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he shared memory programming model has several advantages

over the message passing model. In particular, it simplifies data

partitioning and dynamic load distribution. Shared memory sys-
tems are therefore gaining wide acceptance for both technical and com-
mercial computing.

To write correct and efficient shared memory programs, programmers
need a precise notion of shared memory semantics. For example, in the
program in Figure 1 (a fragment from a program in the Splash applica-
tion suite), processor P1 repeatedly updates a data field in a new task
record and then inserts the record into a task queue. When no tasks are
left, P1 updates a pointer, Head, to point to the first record in the task
queue. Meanwhile, the other processors wait for Head to have a non-null
value, dequeue the task pointed to by Head in a critical section, and read
the data in the dequeued task. To ensure correct execution, a program-
mer expects that the data value read should be the same as that written
by P1. However, in many commercial shared memory systerns, the proces-
sors may observe an older value, causing unexpected behavior.

The memory consistency model of a shared memory multiprocessor for-
mally specifies how the memory system will appear to the programmer.
Essentially, a memory consistency model restricts the values that a read
can return. Intuitively, a read should return the value of the “last” write to
the same memory location. In uniprocessors, “last” is precisely defined by
the sequential order specified by the program, called the program order.
This is not the case in multiprocessors. For example, in Figure 1 the write
and read of Data are not related by program order because they reside
on two different processors.

The uniprocessor model, however, can be extended to apply to multi-
processors in a natural way. The resulting model is called sequential con-
sistency. Informally, sequential consistency requires that all memory
operations appear to execute one at a time and that all operations of a sin-
gle processor appear to execute in the order described by that processor’s
program. For Figure 1, this model ensures that the reads of the data field
will return the new values written by processor P1. Sequential consistency
provides a simple, intuitive programming model. Howevet, it disallows
many uniprocessor hardware and compiler optimizations. For this rea-
son, many relaxed consistency models have been proposed, several of which
are supported by commercial architectures.

The memory consistency model is an interface between the pro-
grammer and the system, so it influences not only how parallel programs
are written but virtually every aspect of parallel hardware and software
design. A memory consistency model specification is required at every
interface between the programmer and the system, including the inter-
faces at the machine-code and high-level language levels. In particular,
the high-level language specification affects high-level language pro-
grammers, compiler and other software writers who convert high-level
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Figure 1. lilustration of the need for a memory con-
sistency model.

code into machine code, and the designers of hardware
that executes the code. At each level, the memory con-
sistency model affects both programmability and perfor-
mance. Furthermore, due to a lack of consensus on a
single model, portability can be affected when moving
software across systems supporting different models.

Unfortunately, the vast literature that describes consis-
tency models uses nonuniform and complex terminology
to describe the large variety of models. This makes it dif-
ficult to understand the often subtle but important differ-
ences among models and leads to several misconceptions,
some of which are listed in the “Myths about memory con-
sistency models” sidebar.

In this article, we aim to describe memory consistency
models in a way that most computer professionals would
understand. This is important if the performance-enhanc-
ing features being incorporated by system designers are
to be correctly and widely used by programmers. Our
focus is consistency models proposed for hardware-based
shared memory systems. Most of these models emphasize
the system optimizations they support, and we retain this
system-centric emphasis in this article. We also describe an
alternative, programmer-centric view of relaxed consis-
tency models that describes them in terms of program
behavior, not system optimizations. A more formal treat-
ment is covered in our other work.!?

UNIPROCESSOR MIEMORY
CONSISTENCY

Most high-level uniprocessor languages present simple
sequential-memory semantics, which allow the program-
mer to assume that all memory operations will occur one
at a time in program order. Fortunately, this illusion of
sequentiality can be supported efficiently by simply ensur-

ing that two operations are executed in program order if -

they are to the same location or if one controls the execu-
tion of the other. The compiler or the hardware can freely
reorder other operations, enabling several optimizations.
Overall, the sequential-memory semantics of a uniproces-
sor provide a simple and intuitive model and yet allow a
wide range of efficient system designs.

UNDERSTANDING SEQUENTIA
CONSISTENCY '

The most commonly assumed memory consistency
model for shared memory multiprocessors is sequential con-
sistency, which gives programmers a simple view of the sys-

tem. A multiprocessor system is sequentially consistent “if
the result of any execution is the same as if the operations
of all the processors were executed in some sequential order,
and the operations of each individual processor appear in
this sequence in the order specified by its program.”™
There are two requirements for sequential consistency:

* maintaining program order arong operations from
a single processor, and

* maintaining a single sequential order among all oper-
atiomns.
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The second requirement makes a memory operation
appear to execute atomically (instantaneously) with
respect to other memory operations. A sequentially corn-
sistent system can be thought of as consisting of a single
global memory connected to all the processors by a central
switch. At any time step, the switch connects memory to
an arbitrary processor, which may then issue a memory
operation. Each processor issues memory operations in
program order, and the switch provides the global serial-
ization among all memory operations.

