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The memory consistency 

model of a system 

affects performance, 

programmability, and 

portability. This article 

describes several models 

in an easy to 

understand way. 

Computer 

CY 

he shared memory programming model has several advantages 
over the message passing model. In particular, it simplifies data 
partitioning and dynamic load distribution. Shared memory sys- 

tems are therefore gaining wide acceptance for both technical and com- 
mercial computing. 

To write correct and efficient shared memory programs, programmers 
need a precise notion of shared memory semantics. For example, in the 
program in Figure 1 (a fragment from a program in the Splash applica- 
tion suite), processor P1 repeatedly updates a data field in a new task 
record and then inserts the record into a task queue. When no tasks are 
left, P 1  updates a pointer, Head, to point to the first record in the task 
queue. Meanwhile, the other processors wait for Head to have a non-null 
value, dequeue the task pointed to by Head in a critical section, and read 
the data in the dequeued task. To ensure correct execution, a program- 
mer expects that the data value read should be the same as that written 
by P1. However, in many commercial shared memory systems, the proces- 
sors may observe an older value, causing unexpected behavior. 

The memory consistency model of a shared memory multiprocessor for- 
mally specifies how the memory system will appear to the programmer. 
Essentially, a memory consistency model restricts the values that a read 
can return. Intuitively, a read should return the value of the “last” write to 
the same memory location. In uniprocessors, “last” is precisely defined by 
the sequential order specified by the program, called the program order. 
This is not the case in multiprocessors. For example, in Figure 1 the write 
and read of Data are not related by program order because they reside 
on two different processors. 

The uniprocessor model, however, can be extended to apply to multi- 
processors in a natural way. The resulting model is called sequential con- 
sistency. Informally, sequential consistency requires that all memory 
operations appear to execute one at a time and that all operations of a sin- 
gle processor appear to execute in the order described by that processor’s 
program. For Figure 1, this model ensures that the reads of the data field 
will return the new values written by processor P1. Sequenual consistency 
provides a simple, intuitive programming model. However, it disallows 
many uniprocessor hardware and compiler optimizations. For this rea- 
son, many relaxed consistency models have been proposed, several of which 
are supported by commercial architectures. 

The memory consistency model is an interface between the pro- 
grammer and the system, so it influences not only how parallel programs 
are written but virtually every aspect of parallel hardware and software 
design. A memory consistency model specification is required at every 
interface between the programmer and the system, including the inter- 
faces at the machine-code and high-level language levels. In particular, 
the high-level language specification affects high-level language pro- 
grammers, compiler and other software writers who convert high-level 
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Initially all pointers = null, all integers = 0. 
P1 P2, P3, ..., Pn 
while (there are more tasks) 

Task = CetFromFreeListO; 
Task -+ Data = ...; 
insert Task in task queue 

1 
Head = head of task queue; 

while (MyTask == null) { 
Begin critical Section 
if (Head != null) { 

MyTask = Head; 
Head = Head -+ Next; 

} 
End Critical Section 

I 
... = MyTask -+ Data; 

Figure 1. Illustration of the need for a memory con- 
sistency model. 

code into machine code, and the designers of hardware 
that executes the code. At each level, the memory con- 
sistency model affects both programmability andperfor- 
mance. Furthermore, due to a lack of consensus on a 
single model, portability can be affected when moving 
software across systems supporting different models. 

Unfortunately, the vast literature that describes consis- 
tency models uses nonuniform and complex terminology 
to describe the large variety of models. This makes it dif- 
ficult to understand the often subtle but important differ- 
ences among models and leads to several misconceptions, 
some of which are listed in the “Myths about memory con- 
sistency models” sidebar. 

In this article, we aim to describe memory consistency 
models in a way that most computer professionals would 
understand. This is important if the performance-enhanc- 
ing features being incorporated by system designers are 
to be correctly and widely used by programmers. Our 
focus is consistency models proposed for hardware-based 
shared memory systems. Most of these models emphasize 
the system optimizations they support, and we retain this 
system-centric emphasis in this article. We also describe an 
alternative, programmer-centric view of relaxed consis- 
tency models that describes them in terms of program 
behavior, not system optimizations. A more formal treat- 
ment is covered in our other work.’ 

UNIPROCESSOR MEMORY 
CONSISTENCY 

Most high-level uniprocessor languages present simple 
sequential-memory semantics, which allow the program- 
mer to assume that all memory operations will occur one 
at a time in program order. Fortunately, this illusion of 
sequentiality can be supported efficiently bysimplyensur- 
ing that two operations are executed in program order if 
they are to the same location or if one controls the execu- 
tion of the other. The compiler or the hardware can freely 
reorder other operations, enabling several optimizations. 
Overall, the sequential-memory semantics of a uniproces- 
sor provide a simple and intuitive model and yet allow a 
wide range of efficient system designs. 

