of the location into the register and increment (or decrement) the value in the location
by one. A fetch&add would take another operand which is a register or value to add into the pre-
vious value of the location. More complex primitive operations are possible. For example, the
compare&swap operation takes two register operands plus a memory location; it compares the

Shared Memory Multiprocessors

320 DRAFT: Parallel Computer Architecture 9/10/97

value in the location with the contents of the first register operand, and if the two are equal it
swaps the contents of the memory location with the contents of the second register.

Performance Issues

Figure 5-29 shows the performance of a simple test&set lock on the SGI Challenge.1 Perfor-
mance is measured for the following pseudocode executed repeatedly in a loop:

lock(L); critical-section(c); unlock(L);

where c is a delay parameter that determines the size of the critical section (which is only a
delay, with no real work done). The benchmark is configured so that the same total number of
locks are executed as the number of processors increases, reflecting a situation where there is a
fixed number of tasks, independent of the number of processors. Performance is measured as the
time per lock transfer, i.e., the cumulative time taken by all processes executing the benchmark
divided by the number of times the lock is obtained. The uniprocessor time spent in the critical
section itself (i.e. c times the number of successful locks executed) is subtracted from the total
execution time, so that only the time for the lock transfers themselves (or any contention caused
by the lock operations) is obtained. All measurements are in microseconds.

The upper curve in the figure shows the time per lock transfer with increasing number of proces-
sors when using the test&set lock with a very small critical section (ignore the curves with “back-
off” in their labels for now). Ideally, we would like the time per lock acquisition to be
independent of the number of processors competing for the lock, with only one uncontended bus
transaction per lock transfer, as shown in the curve labelled ideal. However, the figure shows that
performance clearly degrades with increasing number of processors. The problem with the
test&set lock is that every attempt to check whether the lock is free to be acquired, whether suc-
cessful or not, generates a write operation to the cache block that holds the lock variable (writing
the value to 1); since this block is currently in the cache of some other processor (which wrote it
last when doing its test&set), a bus transaction is generated by each write to invalidate the previ-
ous owner of the block. Thus, all processors put transactions on the bus repeatedly. The resulting
contention slows down the lock considerably as the number of processors, and hence the fre-
quency of test&sets and bus transactions, increases. The high degree of contention on the bus and
the resulting timing dependence of obtaining locks causes the benchmark timing to vary sharply
across numbers of processors used and even across executions. The results shown are for a par-
ticular, representative set of executions with different numbers of processors.

The major reason for the high traffic of the simple test&set lock above is the waiting method. A
processor waits by repeatedly issuing test&set operations, and every one of these test&set opera-
tions includes a write in addition to a read. Thus, processors are consuming precious bus band-
width even while waiting, and this bus contention even impedes the progress of the one process
that is holding the lock (as it performs the work in its critical section and attempts to release the

1. In fact, the processor on the SGI Challenge, which is the machine for which synchronization perfor-
mance is presented in this chapter, does not provide a test&set instruction. Rather, it uses alternative primi-
tives that will be described later in this section. For these experiments, a mechanism whose behavior closely
resembles that of test&set is synthesized from the available primitives. Results for real test&set based locks
on older machines like the Sequent Symmetry can be found in the literature [GrT90, MCS87].

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 321

lock).There are two simple things we can do to alleviate this traffic. First, we can reduce the fre-
quency with which processes issue test&set instructions while waiting; second, we can have pro-
cesses busy-wait only with read operations so they do not generate invalidations and misses until
the lock is actually released. Let us examine these two possibilities, called the test&set lock with
backoff and the test-and-test&set lock.

Test&set Lock with Backoff. The basic idea with backoff is to insert a delay after an unsuccessful
attempt to acquire the lock. The delay between test&set attempts should not be too long, otherwise
processors might remain idle even when the lock becomes free. But it should be long enough that
traffic is substantially reduced. A natural question is whether the delay amount should be fixed or
should vary. Experimental results have shown that good performance is obtained by having the
delay vary “exponentially”; i.e. the delay after the first attempt is a small constant k, and then
increases geometrically so that after the ith iteration it is k*ci where c is another constant. Such a
lock is called a test&set lock with exponential backoff. Figure 5-29 also shows the performance
for the test&set lock with backoff for two different sizes of the critical section and the starting
value for backoff that appears to perform best. Performance improves, but still does not scale
very well. Performance results using a real test&set instruction on older machines can be found
in the literature [GrT90, MCS91]. See also Exercise 5.6, which discusses why the performance
with a null critical section is worse than that with a non-zero critical section when backoff is
used.

Test-and-test&set Lock. A more subtle change to the algorithm is have it use instructions that
do not generate as much bus traffic while busy-waiting. Processes busy-wait by repeatedly read-
ing with a standard load, not a test&set, the value of the lock variable until it turns from 1
(locked) to 0 (unlocked). On a cache-coherent machine, the reads can be performed in-cache by
all processors, since each obtains a cached copy of the lock variable the first time it reads it.
When the lock is released, the cached copies of all waiting processes are invalidated, and the next

Figure 5-29 Performance of test&set locks with increasing number of competing processors on the SGI Challenge.

The Y axis is the time per lock-unlock pair, excluding the critical section of size c microseconds. The "exp. backoff" refers to expo-
nential backoff, which will be discussed shortly. The irregular nature of the top curve is due to the timing-dependence of the conten-
tion effects caused. Note that since the processor on the SGI Challenge does not provide anatomic read-modify-write primitive but
rather more sophisticated primitives discussed later in this section, the behavior of a test&set is simulated using those primitives for
this experiment. Performance of locks that use test&set and test&set with backoff on older systems can be found in the literature
[GrT90, MCS91].