Figure 2a illustrates the first requirement for program
order. The figure depicts Dekker’s algorithm for critical sec-
tions. It involves two flag variables initialized to 0. When
processor P1 attempts to enter the critical section, it
updates Flag1 to 1, and checks the value of Flag2. The value
0 for Flag2 indicates that processor P2 has not yet tried to
enter the critical section, so it is safe for P1 to enter. The
algorithm assumes that if P1’s read returns O, then P1’s
write occurred before P2’s write and read. P2 will read the
flag and return 1, which will prohibit it from also entering
the critical section. Sequential consistency ensures this by
maintaining program order. ,

Figure 2b illustrates the atomicity requirement. In this
case, three processors share variables A and B, which are
initialized to Q. Suppose P2 returns 1 when it reads A and
then writes to B, and suppose P3 returns 1 when it reads
B. Atomicity allows us to assume that P1’s write is seen by
the entire system at the same time. Since P3 sees P2’s write
to B after P2 sees P1’s write to A, it follows that P3 is guar-
anteed to see P1’s write and return 1 when it reads A.

IMPLEMENTING SEQUENTIAL

-CONSISTENCY

In this section we explain how to practically realize
sequential consistency in a multiprocessor system. We will
see that unlike uniprocessors, preserving only per-proces-
sor data and control dependencies is insufficient. We first
focus on how sequential consistency interacts with com-
mon hardware optimizations and then briefly describe
compiler optimizations. To separate the issues of program
order and atomicity, we begin with implementations for
architectures without caches and then discuss the effects
of caching shared data.

Figure 2. Examples for sequential consistency.
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Architectures without caches

The key issue in supporting sequential consistency in
systems without caches is program order. To illustrate the
interactions that arise in such systems, we will use three
typical hardware optimizations, shown in Figure 3. The
notations t1, t2, and so on in the figure indicate the order
in which the corresponding memory operations execute at
Mmemory.

WRITE BUFFERS WITH READ BYPASSING. The opti-
mization depicted in Figure 3a shows the importance of
maintaining program order between a write and a fol-
lowing read, even if there is no data or control dependence
between them. In this bus-based system, assume that a
simple processor issues operations one at a time, in pro-
gram order. Now add the optimization of a write buffer.
A processor can insert a write into the buffer and proceed
without waiting for the write to complete. Subsequent
reads of the processor can bypass the buffered writes (to
different addresses) for faster completion.

Write buffers can violate sequential consistency. For
the code in Figure 3a, a sequentially consistent system
must not allow both processors’ reads of flags to return 0.
However, this can happen in the system in Figure 3a:
Each processor can buffer its write and allow the subse-
quent read to bypass it. Therefore, both reads may be ser-
viced by memory before either write, allowing both reads
to return 0.

OVERLAPPING WRITES. The optimization depicted in
Figure 3b shows the importance of maintaining program
order between two writes. Again, we consider operations
with no data or control dependencies. This system has a
general (nonbus) network and multiple memory modules,
which can exploit more parallelism than the system in
Figure 3a. Now multiple writes of a processor may be simul-
taneously serviced by different memory modules.

This optimization can also violate sequential consistency.
In the code fragment in Figure 3b, assume that Data and
Head reside in different memory modules. Because the
write to Head may be injected into the network before the
write to Data has reached its memory module, the two
writes could complete out of program order. Therefore, P2
might see the new value of Head and yet get the old value
of Data, a violation of sequential consistency.

To maintain program order among writes, an acknowl-
edgment can be returned to the processor that issued the
write once the write has reached its target memory mod-
ule. The processor could be constrained from injecting
another write until it receives an acknowledgment of its
previous write.

This write acknowledgment technique can also main-
tain program order from a write to a subsequent read in
systems with general networks.

NONBLOCKING READS. The optimization in Figure 3¢
illustrates the importance of maintaining program order
between a read and a following operation: While most
early RISC processors blocked on a read until it returned
avalue, recent processors proceed past reads, using tech-
niques such as lockup-free caches and dynamic sched-
uling. In Figure 3¢, two overlapped reads violate



sequential consistency in a manner simi-
lar to overlapped writes. A read over-
lapped with a following write causes
similar problems, but this kind of overlap
is not common.

