PERFORMANCE ANALYSIS FORMULAS

Amdahl's Law

Let f be the fraction of operations in a computation that must be performed
sequentially, where 0 < f < 1. The maximura speedup ¥ achievable by a parallel
computer with p processors performing the computation is

1
oz
Y rru-ne

Gustafson-Barsis’s Law

Given a parallel program solving a problem of size n using p processors, let s
denote the fraction of total execution time spent in senal code. The maximum
speedup v achievable by this program is

y<pt(d-pks

Karp-Flatt Metric

Given a parallel computation exhibiting speedup ¥ on p processors, wheee p > 1,
the experimentally determined scfial fraction e 15 defined to be

Isoefficiency Relation

Suppose a parallel system exhibits efficiency (r, p), where r denotes problem
size and p denotes number of processors. Define C = e{n, p)/ (1 —&ln, p)). Let
T(n, 1) denote sequential execution time, and let T,(n, pr) denote parallel over-
head (total amount of time spent by all processors performing communications
and redundant computations). In order 1o maintain the same level of efficiency as
the number of processors increases, problem size must be increased so that the
following inequality is satisfied:

T, 1y > CT(n, p)

Parallel Programming
in C with MPI |
and OpenMP

Michael J. Quinn

Oreg(mASmfe University

% Higher Education

Boston Burr Ridge. IL Dubuqhe, A Madison, Wi New York San Francisco Si. Louis
Bangkok Bogotd Caracas Kuala Lumpur Lisbon London WMadrid Mexice City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

The McGraw Hill companie

PARALLEL PROGRAMMING IN C WITH MPI AND OPENMP
International Edition 2003

Exclusive tights by McGraw-Hill Education (Asia), for manufacture and cxport, This
book cannol be re-exported from the country to which itis sold by McGraw-Hill. The
International Edition is not available in Norith America.

Published by McGraw-Hill, a business unit of The McGraw-Hill Cownpanies, Inc., 1221
Avenue of the Americas; New York, NY 10020, Copyright © 2004 by The McGraw-Hill
Companies, Tnc. All nights reserved. No part of this publication may be reproduced or
distribuled in any form or by any means, or stored in a database or retrieval syslem,
without the prior written consent of The McGraw-Hili Companies, Inc., including, but
oot [imited to, in any network or other efectronic storage or transmission, or broadcast for
distance learning. :

Some ancillaries, imcluding electronic and print components, may not be available to
customers outside the United States.

10 09 08 07 06
20 09 08 07
CTF sLp

Library of Congress Cataloging-in-Publication Data

Quinn, Michael J, (Michael Jay)

Paralle] programming in C with MP1 and OpenMP [Michael 1. Quinn—1st ed.

p. G

ISBN 007-282256-2

1. C (Computer program kanguage). 2. Paraliel programming (Computer science). 1. Title.
QAT76.73.CI5Q55 2004
005.13"3—dc21 : 2003046371

clp

When ordering this title, use ISBN 007-123265-6
Printed in Singapore

www.mhhe.com

With gratitude for their love, support, and guidance,
' I dedicate this book to my parents,
Edward and Georgia Quinn.

’X‘“‘L‘ﬁ‘ (mfmuw Ui\/uob .

BRIEF TABLE OF CONTENTS =

Preface xiv

1 Motivation and History 1
2 Parallel Architectures 27
3 Parallel Algorithm Design 63
4 Message-Passing Programming 93
5 The Sieve of Eratosthenes 115
6 Floyd's Algorithm 137
7 Performance Analysis 159
8 Matrix-Vector Multipfication 178
9 Document Classification 216
10 Monte Carlo Methods 239
11 Matrix Multiplication 273
12 Solving Linear Systems 290
13 Finite Difference Methods 318
14 Sorting 338
15 The Fast Fourier Transform 353
16 Combinatorial Search 369
17 Shared-Memory Programming 404
18 Combining MPTand OpenMP 436

Appendix A MPI Functions 450

Appendix B Uility Functions 485
Appendix € Debugging MPI Programs 505
Appendix D Review of Complex Numbers 509
Appendix E OpenMP Functions 513

Bibliography 515
Author index 520
Subject Index 522

CONTENTS

Preface xiv

cHarren 1
Motivation and History

i1
1.2
13
14

Introduction 1
Modern Scientific Method 3

141
142

The Cosmic Cube 16

Commercial Parallel
Computers 6
14.3 Beowulf 7
.1‘4‘4
Initiative &
Seeking Concurrency 9
151
152
1.5.3
1.54
1.5.5 Size Considerations 13

Data Clustering 14

Data Parallelism 10 .
Functional Parallelism

Pipelining 12

16
17
L7.1
172

Extend a Compier 17

Language 18
1.7.3
Layer 19

L74
175
18 Summary 2i
19 Key Terms 22
110 Bibliographic Notes 22
“ 111 Exercises 23

Current Starus 2}

Extend a Sequential Progromming

Create a Parallel Language

CHAPTER 2
Para!lel Architectures 27

11
22

Evolution of Supercomputing 4
Modern Parallel Computers 5

Advanced Strategic Computing

23

Data Dependence Graphs 9

10

24

Programming Parallel Computers 17

Add a Parallel Programming

19

2.6

Introduction 27)
Interconnection Networks 28

221 Shared versus § witched

Media 28

Switch Network Topologies 29
2-D Mesh Network 29

Binary Tree Network 30

222
223
224
225
224
227
228
229
Processor Arrays 37
231

Hypertree Nevwork 31
Butrerfly Neswork 32
Hypercube Network 33
Shuffle-cxchange Network 33
Summary 36

Archirecture and Data-parallel
Operations 37

232
233
234
235
234
Multiprocessors 43

241 Centralized Multiprocessors 43
24.2 Distribited Multiprocessors 43

Processor Array Performance 39
Processor Interconnection Network 40
Enabling and Disabling Processors 40
Additional Architectural Features 42
Shortcomings of Processor Arrays 42

Multicomputers 49
2.5.1
25.2
25.3

Asymmetrical Multicomputers 49
Symmetrival Multiconputers 51

Which Model Is Best for « Commodity
Cluster? 52

Differences between Clusters and
Networks of Workstations 53
Flynn’s Taxonomy 54

261 SISD 54

262 SIMD 55

254

Vi’ Contenls

263 MIsD 55
264 MIMD 56
27 Summary 58
28 KeyTerms 59
2.9 Bibliographic Notes 59
2.10 Excrcises 60

CHAPTER 3
Parallel Algorithm Design 63

3.1 Introduction 63
32 The Task/Charmel Model 63
33 Foster's Design Methodology 64
3.3.1 Partitioning 65
3.3.2 Communication 67
333 Agglomeration 68
334 Mapping 70
34 Boundary Value Problem 73
341 Introduction 73
342 Partitioning 75
343 Commupication 75
344 Agglomeration and Mapping 76
345 Analysis 76
3.5 Finding the Maximum 77
351 Introduction 77
3.5.2 Fartitioning 77
353 Commnunication 77
354 Agglomeration and Mapping 81
355 Analysis 82
3.6 The n-Body Problem 82
3.6.1 Introduction 82
3.6.2 Partitioning 83
3.63 Communication 83
3.6.4 Agglomeration and Mapping &85
3.6.5 Analysis 83
3.7 Adding Data Input 86
3.7.1 Introduction 86
372 Communication 87
373 Analysis 88
38 Summary 89

39

Key Terms 90

310 Bibliographic Notes 90

KRy

Exercises 90

cuarTER 4
Message-Passing Programming 93

4.1
42
43
44

4.5

4.6

4.7
438
49

Introduction 93

The Message-Passing Model 94

The Message-Passing [nterface 95

Circuit Satisfiability 96

441 Fupction MPT_TInit 99

442 Functions MPT_Conm_rank and
"MPI_Comm_size 9

443 Function MPT_Finalize I0]

444 Compiling MPI Programs 102

445 ~Running MPI Programs 102

Introducing Collective

- Communication 104

45.1 Function MPI_Reduce 103
Benchmarking Paralle] Performance 108
46 Functions ¥pL_Wtime and

MPI Wrick 108
46.2 Funcriom"{PI_._Bar'rier 108
Summary 110
Key Terms 110
Bibliographic Notes 110

4,10 Exercises 111

CHAPTER B
The Sieve of Eratosthenes 115

5.1
5.2
53
54

Introduction 115

Sequential Algorithm 115

Sources of Parallelism 117

Data DecSmposition Options 117

541 Interleaved Data Decomposition 118
342 Block Data Decomposition 118
543 Block Decomposition Macros 120
544 Locdl Index versus Global Index 120

5.5

56
57
58
- 59

5.10
511
512
513

Sgqs Rmm_‘ﬁcuﬁam of Block

Decomposition 121)
Developing the Parallel Algorithm 121
55.1 Function ¥PI_Beast 22
Analysis of Parallel Sieve Algorithm 122
Documenting the Parallel Program 123
Benchmarking = 128
Improvements 129
5.9.1
5.9.2
593
594
Summary 133
Key Terms 134
Bibliographic Notes 134
Ex}prcises 134

Delete Even Integers 129
Eliminate Broadcast 130
Rei)rgaﬁfze Loops 131
Benchmarking 131

cHAPTER B
Floyd’s Algorithm 137 -

6.1
6.2

6.3
64

6.6

6.7
6.3
6.9
6.10
6.11

Introduction 137

The All-Pairs Shortest-Path

Problem 137

Creating Arrays at Run Time 139
Desigming the Parallel Algorithm 140
641 Partitioning 140

642 Comnunicafion 141

- 643 Apglomeration and Mapping 142

644 Malvix Input/Output 143
Point-to-Point Communication 145
6.5.1 FunctionMPI_Send 146
6.5.2 Function MPI_Recv 47
6.5.3 Deadlock [48

Documenting the Parallel
Program 149

Analysis and Benchmarking 151
Summary 154

Key Terms 154

Bibliographic Notes 154
Exercises 154

Contents wii -

CHAPTER 7
Performance Analysis 153

(A
1.2
73

14
1.5
1.6
1.7
1.8
19

Introduction 159

Speedup and Efficiency 159
Amdahl’sLaw 161

730 Limitations of Amdahi’s Law 164
732 The Amdahl Effect 164
Gusiafson-Barsis’s Law 164
The Karp-Flatt Metric 167
The Isoefficiency Metric 170
Summary 174

Key Tecms 173
Bibliographic Notes 175

710 Exercises 176

CHAPTES 8
NMatrix-Vector Multiplication 178

8.1
8.2
8.3
84

Introduction 178

Sequential Algorithm 179

Data Decomiposition Optioas 180
Rowwise Block-Striped
Decomposition 181

841
342
843
844
845 Documnenting the Parallel Program 187
84.6 Benchmarking 187

Columnwise Block-Stripcd

Decomposition 189

8.5.1 Design and Analysis 189

8.5.2 Reuding a Columnwise Block-Striped
Matrix 19]

Function 491 Scaccarv 191

Design and Analysis 181
Replicating a Block-Mapped Vector 183
Function MPI_Ailgatherv 84

Replicated Vector Input/Qutput 186

8.5.3

854 Printing ¢ Columnwise Block-Striped

Matrix 193
85.5 Function MPI_cGatherv 193

8.5.6 Distributing Partiol Results 193

viii Contents

8.5.7 Function MPI_Alitoallv 195 ' 93.1 Assigning Groups of Documents 232

8.5.8 Documenting the Paraflel Program 196 9.5.2 Pipelining 232

8.5.9 Benchmarking 198 ‘ 9.5.3 Function MPI_Testsome 234
8.6 Checkerboard Block Decomposition 199 9.6 Summary 233

8.6.1 Design and Analysis 199 97 KeyTerms 236

8.6.2 Creating a Communicator 202 9.8 Bibliographic Notes 236

8.6.3 FunctionMPI Dims create 203 99
8.64 Function MPI_Cart_create 204
8.6.5 Reading a Checkerboard Matrix 205

Excrcises 236

crarTer 10

8.6.6 Function MPI Cart_rank ZQ5 Monte Carlo Methods 239
8.6.7 Function HPT_Cart_coords 207

868 Function MPT_Comem_split 207 10.1 Tniroduction 239
8.69 Benchmarking 208 10.L1 Why Monte Carlo Works 240

87 Summary 210 © 1012 Monte Carlo and Parallel

88 Key Terms 2 Computin, 243

v 'y s 211 ’ Iup lng N
bliographic N 2 10.2 Sequential Ra IC u 1

8.9 Bibli YErap, ic otes ; 11 eq 1a om mbe;

’ Generators 243
810 Exercises 211 10.2.1 Linear Congruential 244

1022 Lagged Fibonacci 245

cHAPTER 9 10.3 Parallel Random Number Generators 245
Document Classification 216 10.3.1 Manager-Worker Method 246
91 Tatroduction 216 10.3.2 Leapfrog Method 246
9.2 Pasallel Algorithm Design 217 ~ 1033 Sequence Splitting 247
92.1 Partitioning and Communication 217 1034 Parometerization 248
92.2 Agglomeration and Mapping 217 104 Other Random Number Distributions 248
923 Manager/Worker Paradigm 218 1041 Inverse Cumulative Distribution Function
9.24 Manager Process 219 Transformation 249
925 Function MPT Abort 220 104.2 Box-Muller Transformation 250
926 Worker Process 221 10.4.3 The Rejection Method 251
9.2.7 Creating a Workers-only 10.5 Case Studies 253
Commigicator 223 10.5.1 Neutron Transport 253
9.3 Nonblocking Communications 223 10.5:2 Temperature at a Point Iuside
93.1 Manager's Communication 224 a2-D Plae 255
932 Function MPT frecv 2M 10.5.3 Two-Dimensional Ising Model 257
9.3.3 Function Mpli:wal' E o225 1054 Room Assignment Problem 259
9.34 Workers’ Communications 225 10.5.5 Purking Garage 202
9.3.5 Function ¥pT_Isend 225 10.5.6 Traffic Circle 264
9.3.6 Function NPT_Probe 225 106 Summary 263
937 Function MPT_Get count 226 10.7 Key Terms 269

Documenting the Parallel Program 226 108 Bibliographic Notes 269
Enhancements 232 10.9 Exercises 270

Contents ix

craprer 1 ‘ 1245 Comparison 303

Matrix Muttiplication 273 124.6 Pipelined, Row-Oriented Algorithm 304
_ 125 Iterative Methods 306

111 Tmroduction 273 eran ¥

. . 12.6 The Conjugate Gradient Method 309
1.2 Sequential Matrix Multiplication 274
1 | ,"I“n ra o P “d o< 1261 Sequential Algorithm 309
e eralve, Row-Uriente .
2 ;
Algorithm 274 12,62 Farallel Implementation 310

11.2.2 Recursive, Block-Oriented 127 Summary 313

Algorithm 275 128 Key Terms 314
113 Rowwise Block-Striped Parallel 129 Bibliographic Notes 314
Algofthm 277 . . . 1210 Exercises 314

113.1 Identifying Primitive Tasks 277
11.3.2 Agglomeration 278

11.33 Communication and Further cuarren 13
Agglomeration 279 , Finite Difference Methods 318
. 134 Analysis 279 13.1- Introduction 318
114 Cannon’s Algorithm 281 132 Partial Differential Equations 320
1141 Agglomeration 281 1321 Categorizing PDEs 320

1142 Commmnication 283 13.2.2 Difference Quotienss 321

1143 Analysis 284 133 Vibrating String 322
115 Summary 86] 13.3.1 Deriving Equations 322
11.6 Key Terms 287 13.3.2 Deriving the Sequeniial Program 323
11.7 Bibliographic Notes 287 13.3.3 Parallel Program Design 324
11.8 Exercises~ 287 13.3.4 Isoefficiency Analysic - 327

13.3.3 Replicating Computations 327
134 Stcady-State Heat Disteibution 329

cHAPTER 12 1341 Deriving Equations 329

Solving Linear Systems 290 1342 Deriving the Sequeniial Program 330
21 Inmoduction 290 13.43 Parallel Program Design 332

122 Teminology 291 13.4.4 Isoefficiency Analysis 332

123 Back Substiltion 292 13.45 Buplementation Deicils 334
1230 Sequential Algorithm 292 135 Summary 334
12.32 Row-Oriented Parallel Algorithm 293 13.6 KeyTerms 333

1233 Column-Oriented Parallel 137 Bibliographic Notes 333
Algorithm 295 13.8 FExercises 333

t312.3.4 Comparison 295
i 124 Gaussian Eimination 296
V 1241 Sequential Algorithn 296 craeren 14
12.42 Parallel Algorithns 298 Sorting 338
1243 Row-Oriented Algorithm 299 141 Iwsduction 338
1244 Colama-Oriented Algorithm 303 142 Quicksort 339

X Contents

143 A Parallel Quicksort Algorithm 340
14.3.1 Defiition of Sorted 340
1432 Algorishn Development 341
1433 Analysis 34!

144 Hyperquicksort 343
14.4.1 Algorithm Description 343
14.4.2 Isoefficiency Analysis 345

14.5 Parallel Sorting by Regular Sampling 346)
1451 Algorithm Description 346
145.2 Isoefficiency Anafysis 347

146 Summary 349

147 Key Terms 349

14.8 Bihliographic Notes 350

149 Exercises 350

cHarTen 18

The Fast Fourier Transform 353

151
152
15.3

—
w
n =

15.6
15.7
15.8
15,9

Introduction 353
Fourier Analysis 353
The Discrete Fourier Transform 355

1531 Inverse Discrete Fourier
Transform 357 -

15.3.2 Sample Application: Polynomial
Multiplication 337

The Fast Fourier Transform 360

Parallel Program Design 363

15.5.1 Pariitioning and Communication 363
15.5.2 Agglomeration and Mapping 365
1553 Isoefficiency Analysis 365
Summary 367

Key Terms 367

Bibliographic Notes 367

Exercises 367

cHarTeEr 16
Combinatorial Search 369

16.1
16.2

Introduction 369
Divide and Conguer 370

164
16.5
16.6

16.7

16.8

16.9

16.10
16.11
16.12
16.13

Backtrack Search 371

16.3.1 Example 371

16.3.2 Time and Space Complexity 374
Parallel Backtrack Search 374
Distributed Termination Detection 377
Branch and Bound 380

16.61 Example 380

16.6.2 Sequential Algorithm 382

16,63 Analysis 385

Parallel Branch and Bound 385

16.7.1 Storing and Sharing Unexamined
Subproblems 386

16.7.2 Efficiency 187

16.7.3 Halting Conditions 387
Searching Game Trees 388

16.8.1 Minimax Algorithm 388
16.8.2 Alpha-Beta Pruning 392

16.8.3 Eunhancements to Alpha-Beta
Pruning 395

Parallel Alpha-Beta Search 395
16.9.1 Parallel Aspiration Search 396
10.9.2 Purallel Subtree Evaluation 3%
16.9.3 Distributed Tree Search 397
Summary 399

Key Terms 400

Bibliographic Notes 400

Exercises 401

cuartern 17
Shared-Memory Programming 404

171
172
17.3

17.4

Introduction 404

The Shared-Memory Model 405

Parallel for Loops 407

17.3.1 parallel for Pragma 408

1732 Function omp_get__
num_procs 410

17.3.3 Function omp_set__
num_threads 410

Declaring Private Variables 410
174.1 privateClause 411

1742 frstprivate Clause 412~

1743 lastprivate Clause 412

Critical Sections 413

1751 critical Pragme 415

Reductions 415

Performance Improvements 417

17.7.1 Inverting Loops 417

17.7.2 Conditionally Executing Loops 418
- 17.7.3 Scheduling Loops 419

More General Data Parallelism 421

1781

1782 Function omp_gef
thread _num 423
Function omp_gel
num_threads 425

17.5

17.6
17.7

178

parallel Pragma 422

17.8.3

17.84
1783
17.86
Functional Parallelism 428

179.1 parallel sections Pragma 429
1792 ssction Pragma 429

1793 sections Pragma 429

17.10 Sommary - 430

1711 Key Terms 432

1712 Bibliographic Notes 432

17.13

for Pragma 425
single Pragma 427
nowalt Clause 427

179

Exercises 433

cuarTer 18
Combining MPI and OpenMP 436

18.1 Introduction 436
182 Conjugate Gradient Method 438
1821 MPIProgram 438

18.2.2 Functional Profiling 442

18.2.3 Parallelizing Function

matrix_vector product 442

18.24 Benchmorking 443

Jacobi Method 444

-18.3.1 Profiling MPI Program 444

183

Contents xi

18.3.2 Parallelizing Function
find steady_state 44

18.3.3 Benchmarking 446

184 Summary 443
18,5 Exercises 448
aerenon A

MPI1 Functions 450

arenow B
Utility Functions 485

B.l HeaderFileMyMPI.h 485
B.2 Source File MyMPI.c 43

APPENDIX C
Debugging MPI Programs 505

C.1 Introduction 505
C2 Typical Bugs in MPI Progrems 505
C.2.1 Bugs Resulting in Dendlock 503
C.22 Bugs Resulting in Incorrect Resulis 506

C.2.3 Advantages of Collective

Communications 507

C3 Practical Debugging Strategies 507

aprenpix B
Review of Complex Numbers 509

ArpenDix B
OpenMP Functions 513

Bibliography 515

Author Index 520

Subject Index 522

PREFACE

xii

the MPI (Message Passing Interface) library and the OpenMP applica-
tion programming interface. It is targeted to upper-division undergradu
ate students, beginning graduate students, and computer professionals lzarning
this material on their own. It assumes the reader has a good background in C

T his book is a practical introduction to paralle] programming in C using

 programming and has had an introductory class in the analysis of algorithms.

Fortran programmers interested in parallel programming can also benefit
from this text. While the examples in the book are in C, the underlying concepts
of parallel programming with MPI and OpenMP are essentially the same for both
C and Fortran programmers.

In the past twenty years I have taught parallel programming o hundreds
of undergraduate and graduate students. In the process I have learned a great
deal about the sorts of problems people encounter when they begin “thinking in
parallel” and writing parallel programs. Students benefit from seeing programs
designed and implemented step by step. My philosophy is to introduce new func-
tionality “just in time” As much as possible, every new concept appears in the
context of solving a design, implementation, or analysis problem. When you see
the symbol :

O—

in a page margin, you’ll know I'm presenting a key concept.

Tise first two chapters explain when and why parallel computing began and
gives a high-level overview of parallel architectures, Chapter 3 presents Foster’s
patalle] alzorithm design methodology and shows how it is used through several
case studies. Chapters 4, 5, 6, 8, and 9 demonstrate how to use the design method-
ology to develop MPI programs that solve a series of progressively more difficult
programming problems. The 27 MPI functions presented in these chapters are a
robust enough subset to implement parallel programs for a wide variety of appli-
cations. These chapters also introduce functions that simplify matrix and vector
1/0. The source code for this 1/0 library appears in Appendix B.

The programs of Chapters 4, 5, 6, and § have been benchmarked onacommod-
ity cluster of microprocessors, and these results appear in the text. Because new
generations ¢f microprocessors appear much faster than books can be produced,
readers will observe that the processors are several generations old. The point of
presenting the results is not to amaze the reader with the speed of the computa-
tions. Rather, the purpose of the benchmarking is to demonstrate that knowledge
of the atency and bandwidih of the interconnection nelwork, combined with in-
formazion about the performance of a sequential program, are often sufficicat to
allow reasonably accurate predictions of the performance.of a parallel program.

Preface

Chapter 7 focuses on four metrics for analyzing and predicting the perfor-
mance of parallel sysiems: Amdahl’s Law, Gustafsop-Barsis’ Law, the Karp-Flatt
metric, and the iseefficiency metric.

Chapters 10-16 provide additional examples of how to analyze a problem
and design a good parallel algorithm to solve it. At this point the development of
MPI programs implementing the paraliel algorithms is left to the reader. 1 present
Monte Carlo methods and the chailenges associated with parallel random number
generation. Later chapters present a variety of key algorithms: matrix multipli-
cation, Gaussian elimination, the conjugate gradient method, finite difference
methods, sorting, the fast Fourier transform, backtrack search, branch-and-bound
search, and alpha-beta search.]

Chapters 17 and 18 are an introduction to the new shared-memory program-
ming standasd OpenMP. 1 present the features of OpenMP as needed 1o convert
sequential code segments into parallel ones. [use two case studies to demonstrate
the process of transforming MPI programs into hybrid MPI/OpenMP programs
that can exhibit higher performance on multiprocessor clusters than programs
hased solely on MPI.

This ook has more than enough material for a one-semester course in par-
allel programming. While parallel programming is more demanding than typical
programiming, it is also more rewarding. Even with a teacher’s instruction and
support, most students are unnerved at the prospect of hamessing multiple pro-
cessors to perform a single task. However, this fear is iransformed into a feeling
of genuine accomplishment when they see their debugged programs run much
faster than “ordinary” C programs. For this reason, programming assignments
should play a central role in the course.

Fortunately, parallel computers are more accessible thanever. If a commercial
parallel computer is not available, it is a straightforward task to build a small
cluster out of a few PCs, networking equipment, and free software.

Figure P.1 illustrates the precedence relations among the chapters. A solid
arrow from A to B indicates chapter B depends heavily npon material presented
in chapter A. A dashed arrow from A to B indicates a weak dependence. If
you cover the chapters in numerical order, you will satisty all of these prece-
dences. However, if you would like your students to start programming in C with
MPI as quickly as possible, you may wish to skip Chapter 2 or only cover one
or two sections of it. If you wish to focus on numerical algorithms, you may
wish to skip Chapter 3 and introduce students to the function MPI_Bcast in
another way. If you would like to start by having your students programming
Monte Carlo algorithms, you can jump to Chapter 10 immediately after Chapter
4. If you want to cover OpenMP before MPI, you can jump to Chapter 17 after
Chapter 3.

I thank everyone at McGraw-Hili who helped me create this book, espe-
cially Betsy Jones, Michelle Flomenhoft, and Kay Brimeyer. Thank you for your
sponsorship, encouragement, and assistance. I also appreciate the help provided
by Maggie Murphy and the rest of the compositors at Interactive Composition
Corporation.

Xiii

Xiv

Preface

Figure P.+ Dependences among the chapters. A solid arrow
indicates a strong dependence; a dashed arrow indicates a weak
dependence.)

- 1am indebted to the reviewers who carefully read the manuscript, correcting
errors, pointing oui weak spots, and suggesting additional topics. My thanks
to: A. P W. Bohm, Colorado State University; Thomas Cormen, Dartmouth
College; Narsingh Deo, University of Central Florida; Philip J. Halcher,
University of New Hampshire; Nickolas S. Jovanovic, University of Arkansas
at Little Rock; Dinesh Mehta, Colorado School of Mines; Zina Ben Miled,
Indiana University-Purdue University, Indianapolis; Paul E. Plassman,
Pennsylvania State University; Quina O. Snell, Brigham Young University;
Ashok Srinivasan, Flotida State University; Xian-He Sun, {llinois Institute of
Technology; Virgil Wallentine, Kansas State University; Bob Weems, Univer-
sity of Texas at Arlington; Kay Zemoudel, California State University-San
Bernardino; and Jun Zhang, University of Kentucky.

Many people at Oregon State University also lent me a hand. Rubin Landau
and Henri Jansen helped me understand Monte Carlo algorithms and the detailed
balance condition, respectively. Students Charles Sauerbier-and Bernd Michael
Kelm suggested questions that made their way into the text. Tim Budd showed
me how to incorporate PostScript figures into LaTeX documents. Jalal Haddad
provided technical support. Thank you for your help!

Finally, I am grateful to my wife, Vicloria, for encouraging me to get back
into textbook writing. Thanks for the inspiring Christmas present: Chicken Soup
for the Writer's Soul: Stories to Open the Heart and Rekindle the Spirit of Writers.

Michael J. Quinn
Corvallis, Oregon

CHAPTER

Motivation and History

Well done is quickly done.
Caesar Augustus

1.1 INTRODUCTION

Are you one of those people for whom “fast” isn’t fast enough? Today’s work-
stations are about a hundred times faster than those made just a decade ago, but
some computational scientists and engineers need even more speed. They make
great simplifications to the problems they are solving and still must wait hours,
days, or even weceks for their programs to finish running.

Faster computers let you tackle larger computations. Suppose you can atford
to wait overnight tor your program to produce a resull. If your program suddenly
ran 10 times faster, previously out-of-reach computations would now be within
your grasp. You could produce in 15 hours an answer that previously required
nearly a week o generate.

Of course, you coudd simply wait for CPUs to get faster. In about five years
single CPUs will be 10 times faster than they are today (a consequence of Moore’s
Law). Onthe other hand, if you can afford to wait five years, you must not be in that
much of a hurry! Parallel computing is a proven way to get higher performance
now.

What’s parallel computing?

Parallel computing is the use of a parallel computer to reduce the time needed
to solve a single computational problem. Parallel computing is now considered a
standard way for computational scientists and engineers to solve problems inareas
as diverse as galactic evolution, climate modeling, aircraft design, and molecular
dynamics.

CHAPTER 1 Motivation and History

What's a parallel computer?

A parallel computer is a multiple-processor computer system supporting
parallel programming. Two important categories of paralle] compulers are multi-
computers and centralized multiprocessors.

As its name implies, a multicomputer is a parallel computer constructed
out of multiple computess and an interconaection network. The processors on
different computers interact by passing messages to each other.

In contrast, a centralized multiprocessor (also called a symmetrical multi-
processor or SMP) is a more highly integrated system in which all CPUs share
access to a single global memory. This shared memory supports communication
and synchronization-among pracessors.”

We'll study centralized nlultlproceswrs multlcomputurs and other parallel
computer architectures in Chapter 2.

What's parallel programming?

Parallel programming is programming in a language that allows you to
explicitly indicate how, different portions of the computation may be executed
concurtently by different processors. We’ll discuss various kinds of parallel pro-
gramming languages in more detail niear the end of this chapter.

Is parallel programming really necessary?

Alot of research has been invested in the development of compiler technology
that would allow ordinary Fortran 77 or C programs to be translated into codes
that would execute with good efficiency on parallel computers with large numbers
of processors. This is a very difficult problem, and while many experimental
parallelizing' compilers have been developed, at the present time commercial
systems are still in their infancy. The altemative is for you to write your own
parallel programs.

Why should I program using MPI and OpenMP?

MPI (Message Passing Interface) is a standard specification for message-
passing libraries. Libraries meeting the standard are available on virtually every
parallel computer system. Free libraries are also available in case you want to
run MP!I on a network of workstations or a parallel computer built out of com-
modity components (PCs and switches). If you develop programs using MPIL,
you will be able to reuse them when you get access to a newer, faster parallel
computer.

Increasingly, parallel computers are being constructed out of symmetrical
multiprocessors. Within each SMP, the CPUs have a shared address space. While
MPlis a perfectly satisfactory way for processors in different SMPs to communi-
cate with each other, OpenMP is a better way for processors within a single SMP

I parallelize verd: to make parallel.

SECTION 1.2 Wodern Scientific Method

to interact. In Chapter 18 yo’ll see an example of how a hybrid MPI/OpenMP
program can cutpesform an MPL-only program on a practical application.

By working through this book, you'll learn a little bit about parallel compuier
hardware and a lot about paraflel program development stratcgies. That includes
parallel algorithm design and analysis, program implementation and debugging,
and ways to benchimark and optimize your programs.

1.2 MODERN SCIENTIFIC METHOD

Classical scicnce is based on observation, theory, and physical experimentation. "

Observation of a phenomenon leads to a hypothesis. The scicntist develops a
theory to explain the phenomenon and designs an experiment to test that theory.
Usually the results of the experiment require the scientist to refine the theory, il
not completely reject it. Here, observation may again take center stage.

Classical science is characterized by physical cxperiments and models. For
example, many physics students have explored the relationship between mass,
force, and acceleration using paper tape, pucks, and air tables. Physical exper-
iments allow scientists to test theories, such as Newton's first law of motion,
against reality. .

In contrast, contemporary science is characterized by observation, theory,
experimentation, and numerical simulation (Figure 1.1). Numerical simolation is
an increasingly important tool for scientists, who often cannot use physical ex-
periments to test theories because they may be too expensive or time-consuming,
because they may be unethical, or because they may be impossible (o perform.
The modemn scientist compares the behavior of a numerical simulation, which

Numerical Pbys‘ical
simulation experimentation

Figure 1.1 The introduction of numerical simulation
distinguishes the contemporary scientific method from
the classical scientific method.

CHAPTER 1 Motivation and History

implements the theory, to data collected from nature. The differences cause the -
scientist to revise the theory and/or make more observations.

Many important scientific problems are so complex that solving them via
numerical simulation requires extraordinarily powerful computers. These com-
plex problems, often called grand (‘hallenges for science, fail into several
categories {73]:

Quantum chemistry, statistical mechanics, and relaivistic physics

Cosmology and astrophysics

Computational fluid dynamics and turbulence
* Materials design and superconductivity

Biology, pharmacology, genome sequencmg, géneuc‘cngmeennb protein
folding, enzyme activity, and cell modeling

Medicine, and modeling of human organs and bones
7. Global weather and environmental modeling

i bW

&

While grand challenge problems emerged in the late 1980s as a stimulus for
further developments in high-performance computing, you can view the entire
history of electronic computing as the quest for higher performance.

1.3 EVOLUTION OF SUPERCOMPUTING

The United States government has played a key role in the development and use
of high-performance computers. During World War II the U.S. Army paid for the
construction of the ENIAC in order to speed the calculation of artillery tables.
In the 30 years after World War 11, the U.S. government used high-performance
computers to design nuclear weapons, break codes, and perform other national
security—related applications.

Supercomputers are the most powerful computers that can be built [60].
{As computer speeds increase, the bar for “supercompuier” status rises, too.) The
term supercomputer first came into widespread use with the introduction of the
Cray-1 supercomputer in §976. The Cray-1 was a pipelined vector processor,
not a multiple-processor computer, but it was capable of more than 100 million
floating point operations per second.

Supercomputers have typically cost $10 million or more. The high cost of
supercomputers once meant they were found almost exclusively in government
research facilities, such as l.os Alamos National Laboratory.

Over time, however, supercormputers began to appear outside of government
facilities. In the late {970s supercomputers showed up in capital-intensive indus-
tries. Petroleum companies harnessed supercomputers to help them look for oil,
and automobile manufacturers started using these systems to improve the fuel
efficiency and safety of their products. -

"Ten years later, hundreds of corporations around the globe were using saper-
computers to support their business enterprises. The reason is simple: for many

SECTION 1.4 Modern Parallel Computers

businesses, quicker computations lead to a competitive advantage. More rapid
crash simulations can reduce the time an automaker needs to design a new car.
Faster drug design can increase the number of patents held by a pharmaceutica
firm. High-speed computers have-even been used to design products as mundane
as disposable diapers!