0
2
4
6
8

1 0

1 2
1 4
1 6
1 8
2 0

1 3 5 7 9 1
1

1
3

1
5

Processors

Ti
m

e
(m

ic
ro

se
c.

)

test&set, c=0

test&set, exp. backoff,
c=0
test&set, exp. backoff,
c=3.64
Ideal

Shared Memory Multiprocessors

322 DRAFT: Parallel Computer Architecture 9/10/97

read of the variable by each process will generate a read miss. The waiting processes will then
find that the lock has been made available, and will only then generate a test&set instruction to
actually try to acquire the lock.

Before examining other lock algorithms and primitives, it is useful to articulate some perfor-
mance goals for locks and to place the above locks along them. The goals include:

Low latency If a lock is free and no other processors are trying to acquire it at the same time,
a processor should be able to acquire it with low latency.
Low traffic Suppose many or all processors try to acquire a lock at the same time. They
should be able to acquire the lock one after the other with as little generation of traffic or bus
transactions as possible. High traffic can slow down lock acquisitions due to contention, and
can also slow down unrelated transactions that compete for the bus.
Scalability Related to the previous point, neither latency nor traffic should scale quickly with
the number of processors used. Keep in mind that since the number of processors in a bus-
based SMP is not likely to be large, it is not asymptotic scalability that is important.
Low storage cost The information needed for a lock should be small and should not scale
quickly with the number of processors.
Fairness Ideally, processors should acquire a lock in the same order as their requests are
issued. At least, starvation or substantial unfairness should be avoided.

Consider the simple atomic exchange or test&set lock. It is very low-latency if the same proces-
sor acquires the lock repeatedly without any competition, since the number of instructions exe-
cuted is very small and the lock variable will stay in that processor’s cache. However, as
discussed earlier it can generate a lot of bus traffic and contention if many processors compete for
the lock. The scalability of the lock is poor with the number of competing processors. The stor-
age cost is low (a single variable suffices) and does not scale with the number of processors. The
lock makes no attempt to be fair, and an unlucky processor can be starved out. The test&set lock
with backoff has the same uncontended latency as the simple test&set lock, generates less traffic
and is more scalable, takes no more storage, and is no more fair. The test-and-test&set lock has
slightly higher uncontended overhead than the simple test&set lock (it does a read in addition to
a test&set even when there is no competition), but generates much less bus traffic and is more
scalable. It too requires negligible storage and is not fair. Exercise 5.6 asks you to count the num-
ber of bus transactions and the time required for each type of lock.

Since a test&set operation and hence a bus transaction is only issued when a processor is notified
that the lock is ready, and thereafter if it fails it spins on a cache block, there is no need for back-
off in the test-and-test&set lock. However, the lock does have the problem that all processes rush
out and perform both their read misses and their test&set instructions at about the same time
when the lock is released. Each of these test&set instructions generates invalidations and subse-
quent misses, resulting in O(p2) bus traffic for p processors to acquire the lock once each. A ran-
dom delay before issuing the test&set could help to stagger at least the test&set instructions, but
it would increase the latency to acquire the lock in the uncontended case.

Improved Hardware Primitives: Load-locked, Store-conditional

Several microprocessors provide a pair of instructions called load locked and store conditional to
implement atomic operations, instead of a atomic read-modify-write instructions like test&set.
Let us see how these primitives can be used to implement simple lock algorithms and improve

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 323

performance over a test-and-test&set lock. Then, we will examine sophisticated lock algorithms
that tend to use more sophisticated atomic exchange operations, which can be implemented
either as atomic instructions or with load locked and store conditional.

In addition to spinning with reads rather than read-modify-writes, which test-and-test&set
accomplishes, it would be nice to implement read-modify-write operations in such a way that
failed attempts to complete the read-modify-write do not generate invalidations. It would also be
nice to have a single primitive that allows us to implement a range of atomic read-modify-write
operations—such as test&set, fetch&op, compare&swap—rather than implement each with a
separate instruction. Using a pair of special instructions rather than a single instruction to imple-
ment atomic access to a variable, let’s call it a synchronization variable, is one way to achieve
both goals. The first instruction is commonly called load-locked or load-linked (LL). It loads the
synchronization variable into a register. It may be followed by arbitrary instructions that manipu-
late the value in the register; i.e. the modify part of a read-modify-write. The last instruction of
the sequence is the second special instruction, called a store-conditional (SC). It writes the regis-
ter back to the memory location (the synchronization variable) if and only if no other processor
has written to that location since this processor completed its LL. Thus, if the SC succeeds, it
means that the LL-SC pair has read, perhaps modified in between, and written back the variable
atomically. If the SC detects that an intervening write has occurred to the variable, it fails and
does not write the value back (or generate any invalidations). This means that the atomic opera-
tion on the variable has failed and must be retried starting from the LL. Success or failure of the
SC is indicated by the condition codes or a return value. How the LL and SC are actually imple-
mented will be discussed later; for now we are concerned with their semantics and performance.