PROGRAM ORDER REQUIREMENT. The
above discussion shows that in straightfor-
ward hardware implementations, a proces-
sor must ensure that its previous memory
operation is complete before proceeding
with its next memory operation in program
order. We call this requirement the program
order requirement.

Architectures with caches

Caching, or replication, of shared data
can lead to scenarios similar to those
described for systems without caches.
Systems that use caching must therefore t1
take similar precautions to maintain the
illusion of program order. Most notably,
even if a read hits in its processor’s cache,
reading the cached value without waiting
for the completion of previous operations
can violate sequential consistency. The
replication of shared data introduces three
additional issues.

CACHE COHERENCE PROTOCOLS. The
presence of multiple cache copies requires
a mechanism, often called a cache coher-
ence protocol, to propagate a new value to
all copies of the modified location. A new
value is propagated by either invalidating
(or eliminating) or updating each copy.

The literature includes several defini-
tions of cache coherence (which is some-
times called cache consistency). The

Write Head

Write Data

Read Head Read Data
ot t1

strongest definitions are virtually synony-
mous with sequential consistency. Other
definitions impose extremely relaxed
orderings. One common definition requires
two conditions for cache coherence:

Figure 3. Optimizations that may violate sequential consistency;

t1, t2, ... indicate the order in which the corresponding memory

* Awrite must eventually be made visi-
ble to all processors.

* Writes to the same location must
appear to be seen in the same order by all processors.®

These conditions are clearly not sufficient to satisfy
sequential consistency. This is because sequential consis-
tency requires that writes to all locations (not just the same
location) be seen in the same order by all processors, and
also explicitly requires that a single processor’s operations
appear to execute in program order. '

We do not use the term cache coherence to define a con-
sistency model. We view a cache coherence protocol as
simply a mechanism to propagate a newly written value.
The memory consistency model is the policy that places
the bounds on when the value can be propagated to a
- given processor.

operations execute at memory

DETECTING WRITE COMPLETION. When there are no
caches, a write acknowledgment may be generated when
the write reaches its target memory. However, an acknowl-
edgment at this time is too early for a system with caches.

Suppose write-through caches were added to each proces-
sor in Figure 3b. Assume P2 initially has Data in its cache.
Now suppose P1 proceeds to write to Head after the write to
Data reaches its target memory but before its value has been
propagated to P2. It is possible that P2 could read the new
value of Head and still return the old value of Data from its
cache, a violation of sequential consistency.

P1 must wait for P2’s copy of Data to be updated or
invalidated before it writes to Head. Thus, awrite toaline
replicated in other caches typically requires an acknowl-
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Figure 4. Example for serialization of writes.

edgment of invalidate or update messages as well.
Furthermore, the acknowledgments must be collected
either at the memory or at the processor that issues the
write. In either case, the writing processor must be notified
when all acknowledgments are received. Only then can
the processor consider the write to be complete.

A common optimization is to have each processor
acknowledge an invalidate or update immediately on receipt
and potentially before its cache copy is affected. This design
can satisfy sequential consistency if it supports certain order-
ing constraints in processing all incoming messages.®

MAINTAINING WRITE ATOMICITY. Propagating changes
to multiple cache copies is inherently a nonatomic opera-
tion. Therefore, special care must be taken to preserve the
illusion of write atomicity.

In this section we describe two conditions that together
ensure the appearance of atomicity. We will refer to these
conditions as the write atomicity requirement.

The first condition requires writes to the same location to
be serialized. Thatis, all processors should see writes to the
same location in the same order. Figure 4 illustrates the need
for this condition: Assume an update protocol and that all
processors in Figure 4 execute memory operations one at a
time and in program order. Sequential consistency is vio-
lated if the updates of the writes of Aby P1 and P2 reach P3
and P4 in a different order. If this happens, P3 and P4 will
return different values when they read A ‘and the writes of
A appear nonatomic. This can occur in systems with a gen-
eral (nonbus) network that do not guarantee the delivery
order of messages that traverse different paths. Requiring
serialization of writes to the same location solves this prob-
lem. One way to achieve serialization is to ensure that all
updates or invalidates for a location originate from a single
point (such as the directory) and the network preserves the
ordering of messages between a given source and destina-
tion. An alternative is to delay updates or invalidates until
those issued for a previous write to the same line are
acknowledged.