Computing speeds have risen dramatically in the past 50 years. The ENIAC
could perform about 350 multiplications per second. Today’s supercomputers
are more than 2 billion times faster, able to perform trillions of floating point
operations per second. ‘

Single processors are about a million times faster than they were 50 years ago.
Most of the speed increase is due to higher clock rates that enable a single operation
to be performed more quickly. The remaining speed increase is due to greater
system concurrency: allowing the system to work simultaneously on multiple
operations. The history of computing has been marked by rapid progress on both
these fronts, asexemplificd by contemporary high-performance microprocessots,
Intel’s Pentium 4 CPU, for example, has clock speeds well in excess of 1 GHz, two
arithmetic-logic units (ALUs) clocked at twice the core processor clock speed, and
extensive hardware support for out-of-order speculative execution of instructions.

How can today’s supercomputers be a billion times faster than the ENIAC, if
individual processors are only about a million times faster? The answer is simple:
the remaining thousand-fold speed increase is achieved by collecting thousands
of processors into an integrated system capable of solving individnal problems
faster than a single CPU; 1.e., a parallel computer.

The meaning of the word supercomputer, then, has changed overtime. In 1976
supercomputer meant a Cray-1, asingle-CPU computer with a high-performance
pipelined vector processor connected Lo a high-performance memory system.
Today, supercomputer means a parallel computer with thousands of CPUs.

'The imvention of the microprocessor is a watershed event that led to the
demise of traditional minicomputers and mainframes and spurred the develop-
ment of low-cost parallel computers. Since the mid-1980s, microprocessor manu-
facturers have improved the performance of their top-end processors at an annual
rate of 50 percent while keeping prices-more or less constant [90]. The rapid in-
crease in microprocessor speeds has completely changed the face of computing.
Microprocessor-based servers now fill the role formerly played by minicomputers
constructed out of gate arrays or off-the-shelf-logic. Even mainframe computers
are being constructed out of micreprocessors.

1.4 MODERN PARALLEL COMPUTERS

Parallel computers only became atiractive to a wide range of customers with the 'g—'O
advent of Very Large Scale Integration (VLSI) in the late 1970s. Supercomputers
such as the Cray-1 were far too expensive for most organizations. Experimen-
tal parallel computers were less expensive than supercomputers, bul they were
still relatively costly. They were unreliable, to boot. VLSI technology allowed

CHAPTER 1 Wotivation and History

computer architects to reduce the chip count to the point where it became possi-
ble to construct affordable, reliable parallel systems. ’

1.4.1 The Cosmic Cube

In 1981 a group at Caltech led by Charles Seitz and Geoffrey Fox began work on
the Cosmic Cube, a parallel computer constructed out of 64 Iniel 8086 micropro-
cessors [34]. They chose the Intel 8086 because it was the only microprocessor
available at the time that had a floating-point coprocessor, the Intel 8087. The
complete 64-node system became operational in October 1983, and it dramati-
cally illustrated the potential for microprocessor-based parallel computing. The

Cosmic Cube executed its application programs at about 5 to 10 million float-- -

ing point operations per second (5 to 10 megaflops). This made the Cosmic
Cube 5 to 10 times the speed of a Digital Equipment Corporation VAX 11/780,
the standard research minicomputer of the day, while the value of its pasts was
less than half the price of a VAX. In other words, the research group realized a
price-performance jump of between 10 and 20 times by running their programs
on a.“*home-made™ parailel computer rather than a VAX. The Cosmic Cube was
reliable, too; it experienced only two hard failures in its first year of operation.

Intel Corporation had donated much of the hardware for the Cosmic Cube.
When it sent employee John Palmer to Caltech to see what Seitz and Fox had
done, Palmer was so impressed he left Intel to start his own parallel computer
company, nCUBE. Intel's second delegation, led by Justin Rattner, was equally
impressed. Rattner became the technical leader of a new Intel parallel computer
division called Intel Scientific Supercomputing.

1.4.2 Commercial Parallel Computers

- Commercial parallel computers manufactured by Bolt, Beranek and Newman
(BBN) and Denelcor were available before the Cosmic Cube was completed, but
the Cosmic Cube stimulated a flurry of new activity. Table 1.1 is a list of just a
few of the many organizations that jumped into the fray (116].

Companies from around the world began selling parallel computers.
Intel’s Supercomputer Systems Division and small start-up firms, such as Meiko,
nCUBE, and Parsytec, led the way, while more established computer companies
(IBM, NEC, and Sun Microsystems) waited unti the field had become more ma-
ture. It is interesting to note that even Cray Research, Inc., famous for its custom,
very high-performance, pipelined CPUs, eventually introduced a microprocessor-
based parallel computer, the T3D, in 1993,

Other companies produced parallel computers with a single CPU and thou-
sands of arithmetic-logic units (ALUs} implemented in VLSL The most (amous
of these computers was the Connection Machine, built by Thinking Machines
Corporation. This massively parallel computer, first shipped in 1986, contained
65,536 single-bit ALUs. '

By the mid-1990s most of the companies on our list had either gotten out
of the parallel computer business, gone bankrupt, or been purchased by larger
firms. Despite the industry shakeout, leading computer manufacturers such as

SECTION 1.4 Modern Paraflel Computers

Table 1.1 Some of the\ organizations that dalivered commercial paraliel computers
based on microprocessor CPUs in the 10-year period 1984-1993 and their cument status.

Sequent US. 1984 Acquired by IBM
Intel Us. 1984 Out of the business*
Meiko UK 1985 Bankimpt

aCUBE U.s. 1985 Our of the business
Parsytec Cermany 1985 Out of the business
Alliant us. 1985 Bankrupt

Encore us. 1986 Out of the business
Floating Point Systems US. 1% Acquired by Sun
Myrias Canada 1987 Out of the business
Ametek . us. 1987 Out of the business
Silicon Graphics as. 1988 Active

C-DAC India 1991 Active

Kendall Square Research us. 1992 - Banknupt

IBM ‘ US. 1993 - Active

NEC Us. 1993 Active

Sun Microsystems . Us. 1993 Active

Cray Research . US. - 1993 Active {as Cray fnc.)

*Qut of the business™ means the company is no longer selling gemeral-purpose paratlel computer
systems.

Hewlett-Packard, [BM, Dipital Equipment Corporation, Silicon Graphics, and Sun
Microsystems all had parallel computers in their product lines by the mid-1990s. .

These commercial systems ranged in price from several hundred thousand
dollars to several million dollars. Compared to a commaodity PC, the price per CPU
in a commercial parallel computer was high, because these systeris contained
custorn hardware to support either shared memory or low-latency, high-bandwidth
interprocessor cammunications.

Some commercial parallel computers had support for higher-level parallel
programming languages and debuggers, but the rapid evolution in the underly-
ing hardwate of parallel systems, even those manufactured by the same vendor,
meant their systems programmers were perpetually playing catch-up. For this
reason systems programming tools for commercial parallel computers were usu-
ally primitive, with the consequence that researchers found themselves program-
ming these systems using the “least common denominator” approach of C or
FORTRAN combined with a standard message-passing library, typically PYM or
MPI. Vendors focused their efforts on penetrating the large commercial market,
rather than serving the needs of the relatively puny scientific computing market.
Hence computational scientists seeking peak performance from commercial par-
allel systems often felt they received inadequate sufport from vendors, and so
they adopted a do-it-yourself attitude.

1.4.3 Beowulf

Meanwhile, driven by the popularity of personal computing for work and enter-
tainment, PCs became a commodity market, characterized by rapidly improving

CHMAPTER 1 Motivation and Hisicry

performance and razor-thin profit margins. The dynamic PC marketplace set the
stage for the next breakthrough in parallel computing.

In the sumimer of 1994, at NASA’s Goddard Space Flight Center, Thomas
Sterling and Don Becker built a parallel computer entirely out of commodity
hardware and freely available software. Their system, named Beowulf, contained
16 Intel DX4 processors connected by multiple 10 Mbit/sec Ethernet links. The
cluster san the Linux operating system, used GNU compilers, and supported
paralle] programming with the MPI message-passing library—all freely available
~ software. ©

The high-performance computing research community rapidly embraced
the Beowulf philosophy. At the Supercomputing '96 conference, both NASA
and the Department of Energy demonstrated Beowulf clusters costing less than
$50,000 that achieved greater than ! billion floating point operations per second
{1 gigaflop) performance on actual applications. Al the Supercomputing 97 con-
ference, Caltech demonstrated a 140-node cluster running an #-body simulation
at greater than 10 gigaflops.

Beowulf is an example of a system constructed out of commodity, off-the-
shelf (COTS) components. Unlike commercial systems, commodity clusters typ-
ically are not balanced between cotmpute speed and communication speed: the
commugication network is usually quite slow compared to the speed of the pro-
cessors. However, for many applications that are dominated by computations,
clusters can achieve much better performance per dollar than commercial paral-
lel computers. Because the latest CPUs typically appear in PCs months before
they are available in commercial parallel computess, it is possible to construct a
commodity cluster with newer, higher-performance CPUs than those available in
a commercial parallel system. Commodity.clusters have the additional, signifi-
cant advantage of a low enitry cost, which has made them a popular platform for
acadernic institutions.

1.4.4 Advanced Strategic Computing Initiative

Meanwhile, the United States government has created an ambitious plan to build
a series of five supercomputers costing up to $100 million each. This effort is
motivated by the moratorium on underground nuclear testing signed by President
Bush in 1992 and extended by President Clinton in 1993, as well as the decision
by the United States to halt production of new nuclear weapons. As a result,
the U.S. plans to maintain its stockpile of existing weapons well beyond theix
originally planned lifetimes. Sophisticated numerical simulations are required to
guarantee the safety, reliability, and performance of the nuclear stockpile. The
U.S. Department of Energy’s Advanced Strategic Computing Initiative (ASCI)
is developing a series of ever-faster supercomputers to execute these simulations.

The first of these supercomputers, ASCI Red, was delivered to Sandia Na-
tional Laboratories in 1997, With just over 9,000 Intel Pentium Il Xeon CPUs, it
was the first supercomputer to sustain more than 1 trillion operations per second
{1 teraop) on production codes. (Intel dropped out of the supercomputer busi-
ness after delivering this system.) Lawrence Livermore National Laboratory in

SECTION 1.5 Sasking Concurrency

. .Figure 1,2 The ASCI| White supercomputer at Lawrence Livermore
National Laboratory contains 192 PowerPC CPUs and is capable of
“sustaining more than 10 trillion operations per second on production
programs. It was the fastest computer in the world in the year 2000.

- {Photo courtesy Lawrence Livermore Nationa! Laboratory)

California received delivery of the second supercomputer in the series, ASCI Blue
Pacific, from IBM in 1998. It consists of 5,856 PowerPC CPUs and is capable of
sustained performance in excess of 3 teraops.

In 2000 IBM delivered the third ASCI supercomputer, ASCI White, to the
Lawrence Livermore National Laboratory (Figure 1.2). ASCI While actually is
composed of theee scparate systems. The production system is an SMP-based
" multicomputer. It has 512 nodes; each node is an SMP with 16 PowerPC CPUs.
The aggregate speed of the 8,192 CPUs has been benchmarked at more than
10 teraops on a computation of interest.

. Ithe U.S.Department of Energy maintains this pace, tripling the performance
of its ASCT supercompulers every two years, it will meet its goal of instalfing a
100 teraops computer by 2004,

1.5 SEEKING CONCURRENCY

As we have seeu, parallel computers are more available than ever, but in order
to take advantage of multiple processors, programmers and/or compilers must be
able to identify operations that may be performed in parallel (i.e., concurrently).

1.5.1 Data Dependence Graphs

A formal way to identify parallelism in an activity is to draw a data dependence
graph. A data dependence graph is a directed graph in which each vertex rep-
resents a task to be completed. An edge from vertex u to vertex v means that task
u.must be completed before task v begins. We say that “Task v is dependent on
task u.” If there is no path from « to v, then the tasks are independent and may
‘be performed concurrently.
‘ As an analogy, consider the problem of performing an estate’s weekly land-
* scape maintenance. Allan is leader of an eight-person crew working for Speedy

10

CHAPTER 1 Motivation and History

- Landscape, Inc. (Figure 1.3a). His goal is to complete the four principal tasks—

mowing the lawns, edging the lawns, weeding the gardens, and checking the
sprinklers—as quickly as passible. Mowing must be completed before the sprin-
klers are-checked. (Think of this as a dependence involving the four fawns as
shared “variables.” The lawns may take on the value “wet and cut” only after they
have taken on the value “cut.”) Similarly, edging and weeding must be cornpleted
before the sprinklers are checked. However, mowing, edging, and weeding may
be done concurrently. Someoae must also turn off the security system before the
crew enters the estate and tum the system back on when the crew leaves. Allan
represents these tasks using a dependence graph {Figure 1.3b).

Knowing the relative sizes of the respective jobs and the capabilities of his
employees, Allan decides four crew merabers should mow the lawn while two
crew members edge the lawn and two other crew members weed he ‘zardens
{Figure 1.3c).

Three different task patterns appear in Figure 1.3¢. Figure 1.4 illustrates each
of these patterns in isolation. The labels inside the circles represent the kinds
of tasks being performed. Multiple circles with the same label represent tasks
performing the same operation on different operands.

1.5.2 Data Parallelism

A data dependence graph exhibits data parallelism when there are independent
tasks applying the same operation to different elements of a data set (Figure 1.4a).

Here is an example of fine-grained data parallelism embedded in a sequentia
algorithm:

fori <« 0to99do
ali] < bli} + cli]
endfor

The same operation—addition-—is being performed on the first 100 elements
of arrays b and ¢, with the results being put in the first 100 elements of a. All 100
iterations of the loop could be executed simultaneously.

1.5.3 Functional Parallelism

A datadependence graph exhibits functional paralielism when there are indepen-
dent tasks applying different operations to different data elements (Figure 1.4b).

Here is an example of fine-grained functional parallelism embedded in a
sequential algorithm:

a«2

b3

m <« (a+b)2
s < (a2 +HH)2

ves—m?

Tuen off
security system

Edge lawn

Waork crew:

Allan
: ernice Check sprinklees
‘ Charlene
Dominic
. Ed
Francis Tormon -
g Georgia securi@
3: Hale -

(a) {b)

Turn off secwity .
system: Allan

Mow nbnﬁ
Lawn: Allan

/ Mow sauth ", /
lawn: Bemice

. BdgeNE
Tawns: Ed

Weed front -
garden: Georgla

Mow east ;
{awn: Charlene Edge S/W

lawns: Francis

Mow west
lawn; Dominic -
Weed hack
garden: Hale

R
Check sprinklers:

Allan

Turn on secutity
systen: Allan

Figure 1.3 Most realistic problems have data parallelism, functional parallelism,
and precedence constraints between lasks. (a) An eight-person work crew is
responsible for landscape maintenance at Medici Manor. {b) A data dependence
graph shows which tasks must be completed before others begin. (fthere is ne path
from vertex u to vertex v, the tasks may proceed concurrently (functional
-parallelism). (c) The Jarger tasks have been divided into subtasks, in which severa!
employees perform the same activity on different portions of the estate (data
parallelism).

CHAPTER 1 Motivation and History

plo] »l pl2! o1l

al0] alij al?] al3]

Figure 1.6 A pipeline 1o compute
partial sums. Each dircle represents a
process. The lefimost stage inputs
a[0], outputs its value as p]0}, and
passes p{0] to the next stage. All other
stages j input a[i], collect p[i — 1] from
their predecessors, add the two values,
and output the sum as pli].

this book, we’ll be looking for sources of parallelism in problems requiring f
more computations.

1.6 DATA CLUSTERING

Let’s consider a practical example of a computationally intensive problem an
try to find opportunities for parallelism.

Modemn compuier sysiems are capable of collecting and storing extraordina;
amounts of data. For example, the World Wide Web contains hundreds of millior
of pages. U.S. Census data conslitute another very large dalaset. Using a comput
system to access salient facts or detect meaningful patterns is variously calle
data mining or scienfific data analysis. Data mining is 2 compute-intensiv
“off-line” operation, in contrast to data retrieval, which is an If0-intensive, “or
line” operation.

Multidimensional data clustering is an important tool for data mining. Da
clustering is the process of organizing a dataset into groups, or clusters, ¢
“similar” ftems. Clustering makes it easier to find additional items closely
lated to an ifem of interest.

Suppose we have a collection of N text documents. We will examine eac
document to come up with an estimate of how well it covers each of D differel
topics, and we will assign each documenttoone of K different clusters, where eac
cluster contains “similar” documents. See Figure 1.7. A performance functic
indicates how well clustered the documents are. Our goal is to optimize the vall
of the performance function.

Figure 1.8 contains a high-level description of a sequential algorithm to soly
the data clustering problem. How could parallelism be used Lo speed Lhe executic
of this algorithm?:

SECTION 1.6 Data Clustering

Figure 1.7 An example of document

H clustering for which N =20, D = 2, and
K = 3. There are 20 documents
(represented by black dots). We measure
each document's coverage of two topics
(hence each document is represented by a
point in two-dimensional space). The
documents are organized into three
clusters (centered around the crosses).
Can you find a better clustering?

Data Clustering:

1. Input N documents .

2. For each of the A documents generate a D-dimensional veetor indicating how well il covers the
D different topics

3. Choose the K initial cluster centers using a randont sample

4. Repeat the following steps for iterations of until the performance function converges, whichever
comes first: .
{a) For each of the ¥ documents, find the elosest center and compute its contribution to the

performance funclion

{b) Adjustthe K chuster centers i try (o improve the value of the performance function

5. Quipui K centers

Figure 1.8 Asequenfial algorithm’to find K centers that optimally categorize
N documents.

Our first step in the analysis is to draw a data dependence graph. While we
could draw one vertex for each step in the pseudocode algarithm, it is better
to draw a vertex for each step of the algorithm for each document or cluster
center, becanse it exposes more opportunities for parallelism. The resulting data
dependence graph appears in Figure 1.9,

15

16

CHAPTER 1 Motivation and History

[nput document 0

Tnput document 1

Generate document Generate document
vector { vector |

Choose clustet
center {)

Choose cluster
cemer |

Choose cluster
center K - 1

- 4

Find closest center Find closest center
to vector (and 1o veclor 1 and
compute contribution compute contribution
ta performance to performance
function function

Adjust cluster
centers

compute contribution

Input document
N-1

Generate docement
veclor N—1

Ouipuit cluster

cenlers

Fiad closest center
tovedor N - |,

to performance
function

Figure 1.9 Dependence diagram for the document clustering algorithm. The small,
unlabeled vertex in the middle is 2 “null task” containing no operafions. its purpose is
to reduce the number of directed edges and make the diagram easier to read.

A good data dependence graph makes data and functional parallelism easy

to find. That’s certainly true in this case.

First, let’s list the opportunities for data parallelism:

Each doc%mem may be input in parallel.

Each document vector may be generated in parallel.
The original cluster centers may be generated in parallel.
The closest cluster center to each document vector and that vector’s

contribution to the overall performance function may be computed in

parallel.

SECTION 1.7 Programming Parallel Computers

Next, let’s look for functional parallelism. The only independent sets of ver-
tices are those representing the document input and vector generation tasks and
those representing the center generation tasks, These two sets of Lasks could be
performed concurrently.

After we have identified parallelism in a problem, our next step is to develop
an algorithm implemented in a programming language. Let’s take a look at the
yariety of ways in which parallel computers have been programmed.

1.7 PROGRAMMING PARALLEL COMPUTERS

In 1988 McGraw and Aselrod identified four distinct paths for the development
of applications software for parallel computers {85]:

1. Extend an existing compiler to translate sequential programs into parallel
programs.
2. Extend an existing langnage with new operations that allow users to cxpress
 parallelism. '

‘3. Add anew parallel language layer on top of an existing sequential language.
4. Define a totally new parallel language and compiler system.

Let's examine the advantages and disadvantages of each of these alternatives.

{.7.1 Extend a Compiler

One approach to the problem of programming paraliel computers.is to develop
parallelizing compilers that can detect and exploit the parallelism in existing
programs written in a sequential language.

Mach research has been done into the parallel execution of functional or logic
programs, which can contain a good deal of intrinsic parallelism. However, mostof
the focus has been on the imperative programming language Fortran. Proponents
of the development of parallelizing compilers for Fortran point out that existing
Fortran programs represent the investment of billions of dollars and millenia of
programmer effort. While not all of these programs would benefit from execution
on a parallel computer, some organizations (such as the national laboratories run
by the U.S. Department of Energy) would like to speed the execution of many
sophisticated Fortran codes. The time and labor that could be saved from the
automatic parallelization of these programs makes this approach highly desirable.
In addition, parallel programming is more ditficult than programming in Fortran,
leading to higher program development costs. For these reasons some believe
it makes more sense for programmers to continue to use simpler, sequential
languages, leaving the parallelization up to a compiler.

The development of parallelizing compilers has been an active area of re-
search for more than two decades, and many experimental systems have been
developed. Corpanies such as Parallel Software Products have beguu offering

17

CHAPTER 1 Motivalion and History

compilers that translate Fortran 77 code into paralle] programs targeted for either
message-passing or shared-memory architectures.

This approach does have its detractors. For example, Hatcher and Quinn
point out that the use of a sequential imperative Janguage “pits the programmer
against the compiler in a game of hide and seek. The algorithm may have a cerlain
amount of inherent parallelism. The programmer hides the parallelism in a sea
of DO loops and other control structures, and then the compiler must seek it oul.
Because the programmer may have to specify unnceded sequentializations when
writing programs in a conventional imperative language, some parallelism may
be irretrievably lost” {49].

One response to these concerns is to allow the programmer to annotate the
sequential program with compiler directives: These directives provide information
to the compiler that may help it correctly parallelize program segments.

1.7.2 Extend a Sequential Programming Language

A much more conservative approach to developing a parallel programming en-
vironment is to extend a sequential programming language with functions that
allow the programmer to create and terminate parallel processes, synchronize
them, and enable them to communicate with each other. There must also be a way
to distinguish between public data {shared among the processes) and private data
(for which each process has a copy).

Extending a sequential programming language is the easiest, quickest, least
expensive, and (perhaps [or these reasons) the most popular approach to parallel
programyning, because it simply requires the development of a subroutine library.
The existing language and hence its compiler can be used as is. The relative ease -
with which libraries can be developed enables then to be constructed rapidly for
new paraliel computers. For example, libraries meeting the MPI standard exist
for virtually every kind of parallel computer. Hence programs written with MPI
function calls are highly portable.

Giving programmers access o low-level functions for manipulating parallel
processors provides them with maximum fiexibility with respect to program de-
velopment. Programmers can implement a wide variety of parallel designs using
the same programming environment.

However, because the compiler is not involved in the generation of parallel
code, it cannot flag errors. The lack of compiler support means that the program-
mer has no assistance in the development of parallel codes. It is surprisingly easy
to write parallel programs that are difficult to debug.

Consider these comments from parallel programming pioneers circa 1988:

“Suddenly, even very simple tasks, programmed by experiencedsprogram-
mers who were dedicated to the idea of making paralle] programming a practical
realify, seemed to lead inevitably to upsetting, unpredictable, and totally mysti-
fying bugs™ (Robert B. Babb II) [6].

“The behavior of even quite short parallel programs can be astomshmgly com-
plex. The fact that a program functions correctly once, or even one hundred times,

SECTION 1.7 Programming Parallel Camputers

«

with some particular set of inputs, is no guarantee that it will not fail lomOoerow
with the same inputs” (James R. McGraw and Timothy S. Axelrod) {83].

{.7.3 Add a Parallel Programming Layer

You can think of a paralle! program as having two layers, The lower layer contains
the core of the computation, in which a process manipulates its portion of the
data to produce its portion of the result. An existing sequential programming
language would be suitable for expressing this portion of the activity. The upper
layer controls the creation and synehronization of processes and the partitioning
of the data among the processes. These actions could be programmed using a
paallel language (perhaps a visual programming language). A compiler would
be responsible for translating this two-layer parallel program into code suitable
for execution on a parallel computer.

Two examples of this approach are the Computationally Orented Display
Environment (CODE) and the Heterogeneous Network Computing Environment
{Hence). These systems allow, the user to depict a parallel program as a directed
graph, whege nodes represent sequential procedures and arcs represent data de-
pendences among procedures [12}, '

This approach requires the progranumer {o learn and use a new parailel
programming system, which may be the reason ii has not captured much at-
tention in the parallel programmer community. While research prototypes are
being distributed, the author knows of no commercial systems based on this
philosophy.

1.7.4 Create a Parallel Language

The fourth approach is to give the programmer the ability to express parallel
operations explicitly.

One way 1o support explicit parallel programming is to develop a parallel
language from scratch. The programming language occam is a famous example
of this approach. With a syutax strikingly difterent from traditional imperative
languages, it supports parallel as well as sequential execution of processes and
automalic process communication and synchronization.

Another way to support explicit parallelism is to add parallel constructs (o an
existing fanguage. Fortran 90, High Performance Fortran, and C* are examples
of this approach. ‘

Fortran 90 is an ANSI and ISO standard programming language, the suc-
cessor to Fortran 66 and Fortran 77. {Qutside of the United States, Fortran 90
replaced Fortran 77. Within the U.S., Fortran 90 is viewed as an additional stan-
dard.) It contains many features not incorporated in Fortran 77, including array
opetations. Fortran 90 allows entire, multidimensional arrays to be manipulated
in expressions. For example, suppose A, B, and C are arrays of real variables hav-
ing 10 rows and 20 columns, and we want to add A and B, assigning the sum (0
C. In Forran 77 we would need to write a doubly nested DO loop o accomplish

19

26 CHAPTER {1 Moiivation and History

1.14

115

Suppose we are going to speed the exccution of the data clustering
algorithm by wsing p processors to generate the D-dimensional vectors
for each of the N documents. One approach would be to preallocate
about N/ p documents to each processor. Another approach would be to
put the documents on a list and let processors remove documents as fast
as they could process them. Discuss one advantage of each approach.
Consider the vector-generation step of the data clustering algorithm
described in this chapter. Assume the time requised to perform this step is
directly proportional to document size. Suggest an approach for
allocating documents to processors that may avoid the problems
associated with either preallocating ¥'/p documents to each processor or
having processors retrieve unprocessed documents from a central list.

CHAPTEHR

- Parallel Architectures

What king marching to war against another king would not first sit down and

consider whether with ten thousand men ke could stand up to the other who

advanced against him with twenty thousand? -
Luke 14:31

2.1 INTRODUCTION

In the roughly three decades between the early 1960s and the mid-1990s,
scientists and engineers explored a wide variety of parallel computer architectures.
Development reached a zenith in the 1980s. Some companies teck advantage of
newly available VLSI fabrication facilities to develop custom processors for par-
alle! computers, while others relied upon the same general-purpose CPUs used
in workstations and personal computers. Experts passionately debated whether
the dominant parallel computer systems would contain at rost a few dozen high-
performance processors or thousands of less-powerful processors.

Today, many of the hotly debated questions have been resolved. Systems con-
laining thousands of primitive processors are a rarity. The performance of custom-
designed processors could not keep up with the rapid gains made by commadity
processors. As a result, most contemporary parallel computers are constructed
out of commodity CPUs.

This chapter is a brief overview of parallel computer architectures. We be-
gin by examining a variety of interconnection networks that can be used to link
processors in a parallel system. We present processor arrays, multiprocessors,”
and multicomputers, the three most popular parallel computer architectures in
the past two decades. We discuss ways to organize a commodity cluster (a
particular kind of multicomputer), and we explain what makes a commodity
cluster different from a network of workstations. We introduce Flynn’s famous

27

28

CHAPTER 2 Perallad Architectures

taxonomy of serial and parallel computers and take a brief look at systolic arrays,
a heavily pipelined architecture that has not been widely adopted.

2.2 INTERCONNECTION NETWORKS

All compnters with multiple processors must provide a way for processors to
interact. In some systems processors use the interconnection network to access a
shared memory. In other systems processors use the interconnection network (o
send messages to each other. This section outlines the two principal types of in-
lerconnection media and presents several popular topologies for switch networks.

2.2.1 Shared versus Switched Media |

Processors in a paralle] computer may communicate over shared or switched
interconnection media. A shared medium allows only one message at a time
to be sent (Figure 2.1a). Processors broadcast their messages over the medium.
Each processor “listens” to every message and receives the ones for which it is

- the destination. Ethernet is a well-known exarnple of a shared medium.

Typically, arbitration for access to a shared medium is decentralized among
the processors. Before sending a message, a processor “listens” until the medium
is unused, then attempls to send its message. If two processcrs attempt o send
messages simultaneously, the messages are garbled and mwst be resent. The pro-
cessors wait a random amount of time and then attempt once again to send their
messages. Message collisions can significantly degrade the performance of a
heavily utilized shared medinm.

In contrast, switched interconnection media support point-to-point mes-
sages among pairs of processors (Figure 2.1b). Each processot has its own com-
munication path to the switch. Switches have two important advantages over

Shared mediom Switched medium
Processors Processors
(a) b}

Figure 2.4 Contrasting shared versus swiiched media. (a) A shared
medium allows only one message at a time (o be sent. Each processor
“listens” to every message and receives the ones for which it is the
destination. (b} A switched medium supports the simuitzneous
transmission of multiple messages amang different pairs of processors.

SECTION 2.2 Interconnection Networks

shared media. They support the concurrent transmission of multiple messages
among different pairs of processors, and they support the scaling of the intercon-
nection network to accommodate greater numbers of processors.

2.2.2 Switch Network Topologies

- A switch network can be represented by a graph in which nodes represent pro-
cessors and switches and edges represent communication paths. Each processor
is connected (o one switch. Switches connect processors and/or other switches.

in a direct topology the ratio of switch nodes to processor nodes is 1:1. Every
switch node is connected to one processor node and one or more other switch
‘nodes. In an indirect topology the rattecof switch nodes to processor nodes is
greater than [:1. S_ome of the switches simply connect other switches.
We can evaluate switch network topologies according to criteria that help us
understand their effectiveness in implementing efficient parallel algorithms on
~ real hardware. These crileria are:

8 Diameter: The diameter of a network is the largest distance between two
switch nodes. Low diameter is better, because the diameter puts a lower
bound on the complexity of parallel algorithms requiring communication
~ between arbitrary pairs of nodes.
8 Bisection width: The bisection width of a switch network is the minimum
" number of edges between switch nodes that must be removed in order to
- divide the network into two halves (within one). High bisection width is
~ better, because in algorithms requiring large amounts of data movement, the
" size of the data set divided by the bisection width puts a lower bound on the
_ complexity of the parallel algorithm. Proving the biscction width of a
 network is often more difficult than a cursory visual inspection might lead
you to believe.
Edges per switch node: It is best if the number of edges per switch node is
a constant independent of the network size, because then the processor
“ organization scales more easily to systemns with large aumbers of nodes.
* Constant edge length: For scalability reasons it is best if the nodes and
‘edges of the network can be laid out in three-dimensional space so that the
maximum edge length is a constant independent of the network size.

- Many switch network topologies have been analyzed. We focus on six of
: 2-D mesh, binary tree, hypertree, butterfly, hypercube, and shutfle-exchange.
2-D mesh, hypertree, butterfly, and hypercube have appeared in comrmercial
lel computers; the binary tree and shuffle-exchange networks are presented
teresting points in the design space.

)3‘ 2-D Mesh Network

¢ two-dimensional mesh network (shown in Figure 2.2} is a direct topology in
Ch the switches are arranged into a two-dimensional lattice. Communication

29

30 CHAPTER 2 Parallel Archilsctures

U

5
T
o

O

AMRERITRERRIE
REERTIRE D&G

(a) ©

éér:f’:is#

Figure 2.2 Variants of the 2-D meesh network. Circles represent swilches,
while squares represent processors. (a) Without wraparound conneclions,
(b) With wraparound connections.

1s allowed only between neighboring switches; hence interior switches commun
cate with four other switches. Some variants of the mesh model allow wraparour
connections between switches on the edge of the mesh.
Let’s evaluate the 2-D mesh network according to our four criteria. We assum
- that the mesh has # switch nodes and no wraparousd connections. The mesh h:
minimum-djameter and maximum bisection width when itis as square as possibl
in which case its diameter and bisection width are both ©(/n). It has a consta
nuber of edges per seitch, and it is possible to build an ambitrarily faree »
with constant edge length.

2.2.4 Binary Tree Metwork

In a binary tree network, communications among the n = 2¢ processor nod:
are supporied by a binary tree of 21 — | switches (Figure 2.3). Each process
node is connected to a leaf of the binary tree. Hence the binary tree network
an example of an indirect topology. The interior switch nodes have at most thre
links: two to children and one 10 a parent node.

The binary tree switch network has low diameter: 2 logn.! Howwu its b
section width is the minimuim value possible, 1. Assuming nodes occupy physic
space, it is impossible to arrange the switch nodes of a binary tree network
three-dimensional space such that as the number of nodes increases, the leng
of the longest edge is always less than a specified constant.

"In this buuk log 2 means log, n.

SECTION 2.2 Irterconnection Networks

Figure 2:3 Binary tree hetwork with eight
rocessor niodes and 15 switch nodes.

{cf

Figure 2.4 Hypertree network of degree 4 and depth 2. Circles represent switches, and
squares represent processors. {a) Front view. {b) Side view, (c) Gomplete netwark.

2.2.5 Hypertree Network

A hypertree is an indirect topology that shares the low diameter of a binary tree
but has an improved biseciion width. The easiest way o think of a hypertree
efwork of degree k and depth 4 is to consider the network from two different
s (Figure 2.4). From the front it looks like a complete k-ary tree of height d
yre 244), From the side. i same network lo.ks iike an upside-down binary
e of heighs / (Figure 2.47 1 %77 the frontand -+ s yields the complete
twork. Figure 2 4c illustrates a hypertree network of degree 4 and height 2.

CHAPTER 2 Parallel Architectures

Figure 2.7 A hypercube neiwork with 16 processor nodes and an equal
number of switch nodes. Tircles represent switches, and squares represent
processors. Processor/switch pairs share addresses.

nodes are labeled 0, -, ..., 2¢ — |; two switch nodes are adjacent if their binary
labels differ in exactly one bit position. A four-dimensional hypercube is shown
in Figure 2.7.

The diameter of a hypercube with n = 27 switch nodes is logn and its
bisection width is 1/2. The hypercube organization has fow diametet and high
bisection width at the expense of the other two factors e are considering. The
number of edges per switch node is logn (we're not counting the edge to the
processor), and the length of the longest edge in a hypercube networlk increases
as the number of nodes in the network increases.