UNDERSTANDING SEQUENTIAL 
CONSISTENCY 

The most commonly assumed memory consistency 
model for shared memory multiprocessors is sequential con- 
sistency, which gives programmers a simple view of the sys- 

tem. A multiprocessor system is sequentially consistent “if 
the result of any execution is the sarne as if the operations 
of all the processors were executed in some sequential order, 
and the operations of each individual processor appear in 
this sequence in the order specified by its program.”4 

There are two requirements for sequential consistency: 

maintaining program order arnong operations from 

maintaining a single sequential order among all oper- 
a single processor, and 

ations. 
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The second requirement makes a memory operation 
appear to execute atomically (instantaneously) with 
respect to other memory operations. A sequentially con- 
sistent system can be thought of as consisting of a single 
global memory connected to all the processors by a central 
switch, At any time step, the switch connects memory to 
an arbitrary processor, which may then issue a memory 
operation. Each processor issues memory operations in 
program order, and the switch provides the global serial- 
ization among all memory operations. 

Figure 2a illustrates the first requirement for program 
order. The figure depicts Dekker’s algorithm for critical sec- 
tions. It involves two flag variables initialized to 0. When 
processor P1 attempts to enter the critical section, it 
updates Flag1 to 1, and checks the value of Flag2. The value 
0 for Flag2 indicates that processor P2 has not yet tried to 
enter the critical section, so it is safe for P l  to enter. The 
algorithm assumes that if Pl’s read returns 0, then Pl’s 
write occurred before P2’swrite and read. P2 will read the 
flag and return 1, which will prohibit it from also entering 
the critical section. Sequential consistency ensures this by 
maintaining program order. 

Figure 2b illustrates the atomicity requirement. In this 
case, three processors share variables A and B, which are 
initialized to 0. Suppose P2 returns 1 when it reads Aand 
then writes to B, and suppose P3 returns 1 when it reads 
B. Atomicity allows us to assume that Pl’s write is seen by 
the entire system at the same time. Since P3 sees P2’s write 
to B after P2 sees Pl’s write to A, it follows that P3 is guar- 
anteed to see Pl’s write and return 1 when it reads A. 

IMPLEMENTING SEQUENTIAL 
CONSISTENCY 

In this section we explain how to practically realize 
sequential consistency in a multiprocessor system. We will 
see that unlike uniprocessors, preserving onlyper-proces- 
sor data and control dependencies is insufficient. We first 
focus on how sequential consistency interacts with com- 
mon hardware optimizations and then briefly describe 
compiler optimizations. To separate the issues of program 
order and atomicity, we begin with implementations for 
architectures without caches and then discuss the effects 
of caching shared data. 

Figure 2. Examples for sequential consistency. 

Computer 

Architectures without caches 
The key issue in supporting sequential consistency in 

systems without caches is program order. To illustrate the 
interactions that arise in such systems, we will use three 
typical hardware optimizations, shown in Figure 3. The 
notations tl,  t2, and so on in the figure indicate the order 
in which the corresponding memory operations execute at 
memory. 

WRITE BUFFERS WITH READ BYPASSING. The opti- 
mization depicted in Figure 3a shows the importance of 
maintaining program order between a write and a fol- 
lowing read, even if there is no data or control dependence 
between them. In this bus-based system, assume that a 
simple processor issues operations one at a time, in pro- 
gram order. Now add the optimization of a write buffer. 
Aprocessor can insert awrite into the buffer and proceed 
without waiting for the write to complete. Subsequent 
reads of the processor can bypass the buffered writes (to 
different addresses) for faster completion. 

Write buffers can violate sequential consistency. For 
the code in Figure 3a, a sequentially consistent system 
must not allow both processors’ reads of flags to return 0. 
However, this can happen in the system in Figure 3a: 
Each processor can buffer its write and allow the subse- 
quent read to bypass it. Therefore, both reads may be ser- 
viced by memory before either write, allowing both reads 
to return 0. 

OVERLAPPING WRITES. The optimization depicted in 
Figure 3b shows the importance of maintaining program 
order between two writes. Again, we consider operations 
with no data or control dependencies. This system has a 
general (nonbus) network and multiple memory modules, 
which can exploit more parallelism than the system in 
Figure 3a. Now multiple writes of a processor may be simul- 
taneously serviced by different memory modules. 

This optimization can also violate sequential consistency. 
In the code fragment in Figure 3b, assume that D a t a  and 
H e a d  reside in different memory modules. Because the 
write to H e a d  may be injected into the network before the 
write to D a t a  has reached its memory module, the two 
writes could complete out of program order. Therefore, P2 
might see the newvalue of H e a d  and yet get the old value 
of D a t a ,  a violation of sequential consistency. 

To maintain program order among writes, an acknowl- 
edgment can be returned to the processor that issued the 
write once the write has reached its target memory mod- 
ule. The processor could be constrained from injecting 
another write until it receives an acknowledgment of its 
previous write. 

This write acknowledgment technique can also main- 
tain program order from a write to a subsequent read in 
systems with general networks. 