Using LL-SC to implement atomic operations, lock and unlock subroutines can be written as fol-
lows, where reg1 is the register into which the current value of the memory location is loaded,
and reg2 holds the value to be stored in the memory location by this atomic exchange (reg2 could
simply be 1 for a lock attempt, as in a test&set). Many processors may perform the LL at the
same time, but only the first one that manages to put its store conditional on the bus will succeed
in its SC. This processor will have succeeded in acquiring the lock, while the others will have
failed and will have to retry the LL-SC.

lock: ll reg1, location /* load-linked the location to reg1 */
bnz reg1, lock /* if location was locked (nonzero), try again*/
sc location, reg2 /* store reg2 conditionally into location*/
beqz lock /* if SC failed, start again*/
ret /* return control to caller of lock */

and

unlock: st location, #0 /* write 0 to location */
ret /* return control to caller */

If the location is 1 (nonzero) when a process does its load linked, it will load 1 into reg1 and will
retry the lock starting from the LL without even attempt the store conditional.

It is worth noting that the LL itself is not a lock, and the SC itself is not an unlock. For one thing,
the completion of the LL itself does not guarantee obtaining exclusive access; in fact LL and SC
are used together to implement a lock operation as shown above. For another, even a successful
LL-SC pair does not guarantee that the instructions between them (if any) are executed atomi-

Shared Memory Multiprocessors

324 DRAFT: Parallel Computer Architecture 9/10/97

cally with respect to those instructions on other processors, so in fact those instructions do not
constitute a critical section. All that a successful LL-SC guarantees is that no conflicting writes to
the synchronization variable accessed by the LL and SC themselves intervened between the LL
and SC. In fact, since the instructions between the LL and SC are executed but should not be vis-
ible if the SC fails, it is important that they do not modify any important state. Typically, they
only manipulate the register holding the synchronization variable—for example to perform the
op part of a fetch&op—and do not modify any other program variables (modification of the reg-
ister is okay since the register will be re-loaded anyway by the LL in the next attempt). Micropro-
cessor vendors that support LL-SC explicitly encourage software writers to follow this guideline,
and in fact often provide guidelines on what instructions are possible to insert with guarantee of
correctness given their implementations of LL-SC. The number of instructions between the LL
and SC should also be kept small to reduce the probability of the SC failing. On the other hand,
the LL and SC can be used directly to implement certain useful operations on shared data struc-
tures. For example, if the desired function is a shared counter, it makes much more sense to
implement it as the natural sequence (LL, register op, SC, test) than to build a lock and unlock
around the counter update.

Unlike the simple test&set, the spin-lock built with LL-SC does not generate invalidations if
either the load-linked indicates that the lock is currently held or if the SC fails. However, when
the lock is released, the processors spinning in a tight loop of load-locked operations will miss on
the location and rush out to the bus with read transactions. After this, only a single invalidation
will be generated for a given lock acquisition, by the processor whose SC succeeds, but this will
again invalidate all caches. Traffic is reduced greatly from even the test-and-test&set case, down
from O(p2) to O(p) per lock acquisition, but still scales quickly with the number of processors.
Since spinning on a locked location is done through reads (load-locked operations) there is no
analog of a test-and-test&set to further improve its performance. However, backoff can be used
between the LL and SC to further reduce bursty traffic.

The simple LL-SC lock is also low in latency and storage, but it is not a fair lock and it does not
reduce traffic to a minimum. More advanced lock algorithms can be used that both provide fair-
ness and reduce traffic. They can be built using both atomic read-modify-write instructions or
LL-SC, though of course the traffic advantages are different in the two cases. Let us consider two
of these algorithms.

Advanced Lock Algorithms

Especially when using a test&set to implement locks, it is desirable to have only one process
attempt to obtain the lock when it is released (rather than have them all rush out to do a test&set
and issue invalidations as in all the above cases). It is even more desirable to have only one pro-
cess even incur a read miss when a lock is released. The ticket lock accomplishes the first pur-
pose, while the array-based lock accomplishes both goals but at a little cost in space. Both locks
are fair, and grant the lock to processors in FIFO order.

Ticket Lock. The ticket lock operates just like the ticket system in the sandwich line at a grocery
store, or in the teller line at a bank. Every process wanting to acquire the lock takes a number, and
busy-waits on a global now-serving number—like the number on the LED display that we watch
intently in the sandwich line—until this now-serving number equals the number it obtained. To
release the lock, a process simply increments the now-serving number. The atomic primitive
needed is a fetch&increment, which a process uses to obtain its ticket number from a shared
counter. It may be implemented as an atomic instruction or using LL-SC. No test&set is needed

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 325

to actually obtain the lock upon a release, since only the unique process that has its ticket number
equal now-serving attempts to enter the critical section when it sees the release. Thus, the atomic
primitive is used when a process first reaches the lock operation, not in response to a release. The
acquire method is the fetch&increment, the waiting algorithm is busy-waiting for now-serving to
equal the ticket number, and the release method is to increment now-serving. This lock has
uncontended overhead about equal to the test-and-test&set lock, but generates much less traffic.
Although every process does a fetch and increment when it first arrives at the lock (presumably
not at the same time), the simultaneous test&set attempts upon a release of the lock are elimi-
nated, which tend to be a lot more heavily contended. The ticket lock also requires constant and
small storage, and is fair since processes obtain the lock in the order of their fetch&increment
operations. However, like the simple LL-SC lock it still has a traffic problem. The reason is that
all processes spin on the same variable (now-serving). When that variable is written at a release,
all processors’ cached copies are invalidated and they all incur a read miss. (The simple LL-SC
lock was somewhat worse in this respect, since in that case another invalidation and set of read
misses occurred when a processor succeeded in its SC.) One way to reduce this bursty traffic is to
introduce a form of backoff. We do not want to use exponential backoff because we do not want
all processors to be backing off when the lock is released so none tries to acquire it for a while. A
promising technique is to have each processor backoff from trying to read the now-serving
counter by an amount proportional to when it expects its turn to actually come; i.e. an amount
proportional to the difference in its ticket number and the now-serving counter it last read. Alter-
natively, the array-based lock eliminates this extra read traffic upon a release completely, by hav-
ing every process spin on a distinct location.