_ Let’s explore how to route messages in a hypercube. Take another look at
 Figure 2.7, and note how edges always connect switches whose addresses differ
in exactly one bit position. For example, links connect switch 0101 with switches
1101, 0001, 0111, and 0100. Knowing this, we can easily find a shortest path
between the source and destination switches.

Suppose we want to send a message from switch 0101 to switch 0011 in
a four-dimensional hypercube. The addresses differ in two bit positions. That
means the shortest path between the two switches has length 2. Here is a shorfest
path:

0101 - 0001 — 0011 °©

Canyou think of another path from 0101 t0 0011 that alsc has length 2? Changing
the order in which we flip the bits that differ results in 2 different path:

0101 — 0111 — 0011

SECTION 2.2 Interconnection Networks

.
[
N
2

~
~1
-

(@)) ()

: Figure 2.8 Derivation of the perfect shutile permutation. {(a) A sorted deck of
- carts. {b) The cards are shuffled pedectly. {c) The result of the perfect shuffle.

- 2,2.8 Shufile-Exchange Network

The final network topology we are considering is based on the idea of a perfect
/ffle. Imagioe taking a sorted deck of cards (Figure 2.8a), dividing it cxactly in
haf, and shuffiizz the two halves perfectly (Figure 2.8b). The resulting permuta-
of the ongmdl card ordering is called a perfect shuffle (Figure 2.8¢). If we
esent the original position of each card as a binary number, its new position

hv ine 3 left cyclic rotation of i# binary number. In
1 »‘m one position, but the lefiniost bit wraps around
aiple, card 5, originally <t index 5 (101), ends

the rightmen: e
at index 3 (01 1)
ge metwei L i 2 direct topology with # = 24 processor/
w1tch pairs. The pairs are numbered 0,1,...,1 — 1. The switches have two
s of comreciions, called shuitle and exchange. Exchasige connections link
tirs of switches whose numbers differ in their least significant bit. Each shuffle
nection links switch i with switch f, where | is the result of cycling the bits
[1 feft one position. For example, in an eight-node network, a shuffie connection
nks'switch 5 (101) with switch 3 {011). Figure 2.9 illustrates a shuffle-exchange
work with 16 nodes.
very swiwch iu a shuffle-exchange network has a constant number of edges:
 outgoing and two incoming {not counting the link to the processor). The
gth of the longest edge increases with the network size. The diameter of an
i‘;itch shuffie-exchange networkis 2 log n— 1. The bisection widthis ~2n /log 1.
Let's think about routing messages through a shuffle-exchange network. A
" /ngth follow., iugn exch.mge links aun iug n— | shuffle links.
ario IS roe "o switch e —1 (()r

'35

CHAPTER 2 PFarailel Archilectures

Figure 2.9 A shuffle-exchahge network with 16 processor nodes and an
equal number of switch nodes. Circles represent switches, and squares
represent processers. Processor/switch pairs share addresses. The heavy
black lines are the bidirectional exchange links, while the arrows represent
unidirectional shuffle links.

2logn — 1 = 7 steps (where £ and § refer to following exchange and shuffle
links, respectively): :
E s E § £ 5 i

0000 ~ 0601 ~ 0010~ 0011 = 0110~ 0111 ~ [0~ 1111

It’s not hard to devise an algorithm that always gencrates paths following logn — |
shuffle links, but skips exchange links in those cases where the low-order bit does
not need to he flipped. For example, routing a message from 0011 to 0101 could
be done by following three shuffle links and two exchange links:

£ s £ s s

G011~ 0010 ~ 0100 ~ 0101 ~ 1010~ 0l01-

A more sophisticated algorithm would find even shorter paths by looking for
patterns between the source and déstination addresses, reducing the number of
shuffle steps. For example, it would be able to recognize that the final two shuffles
in the previous routing are unnecessary.

2.2.9 Summary

Table 2.1 summarizes the characteristics of the six interconnection networks
described in this section. No network can be optimal in every regard. The 2-D
mesh is the only network that maintains a constant edge length as the number
of nodes increases, but it is also the only network that does not have logarithmic
diameter. The butterfly and hypercube networks have high bisection width, but
the butterfly network has &z logn) switch nodes, and the hypercube network is
the only network in which the number of edges per node is not a constant. The
shuffle-exchange network represents = <*:sign midpoint, with a fixed number of
edges per node, low diameter, and good bisection width, The 4-ary hypertree is

SECTION 2.3 Processor Armays 31

Table 2.1 Attrbutes of six switching netwaork topologies. The column labeled “Edges/nodes” ifers tathe
maximum number of switches fo which 2 switching node is connected.

: oot edes ol odes - Diameter. - . avid
2-D mesh n=d n A/m-D 7 1 Yes
Binary tree n=2¢ 2n -1 2ogn 1 3 No
4-ary hyperiree =4 LR logn n/2 6 No
Butterfly =M nlogn + 1) logn nf2 4 No
Hypercube n=2 n logn n/2 logn No
Shuffle-exchange =2 n 2ogn — | =n/logn 2 No

supertor Lo the binary tree in nearly every respect, with fewer switch nodes, lower °
diameter, and high bisection width.

2.3 PROCESSOR ARRAYS

A vector computer is a computer whose instruction set includes operations on
vectors as well as scalars. Generally there are two ways of implementing a Vec-
tor compuler. A pipelined vector processor streams vectors from memory (o
the CPU, where pipelined arithmetic units manipulate them. The Cray-1 and
Cyber-205, early supercomputers, are well-known examples of pipelined vector
processors. We do not consider these architectures further.

A processor array is a vector computer implemented as a sequential com-
puter connected to a set of identical, synchronized processing elements capable of
simultaneously performing the same operation on different data. Many pioneering
parallel computer development efforts resulted in the construction of processor
arrays. One motivation for this design was the relatively high price of a control
unit [52]. Another key motivation for the construction of processor arrays was
the observation that a large fraction of scientific computations are data parallel
[50]. That, of course, is exactly how a processor amray achieves its parallelism.

2.3.1 Architecture and Data-parallel Operations

Let's look at the architecture of a generic processor array. It is a collection of
simple processing elements controlled by a front-end computer (Figure 2.10).

The front-end computer 1s a standard uniprocessor. Its primary memory con-
tains the instructions being executed as well as data that are manipulated se-
quentially by the front end. The processor array is divided into many individual
processor-memory pirs. Data that are manipuiated in parallel are distnbuted
among these mernories. In order to perform a parallel operation, the front-end
computer transmits the appropriate instruction to the processors in the processor
array, which simultaneously execute the instruction on operands stored in theii
local memories. A control path (indicated by a dashed line in Figure 2.10) allows
the front-end computer to broadcast instructions to the back-end processors.

38

CHAPTER 2 Parallel Architectures

Frontesdcompites

1o
- § PrOLCESSOTs |-

10 devices

CPU k‘ Memory

S o e o o i,]

Processor array.

Interconnection netwark

Pacallet /O devices

Figure 2.10 Architecture of a generic processor array. The processor array
contains mary primitive processors {shown by boxes labeled with a P). Each
processar has its own memory {shown by boxes labeled with an M.

For example, suppose the processor array contains 1024 processors, labeled
Pos Pls- -« Prozs. lmagine two 1024-element vectors A and B are distributed
among the processors such that ¢; and b; are in the memory of processor p;,
for all i in the range 0 <i < 1023. The processor array can perform the vector
addition A + B in a single instruction, because each processor p; fetches its own
pair of valugs a; and &; and performs the addition in parallel with all the other
ProCessors.

Note that the time spent by this processor array to add two 100-element
vectors, or any two vectors of length < (024, is the same as the time needed
to add two 1024-element vectors. The time needed to perform any particular
instruction on the processor amay is independent of the number of processors
actually active.

What if the programmer wishes to manipulate a vector with more than
1024 elements? When the size of the vector exceeds the number of processors in
the processor array, some or all of the processors need to store and manipulate -
multiple vector elemeants. For example, a 10,000-element vector can be stored on

SECTION 2.3 Processor Arrays

a 1024-processor system by giving 784 processors 10 elements and 240 proces-
sors 9 elements: 784 x 10 4 240 x 9 = 10,000. Depending upon the patticular
architecture and operating system, this mapping of vector elements to processors
may o may not have to be managed by the prograramer, For example, the operat-
ing system of Thinking Machines” Connection Machine supported the notion of
virtual processors. The programmer could write programs manipulating veclors
and matrices much larger than the size of the processor array. Microcoded in-
structions sent from the front end to the processor array managed the complexity
of mapping virtual processors to physical processors.

2.3.2 Processor Array Performance

Performance is a metric indicating the amount of work accomplished per time

unit. We can measure processor array performance in terms of operations per

second. The performance of a processor array depends on the utilization of its

- processors. The size of the data structure being manipulated directly affects per-

. formance. Processor array performance is highest when all processors are active
* and the size of the data structure is a multiple of the number of processors.

Suppose a processor array contains 1024 procegsors. Each processor is capable of adding
. af)ai]' of integers in | psecond, What is the performance of this processor array adding

two integer vectors of length 1024, assuming each vector is allocaied to the processors in
2 balanced fashion?

& Solution
“The number of integer operations performed is 1024. Each processor performs one integer
‘addition, requiring | psecond.

1024 operations
Performance = —— POy g 10° operations/sccond

1 psecond

Suippose a processor aay contains 512 processors. Fach processor is capable of adding
fof integers in | psecond. What is the performance of this processor array adding
o.dnteger vectors of fength 600, assuming each vector is allocated to the processors in
alanced fashion?

mber of integer operations performed is 600. Since 600 > 512, 88 processors must
pairs of integers. The other 424 processors add only a single pair of integess. They
fe'while the other 88 processors add their second integer pair.

600 operations

Performance = =3 x 10* operations/second

2 psecond

39

EXAMPLE2.2

40

CHAPTER 2 Parallel Architectures

2.3.3 Processor interconnection Network

Of course, the typical parallel computation is far more complicated than simply
adding two vectors. Often the new value of a vector or matsix element is a function
of other elements, as in the implementation of a finite difference method to solve
a partial differential equation:

6 4+ (a1 +@yy)/2

To bring together operands stored in the memories of different processors,
the processors can pass data through an interconnection network. The most pop-
ular interconnection network for processor amays is the two-dimensional mesh.
Besides the advantages previonsly noted, the two-dimensional mesh has the ad-
vantage of a relatively straightforward implementation in VLSI, where a single
chip may contain a latge number of processors (see Figure 2.11).

The interconnection network supports concurrent message passing. For ex-
ample, in the two-dimensional mesh shown in Figure 2.11, each processing ele-
ment can simultaneously send a value to the processing element to its “north.”

2.3.4 Enabling and Disabling Processors

The processor array exhibits synchronous execution—that is, all the individual
processors work in lockstep. However, it is possible for only a subset of the

Figure 2.11 Hiustration of how an 8 x 12 processor
array with a two-dimensional mesh interconnection
could be arranged to minimize wire lengths. A single
VLS| chip contains 16 procassing elements arranged
ina 4 x 4 mesh. A2 x 3 arrangement of chips
produces the desired 96-processor array. This figure
shows the interconnection network; it does not -
fflustrate the connections between the processors and
the front-end computer.

SECTION 2.3 Processor Arrays

@ |[s]] (L]})| L) | DO || OO || [B

o {1]

siniinipn

A ElEREIEIE GG o

Figure 2.12 Execution of an if-then-else statement. (a) Vector A, with nine
elements, is distributed among the memories of nine processars, one
element per processor. If the value is nonzero, then it will be changed to 1,
else it will be changed to —1. {b) Shading indicates the processors that are
masked out {inactive) because their element of Ais 0. The femaining
processors set their values of Ato 1. (¢) The active and inactive processors
switch roles. The active processors set their values of Ato —1.

processors to perform an instruction. Each processor has a masking bit that allows
it to “opt out” of performing an instruction. Masking is useful if the number of
data items being manipulated is not an exact multiple of the size of the processor
array.
Masking also enables the processor array to support conditionally executed
parallel operations. For example, snppose integer vector A is distributed across the
~ processor array, one element per processor, and we want to convert EVEry nonzero
- value inside A to 1 and every 0 to —1 (Figure 2.12). First, every processor tests
to see if its element of A has the value 0. If so, the processor sets its mask bit,
indicating it is not executing the next instruction. The unmasked processors set
- their elements of A to 1. At this point the mask bits are flipped, so that previously
active processors become inactive, and vice versa. Now the unmasked processors
- set their elements of A to —1. Finally, all the mask bits are erased.
While the processor array is highly efficient when executing code in which
~every processor performs every operation, its effictency can drop rapidly when
the program enters conditionally executed code. First, there is the additional over-
. head of performing the tests to set the mask bits. Second, there is the inefficiency
“caused by having to work through different branches of control structures sequen-
= tially. Forexample, consider the case of a parallel if-then-else staternent, where
the conditional expression contains a parallel variable. First the then clause is
., executed by the processors for which the condition evaluated to true; the other
-~ processors are inactive. Next the active/inactive processors switch roles for the
‘execution of the else clause. Overall, when the cost of evaluating the conditional
Xpression is taken into account, the performance of the system performing an
-then-¢lse statement is less than half the performance of the system performing
arallel operations across the entire processor array.

4

42 CHAPTER 2 Parallal Architeclures

2.3.5 Additional Architectural Features

A data path allows the front-end computer (o access individual memory locations
in the processor array. This capability is important, because it allows particular
elements of parallel variables to be used or defined in sequential code. In this
way, the processor array can be viewed as an extension of the memory space of
the front-end computer.

A global result mechanism enables values from the processor array to be
combined and returned to the front end. The ability to compute a global and
is valnable. For example, some iterative programs may contintie until all of the
values in a matrix have converged. Suppose each element of the processor array
contributes a | to the global result if its corresponding matrix element has. con- .
verged, and a 0if it has not converged. A global and of the values returned by
the processors will return 1 if and only if all of the matrix elements kave con-
verged, making it easy to determine if the program should continue for another
iteration. :

2.3.6 Shortcomings of Processor Arrays

O=r Processorarrays have several si gnificant shoricomings that make them unatirac-
tive as general-purpose parallel computers.

First, many problems do not map well into a strict data-parallel solution.
These problems cannot run efficiently on a processor array architecture.
Second, since the processor array can only execute a single instruction at a

- - time, the efficiency of the compuier drops when the program enters
conditionally executed parallel code. Nested if-then-else statements or case
statements arc particularly bad.

Third, processor arrays arc most naturally single-user systems. They do not
easily accommodate multiple users who are simultaneously trying to
execute multiple parallel programs. Dividing back-end processors into
disjoint pools or dividing each processor’s memory into multiple partitions
requires sophisticated hardware and/or software enhancements to the
computer.

Fourth, processor arrays do not scale down well, In order for a processor
array with a large number of processors (o exhibit high performance, the
system needs kigh-bandwidth communication networks between the front
end and the processor array, among the processing elements, and between
the processing elements and parallel /O devices. The cost of these

© networks may be only a small fraction of the cost of the system when the
number of processing elements is high, but they may be a large fraction of
the system cost when the number of processing elements is low. While the
full-blown system may provide high performance per dollar, “introductory”
systems with fewer processors do not exhibit good price/performance
compared with competing systems.

SECTION 2.4 Multiprocessors

Fifth, because processor arrays are built using custom VLS, companies
constructing precessor arrays cannot “ride the wave” of performance and
cost improvements manifested by commodity CPUs. Over fime, it has
proves to be increasingly difficult (or impossible) for companies producing
custom processors $o stay compelitive with semiconductor manufacturers
such as latel, which can spend hundreds of millions of dollars on a new
chip design and amortize this expense over the sale of millions of units.
Finally, one of the original motivations for constiucting_processor
arrays—the relatively high cost of control units—is no longer valid. The
amount of chip area dedicated to control circuitry is relatively small in
today’s CPUs.

For all these reasons, processor arrays are no longer considered a viable

option for general-purpose parallel computers.

2.4 MULTIPROCESSORS

A multiprocessor is a multiple-CPU computer with a shared memory. The same
~ address on two different CPUs refers to the same memory location. Multiproces-
" sors avoid three of the problems associated with processor arrays. They can be
built out of commodity CPUs, they naturally support multiple users, and they do
- not lose efficiency when encountering conditionally executed paralle] code.
-+ Wediscuss two fundamental types of multiprocessors: centralized multipro-
 cessors, in which all the primary memory is in one place; and distributed multi-
«processors, in which the primary memory s distributed among the processors.

| 2.41 Centralized Multiprocessors

- Atypical uniprocessor uses a bus to connect a CPU with primary memory and [/O
- processors. A cache memory helps keep the CPU busy by reducing the frequency
“at which the CPU must wait while instructions or data are fetched from primary
 emory.
A centralized multiprocessor is a straightforward extension of the unipro-
cessor. Additional CPUs are attached to the bus, and all the processors share the
e primary memory (Figure 2.13). This architecture is also called a uniform
mory access (UMA) multiprocessor or asymmetric multiprocessor (SMP),
use all the memory is in one place and has the same access time {rom ev-
processor. Centralized multiprocessors are practical because the presence of
e, efficient instruction and data caches reduces the load a single processor puts
the memory bus and memory, allowing these resources to be shared among
tiple processors. Still, memory bus bandwidth typically limits to a few dozen
& number of processors that can be profitably employed.
Private data are data items used only by a single processor, while shared
 are data values used by multiple processors. In a centralized multiprocessor,

44

CHAPTER 2 Parallel Architectures

| CRy 1 CPU

Cache Cache
memery| | memory

1 - Bus

Primary

memery devices
Figure 213 Architecture of a generic
centralized multiprocessor.

processors communicate with each other through shared data values. For exam-
ple, processors may be cooperating to perform all the tasks on a linked list. A
shared pointer may contain the address of the next list item to be processed. Each
processor accesses the shared pointer to determine its next task and advances the
pointer before it is accessed by another processor. Designers of centralized mulli-
processors must address two problems associated with shared data: the cache
coherence problem and synchronization.

Cache Coherence Problem Replicating data across multiple caches reduces
contention among processors for shared data values. However, because each
processor’s view of memory i5 through its cache, designers of systems with mul-
tiple processors must find a way (o ensure that different processors do not have
difterent values for the same memory location.

An example of how different processors can end up with different values
appears in Figure 2.14. Two different CPUs, A and B, read the same memory
location, and then CPU B writes a new value to that location. At this point CPU
A has an obsolete image of that location’s value still stored in its cache. This is
called the cache coherence problem.

“Snooping” protecols are typically used to maintain cache coherence on
centralized multiprocessors. Each CPU’s cache controller monitors (snoops) the
bus to identify which cache blocks are being requested by other CPUs. The most
common solution to the cache coherence problem is to ensure that a processor
has exclusive cache access to a data item before writing its value. Before the write
occurs, all copies of the data item cached bother processors are invalidated. Al
this point the processor performs the write, updating the value in its cache block
and in the appropriate memory location. When any other CPU tries to read a
memory location from that cache block, it will experience a cache miss, forcing
it to retrieve the updated value from memory. This is called the write invalidate
protocol,

SECTION 2.4 Multiprocessors

@ b tc))

Figure 2,14 Example of the cache coherence problem. (a) Memory location X contains
value 7. (b) CPU A reads X. A copy of X js stored in CPU A's cache. (b) CPU B reads X.
A copy of Xis stored in CPU B's cache. () CPU B stores 2 into X, Memory location X
takes on the new vaiue. The value is afso updaied in the cache of CPU B. However,

CPU A still has the old value of X in its cache.

- If two processors simuitaneously try to write Lo the same memory location,
only one of them wins the “race.” The cache block of the “losing” processor is
invalidated. The “losing” processor must get a new copy of the data (with the
updated value) before it can do its write.

Processor Synchronization Various kinds of synchronization may be needed
by processes cooperating to perform a computation. Mutual exclusion is “a
sifuation in which at most one process can be engaged in a specified activity at
any time” [116]. Barlier we gave the example of multiple processes cooperating
to complete tasks stored on a linked list. Retrieving the next task from the list and
updating the list pointer is an example of a situation demaading mutual exclusion.

Barrier synchronization is another kind of synchronization often found in
shared-memory programs. A harrier synchronization guarantees thal no process
will proceed beyond a designated point in the program, called the barrier, until
every process has reached the barrier. You might find a barrier synchronization
between the two phases of a program’s execution.

In most systems, software performing synchronization functions relies upon
-~ hardware-supported synchronization instructions. On systems with a small num-
ber of processors, the most common hardware synchronization mechanism is
either an uninterruptible instruction or a sequence of instructions that atomically
retrieve and change a value [90).

2.4.2 Distributed Multiprocessors

~ The existence of a shared memory bus limits to a few dozen the nunmber of CPUs
~ ‘in a centralized multiprocessor. The alternative is to distribute primary memory 'g—o

46

CHAPTER 2 Paraile! Architectures

CPU

Cache
nemory

Cache

memory

I o .) (0] 0]
devices {Mcmory }J(devices] (Memory}—‘{ dsviccs]

Interconnection network

Figure 2.15 Archifecture of a generic distributed-memory,
multiple-CPU computer. If the computer has a single giobal address
space, the computer is called a distributed multiprocessor. if the
computer has disjoint local address spaces, it is called a multicomputgr.

among the processors, creating asystem in which local memory accesses are much
faster than nonlocal memory accesses. Because executing programs exhibit spatial
and temporal locality, it is possible to distribute instructions and data among
memory units 50 that most of the svstem’s memory references are between a
processor and its local memory. Henee distributed memory systems can have
higher aggregate memory bandwidth and fower memory access time, compared
with centralized memory parallel computers. The net effect is to allow a higher
PIOCESSOL CO i,

Distributing /0, too, can also imovove scalability. The architecture of a
generic disuibuied-memory, multiple-Ci- computer appears in Figure 2.15.

If the distributed collection of memories forms one logical address space, the
parallel computer system is called a distributed multiprocessor. In a distributed
multiprocessor, the same address on different processors refers to the same mem-
ory location. This type of system is also called a nonuniform memory access
(NUMA) multiprocessor, because memory access time varies considerably, de-
pending upon whether the address being referenced is in that processor’s local
memory or another processor’s local memory.

Support for Cache Coberence Scre distributed multiprocessors, such as the
(Cray T3D, do not have cache coherence hardware. On such computers, only in-
structions and private data can be stored in a processor’s cache. This performance
disadvantage is exacerbated by the huge time difference between a local cache
access and a nonlocal memory access. For example, a nonlocal memory access
takes 130 cycles on the Cray T3, versus the two cycles needed for a cache
reference. For these reasons, hardwie - ipport for cache coherence is valuable.
Unfortunate!. the snooping metho< . .: ribed for ¢« !ralized multiprocessors
do not scale well as the number of processors grows, because a cache controller

SECTION 2.4 Multiprocessors

canmot simply “snoop” on a shared memory bus, Instead, a more complicated
protocol 15 needed,

Implementing a directory-based protocol is a popular way to implement
cache coherence on a distributed multiprocessor. A single directory contains shar-
ing information about every memory block that may be cached.

For each cache block, the directory entry indicates whether it is:

@ uncached-—not currently in any processor's cache

- @ shared—cached by one or more processors, and the copy in memory is

cofrect

n exclusive—cached by exactly one processor that has written the block, so
that the copy in memory isobsolete -~ - - SR

It is necessary to keep track of which processors have copies of any cache
block, so that these copies can be invalidated when one processor wiites a value to

* that block. If the number of processors is 128 or less, it is reasonable to slore

information about which processors are sharing a data block as a bit vector.

- Jo prevent accesses to the cache directory from becoming a performance
bottleneck, the directory itsetf should be distributed among the computer’s local
memories. However, the contents are not replicated: the information about a
particular memory block is in exactly one location. -

N ‘Dimctory-Based Protocol Example 1et’s look at an example that illustrates

how a directory-based protocol works. Consider the simple distributed memory

* multiprocessor shown in Figure 2.16a. The parallel compuier has three CPUs.

Associated-with each processor is a cache, a memory, and a directory. Together,

‘e memories of the individual processors form a single address space, and any

CPU can reference any of these addresses. Integer variable X is stored in the
memory controlled by processor 2. It currently has the value 7. Processor 2 has a
directory entry corresponding to the cache block containing X. This entry shows
that currently the block is uncached.

Now suppose CPU O tries 10 read the value of X. The cache block containing
X is not in CPU 0’s cache. A “read miss” message is sent from processor () to
processor 2. The status of the cache block containing X is changed to “-hared,”
the bit vector is updated to show that processor (1 has a copy of the cache block,
and the block is sent to processor 0 (Figure 2.16b).

Next CPU 2 tries to read the value of X. The cache block containing X is
not in CPU 2’s cache. As a result of the read miss, the bit vector is changed to

* show that processor 2 also has a copy of the cache block, and the block is seat to

- processor 2's cache (Figure 2.16¢).

Suppose CPU 0 now writes 6 to X. A “write miss” message is sent from

----processor () to processor 2. The directory controller invalidates the copy of the

cache block currently in CPU 2’s cache, updates the bit vector to show that CPU 2

* no longer has a copy of the block, and changes the state of the cache block to

“exclusive” Figure 2,16d shows the new state of the system. Nofe that the value
of X in primary memory is out of date.

47

48 CHAPTER 2 Paraliel Architectures

[7 Interconnewon network 1 1 Intereonnection network !
Information about
~ - cache block]] S100 }
containing X

Directories
Memoties
Caches

]

(i
)
|

lcrlln] ‘CP[{)cpbz
@)

CPUI 1 cpPU2

m E;U—zl |cruo)]CP;UIJ |cru2]

(f) ® : ! th)

Figure 2.16 lllustration of a directory-based protocol to implement cache coherence on a
distributed multiprocessor. {a) X has value 7. Block containing X is uncached. (b) State after

CPU 0 reads X. {c} State after CPU 2 reads X. {d) State after CPU 0 writes value 6 to X. () State
after CPU 1 reads X. {f) State after CPU 2 writes 5 to X. (g) State after CPU 0 writes 4 to X.

(h) State after CPU 0 flushes cache block containing X.

[t CPU { now tries to tead X, gencrating a read miss, the directory controller
for processor 2 sends a “swilch to shared” message to processor 0. Processor 0
sends a copy of the cache block back to processor 2, so that an up-to-date copy is in
pritnary memory. Then the up-to-date block is sent to processor | (Figuré 2.16e).
Suppose the next action involving the cache block is CPU 2 writing 5 to X.
Since the block is no longer i its cache, it generates 4 “write miss™ message back

SECTION 2.5 Multicampulers

1o the directory controller. The directory controller sends invalidate messages to
PIOCESSOrs 0 and 1, which remove the blocks from their caches. Now a status of
the block is changed to “exclusive” with owner 2. A copy of the block is sent fo
CPU 2's cache, and CPU 2 updates the value of X (see Figure 2.16f).

Soon after, CPU 0 tries to write the value 4 to X.. Since the appropriate block
is not in its cache, processor 0 generates a “wrnite miss” message to processor 2's
directory. Processor 2 sends a “lake away™ message to CPU 2’s cache controlier.
The cache black is copied back o memory. The state of the block remains exclu-
sive, but the bit vector is updated to show the owner is now pracessor 0. A copy
of the block is sent to CPU 0's cache, and the value of X is updated, as shewn in
Figure 2.40g. ,

Finally, suppose that processor { decides to flush the cache block containing
~ X. Since it has exclnsive access to the block, it must copy the contents of the
block back to processor 2’s memory. The final state is illustrated in Figure 2 i6h.

2.5 MULTICOMPUTERS

A multicomputer is another example of a distributed-memory, multiple-CPU
computer, as illustrated in Figure 2.15. However, unlike a NUMA multiprocessor,
- which has asingle global address space, a muiticomputer has disjoint local addeess
“spaces. Each processor only has direct access to its own local memory, The same
address on difierent processors refers to two different physical memory locations.
Without a shared address space, processors interact with each other by passing
messages, and there are no cache coherence problems to solve,

Comyp 20 nulticomputers typically provide a custom swilching petwork ™
~ lo provide Jow-latency, high-bandwidth access between processors. Commercial
systems ususily provide a zood balance between the speed of the processrs 20d
- the speed of the communication network. In contrast, commodity clusters rely
upon mass-produced computers, switches, and other equipment used to construct
local area networks. This makes for a less expensive system, albeit one in which
the message latency is higher and communication bandwidth is lower.

2.5.1 Asymmetrical Multicomputers

Early multicomputers often had an asymmetrical design (Figure 2.17), which
~ in certain respects resembles a processor array. A front-end computer interacts

“ - with users and 1/O devices, while the processors in the back end are dedicated

© pramipme

to “number crunching.” Two examples of multicomputers with an asymmetrical
design are the Inte! iPSC and nCUBE/ten. The Intel iPSC (c. 1984) consisted of
~ a Cube Manager (front end) controfling up to |28 processing nodes. The pro-
- cessing nodes ran the NX operating system. The nCUBEften (c. 1985) consisted

6l an Intz{ 56256 Lost processor (front end) raaning AXIS, a custom mdtipro-
ing system, controtling up to 1024 nodes running the extremely
* small (4 Kbyie) VERTEX operating system.

50

CHAPTER 2 Parallel Architeciures

~Mul|i¢qlﬁ]ﬁllter -

Computer

-| Frontend | Ierconneetion | 1
: o F—— Computer |
| computer | . . petwork \ ‘

Computer |

N/

; :

. Y Computer

v

Figure 2.17 An asymmetrical multicomputer. Users log into the
front-end computer, which executes a full, multiprogrammed
operating system and provides all functions needed for program
development. The computers in the back end are reserved for
executing parallel programs. These computers may execute a
primitive operating system. In a vanant of this design, multiple
computers may constitute the front end.

In an asymmetrical multicomputer, back-end processors are used exclu-
sively for executing parallel programs. These processors may be running a prin-
itive operating system, such as VERTEX, that does not support virtual memory,
10, or even multiprogramming. With no other processgs occupying CPU cycles
or sending messages across the network, it is easier to understand, model, and tune
the performance of a parallel application. This is a significant advantage. Another
advantage,which was important in the early days of commercial multicomputers,
15 the ease with which a manufacturer can develop the primitive operating system
needed for the back-end processors..

Asymmetrical multicomputers have several significant disadvantages. First,
there is a single point of failare. If the front-end computer is “down,” the entire
parallel computer is out of action.

Second, scalability is limited by the performance capabilities of the front-
end computer. Users log into the front end and use it for program editing and
compiling. The front end launches parallel programs running on the back end.
It is also responsible for any IO operations. As the number of users increases,
the front end may become overloaded. Meanwhile, a significant portion of the
processors in the back end may be idle.

Introducing multiple front-end computers provides additional computing re-
sources where they may be needed, bul results in additional complexities. For
example, how do users know which front-end computer to log into? How will the
workload be balanced between the front-end computers? Will back-end nodes be
assigned statically or dynamically to particular front-end processors?

SECTION 2.5 Muilicomputers

- Another solution to the front-end performance bottleneck problem is w
improve the performance of a single fronl-énd computer, perhaps by replacing
a single-CPU system with a centralized multiprocessor. Of course, the existence
of an underutilized multiprocessor front end could frustrate users who would like
to use some of its computing capabilities in a parallel computation.

A third disadvantage of asymmetrical multicomputers has to do with program
debugging. Primitive operating systems in back-end processors may make pro-
gram performance easier to understand, but they also make debugging programs
much more difficult. Since they do nol support /0 operations, it is impossible for
anode program (o print a message to the user. Instead, the node program must

send a message to the froal-end computer, which then can pass the message along

10 the user by printing its contents.
~ This leads us to a fourth disadvantage of asymmetrical multicomputers. Ev-
ery parallel application requires the development of two distinct programs: the
front-end program and the back-end program. The front-end program is respon-
sible for interacting with the user and the file system, transmitting data to the
back-end processors, and forwarding results from the back-end processors to the
-outside wogld. The back-end program s responsible for implementing the compu-
tationally intensive portion of the algorithm. Developing two programs for every
application is tedions and error prone.
~ Thedifficulty of debugging parallel programs is a strong incentive to provide
full-featared 140 facilities on back-end nodes. A straightforward way to do this
is to run a multiprogrammed operating system on the back-end processors, too.
- At this point, the difference between the front end and the back end is down 1o
which nodes users can log into. If the front-cnd computers have excessive loads
and the back-end computers are tnderutilized, there is a strong incentive to open
every computer up to program developmenL

2.5.2 Symmetrical Multicomputers

In a symmetrical multicomputer, every computer exccutes the same operating
system and has identical functionality. Users may log into any computer to edit
and compile their programs. Any or all of the computers may be involved in the
execution of a particular parallel program (Figure 2.18).

Symmetrical multicomputers can solve many of the problems encountered
in asymmetrical multicomputers. For example, they alleviate the performance
bottleneck caused when a single computer serves as the site for program devel-
" opment. If one computer has a heavy load, users can log into another.

Support for debugging is better in symmetrical multicomputers. Since ev-

ery computer runs a full-fledged operating system, every processor can write a
debugging message back to the user.
‘ Symmetrical multicomputers also eliminate the “front-end/back-end” pro-
- - gramming problem. Every processor executes the same program. When only one
_ processor should perform a particular operation, it is easily selected with an if
. Statement.

54

52

CHAPTER 2 Parallel Archiiectures

-+ Interconnection
netwosk

Intcmet

Figure 2.18 A symmetrical mulficomputer. Every computer
.supports a full, multipragrammed operating system. Users may log
into any of these computers. Any or all of the computers may be
called upon to execute a paralle! program.

Symimetrical multicomputers have disadvantages, too. First, it is more diffi-
cult to maintain the illusion of a single “parallel computer” when a user can log
into any node in the system, each with ifs own name.

Second, there is no simple way to balance the program development workload
among all the processors. Even if a user checks the 1oads on the computers before
logging in, these loads change with time. Without software support. it is likely
that the system’s workload will be unbalanced.

Third, it 1s more difficult to achieve high performance from parallel pro-
grams when processcs mast compete with other processes for CPU cycles, cache
space, and memory bandwidth. Cache memory is processor-oriented, not process-
oriented. A context switch from one process i another oflen results in a large
number of cache misses, lowering performance.

2.5.3 Which Model Is Best for a Commodity Cluster?

For ease of programming and debugging, it makes sense to put a full-fledged
multiprogrammed operating system (such as Linux) on every computer and give
every computer access to the file system. Symmetrical multicomputers have this
characteristic.