The second condition prohibits a read from returning a
newly written value until all cached copies have acknowl-
edged receipt of the invalidates or updates generated by
the write (that is, until the write becomes visible to all
processors). Assume, for example, that all variables in
Figure 2b are initially cached by all processors.
Furthermore, assume a system with all the precautions
for sequential consistency except for the above condition.
It is still possible to violate sequential consistency with a
general network with an update protocol if

1. P2 reads the new value of A,
2. P2’s update of B reaches P3 before the update of A,
and

Computer

3. P3 returns the new value of B and the old value of A
from its cache.

P2 and P3 will thus appear to see the write of A at differ-
ent times, violating atomicity. A similar situation can arise
inan invalidate scheme. This violation occurs because P2
returns the value of P1’s write before the update for the
write reaches P3. Prohibiting a read from returning a
newly written value until all cached copies have acknowl-
edged the updates for the write avoids this.

Itis straightforward to ensure the second condition with
invalidate protocols. Update protocols are more chal-
lenging because updates directly supply new values to
other processors. One solution for update protocols is to
employ a two-phase update scheme: The first phase sends
updates and receives acknowledgments. In this phase, no
processor is allowed to read the updated location. In the
second phase, a confirmation message is sent to the
updated processor caches to confirm the receipt of all
acknowledgments. A processor can use the updated value
from its cache once it receives this confirmation.

Compilers

Compilers that reorder shared memory operations can
cause sequential consistency violations similar to hardware.
For all the program fragments discussed so far, compiler-
generated reordering of shared memory operations will
lead to sequential consistency violations similar to hard-
ware-generated reorderings. Therefore, in the absence of
more sophisticated analysis, the compiler must preserve
program order among shared memory operations. This pro-
hibits any uniprocessor compiler optimization that might
reorder memory operations, including simple optimiza-
tions—code motion, register allocation, and eliminating
common subexpressions—and more sophisticated opti-
mizations—Iloop blocking and software pipelining.

Besides reordering, compiler optimizations such as reg-
ister allocation can also cause the elimination of shared
memory operations. This can also lead to sequential con-
sistency violations in subtle ways. In Figure 3b, for exam-
ple, if the compiler register allocates Head on P2 (by doing
asingle read of Head into a register and then reading the
value from the register), the loop on P2 may never termi-
nate if the single read returns the old value of Head.
Sequential consistency requires this loop to terminate in
every execution.

Optimizations like register allocation are key to perfor-
mance, so most compilers for sequentially consistent sys-
tems perform them. Itis left to the programmer to explicitly
disable them when necessary, using mechanisms such as
thevolatile declaration. Butitis difficult to determine when
disabling is necessary—it requires reasoning thatis similar
to the reasoning for relaxed consistency models.

The above discussion applies to compilers for explicitly
parallel code; compilers that parallelize sequential code
naturally have enough information about the generated
parallel program to determine when an optimization is
safe to apply. '

Optimizations for sequential consistency
Several techniques have been proposed to enable the use
of some hardware and compiler optimizations without vio-



lating sequential consistency. Here, we include the ones
that have the potential to substantially boost performance.

~ HARDWARE TECHNIQUES. Two hardware techniques
for cache-coherent systems are supported by several recent
microprocessors (the Hewlett-Packard PA-8000, the Intel
P6, and the MIPS R10000) 6 The first technique automat-
ically prefetches ownership for any write operation that is
delayed due to the program order requirement (for exam-
ple, by issuing prefetch-exclusive requests for writes
delayed in the write buffer), thus partially overlapping the
service of the delayed writes with previous operations.
The second speculatively services read operations that are
delayed due to the program order requirement. Sequential
consistency is guaranteed by simply rolling back and reis-
suing the read and subsequent operations, if the read line
gets invalidated or updated before the read could have
been issued in a more straightforward implementation.
Because dynamically scheduled processors already
include much of the necessary rollback machinery (to deal
with branch mispredictions), they are particularly well-
suited to this technique.

Arecent study has shown that these two techniques dra-
matically improve the performance of sequential consis-
tency” However, in many cases a significant performance
gap remains between sequential consistency and the
relaxed consistency model of release consistency.

Other latency hiding techniques, such as nonbinding
software prefetching or hardware support for multiple
contexts, have also been shown to enhance the perfor-
mance of sequentially consistent hardware. However,
these techniques are also beneficial when used in con-
junction with relaxed memory consistency.

COMPILER TECHNIQUES. A compiler algorithm to
detect when memory operations can be reordered with-
out violating sequential consistency has been proposed
Such an analysis can be used to implement both hardware
and compiler optimizations. This algorithm has expo-
nential complexity. More recently, a new algorithm with
polynomial complexity has been proposed?