Array-based Lock. The idea here is to use a fetch&increment to obtain not a value but a unique
location to busy-wait on. If there are p processes that might possibly compete for a lock, then the
lock contains an array of p locations that processes can spin on, ideally each on a separate mem-
ory block to avoid false-sharing. The acquire method then uses a fetch&increment operation to
obtain the next available location in this array (with wraparound) to spin on, the waiting method
spins on this location, and the release method writes a value denoting “unlocked” to the next
location in the array after the one that the releasing processor was itself spinning on. Only the
processor that was spinning on that location has its cache block invalidated, and its consequent
read miss tells it that it has obtained the lock. As in the ticket lock, no test&set is needed after the
miss since only one process is notified when the lock is released. This lock is clearly also FIFO
and hence fair. It’s uncontended latency is likely to be similar to that of the test-and-test&set lock
(a fetch&increment followed by a read of the assigned array location), and it is more scalable
than the ticket lock since only one process incurs the read miss. It’s only drawback for a bus-
based machine is that it uses O(p) space rather than O(1), but with both p and the proportionality
constant being small this is usually not a very significant drawback. It has a potential drawback
for distributed memory machines, but we shall discuss this and lock algorithms that overcome
this drawback in Chapter 7.

Performance

Let us briefly examine the performance of the different locks on the SGI Challenge, as shown in
Figure 5-30. All locks are implemented using LL-SC, since the Challenge provides only these
and not atomic instructions. The test&set locks are implemented by simulating a test&set using
LL-SC, just as they were in Figure 5-29, and are shown as leaping off the graph for reference1. In
particular, every time an SC fails a write is performed to another variable on the same cache
block, causing invalidations as a test&set would. Results are shown for a somewhat more param-

Shared Memory Multiprocessors

326 DRAFT: Parallel Computer Architecture 9/10/97

eterized version of the earlier code for test&set locks, in which a process is allowed to insert a
delay between its release of the lock and its next attempt to acquire it. That is, the code is a loop
over the following body:

lock(L); critical_section(c); unlock(L); delay(d);

Let us consider three cases—(i) c=0, d=0, (ii) c=3.64 µs, d=0, and (iii) c=3.64 µs, d=1.29 µs—
called null, critical-section, and delay, respectively. The delays c and d are inserted in the code as
round numbers of processor cycles, which translates to these microsecond numbers. Recall that
in all cases c and d (multiplied by the number of lock acquisitions by each processor) are sub-
tracted out of the total time, which is supposed to measure the total time taken for a certain num-
ber of lock acquisitions and releases only (see also Exercise 5.6).

Consider the null critical section case. The first observation, comparing with Figure 5-29, is that
all the subsequent locks we have discussed are indeed better than the test&set locks as expected.
The second observation is that the simple LL-SC locks actually perform better than the more
sophisticated ticket lock and array-based lock. For these locks, that don’t encounter so much con-
tention as the test&set lock, with reasonably high-bandwidth busses the performance of a lock is
largely determined by the number of bus transactions between a release and a successful acquire.
The reason that the LL-SC locks perform so well, particularly at lower processor counts, is that
they are not fair, and the unfairness is exploited by architectural interactions! In particular, when
a processor that does a write to release a lock follows it immediately with the read (LL) for its
next acquire, it’s read and SC are likely to succeed in its cache before another processor can read
the block across the bus. (The bias on the Challenge is actually more severe, since the releasing
processor can satisfy its next read from its write buffer even before the corresponding read-exclu-
sive gets out on the bus.) Lock transfer is very quick, and performance is good. As the number of
processors increases, the likelihood of self-transfers decreases and bus traffic due to invalidations
and read misses increases, so the time per lock transfer increases. Exponential backoff helps
reduce the burstiness of traffic and hence slows the rate of scaling.

1. This method of simulating test&set with LL-SC may lead to somewhat worse performance than a true
test&set primitive, but it conveys the trend.

Figure 5-30 Performance of locks on the SGI Challenge, for three different scenarios.

(a) null (c=0, d=0) (b) critical-section (c=3.64 µs, d=0) (c) delay (c=3.64 µs, d=1.29 µs)

0

1

2

3

4

5

6

7

1 3 5 7 9 1
1

1
3

1
5

Processors

Ti
m

e
(m

ic
ro

se
c) array-based

LL-SC
LL-SC, exp
ticket
ticket, prop

0

1

2

3

4

5

6

7

1 3 5 7 9 1
1

1
3

1
5

Processors

Ti
m

e
(m

ic
ro

se
c)

array-based
LL-SC
LL-SC, exp
ticket
ticket, prop

0

1

2

3

4

5

6

7

1 3 5 7 9 1
1

1
3

1
5

Processors

Ti
m

e
(m

ic
ro

se
c)

array-based
LL-SC
LL-SC, exp
ticket
ticket, prop

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 327

At the other extreme (c=3.64, d=1.29), we see the LL-SC lock doing not quite so well, even at
low processor counts. This is because a processor waits after its release before trying to acquire
the lock again, making it much more likely that some other waiting processor will acquire the
lock before it. Self-transfers are unlikely, so lock transfers are slower even at two processors. It is
interesting that performance is particularly worse for the backoff case at small processor counts
when the delay d between unlock and lock is non-zero. This is because with only a few proces-
sors, it is quite likely that while a processor that just released the lock is waiting for d to expire
before doing its next acquire, the other processors are in a backoff period and not even trying to
acquire the lock. Backoff must be used carefully for it to be successful.