The performance of aCPU on a given application depends to a large degree on
its cache hitrate. If the primary goal of the system is to maximize the performance
of individual parallel programs, it is a good idea to put only-a single user process
on each CPU. This is an argument for an asymmetrical arrangement in which
most of the nodes are off-limits 1o program development.

Parallel program performance can also be limited by the speed of the net-
work. For this reason il makes sense lo give only parallel processes access to the

SECTION 2.5 Mullicomputers

| Frontend § "5

computer {. /7" N

Camputer

{ Switched
Ethemet

In(ermes

: (.

Compuier

Figure 2.19 The ParPar cluster mixes features from the
asymmetrical and symmetrical mode's.

: imelproccss;or connection network. Users should access the front-end computer
+." by another route.

In short, the best arrangement for a commedity cluster may well be a mixed
- model that has attributes of both the asymmetrical and symmetrical designs. Fig-
.) ure 2.19 illusteates the ParPar cluster af the Hebrew University of Jerusalem [24].
 The front-end computer and 16 back-end computers are afl connected to the Inter-
e ‘nel via switched Ethernet. However, the back-end computers also have exclusive

. access to a high-specd dedicated data network.

2.5.4 Differences between Clusters and Networks
 of Workstations

“A comvnodity cluster contains components found in local area networks—
commodity computers and switches. You can execute parallel programs on both
¢lusiers and local arca networks. What sort of system ought to be caled a cluster?
A netwark of workstations is a dispersed collection of computers, typi-
“ally located on users’ desks. Often the workstations are connected via Ethernet
{10 Mbit/see) or fast Ethernet (100 Mbit'sec). The principal role of a workstation
is (0 serve the needs of the person using it; exccuting paraltel johs is simply a
1y to consume leftover CPU cycles. Individual workstations may have different
erating systems and executable programs. Users have the power to turn off their
orkstations. For this reason, there is a greater need to support checkpointing and
Testarting of jobs.
. In contrast, a commodity cluster is usually a co-located collection of mass-
produced computers and switches dedicated to running parallel jobs. There is a
o chance the computers are accessible only via the network; in other words,
-omputers typically do not have displays or keyboards, Some of the compulters
ay not allow users to log in. All of the computers run the same version of the

53

54

CHAPTER 2 Parallel Architactures

Table 2.2 Comparison of three options for switched networks in commodity”
clusters {circa 2002). Cost per node includes the price of ihe network
interface card and one node’s share of the switch price.

100 Mbit/sec - <8100

Fast Ethernet

Gigabit Ethernet 100 jrsec 1000 Mbit/sec <$1,000
Myrinet 7 usec 1920 Mbit/sec <$2.000

same operating system and have identical local disk images. The entire cluster is
administered as an entity.

Another key distinction between a commodity clusterand a network of work-
stations is the speed of the petwork. Given the speed of today's computers,
Ethernet is simply too slow to be used as the network undertying a commod-
ity cluster, In addition, it is essential that the networking medinm be switched,
not shared. (Switches, not hubs, must be used as connection devices.) Three popu-

. lar switched networking options available Lo designers of commodity clusters.are

fast Ethernet, gigabit Ethernet, and Myrinet. Table 2.2 summarizes the differences
belween them.)

2.6 FLYNN'S TAXONOMY

Flynn’s taxonomy is the best-known classification scheme {or parallel computers.
In this scheme, a computer’s category depends upon the parallelism it exhibits in
its instruction stream and its dala stream. A process can be seen as executing a
sequence of instructions (the instruction streant) that masipulates a sequence of
operands (the data stream). The focus is on the multiplicity of hardware used (o
manipulate the instruction and data streams [28, 29, 30].

A computer’s hardware may support a single instruction stream or multiple
instruction streams manipulating a single data siream or multiple data sireams.
Hence Flyon's classification results in four categories (Figure 2.20).

2.6.1 SiSD

The category S1SD refers to computers with a single instruction stream and a sin-
gle data stream. Uniprocessors fall into this category. Even though it has only a
single CPU executing a single instraction strear, a modern uniprocessor may still
exhibit some concurrency ofexecution. For example, superscalar architectures
support the dynamic identification and selection of multiple independent opera-
tiops that may be executed simultancously. Instruction prefetching and pipelined
execution of instructions are other examples of concurrency typically found in
modern SISD computers, though according to Flynn these are examples of ¢on-
currency of processing, rather than concurrency of exacution [30].

SECT{ON 2.6 Flynn's Taxonomy

Data stream
Single Multiple
SISD SIMD
L1}
i
£l & Uniprocessors i Processor arrays
§ Pipelined vettor processors
z
£
5 .
R MISD MIMD
=lE
) i Systolic arrays Multiprocessors
= Multicemputers
Figure 2.20 Flynn's taxonomy of computer architectures.

2.6.2 SiMD

The category SIMD refers to compulers with a single instruction stream but
" multiple data streams. In this category are processor arrays and pipelined vector
processors. As we have seen, a processor array is aparallel computer witha single
control unit executing one instruction stream, as well as multiple subordinate
processors capable of simultaneously performing the same operation on different

or more pipelined functional units to execute the same operation on the elements
- of a dataset.

2.6.3 MISD

The MISD category is for computers with multiple instruction streams, but only
* - asingle data stream. An MISD computer is “a pipeline of multiple independently
executing functional uoits operaing on a single stream of data, forwarding results
. from one functional unit to the next” [30).
* A systolic array is an example of ao MISD computer. The name comes from
* the word systole, which tefers to a contraction of the heart. A systolic array is a
" network of primitive processing elements that “pump” data.

Forexample, consider the primitive sorting element of Figure 2.21. The sorter
works in two phases. In the first phase (Figure 2.21a) it inputs three data values. In
- the second phase (Figure 2.21h) it outputs the minimum, median, and maximum
- values.

We can create a hardware prionty queue by connecting a linear aray of
 these sorting clements [70]. See Figure 2.22. The priority queue supports 1wo

dataelements. A pipelined veetor processor relies upon a very fast clock and one-

55

56

CHAPTER 2 Parallel Architeclures

a min (g, b, ¢)
b <> med (g, 8,0)

€] > max (a, b, €)

@ (b)

Figure 2.21 A systolic sorfing element. (a) During the first cycle
the element inputs keys a, b, and c. (b) During the second cycle the
element cutputs the minimum, median, and maximum of lhe three
-keys along designated channels.

aperations: inserting a key and extracting the key with the minimum value. Each
operation takes two cycles—that is, constant time.

To insert key ., the host processor inserts x and —o0 into he left end of the
priority queue during the first cycle. In the second cycle the queue outputs —co
at its left end. The host discards this vafue.

To extract the minimum key, the host inserts two copies of the oo key during
the first cycle and extracts the minimum key during the second cycle. For all
operations the key co is inserted into the right end of the systolic array during
the first clock cycle. Tn the second clock cycle, two copies of oo should be output
from the right end of the systolic array. If one of the keys is not 0o, the priority
queue has overflowed.

In this case all of the elements in the systolic array are identical. However,
a systolic array can contain 4 variety of elements performing different functions,
which is why it is appropriately cailed a “multiple instruction” architecture.

While a few commercial paralle] systems based on MISD principles have
been developed, they have been targeted to particular applications, sach as digital
signal processing. Flynn and Rudd suggest that the lack of a natural mapping from
familiar programming constructs to the MISD organization has stifled interest in
this architecture {30].

2.6.4 MIMD

The MIMD category is for computers with multiple instruction streams and mul-
tiple data streams. Multiprocessors and multicomputers fit into this category. Both
of these architectures are based on multipie CPUs. Different CPUs can simultane-
ously execuie different instruction streams manipulating different data streams.

Most contemporary parallel computers fall into Flynn's MIMD category.
Hence the MIMD designation is not particularly helpful when describing modern
parallel architectures. For the rest of the book we will rely upon the more specific
terminology already developed in this chapter to describe the parallel architeciures
upon which our programs are executing.

SECTION 2.6 Flynn's Taxonomy 57

4 1] e [1
1.5 1w
Host -
s 1w
mll B _4 5 1 [o
S ; X
Haost . >
7 . 9
> S
Extract minimum
4 7] 3 — -
< e
5 3
7
4——4-m‘“ PRI M. =]
T 7
Host » . - . L
= 8 1.
> > R
" Extract minimum
5 7 1
[l »
. . ;
. Host >
€ - x
s ™ 7 7 — 5]
D <
Host L b4 . w
> xX ”
> > o

'Figure 2,22 Operalion of a systolic array implementing a priority qusug in
~hardwars,

58

CHAPTER 2 Parallel Architectures

2.7 SUMMARY

Since the mid-1960s scientists and engineers have designed and built a wide
variety of parallel computers. Commercial parallel computers containing eight
or mare processors first began appearing in the early 1980s. With hindsight, we

-can appreciate why some architectures have been more successful than others as

general-purpose computing platforms.

The construction of processor arrays was stimulated by the relatively high
cost of control units and the preponderance of data-parallel operations in scien-
tific computations. The first advantage of processor arrays, a single contro! unit,
became insignificant when VLSI fabrication made possible CPUs on a chip. The
second advantage, efficient execution of data-parallel operations, is diminished
when these operations occur inside conditionally executed code.

Meanwhile, the many disadvantages of processor arrays became clear with
time. Many problems are not amenable to a strict data-parallel solution. Processor
arrays do not naturally support multiple users. They do not scale down well,
making it difficult for them to compete with other systems at the low end of the
market. The most significant disadvantage of processor arrays is that they are built
using custom YLSI and cannot leverage the performance and cost improvements
exhibited by commodity CPUs.

For these reasons processor arrays have receded into the shadows while
multiple-CPU systems are getting the limelight. The vast majority of commercial
parallel computers contain no more than a few dozen CPUs. These relatively
small-scale systems are adequate for most high-performance computing needs
because individual commodity CPUs are now quite powerful. .>

Most smali-scale parallel computers have a centralized multiprocessor archi-
tecture. Typically processors access a common local memory through a shared
bus. Architects of these systems must address the cache coherence problem and -
synchronization. Cache coherency is usually assured by implementing snoopy
caches and using the write invalidation protocol to invalidate obsolete cache
blocks whenever a write occurs. Software synchronization mechanisms rely upon
one or more hardware instructions that have the net effect of atomically reading
and updating a memory location. :

For parallel computers containing 100 or more CPUs, some form of dis-
tributed memory is needed in order to provide sufficient memory bandwidth to 5
the CPUs. Ina distributed-memory system, each CPUl has a nearby local memory
When most memory references are to cache memory or the nearest local mem
ory, the aggregate memory bandwidth can be high, scaling with the number o
processors in the computer. ‘

Distributed-memory parallel computers are divided into two categories, de-
pending upon whether they support a single global address space or have multipl
disjoint address spaces. In a distributed multiprocessor, the same address on twi
different CPUs refers to the same memory location somewhere within the parall
computer. Cache coherence is more difficult to implement in a distributed multr
processor, because there is no shared bus for cache controllers to snoop. In%ead

SECTION 2.9 Bibliographic Notes

the most common way to implement cache coherence is through a directory-based

scheme that uses bit vectors to record which CPUs have copies of which cache

blocks. '

A multicomputer is a distributed-memory parallel computer with multiple

disjoint address spaces. The same address on two different CPUs refers to dif-
~ ferent memory locations. With no shared memory, there is no cache coherence
* problem to worry about. In order for processors o share data, they must send
messages to cach other. Whether or not a copy of a data item is up-to-date or
not depends entirely upon the programmer. Commercial multicomputers typi-
‘cally have custom, high-performance interprocessor communication networks
-and message-passing software to ensure low-latency, high-bandwidth communi-
 cations between Processors.
A commodity cluster is a particular kind of multicomputer constructed out
f mass-produced computers and networking devices. Commodity clusters can
orporate the latest commercial technology and take advantage of the attrac-
ivé price/performance ratios of these products. Because commodity clusters
e have faster CPUs and slower networks than commercial parallel computers,
ey typically are not as well balanced and are suitable for a narrower range of
lications. -
- Flynn’s taxonomy is one of the best-known ways of categorizing parallel
mputers. Unfortunately, most contemporary parallel computers fall into the
e category (MIMD), marginalizing the utility of this descriptor.

KEY TERMS
it synchronization interconnection networks network topology (direct,
y n-cube (2-D mesh, binary tree, indirect)
he coherence problem butterfly, hypercube, perfect shuffle
1 protocols hypertree, performance
ctory-based, write shuffle-exchange) private data
' multicomputer ranks

(asymmetrical, shared data

symmetrical) systolic array
multiprocessor (UMA, vector computer (pipelined

NUMA, SMP) vector processor,
mutual exclusion Processor array)

network attributes (bisection
width, diameter,
edges/node, edge length)

AN

IBLIOGRAPHIC NOTES

of Patterson and Hennessy's Computer Architecture: A Quantitative
his an excellent general introduction to multiprocessor architectures
ﬂendra and Rzymianowicz survey high-speed networks used to construct

59

60

CHAPTER 2 Paralel Archifectures

commodity clusters {88]. Feitelson et al. have written an overview of ParPar,
“a general-purpose, mulfi-user, MPP-like-sysicm, using only off-the-shelf com-
ponents” [24].

If you want to assemble your own commodity cluster, Beowulf Cluster Com-
puting with Linux by Sterling et al is a practical guide to the construction, manage-
ment, and programming of commodity PC clusters running the Linux operating
system [105].

2.10 EXERCISES

21

2.2
2.3

26
2.7

2.8

Draw hypercube networks with two, four, and eight nodes. Make sure

you label the nodes. Is a hypercube network with n nodes a subgraph of a

hypercube network with 2n nodes? '

How many different ways can a d-dimensional hypercube be labeled?

The distance between nodes « and v in a graph is the length of the shortest

path from u to v. Given a 4-dimensional hypercube and a designated

source node s, how many nodes are distance { from s, where 0 < i < d?

Prove that if node « is distance i from node v in a hypercube, then there

are J! diiferent paths of length ¢ from & to v (though some hypercube

edges may appear in more than one path).

Prove that if node # is distance i from node v in a hypercube, then there

are i paths of length i from u to v that share no edges.

Prove (hat a hypercube has no cycles of odd length.

Give an algorithm that routes a message from node o node v in an

n-node hypercube in no more than log n steps.

Draw shuffle-exchange networks with two, four, and eight nodes. Make

sure you label the nodes. 1s a shuffle-exchange network with » nodes a

subgraph of a shuffle-exchange network with 2n nodes?

Given a shuffle-exchange network with 2* nodes, under what

circumstances are nodes u and v exactly 2k — 1 link traversals apart?

Give an algorithm that routes a message from node « to node v in an

n-node shuffle-exchange network in no more than 2 logn — 1 messages.

An omega network is an indirect topology based upon the perfect

shuftle interconnection pattern [66]. Figure 2.23 illustrates an omega

network for eight processors. Consider an omega network connecting

n = 2% processors.

a. How many switching elements are in the network?

b. What is the diameter of the network?

¢. What is the bisection width of the network?

d. What is the maximum number of edges per switching node?

e. Does the network have constant edge length as the number of nodes
increases?

212

2.13

2.14

2.15

2.16
217

2.18

SECTION 2.10 Exercises

Cel0 Col 1 Col 2

0
—0

bih

Figure 2.23 Anomega network
connecting eight processars, represented
by squares.

Assume n = 2¢ processars are connected by an omega network
(Figure 2.23}. Design an algorithm to route a message from processor
to processor j. (Hint: Represent the destination address j as a binary
number.}

Why are processor arrays well suited for executing data-parallel
programs?

.

Given a processor array containing eight processing elements, each

capable of performing 10 mjllion integer operations per second,

determine the performance in millions of operations per second of this

processor array adding two integer vectors, for all vector sizes [rom

1 to 50.

Estimate the efficiency of a processor array executing a case statement

with & cases. Assume all the instructions inside the case statement are

parallel instructions, and assume all instructions take the same amount of

time (o execute.

a. What is the efficiency if each case contains the same number of
instructions? -

b. What is the efficiency if case i has {; instructions and the probability
of a processing element being active inside case { is F;7

Why are large data and instruction caches desirable in multiprocessors?

Why is the number of processors in a centralized multiprocessor limited

to a few dozen?

A directory-based protocol is a popular way to implement cache

coherence on a distributed multiprocessor.

2. Why should the direciory be disiributed among the multiprocessor’s
local memories?

b. Why are the contents of the directory not replicated?

61

62 CHAPTER 2 Parallel Architectres

2.19 Continue the illustration of a directory-based.cache coherence protocol
begun in Figure 2.16. Assume the following five operations now eccur in
the order listed: CPU 2 reads X, CPU 2 write 5 1o X, CPU | reads X,
CPU 0 reads X, CPU | writes 910 X. Show the states of the directories,
caches, and memories after each of these operations.

2.20 Do some research and find, for each category in Flynn's taxonomy, at
least one commercial computer fitting that category. (It is OK to name a
computer that is no longer available, but you may not name a computer
mentioned in this book.)

2.21 Continue the example of the operation of a systolic priority queue begun

~in Figuee-2.22 by illustrating the states it-would pass through as it

processed these five requests: Insert 4, Extract Minimum, Insert 11,
Insert 9, Extract Minimum.,

222 Explain why contemporary supercomputers are invariably

mullicomputers. :

CHAPTEHR

Parallel Algorithm Design

From the highest to the humblest tasks,
all are of equal honor; all have their part to play.
Winston Churchill

3.1 INTRODUCTION

It’s time to start designing parallel algorithms! Our methodology is based on the

task/channel model described by Lan Foster [31]. This model facilitates the devel-.

opment of efficient parallel programs, particularly those running on distributed-
mentory parallel computers.

The fist two sections of this chapter describe the task/channel mode! and the
fundamental steps of designing parallel algorithms based on this model. We then
study a few simple problems. For each of these problenis we designa task /channel
parallel algorithm and derive an expression for its expected execution fime. In the
process our exccution time model becomes increasingly sophisticated.

3.2 THE TASK/CHANNEL MODEL

The task/channel model represents a parallel computation as a set of tasks that
may interact with each other by sending messages through channels (Figure 3.1).
A task is a program, its local memory, and a collection of 1/O ports. The local
memory contains the program’s instructions and its private data. A task can send
local data values to other tasks via output ports. Conversely, a task can receive
data values from other tasks via input ports,

63

CHAPTER 3 Faraliel Algorithm Design

Memor]

,,_[

(b
Figure 3.1 The task/channel programming model. {a) A task consists of a
program, local memory, and a coflection of 1/ ports, {b) A parallel computation can

be viewed as a directed graph in which verlices represent tasks and directed edges
represent commupication channels.

A channel is a message quese that connects one task’s output port w
another task’s input port. Data values appear at the input port in the same o
in which they were placed in the oulpat port at the other end of the channel.

Obviously, a task cannot receive a data value until the task at the other e
of the channel has sent it. If a task trie’s to receive a value at an input pott
no value is available, the task must wait until the value appears, and we say t
receiving task has hblocked. In contrast, a process sending a message never blocl
even it previous messages it has sent along the same channe! have not yet be
received. Put another way, in the task/channel model receiving is 2 synchrone
operation, while sending is an asynchronous operation.

In the task/channel model local accesses of private data are easily dist
guished from nonlocal data accesses that occur over channels. This is goc
because we should think of local accesses as being much faster than nonloc
data accesses. ‘

When we talk about the execution time of a parallel algorithm, we are refers
to the period of time during which any task is active. The starting time is wh
all tasks simultaneously begin executing. The finishing time is when the last as
has stopped executing.

3.3 FOSTER’S DESIGN METHODOLOGY

Tan Foster has proposed a four-step process for designing parallel algorithn
[31]. 1t cnconrages the developmeni of scalable parallel algorithms by delayin
machine-dependent considerations 1o the Jater sieps. We'll use Foster’s desig
methodology in this chapter and throughout the rest of the book Lo develdp parall
algorithms for a wide variety of applications.

SECTION 3.3 Fosler's Design Methodology

0000

m 0000
Problem \ o OO0 () ~Lommunicion
\b\) 0000

0000

M_ Agglomeration

Figure 3.2 Foster's paraflel afgorithm design methodology.

The four design steps are called partitioning, communication, agglomeration,
mapping (Figure 3.2). Tn this section we explain each of these steps and
de a checkdist that can help you determine if you're producing a good design.
- the explanations at this point are rather theoretical, we'll spend the rest of
- chiapter grounding the theory by working through several practical examples.

Partitioning

Wheti we begin the design of a paraliel algorithm, we typically iry o discover as
fich parallelism as possible. Partitioning is the process of dividing the compu-
md the data into pieces. A good partitioning splits both the computation
ata into many small pieces. To do this, we can either take a data-centric
‘of a computaiion-centric approach.

ain decomposition is the parallel algorithm design approach in which
ivide the data into pieces and then delermine how to associate compil-
h the data. Typically our focus is on the largest and/or most frequently
data structure in the program.

isider the example illustrated in Figure 3.3. Here 4 three-dimensional
+he Jargest and most frequently accessed data siructure, We could par-
ie mattix into a collection of two-dimensional slices, resulting in a one-
i-collection of primitive tasks. Alternatively, we could partition the
tora collection of one-dimensional slices, resulting in a two-dimensional
0°of primitive tasks. Finally, we could consider each matrix element in-
producing a three-dimensional collection of primitive tasks. At this

&5

CHAPTER 3 Paraliel Algorithm Design

Data structure - Primitive tasks

Figure 3.3 Three domain decompositions of a three-dimensional malrix, resulting
in markedly different collections of primitive tasks.

point in the design process it is usually best to maximize the number of primitive
tasks. Hence the three-dimensional partitioning is preferred.

Functional decomposition is the complementary strategy in which we first
divide the computation into pieces and then determine how to associate data
items with the individual computations. Often functional decompositions yield
collections of tasks that achieve concurrency through pipelining.

For example, consider a high-performance system supporting interactive
image-guided brain surgery (Figure 3.4) [37]. Before the surgery begins, the
system inputs a set of CT scans of a patient’s brain and registers these images,
constructing a three-dimensional model. During surgery, the system tracks the
position of the surgical instruments, converts them from physical coordinates to
image coordinates, and displays on a monitor the position of the instruments
amid the surrounding tissue. The system has inherent concurrency. While one
task is converting an image from physical coordinates to image coordinates, a

SECTION 3.3 -Foster's Design Methodology

Track position of
instruments

Acquire patient Register Determine image
images images locations

Display image

Figure 3.4 functional decomposition of a system
supporting interactive image-guided surgery.

second task canbe displaying the previous image, and a third task can be tracking
instrument positions for the nextimage.

Whichever decomposition we choose, we call each of these pieces a primitive
task. Our goal is to identify as many primitive tasks as possible, because the
number of primitive tasks is an upper bound on the parallelism we can exploit.

We can use the following checklist to evaluate the quality of a partitioning.
The best designs satisfy all of these attributes (Foster [31]).

& There are at least an order of magnitude more primitive tasks than
processors in the target parallel computer. (1f this condition is not satisfied,
later design options may be (oo constrained.)

Redundant computations and redundant data structure storage are
minimized. (If this condition is not satisfied, the design may not work well
when the size of the problem increases.)

8 Primitive tasks are roughly the same size. (If not, it may be hard to balance
work among the processors.)

g The number of tasks is an increasing function of the problem size. (If not, it
may be impossible to use more processors to solve larger problem
instances.)

3.3.2 Communication

After we have identified the primitive tasks, the next step is to determine the com-
munication pattern between them. Parallel algorithms have two kinds of commu-
nication patterns: local and global. When a task needs values from a small number
of other tasks in order to perform a computation, we create channels from the
tasks supplying the data to the task consuming the data. This is an example of a
local communication.

In contrast, a global communication exists when a significant number of
the primitive tasks must contribute data in order to perform a computation. An

68

CHAPTER 3 Parallel Algorithm Design

example of a global communication is computing the sum of values held by the
primitive processes. While it is important to note when global communications
are needed, it is generally not helpful to draw communication chaanels for them
at this stage of the algorithm’s design.

We call communication among tasks part of the overhead of a parallel al-
gorithm, because it is something the sequential algorithm does not need to do.
Minimizing parallel overhead is an important goal of parallel algorithm design.
Keepmg this in mind, we can use Foster’s checklist to help us evaluate the com-
‘munication structure of our parallel algorithm.

The communication operations are balanced among the tasks.

Each task communicates with only a small nufnber of neighbors.”
- Tasks can perform their communications concurrently.

Tasks can perform their computations concurrently.

3.3.3 Agglomeration

During the first two steps of the parallel algorithm design process, our focus was
on identifying as much parallelism as possible. At this point we most likely do
not have a design that would execute efficiently on a real parallel computer. For
example, if the number of tasks exceeds the number of processors by several
orders of magnitude, simply creating these tasks would be a source of significant
overhead. In the final two steps of the design process we have a target architecture -
in mind (e.g., centralized multiprocessor or multicomputer). We consider how to
combine primitive tasks into larger tasks and map them onto physical processors
to reduce the amount of parallel overhead.

Agglomeration is the process of grouping tasks into larger tasks in order to
improve performance or simplify programming. Sometimes we want the number
of consolidated tasks to be greater than the number of processors on which our
parallel algorithm will execute. Often, however, when developing MP1 programs,
we leave the agglomeration step with one task per processor. In this case, the -
mapping of tasks to processors is trivial. ;

One of the goals of agglomeration is to lower communication overhead.
If we agglomerate primitive tasks that communicate with each other, then the °
communication is completely eliminated, because the data values controlled by
the primitive tasks are now in the memory of the consolidated task (Figure 3.5a).
We call this increasing the locality of the parallel algorithm. If the tasks cannot ;
perform their computations concurrently, because later tasks are waiting for data 2
provided by earlier tasks, then it’s usually a good idea to agglomerate the tasks.

Another way to lower communication overhead is to combine groups of ‘
sending and receiving tasks, reducing the number of messages being sent (Fig-
ure 3.5b). Sending fewer, longer messages takes less time than sending more,
shorter messages with the same total length because there is a message startup
cost (called the message latency) incurred every time a message is sent, and this
time is independent of the length of the message.

SECTION 3.3 Foster's Design Methodology

O—0 = >

o0 = (-

Figure 3.5 Agglomerating tasks can
eliminate communications or at least reduce
their overhead. (a) Combining tasks that are
connected by a channel eliminates that
communication, increasing the locality of the
paralle! algorithm. (b} Combining sending
and receiving tasks reduces the number of
message transmissions.

A second goal of agglomeration is to maintain the scalability of the paraliel
. ‘design. We want to ensure that we have not combined so many tasks that we will
niot- be able to port our program at some point in the future to a computer with
- more processors. For exnmple, suppose we are developing a paralle] program
that manipulates a three-dimensional matrix of size 8 x 128 x 256. We plan to
execute our program on a centralized multiprocessor with four CPUs. If we design
the parallel algorithm sc th-r the second and third dimerisions are agglomerated,
we could certainly execute the resulting program on four CPUs. Each task would
beresponsible fora 2 x s x 256 submairix. Without cianging the design, we
could even execute on a system with eight CPUs. Each task would be responsible
for a 1 x 128 x 256 subituisix. However, we could not port the program fo a
parallel computer with more than eight CPUs without changing the design, which
would probably result in massive changes to the parallel code. Hence the decision
‘o agglomerate the second and third dimensions of the matrix could turn out to
be ashortsighted one.

A third goal of agglomeration is to reduce software engineering costs. If we
¢ parallelizing a sequential program, one agglomeration may allow us to make
eater use of the existing sequential code, reducing the time and expense of
veloping the parallel program.

‘We can use Foster’s checklist to evaluate the quality of an agglomeration:

v
The agglomeration has increased the locality of the parailel algorithm.

Replicated computations take less time than the communications they
replace.

The amount of repli. ! data is small enough to afi-« the algorithm to
scale.

()

69

70

CHAPTER 3 Parallel Aigorhm Dasign

Agglomerated tasks have similar computational and communications costs.
The nuimber of tasks is an increasing function of the problem size.
The number of tasks is as small as possible, yet at least as great as the
number of processors in the likely target computers,

m The trade-off between the chosen agglomeration and the cost of
modifications to existing sequential code is reasonable.

3.3.4 Mapping

Mapping is the process of assigning tasks to processors. If we are executing
our program on a centralized multiprocessor, the operating system automatically
maps processes to processors. Hence our discussion assumes the target system is
a distributed-memory parallel computer. -

The goals of mapping are to maximize processor utilization and minimize
interprocessor communication. Processor utilization is the average percentage
of time the system’s processors are actively executing tasks necessary for the
solution of the problem. Processor utilization is maximized when the compuiation
is balanced evenly, allowing all processors to begin and end execution at the same
time. (Conversely, processor utilization drops when one or mofe processors are
idle while the remainder of the processors are still busy.)

Interprocessor communication increases when two tasks connected by a chan-
nel afe mapped to different processors. Interprocessor communication decreases
when two tasks connected by a channel are mapped to the same processor.

For example, consider the mapping of Figure 3.6. Eight tasks are mapped
onto three processors. The left and right processors are responsible for two tasks,
while the middle processor is responsible for four tasks. If all processors have the
same speed and every task requires the same amount of time to be performed, then

(@ o)

Figure 3.6 The mapping process. (a) A lask/channel
graph. (b) Mapping of tasks to three processors. Some
chanrels now represent intraprocessor communications,
while others represent interprocessor communicalions.

SECTION 3.3 foslers Design Methodology

the middle processor will spend twice as much time executing tasks as the other
two processors. If every channel communicates the same amount of data, then the
middle processor will also be respensible for twice as many interprocessor com-
munications as the other two processors.
Increasing processor utikization and minimizing interprocessor communica-
~ tion are often conflicting goals.
For example, suppose there are p processors available. Mapping every task to
the same processor reduces interprocessor communication to zero, but reduces uti-
~ Jjzation to 1/ p. Our goal, then, is to choose 2 mapping that represents a reasonable
- middle puint between maximizing utilization and mipimizing communication.
Unfortunately, finding an optimal solution to the mapping problem is NP-
' hard {38], meaning there are no known polynomial-fime algorithms to map tasks
- to.processors to minimize the execution time. Hence we must rely on heuristics
“(hat can do a reasonably good job of mapping.
"~ When a problem is partitioned using domain decomposition, the tasks re-
aining -after the agglomeration step often have very similar size, meaning the
omputational loads are balanced among the tasks. If the communication pattern
among the tasks is regular, a good strategy is to create p agglomerated tasks that
minimize communication and map each of these tasks to its own processor.
Sometimes the number of tasks is fixed and the communication pattern among
hem is regular, but the time required to perform each task has significant vari-
bility. If nearby tasks tend to have similar computational requirements, then a
yelic {or interleaved) mapping of tasks to processars can result in a balanced
meputational load, at the expense of higher communications costs.
Some problems yield an unstructured communication pattern among the
tasks. In this case it is imiportant to map tasks to processors to minimize the com-
nunication overhead of the parallel program, A static load-balancing algorithm,
xecuted before the program begins running, can determine (he mapping strategy.
.. To this point, we have focused on designs utilizing a fixed number of tasks.
Dynamic load-balancing algorithms are needed when tasks are created and de-
{royed at run-time or the communication or computational requirements of tasks
y widely. A dynamic load-balancing algorithm is invoked occasionally during
fhe execution of the paralel program. It analyzes the current tasks and produces
 new mapping of tasks to processors.
~ Finally, some parallel designs rely upon the creation of short-lived tasks to
erform particular functions. Tasks do not communicate with each other. Instead,
h task is given a subproblem to solve and returns with the solution to that
problem. Task-scheduling algorithms can be centralized or distributed.
In a centralized task-scheduling algorithm, the pool of processors is divided

1asks to be assigned. When a worker processor has nothing to do, it requests a lask
rom the manager. The manager replies with a task. The worker complets the
k, returns the solution, and requests another task. A potestial problem with
anager/worker-style task scheduling is that the manager can become a bottle-
ck. To some extent this problem can be ameliorated by allocating multiple tasks

ato one manager and many workers. The manager processor maintains a list of

21

72

N

Roughly constant Computation Frequent Many short-fived
computation time time per task communications tasks. No intertask
per task varies by region. between tasks communications.

|

Agglomerate tasks to Cyclically map tasks to Use a static Use adynamic Use arun-time
minimize communication. processors to balance load bulancing load balancing task-scheduling
Create one task per processor. computational load. algorithm. algorithin. algorithm.

Figure 3.7 A decision tree to choose a mapping strategy. The best strategy depends on
characteristics of the tasks produced as a result of the parfitioning, communication, and
agglomeration steps.

CHAPTER 3 Paraliel Algorithm Design

at a time or allowing workers to prefetch tasks while they are working on earlier
tasks.

In a distributed task-scheduling algorithm, each processor maintains its owg
list of available tasks. A mechanism is needed to spread the available tasks among -
the processors. Some algorithms rely on a “push” strategy. Processors with tog
many available tasks send some of them to neighboring processors. Other algo-
rthms rely on a “pull” strategy. Processors with no work 1o do ask neighboring
processors for work. A challenge with distributed task-scheduling algorithms is
determining the termination condition. The uncompleted tasks are spread among -
the processors, and it is difficult for any process to know when all of them have
been completed. In contrast, the manager process in a managerfworker-style
algorithm always knows exactly how many tncompleted tasks remain. i

Other task-scheduling algorithms represent a compromise between the cen-.:
tralized and decentralized algorithms we have described. For example, a two-leve]
hierarchical manager/worker strategy has two levels of managers. The higher:
level manager supervises a group of managers. Each lower-level manager ailo
cates tasks to its own group of workers. Periodically the managers communicaf
with each other to balance the number of unassigned tasks held by each low-leve
manager. ;

Figure 3.7 summarizes how different characteristics of the parallel algorithm
lead to different mapping strategies. Because the mapping strategy depends o

Static sumber of tasks Dynamic number of tasks

N

Structured Unstructured
communication Communication
pattern pattem

' | {

SEchN 3.4 Boundary Value Problem

. isions made eatlier in the parallel algorithm design process, it is important

' an open mind during the design process. The following checklist {from

Foster [311) can help you decide if you've done a good job of considering design
ratives:

esigns based on one task per processor and multiple tasks per processor
have been considered.
oth static and dynamic allocation of tasks to processors have been

§f a dynamic allocation of tasks to processors has been chosen, the manager
locamr) is not a bottleneck to performance , .

static allocation of tasks to processors has been chosen, the ratio of
sks to processors is'at least 10:1.