NONBLOCKING READS. The optimization in Figure 3c 
illustrates the importance of maintaining program order 
between a read and a following operation. While most 
early RISC processors blocked on a read until it returned 
a value, recent processors proceed past reads, using tech- 
niques such as lockup-free caches and dynamic sched- 
uling. In Figure 3c, two overlapped reads violate 



sequential consistency in a manner simi- 
lar to overlapped writes. A read over- 
lapped with a following write causes 
similar problems, but this kind of overlap 
is not common. 

PROGRAM ORDER REQUIREMENT. The 
above discussion shows that in straightfor- 
ward hardware implementations, a proces- 
sor must ensure that its previous memory 
operation is complete before proceeding 
with its next memory operation in program 
order. We call this requirement the program 
order requirement. 

Architectures with caches 
Caching, or replication, of shared data 

can lead to scenarios similar to those 
described for systems without caches. 
Systems that use caching must therefore 
take similar precautions to maintain the 
illusion of program order. Most notably, 
even if a read hits in its processor’s cache, 
reading the cached value without waiting 
for the completion of previous operations 
can violate sequential consistency. The 
replication of shared data introduces three 
additional issues. 

CACHE COHERENCE PROTOCOLS. The 
presence of multiple cache copies requires 
a mechanism, often called a cache coher- 
ence protocol, to propagate a new value to 
all copies of the modified location. A new 
value is propagated by either invazidating 
(or eliminating) or updating each copy. 

The literature includes several defini- 
tions of cache coherence (which is some- 
times called cache consistency). The 
strongest definitions are virtually synony- 
mous with sequential consistency. Other 
definitions impose extremely relaxed 
orderings. One common definition requires 
two conditions for cache coherence: 

A write must eventually be made visi- 

Writes to the same location must 
ble to all processors. 

Figure 3. Optimizations that may violate sequential consistency; 
tl, t2, ... indicate the order in which the corresponding memory 
operations execute at memory 

appear to be seen in the same order by all  processor^.^ 

These conditions are clearly not sufficient to satisfy 
sequential consistency. This is because sequential consis- 
tency requires that writes to all locations (not just the same 
location) be seen in the same order by all processors, and 
also explicitly requires that a single processor’s operations 
appear to execute in program order. 

We do not use the term cache coherence to define a con- 
sistency model. We view a cache coherence protocol as 
simply a mechanism to propagate a newly written value. 
The memory consistency model is the policy that places 
the bounds on when the value can be propagated to a 
given processor. 

DETECTING WRITE COMPLETION. When there are no 
caches, a write acknowledgment may be generated when 
the write reaches its target memory. However, an acknowl- 
edgment at this time is too early for a system with caches. 

Suppose write-through caches weire added to each proces- 
sor in Figure 3b. Assume P2 initially has D a t a  in its cache. 
Now suppose P1 proceeds to write tci Head after thewrite to 
D a t a  reaches its target memory but before its value has been 
propagated to P2. It is possible that P2 could read the new 
valueofHead andstillreturntheoldvalueofData fromits 
cache, a violation of sequential consistency. 
P1 must wait for P2’s copy of Data to be updated or 

invalidated before it writes to Head. Thus, a write to a line 
replicated in other caches typically requires an acknowl- 
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initially A = B = C = 0 
PZ P3 P4 
Ak2 ,  while (B != 1) I;} while (B != 1) I,) 
C = 1 ~ khile (e k 1) t} while (C != 1) {#} 

register1 = A  register2 = A 

Figure 4. Example for serialization of writes. 

edgment of invalidate or update messages as well. 
Furthermore, the acknowledgments must be collected 
either at the memory or at the processor that issues the 
write. In either case, the writing processor must be notified 
when all acknowledgments are received. Only then can 
the processor consider the write to be complete. 

A common optimization is to have each processor 
acknowledge an invalidate or update immediately on receipt 
and potentially before its cache copy is affected. This design 
can satisfy sequential consistency if it supports certain order- 
ing constraints in processing all incoming  message^.^ 

MAINTAINING WRITE ATOMICITY. Propagating changes 
to multiple cache copies is inherently a nonatomic opera- 
tion. Therefore, special care must be taken to preserve the 
illusion of write atomicity. 

In this section we describe two conditions that together 
ensure the appearance of atomicity. We will refer to these 
conditions as the write atomicity requirement. 

The first condition requires writes to the same location to 
be serialized. That is, all processors should see writes to the 
same location in the same order. Figure 4 illustrates the need 
for this condition: Assume an update protocol and that all 
processors in Figure 4 execute memory operations one at a 
time and in program order. Sequential consistency is vio- 
lated if the updates of the writes of A by P l  and P2 reach P3 
and P4 in a different order. If this happens, P3 and P4 will 
return different values when they read A and the writes of 
A appear nonatomic. This can occur in systems with a gen- 
eral (nonbus) network that do not guarantee the delivery 
order of messages that traverse different paths. Requiring 
serialization of writes to the same location solves this prob- 
lem. One way to achieve serialization is to ensure that all 
updates or invalidates for a location originate from a single 
point (such as the directory) and the network preserves the 
ordering of messages between a given source and destina- 
tion. An alternative is to delay updates or invalidates until 
those issued for a previous write to the same line are 
acknowledged. 