Consider the other locks. These are fair, so every lock transfer is to a different processor and
involves bus transactions in the critical path of the transfer. Hence they all start off with a jump to
about 3 bus transactions in the critical path per lock transfer even when two processors are used.
Actual differences in time are due to what exactly the bus transactions are and how much of their
latency can be hidden from the processor. The ticket lock without backoff scales relatively
poorly: With all processors trying to read the now-serving counter, the expected number of bus
transactions between the release and the read by the correct processor is p/2, leading to the
observed linear degradation in lock transfer critical path. With successful proportional backoff, it
is likely that the correct processor will be the one to issue the read first after a release, so the time
per transfer does not scale with p. The array-based lock also has a similar property, since only the
correct processor issues a read, so its performance also does not degrade with more processors.

The results illustrate the importance of architectural interactions in determining the performance
of locks, and that simple LL-SC locks perform quite well on busses that have high enough band-
width (and realistic numbers of processors for busses). Performance for the unfair LL-SC lock
scales to become as bad as or a little worse than for the more sophisticated locks beyond 16 pro-
cessors, due to the higher traffic, but not by much because bus bandwidth is quite high. When
exponential backoff is used to reduce traffic, the simple LL-SC lock delivers the best average
lock transfer time in all cases. The results also illustrate the difficulty and the importance of
sound experimental methodology in evaluating synchronization algorithms. Null critical sections
display some interesting effects, but meaningful comparison depend on what the synchronization
patterns look like in practice in real applications. An experiment to use LL-SC but guarantee
round-robin acquisition among processors (fairness) by using an additional variable showed per-
formance very similar to that of the ticket lock, confirming that unfairness and self-transfers are
indeed the reason for the better performance at low processor counts.

Lock-free, Non-blocking, and Wait-free Synchronization

An additional set of performance concerns involving synchronization arise when we consider
that the machine running our parallel program is used in a multiprogramming environment. Other
processes run for periods of time or, even if we have the machine to ourselves, background dae-
mons run periodically, processes take page faults, I/O interrupts occur, and the process scheduler
makes scheduling decisions with limited information on the application requirements. These
events can cause the rate at which processes make progress to vary considerably. One important
question is how the program as a whole slows down when one process is slowed. With traditional
locks the problem can be serious because if a process holding a lock stops or slows while in its
critical section, all other processes may have to wait. This problem has received a good deal of
attention in work on operating system schedulers and in some cases attempts are made to avoid
preempting a process that is holding a lock. There is another line of research that takes the view

Shared Memory Multiprocessors

328 DRAFT: Parallel Computer Architecture 9/10/97

that lock-based operations are not very robust and should be avoided. If a process dies while
holding a lock, other processes hang. It can be observed that many of the lock/unlock operations
are used to support operations on a data structure or object that is shared by several processes, for
example to update a shared counter or manipulate a shared queue. These higher level operation
can be implemented directly using atomic primitives without actually using locks.

A shared data structure is lock-free if its operations do not require mutual exclusion over multiple
instructions. If the operations on the data structure guarantee that some process will complete its
operation in finite amount of time, even if other processes halt, the data structure is non-blocking.
If the data structure operations can guantee that every (non-faulty) process will complete its oper-
ation in a finite amount of time, then the data structure is wait-free.[Her93]. There is a body of lit-
erature that investigates the theory and practice of such data structures, including requirements
on the basic atomic primitives[Her88], general purpose techniques for translating sequential
operations to non-blocking concurrent operations[Her93], specific useful lock-free data struc-
tures [Val95,MiSc96], operating system implementations [MaPu91,GrCh96] and proposals for
architectural support[HeMo93]. The basic approach is to implement updates to a shared object by
reading a portion of the object to make a copy, updating the copy, and then performing an opera-
tion to commit the change only if no conflicting updates have been made. As a simple example,
consider a shared counter. The counter is read into a register, a value is added to the register copy
and the result put in a second register, then a compare-and-swap is performed to update the
shared counter only if its value is the same as the copy. For more sophisticated data structures a
linked structure is used and typically the new element is linked into the shared list if the insert is
still valid. These techniques serve to limit the window in which the shared data structure is in an
inconsistent state, so they improve the robustness, although it can be difficult to make them effi-
cient.

Having discussed the options for mutual exclusion on bus-based machines, let us move on to
point-to-point and then barrier event synchronization.

5.6.4 Point-to-point Event Synchronization

Point-to-point synchronization within a parallel program is often implemented using busy-wait-
ing on ordinary variables as flags. If we want to use blocking instead of busy-waiting, we can use
semaphores just as they are used in concurrent programming and operating systems [TaW97].