However, both algorithms require global dependence
analysis to determine whether two operations from dif-
ferent processors can conflict. This analysis is difficult and
often leads to conservative estimates that can decrease
the algorithms’ effectiveness. It remains to be seen if these
algorithms can approach the performance of relaxed con-
sistency models.

RELAXED MENORY MODELS

Relaxed memory consistency models typically empha-
size the system optimizations they enable and are based on
widely varying specification methods and levels of for-
malism. We retain the system-centric emphasis, but
describe the models using a simpler, more uniform ter-
minology. A more formal and unified system-centric
framework, along with formal descriptions of these mod-
els, has been published elsewhere.2?

Model types
We use two key characteristics to categorize relaxed
memory consistency models:

* How they relaxthe program order requirement. Models
differ on the basis of how they relax the order from a
write to a following read, between two writes, and
from a read to a following read orwrite. These relax-
ations apply only to operation pairs with different
addresses and are similar to the optimizations for
sequential consistency described for architectures
without caches.

How they relax the write atomicity requirement.
Some models allow a read to return the value of
another processor’s write before the write is made vis-
ible to all other processors. This relaxation applies
only to cache-based systems.

We also consider a relaxation related to both program
order and write atomicity, where a processor is allowed to
read the value of its own previous write before the write is
made visible to other processors and, in a cache-based sys-
tem, before the write is serialized. A common optimiza-
tion that exploits this relaxation is forwarding the value
of a write in a write buffer to a following read from the
same processor.

The relaxed models discussed here also typically pro-
vide mechanisms for overriding their default relaxations.
For example, explicit fence instructions may
be used to override program order relax-
ations. We call these mechanisms safety
nets. We discuss only the more straightfor-
‘ward safety nets here.

Table 1 (on the next page) lists the relax-
ations and safety nets for the models we dis-
cuss here, and Table 2 lists example
commercial systems that allow such relax-
ations. For simplicity, we do not attempt to
describe the models’ semantics with respect
to issues such as instruction fetches, I/0
operations, or multiple granularity operations (byte ver-
sus word operations, for example), even though some mod-
els define such semantics.

Throughout this section, we assume that the following
constraints are satisfied:

» We assume that all models require both that a write
eventually be made visible to all processors and that
writes to the same location be serialized. If shared
data is not cached, these requirements are trivial;
otherwise they are met by a hardware cache coher-
ence protocol.

We assume that all models enforce uniprocessor data
and control dependencies.

We assume that models that relax the program order
from reads to following write operations also main-
tain a subtle form of multiprocessor data and control
dependence?? This constraint is inherently upheld by
all processor designs we know of and can be easily
maintained by the compiler.

Relaxing write to read program order

These models allow a read to be reordered with respect
to previous writes from the same processor. Therefore,
programs such as the one in Figure 3a may fail to provide
sequentially consistent results.
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As Table 1 shows, the three models in this group—IBM
370, total store ordering (TSO), and processor consistency
(PC)—differ in when they allow a read to return the value
of a write. Figure 5 illustrates these differences.

As a safety net, the IBM 370 provides special serializa-
tion instructions that can be used to enforce program order
between a write and a following read. Some serialization
instructions, such as compare&swap, are memory opera-
tions used for synchronization. Others are nonmemory
instructions, such as a branch. The IBM 370 does not need
a safety net for write atomicity because it does not relax
atomicity.

In contrast, the TSO and PC models do not provide
explicit safety nets. Nevertheless, programmers can use
read-modify-write operations to provide the illusion that
program order is maintained from a write to a read or that
writes are atomic2? Fortunately, most programs do not
depend on write-to-read program order or write atomic-
ity for correctness.

Relaxing program order as these models do can substan-
tially improve performance at the hardware level by effec-
tively hiding the latency of write operations.’® At the compiler
level, however, this relaxation alone is not beneficial. Most
compiler optimizations require the extra flexibility of
reordering any two operations (read or write) with respect
to one another.

Computer

Relaxing write to read and write to write
program order

These models allow writes to different locations from
the same processor to be pipelined or overlapped, and so
they may reach memory or other cached copies out of pro-
gram order. Therefore, these models can violate sequen-
tial consistency for the programs in Figures 3a and 3b. The
partial store ordering model (PSO) is the only model we
describe here.

With respect to atomicity requirements, PSO is identi-
cal to TSO. However, PSO adds a safety net, the STBAR
instruction, which imposes program order between two
writes. As with the previous three models, the optimiza-
tions allowed by PSO are not sufficiently flexible to be use-
ful to a compiler.