The second condition prohibits a read from returning a 
newly written value until all cached copies have acknowl- 
edged receipt of the invalidates or updates generated by 
the write (that is, until the write becomes visible to all 
processors). Assume, for example, that all variables in 
Figure 2b are initially cached by all processors. 
Furthermore, assume a system with all the precautions 
for sequential consistency except for the above condition. 
It is still possible to violate sequential consistency with a 
general network with an update protocol if 

1. P2 reads the new value of A, 
2. P2’s update of B reaches P3 before the update of A, 

and 

3. P3 returns the new value of B and the old value of A 
from its cache. 

P2 and P3 will thus appear to see the write of A at differ- 
ent times, Violating atomicity. A similar situation can arise 
in an invalidate scheme. This violation occurs because P2 
returns the value of Pl’s write before the update for the 
write reaches P3. Prohibiting a read from returning a 
newly writtenvalue until all cached copies have acknowl- 
edged the updates for the write avoids this. 

It is straightforward to ensure the second condition with 
invalidate protocols. Update protocols are more chal- 
lenging because updates directly supply new values to 
other processors. One solution for update protocols is to 
employ a two-phase update scheme: The first phase sends 
updates and receives acknowledgments. In this phase, no 
processor is allowed to read the updated location. In the 
second phase, a confirmation message is sent to the 
updated processor caches to confirm the receipt of all 
acknowledgments. A processor can use the updated value 
from its cache once it receives this confirmation. 

Compilers 
Compilers that reorder shared memory operations can 

cause sequential consistency violations similar to hardware. 
For all the program fragments discussed so far, compiler- 
generated reordering of shared memory operations will 
lead to sequential consistency violations similar to hard- 
ware-generated reorderings. Therefore, in the absence of 
more sophisticated analysis, the compiler must preserve 
program order among shared memory operations. This pro- 
hibits any uniprocessor compiler optimization that might 
reorder memory operations, including simple optimiza- 
tions-code motion, register allocation, and eliminating 
common subexpressions-and more sophisticated opti- 
mizations-loop blocking and software pipelining. 

Besides reordering, compiler optimizations such as reg- 
ister allocation can also cause the elimination of shared 
memory operations. This can also lead to sequential con- 
sistencyviolations in subtle ways. In Figure 3b, for exam- 
ple, if the compiler register allocates Head onP2 (by doing 
a single read of Head into a register and then reading the 
value from the register), the loop on P2 may never termi- 
nate if the single read returns the old value of Head. 
Sequential consistency requires this loop to terminate in 
every execution. 

Optimizations like register allocation are key to perfor- 
mance, so most compilers for sequentially consistent sys- 
tems perform them. It is left to the programmer to explicitly 
disable them when necessary, using mechanisms such as 
the volatile declaration. But it is difficult to determine when 
disabling is necessary-it requires reasoning that is similar 
to the reasoning for relaxed consistency models. 

The above discussion applies to compilers for explicitly 
parallel code; compilers that parallelize sequential code 
naturally have enough information about the generated 
parallel program to determine when an optimization is 
safe to apply. 

Optimizations for sequential consistency 
Several techniques have been proposed to enable the use 

of some hardware and compiler optimizations without vio- 
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lating sequential consistency. Here, we include the ones 
that have the potential to substantially boost performance. 

HARDWARE TECHNIQUES. Two hardware techniques 
for cache-coherent systems are supported by several recent 
microprocessors (the Hewlett-Packard PA-8000, the Intel 
P6, and the MIPS R10000) P The first technique automat- 
ically prefetches ownership for any write operation that is 
delayed due to the program order requirement (for exam- 
ple, by issuing prefetch-exclusive requests for writes 
delayed in the write buffer), thus partially overlapping the 
service of the delayed writes with previous operations. 
The second speculatively services read operations that are 
delayed due to the program order requirement. Sequential 
consistency is guaranteed by simply rolling back and reis- 
suing the read and subsequent operations, if the read line 
gets invalidated or updated before the read could have 
been issued in a more straightforward implementation. 
Because dynamically scheduled processors already 
include much of the necessqrollbackmachinery (to deal 
with branch mispredictions), they are particularly well- 
suited to this technique. 

Arecent study has shown that these two techniques dra- 
matically improve the performance of sequential consis- 
tency? However, in many cases a significant performance 
gap remains between sequential consistency and the 
relaxed consistency model of release consistency. 

Other latency hiding techniques, such as nonbinding 
software prefetching or hardware support for multiple 
contexts, have also been shown to enhance the perfor- 
mance of sequentially consistent hardware. However, 
these techniques are also beneficial when used in con- 
junction with relaxed memory consistency. 

COMPILER TECHNIQUES. A compiler algorithm to 
detect when memory operations can be reordered with- 
out violating sequential consistency has been proposed? 
Such an analysis can be used to implement both hardware 
and compiler optimizations. This algorithm has expo- 
nential complexity. More recently, a new algorithm with 
polynomial complexity has been proposed? 