Software Algorithms

Flags are control variables, typically used to communicate the occurrence of a synchronization
event, rather than to transfer values. If two processes have a producer-consumer relationship on
the shared variable a, then a flag can be used to manage the synchronization as shown below:

P1 P2

a = f(x); /* set a */ while (flag is 0) do nothing;

flag = 1; b = g(a); /* use a */

If we know that the variable a is initialized to a certain value, say 0, which will be changed to a
new value we are interested in by this production event, then we can use a itself as the synchroni-
zation flag, as follows:

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 329

P1 P2

a = f(x); /* set a */ while (a is 0) do nothing;

b = g(a); /* use a */

This eliminates the need for a separate flag variable, and saves the write to and read of that vari-
able.

Hardware Support: Full-empty Bits

The last idea above has been extended in some research machines—although mostly machines
with physically distributed memory—to provide hardware support for fine-grained producer-con-
sumer synchronization. A bit, called a full-empty bit, is associated with every word in memory.
This bit is set when the word is “full” with newly produced data (i.e. on a write), and unset when
the word is “emptied” by a processor consuming those data (i.e. on a read). Word-level producer-
consumer synchronization is then accomplished as follows. When the producer process wants to
write the location it does so only if the full-empty bit is set to empty, and then leaves the bit set to
full. The consumer reads the location only if the bit is full, and then sets it to empty. Hardware
preserves the atomicity of the read or write with the manipulation of the full-empty bit. Given
full-empty bits, our example above can be written without the spin loop as:

P1 P2

a = f(x); /* set a */ b = g(a); /* use a */

Full-empty bits raise concerns about flexibility. For example, they do not lend themselves easily
to single-producer multiple-consumer synchronization, or to the case where a producer updates a
value multiple times before a consumer consumes it. Also, should all reads and writes use full-
empty bits or only those that are compiled down to special instructions? The latter requires sup-
port in the language and compiler, but the former is too restrictive in imposing synchronization
on all accesses to a location (for example, it does not allow asynchronous relaxation in iterative
equation solvers, see Chapter 2). For these reasons and the hardware cost, full-empty bits have
not found favor in most commercial machines.

Interrupts

Another important kind of event is the interrupt conveyed from an I/O device needing attention to
a processor. In a uniprocessor machine there is no question where the interrupt should go, but in
an SMP any processor can potentially take the interrupt. In addition, there are times when one
processor may need to issue an interrupt to another. In early SMP designs special hardware was
provided to monitor the priority of the process on each processor and deliver the I/O interrupt to
the processor running at lowest priority. Such measures proved to be of small value and most
modern machines use simple arbitration strategies. In addition, there is usually a memory
mapped interrupt control region, so at kernel level any processor can interrupt any other by writ-
ing the interrupt information at the associated address.

Shared Memory Multiprocessors

330 DRAFT: Parallel Computer Architecture 9/10/97

5.6.5 Global (Barrier) Event Synchronization

Software Algorithms

Software algorithms for barriers are typically implemented using locks, shared counters and
flags. Let us begin with a simple barrier among p processes, which is called a centralized barrier
since it uses only a single lock, a single counter and a single flag.

Centralized Barrier

A shared counter maintains the number of processes that have arrived at the barrier, and is there-
fore incremented by every arriving process. These increments must be mutually exclusive. After
incrementing the counter, the process checks to see if the counter equals p, i.e. if it is the last pro-
cess to have arrived. If not, it busy waits on the flag associated with the barrier; if so, it writes the
flag to release the waiting processes. A simple barrier algorithm may therefore look like:

struct bar_type {
int counter;
struct lock_type lock;
int flag = 0;

} bar_name;

BARRIER (bar_name, p)
{

LOCK(bar_name.lock);

if (bar_name.counter == 0)

bar_name.flag = 0; /* reset flag if first to reach*/

mycount = bar_name.counter++; /* mycount is a private variable*/

UNLOCK(bar_name.lock);

if (mycount == p) { /* last to arrive */

bar_name.counter = 0; /* reset counter for next barrier */

bar_name.flag = 1; /* release waiting processes */

}

else

while (bar_name.flag == 0) {};/* busy wait for release */

}

Centralized Barrier with Sense Reversal

Can you see a problem with the above barrier? There is one. It occurs when the same barrier (bar-
rier bar_name above) is used consecutively. That is, each processor executes the following code:

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 331

some computation...

BARRIER(bar1, p);

some more computation...

BARRIER(bar1, p);

The first process to enter the barrier the second time re-initializes the barrier counter, so that is
not a problem. The problem is the flag. To exit the first barrier, processes spin on the flag until it
is set to 1. Processes that see flag change to one will exit the barrier, perform the subsequent com-
putation, and enter the barrier again. Suppose one processor Px gets stuck while in the spin loop;
for example, it gets swapped out by the operating system because it has been spinning too long.
When it is swapped back in, it will continue to wait for the flag to change to 1. However, in the
meantime other processes may have entered the second instance of the barrier, and the first of
these will have reset the flag to 0. Now the flag will only get set to 1 again when all p processes
have registered at the new instance of the barrier, which will never happen since Px will never
leave the spin loop and get to this barrier instance.