3.4 BOUNDARY VALUE PROBLEM

‘ lnt;oduction

apply our parallel algorithm design methodology to a simple, yet realistic,

im. See Figure 3.8. A thin rod made of uniform material is surrounded by a
‘of insulation so that temperature changes along the length of the rod are a
{ heat transfer at the ends of the rod and heat conduction along the leagth
. The rod has length 1. Both ends of the rod are exposed Lo an ice bath
emperature (°C, while the initial temperature at distance x from the end
is 100sin{mx).

fime, the rod gradually cools. A partial differential equation models
perature al any point of the rod at any point in fime. The finite difference
one way to solvea partial differential equation on a computer. Figure 3.9
nité difference approximation to the rod-cooling problem. Each curve
its the temperature distribution of the rod at some point in time. The
3p as time increases. If you look carefully, you can see that each “curve”

composed of 10 line segments. In reality, the temperature distributions

gure 3.8 A thin rod (dark gray) is suspended between
oice baths. The ends of the rod are in contact with the
ewater. The rod is surrounded by a thick blanket of
lation. We can use a partial differential equation to
odel the temperature at any point on the rod as a functien

73

74 ‘ CHAPTER 3 Parallel Algorithm Design

100

T\
/=

Temperature

Figure 3.9 The rod cools as time progresses. The finite difference method finds
the temperature at a fixed aumber of points in the rod at certain time intervals.
Decreasing the size of the steps in space and time can lead to more accurate
“solutions. L

Time

w =0
0

W j+1

i1, 4 Ui j

15 100 sin(arx)
Space

Figure 3.10 Data structure used in a finite
difference approximation to the rod-cooling
problem presented in Figure 3.8. Every point
U; ; represents a matrix element containing the
temperature at position i on the rod at fime .
At each end of the rod the temperature is
always 0. At time 0, the temperature at point x
is 100 sin(x x).

©

should be smooth curves. The finite difference method computes an approximate
solution to the partial differential equation. ,
The finite difference methiod solving this problem stores temperatures in a
two-dimensional matrix (Figure 3.10). Each row contains the temperature dis-
tribution of the rod at some point in time. The rod is divided into n sections 0

SECTION 3.4 Houndary Value Problem

tength 1, so each row has # + 1 elements. Increasing # reduces the error in the

. approximation. Time from 010 T is divided into m discrete entities of length k,

. go the matrix contains m + 1 rows. The initial temperature distribution along the

" length of the rod is represented by the points in the bottom row. These vaiues

< areknown, The temperatures at the enads of the rod are represented by the left

" and right edges of the grid. These values, tov, are known. Let u; ; represent the

o ‘{e‘mperalurc of the rod at point i at ime j.

" In the finite difference method, the algorithm steps forward in time, using

values from time j to compute the value for time j + | using the formula-

u,-'j“ = l'll,*-]j + (1 - 2r)u,;j + ru;HJ
here r = k/ A -
1.4.2 Partitioning

first step is partitioning. In this case the data being manipulated are easy to

itify: there isone data item per grid point. To start, let’s associate one primitive
tisk with each grid point. This yields a two-dimensional domain decomposition.

.4.3 Communication

jow that we have identified our tasks, we need to determine the communication
pattern between the tasks. If task A needs a value from task B to perform its
mputation, we need to draw a channel from task B to task A. Since the task
computing u; ;4 requires the values of u; ., ;, u;;.and ;| ;, in general each task
have three incoming channels and three outgoing channels (see Figure 3.11a).
The tasks on the edges have fewer channels. T

Dt

SHONOHORONONONONERY

CHONG

()

‘ui'é 3.11 Task/channel graphs for parallel solutions to the boundary value problem. {a) The first
main decomposition associates one task with sach temperature to be computed. (b) After the first
Gglomeration step, a single task now represents the computation of the temperature at element | for all
€ steps. (c) After the second agglomeration step, a task is responsible for computing, aver all time
eps, the temperatures for a contiguous group of rod locations.

76

CHAPTER 3 Pazraile! Algorithm Design

3.4.4 Agglomeration and Mapping

Even if enough processors were available, it would be impossible to compute
every task shown in Figure 3.11a concurently, because the tasks computing rod
temperatures later in time depend upon the results produced by tasks comput-
ing rod temperatures earlier in time. This is made plain by the vertical paths of
channels stretching from the bottom tasks to the top tasks. There is no point in
maintaining the illusion of multiple tasks when they nrust be performed sequen-
tially. Let’s agglomerate all the tasks associated with each point in the rod, that
is, fasks in the same column in Figure 3.11a.

The resulting task/channel graph, shown in Figure 3.11b, is much less com-

_ plicated. Now we have a linear array of tasks, each communicating solely with

its neighbor(s). Each is responsible for computing the temperature at a particular
arid point for all time steps.

However, even this graph is likely to have far more tasks than we need to
keep all of our processors fully occupied, since in 4 real problem the number of
rod segments would be large. We can use the decision tree of Figure 3.7 to come
up with a mapping strategy. Thé number of tasks is static (left branch), the com-
munication pattern among them is regular (left branch), and each task performs
the same computations (left branch). Hence a good strategy is to create one task

~ pex processor, agglomerating primitive tasks so that computational workloads

are balanced and communication is minimized. Associating a contiguous piece
of the rod with each task (Figure 3.11c} preserves the simple nearest-neighbor
communication between tasks and eliminates unnecessary communications for
those data points within a single task.

3.4.5 Analysis

The rod has been divided into n pieces of size &. Let x represent the time needed
to compute ; ;| 1, given;_y ;, 4 ;, and w5 ;. Using asingle processor to update
the # — 1 interior values of the rod requires time (7 — 1) x. Because the algorithm
has m time steps, the total expected execution time of the sequeritial algorithm is
mn -)x.

Now let’s compute the expected execution time of the parallel algorithm. Let
p denote the number of processors executing the algorithm. If each processor
is responsible for an equal-sized portion of the rod’s elements, the computa-
tion time for each iteration is x[(z — 1)/ p}. However, the parallel algorithm
involves communication that the sequential algorithm does not, and we must
account for that time. In general, each processor must send values fo its two
neighboring processors and receive two values from them. K A represents the
time needed for a processor 1o send (receive} a value to (from) another proces-
sor, then the necessary communications increase the parallel execution time for
each iteration 2A. In our task/channel model a task may only send one mes-
sage at a time, but it may receive a message af the same time it iy sending 4
message. Therefore, the task requires time 24 to send data values to its two

SECTION 3.5 Finding the Maximum

. peighbors but receives the two data values i needs from its neighbors at the same
thme.

Combining compuiation time with communication time, we see the over-
all parallel execution time per iteration is x[(n — 1)/p] + 24, and our es-
timate of the parallel execution time for all m iterations of the algorithm is

m(x[(n — D]} +20).

3.5 FINDING THE MAXIMUM

" 3.5.1 Introduction

The finite difference method we are using to compute the temperature distribution
in the rod as a function of time only approximates the solution of the underlying
partial differential equation. The reason we use finite difference or finite element
~methods to solve partial differential equations is that the boundary value problems
- arising from real-world situations are too complicated to solve analytically.
Howeveg, the heat conduction problem we examined in the previous section
is simple enough to solve analytically. That means we can determine, {or each
of the m points along the rod, the difference between the computed solution and
- the comect solution. The error between the computed solution x and the correct
solution cis |(x —c)/c|. Let’s enhance our parallel algorithin to find the maximum -

. efTor.

Given a setof n values ay, ay, az, . . -, g,_y and an associative binary operator
3, reduction is the process of computing ay & a, a2, ® - - & g,_;. Addition is
" "an example of an associative binary operator. Hence finding the sum ap + a; +
" @y +- - +a, is an example of a reduction.

You may ot realize that minimum and maximum are associative binary op-
erators, because they do not appear as operalors in most programming languages.
However, these two associative operators are extremely useful. For example, in
the problem we are considering, we want to find the maximum value of a set.

Since reduction requires exactly n— I operations, it has © (n} time complexity
on a sequential computer. How quickly can we perform a reduction on a parallel
computer? Without loss of generality, let’s make the following explanation easier
to read by assuming the operator is addition.

- 3.5.2 Partitioning

Since the list has iz values, let’s divide it into n pieces; in other words, as finely
as possible. 1{ we associate one iask per piece, we have tasks, each with one
- value. Our goal is to find the sum of all n valies,

3.5.3 Communication

- A task cannot directly access a value stored in the memory of another task. In
order to compute the sum, we must set up channels between the tasks. A channel

78

CHAPTER 3 Farailel Algorithm Design

from task A to task B allows task B to compute the sum of the values held by
the two tasks. We want the communicating and summing to happen as quickly
as possible. In one communication step each task may either send or receive one
message.

At the end of the computation we want one task to have the grand total. We’ll
call this the root task. Let’s start with a biute force approach: each of the other
tasks sends its value to the root task, which adds up all the values (Figure 3.12a).

If it takes A time for a task to communicate a value to another task and
¥ time to perform an addition, then this first parallel algorithm requires time

(0}

Figure 3.12 Evolution of an efficient parallel algorithm for
reduction. (a) One task receives a list element from each of the
other n - 1 tasks and perlorms all the additions. (b) Two tasks

work together. Each receives list elements from n/2 — 1 other
tasks. After n/2 addition steps, one task sends its subtotal to the
first task. Compared to the original version, the computation time

is cut nearly in half. (c) Four tasks cooparate. Each receives list
elements from n/4 - 1 other tasks. After n/4 concurrent addition
steps, there are four subtotals. These can be combined in two

more communication/camputation steps.

SECTION 3.5 Finding the Maximum

{n — 1}{x + x). (The communication time is (7 — 1)A because the root task must
receive # — | messages.) This is actually slower than the sequential algorithm,
We need to halance the communication and the computalion better.

What if two tasks cooperated to perform the reduction? Let’s-have two semi-
root tasks, each respoasible for /2 of the elements (Figure 3.12b). Now two
communications can happen simultaneously, and after cach communication two
additions can happen at once. In time {1/2 — 1){A 4 x) each semiroot task has
a subtotal for its half of the elements. Now one of the semiroot tasks can pass
its subtotal to the other task. In one additional communication/computation step
a single task has the grand total. The expected execution hime of this parallel
algorithm is (n/2)(A + x).

Why not continue the process? What if we had four semiroot tasks, each
responsible for #/4 of the list elements (Figure 3.12c)? We have increased the
communication and computaiion concurrency to four. Afier the four subtotals
have been computed, two remaining communication/computation steps yield the
grand total. This algorithm is nearly four times as fast as the original algorithm.

If we take this notion to the limit; we have n /2 semirool tasks, each responsible
for two 1isu;lemenfs. In the first step of the algonithm half the tasks send messages

to the other half of the tasks, After this step, the receiving tasks can simultaneously .

add the values they received to the values they controlled, reducing the number
of values to be added in half. .

A single message-passing step is sufficient to combine two values into oue.

Two message-passing steps are sufficient to combine four values into two. In

general, it is possible to perform a reduction of i values in log n message passing
' steps. Sce Figure 3.13, witich Dlfustrates binomial trees with one, two, four, and
eight nodes. In a tree with n = 2* nodes, the maximum distance from any node
to the root in the lower left corner is £ = logn. The binomial tree is one of the
most common communication patterns in parallel algorithm design.

Figure 3.14 demonstrates how 16 tasks can combine their values in four
communication steps when the channels are in the form of a binomial tree. In the
first step, half of the tasks send values, and half of the tasks receive values. At
this point the tasks that seat values become inactive, and the algorithna recurses
on the remaining tasks. Half of the remaining tasks send values, and half of the
remaining tasks receive values, and so on, uniil only a single task remains. This
task, called the root, has the resuli of the reduction,

oo I

Figure 3.13 Binomial trees with 1, 2, 4, and 8 nodes.

79

80

CHAPTER 3 Parallel Algorithm Design

oRe -0
NN R e ReReRe

@ ©

Figure 3.14 Finding the global sum in logarithmic time. {a) A task/channel graph forming a binomia
tree. There is one task for each integer value in the fist fo be added. (b) Half of the tasks send values,
and half of the tasks receive values and add. The sending tasks become inactive. {c) A quarter of the
tasks send values, and a quarter of the tasks receive values and add. The sending tasks become
inactive. {d) The process recurses with two sending tasks and two receiving/adding iasks. (e} In the
final step, one task sends and one task receives and adds. The receiving/adding task has the grand

{otal.

What if the number of tasks is not a power of 27 In this case, we mod
ify the first step of the algorithm. Suppose the number of tasks n =2 +r
where r < 2, Tn the first step, r tasks send values, and r tasks receive values
at which point r tasks become inactive. Once this step has been completed, th
number of tasks with values is 2%, and the previously described algorithm wil
work,

For example, consider a reduction among six tasks, as illustrated in Fig
ure 3.15. In the first step two tasks send values to two other tasks. After this ste
four tasks have values, and the reduction can be done in log4 = 2 steps.

We see, then, that if the number of tasks # is a power of 2, reduction can b
performed in log » communication steps. If r is not a power of 2, [log n | 4+ 1 coi
munication steps are required. Hence in general the number of communicatio
steps required for » tasks to perform a reduction is {log n].

SECTION 3.5 Finding the Maximum 81

O—0 00 OF—0
0

Step Step 2 Step 3

Figure 3.15 Example of reduction when the number of tasks is not a
power of 2.

@ (b))

Figure 3.16 Example of agglomeration. (a) The original task/channe! graph for the parallel reduction
algorithm. (b) Sixteen tasks are mapped to four processors. Each processor has an equal number of
tasks, and interprocessor communication is minimized. (c) The four tasks on each processor are
agglomerated into a single task. Each task uses the sequential algorithm to find the local subtotal before
communicating with the other tasks.

3.5.4 Agglomeration and Mapping

Figure 3.16a repeats the task/channel graph for a parallel reduction algorithm.
Before implementing the algorithm as a parallel program, we need to perform a
mapping of this n-task graph onto a setof p processors. To simplify our discussion,
let’s assume p is also a power of 2, but p is much less than n.

The number of tasks is static, computations per task are trivial, and the com-
munication pattern is regular. Using the mapping decision tree of Figure 3.7, we ®
conclude that we should agglomerate tasks to minimize communication. We can
do this by assigning n/p “leaf” tasks to each of the p processors, as shown in
Figure 3.16b.

As we agglomerate primitive tasks, there is no value to maintaining the il-
lusion of separate tasks communicating with each other within a single physical

82

CHAPTER 3 Paralle! Algorithm Design

processor. The goal of this portion of the computation is simply to determine the
sum of #2/ p values. Instead of n/ p primitive tasks, each with a single value, we
have a single task with n/ p values. The result is shown in Figure 3.16c. The nice
thing about this agglomeration is that it matches the one we have already chosen
for the boundary value problem in the previous section. That means we can easily
add this enhancement to our original parallel algorithm.

3.5.5 Analysis

At this point we can derive an expression [or the expected runsing time of a
parallel program to perform reduction. Let’s define the following constants:

x: time needed to perform the binary operation

#: lime needed lo communicate an integer value from one task 1o another
via a channel

If the » integers are divided evenly among the p tasks, no task will be re-
sponsible for more than {71/ p] integers. Since all tasks perform concurrently, the
time needed for all the tasks Lo compute their subtotals is

(fn/p1 - Dx

We have already seen that a reduction of p values distributed among p tasks can

" be performed in [log p] communication steps. The receiving processor must not

only wait for the message to arrive, it must also add the value it received to the
value it already has. Hence each reduction step requires time

Ay

Since there are [log p] communication steps, the overall execution time of the
paralle] program is

(In/p1 =Dy + Tlog pl(x + 1)

3.6 THE n-BODY PROBLEM

3.6.1 Introduction

Some problems arising in physics can be solved by performing computations
on all pairs of objects in a dataset. For example, in some molecular dynamics
problems the forces.on the molecules may have a Coulombic or other long-range
component: In a Newtonian n-body simulation, gravitational forces have infinite
range. Straightforward sequential algorithms to solve these problems typically
have time complexity ©(r?) per iteration, where n is the number of objects.
While algonthms with significantly better time complexity have been developed
for n-body problems, our focus here is on paralle! algorithm development. For

SECTION 3.6 The nBoedy Prablem

O

Figure 3.17 In the n-body

problem every particle exerts a
gravitational pull on every other
particle. In this two-dimensional
example, the white particle has a
particutar position and velocity
vector {indicated by a black arrow).
Its future position is influenced by
the gravitational forces exerted by
the other two particies.

this reason we consider the parallelization of a sequential algorithm in which a
computation is performed on every pair of objects.

To ground our discussion, let’s suppose we’re solving an #-body problem.
We are simulating the motion of n particles of varying mass in two dimensions.
During each iteration of the algorithm we need to compute the new position
and velocity vector of each particle, given the positions of all the gther particles
(Figure 3.17). '

3.6.2 Partitioning

Our first step is to partition the dataset. To start with, let’s assume we have one
task per particle. In order [or this task to compute the new location of the particle,
it must know the locations of all the other particles.

3.6.3 Communication

A gather operation is a global communication that takes a dataset distributed
among a group of tasks and collects the items on a single task (Figure 3.18a).
Unlike reduction, which computes a single result from the data elements, a gather
operation results in the concatenation of the data items. An all-gather operation
is similar to gather, except at the end of the communication every task has a copy
of the entire dataset (Figure 3.18b). ‘

In this case we wanl to update the Jocation of every patticle, so an all-gather
comumunication is called for. One way to do this is to put a channel between every
pair of tasks (Figure 3.19). During each communication step each task sends its
vector element (o one other task. After # - | communication steps, each task has

83

CHAPTER 3 Parallel Algorithm Desian

Gather

008 @

0O0e @

9 Goos

O

JEC0
HiHIH

Figure 2.18 (a) The gather communication builds
the concatenation of a set of data ilems on a single
task. {b) The ali-gather communication builds the
concatenation of a set of data items on all tasks.

2

Figure 3.19 Oneway fo Figure 3.20 The

make all data values all-gather data

available to all tasks is to communication

sel up a channel between requires that each

every pair of tasks. task have only log p
outgoing channels and =
log pincoming

channels.

SECTION 3.6 The n-Body Problem

the positions ef all the other particles, and it can perform the calculations needed
to determine the new location and velocity vector for its particle.

Is there a guicker way to get all values to all tasks? Inspired by parallel
reduction, we onght Lo be looking for a way to perform the data routing in a
logarithsnic number of communication steps.

We can uswally think about these algorithms from the lop down or from the
hottom up. We took a top-down approach to derive the reduction algorithm. For
variety, let’s try a bottom-up approach here.

Suppose there were only two particles. If each task has a single pasticle, they
can exchange copies of their values. Each task sends one value on one channel
and receives a value on another channel. What if there are four particles? Afier a
single exchange step tasks 0 and 1 could both have particles vy and vy, and tasks 2

-and 3 could have particles v; and vs. If task 0 mow exchanges its paiz of particles
with task 2, while task 1 exchanges its pair of particles with task 3, all tasks will
have all four particles. A task/channel graph for this improved algorithm appears
in Figure 3.20.

‘ Alogarithmic number of exchange steps are necessary and sufficient to allow

“every processor to acquire the value originally held by every other processor. In
the first exchange step the messages have length 1. In the second exchange step the

messages have length 2. In the ith exchange step the messages have length 2 .

The task/channel graph shown in Figure 3.20 is an example of a hypercube
network, which we first encountered in Chapter 2. Task/channel graphs in the form
of hypercubes often occur in efficient algorithms implementing various all-to-all

* data exchanges.

3.6.4 Zgglomeration and Mapping

In generat. there are far more particles a than processors p. Let’s assume that
n is a multiple of p. We associate one task per processor and agglomerate n/p
particles irlo each task. Now the all-gather communicalion operation requires
log p communication steps. [n the first step the messages have length n/p, in the
second siep the messages have length 2n/p, etc.

3.6.5 Analysis

Now we can derive an expression for the expected execution time of this algorithm.
In the previous examples we assumed that it took X units of time to send a message,
However, in these examples the messages always had length 1. Now the messages
can be much longer. It is unrealistic to expect that the time needed to send or
receive a message is independent of the message length, so we’ll add a new term
to our formula for message-passing time. From now on X (latency) will represent
the time needed to initiate a message. Let § (bandwidth) represent the number
of data iz that can be sent down a channel in one unit of time. Seuding a
message + <raining n data items requires time A + n/f (Figure 3.21). Note that
as bandwidil increases, communication time decreases.

85

86

CHAPTER 3 Parallsl Algarithm Design

Time

A +Vl/f3{ --------------------------

slope = 1/8

Message length

Figure 3.21 The time needed o send a
message of length n is modeled by the linear
function x + n/8. The yinlercept, 1, is the
message latency, while 2, the inverse of the
slope, is the bandwidth of the communication
system. o

The communication time of the algorithm cach iteration is

log y 2i-1, nip—1
2 p—1)
At >:;\lﬂgp+
Z(fr . fp

i=}

Each (ask is responsible for performing the gravitational force computation
for 1/ p list elements. Suppose the time needed for this computation is y. The
cormputation time associated with the parallel algorithm each iteration is x{n/p).

Putting together the communication time of the parallel convolution algo-
rithm with the computation time, we derive an expected parallel execution time
per iteration of

Llogp+n(p— 1)/ (Bp) + x(n/p)

3.7 ADDING DATA INPUT

3.7.1 Introduction

Most programs input and output data, yet the task/channel model as defined does
not address data input/outpui. Let's consider how to add input and output to the
n-body algorithm we have justdeveloped. As we deso, we'll also add O chasnels
to the basic model. :

Let’s suppose our parallel program will input the original positions and veloc-
ity vectors for the » particles. Commercial parallel computers aften have parallel
/O systems, but commodity clusters often rely upon external file servers storing
ordinary Unix files. For this reason, we set aside any notions of parallel /O for

SECTION 3.7 Adding Data Input

m

Figure 3.22 To show thatiask 0 is
respansible for If0, we augment the
task/channel graph. 10 devices appear
as rounded rectangles.

the time being and assume a single task is responsible for performing file VO
operations.

- We augment the task/channel graph for the n-body problem, shown in Fig-
ure 3.20, by adding new channels for file I/O. The resulting task/channel graph
appears in Figure 3.22. We'll give the task performiag file 1/0 the ratlier obvious
name of the O task. Note thal we are not adding a new task to perform L'O.
Instead, we are assigning additional dutjes to task O.

- The /O task begins by opening the data file and reading the positions and
velocities of the n particles. Since we’re doing a two-dimensional simuiation,
a pair of coordinates identifies a particle’s location, while its velocity can be
represented by another pair of values. If A;, + n/f;, models the time needed to
input or output » data elements, then reading the positions and velocities of all
n particles requires time A, -+ 4nf;,.

3.7.2 Communication

After the /O task inputs the particles, we must figure out how to break up the
input data into pieces so that each task has ils assigned subsection containing
n/p elements. This global communication operation is cafled scatfer. Can you
see how a scatter operation is like a gather operation in reverse?

One way to scatter the particles is for the I/0 task to simply send the correct
n/p particles to each of the other tasks in tuen. In other words, it seads p — 1
messages, each of length 4n/p. The time required for this is

(p= (2 +4n/(ph)

This is not an efficient algonthm, because the communication is not balanced
among the processors.

Using a process similar to what we have already done several times in this
chapter, we can derive a scatter operation requiring log p communication Steps.
1n the first step the /O task sends half the list to another task. In the second step
each task with a half list sends a quarter list to previously inactive tasks. Now

87

88

CHAPTER 3 Parallel Algorithm Design

- four tasks each have a quarter of the list. In step 3 the four tasks with quarier lists

send eighth lists to four previously inactive tasks, and so on. The time required
for this is

nv

Z +4n/(2 pB)) = Mog p +4n(p — 1)/(Bp)

Now we have seen two different designs for the scatter algorithm. In the first
algorithm one task sequentially sends p— | messages to the other tasks. It requires
time (p — DA +4n{p — 1)/(8p).

The second algorithm works through about log p steps. (We fudge because p

- might-net-be an integer po‘wer of 2.) The total communication time is log(p}A +

4n{p — 1)/{Bp). 1t is superior to the ficst algorithm.

Note that data transmission time (the term with the 8) is identical for both
algorithms. In the first algorithm each particle is passed directly to the task respon-
sible for it. In the second algorithm particles are moved repeatedly. The typical
particle is passed in about log p messages. Why, then, will 2 program based on
the second algorithm spend no more time transmitting data than a program based
on the first algorithm? Our task/channel model supports the concurrent trans-
mission of messages from multiple tasks, as long as they use different channels,
and no two active channels have the same source or destination task. This is a
reasonable assumption on a commercial system. It is also a reasonable assump-
tion on clusters in which each processor has a direct connection to a switch with
sufficient backplane speed to support many concurrent messages between, pairs
of processors. Tt is not a reasonable assumption on a network of workstations
connected by a hub or any shared communication medium that supports only a
single message at a time.

3.7.3 Analysis

We _can now derive an expression for the total expected execution time of the
parallel 7-body algorithm. The input and output of the positions and velocities of
the » particles is a completely sequential operation requiring time

Z(M‘a + 4"/61‘0)

Scattering the particles at the beginning of the algorithm and gathering the
particles at the end of the computation require time

2(xlog p+4n(p — 1)/ (Bp))
Each iteration of the parallel algorithm requires an all-gather communication
of the particles’ positions. An implementation of this algorithm has approximate

execution time

Alog p+2n(p—1)/(Bp)

T P S

SECTION 3.8 Summary

Finally, each processor performs its share of the computations: The expected
execution time per iteration is

1w/ pin -1

Suppose the algorithm executes for m iterations. The expected overall exe-
cution time of the parallel computation is about

2k, +40/f:5) + 2(Rlog p + 4n(p — 1)/ (Bp))
+m{log p+ 2n(p ~ 1/(Bp) + x[(/p)](-)

3.8 SUMMARY

The task/channel model described in this chapter is a theoretical construct that
represents a parallel computation as a set of tasks that may interact with each other
ar O devices by sending messages through channels. This model §s useful be-
cause it encourages parallel algorithm designs that maximize local computations
and minimize commudnications, and these designs are a better.fit for distributed-
memory paralle] computers.

In the process of developing a parallel algorithm for the task/channel model,
the algorithm designer typically partitions the computation, identifies communi-
cations among primitive tasks, agglomerates primitive tasks into larger tasks, and
decides how to map tasks to-processors. The goals of this process are to maximize
processor utilization by distributing the computational steps among the proces-
sors while minimizing interprocessor communications. Since neither goal can be
reached without seriously compromising the other, good designs must strike a
balance between them.

Reduction is the application of an associate binary operator across a dataset.
Parallel algorithms otten require reductions such as finding the grand total of
values distributed across all the tasks. We developed a logarithmic-time parallel
algorithm to perform reduction operations. The task/channel graph for reduction
isin the form of a binomial tree.

We also developed an efficient parallel algorithm to (orm an all-gather op-
eration, which provides every task with the concatenation of values collected
from the entire set of tasks. Our algerithm requires only a logarithmic number
of communication steps. It relies upon a task/channel graph in the form of a
hypercube. v

Finally, we considered the problem of scattering data on a single task among
aset of tasks, as well as the inverse problem of gathering data distributed among
a sel of tasks back onto one task. The binomial tree is a suitable task/channel
graph for scatter and gather operations when commanication time is dominated
by message latency.

CHAPYER 3 Paraliel Algorithm Design

3.9 KEY TERMS

agglomeration functional decomposition primitive task
all-gather gather processor utilization
asynchronons global communication reduction

binomial tree increasing locality scatter

blocked task local communication synchrenous
channel napping task

domain decomposition paglitioning

3.10 BIBLIOGRAPHIC NOTES

Part ¥ of Foster’s book, Designing and Building Parailel Programs: Concepts and
Tools for Parallel Software Engineering, is devoted to developing a parallel al-
gorithm design methodology based on the task/channel model [31]. He provides
a more detailed treatment of the four-step design process (partitioning, commu-
nication, agglomeration, and mapping) presented in this chapter. The book also
contains a variety of case studies illustrating the methodology.

Carriero and Gelernter present a much ditferent view of parallel aigorithm de-
sign. Their book, How to Write Parallel Programs: A First Course, describes three
parallel algorithm design paradigms: result parallelism, specialist parallelism, and
agenda parallelism {15]. Seeing the field of parallel algorithms from another per-
spective is a good way to enhance your capacity for “thinking in parallel.”

Valiant has proposed the bulk synchronous parallel (BSP) model as a way
of “bridging” the gap between paralle] software and hardware | 107], The BSP
mode] is designed to provide parallel algorithm designers the same benefits that
the von Neumann model brings to the designets of sequential algorithms. A BSP
computation is a sequence of supersteps. Each superstep consists of a sequence
of steps in which processors perform computations on local data, followed by a
barrier synchronization, when nonlocal data exchanges among the processors take
place. For more information on BSP, check out the Web site for BSP Worldwide:
www . bsp-worldwide.org.

3.11 EXERCISES

3.1 Give an example of how increasing processor utilization increases
interprocessor communication.

3.2 Calculate logn, |logn], and floga] for the following values of :
a3

b. 13

c. 32

d. 123

e. 321

33

34

38

310

in

SECTION 3.14 Exercises

Draw binomial trees of the following sizes:

a. 16 nodes

b. 32 nodes

Draw hypercubes of the following sizes, labeling the nodes:

a. 16 nodes

b. 32 nodes

Giver a four-dimensional hypercube, draw four different subgraphs that
are 16-vertex binomaal trees. All four trees should be rooted af the same

hypercube node. In each of these graphs, show the unused hypercube
edges. ,

6 Tllustrate how to perform a reduction in {log n] communication Slépé for

the following values of n: 7, 11, 21.

Using the communication pattern illustrated in Figure 3.15 as your guide,
write a C program that describes the communications performed by a
task participating in a reduction. Given the number of tasks » and a task’s
particular identification numbef i, where 0 < i < n, the program should
print a list of messages sent andfor received by task ;. The message list
should indicate the destination task of all sent messages and the source
task of all received messages.

For example, for the case where n = 6 and i = 1, the output of the
program should be

Message received from task 5
Message received from task 3
Message sent to task 0 . -

Prove that performing an z-element reduction on the task/channel model

has time complexity 2{logn).

Many parallel algorithms require a broadcast step in which one task

communicates a value it holds to all of the other tasks.

a, Using the task/channe! model described in this chapter, devise an
efficient parallel algorithm implementing broadcast

b. Prove that the algotithm you devised in part (a) has optimal time
complexity.

The all-gather algorithm we have developed routes n values to each of

p tasks, while the scatter algorithm we have developed routes only about

n/p valves Lo each of p tasks, yet both algorithms have time complexity

O{n + log p). Explain. ®

Design a parallel algorithm to perform an all-to-all exchange. There are

p processes where p is a power of 2. The processes are manipulating

vectors of length p. Let X; ; denote the jth element of a vector controlled

by process i. Each process begins with vector A. Each process ends with

vector B, where B; ; = A, in other words, the vector 8 held by process

91

92 CHAPTER 3 Parallel Algorithm Design

KK

314

315

316

317

3.18

3.19

{ is the concatenation of the ith elements of all the A vectors. What is the
complexity of your parallel algorithm?

The bubblesort algorithm sorts an arsay of keys a[0}, a{l], ..., afn —]
by repeatedly comparing adjacent keys. If afi] > a[i + 11, it exchanges
the keys. The process coatinues until a[0] < a[l] < - --a[n — 1}. Using
the task/channel model, design a parallel version of bubblesort. Draw
two task/channel diagrams for the parallel bubblesort. The first diagram
should show primitive tasks. The second diagram should show
agglomerated tasks.

A binary image is stored as an n X n array of Os and 1s. The Is represent

- .biests, whilg the Qg represent empty space between objects. The

component labeling problem is to associate a unique positive integer with
every object. At the end of the algorithm, every 1-pixel will have a
positive integer label. A pair of [-pixels have the same label if and only if
they are in the same component {object). The |-pixels are in the same
component if they are linked by a path of |-pixels. Two 1-pixels are
contiguous if they are adjacent to each other, either horizontally or
vettically. Using the task/channel model, design a parallel algorithm
solving the component labeling problem. Draw two task/channel
diagrams for the parallel algorithm. The first diagram should show
primitive tasks. The second diagram should show agglomerated tasks.
Given a crossword puzzle and a dictionary, design a parallel algorithm to
find all possible ways to fill in the crossword puzzle so that every
horizontal and vertical word space contains a word from the dictionary.
You are given an array ol n records, each containing the x and y
coordinates of a house. You arc also given the x and y coordinates of a
railroad stafion. Design a paratlel algorithm to find the house closest to
the railroad station (as the crow flies). Draw two task/channel diagrams.
The first should show primitive tasks. The second should show
agglomerated tasks. .

The string matching problem is to find all occurrences of a particular
substring, called the pattern, in another string, called the text. Design a
parallel algorithm to solve the string matching problem.

Reconsider the string matching problem presented in the previous
example. Suppose you were only interested in finding the first occumrence
of the pattern in the text. How would that change the design of your
parallel algorithm? ‘

Given a list of n keys, a[0], a{1], ..., a[n — 1], all with distinct values,
design a parallel algorithm to find the second-largest key on the list.
Given a list of n keys, [0], a[1], ..., uln — 1], design a parallel
algorithm to find the second-largest key on the list. Note: Keys do not
necessarily have distinct values.

CHAPTER

Message-Passing Programming

The voice of Nature loudly cries
And many a message from the skies,

That something in us never dies.
Robert Burns, New Year’s Day

4.1 INTRODUCTION

Dozens of parallel programming languages have been introduced in the past
40 years. Many of them are high-level languages that simplify various aspects
of managing parallelism. However, no single high-level parallel language has
gained widespread acceptance in the parallel programming community. Insiead,
mosl parallel programming continues to be done in either Fortran or C aug-
mented with functions that perform message-passing between processes. The
MPI (Message Passing Interface) standard is the most popular message-passing
specification supporting parallel programming. Virtually every comimercial par-
allel computer supports MPI, and free libraries meeting the MPI standard are
available [or “homemade™ commodity clusters.

In this chapter we begin a multiple-chapter introduction to paralle] program-
ming in C with MPL. Using the circuit satisfiability problem as an example, we
design, write, enhance, and benchmark a simple parallel program, In doing so we
introduce the following functions:

MPI_Init, toinitialize MPT

MPI_Comm_rank, to determine a process’s 1D number
MPI_Comm_size, to find the number of processes
MPI_Reduce, to perform a reduction operation
MPI_Finalize,to shut down MP1

93

CHAPTER 4 Message-Passing Programming

MPI_Barrier, to perform a barrier synchronization” ™"
MET_Wtime, to determune the time
MPT_Whtick, to find the accuracy of the timer

4.2 THE MESSAGE-PASSING MODEL

The message-passing programming model is similar to the task/channel model
we described in Chapter 3. See Figure 4.1. The underlying hardware is assumed
to be a collection of processors, each with its own local memory. A processor has
direct access only to the instractions and
ever, an interconnection network supports message passing between processors.
Processor A may sead a message containing some of its local data values to
processor B, giving processor B indirect access to these values.