However, both algorithms require global dependence 
analysis to determine whether two operations from dif- 
ferent processors can conflict. This analysis is difficult and 
often leads to conservative estimates that can decrease 
the algorithms’ effectiveness. It remains to be seen if these 
algorithms can approach the performance of relaxed con- 
sistency models. 

RELAXED MEMORY MODELS 
Relaxed memory consistency models typically empha- 

size the system optimizations they enable and are based on 
widely varying specification methods and levels of for- 
malism. We retain the system-centric emphasis, but 
describe the models using a simpler, more uniform ter- 
minology. A more formal and unified system-centric 
framework, along with formal descriptions of these mod- 
els, has been published el~ewhere.~,~ 

Model types 

memory consistency models: 
We use two key characteristics to categorize relaxed 

How they relax the program order requirement. Models 
differ on the basis of how they relax the order from a 
write to a following read, between two writes, and 
from a read to a following read or write. These relax- 
ations apply only to operation pairs with different 
addresses and are similar to i he optimizations for 
sequential consistency described for architectures 
without caches. 
How they relax the write attomicity requirement. 
Some models allow a read to return the value of 
another processor’s write before the write is made vis- 
ible to all other processors. This relaxation applies 
only to cache-based systems. 

We also consider a relaxation related to both program 
order and write atomicity, where a processor is allowed to 
read the value of its own previous write before the write is 
made visible to other processors and, in a cache-based sys- 
tem, before the write is serialized. A common optimiza- 
tion that exploits this relaxation is forwarding the value 
of a write in a write buffer to a following read from the 
same processor. 

The relaxed models discussed here also typically pro- 
vide mechanisms for overriding their default relaxations. 
For example, explicitfence instructions may 
be used to override program order relax- 
ations. We call these mechanisms safety 
nets. We discuss only the more straightfor- 
ward safety nets here. 

Table 1 (on the next page) lists the relax- 
ations and safety nets for the models we dis- 
cuss here, and Table 2 lists example 
commercial systems that allow such relax- 
ations. For simplicity, we do not attempt to 
describe the models’ semantics with respect 
to issues such as instruction fetches, I/O 
operations, or multiple granularit).. operations (byte ver- 
sus word operations, for example), even though some mod- 
els define such semantics. 

Throughout this section, we assume that the following 
constraints are satisfied: 

We assume that all models require both that a write 
eventually be made visible to all processors and that 
writes to the same location be serialized. If shared 
data is not cached, these requirements are trivial; 
otherwise they are met by a hardware cache coher- 
ence protocol. 
We assume that all models enforce uniprocessor data 
and control dependencies. 
We assume that models that relax the program order 
from reads to following write operations also main- 
tain a subtle form of multiprocessor data and control 
dependence?,z This constraint is inherently upheld by 
all processor designs we know of and can be easily 
maintained by the compiler. 

Relaxing write to read program order 
These models allow a read to be reordered with respect 

to previous writes from the same processor. Therefore, 
programs such as the one in Figure 3a may fail to provide 
sequentially consistent results. 
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As Table 1 shows, the three models in this group-IBM 
370, total store ordering (TSO), and processor consistency 
(PC)-differ in when they allow a read to return the value 
of a write. Figure 5 illustrates these differences. 

As a safety net, the IBM 370 provides special serializa- 
tion instructions that can be used to enforce program order 
between a write and a following read. Some serialization 
instructions, such as compare&swap, are memory opera- 
tions used for synchronization. Others are nonmemory 
instructions, such as a branch. The IBM 370 does not need 
a safety net for write atomicity because it does not relax 
atomicity. 

In contrast, the TSO and PC models do not provide 
explicit safety nets. Nevertheless, programmers can use 
read-modify-write operations to provide the illusion that 
program order is maintained from a write to a read or that 
writes are atomic?s3 Fortunately, most programs do not 
depend on write-to-read program order or write atomic- 
ity for correctness. 

Relaxing program order as these models do can substan- 
tially improve performance at the hardware level by effec- 
tively hiding the latency ofwrite operations.lOAt the compiler 
level, however, this relaxation alone is not beneficial. Most 
compiler optimizations require the extra flexibility of 
reordering any two operations (read or write) with respect 
to one another. 

Relaxing write to read and write to write 
program order 

These models allow writes to different locations from 
the same processor to be pipelined or overlapped, and so 
they may reach memory or other cached copies out of pro- 
gram order. Therefore, these models can violate sequen- 
tial consistencyfor the programs in Figures 3a and 3b. The 
partial store ordering model (PSO) is the only model we 
describe here. 

With respect to atomicity requirements, PSO is identi- 
cal to TSO. However, PSO adds a safety net, the STBAR 
instruction, which imposes program order between two 
writes. As with the previous three models, the optimiza- 
tions allowed by PSO are not sufficientlyflexible to be use- 
ful to a compiler. 