How can we solve this problem? What we need to do is prevent a process from entering a new
instance of a barrier before all processes have exited the previous instance of the same barrier.
One way is to use another counter to count the processes that leave the barrier, and not let a pro-
cess enter a new barrier instance until this counter has turned to p for the previous instance. How-
ever, manipulating this counter incurs further latency and contention. A better solution is the
following. The main reason for the problem in the previous case is that the flag is reset before all
processes reach the next instance of the barrier. However, with the current setup we clearly can-
not wait for all processes to reach the barrier before resetting the flag, since that is when we actu-
ally set the flag for the release. The solution is to have processes wait for the flag to obtain a
different value in consecutive instances of the barrier, so for example processes may wait for the
flag to turn to 1 in one instance and to turn to 0 in the next instance. A private variable is used per
process to keep track of which value to wait for in the current barrier instance. Since by the
semantics of a barrier a process cannot get more than one barrier ahead of another, we only need
two values (0 and 1) that we toggle between each time, so we call this method sense-reversal.
Now the flag need not be reset when the first process reaches the barrier; rather, the process stuck
in the old barrier instance still waits for the flag to reach the old release value (sense), while pro-
cesses that enter the new instance wait for the other (toggled) release value. The value of the flag
is only changed when all processes have reached the barrier instance, so it will not change before
processes stuck in the old instance see it. Here is the code for a simple barrier with sense-rever-
sal.

Shared Memory Multiprocessors

332 DRAFT: Parallel Computer Architecture 9/10/97

BARRIER (bar_name, p)

{

local_sense = !(local_sense); /* toggle private sense variable */

LOCK(bar_name.lock);

mycount = bar_name.counter++; /* mycount is a private variable*/

if (bar_name.counter == p) { /* last to arrive */

UNLOCK(bar_name.lock);

bar_name.counter = 0; /* reset counter for next barrier */

bar_name.flag = local_sense; /* release waiting processes */

}

else {

UNLOCK(bar_name.lock);

while (bar_name.flag != local_sense) {};/* busy wait for release */

}

}

The lock is not released immediately after the increment of the counter, but only after the condi-
tion is evaluated; the reason for this is left as an exercise (see Exercise 5.7) We now have a cor-
rect barrier that can be reused any number of times consecutively. The remaining issue is
performance, which we examine next. (Note that the LOCK/UNLOCK protecting the increment
of the counter can be replaced more efficiently by a simple LL-SC or atomic increment operation.

Performance Issues

The major performance goals for a barrier are similar to those for locks:

Low latency (small critical path length) Ignoring contention, we would like the number of
operations in the chain of dependent operations needed for p processors to pass the barrier to
be small.
Low traffic Since barriers are global operations, it is quite likely that many processors will try
to execute a barrier at the same time. We would like the barrier algorithm to reduce the num-
ber of bus transactions and hence the possible contention.
Scalability Related to traffic, we would like to have a barrier that scales well to the number of
processors we may want to support.
Low storage cost We would of course like to keep the storage cost low.
Fairness This is not much of an issue since all processors get released at about the same time,
but we would like to ensure that the same processor does not always become the last one to
exit the barrier, or to preserve FIFO ordering.

In a centralized barrier, each processor accesses the lock once, so the critical path length is at
least p. Consider the bus traffic. To complete its operation, a centralized barrier involving p pro-
cessors performs 2p bus transactions to get the lock and increment the counter, two bus transac-
tions for the last processor to reset the counter and write the release flag, and another p-1 bus
transactions to read the flag after it has been invalidated. Note that this is better than the traffic for

Synchronization

9/10/97 DRAFT: Parallel Computer Architecture 333

even a test-and-test&set lock to be acquired by p processes, because in that case each of the p
releases causes an invalidation which results in O(p) processes trying to perform the test&set
again, thus resulting in O(p2) bus transactions. However, the contention resulting from these
competing bus transactions can be substantial if many processors arrive at the barrier simulta-
neously, and barriers can be expensive.

Improving Barrier Algorithms for a Bus

Let us see if we can devise a better barrier for a bus. One part of the problem in the centralized
barrier is that all processors contend for the same lock and flag variables. To address this, we can
construct barriers that cause less processors to contend for the same variable. For example, pro-
cessors can signal their arrival at the barrier through a software combining tree (see Chapter 3,
Section 3.4.2). In a binary combining tree, only two processors notify each other of their arrival
at each node of the tree, and only one of the two moves up to participate at the next higher level
of the tree. Thus, only two processors access a given variable. In a network with multiple parallel
paths, such as those found in larger-scale machines, a combining tree can perform much better
than a centralized barrier since different pairs of processors can communicate with each other in
different parts of the network in parallel. However, with a centralized interconnect like a bus,
even though pairs of processors communicate through different variables they all generate trans-
actions and hence contention on the same bus. Since a binary tree with p leaves has approxi-
mately 2p nodes, a combining tree requires a similar number of bus transactions to the
centralized barrier. It also has higher latency since it requires log p steps to get from the leaves to
the root of the tree, and in fact on the order of p serialized bus transactions. The advantage of a
combining tree for a bus is that it does not use locks but rather simple read and write operations,
which may compensate for its larger uncontended latency if the number of processors on the bus
is large. However, the simple centralized barrier performs quite well on a bus, as shown in
Figure 5-31. Some of the other, more scalable barriers shown in the figure for illustration will be
discussed, along with tree barriers, in the context of scalable machines in Chapter 7.

Figure 5-31 Performance of some barriers on the SGI Challenge.

Performance is measured as average time per barrier over a loop of many consecutive barriers. The higher critical path latency of the
combining barrier hurts it on a bus, where it has no traffic and contention advantages.

0

5

1 0

1 5

2 0

2 5

3 0

3 5

1 2 3 4 5 6 7 8

Ti
m

e
(m

ic
ro

se
c)

Centralized
Combining Tree
Tournament
Dissemination

Shared Memory Multiprocessors

334 DRAFT: Parallel Computer Architecture 9/10/97

Hardware Primitives

Since the centralized barrier uses locks and ordinary reads/writes, the hardware primitives
needed depend on what lock algorithms are used. If a machine does not support atomic primitives
well, combining tree barriers can be useful for bus-based machines as well.