A task in the task/channel model becomes a process in the message-passing
model. The existence of the interconnection network means there is an implicit
channel between every pair of precesses; that is, every process can communicate
with every other process. However, we will want to take advautage of the design

Processor
Processor Memory Processor
Memory : Memory
Processor Processor |
Interconnection
3 network
Memory Memory

Processor

Processor

Memory Processor

Memory {

Figure 4.1 The message-passing mode! assumes
that the underlying hardware is a collection of
processors, each with its own local memory, and an
interconnection network supporting message-passing
between processors:

Memory

d.n its local memory, How-._ .

SECTION 4.3 The Message-Passing Interface

strategies we have learned in order to keep communication overhead from ruining
the efficiency of our parallel programs.

The user specifies the number of concurrent processes when the program
begins, and typically the number of active processes remains-constant throughout
the execution of the program. Every process executes the same program, but be-
cause eachone has a unique ID number, different processes may perform different

_ operations as the program unfolds. A process alternately performs computations

on its local variables and communicates with other processes or VO devices.
Itisimportant torealize that in a message-passing model, processes pass mes-
sages both to communicate and to synchronize with each other. When a message
containing data passes from one process (o another, it obviously serves a com-
munication function. A message has a synchronization functien, too. Process B

* cannot receive a message from process A until after process A sends it. Hence

receiving the message tells process B something about the state of process A. For

- this reason, even a message with no content has meaning,

.

Advocates of the message-passing model of parallel computation point to-
ward several advantages it has over other parallel programming models. First,
message-passing programs run well on a wide variety of MIMD architectures.
They are a natural fit for muiticomputers, which do not support a global address
space. However, it s also possible to execute message-passing programs on multi-
processors by using shared variables as message buffers. In fact, the message-
passing model’s distinction between faster, directly accessible local memory and
slower, indirectly accessible semote memory encourages designers to develop al-
gorithms that maximize local computations while minimizing communications.
The resulting programs tend o exhibit high cache hit rates when executing on
multiprocessors, leading to good performance. Put another way, the message-
passing model provides the multiprocessor programmer with the tools needed to
manage the memory hicrarchy.)

Second, debugging message-passing programs is simpler than debugging
shared-variable programs. Since each process controls its own memory, it is not
possible for one process to accidentally overwrile a variable controlled by another
process, a common bug in shared-variable programs. Nondeterministic execution
{e.., different processes accessing the same resource in different orders on several
program executions) complicates debugging. In the message-passing model it is
easier (o construct a program that executes deterministically.

4.3 THE MESSAGE-PASSING INTERFACE

In the late 1980s many companies began manufacturing and selling multicomput-
ers. Typically, the programming environment {or one of these systems consisted
of an ordinary sequential language (usually C or FORTRAN), augmented with
a message-passing library enabling processes to communicate with cach other.
Each vendor had its own set of function calls, which meant that a program devel-
oped for an Intel iPSC, for example, could not be compiled and executed on an

CHAPTER 4 Message Passing Programming

nCUBE/10. Programmers did not appreciate this lack of portability, and aftera~
few years there was a great deal of support for the creation of a message-passing
library standard for parallel computess.

In the summer of 1989 the first version of a message-passing library called
PYM (Parallel Viriual Machine) was written at Oak Ridge National Laboratory.
PVM facilitated the exacution of parallel programs across heferogeneous collec-
tions of serial and parallel computers. While the original version was used within
Oak Ridge National Laboratory, it was not released to the public. Team members
rewrole the software twice and released version 3 of PYM to the public in March
1993 [39}. PYM immediately became popular among paralle] programmers.

Meanwhile, the Center for Research on Parallel Computing sponsor;d the‘ '
Workshop on Standards for Message Passing in a Distributed Memory Em -
ment in April 1992. This workshop atiracted about 60 people from 40 organiza-
tions, primarily from the United States and Europe. Most major multicomputer
vendors, along with researchers from universities, government laboratories, and
industry, were represented. The group discussed basic features of a-standard
message-passing interface and created a working group to continue the standard-
ization process. In November [992 the preliminary draft proposal was completed.
The Message Passing Interface Forum met from November 1992 to April 1994
to debate and refine the draft standard. Rather than simply adopt as a standard
one of the many existing message-passing libraries, such as PVM or one of the
commercial vendors” libraries, the MPI Forum attempted to pick and choose their
best features. Version 1.0 of the standard, cominonly referred to as MPI, appeared
in May 1994. Since then, work has continued o evolve the standard, in particular
to add parallel J/O and bindings to Fortran 90 and C++ MPI-2 was adopted in
April 1997. -

‘Today, MPI has become the most popular message-passing library standard
for parallel programming. It is available on most commercial multicomputers.
For those who are constructing their own multicontputers with commodity, off-
the-shelf parts, free versions of MPI fibraries are readily available over the Web
from Argonne National Laboratory and other sites.

Writing parallel programs using MPI allows you to port them to different
parallel computers, though the performance of a particular program may vary
widely front one machine to another.

4.4 CIRCUIT SATISFIABILITY

For our initiation to MPI, we will implement a program that computes whether the
circuit shown in Figure 4.2 is satisfiabde, In other words, for what combinations of
input values (it any) will-the circuit output the value 1? The circuii-satisfiability
problem is important for the design and verification of logical devices. Unfortu-
nately, it is in the class NP-complete, which means there is no known polynomial
time algorithm to solve general instances of this problem [38].

SECTION 4.4 Circuit Satisfiahifity

5

Figure 4.2 A circuit containing AND, OR, and NOT gates. The circuiit satisfiability
problem is to determine if some combination of inputs causes the output of the
circuit fo be 1.

One way (0 solve the problem is 1o try every combination of inputs. Siuce
this circuit has 16 inputs, fabeled a—~p, and every input can take on two values, 0
and 1, there are 2'® = 65,536 combinations of inputs.

As we saw in Chapter 3, the first step in parallel algorithm development is
pattitioning. Where is the parallelism? In this case, the parallelism is casy to spot.
We need to test each of the 63,536 combinations of inputs on the circuit, to see
if any of them result in the output value 1. A functional decomposition is natural
for this application. We associate one task with each combination of inputs. If a
task finds that its combination of inputs causcs the circuit to return the value 1, it
prints its combination. Since all of these tasks are independent, the satisfiability
checks may be performed in paraliel.

97

98

CHAPTER 4 Message-Passing Programming

Figure 4.3 The task/channel
graph for the circuit satisfiability
probiem. This is an example of an
embarrassingly paralie} preblem,
hecause there are no interactions
among the iasks.

The task/channel graph for the circuit satistiability problem appears in Fig-
ure 4.3. Since the tasks do not need to interact with each other, there are no chan-
nels between tasks. {Some people call this an embarrassingly parallel problem.)
However, since any of the tasks may produce output, there is a channe! from each
task to the output device.

Our next step is to think about agglomeration and mapping. We have a fixed
number of tasks. There are no communications between fasks. The time needed
for each task to complete is variable. Can you see why? Nearly all tasks represent
bit combinations for which the circuit is not satisfiable, With some bit patterns,
we may quickly discover the circuit is not satisfiable. With others, it may take
longer. Using the decision tree of Figure 3.7, we see that a good strategy is to map
tasks to processors in a cvitic fashion in an effort to balance the computational
load. Let’s see how that strategy plays out for this program.

To minimize process creation time, we want to create one process per pro-
cessor. So we have n pieces of work we want to allocate to p processes. A eyclic
{or interleaved) allocation assigns each process every pth piece of work in a
round-robin fashion. For example, suppose n = 20 and p = 6. Then process [
would be responsible for indices (), 6, 12, and 18; process 1 would be responsible
for indices 1, 7, 13, and 19; process 2 would he responsible for indices 2, 8, and
14; process 3 would be responsible for indices 3,9, and 15; process 4 would be
responsible for indices 4, 10, and 16; and process 5 would be responsible for
indices 5, 11, and 17. ,

Formally, if # pieces of work, labeled &), 1, n ~ 1 are to be assigned in a
cyclic manner to p processes, labeled 0, 1, ..., p—1,then work unit £ is assigned
to process k modulo p.

Before launching into C code, let’s summarize the design of the program. We
are going to determine whether the circuit shown in Figure 4.2 is satisfiable by
considering all 65,336 combinations of the 16 boolean inputs. The combinations
will be allocated in acyciic fashion to the p processes. Every process will examine
each of its combiration: i turn. If a process finds a combination of inputs that
satisfies the circuit, it will print that combination of inputs.

SECTION 4.4 Circuit Satisfiability

Now fet’s take a close look at the C code. (The entire program appears in
Figure 4.4.)
The program begins with preprocessor directives to include the header files
for MPI and standard 1/0. -

#include <mpi.h>
4inciude <stdio.h>
Next comaes the header for function main. Note that we include the arge

* and argv parameters, which we will nced to pass to the function that initializes
MPL

ft-main (int arge, char *argv(]) (

-Function main has three scalar variables. Variable i is the loop index, id
is the process 1D number, and 1 is the number of active processes. Remember if
there are p processes, then the ID numbers start at 0 and end at p — 1.

Each active MPI process executes its own copy of this program. That means
each MPI process hias its own copy of all of the variables declared in the program,
whether they be external variables (declared outside of any&unction) or automatic
variables declared inside a function. ’

We also include the prototype for function check _circuit, which will
determine if the ith combination of inputs satisfies the circuit.

4.4.1 Function MPI Init

“The first MPI function call made by every MPI process is the call toMPT_Init,
which allews the system to do any setup needed to handle further calls to the MPI
library. The call toMPT_Init does not have fo be the first executable statement
of the program. In fact, it does not even have io be located in function ma in. The
only requirement is that MPI_Trii t be called before any other MPI function.'

Noie that all MP1 identifiers, including function identifiers, begin with the
prefix MPT_, followed by-a capital letter and a series of lowercase letters and
underscores. All MPI constants are strings of capital letters and underscores
beginning with MPT _.

MPI_Init {&kargc, &argv);

4.4.2 Functions MPI Comm_ rank and MPI Comm size

When MPI has been initialized, every active process becomes a member of
w4 communicator called MPT_COMM_WORLD. A eommunicator is an opaque
object that provides the environment for message passing among processes.
MPI_COMM_WORLD is the default communicator that you get “for free.” For

'The exceptic io this statement is thal function MPT_Tnitialized, which checks to see if MPI has
been initialized. may be called before MPT_Init.

100

CHAPTER 4 Message-Passing Programming

* " Circuit Satisfiability, Version 1

* Thig MPI program determines whether a circuit is
* satisfiable, that is, whether there is a combination of
* ipputs that causes the outpub of 1

the circuit to be 1.

* The particular circuit being Lested is "wired® into the
logic of function ’check_circuit’. All combinations of
* inputs Lhat satisfy the circult are printed.

* programmed by Michael J. Quinn

* Last modification: 3 September 2002

#include <mpi.h>

#include <stdig.h»>

int main (int argc, char *argv{]) ¢

int 1; .
int id; /* Process rank */
int p; /* Number ol processes *

void check circuit {int, int);

MPI_Init (&argec, &argqv)sz
MPI_Comm_rank (MPI_CUMM_WORLD. &1d):
MPI_Comm_size {MPI_COMM_WORLD, &p);

for (i = id; 1 < 65536; 1 += pi
check_circuit {id, 1);

printf {(*Process %4 is donein", id}; .
fflush (stdoutj;
MPI_Finalize ();
return G;

}

Figure 4.4 Version 1 of MP| program to solve the circuit satisfiability
problem.

maost of our programs, it is sufficient. However, you can create your own commu-
nicators if you need to partition the processes inlo independent communication
groups. You'll see how to do this in Chapter §.

Processes within a communicator are ordered. The rank of a process is its
position in the overall order. In a communicator with p processes, each process
has a unique rank (ID number) between 0 and p — 1. A process may vse its rank
to determine which portion of a computation and/or a dataset it is responsible for.

A process calls function MPI_Comm_rank to determine its rank within
4 commumnicater. It calls MPT_Com_size lo determine the total number of
processes in a communicalor.

MPT_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_gsize {MPI_COMM_WORLD, &p);

SECTION 4.4 Circuit Satistiability

/* Return 1 if ‘i‘th bit of 'n' is i; o
#define EXTRACT BIT(n, i) {{néil<ci)j?i:g

thorwige */

~ o

void check circuit (int id, int z) {
int v[16]; /* Fach element is a bit of g */
int i;

IE ((wI0] 1Y vil]) && (Ivil 'y
& {Iv[3) 14 !v4]) && (vI4]
ke (vI5] {1 Ivigl) &s vi5) 1] v
&k {v[B] 1} v s
ki (107

31y & (vI9) 0w
U Iwi9h) && (IV[9) 11 M
B (w191 11 vII1]) && {v[101 |

& AV[12] 11 V131 && {v{13]
& (v[14] 11 w15} |

printf (*%dj 3%d543d%3d%d3d2d%ARd368dRARA%ARdsn", 18,
V{0 il vi2) w3l 4], vin] w6l v 7). VIR, V(3]
v{10) vl g, vii2) o vi13) vildl, vlTsT Y,

fflush {stdout};

Figure 4.4 {conld.) Version 1 of MP| program to solve the circuit
salisfiability problem.

Now that the MPI process knows its rank and the total number of processes,
it may check its share of the £3,536 possible inputs te fiie circuit,

for {1 = 1d; 1 < 655367 1 += p)
check_circuit (id, 1);

Alter the process has completed the loop, it has no more work to do, and il
prints a message indicating that it is done. We puta call o £ 1ush after every
printf statement. This flushes the outpul buffer and helps ensure the even-
tual appearance of the message on standard output, even if the paraltel program
crashes.

printf ("Process %4 is donein", id);
fflush {stdout);
4.4.3 Function MPI Finalize

w
After a process has completed all of its MPI library calls, it calls function
MPI_Finalize, allowing the system to free up resources (such as memory)
that have been allocated to MPI.

MPI_Finalize();
return 0;

1™

102

CHAPTER 4 Message-Passing Programming

Function check _circuit, passed the ID number of a process and an inte-
ger z, first extracts the values of the 16 inputs using the macro EXTRACT BTTS.
Element v{0] comesponds to input a, element v{1] corresponds to input b,
and so on. Calling function check _circuit with values of z ranging from {
through 65,535 generates all 2'° combinations of values.

After function check_circuit has determined the values of the 16 inputs,
1t checks to see if they result in the circuit having the output 1. If so, the process
prints the values of a through p.

_ 4.4.4 Compiling MPI Programs

After entering this program into file sat1. c, we need to compile it. The com-
mand to compile an MPI program varies from system to system. Here is a common
command-line syatax:

% wpicc -o satl satl.c

With this command the system compiles the MPI program stored in file
satl.c and storcs the executable in file sat 1.

4.4.5 Running MPI Programs

The typical command for ranning an MP1 program is mpiran. The -np flag
indicates the number of processes to create. Let’s examine the output when we
execute the program using a single process:

% mpirun -np 1 satl
0) 1010111110011001
0j 0110111110011001
0) 1110111110011001
0) 1010111111011001
0) 0110111111011001
0) 1110111111011001
0} 1010111110111001
0) 0110111110111001
0) 1110111110111001
Process 0 is done

The program identifies nine combinations of inputs that will satisfy the circuit

(i.e., cause it to have output value 1). For example, the fiest line of outputindicates

51

B

that the circuit is satisfied when 2, ¢, e, £, g, h, i, 1, m, and p are true (have
the value 1) and the other variables are false (have the value 0). Note that the
output of the parallel program on a single process is identical (o the output of a

sequential program solving the same problem, since the lone process evaluates

the combinations in the same order as a sequential program.

SECTION 4.4 Circuit Satisfiability 103

Now let's look at the output of the program when we execute it using 1wo
' processes:

g mpirun -np 2 satl
-9y 0110111110011001
o) 011011111101100%
0110111110111001
' 1010111110011001
1110111110011001
1010111111011001
v 1110111111012001
1010111110111001
11101111101110¢1
process 0 is done
process 1 is done

Together, the two processes identified all nine solutions, but process () found
‘three of them, while process 1 found six.
- Here is the result of an execution with three processes:

% mpirun -np 3 satl
y 0110111110011001
0y 1110111111011001
) 1010111110011001
) 1110111110011001
1) 1010111111011001
1) 0110111110117001
) 1010111110311043
) 0110111111911001
y 1110111110111001
Process 2 is done
© Procees 0 is done

Again, all nine solutions were found. It turns out that each process found
three of the solutions. Note thit output of the processes is mixed up in a haphazard
fashion. :
The order in which output appears on standard output only partially reflects =<}
“the order in which the output events actually occurred inside the parallel computer.
If process A prints two messazes to standard outpul, then the first message will
be printed before the second wnessage. However, if process A prints to standard
-~ output before process B prints to standard output, that does not guaranteg process o
* A’s output will appear befere the output of process B.
Assuming that the order 1n which messages appear is the same as the order
~ in which the print { staiciients executed can lead Lo false conclusions about
the execution of the parali~i program, making the search for bugs much more
difficult. Aveid this mental trap!

104

CHAPTER 4 Message-Passing Programming

4.5 INTRODUCING COLLECTIVE
COMMUNICATION

We are off to a good start. We have our first MPI program up and running. However,
it is not hard to find ways to improve it. For example, what if we want to know
how many different ways a circuit can be satisfied” In our previous example, there
were only nine solutions, and it was easy for us to count them by hand, but what
if there had been 997

For our next program, we want to add functionality that will enable the
processes to compute the total aumber of solutions. It is easy enough for a single
process to maintain an integer variable accumulating the number of solutions it
has found, but then the processors must cobperate to compute the global sum of
these values.

A collective communication is a communication operation in which a group
of processes works together to distribute or gather together a set of one or more
values, Reduction is an example of an operation that requires collective commu-

_Rication in a message-passing eavironment.

We will modify our first circuit satisfiability program to compute the total
number of solutions to the circuit. The new version of function main appears in
Figure 4.5.

Let’s go through the changes we have made to function mair. First, we
introduce two new integer variables. Integer solutions keeps track of the
number of solutions this process has found. Process 0 (and only processor 0) will
use integer vanable global_solut ions to store the grand total of the count
values of all the MPI processes. It will be respansible for printing the count at the
end of the program’s execution.

int solutions;
int glebal_solutions;

We must modify function check _circuit to retum the value 1 if the
particular combination satisfies the circuit. It should return the value 0 if the
combination does not satisfy the circuit. This modification to the function is
trivial, and we will not discuss it further.

int check_circuit (ink, int);

We modify the £or loop to accumulate the number of valid solutions this
process discovers.

solutions = 0;
for (i = id; 1 < 65536; 1 += pl
solutions += check_circuit (id, i);

SECTION 4.5 Introducing Collective Communication

Circuit Satisfiability, Version 2

* Thig enhanced version of the program alse prints the
.+ total number of solutions.

*/

#include “mpi.n®
¢include <stdia.h>

int main (int argc. char *argv(]) { .
it global _selutionsy /* Total auwber of solutions */

int iy

int id; /* Process rank */)
int p; /* Number of processes */

int solutions; - /* Solurians found by this proc */

int check_circuit {int, int):

MPI_Init (kargc, &argv):
MPI_Comm_rank (MPI_COMM_WORLD, &id};
MPI_Conm_size (MPI_COMM_WORLD, &p);:

H

solutions = Q;

for {1 = 14d; 1 < 65536; 1 4= p!
solutions += check_circuif (id, i);

o,

MPI_keduce {&solutions, &ylobal_solutions, 1, MPI_INT, MPI_SUM, D,
WEI_COMM_WORLD) ;

princf ("Process 3d is donewn®, id);

fflush {stdoutj;

MPI_Finalize (};

if {id == 0) printf ("There are %d different solutioasin®,
global_solutions);

return 9;:

Figure 4.5 Version 2 of MPI program to solve circuit safisfiability problem. In this
version the processes collectively determine the number of solutions 1o the problem.

4.5.1 Function ¥PI_Reduce

After a process has completed its share of the work, it is ready to participate in -
the reduction operation. Function MPT_Reduce performs one or more reduction
operations on values submitted by all the processes in a communicator. The header

for function MPI_Reduce is

int MPI_Reduce (

void *operand, /* addr of 1st reduction element */
void *result, /* addr of 1st reduction result */
int count, /* reductions to perform */
MPI_Datatype type, /* type of elements */

MPI_Op operator, /* reduction operator */

int roat, /* process getting result(s) */

MPI_Comm comrm) /* communicator */

105

106

CHAPTER 4 Msessage-Passing Programming

P

Let’s consider each of the function parameters. The third parameter, count
indicates how many reductions are being performed. Each process submits count.
values, and each of these values 15 a list clement for a different reduction.

Parameter operand is an input parameter. The calling process indicates the
location of its element for the first reduction. If count is greater than 1, then the
list elements for all of the reductions occupy a contiguous block of memory.

Parameter4, type, isan input parameter designating the type of theelements

being reduced. A list of the MPI constants and their associated C types appears

in Table 4.1.

The fifth parameter, operator, indicates the kind of reduction to perform.
A listof all built-in reduction operators appears in Table 4.2.. .

The sixth parameter, root:, gives the rank of the process thét will have the
results of all the reductions.

Parameter result points to the location of the first reduction resull. This
parameter only has meaning for process root.

The last parameter, comm, gives the name of the communicator—that is, the

.set of processes participating in the reduction. -

Table 4.1 MP! conslants for C data types.

signed char
M1 DOUBUE . double
MPT_FTOAT float
_ MPI_INT int
MPI_ LONG long
MPI” LONG_DOUBLE long double
MPI_ SHORT short
MPI_UNSIGNED_CHAR unsigned char
MPI _UNSIGNED unsigned it
‘MPT _UNSIGNED _LONG unsigned long
MPI_UNSIGHED_SHORT unsigned short

Tahle 4.2 MPi's built-in reduction operators.

MP1__BAND Bitwise and

MPTI_BOR Bitwise or

MP1_BXOR Bitwise exclusive or

MP1_LAND Logical and

MPI_LOR Logical or

MPT_LXOR Logical exclusive or

MPT_MAX Maximum

MPI_MAXLOC Maximum and location of maximam
MPI_MIN Minimum

MPI_MINLOC Minimum and location of minimum
MPI_PROD Product

MPI_SUM Sum

SECTION 4.5 :ntraducing Collective Cemmunication

Our particular call to MPI _Reduce takes the form:

" MpI_Reduce {&solutions, &global_solutions, 1, MPI_INT,
MPI_COMM_WORLD) ;

After this fonction returns, process 0 has in its variable global

. golutions the sum of all of the processes’ values of variable solutions. It

prints the global sum after the call to MPI_Finalize, so that it will appear at
the end of the output of the program. .

It is crucially important to rermember that while only a single prouess (in

“this case process 0) gets the global result, every process must call function

N MPI_ Reduce. There is no magic! Every process in the communicator must enter

the reduction voluntarily—it cannot be “summoned” by process 0. If you write

*. g program in which not all the processes in a communicator call MPT_Reduce *
* . or any other collective comsnunication function, the program will “hang” at the

point that function is executed, unable to complete it.
- So now we're back from MPT_geduce. Note that we conditionalize exe-
cation of the printf function call so that only process O prints the value of

B . global _golutions. We do this for two reasons. First, only process 0 has

the actual global sum in its variable global _sclutions. The value of this
variable for the other processes is undefined. Second, even if every process had
- the correct sum in its copy of global_solutions, how many times do you
" want to read the answer?Tt is sufficient for one process to print the solution.

MPI_

1f {id==0) printf {"There are %d different solutions\n",

global_solutions);
Here is an example of the program executing on three processes:

% mpirun -np 3 sat2
0110111110011001
1110111111011001
1110111110011001
1010111111011001
1014111110011801
0110111111011001
1110111110111001
~ 1y 0110111110111001
- @) 1010111110111001
Process 1 is done
Process 2 1s done
Process 0 1s done
There are 9 different solutions

R A e =R
T e e e e e

[N SN

Compare this output with the output of the first program executing on three
processes. Although each process finds the same solutions in the same order, the

. order in which the processes’ output appears is different.

SUM,

0,

107

108

CHAPTER 4 Message-Passing Programming

4.6 BENCHMARKING PARALLEL
PERFORMANCE

Now that we have a parallel program up and running, it is only naturaf io ask
whether we are benefitting from parallel execution. In other words, are we getting
the results any quicker?

4.6,1 Functions MPT_Wtime and MPI_Wtick

One way to measure the performance of a parallel application is to Jook at the
wall clock time, measuring the number of seconds that elapse from the time we
initiate execution until the program terminates. In production environments, this
may be the most nseful metric.

For our purposes, however, we would like to take a narrower focus. Twpi-
cally, we are going to ignore the time spent initiating MPT processes, estabiishing
communications sockets between them, and performing 'O on sequential de-
vices. Instead, we will measure how well our parallel programs stack up against
their sequential counterparts in the “middle area” betweén reading the dataset and
writing the results, -

- MPT provides a function called MPT_¥t ime that returns the number of sec-
onds that have elapsed since some point of time in the past. Function ¥PI_wtick
ceturns the precision of the result returned by MPT_Wt ime. Here are the headers
of these two functions:

double MPI_Wtime (void)
double MPI_Wtick (void)

We can benchmark a section of code by putting a pair of calls & Jinerion
MPI_Wt ime before and after the section. The difference between the twu \alues
returned by the function is the number of seconds elapsed.

From a logical point of view, every MPI process begins execution at the same
time, but this is not true in practice. MPI processes executing on ditferen: sroves-
sors may begin executing seconds apart. This can throw off timings siguificantly.
For example, in the case of our second program for circuit satisfiability, th: pro-
cessescall MPI__Reduce to find the total number of solutions. Since all processes
must participate in this communication function, no process may complete the
function until all processes have reached it. Processes that began execulion early
may wait around quite a while before the stragglers catch up. These processes
will report significantly longer computation times than the latecomers.

]
4.6.2 Function MPI_Barrier

We address this problem by introducing a barrier synchronization befO'

all processes have redched it. Hence a barrier ensures that all processes are 0ing
into the measured section of code at more or less the same time.

SECTION 4.6 Denchmarking Paraliel Performance

" Here is the prototype for the barrier function:
int MPI_Barrier (MPI_Comm comm)

- The-single argument to MPI_ Barrier indicates the communicator partic-
ipating in the barrier.
We can benchmark our circnit sattsfiability program by adding a local variable
to function main:

" double elapsed_time;
We start the timer after initializing MPL:

» M?»I_;Inib {kargcy= &argv) ;
MPI_Barrier (MPT_COMM_WORLD);
elapsed time = - MPI_Wtime();

After the call to MP1_Reduce we stop the timer:

- MPT_Reduce (&solutions, &global solutions, 1, MPI_INT, MPI_SUM, 0,
~ MPT_COMM WORLD) ;
elapsed time += MPI_Wi.ime{);

, Since we do not want to count /O time, we also need to comment out the
calls to printf and £f1ush inside function check_circuit.

Now we are ready to benchmark the program. The results appear as the solid -

" _-line in Figure 4.6. As we add processors, execution time decreases, because each

200

160

¥ 120
3
£
g 80

4.0

Processors

Figure 4.6 Mean execution time of second
circuit satisfiability program on a commodity
cluster with 450 MHz Pentium [1 CPUs
connected by fast Ethernet. The dashed line
indicates a “perfect” speed improvement, in
which pprocessors execute the program p
times as fast as one processor.

109

110

CHAPTER 4 Message-Passing Programming

processor is responsible for checking a smaller number of circuits. The dashed line
in the figure shows what the execution time would have been if two processors had
executed the program in half the time, three processors had executed the program
in one-third the time, etc. The reason that actual execution time is greater than
this is because some time is spent performing the sum reduction at the end of the
program. This communication time represents an overhead not incusred by the
scquential program. As the number of processors grows, this overhead grows, too.

4.7 SUMMARY

Designing parallel algorithms using the task/channel model.leads naturally to
their implementaltion using the message-passing programming paradigm. The
message-passing paradigm allows programmers to control memory utilization and
increase locality. Since keeping most memory references local is a key strategy for
optimizing performance on both multicomputers and multiprocessors, message-
passing programs can run efficiently on a wide range of parallel systems.

In the early years of commercial multicompulers, every manufacturer had its
own message-passing library, but programmers called for a standard to increase
the portability of programs. The Message Passing Interface (MPI) standard is the
result of a collaborative effort between companies and rescarchers. Today, nearly
every commercial computer supports MPI functions. MPI libraries are also freely
available to those constructing commodity clusters. '

We have developed and benchmarked a parallel program to solve an instance
of the circuit satisfiability problem. In the process, we have used a small set of
MPI library functions. In future chapters we will add significantly to the number
of MPI functions in our repertoire.

4.8 KEY TERMS

collective communication cyclic (or inlerleaved) emharrassingly parallel
communicator allocation rank

4.9 BIBLIOGRAPHIC NOTES

Computer scientists have been contemplating parallel programming since the
dawn of the computer age. In fact, the lead article in the inaugural issue of the
British Computer Society’s Computer Journal has the title “Parallel Program-
ming” [40]. The issue is dated April 1958.

Contemporary introductions to programming using MPI include Pacheco’s
Parallel Programming with MPI [89] and Gropp et al.’s Using MPI: Portable
Parallel Programming with the Message-Passing Interface [45). In addition,
FPoster has a chapter on MPI in his book on parallel algorithm design [31].

SECTION 4.10 Fxercises

In Chapter 5 of Practical Parallel Programming, Wilson summarizes the
features and highlights the shoricomings of three different kinds of message-
passing models [116]. In the first model anonymous processes are connected by
channels. The programming language accam is based on this model. In the second
model processes are organized into a regular topology and may communicate only
with their neighbors or a control process. In the third model processes have names,
and any process may comtmunicate with any other. MPI falls into this category.

4.10 EXERCISES

4.1 Supposen pieces of work are allocated in cyclic fashion to p processes.
a. Which pieces of work are assigned to process k, where
O<k<p-1?
b. Which process is responsible for piece of work j, where
0<j<n-—17
. What are the most pieces of work assigned to any process?
. 1déntify all processes having the most pieces of work.
. What are the fewest pieces of work aséfgned to any process?
. Identify all processes having the fewest pieces of work.
4.2 Given a set of five unsigned, eight-bit integers with decimal values 13; 22,
43, 64. and 99, determine the decimal result of the following reductions:
- add
. multiply
. Maximum
. minimum
. bitwise or
. hitwise and

- P B O

[I =V T~ S 1)

g. logical or

i logical and

Assume the meaning of the ard and or operators is the same as in the
C programming language.

4.3 Modify function check_circuit so that it returns the inleger | if the
input argument represents a satisfiable circuit, and O if the input argument
does not represent a satisfiable citcuit,

4.4 a. Benchmark the second circuit satishability program on your parallel
computer for 1,2, ..., § processors (with\printing disabled). For
each number of processors, determine the mean execution time after
five runs.

b. Summarize and interpret tie reslts you ohserved.

4.5 The circuit satisfiability progim rresented in this chapter has the circuit

to he tested “hard wired” into Iunctmn check_circuit. Explain how

112 CHAPTER 4 Message-Passing Prograrmming

46

4.7

4.8

4.9

4.10

4.11

the circuit satisfiability program could be modified to check the
satisfiability of a circuit input from a data file.
a. How would you represent a circuit with and, or, and not gates in a
plain text file that could be created and viewed with a text editor?
b. How would your program parse this file?
c. Describe the data structure you would use to represent the circuit.
Write a parallel variant of Kernighan and Ritchie’s classic “hello, world”
program [61]. Each process should print a message of the form -
hello, world, from process <i>
where <i> is its rank. § o ;
Write a parallel program that computes the sum 1 42 4 --- 4 p in the
following manner: Each process i assigns the value { 4+ | to an integer,
and then the processes perform a sum reduction of these values. Process 0
should print the result of the reduction. As a way of double-checking the
result, process § should also compute and print the value p(p 4 1)/2.
A prime number is a positive integer evenly divisible by exactly two
positive integers: itself and 1. The first five prime numbers are 2,3, 5,7,
and 11. Sometimes two consecutive odd numbers are both prime. For
example, the odd integers following 3, 5, and 11 are all prime numbers.
However, the odd integer following 7 is not a prime number. Write a
parallel program to determine, for all integers less than 1,000,000, the
number of fimes that two consecutive odd integers are both prime.
The gap between consccutive prime numbers 2 and 3 is only 1, while the
gap between consecutive primes 7 and 1115 4. Write a parallel program
to determine, for all integers less than 1,000,000, the Jargest pap between
a pair of consecutive prime numbers.
A small college wishes to assign unique identification numbers to all of
its present and future students. The administration is thinking of using a
six-digit identifier, but is not sure that there will be enough combinations,
given various constraints that have been placed on what is considered to
be an “acceptable” identifier. Write a parallel program fo count the
number of different six-digit combinations of the numerals (-9, given
these constraints:

B The first digit may not be a 0.
B Two consecutive digits may not be the same.
w The sum of the digits may not be 7, 1§, or 13.

The value of the definite integral

LI
/ ~dx
Jo 1+Xf)'

is 7. We can use numerical integration to compate 7 by approximating
the area under the curve. A simple way to do this is called the rectangle

12

SECTION 4.10 Exercises

0 . 1

Figure 4.7 The rectangle ruleis
a simple way to approximate the
area under a curve. In this

~example the functionis 4,/{1 4 »2),
and the area under the curve
between 0 and 1is x.

rule (Figure 4.7). We divide the interval [0, 1] into £ subintervals of
equal size. We find the height of the curve at the midpoint of each of*
these subintervals. With these heights we can construct k rectaagles. The
area of the rectangles approximates the area under the curve. As &
increases, the accuracy of the estimate also increases.

A C program that uses the rectangle rule to approximate 7 appears in

. Figure 4.8.

a. Write a parallel program to compute ; using the rectangle nule with
1,600,000 intervals.
b. Benchmark your program on various numbers of processors.
Simpson’s Rule is 4 better numerical integration algorithim than the
rectangle rule because it converges more quickly. Suppose we want o
compute fﬂb f(x) dx. We divide the interval [a, b] into 12 subineevals,
where n is even. Let x; denote the end of the ith interval, for 1 <i <n,
and let x; denote the beginming of the first interval. According Lo
Simpson’s Rule:

1 2]
/J/f(l)dl k™ lf(xo} = O+ {4F o) + 2 (e2)

i=1

A C program that uses Simpson’s Rule to compute 7 appears in

Figure 49.