Relaxing all program orders 
The final set of models relax program order between all 

operations to different locations, allowing a read or write to 
be reordered with respect to a following read or write. Thus, 
they may violate sequential consistency for all the examples 
shown in Figure 3. The key additional optimization relative 
to the previous models is that memory operations following 
a read operation may be overlapped or reordered with 
respect to the read. This flexibility allows hardware to hide 
the latency of reads with either statically (in-order) or 
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dynamically (out-of-order) scheduled pr0cessors.3~~ 
We discuss six models in this class: the weak ordering 

(WO) model, two flavors of the release consistency model 
(RCsc and RCpc), and three models proposed for com- 
mercial architectures-the Digital Alpha, Sparc relaxed 
memory order (RMO), and IBM PowerPC. Except for 
Alpha, these models also allow the reordering of two reads 
to the same location. 

Regarding atomicity, all models in this group allow a 
processor to read its own write early. RCpc and PowerPC 
are the only models whose straightforward implementa- 
tions allow a read to return the value of another proces- 
sor's write early. This can also happen in more complex 
implementations of WO, RCsc, Alpha, and RMO. From the 
programmer's perspective, however, all implementations 
of WO, Alpha, and RMO must preserve the illusion of write 
atomicity (while extremely aggressive implementations 
of RCsc may violate it). For WO, we assume that if a read 
and a following write are related by data or control depen- 
dence, then the write is delayed until both the read and 
the write read by the read are complete. 

These six models fall into two main categories, on the 
basis of the type of safety net they provide. The WO, RCsc, 
and RCpc models distinguish memory operations based 
on their type and provide stricter ordering constraints for 
some operations. The Alpha, RMO, and PowerPC models 
provide explicit instructions to impose program orders 
between various memory 
operations. 

WEAK ORDERING. The 
weak ordering model clas- 
sifies memory operations 
into two categories: data 
operations and synchro- 
nization operations. To 
enforce program order 
between two operations, 
the programmer must iden- 
tify at least one of them as 
a synchronization opera- 
tion. Memory operations 
between two synchroniza- 
tion operations may still be 
reordered and overlapped. 
This model is based on the 
intuition that reordering 
memory operations to data 
regions between synchro- 
nization operations does 

not typically affect program correctness. Since WO ensures 
that writes appear to be atomic to the programmer, no 
safety net is required for write atomicity. 

RELEASE CONSISTENCY. The release consistency mod- 
els further distinguish memory operations. Operations are 
first distinguished as ordinary or special, categories that 
loosely correspond to the distinction between data and 
synchronization in WO. Special opeirations are further dis- 
tinguished as sync or nsync. Sync operations are synchro- 
nization operations; nsyncs are eithLer asynchronous data 
operations or special operations not used for synchro- 
nization. Finally, sync operations are further distinguished 
as acquire or release operations. An acquire is a read oper- 
ation performed to gain access to shared locations (for 
example, a lock operation or spinning for a flag to be set). 
A release is a write operation performed to grant permis- 
sion to access shared locations (for example, an unlock 
operation or setting of a flag). 

There are two flavors of release consistency, RCsc and 
RCpc. RCsc maintains sequential consistency among spe- 
cial operations, while RCpc maintains processor consistency 
among such operations. RCsc maintains the program order 
from an acquire to any operation thlat follows it, from any 
operation to a release, and between special operations. 
RCpc is similar, except that the writeto-read program order 
among special operations is not maintained. 

Initially A = Flagl = Flag2 = 0 Initially A = B = 0 
PI P2 PI P2 P3 
Flagl = 1 Flag2 = 1 A = l  
A = l  A = 2  if (A == 1) 
register1 = A register3 = A B = 1  
register2 = Flag2 register4 = Flagl if (6 = 

regii 
Result: registerl = 1, register3 = 2, 

register2 = register4 = 0 
Result: B = 1, registerl = 0 

(a) (b) 

Figure 5. Differences between 370, TSO, and PC. The result foir the program in 
part (a) is possible with TSO and PC because both models allow the reads of the 
flags to occur before the writes of the flags on each processor. The result is not 
possible with IBM 370 because the read of A on each processor is not issued until 
the write of A on that processor is complete. Consequently, l:he read of the flag 
on each processor is not issued until the write of the flag on that processor is 
done. The program in part (b) is the same as in Figure 2b. The! result shown is pos- 
sible with PC because it allows P2 to return the value of PI'S write before the 
write is visible to P3. The result is not possible with IBM 370 or TSO. 
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Thus, for the RC models, program order between a pair 
of operations can be enforced by distinguishing or labeling 
appropriate operations based on the preceding information. 

For RCpc, imposing program order from a write to a 
read or making awrite appear atomic requires using read- 
modify-write operations as in the PC model?z5 Complex 
implementations of RCsc may also make writes appear 
nonatomic; one way to enforce atomicity is to label suffi- 
cient operations as special.2~~ The RCsc model is accompa- 
nied by a higher level abstraction that relieves the 
programmer from having to use the lower level specifica- 
tion to reason about many programs? 

ALPHA, M O ,  AND POWERPC. The Alpha, RMO, and 
PowerPC models all provide explicitfence instructions, as 
their safety nets. 