A special bus primitive can be used to reduce the number of bus transactions in the centralized
barrier. This optimization takes advantage of the fact that all processors issue a read miss for the
same value of the flag when they are invalidated at the release. Instead of all processors issuing a
separate read miss bus transaction, a processor can monitor the bus and abort its read miss before
putting it on the bus if it sees the response to a read miss to the same location (issued by another
processor that happened to get the bus first), and simply take the return value from the bus. In the
best case, this “piggybacking” can reduce the number of read miss bus transactions from p to
one.

Hardware Barriers

If a separate synchronization bus is provided, it can be used to support barriers in hardware too.
This takes the traffic and contention off the main system bus, and can lead to higher-performance
barriers. Conceptually, a wired-AND is enough. A processor sets its input to the gate high when it
reaches the barrier, and waits till the output goes high before it can proceed. (In practice, reusing
barriers requires that more than a single wire be used.) Such a separate hardware mechanism for
barriers is particularly useful if the frequency of barriers is very high, as it may be in programs
that are automatically parallelized by compilers at the inner loop level and need global synchro-
nization after every innermost loop. However, it can be difficult to manage when not all proces-
sors on the machine participate in the barrier. For example, it is difficult to dynamically change
the number of processors participating in the barrier, or to adapt the configuration when pro-
cesses are migrated among processors by the operating system. Having multiple participating
processes per processor also causes complications. Current bus-based multiprocessors therefore
do not tend to provide special hardware support, but build barriers in software out of locks and
shared variables.

5.6.6 Synchronization Summary

While some bus-based machines have provided full hardware support for synchronization opera-
tions such as locks and barriers, issues related to flexibility and doubts about the extent of the
need for them has led to a movement toward providing simple atomic operations in hardware and
synthesizing higher level synchronization operations from them in software libraries. The pro-
grammer can thus be unaware of these low-level atomic operations. The atomic operations can be
implemented either as single instructions, or through speculative read-write instruction pairs like
load-locked and store-conditional. The greater flexibility of the latter is making them increas-
ingly popular. We have already seen some of the interplay between synchronization primitives,
algorithms, and architectural details. This interplay will be much more pronounced when we dis-
cuss synchronization for scalable shared address space machines in the coming chapters. Theo-
retical research has identified the properties of different atomic exchange operations in terms of
the time complexity of using them to implement synchronized access to variables. In particular, it
is found that simple operations like test&set and fetch&op are not powerful enough to guarantee
that the time taken by a processor to access a synchronized variable is independent of the number

Implications for Software

9/10/97 DRAFT: Parallel Computer Architecture 335

of processors, while more sophisticated atomic operations like compare&swap and an memory-
to-memory swap are [Her91].

5.7 Implications for Software

So far, we have looked at architectural issues and how architectural and protocol tradeoffs are
affected by workload characteristics. Let us now come full circle and examine how the architec-
tural characteristics of these small-scale machines influence parallel software. That is, instead of
keeping the workload fixed and improving the machine or its protocols, we keep the machine
fixed and examine how to improve parallel programs. Improving synchronization algorithms to
reduce traffic and latency was an example of this, but let us look at the parallel programming pro-
cess more generally, particularly the data locality and artifactual communication aspects of the
orchestration step.

Of the techniques discussed in Chapter 3, those for load balance and inherent communication are
the same here as in that general discussion. In addition, one general principle that is applicable
across a wide range of computations is to try to assign computation such that as far as possible
only one processor writes a given set of data, at least during a single computational phase. In
many computations, processors read one large shared data structure and write another. For exam-
ple, in Raytrace processors read a scene and write an image. There is a choice of whether to par-
tition the computation so the processors write disjoint pieces of the destination structure and
read-share the source structure, or so they read disjoint pieces of the source structure and write-
share the destination. All other considerations being equal (such as load balance and program-
ming complexity), it is usually advisable to avoid write-sharing in these situations. Write-sharing
not only causes invalidations and hence cache misses and traffic, but if different processes write
the same words it is very likely that the writes must be protected by synchronization such as
locks, which are even more expensive.

The structure of communication is not much of a variable: With a single centralized memory,
there is little incentive to use explicit large data transfers, so all communication is implicit
through loads and stores which lead to the transfer of cache blocks. DMA can be used to copy
large chunks of data from one area of memory to another faster than loads and stores, but this
must be traded off against the overhead of invoking DMA and the possibility of using other
latency hiding techniques instead. And with a zero-dimensional network topology (a bus) map-
ping is not an issue, other than to try to ensure that processes migrate from one processor to
another as little as possible, and is invariably left to the operating system. The most interesting
issues are related to temporal and spatial locality: to reduce the number of cache misses, and
hence reduce both latency as well as traffic and contention on the shared bus.

With main memory being centralized, temporal locality is exploited in the processor caches. The
specialization of the working set curve introduced in Chapter 3 is shown in Figure 5-32. All
capacity-related traffic goes to the same local bus and centralized memory. The other three kinds
of misses will occur and generate bus traffic even with an infinite cache. The major goal is to
have working sets fit in the cache hierarchy, and the techniques are the same as those discussed in
Chapter 3.

For spatial locality, a centralized memory makes data distribution and the granularity of alloca-
tion in main memory irrelevant (only interleaving data among memory banks to reduce conten-