Relaxing all program orders

The final set of models relax program order between all
operations to different locations, allowing a read orwrite to
bereordered with respect to a following read or write. Thus,
they may violate sequential consistency for all the examples
shown in Figure 3. The key additional optimization relative
to the previous models is that memory operations following
a read operation may be overlapped or reordered with
respect to the read. This flexibility allows hardware to hide
the latency of reads with either statically (in-order) or



dynamically (out-of-order) scheduled processors>”

We discuss six models in this class: the weak ordering
(WO) model, two flavors of the release consistency model
(RCsc and RCpc), and three models proposed for com-
mercial architectures—the Digital Alpha, Sparc relaxed
memory order (RMO), and IBM PowerPC. Except for
Alpha, these models also allow the reordering of two reads
to the same location.

Regarding atomicity, all models in this group allow a
processor to read its own write early. RCpc and PowerPC
are the only models whose straightforward implementa-
tions allow a read to return the value of another proces-
sor’s write early. This can also happen in more complex
implementations of WO, RCsc, Alpha, and RMO. From the
programmer’s perspective, however, all implementations
of WO, Alpha, and RMO must preserve the illusion of write
atomicity (while extremely aggressive implementations
of RCsc may violate it). For WO, we assume that if a read
and a following write are related by data or control depen-
dence, then the write is delayed until both the read and
the write read by the read are complete.

These six models fall into two main categories, on the
basis of the type of safety net they provide. The WO, RCsc,
and RCpc models distinguish memory operations based
on their type and provide stricter ordering constraints for
some operations. The Alpha, RMO, and PowerPC models
provide explicit instructions to impose program orders
between various memory
operations.

WEAK ORDERING. The
weak ordering model clas-
sifies memory operations
into two categories: data
operations and synchro-
nization operations. To
enforce program order
between two operations,
the programmer must iden-
tify at least one of them as
a synchronization opera-

not typically affect program correctness. Since WO ensures
that writes appear to be atomic to the programmer, no
safety net is required for write atomicity.

RELEASE CONSISTENCY. The release consistency mod-
els further distinguish memory operations. Operations are
first distinguished as ordinary or special, categories that
loosely correspond to the distinction between data and
synchronization in WO. Special operations are further dis-
tinguished as sync or nsync. Sync operations are synchro-
nization operations; nsyncs are either asynchronous data
operations or special operations not used for synchro-
nization. Finally, sync operations are further distinguished
asacquire or release operations. An acquire is a read oper-
ation performed to gain access to shared locations (for
example, a lock operation or spinning for a flag to be set).
Arelease is a write operation performed to grant permis-
sion to access shared locations (for example, an unlock
operation or setting of a flag).

There are two flavors of release consistency, RCsc and
RCpc. RCsc maintains sequential consistency among spe-
cial operations, while RCpc maintains processor consistency
among such operations. RCsc maintains the program order
from an acquire to any operation that follows it, from any
operation to a release, and between special operations.
RCpcis similar, except that the write-to-read program order
among special operations is not maintained.

tion. Memory operations Figure 5. Differences between 370, TSO, and PC. The result for the program in
between two synchroniza-  part (a) is possible with TSO and PC because both models allow the reads of the
tion operations may stillbe  flags to occur before the writes of the flags on each processor. The result is not
reordered and overlapped. possible with IBM 370 because the read of A on each processor is not issued until
This model is based on the  the write of A on that processor is complete. Consequently, the read of the flag
intuition that reordering on each processor is not issued until the write of the flag on that processor is
memory operationstodata  done. The program in part (b) is the same as in Figure 2b. The result shown is pos-
regions between synchro-  sible with PC because it allows P2 to return the value of P1’s write before the
nization operations does write is visible to P3. The result is not possible with IBM 370 or TSO.
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Thus, for the RC models, program order between a pair
of operations can be enforced by distinguishing or labeling
appropriate operations based on the preceding information.

For RCpc, imposing program order from a write to a
read or making a write appear atomic requires using read-
modify-write operations as in the PC model25 Complex
implementations of RCsc may also make writes appear
nonatomic; one way to enforce atomicity is to label suffi-
cient operations as special 22 The RCsc model is accompa-
nied by a higher level abstraction that relieves the
programmer from having to use the lower level specifica-
tion to reason about many programs.

ALPHA, RMO, AND POWERPC. The Alpha, RMO, and
PowerPC models all provide explicit fence instructions, as
their safety nets.

The Alpha model provides two fence instructions: mem-
ory barrier (MB) and write memory barrier (WMB).
Memory barrier instructions maintain program order
between any memory operations that come before them
and any memory operations that come after them. Write
memory barrier instructions provide this guarantee only
among write operations. The Alpha model does not
require a safety net for write atomicity.