The Alpha model provides two fence instructions: mem- 
ory barrier (MB) and write memory barrier (WMB). 
Memory barrier instructions maintain program order 
between any memory operations that come before them 
and any memory operations that come after them. Write 
memory barrier instructions provide this guarantee only 
among write operations. The Alpha model does not 
require a safety net for write atomicity. 

The RMO model provides more flavors of fence instruc- 
tions. Effectively, a programmer can customize a memory 
barrier instruction (MEMBAR) to specify any combination 
of four possible pairs of orderings-between all writes fol- 
lowed by all reads, all writes followed by all writes, all 
reads followed by all reads, and all reads followed by all 
writes. This model also does not require a safety net for 
write atomicity. 

The PowerPC model provides a single fence instruction, 
Sync. Sync behaves like the Alpha memory barrier, with 
one exception that can create subtle correctness problems: 
Even if a Sync is placed between two reads to the same 
location, the second read may return the value of an older 
write than the first read. In other words, the reads appear 
to occur out of program order. Unlike Alpha and RMO, 
PowerPC does not preserve write atomicity and may 
require the use of read-modify-write operations to make 
a write appear atomic? 

Compiler optimizations 
The last set of models described are flexible enough to 

allow common compiler optimizations on shared mem- 
ory operations. With WO, RCsc, and RCpc, the compiler 
can reorder memory operations between two consecutive 
synchronization or special operations. With the Alpha, 
RMO, and PowerPC models, the compiler can reorder 
operations between fence instructions. Most programs use 
these operations or instructions infrequently, so the com- 
piler can safely optimize large regions of code. 

PROGRAMMER-CENTRIC MODELS 
Relaxed memory models enable a wide range of opti- 

mizations that have been shown to substantially improve 
performance.3J10J1 However, they are harder for pro- 
grammers to use. Furthermore, the wide range of models 
supported by different systems requires programmers to 
deal with various semantics that differ in subtle ways 
and complicate porting. 

We need a higher level abstraction that provides pro- 
grammers a simpler view, yet allows system designers to 
exploit the various optimizations. 

Relaxed models are complex to program because their 
system-centric specifications directly expose the program- 
mer to the reordering and atomicity optimizations, requir- 
ing the programmer to consider such optimizations when 
reasoning about program correctness. Even though 
relaxed models do provide safety nets, the programmer 
must still identify the ordering constraints necessary for 
correctness. 

Instead of exposing optimizations directly to the pro- 
grammer, a programmer-centric specification requires the 
programmer to provide certain information about the pro- 
gram. This information is then used bythe system to deter- 
mine whether a certain optimization can be applied without 
affecting the Correctness of program execution. To provide 
a formal programmer-centric specification, we must first 
define when a program is considered to be executed cor- 
rectly by the system. An obvious choice for correctness is 
sequential consistency, because it is a natural extension of 
the uniprocessor notion of correctness and the most com- 
monly assumed multiprocessor correctness model. Once 
we have defined a correctness notion, we must precisely 
define the information required from the programmer. 

So our programmer-centric approach describes a mem- 
ory model in terms of program-level information that a 
programmer must provide, and then exploits this infor- 
mation to perform optimizations without violating 
sequential consistency. 

We have described various programmer-centric 
approaches elsewhere: The data-race-free-0 approach 
allows WO-like optimizations,12 the properly-labeled 
approach is a simpler way to write programs for RCsc,S and 
other approaches exploit more aggressive  optimization^."^ 
We have also developed a unified framework to explore 
the design space of programmer-centric models and opti- 
mizati0ns.l 

Sample programmer-centric framework 
To illustrate the programmer-centric approach, we 

describe program-level information that can enable WO- 
like optimizations. Recall that weak ordering is based on 
the intuition that memory accesses can be classified as 
either data or synchronization, and that data operations 
can be executed more aggressively than synchronization 
operations. However, the informal nature of this classifi- 
cation makes it ambiguous when applied over a wide 
range of programs. A key goal of the programmer-centric 
approach is to formally define the operations that should 
be distinguished as synchronization. 

An operation is a synchronization operation if it forms a 
race with another operation in any sequentially consistent 
execution. All other operations are data operations. Given 
a sequentially consistent execution, two operations form a 
race with each other if they access the same location, if at 
least one is a write, and if there are no other operations 
between them. For example, in every sequentially consis- 
tent execution of the program in Figure 3b, the write and 
read of Data are separated by intervening operations on 
Head.  1nthiscasetheformersetaredataoperations.Incon- 
trast, operations on Head are not always separated by other 
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operations, so they are synchronization operations. 
To provide this information, the programmer must rea- 

son only about sequentially consistent executions of the 
program and does not have to deal with any reordering 
optimizations. With this information, the optimizations 
enabled by the weak ordering model can be safely applied. 
In fact, this information enables more aggressive opti- 
mizations than those exploited by weak ordering,5J2 and 
can also be used to efficiently port programs to all the 
other relaxed models.’,3 

Figure 6 depicts the decision process for distinguishing 
memory operations. Correctness is not guaranteed if the 
programmer incorrectly distinguishes a race operation as 
data. However, an operation may be conservatively dis- 
tinguished as a synchronization operation if the pro- 
grammer is not sure whether the operation is involved in 
a race. This don’t-know option is important because it 
allows a programmer to trivially ensure correctness by 
conservatively identifymg all operations as synchroniza- 
tion. Of course, this forgoes any performance gains but 
potentially allows a faster path to an initial working pro- 
gram. The don’t-know option also lets the programmer 
incrementally tune performance: The programmer can 
provide accurate information for memory operations in 
performance-critical areas of the program and conserva- 
tive information for other areas. 