4. Write a parallel program to compute the value of 7 using Simpson’s
Rule: fxy=4/(1+%,a=0b=1,andn = 50.

b. Benchmark your program on various numbers of processors.

113

By 1 ERERSEREY

114

CHAPTER 4 Message-Passing Programming

/* This program corputes pl uzing the recktangle rule. */
#define THTERVALS 1000000

R int main {int argc, char *argvi})

{
double area; /* Area under curve */
double ysum; /* Sum of rectangle heights */
double x1; /* Midpoing of interval */
int i;
ysum = 0.0;
for {i = §; i < INTERVALY; iiv} {
xi = (1.0/INTERVALS) * {1+0.9);
yeum += 4.0/(1. 0+xi*xi);
}
area = ysum * (1.0 / INTERVALS);
printf {("Area is %13.11f\n", area);
return 0; '
}

Fiyure 4.8 A C program to compute the value of rr tsing the
rectangle rule.

/* This program vses Simpscn’s Role to compute pi. */
#define n 50

double f {int 1} {
double x;
x = {(double) i / (double) u;
return 4.0 / (L.0 + x * x);
}

int main (int arge, char *argvi]) {
double area; :
int i;
area = E{0) - fi{n};
for (1 = 1; 1 <= n/2; 134)
area t= 4.0%F(2%1-1) + 2¥F(2%i);
area /= (3.0 * n};
printf {“Approximation of pi: %13.1lk\n", area);
return 0;

Figure 49 A C program to compute the value of 7 using
Simpson’s Rule.)

CHAPTER

The Sieve of Eratosthenes

He was not merely a chip of the old block, but the old block itself
Edmund Burke

i
i

5.1 INTRODUCTION

The Sieve of Eratosthenes is a useful vehicle for advancing to the next leve] of
parallel programming with MPL After an explanation of the sequential algoritim,
we will use the domain decomposition methodology to come up with a data-
parallel algorithm. During the task agglomeration step we will weigh the pros
and cons of several schemes to allocate contiguous blocks of array clements to
tasks. The resulting algorithm requires a broddcast step, and we will leam the
syntax of an MPI function to perform the broadcast.

After coding and benchmarking an initial paralle] program, we will consider
three ways to improve its performance, including using redundant computations to
reduce process communication time and rearranging the order of computations to
increase the cache hit rate. Benchmarking these program improvements highlights
the importance of maximizing single-processor performance, even when multiple
processors are available.

This chapter introduces the following MP] function:

MPI_Bcast, to broadcast a message to all processes in a communicato

5.2 SEQUENTIAL ALGORITHM

Qur goal is to develop a parallel version of the prime sieve invented by the Greek
mathematician Eratosthenes (276-194 BCE). You can find pseudocode for the
Sieve of Eratosthenes in Figure 5.1.

An example of the sieve appears in Figure 5.2. In order to find primes up
to 60, integer multiples of the primes 2, 3, 5, and 7 are marked as compusite

115

116 CHAPTER 5 The Sieve of Eratosthenes

1. Create a list of naturs nombers 2,3, 4, . .., , none of whach is marked.
2. Selkto2, the first unmarked pumber on the list.
3. Repeat

{a) Mark al! multiples of k between k* and 1
(b) Tind the smaliest number greater than & that is unmarked. ?etk to this new value,

Uniilk* > n
4. The unmarked numbers are primes.

Figure 5.1 The Sieve of Eratosthenes finds primes betwesn 2 and 5.

i0)

6]7]8] 5|16{17] 18!
21|22 2| 2% 28 36]37{38{39
(4 a6]47]48 56{57] 5%

203]4als]6] 1]]9 fw]uln]ulu]s]ie]]s]o]n
21|22 (23] 24|25 26| 27{28] 2930131 | 32|33 |34 35@37 38139140

41142 43 |44 145 | 46|47 |3 [EF 50| 51| 52| 53 | 54 |55,

(@

Figure 5.2 The Sieve of Eratosthenes. In this example we arg finding
all primes less than or equal to 60. (a) Mark afl muttiples of 2 between 4
and 60, inclusive. (b) The next unmarked value is 3. Mark all muttiples

of 3 between 9 and 60, inclisive. (c) The next unmarked valug is 5.
Mark all multhles of 5 between 25 and B0, inclusive. {d) The next
unmarked value is 7. Mark all muitiples of 7 between 49 and 60. The
next unmarked vaiue is 11. Since the square of 11is 121, and 121 is
grealer than 60, the algorithm terminates. All remaining unmarked cells ~
represent prime numbers.

SECTION 5.4 Data Decomposiiion Options

- pumbers. The next prime is 11. The square of its value is 121, which is greater
than 60, causing an end to the sieving loop. The unmarked integers that remain
are primes.

; The Sieve of Eratosthenes is not practical for identifying large prime numbers

with hundreds of digits, because the algorithm has complexity ©(n Inlns), and

n is exponential in the number of digits. However, a modified form of the sieve

is still an important tool in number theory research.

~ When we implement this algorithm in the C programming language, we can

use.an array of n — 1 chars (with indices 0,1, ..., n — 2) to represent the natu-

. ral rumbers 2,3, ..., s The boolean value at index i indicates whether natural
" number { + 2 is marked.

5.3 SOURCES OF PARALLELISM

“How should we partition this algorithm? Because the heart of the algorithm is
marking elements of the array representing integers, it makes sense to doa domain
decomposition, breaking the array into n — 1 elements and associating a primitive
 task with each of these elements.

The key parallel computation is step 3a, where those elements representing
. multiplesof a particular prime k are marked as composite. For the cell representing
. integer j, this computation is straightforward: if j mod & = 0, then j is amultiple
- of & and should be marked.
T a primilive task represents each integer, then two communications are
seeded to perform step 3b each iteration of the repeat . . . until loop. A reduction
is needed each iteration in order to determine the new value ‘of £, and then a

. broadcast is needed to inform all the tasks of the new value of k.

Reflecting on this domain decomposition, the good news is that therc is plenty
of data parallelism Lo exploit. The bad news is that there are a lot of reduction and
broadcast operations. ‘ ‘

The next step in our design is to think about how to agglomerate the primitive
tasks into more substantial tasks that still allow us to utilize a reasonabie number
of processors. In the best case we will end ap with a new version of the parallel
algorithm that requires less computation and less communication than the original
parallel algorithm.

5.4 DATA DECOMPOSITION OPTIONS

After we agglomerate the primitive tasks, a single task will be responsible for
a group of array elements representing several integers. We often call the fi-
nal grouping of data elements—the result of partitioning, agglomeration, and
mapping—the data decomposition, or simply “the decomposition.”

117

118

CHAPTER 5 The Sieve of Eratosthenes

5.4.1 Interleaved Data Decomposition
First, let’s consider an interleaved decomposition of array elements:

u process () is responsible for the natural numbers 2,2+ p,2 +2p, ...,
m process | is responsible for the natural numbers 3,3 + p, 3+ 2p, ...

and so on.

An advantage of the interleaved decomposition is thal given a particular
array index /, it is easy to determine which process controls that index (process
i mod p). A disadvantage of an interleaved decomposition for this probiem is that
it can lead to significant load imbalances among the processes. For example, if

.. twoprocesses are marking multiples of 2, process O marks {(n — 1)/2] elements

while process 1 marks none. A further disadvantage is that the implementation
of step 3b (finding the next prime number) still requires some sort of reduction/
broadcast. :

5.4.2 Block Data Decomposition

An alternative is a block data decomposition. That means we divide the array
into p contiguious blocks of roughly equal size. If the number of array clements
n is a multiple of the number of processes p, the division is straightforward.

If n is not a multiple of p, then it is more complicated. Suppose 1 = 1024
and p =10, Inthat case 1024/ 10 = 102 4. If we give cvery process 102 elements,
there will be four left over. On the other hand, we cannot give every process
103 elements, because the array is not that large. We cannot simply give the first
p — | processes [r/p] combinations and give the last process whatever is left
over, because there may not be any elements left (see Exercise 5.2). Allocating
no elements to a process is undesirable for two reasons. First, it can complicate
the logic of programs in which processes exchange values. Second, it can lead to
a less efficient utilization of the communication network.

Whatwe need instead is a block allocation scheme that balances the workioad
by assigning to each process cither [n/p] or |n/p]{ elements. (If n is evenly
divisible by p every process will be assigned n/ p elements.) Let’s consider two
different ways of accomplishing this.

The first method begins by computing r = n mod p. If is 0, then n is a
multiple of p, and every process should get a block of size n/p. If 1 > (. then
the first r processes should get a block of size [/ p] and the remaining p — r
processes should get a block of size |n/p].

For example, whenn = 1024 and p = 10, the first four processes would get
103 pieces of work, and the last six processes would get 102 pieces of work.

There are two questions we typically need to be able to answer when de-
veloping algorithms based on a block allocation of data. What is the range of
elements controtled by a particular process? Which process controls a particutar
element? ’

Let’s answer these questions for our first scheme.

SECTION 5.4 Data Decomposition Options

-Suppase a1 is the number of elements and p is the number of processes. The
first element controlled by process i is

ila/p] + minGi, 7)

The last element conirolled by process i is the element immediately before the
first element controlted by process i + L:

(i + Dln/pj + minG +1,r)~ |
The process controlling a particular array element j is
min(Lj/(ln/p]+ DI, LG =)/ |n/p1D)

Al of these expressions are somewhat complicated: The expressions for the firs
- and last elements controlled by a particular process are not onerous, because each
process could compute these values and store the results at the beginning of the
algorithm. However, determining the controlling process from the element index
“would most likely be done on the fly, so the complexity of this expression is
womsome
The segond block allocatlon scheme we are considering does notconcentrate
- all of the larger blocks among the smaller-numbered processes. Supposen is the
- number of elements and p is the number of processes. The first element controlled
hy process i is

lin/ pl

The last element controlied by process { is the element immediately before the
first element controlled by processi + 1:

LG+ Dn/p] -1
The process conirolling a particular array clement j is
(PG + 1) = 1)/n]
Figure 5.3 contrasts these two block data decomposition methods.
The second approach is superior because it requires fewer operations to per-
form the three most common block management computations, especially since

integer division in C automatically rounds down the result. It is the block decom-
position method we will use for the remainder of the book.

Task 0 Task 1 Task 2 Task 3

ooen | [[T [LITTT LI LEL
oiwawed [[] LT LEET LLETL]

Figure 5.3 An example of two block data decomposition schemes. In
this case 14 elements are divided among four tasks. in the first scheme
the larger blocks are held by the lowest-numbered tasks; in the second
scheme the larger blacks are distributed among the tasks.

119

120

CHAPTER 5 The Sieve of Eratosthenes

5.4.3 Block Decomposition Macros

O‘—? Let's pause for 4 moment and define three C macros that can be used in any of
our parallel programs where a group of data items is distributed among a set of
processors using a block decomposition.

#define BLOCK_LOW{id,p,n} ({id)*{n}/(p})

- 4$define BLOCK_HICGH{id,p,n) {BLOCK_LOW((id)+l,p,n} - 1)

(i
tdefine BLOCK_SIZE{id,p,n) (BLOCK IOW({(id}+1)-BLOCK_LCW(id})
#define BLOCK_OWNER(index,p,n) [{(p}*{{index}+1)-1}/(n))

Given process rank 1.d, number of processes p, and number of elements 1,
+ maero.BLCCK_LOW expands to an expression whase value is the first, or lowest,
index controlled by the process. ’
" Given the same arguments, macro BLOCK_H1GH expands to an expression
whose value is the last, or liighest, index controlled by the process.

With the same three arguments, macro BLOCK_STZE evaluates to the num-
ber of elements controlled by process 1.c.

Passed an array index, the number of processes, and the total number of array
elements, macro BLOCK_OWNER evaluates to the rank of the process controlling
that elernent of the array.

These four definitions are the start of a set of utility macros and functions we
can reference when constructing our parailel programs.

5.4.4 Local Index versus Global Index

O—g- When we decompose an array into pieces distributed among a set of tasks, we

must remember to dlqtmgm\h between the local index of an array element and its
global index.

For example, consider an array distributed among tasks as shown in Fig-
ure 5.4. Eleven array elements are distributed among three tasks. Each task is
responsible for either three or four elements; hence the local indices range from
0 to either 2 or 3. However, each local array represents a portion of the larger,
global array, whose indices range from 0 to 10.

We must keep this distinction in mind when transforming sequential programs
into parallel programs. Sequential codes always use the global indices to reference
array elements. We must substitute the local indices when we write our parallel
codes.

Task 0 Task 1 Task 2
Globalindex 0 | 2 3456 78 910

LLrr CEidd LT
Localindex 0 1 2 123 01123

Figure 5.4 When an amay is distributed among fasks,
you must distinguish between an array elements local
index and its global index. Here an 11-element array is
distributed blockwise among three tasks.

SECTION 5.5 Developing the Parallel Algorithm

5.4.5 Ramifications of Block Decomposition

How does our block decomposition affect the implementation of the parallel
algorithm?)
First, note that the largest prime uvsed to sieve integers up to n is /. If the

“ - first process is responsible for integers through /i, then finding the next valae of

% requires no commusications at all—it saves a reduction step. Is this assumption
reasonable? The first process has about n/p elements. If n/ p > /n, then it will
control all primes through «/r. Since r is expected to be in the millions, this is a
reasonable assumption.

: A second advantage of ablock decomposition is that it can speed the marking
- ofcellsrepresenting multiples of k. Ratherthan check each array element o see if it
represents an integer that is a mulliple of k-—requiring #/ p modulo operations for
each prime-—the algorithm can find the first multiple of k and then mark that cell
(callit j)as wellas cells 4k, j 42k, etc., through the end of the block, foratotal
of about (/p)/k assignment statements. In other words, it can use a loop similar to
the one used in a sequential implementation of the algorithm. This is much faster.
. We have seen, then, how in this case a block decomposition results in fewer

= ‘ computatiohal steps and fewer communications steps.

‘5.5 DEVELOPING THE PARALLEL ALGORITHM

~ Now that we have determined the data decomposition, we return to the sequential

-~ algorithm shown in Figure 5.1 and see how each step translates into equivalent
* steps in the parallel algorithm.

Step | is simple to translate. Inslead of a single process creating an entire list

of natural numbers, each process in the parallel program will create its portion of

the list, containing cither [/ p} or (n/p] boolean values,

Every process is going to need to know the value of k in order to mark the
multiples of & in its region. For that reason, every process in the parallel pro-
gram executes step 2. This is an example of 2 parallel program replicating work.
Fortunately, in this case the amount of replicated work is trivial.

Step 3a1s also easy to translate. Each process is responsible for marking all
the multiples of in its block between &* and 7. We may need to do a litile bit of
algebra to determine the location of the first multiple of & in the block, but after
that, all we need to do is mark every kth element in the block.

As we have alrcady determined, process 0 is exclusively responsible for
determining the next value of k if p < ./, which is true for all values of 1 for
which we would reasonably want to execute the parallel algorithm. If process 0
is responsible for finding the next prme in step 3b, which determines the new
value of %, then all of the other processes must receive the new value of £ so that
they may compute the value of the termination expression in the repeat . . . until
loop and possibly use it in the next iteration of the loop.

In other words, we want to copy the np-to-date value of k on process 0 to
the local instances of k located on the other processes. This is an example of
broadcasting, a global communication function.

121

122

CHAPTER 5 The Sieve of Eratosthenes

5.5.1 Function MPI Bcast ™~~~

Let's look at the header of function MPI_Bcast, which enables a process to
broadcast one or more data items of the same type to all other processes in a
communicator:

int MPI_Bcast !

void *buffer, /* Addr of 1st broadcast element */
int count, /* # elements to broadcast */

MPI_Datatype datatype, /* Type of elements to broadcast */
int root, /* 1D of process doing broadcast */
MPI_Comm comm) ~ /* Communica '

The second parameter, count, indicateshow many elements are being broad-
cast. Every process calfing this function necds to specify the same value for
count. The first parameter, buf fer, is the address of the first data item o be
broadcast. The function assumes ali of the data items are in contiguous memory
focations. The third parameter, datatype, is an MPI constant indicating the
type of the data items to be broadcast. Parameter four, root, is the rank of the
process broadcasting the data item(s). Finally, the fifth parameter, comm, indi-
cates the communicator, the group of processes participating in this collective
communication function, ;

.In the case of our parallel sieve algorithm, process 0 needs to broadcast a
single integer, £, to all other processes. Hence the-call takes this form:

MPI_Bcast {&k, 1, MPI INT, 0, MPI_COMM_WORLD);

After this function has executed, every process has an up-to-date value of &
and is able 1o evaluate the termination condition in the repeat . . . until loop.

At the conclusion of the repeat . . . until loop, all the primes between 2 and n
have been discovered. They correspond to the unmarked elements of the boolean
array. A more meaningful program would then make use of the primes. Since we
are more interested in learning about parallel programming than number theory,
let’s take the easy way out and simply count (he number of primes in the range 2
through a.

1t is straightforward for each process to count the number of primes (number
of array elements equal to 0) in its local array. At that point we need to perform a
sum-reduction to accumulate these subtotals into 4 grand total. As we saw in the
previous chapter, this is implemented using the MPI function MPT_Reduce.

The task/channe] graph for our parallel algorithm appears in Figure 5.5.

5.6 ANALYSIS OF PARALLEL
SIEVE ALGORITHM

Now that we have designed a paralle] algorithm, let’s derive an expression that
approximates its execution time.

SECTION 5.7 Documenting the Paraflel Program

Figure 5.5 Task/channel graphforthe ..
parallel Sieve of Eratosthenes algorithm

with four tasks. The dotted arrows

represent channels used for 1/0. The

curved arrows represent channels used

for the broadcast step. The straight,

solid arrows represent channels used

for the reduction step (as previously

illustrated in Figure 3.12).

Let y represent the time nceded to mark a particular cell as being (he multiple
of a prime. This time includes not only the time needed (o assign | to an element
of the array, but also time needed for incrementing the loop index and testing
for termination. The sequential algorithm has time complexity ©(nInlnn). We
can determine y experimentally by running a sequential version of the algorithm.
" In other words, the’expected execution time of the serial algorithm is roughly

xnInlnsa. :
Since only a single data value is broadcast each iteration, the cost of cach
“broadcast is closely approximaled by A{log p], where A is message latency.
How many times will this loop iterate? The number of primes between 2
and n is aboul n/ Inn {11]. Hence a good approximation to the number of loop
iterations is \/n/ In /.

Therefore, the expecied execution (ime of the parallel algorithm is approxi-

mately

x(nlninn)/p + (Vn/ I /m)ATlog pl

5.7 DOCUMENTING THE PARALLEL PROGRAM

The complete text of the parallel Sieve of Eratosthenes program appears in
Figure 5.6. In this section we thoroughly document the program.

We begin with the standard include files. Header file MyMPI . h contains
macros and function prototypes for the utilities we are developing. From now
on, we'll include this header file in our programs. We also define 2 macro that
computes the minimum of two values.

123

4

124 CHAPTER 5 Ths Sisve of Eratosthenes

]
%

* Bieve of Eratostheneg

#include <mpi.h>

#include <math.h>

#include <stdio.hs

#include “MyMPI.h”

#define MIN(a,b) ((aj<(bl?{al: (b))

int main {int arge, char *argvi])

£
int counk ; {* Local prime count */
double elapsed_time; /* Parallel execution time */
int first; - }* Index of first multiple */
int glebal_count; /* Global prime count */
int high_value; /* Highest value on this proc */
int i: ’ '
int id; /* Process ID number */
int index; - /* Index of current prime */
. ing low_value; /* Lowest value on this proc */

) char *marked; /* Portion of 2,...,'n" */

int n; - /* Sieving from 2, ..., 'n" %/
- int p; /* Yumber of processes */
int proc(_size; =~ /* Size of proc 0's subarray */
. int primes /* Current prime */
ing size; 7* Elements in ‘marked' */
. MPI_Init (&argc, kargv);

/* Start, the timer */

MPI_Barrier (MPI_COMM WORLD) ;
elapsed_time = -MPI_Wtime();

MPI_Comm_rank (MPT_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

if {arge != 2) { :
if {(tid) printf ("Command line: $s <mx\n", argv(0]);
MPI_Finalize();
exit (1);

n = atoifargvil]);

/* Figure put this process’s share of the array, as
well as the integers represeated by the first and
last array elements */

low_value = 2 + BLOCK_LOW(id,p.n-1);

high_value = 2 + BLOCK HIGH(id,p,n-1};

size = BLOCK_SIZE(id,p.n-1);

/* Bail out if all the primes used for sieving are
not all held by process 0 */

Figure 5.6 MPI program for Sieve of Eratosthenes.

SECTION 5.7 Documenting the Parallel Program

proch size - {n-1j/p;

1f ({2 + proch_size] < (inkj sqrt({double) ni) f
if {!id) printf ("Too many processes\n*};
MPI Finalize{);
exit {1);

i* allocate this process’s share of the array. */
marked =" (char *) malloc (size);
if lwarked == WULL) {

printf {(*Cannoct allocate encugh memory\n"i; .

MPI_Finalizet);
exit {1};

}

for {1 = 0; i < size; i++} marked[i] = 0:

I {(1id) index = 0; .
prime = 2;

do {

{if {prime * prime > low_value)
first = prime * prime - low_value;

else |
if {1 {low_value % prime)) firat = 0;
else first = prime - {low_value % prime);

}
for (1 = first; 1 < size; I += prime) markedii] = 1;
if (1id)

L
while (marked{++index]);
prime = index + Z;
}
MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD);
} while (prime * prime <= n);
count = Q;
for (1 = 0; 1 < size; i++)
if {imarked]i]} count++;
MPI_Reduce {&count, &global_count, 1, MPI_INY, MPI_SUM,
0, MPI_COMM_WORLD);

/% Stop the cimer */

elapsed_time +- MPI_Wtimal(i:

/* Print the resulbs */

IE LD |
printf (*%d primes are less than or equal to %d\n®.
global_count, uj;
printi {"Total elapsed time: %10.6T%\n", elapsed_time);
}
MPI_Finalize (};
return 0;

Figure 5.6 (contd.) MPI program for Sieve of Eratosthenes.

125

126

CHAPTER 5 The Sieve of Eratosthenes

#define MIN{a,b) ((a}<(b}?{a}:(b)}

The user 1s supposed to specify the upper range of the sieve as acommand-line
argument. If this value is missing, we terminate execution. In this case it is vital
that each process calls MPT_Finalize () before it exits. If the command-line
argument exists, we convet the string into an integer.

if fargc '= 2) {

}

n

if (1id) printf {"Command line: %s <m>\n", argv{0});
MPI_Finalize();
exit (1):

= atoi(argv{ll);

The program will find all primes from 2 through #, meaning we are checking
the primality of a total of # — 1 integers. As we discussed earlier, we will give
each process a contiguous block of the array that stores the marks. We determine
the low and high values for which this process is responsible, as well as the total
number of values it is sieving, using the macros we have developed.

low_value = 2 + BLOCK_LOW{id,p,n-1);
high_value = 2 + BLOCK_HIGH(id,p,n-1);
size = BLOCK_SIZE(id,p,n-1);

Our algorithm works only if the square of the largest value in process (s
array is- greater than the upper limit of the sieve. We add code that checks to
ensure that this cendition is true. If not, the program terminates.

procl_size = (n-1)/p;

if ({2 + procO_size) < (int) sqrt{(double) n)) {
if (1id) printf ("Too many processes\n'):
MPI_Finalize();
exit (1);

Now we can allocate the process’s share of the array. Because a single byte
is the smallest unit of memory that can be indexed in C, we declare the array to
be of type char. If the memory allocation fails, the program terminates.

marked = {char *) malloc (size);
v
if (marked == NULL} {
printf ("Cannot allocate enough memory\n");
MPI_Finalize();
exit (1);

SECTION 5.7 Documenting the Parallel Program

“The elements of the list are unmarked.
for {1 = 0; 1 < size; i++} marked[i] = 0:

Whew! We have completed Step 1 of the algorithm. Fortunately, the remain-
ing steps can be implemented with much less coding. Step 2, for example, requires
only two lines. We will begin by sieving multiples of 2. Integer prime'is the
value of the current prime being sieved. Integer index is its index in the ar-
ray of process (. We conditionalize the initialization of index to process | Oto
emphasize that only process 0 uses this variable.

if (tid) index = 0;

» pr-ime,: 23

Now we areat the heart of the program, corresponding to Step 3 in the original
algorithm. We implement repeat . . . until in C asa do. . .while loop.

Each process is responsible for marking in its portion of the list all multiples
of prime between prime squared and n. To do this, we need to determine the
index corresponding to the first integer needing marking. If prime squared is
greater than! the smallest value stored in-the aray, then we take the difference
between the two values to determine the index of the first element that needs to
be marked. Otherwise, we find the remainder when we divide 1ow_value by
prime: If the remainder is 0, Low_value is a multiple of prime, and that is
where we should begin marking. Otherwise, we must index into the array to be
at the first element that is a multiple of prime.

if (prime * prime > low_value)
first = prime * prime - low_value;
else { i
if (}{low_value % prime)} first = 0
else first = prime - (low_value % prime);

~The following £or loop actually does the sieving. Each process marks the
multiples of the current prime number from the first index through the end of the
array.

for (i = first; 1 < size; 1 += prime) marked[i] = 1;

Process 0 finds the next prime by locating the next unmarked location in the
array.

if (1id) {
while (marked|++index]);
prime = index + 2;

}

Process 0 broadcasts the value of the next prime to the other processes.

MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD) ;

127

128 CHAPTER 5 The Sieve of Eratosthenes

The processes continue to sicve as long as the square of the current prime is
less than or equal to the upper limit.

} while {prime * prime <= nj;
Each process counts the number of primes in its portion of the list.

count. = 0;
for {1 = 0; 1 < size; 1++)
if (lmarked{i]) count++;

The processes compute the grand total, with the result being stored in vanable
global_count on process 0.

MPI_Reduce (&count, &global_count, 1, MPI_INT, MPI_SUM,
0, MPI_COMM_WORLD);

We stop the timer. At this point e lapsed_time contains the number of
seconds it took to cxecute the algorithm, excluding initial MPI startup time.

elapsed_time += MPI_Wtime{);
Process 0 prints the answer and the elapsed time.

it {1id)y |)
printf ("3d primes are less than or equal to %d\n",
global_count, n);
printf ("Total elapsed time: %10.6f\n", elapsed tiwme);
} - -

All that remains is a call to MPI__Finalize to shut down MPL

5.8 BENCHMARKING

Let’s see how well our model compares with the actual performance of the parallel
program finding all primes up to 100 million.

We will execute our parallel program on a commodity cluster of 430 MHz
Pentium IT CPUs. Each CPU has a fast Ethernet connection to a Hewlett-Packard
Procurve 4108GL switch.

First, we determine the value of y by running a sequential implementation of
the program on a single processor of the cluster. The sequential program executes
in 24.900 seconds. Hence

24 900 sec
- = 85.47 nanos
X 100,000,000 In In 100,000,000 nanoseconds

T

We also need to determine A. By performing aseries of broadcastson 2, . . ., §
processors, we determine A = 250 jisec.

SECTION 5.9 improvements

56
24
1921
10

128+

Time (sec)

26

641

Processors

Figure 5.7 Comparison of the predicted
* {Uotled line} and actual (sofid line} execution
i times of the parallel Sieve of Eratosthenes
program.

Plugging these values into our formula for the expected execution time of the
paralle! algorithm, we find

yninlnny/p + (Vn/ln J/m)Alog p = 24.900/p +0.2714log p] sec

We benchmark our parallel program by executing it 40 times—five times

for each number of processors between 1 and 8. For each number of processors

“we compute the mean execution time. Figure 5.7 compares our experimental

results with the execution times predicted by our model. The average error of the
predictions for 2,, 8 processors is about 4 percent.

5.9 IMPROVEMENTS

While the parallel sieve algorithm we have developed does exhibit good perfor-
mance, there are a few modifications to the program that can improve performance
significantly. In this section we present three modifications to the parallel sieve
algorithm. Each change builds on the previous ones.

5.9.1 Delete Even Integers

Since 2 is the only even pnime, there is little sense in setting aside half of the
boolean values in the array for even integers. Changing the sieve algorithm so
that only odd integers are represented halves the amount of storage required and
doubles the speed at which multiples of a particular prime are marked. With
this change the estimated execution time of the sequential algonithm becomes

129

130

CHAPTER 5 The Sieve of Eratusthenss

B
[}
i

Time (sec)
ey
o
T

Processors

Figure 5.8 "Execution time of the origina! -
(sclid line) and improved (dotted line) parallel
programs performing the Sieve of
Eratosthenes.

approximately
¥(nlnlnr)/2

and the estimated execution time of the parallel algorithm becomes approximately

X nlnn)/(2p) + (Va/ In /i log p

Figure 5.8 plots the results of benchmarking the original parallel sieve al-
gorithm and the improved algorithm sieving 100 million integers on 1,2,...,38
processors. As expected, the time required for the improved algorithm is about
half the time required for the original algorithm, at lcast when the number of
processors is small.

In fact, while our improved sieve runs twice as fast as our original program on
one processor, itexecutes only slightly faster on eight processors. The computation
time of the improved program is significantly lower than that of the original
program, but the communication requirements are identical. As the number of
processors incieases, the relative importance of the communication component to
overall execution time grows, shrinking the difference between the two programs.

5.9.2 Eliminate Broadcast

Consider step 3b of the original algorithm, in which the new sieve value & is
identified. We made this step parallef by letting one process identify the new
value of k and then broadcast it to the other processes. During the course of the
program’s execution this broadcast step is repeated about ./n/ In /n times.

SECTION 5.9. . improvements

Why not let every task identify the new value of &7 In our original data
decomposition scheme this is impossible, because only task 0 controls the array
elements associated with the integers 2, 3,, \/n. Whatif we chose to replicate
these values?

, Suppose in addition to each task’s set of about 21/ p integers, each task also has
a separate array containing integers 3,5, 7, ..., | /u]. Before finding the primes
from 3 through n, each task will use the sequential algorithm to find the primes
from 3 through | /n . Once this has been done, each task now has its own private

* copy of an array containing all the primes between 3 and [4/n]. Now the tasks

o can sieve their portions of the larger array without any broadcast steps.

: Eliminating the broadcast step improves the speed of the parallel algorithm

(J/n/In /m)iflog pl > x/mlinln yn
= (ATlogp)/n/n > xlnln /o
= A > ¥ Inln/nln \/n/[log p]

The expected time complexity of the parallel algorithm is now approkimately

X ((n~1n Inn)/(2p) +vnInln /) + Aflog p]

(The final term represents the time needed to do the sum-reduction.)

5.9.3 Reorganize Loops

For much of the execution of the parallel sicve algorithm, each process is marking
widely dispersed elements of a ver large array, leading to a poor cache hit rate,
Think of the heart of the algorithm developed in the previous subsection as two
large loops. The outer loop iterates over prime sieve values between 3 and | /i),
while the inner loop iterates over the process’s share of the integers between 3
and n. If we exchange the inner and outer loops, we can improve the cache hit
rate. We can fill the cache with a section of the larger subarray, then strike all the
multiples of all the primes less than |/n] on that section before bringing in the
next section of the subarray. (See Figure 5.9.)

5.9.4 Benchmarking

Figure 5.10 plots the executton times of the original parallel Sieve of Eratos-
. thenes program and all three improved versions, when finding primes less than
100 miltion on 1, 2, ..., 8 processors. The underlying hardware is a commodity
cluster consisting of 4)0nMHL Pentium I CPUs connected by fast Ethernet to a
Hewlett-Packard Procurve 4108GL switch.

The execution time of the original sequential program is the same as Sieve |
onone processor. On eight processors, our parallel sieve program that incorporates
every described optimization executes about 72.8 times faster than the original
sequential program. The larger share of the increase (a factor of 9.8) results from

- 131

132 CHAPTER 5 The Sieve of Eratosthenes

© 3-99: maltiples of 3

6@@@@@@@@@@@@@@@

3-99: multiples of 5

AEHEEEED

3-89: multiples of 7

@)

3-‘17: multiples of 3

19-33; multiples of 3, 5 @@@@

35-49: multiples of 3,5, 7 @@@@@
31-65: rultiples of 3,5. 7 @9@@@@
67-81: multples of 3,5,7 ~ (83 @@@ 75 @
83-97: muliiples of 3, 5,7 @@@@@

99: multiples of 3, 3,7

{b)

Figure 5.9 Changing the order in which composite integers -
are marked can dramatically improve the cache hit rate. In this
example we are finding primes between 3 and 99. Suppose the
cache has four lines, and each line can hold four bytes. One line
conttains bytes representing integers 3, 5, 7, and 9; the next line
holds bytes representing 11, 13, 15, and 17; etc. (a} Sieving all
rmultiples of one prime before considering next prime. Shaded
circles represent cache misses. By the time the algorithm returns
to the bytes representing smaller integers, they are no longer in
the cache. (b) Sieving multiples of all primes for 8 bytes in two
cache lines before considering the next group of 8 bytes. Fewer
shaded circles indicates the cache hit rate has improved.

eliminating the storage and manipulation of even integers and inverting the two
principal loops to improve the cache hit rate. The smaller share of the increase
(a factor of about 7.4) results from redundantly computing primes up to \/n to
eliminate broadcasts and using eight processors instead of one. Qur greater gains,
then, were the result of improvements to the sequ«,ntla] algorithm before paral-
lelism was applied.

SECTION 5.10 Summary

pa i

192+

1601

Time (sec)
s v =
o~ (= =3
1 T

e
A
T

Processors

Figure 5.10 Execution time of four parailel
implementations of the Sieve of Eretosthenes
on a commodity cluster of 450 MHz Pentium I
processors connected by fast Ethernet.

The upper solid line is the original program.
The dotted line is the execution time of the
program that does not store o strike aven
integers. The dashed fine plots the execution
fime of the program that eliminates
broadcasts. The lower sofid fine shows the
exacution time of the program that
incorporates the additional optimization of
interchanging loops in order to improve the
cache hit rate.

5.10 SUMMARY

We began with a sequential algorithm for the Sieve of Eratosthenes and used the
domain decomposition methodology to identify parallelism. For this algorithm,
a blockwise distribution of array values to processes is superior to an interleaved
distributton. The data-parallel algorithm we designed requires that task 0 broad-
casls the current prime Lo the other tasks. The resuliing parallel program uses the
function MPT_Bcast to perform this broadcast operation. The program achieves
good performance on a commodity cluster finding primes up to 100 million.