The RMO model provides more flavors of fence instruc-
tions. Effectively, a programmer can customize a memory
barrier instruction (MEMBAR) to specify any combination
of four possible pairs of orderings—between all writes fol-
lowed by all reads, all writes followed by all writes, all
reads followed by all reads, and all reads followed by all
writes. This model also does not require a safety net for
write atomicity.

The PowerPC model provides a single fence instruction,
Sync. Sync behaves like the Alpha memory barrier, with
one exception that can create subtle correctness problems:
Even if a Sync is placed between two reads to the same
location, the second read may return the value of an older
write than the first read. In other words, the reads appear
to occur out of program order. Unlike Alpha and RMO,
PowerPC does not preserve write atomicity and may
require the use of read-modify-write operations to make
a write appear atomic?

Compiler optimizations

The last set of models described are flexible enough to
allow common compiler optimizations on shared mem-
ory operations. With WO, RCsc, and RCpc, the compiler
can reorder memory operations between two consecutive
synchronization or special operations. With the Alpha,
RMO, and PowerPC models, the compiler can reorder
operations between fence instructions. Most programs use
these operations or instructions infrequently, so the com-
piler can safely optimize large regions of code.

PROGRANMER-CENTRIC MIODELS

Relaxed memory models enable a wide range of opti-
mizations that have been shown to substantially improve
performance.>7%" However, they are harder for pro-
grammers to use. Furthermore, the wide range of models
supported by different systems requires programmers to
deal with various semantics that differ in subtle ways
and complicate porting.
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We need a higher level abstraction that provides pro-
grammers a simpler view, yet allows system designers to
exploit the various optimizations.

Relaxed models are complex to program because their
system-centric specifications directly expose the program-
mer to the reordering and atomicity optimizations, requir-
ing the programmer to consider such optimizations when
reasoning about program correctness. Even though
relaxed models do provide safety nets, the programmer
must still identify the ordering constraints necessary for
correctness.

Instead of exposing optimizations directly to the pro-
grammer, a programmer-centric specification requires the
programmer to provide certain information about the pro-
gram. This information is then used by the system to deter-
mine whether a certain optimization can be applied without
affecting the correctness of program execution. To provide
a formal programmer-centric specification, we must first
define when a program is considered to be executed cor-
rectly by the system. An obvious choice for correctness is
sequential consistency, because it is a natural extension of
the uniprocessor notion of correctness and the most com-
monly assumed multiprocessor correctness model. Once
we have defined a correctness notion, we must precisely
define the information required from the programmer.

So our programmer-centric approach describes a mem-
ory model in terms of program-level information that a
programmer must provide, and then exploits this infor-
mation to perform optimizations without violating
sequential consistency.

We have described various programmer-centric
approaches elsewhere: The data-race-free-0 approach
allows WO-like optimizations,’> the properly-labeled
approach is a simpler way to write programs for RCsc,* and
other approaches exploit more aggressive optimizations?
We have also developed a unified framework to explore
the design space of programmer-centric models and opti-
mizations.!

Sample programmer-centric framework

To illustrate the programmer-centric approach, we
describe program-level information that can enable WO-
like optimizations. Recall that weak ordering is based on
the intuition that memory accesses can be classified as
either data or synchronization, and that data operations
can be executed more aggressively than synchronization
operations. However, the informal nature of this classifi-
cation makes it ambiguous when applied over a wide
range of programs. A key goal of the programmer-centric
approach is to formally define the operations that should
be distinguished as synchronization.

" An operation is a synchronization operation if it forms a
race with another operation in any sequentially consistent
execution. All other operations are data operations. Given
a sequentially consistent execution, two operations forma
race with each other if they access the same location, if at
least one is a write, and if there are no other operations
between them. For example, in every sequentially consis-
tent execution of the program in Figure 3b, the write and
read of Data are separated by intervening operations on
Head. In this case the former set are data operations. In con-
trast, operations on Head are not always separated by other



operations, so they are synchronization operations.

To provide this information, the programmer must rea-
son only about sequentially consistent executions of the
program and does not have to deal with any reordering
optimizations. With this information, the optimizations
enabled by the weak ordering model can be safely applied.
In fact, this information enables more aggressive opti-
mizations than those exploited by weak ordering>'? and
can also be used to efficiently port programs to all the
other relaxed models.*?