Distinguishing memory operations 
To provide the system with information on memory 

operations, we need a mechanism to distinguish opera- 
tions at the language level. We also need a mechanism to 
pass this information to the hardware level. 

LANGUAGE LEVEL. Here we consider languages that 
have explicit parallel constructs. The mechanism for con- 
veying information about memory operations depends on 
how the language supports parallelism. Language support 
for parallelism may range from high-level parallelism con- 
structs (such as d o a l l  loops) to low-level use of memory 
operations for achieving synchronization. 

A high-level d o a l l  loop implies that the parallel iter- 
ations of the loop do not access the same location if at 
least one of these accesses is a write. Thus, correct 
use of d o a l l  implicitly conveys that accesses across 
iterations are not involved in a race. 
A language may require that programmers use only 
low-level synchronization routines, such as those pro- 
vided in a library, to eliminate races between other 
operations in the program. Again, correct use of such 
routines implies that only accesses within the syn- 
chronization library are involved in races. Of course, 
the compiler or library writers must ensure that 
appropriate information (synchronization or data) 
for operations used to implement the synchroniza- 
tion routines i s  appropriately conveyed to the lower 
levels of the system (for example, the hardware). 
At the lowest level, the programmer may be allowed 
to directly use any memory operation for synchro- 
nization purposes. For example, any location may be 
used as a flag variable. In this case, the programmer 
must explicitly convey information about operation 

Figure 6. Deciding how to distinguish a memory 
operation. 

types. One way to do this is to associate the informa- 
tion with static instructions at the program level. For 
example, special constructs may statically identify 
regions of code to be synchronization. Another option 
is to associate the synchronization attribute with a 
shared variable or address through, for example, type 
declarations. Or the language may provide a default 
mode that assumes, for example, that an operation 
is a data operation unless specified otherwise. Even 
though data operations are more common, making 
synchronization the default may make it simpler to 
bring up an initial working program and may 
decrease errors by requiring data operations (which 
are aggressively reordered) to be identified explicitly. 
We are not aware of any languages that provide 
appropriate mechanisms for conveying information 
at this lowest level. Mechanisms such as C’s volatile 
type declaration lack the appropriate semantics3 

HARDWARE LEVEL. The information conveyed at the lan- 
guage level must ultimately be provided to the underlying 
hardware. Often the compiler is responsible for doing this. 

Information about memory operations at this level may 
also be associated with either specific address ranges or 
static memory instructions. The former may be supported 
by distinguishing different virtual or physical pages. The 
latter may be supported through unused opcode bits (that 
is, multiple flavors of memory instructions) or unused 
address bits (that is, address shadlowing) or by treating 
certain instructions (such as compare&swap) as synchro- 
nization by default. 

Most commercial systems do noit provide these mecha- 
nisms. Instead, this information must be transformed to 
explicit fence instructions supported at the hardware level. 
For example, to provide the semantics of synchronization 
operations in weak ordering on h,ardware that supports 
Alpha-like memory barriers, the CO mpiler can precede and 
follow every synchronization operation with a memory 
barrier. Due to the widespread adoption of fence instruc- 
tions, several languages also let programmers explicitly 
invoke them at the program level. 

THERE IS STRONG EVIDENCE that relaxed memory consis- 
tency models provide better performance than sequential 
consistency modelsPz~loJ1 The increase in processor speeds 
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Aelative to memory and communication speeds will only 
ncrease the potential benefit from these models. In addi- 
:ion to gains in hardware performance, relaxed memory 
ionsistency models also play a key role in enabling com- 
d e r  optimizations. For these reasons, many commercial 
srchitectures, such as the Digital Alpha, Sun Sparc, and 
[BM PowerPC, support relaxed consistency. 

Unfortunately, relaxed memory consistency models 
increase programming complexity. Much of this com- 
plexity arises because many of the specifications presented 
in the literature expose the programmer to the low-level 
performance optimizations enabled by a model. Our pre- 
vious work has addressed this issue by defining models 
using a higher level abstraction that provides the illusion 
of sequential consistency as long as the programmer pro- 
vides correct program-level information about memory 
operations. Meanwhile, language standardization efforts 
such as High Performance Fortran have led to high-level 
memory models that are different from sequential con- 
sistency. In short, the question of which is the best mem- 
ory consistency model is far from resolved. This question 
can be better resolved with a more active collaboration 
between language and hardware designers. I 
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