Figure 6 depicts the decision process for distinguishing
memory operations. Correctness is not guaranteed if the
programmer incorrectly distinguishes a race operation as
data. However, an operation may be conservatively dis-
tinguished as a synchronization operation if the pro-
grammer is not sure whether the operation is involved in
a race. This don’t-know option is important because it
allows a programmer to trivially ensure correctness by
conservatively identifying all operations as synchroniza-
tion. Of course, this forgoes any performance gains but
potentially allows a faster path to an initial working pro-
gram. The don’t-know option also lets the programmer
incrementally tune performance: The programmer can
provide accurate information for memory operations in
performance-critical areas of the program and conserva-
tive information for other areas.

Distinguishing memory operations

To provide the system with information on memory
operations, we need a mechanism to distinguish opera-
tions at the language level. We also need a mechanism to
pass this information to the hardware level.

LANGUAGE LEVEL. Here we consider languages that
have explicit parallel constructs. The mechanism for con-
veying information about memory operations depends on
how the language supports parallelism. Language support
for parallelism may range from high-level parallelism con-
structs (such as doall loops) to low-level use of memory
operations for achieving synchronization.

* Ahigh-level doall loop implies that the parallel iter-
ations of the loop do not access the same location if at
least one of these accesses is a write. Thus, correct
use of doall implicitly conveys that accesses across
iterations are not involved in a race.

Alanguage may require that programmers use only
low-level synchronization routines, such as those pro-
vided in a library, to eliminate races between other
operations in the program. Again, correct use of such
routines implies that only accesses within the syn-
chronization library are involved in races. Of course,
the compiler or library writers must ensure that
appropriate information (synchronization or data)
for operations used to implement the synchroniza-
tion routines is appropriately conveyed to the lower
levels of the system (for example, the hardware).

At the lowest level, the programmer may be allowed
to directly use any memory operation for synchro-
nization purposes. For example, any location may be
used as a flag variable. In this case, the programmer
must explicitly convey information about operation

Figure 6. Deciding how to distinguish a memory
operation. :

types. One way to do this is to associate the informa-
tion with static instructions at the program level. For
example, special constructs may statically identify
regions of code to be synchronization. Another option
is to associate the synchronization attribute with a
shared variable or address through, for example, type
declarations. Or the language may provide a default
mode that assumes, for example, that an operation
is a data operation unless sperified otherwise. Even
though data operations are more common, making
synchronization the default may make it simpler to
bring up an initial working program and may
decrease errors by requiring data operations (which
are aggressively reordered) to be identified explicitly.
We are not aware of any languages that provide
appropriate mechanisms for conveying information
at this lowest level. Mechanisms such as C’s volatile
type declaration lack the appropriate semantics.

HARDWARE LEVEL. The information conveyed at the lan-
guage level must ultimately be provided to the underlying
hardware. Often the compiler is responsible for doing this.

Information about memory operations at this level may
also be associated with either specific address ranges or
static memory instructions. The former may be supported
by distinguishing different virtual or physical pages. The
latter may be supported through unused opcode bits (that
is, multiple flavors of memory instructions) or unused
address bits (that is, address shadowing) or by treating
certain instructions (such as compare&swap) as synchro-
nization by default.

Most commercial systems do not provide these mecha-
nisms. Instead, this information must be transformed to
explicit fence instructions supported at the hardware level.
For example, to provide the semantics of synchronization
operations in weak ordering on hardware that supports
Alpha-like memory barriers, the compiler can precede and
follow every synchronization operation with a memory
barrier. Due to the widespread adoption of fence instruc-
tions, several languages also let programmers explicitly
invoke them at the program level.

THERE IS STRONG EVIDENCE that relaxed memory consis-
tency models provide better performance than sequential
consistency models 3701 The increase in processor speeds
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relative to memory and communication speeds will only
increase the potential benefit from these models. In addi-
tion to gains in hardware performance, relaxed memory
consistency models also play a key role in enabling com-
piler optimizations. For these reasons, many commercial
architectures, such as the Digital Alpha, Sun Sparc, and
IBM PowerPC, support relaxed consistency.

Unfortunately, relaxed memory consistency models
increase programming complexity. Much of this com-
plexity arises because many of the specifications presented
in the literature expose the programmer to the low-level
performance optimizations enabled by a model. Our pre-
vious work has addressed this issue by defining models
using a higher level abstraction that provides the illusion
of sequential consistency as long as the programmer pro-
vides correct program-level information about memory
operations. Meanwhile, language standardization efforts
such as High Performance Fortran have led to high-level
memory models that are different from sequential con-
sistency. In short, the question of which is the best mem-
ory consistency model is far from resolved. This question
can be better resolved with a more active collaboration
between language and hardware designers. 1
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