We then examined three improvements to the original parallel version. The =
first improvement eliminated all manipulation of even integers, roughty eutting in
half both storage requirements and overall execution time. The second improve-
ment eliminates the need for a broadcast step by making redundant the pertion of
the computation that determines the next prime. The cost of this improvement is
a requirement that each process store all odd integers between 3 and /n.

133

134

CHAPTER 5 Ths Sievs of Cratosthenes

The third enhancement improved the cache hit rate by striking all composite
values for a single cache-full of integers hefore moving on to the next segment.

Note that cur fourth program executes faster on one processor than our orig-
inal program does on eight processors. Comparing both programs on eight pro-
cessors, the fourth program executes more than 11 times faster than our original
program. It is important to maximize single processor performance even when
imultiple processors are available.

5.11 KEY TERMS

block decomposition data decomposition

5.12 BIBLIOGRAPHIC NOTES

Luo{76] presents a version of the Sieve of Eratosthenes in which neither multiples
of 2 nor multiples of 3 appear in the arfay of tategers to be marked.

5.13 EXERCISES

5.1 Consider a simple block allocation of # data items to p processes in
which the figst p — | processes get {n/ p] items each and the last process
gets what is left over.

a Find values for n and p where the last process does not get any
elements.

b. Find values for n and p where | p/2] processes do not get any values
Assume p > 1.

5.2 This chapter presents two block data decomposition strategies that assign
n elements to p processes such that each process is assigned cither [n/p)
or {n/ p] elements. For each pair of values n and p, use a table or an
illustration to show how these two schemes would assign array elements
i0 processes:

a n=15and p=4
b.a=15andp=6
cn=I16andp=>5
dn=18adp=4
e.n=20andp==6
fa=2andp=7

53 Use the analytical model developed in Section 3.6 to predict the
execution time of the original parallel sieve programon 1,2, ..., 16
processors. Assume n = 10%,) = 250 usec, and x = 0.0855 pusec.

5.4 Use the analytical model developed in Section 5.9.1 to predict the ~
execution time of the second version of the parallel sieve program (the
one that does not store or mark even integers). Compare the execution

SECTION 5.13 Exercises

time predicted by the model to the actual execution time reported in
column 2 of Table 5.1. What is the average error of the predictions for
2, ..., 3 processors?

Table 5.1 Mean execution times (in seconds) of four paraliel
implementations of the Sieve of Eratosthenes on a commodity cluster of
450 MHz Pentium {l processors connected by fast Ethernet, Sieve 1is the
original program, Sieve 2 does not store or sirike even integers. Sieve 3
incorporates the additional optimization of gliminating broadcasts by

" computing primes betwean 2 and /7 on each processor. Sieve 4

55

5.6

5.7

58

5.9

incorporates the additional optirsization of interchanging 1oops in order to
improve the cache hit rate,

2490 12231 12466 2513

t

2 12721 6.609 6.378 1330
3 8843 5019 42m 0.901
4 6.768 4072 3201 0679
5 5.794 3652 2.559 0.543
6 : 494 3200 2127 0456
7 4m 3059 1820 0.391
8 1977 2856 1.585 0342

Use the analytical model developed in Section 5.9.2 as a starting point
to predict the execution time of the third version of the parallel sieve

-program. Assume n = 10%, & = 250 pusec, and x = 0.0855 psec.

Compare the execution time predicted by your model to the actual
execution time reported in column Sieve 3 of Table 5.1. What is the
average error of the predictions for 2, .. ., 8 processors?

Modify the parallel Sieve of Eratosthenes program presented in the text to
incorporate the first improvement described in Section 3.9: it should not
set aside memory for even integers. Benchmark your program, comparing
its performance with that of the original parallel sieve program.

Modify the parallel Sieve of Eratosthenes program presented in the book
to incorporate the first two improvements described in Section 5.9. Your
program should nol set aside memory for even integers, and each process
should use the sequential Sieve of Eratosthenes algorithm on a separate
array (o find all primes between 3 and | /n). With this information, the
call to MPT _Bcast can be eliminated. Benchmark your program,
comparing its performance with that of the original parallel sieve
program.

Madify the parallel Sieve of Eratosthenes program presented in the text
to incorporate all three improvements described in Section 5.9.
Benchmark your program, comparing its performance with that of the
original paralle] sigve program.

All the parallel sieve algorithms developed in this chapter are the result
of a domain decomposition of the original algorithm. Write a parallel

135

136 CHAPTER 5 The Sieve of Fratosthenes

5.10

511

Sieve of Eratosthenes program based ipon a functional decomposition of
the algorithin. Suppose there are p processes finding primes up to #. (The
prograrm gets these paramcters from the command line.) In the first step
each process independently identifies primes up to ,/n. In step two each
process sieves the list of integers with 1/ pth of the primes between 2 and
/0. During the third step the processes OR-reduce their arrays into a
single array held by process 0. In the last step process 0 counts the
unmarked elements of the array and prints the prime number count.

For example, suppose three processes are cooperating to find primes
up to 1000. Each process allocates an array of 999 elements, representing
the integers 2 through 1000. Each process identifies the primes less than
or equal to +/1000: 2,3, 5,7, 11, 13, 17, 19, 23, 29, 31. Process 0 sieves
its array with the primes 2,7,17, and 29; process 1 sieves its array with
the primes 3, 11, 19, and 31: and process 2 sieves its array with the
primes 5, 13, and 23.

Identify three disadvantages of the paralle] program design described in
the previous exercise compared to.the original parallel design described
in this chapter.
The simplest harmonic progression is

111

1’2377
Let §, = Z’ﬂ:’ 1/i. .
a. Wiite a paralel program that computes these sums to arbitrary

precision after the decimal point. For example, §; = 2.592857142857,

" to 12 digits of precision after the decimal peint. Process 0) should
query the user for the two parameters, » and d, and broadcast these
parameters to the other processes. Processes should work together to
compute S, to d digits of precision after the decimal point. After §,,
has been computed, process 0 should print its value,

b. Benchmark the program computing S ag.g00 to 100 digits of
precision, using various numbers of processors,

Floyd’s Algorithm

Not once or twice in our rough island story
The path of duty was the path of glory,
Alfred, Lord Tennyson, Ode on the Death of the Duke of Wellington

6.1 INTRODUCTION

Travel maps often contain tables showing the driving distances between pairs of
cities. At the intersection of the row representing city A and the column repre-
senting city B is a cell containing the length of the shortest path of roads from A
to B. In the case of longer trips, this route most likely passes through other cities
represented in the table. Floyd’s algorithm is a classic method for generating this
kind of table.

In this chapter we will design, analyze, program, and benchmark a parallel
version of Floyd’s algorithm. We will begin to develop a suite of functions that
can read matrices from files and distribute them among MPI processes, as well
as gather matrix elements from MPJ processes and print them.

This chapter discusses the following MPI functions:

8 MPT_Send, which allows a process to send a message to another process

& MPI_Recv, which allows a process to receive a message sent by another
process

6.2 THE ALL-PAIRS SHORTEST-PATH
PROBLEM

A praph is a set consisting of V, a finite set of vertices, and E, a finite set of
edges between pairs of vertices. Figure 6.1 ais a pictorial representation of a graph,

137

138 CHAPTER 6 Foyd's Algorithm

<
8]
(%]
FN

(=

<
[+
[¥%)
EN
[~

<
<
M
o
8
Y
5
=
)
(&)
n
td
[«
w]

~
3
8
I~
5
<
w
o+
g
oo
(=]
wn
=2
)

() &))

Figure 6.1 (a) A weighted, directed graph. {b) Representalion of the graph as an adjacency matrix.
Element {7, f) represents the length of the edge from / to ;. Nonexistent edges are considered to have infinite
fength. {c) Solution to the all-pairs shortest path problem. Element (i, f) represents the length of the shortest
path fram vertex / to vertex f. The infinity symbof represents nonexistent paths.

in which vertices appear as tabeled circles aiid edges appear as lines between
pairs of circles. To be more precise, Figure 6.1a 15 a picture of a weighted,
directed graph. It is a weighted graph because a numerical value is associ-
ated with each edge. Weights on edges can have a variety of meanings. In
the case of shortest path problems, edge weights comespond to distances. It
is a directed graph because every edge has an onentation (represented by an
arrowhead). -

Given a weighted, directed graph, the all-pairs shortest-path problem is
to find the length of the shortest path between every pair of vertices. The length
of a path is strictly determined by the weights of its edges, not the number of
edges traversed. For example, the length of the shortest path between vertex 0
and vertex 5 in Figure 6.1a is 9; it traverses four edges (0 — |, 1 — 3,3 — 4,
and 4 — 5).

If we are going to solve this problem on a computer, we must find a con-
venient way to represent a weighted, directed graph. The adjacency matrix is
the data structure of choice for this application, because it allows constant-time
access to every edge and does not consume more memory than is required for
storing the solution. An adjacency matrix is ann x 7 matrix representing a graph
with n vertices. In the case of a weighted graph, the value of matrix clement {i, J)
is the weight of the edge from vertex ¢ to vertex f. Depending upon the appli-
cation, the way that nonexistent edges are represented varies. In the case of the
single-source shortest-path problem, nonexistentedges are assigned extremely
high values (such as the maximum integer representable by the underlying archi-
tecture). For convenience, we will use the symbol oc to represent this extremely
high value. Figure 6.1b is an adjacency matrix representation of the same graph
shown pictorially in Figure 6.1a. '

SECTION 6.3 Creating Arays at Run Time

Floyd’s Algorithm:

Ioput: 1 — mumber of vertices
af0.n — 1.0.a — 1] — adjaceacy matrix
Output: Transtonned 4 that contains the shoriest path lengths

fork «Qlon -1
fori «-0twan—1
forj «0ton—1
ali, j] < wminfali, j). oi. k) +alk, j])
endfor
endfor
endfor

Figure 6.2 Floyds algorithm is an ©(n?) time
algorithm that solves the ali-pairs shortest-path
problem. it transforms an adjacency matrix into a

- matrix containing the length of the shortest path
between every pair of vertices,

" When the algorithm teaminates, the matrix contains the lengths of the shortest
- path between every pair of vertices. Figure €.1¢ is the solution of the all-pairs
" shortest-path problem for the graph represented in Figure 6.1a.

' More than 40 years ago Floyd invenfed an ©(n*) time algorithm for solving

o the all-pairs shortest-path problem. Floyd's algorithm appears in Figure 6.2. For

more information on this algonthm, see Cormen et al. {18].

6.3 CREATING ARRAYS AT RUN TIME

A program manipulating 2n array is more useful if the size of the amay can be
specified at run-time, because it does not have to be recompiled when the size
of the array to be manipulated changes. Allocating 2 one-dimensionad array in
C is easily done by declaring a scalar pointer and allocating memory from the
heap with a malloc statement. For example, here is a way to allocate matrix A, a
one~dimensional, n-element array of integers:

int *A;
A = (int *) malloc (n * sizeof(int));

Allocating a two-dimensional array is more complicated, however, since C
freats a two-dimensional array as an array of arrays. We want to ensure that the
array elements occupy contiguous memory locations, so that we can send or
receive the entire contents of the array in a single message.

Here isone way to allocate a two-dimensional array (see Figure 6.3). First, we
allocate the memory where the array values are io be stored, Second, we allocate
the array of pointers. Thir:l, we initialize the pointers.

139

CHAPTER B Floyd’s Algorithm

Bstorage B

Figure-6.3 Allocating a 5 x 3 matrix is a
three-step process. First, the memory for the
15 matrix values is allocated from the heap.
Variable 5storage points to the start of this
block of memory. Second, the memory for the

. five row pointers is aflocated from the heap.
Variable B paints to the start of this black of
memory. Third, the values of the pointers 2[0],
B[1],..., B{4] are initialized.

For example, the following C code allocates B, a two-dimensional array
integers. The array has m rows and o columns:

int **B, *Bgtorage, 1;

Bstorage = (int *) malloc {m * n * sizeof(int)};
_ B = (int **) malloc (m * sizeof(int *}};

for (i =0; 1 <m; 1+4)

Bli] = &Bstorage[i*n];

The elements of B may be initialized in various ways. If they are initializ
through a series of assignment statements referencing B{G) [0],B[0] [1], &
there is little room for error. However, if (he elements of B are initialized en mas:
for example, through a function call that reads the matrix elements from a fi
remember to use Bstorage, rather than 3, as the starting address.

6.4 DESIGNING THE PARALLEL ALGORITHM

6.4.1 Partitioning

Our first step is to determine whether to choose a domain decomposition
a functional decomposition. In this case, the choice is obvious. Looking at t
pseudocode in Figure 6.2, we see that the algorithm executes the same assigrime
staternent 72’ times. Unless we subdivide this statement, there is no functior
parallelism. In contrast, it’s easy to perform a domain decomposition. We

SECTION 6.4 Designing the Parallel Algorithm

O0O0O0O0O 0O00O0O0
OO0 000 O
O000O0 O
OO0 000 0O
O0O00O0 O
@ ®
0 O000 0000
0 O O O O O & 00:0
00000 0®000
(c) : @

Figure 6.4 Partitioning and communication in Floyd’s
algorithm. (a) A primitive task is associated with each
element of the distance matrix. {b) Updating a[3, 4] when

& =1. The new value of a]3, 4] depends upon its previous
value and the values of {3, 1] and a{4, 4]. {c) During
iteration k every task in row k must broadcast its value to the
cther tasks in the same column. In this drawing k = 1.

(d) During iteration k every task in column & must broadcast
its value to the other tasks in the same row. In this drawing
k=1.

divide matrix A into its n® elements and associate a primitive task with each
element (Figure 6.4a).

6.4.2 Communication

Each update of element ali, j] requires access to elements ali, k| and alk, j].
- For example, Figure 6.4b illustrates the elements needed to update a[3, 4] when
& = 1. Notice that for any pacticular value of &, element afk, m] is needed by
every task associated with elements in column m. Sinularly, for any particular
value of k, element afm, k] is needed by every task associated with elements in
row m. What this means is that during iteration k each element in row k of a gets

141

142

CHAPTER 6 Floyds Algorithm

broadcast to the tasks in the same column (Figure 6.4c). Likewise, each ¢lement
in column k of a gets broadcast to the tasks in the same row (Figure 6.4d).

It's important to question whether every element of a can be updated simul-
taneously. Alter all, if updating a[i, j] requires the values of alk. k] and alk, j|,
shouldn’t we have to compute those values first?

The answer fo this question is no. The reason is that the values of afi,]
and al%, j] don’t change during iteration &. That's because during iteration & the
update to ali, k] takes this form:

afi, k] < min(ali, k], afi, k] -+ alk, §1)

Since all values are positive, a[i, k] can’t decrease. Similarly, the update to af£, 3
takes this form:

alk, j1 < min(alk, j1, alt, &3+ alk, j]

The value of af%,] can’t decrease. Hence there is no dependence between the
update of ai, j] and the updates of a{i, k] and afk, f]. In short, for each iteration
k of the outer loop, we can perform the broadcasts and then updale every element
ol a in parallel.

6.4.3 Agglomeration and Mapping

We'll use the decision tree of Figure 3.7 to determine our agglomeration and
mapping strategy. The number of tasks is static, the communication pattern among
tasks is structured, and the computation time pertask is constant. Hence we shoilld
agglomerate tasks to minimize communication, creating one task per MPI process.

. Our goal, then, is to agglomerate 1’ primitive tasks into p tasks. How
should we collect them? Two natural agglomerations group tasks in the same
row or column (Figure 6.3). Let’s examine the consequences of both of these
agglomerations.

If we agglomerate tasks in the same row, the broadcast that occurs among
primitive tasks in the same row (Figure 6.4d) is eliminated, because all of these
data values are local to the same task. With this agglomeration, during every
iteration of the outer loop one task will broadcast n elements to all the other tasks.
Each broadcast requires time [log p](A +n/8).

If we agglomerate tasks in the same column, then the broadcast that oc-
curs among primitive tasks in the same column (Figure 6.4c) is eliminated. This
agglomeration, loo, results in a message passing time of [log p}(A + 1/B) per
iteration. ‘ '

(The truth is that we haven't considered an even betier agglomeration, which
groups primitive tasks associated with (n/,/p) x (n/,/p) blocks of elements of
A. We’ll develop a matrix-vector multiplication program based on this data de-
composition in Chapter 8, when we have a lot more MPI functions under our belt.)

To decide between the rowwise and columnwise agglomerations, we need -
to look outside the computational kernel of the algorithm. The parallel program
must input the distance matrix from a file. Assome that the file contains the matrix

SECTION 6.4 Designing the Parallel Algorithm

L CLTTEPREEPIPEPEEEERY

(a) ®)

Figure 6.5 Two data decompositions for matrices. (a) Ina
rowwise block-striped decomposition, each process is responsible
for a contiguous group of rows. Here 11 rows are divided among
three processes. (b) in a columnwise block-striped degomposition,
each process is responsible for a contiguous group of columns.
Here 10 columns are divided among three processes.

in row-major order. (The file begins with the first row, then the second row, etc.)
In C, matrices are also stored in primary memory in row-major order. Hence
distributing rows among processes is much easier if we choose a rowwise block-

~ striped decomposition. This distribution also makes it much simpler to output
the result matrix in row-major order. For this reason we choose the rowwise _

block-striped decomiposition.

6.4.4 Matrix Input/Output

We must now decide how we are going to support matrix input/output.

First, let’s focus on reading the distance matrix from a file. We could have
each process open the file, seck to the proper location in the file, and read its
purtion of the adjacency matrix. However, we will let one process be responsible
for file input. Before the computational loop, this process will read the matrix
and distribute it to the other processes. Suppose we have p processes. If process
p — | is responsible for reading and distributing the matrix elements, it is casy to
implement the program so that no extra space is allocated for file input buffering.

Here is the reason why. If process i is responsible for rows {in/ p] through
L+ Nn/p] — 1, then process p — 1 is responsible for [/ p] rows (see Exer-
cise 6. 1), That means no process is responsible for more rows than frocess p— 1.
Process p — | can use the memory that will eventualty store its [#/p] rows to
buffer the rows it inputs for the other processes.

Figure 6.6 shows how this method works. The last process opens the file, reads
the rows destined for process (), and sends these rows to process 0. It repeats these
" steps for the other processes. Finally, it reads the rows it is responsible for.

143

144 CHAPTER & Floyd's Algorithm

Figure 6.6 Example of a single process managing file input. Here
there are four pracesses, labeled 0, 1, 2, and 3. Process 3 opens the
file for reading. In step Oa it reads process 0's share of the data; in step
0b it passes the data to process 0. in steps 1 and 2 it does the same
for processes 1 and 2, respectively. In step 3 it inputs its own data.

SECTION 6.5 Poini-to-Point Communication

~ The complete function, called read “¥ow Etriped_matrix,appearsin
Appendix B. Given the name of the input {ile, the data type of the matrix elements,
and a communicator, it returns (1) a pointer to an array of pointers, allowing the
matrix ¢lements to be accessed via double-subscripting, {2) a pointer to the loca-
. fion containing the actual matrix elements, and (3) the dimensions of the matrix.
Our implementation of Floyd's algorithm will print the distance matrix twice:
when it contains the original set of distances and after it has been transformed
- into the shortest-path matrix.
-~ Process () does all the printing to standard output, so we can be sure the values
appear in the corect order. First it prints its own submatrix, then it calls upon each
~of the other processes in turn to send thelr submatrlces Prm.ess 0 will receive
" each submatrix and print it. o
Little is required of processes 1, 2, . .., p — 1. Each of these processes simply
waits for a message from process 0, then sends process () its portion of the matrix.
* Using this protocol, we ensure that process O never receives more than one
submatrix at a time. Why don’t we just let every process fire its submatrix 1o
“process 07 After all, process § can distinguish between them by specifying the
“rank of the sending process in its call to MPI_Recv, The reason we don’t let
 PrOCesses send data to process 0 until requested is we don’t want to overwhelm
 the processor on which process 0 is executing. There is only a finite amount of
‘bandwidth into any processor. If process 0 needs data from process 1 in order
1o proceed, we don’t want the message from process 1 to be delayed because
messages are also being received from many other processes.
The source code for function print_row_striped_matrix appears
in Appeadix B.

" 6.5 POINT-TO-POINT COMMUNICATION

1a our function that reads the matrix from a file, process p — | reads a contigu-
“ous group of matrix rows, then sends a message containing these rows directly
fo the process responsible for managing them. In our function that prints the
mafrix, each process (other than process 0} sends process § a message con-
taining its group of matrix rows. Process {) receives each of these messages
and prints the rows to standard output. These are examples of point-to-point
communications.

A point-to-point communication involves a pair of processes. In contrast,

-the callective communication operations we have previously explored involve
every process in a group.

Figure 6.7 illustrates a point-to-point communication. In this example, pro-
cess /i 13 not involved in a communication. It continues executing statements
manipulating its local variables. Process i performs local compntations, then
sends a message to process J. After the message is sent, it continues on with its
computation. Process J performs local computations, then blocks until it receives
amessage from process i.

145

146

CHAPTER & Fioyd’s Aigoritbm

Process h Process i Process j
Compute Comptte
Send to §
Compute Wait
Compute Receive 1’?"1, i
Compute |

Figure 6.7 Puint-to-point communications involve pairs of
processes.)

if {id == 1) |
/* Sond message to j */
} elge if {id =» §) {

/

/* Receiva message from i ¥/

Figure 6.8 MPi functions
performing point-te-point
communications often occur inside
conditionally executed code.

1f every MP] process executes the same program, how can one process send
a message while a second process receives a message and a third process docs
neither?

In arder for execution of MPI function calls to be limited to a subset of

the processes, these calls must be inside canditionally executed code. Figure 6.8
demonstrates one way that process i could send a message to process j, while
the remaining processes skip the message-passing function calls.

Now let’s look at the headers of two MPl functions that we can use to perform
a point-to-point communication. :

6.5.1 Function MPT_Send

The sending process calls function MPI_Send:

int MPI_Send | N
void *message,
int count,

IO

SECTION 6.5 Point-to-Point Communication

MPT_Datatype datatype,

int dest,
int tag,
MPI_Comin Comm

, The first parameter, mes sage, is the starting address of the data to be trans-
* mitted. The second parameter, count, is the number of data items, while the
third parameter, datatype, is the type of the data items. All of the data items
must be of the same type. Parameter 4, dest, is the rank of the process to
receive the data. The fifth parameter, tag, is an integer “label” for the mes-

sizth parameter, comm, indicates the communicator in which this message is
' being sent. | ‘

- Function MPI_Send blocks until the message buffer is once again avail-
able. Typically the run-time system copies the message into a system buffer,
enabling MPI_ Send to return controf to the caller. However, it does not have to
do this.

- 6.5.2 Function MPI_Recv

" The receiving process calls function MPI_Recv:

int MPI_Recv {

void *message,
int count,
MPI_Datatype -datatype,
int source,
int tag,
MPI_Comm comm,

MPI_Status *status

The first parameter, message, 15 the starting address where the received
data is to be stored. Parameter 2, count, is the maximum number of data ilems
the receiving process i5 willing to receive, while parameter 3, datatype, isthe

. type of the data items. The fourth parameter, scurce, is the rank of the process
sending the message. The fifth parameter, tag, is the desired tag value for the
message. Parameter 6, comm, identifies the communicator in which this message
is being passed.

Note the seventh parameter, st atus, which appears in MPI_Recv, butnot
MPI_Send. Before calling MPT_Recv, you need to allocate a record of type
MPI_Srkatus. Parameter status is a pointer 1o this record, which is the only
user-accessible MPI data structure.

Function MPI_Recv blocks until the message has been received (or until
an error condition causes the function to retum). When function MPT_Recv

sage, allowing messages serving different purposes to be-identified. Finally, the -

147

148

float
int

CHAPTER & floyd's Algorithm

returns, the status record contains information about the just-completed function.
Tn particular:

@ cstatus->MPI_source is the rank of the process sending the message.
B status->MPI_tag is the message’s tag value.
® status->HMPI ERROR is the error condition.

Why would you need to query about the rank of the process sending the
message or the message’s tag value, if these valves are specified as arguments
to function MPI_Recv? The reason is that you have the option of indicating
that the receiving process should receive a message from any process by making

.the constant MPT. ANY_S0URCE the fourth argument to the function, instead of

a process number. Similarly, you can indicate that the receiving process should
receive a message with any tag value by making the constant MPI_ANY TAG
the fifth argument to the function. In these circumstances, it may be necessary to
look at the status record to find out the identity of the sending process and/or the
vatue of the message’s tag.

6.5.3 Deadlock

“A process is in a deadlock state if it is blocked waiting for a condition that
will never become true” [3]. it is not hard to write MPI programs with calls to
MPI_Sendand MPI_Recv that cause processes (o deadlock.

For example, consider two processes with ranks 0 and 1. Each wants to
compule the average of 2 and b. Process 0 has an up-to-date value of a; process
1 has an up-to-date value of b. Process 0 must read b from 1; while process 1
must read a from 0. Consider this implementation:

a, b, c;
id; /* Process rank */

MPI_Status status;

if (id == 0)

{
MPI Recv {&bh, 1, MPI_FLOAT, 1, 0, MPI_COMM WORLD, &status);
MPI_Send (&a, 1, MPI_FLOAT, 1, 0, MPI_COMM WORLD); k
c=ta+b) /2.0;

}oelse if (id == 1} { .
MPI_Recv {(&a, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send (&b, 1, MPI_FLOAT, 0, 0, MPI COMM WORLD);

c = {a+ b /2.0;
} AN

Before calling MPI_Send, process 0 blecks inside MPT_Recw, waiting for
the message from process 1 to amive. In the same way. process 1 blocks inside
MPI_Recv, waiting for the message from process 0 o arrive. The processes are -
deadlocked.

SECTION 6.6 Documenting the Paralls! Program

Okay, that error was fairly obvious (though you might be surprised at how

 pften this kind of bug occurs in practice). Let’s coasider a more subtle error that
also leads to deadlock.

, We're solving the same problem. Processes 0 and 1 wish to exchange floating-

~ point values. Here is the code:

float a, b, c;
int id; /* Process rank */
- MPI_Status status;

Cif id = 0) |
MPI_Send {&a, 1, MPI_FLOAT, 1,

—

MPI_Recv {&b, 1, MPI_FLOAT, 1, 1, MPI_COMM_WORLD, &status);
| c=+f(a+b)/ 2.0;
©) else if {id == 1} {

MPI_Send {&b, 1, MPI_FLOAT, 0, 0, MPI_COMM_WORLD) ;

MPI_Recv (sa, 1, MPI_FLOAT, 0,
c=la+h) /2.0;

<o

Now both processes send the data before trying to receive the data, but they
- still deadlock. Can you see the misiake? Process () sends a message with tag 1
" and tries to receive a message with tag 1. Meanwhile, process 1 sends a mes-

sage with tag 0 and tries to receive a message with tag 0. Both processes will
. block inside MPI_Recv, because ncither process will receive a message with
- the proper tag.

Another common error occurs when the sending process sends the message to -

the wrong destination process, or when the receiving process altempts to receive
the message from the wrong source process.

6.6 DOCUMENTING THE PARALLEL PROGRAM

We can now proceed with our parallel implementation of Floyd’s algorithm. Our
parallel program appears in Figure 6.9.

We use a typedef and a macro to indicate the type of matrix we are manipulat-
ing. If we decided to modify our program to find shortest paths in deuble-precision
- -floating-point, rather than integer, matrices, we would onty have to change these
two lines as shown here:

typedef double dtype;
#define MPI_TYPE MPI_DOUBLE

Function main is responsible for reading and printing the originat distance
matrix, calling the shortest path function, and printing transformed distance ma-
trix. Note that it checks to ensure the matrix is square. If the number of rows
does not equal the number of columns, the processes collectively call function

, MPT_COMM_WORLD) ;.

, MPI_COMM_WORLD, &status);

149

150

CHAPTER 6 Foyd's Algorithm

terminate, which prints the appropriate error message, shuts down MPL, and
terminates program execution, The source code for function terminat ¢ appears
in Appendix B.

Now let’s look at the function that actually implements Floyd’s algorithm.
Function compute__shortest_paths has four parameters: the process rank,
the number of processes, a poinier to the process’s portion of the distance matrix,
and the size of the matrix.

Recall that during each iteration k of the algorithm, row k must be made

-available to every process, in order ko perform the computation

afil{i] = MIN{alil[3],alill [kl+alki{j]);

/*
* Floyd's all-pairs shortest-path algorithm
*/

#include <stdio.h> B
#include «mpi.h>
fiinclude "MyMpl.h"

typedef int dtvpe;
Fdefine MPI_TYPE MPI_INT

int main {int argc, char *argvi]) {

dtype** a; /* Doubly-subscripted array */
dtype* storage; /* Local portion of array elements */
int iy, Kk '
int -id; /* Process rank */

int m; /* Rows in matrix */

int n; /% Columns in matrix */

int P /* Bumber of procssses */
void compute_shortest_paths (int, int, int**, int);

MPI_Init {Eargc, &argvi;
MP1_Comm_rank {MPI_COMM_WORLD, &id);
MPI1_Comm_size {(MPI_COMM_WORLD, &p};

read row_striped matrix largvill, (void *} &a,
{void *) Estorage, MPI_TYPE, &m, &n, MPI_COMM _WORLD);

if (m s n) terminate [id, "Matrix must he square\n';

print_row_striped_matrix {{void **) a, WPI_TYPE, m, 1,
MPI_COMM_WORLD) ;

compute_shortest paths (id, p, (dtype **} a, n);

print_row_striped matrix {{void **) a, MPI_TYPE, m, nu,
MPT_COMM_WORLD) ;

MPI_Finalize();

Figure 6.9 MPI program implementing Floyd's algorithm.

SECTION 6.7 Analysis and Benchmarking 151

vold compute_shortest_pathg (int id, int p, dtype **a, int n)
{

int i, j, k;

int offset; /* Local index of broadcast row */

int. rTook; /* Process controlling row to bs bcast */
int* tmp; /* Holds the broadcast row */

tmp = {diype *) malloc {n * sizeof (dtype));
for (X = 0; k < n; k) { ’
root = BLOCK_OWNER (k,p,n);
if {root == id) {
offset = k - BLOCK_LOW(id,p,n);
for (3 = 03 3 < n; J++)

tmplj] = atofEset]{jl;

1
g

MPI_Beast {tmp, n, MPI_TYPE, root, MP1_COMM_WORLD);
for (1 = 0; 1 « BLOCK_SIZE{id,p.n); 1i:+}
for {3 = 07 § < n; J++)
ali} (i) = WINfali}[3),a(i) k]+tmpiiids

}

free (tmp);

t

Figure 6.9 (cortd.) MP! program implementing Floyd’s algorithm.

Every process allocates an array of n integers, called tmp, that will be used
to store row k. .

As in the sequential algorithm, the paralle] algorithm has n iterations. During
" eachiteration, the processes determine which process controls row k. This process
is the rott of the broadcast ree. After the call (0 MPI_Bcast, each process
has a copy of row k in its array tmp. Hence the assignment shown previously
becomes

6.7 ANALYSIS AND BENCHMARKING

10's easy to see that the sequential version ol Floyd's algorithm has time complexity

®(n’). Let's analyze the complexity of our parallel version of Floyd’s algorithm.

The innermost loop, the one that updates a single row of 4, is identical to

the innermost loop in the sequential algorithm and has time complexity O(x).

(iven a rowwise block-striped decomposition of matrix A, each process executes

© at most {n/p] iterations of the middle loop. Hence the complexity of the inner
two loops is @(n*/p).

Immediately before the middle loop is the broadcast step. Passing a singfe
message of length n from one processor to another has time complexity &(n).
Since broadcasting to p processors requires {log p] message-passing sleps, the
overall time complexity of broadcasting each iteration is ©¢n log p).

152

CHAPTER 6 Hoyd's Algorithm

For every iteration of the outermost loop the parailel algorithm must coripute
the new root processor, which takes constant time. The root processor copies the
correct row of A to array tmp, which takes ©(n) time. The outermost loop
executes 1 times.

Hence the overall time complexity of the parallel algorithm is

Ofn(l +n+nlogp+n’/p)) =B’ /p+n’log p)

Now let’s come up with a prediction for the execution time of our parailel

- program on a commodity cluster. The parallél program requires # broadcasts,

Each broadcast bas {log p] steps. Each step involves passing messages that are
4n bytes long. Hence the expected communication time of the parallel program is

n[log pl{x +4n/p)

If y is the average time needed to update a single cell, then the expected
computation time of the parallel program is n*[n/ p]x.

Adding computation time to broadcast time gives us a simple expression for
the expected execution time of the parallel algorithm:

n*in/plx + nllog p] (i +4n/p)

However, this expression will overestimate the paralle! execution time, because it
ignores the fact that there can be considerable overlap between computation and
communication.

See Figure 6.10, which illusttates the first four iterations of Floyd’s algorithm
executing on four processes, each on its own processor. Assume 2 > 16, 50 process

" 0 is the root process for the first four iteations. During each broadcast step, pro-

cess 0 sends messages to processes 2 and 1. After it has initiated these messages,

Figure 6.10 During the execution of the parallel version of Floyd’s algorilhm."
there is significant overlap between message transmission (indicated by
arrows) and computation.

SECTION 6.7 Analysis and Benchmarking

it may begin updating its share of the rows of -the matrix. Communications and
computations overlap.

Examine process 1. It may not begin updating its portion of the matrix uatil
it receives row () from process 0. During the first iteration, it must wait for the
message to show up. However, this delay offsets its computational time frame
from that of process 0. Process | completes its iteration 1 compiration after
process {). Since process 0 initiates its transmission of the second row of the
matrix to process 1 while process | is still working with the first row, pracess |
will not have as long to wait for. the second row.

In the figure, computation time per iteration exceeds the time needed 1o pass
messages. For this reason, after the first iteration each process spends the same
" amount of time waiting for or setting up messages: flog pla.

If [log pl4a/f < [n/piny, the message transmission time after the first
iteration is completely overlapped by the compuiation fime and should not be
counted toward the total execution time. This is the case on our cluster whea
" 5= 1000. Hence a better expression for the expected execution time of the parallel
~ programis ‘ :

n*Tn/ plx +nlog p1x + flog pldn/

Figure 6.11 plots the predicted and actual execution times of our paral-
lel program solving a problem of size 1000 on a commodity cluster, in which

Time (sec)
=
o=
T

R IR N NN WS NS S |
i 2 3 4 5 6 7 8
Processors w

Figure 6.11 Predicted (dofted line) and
aclual (solid line) execution times of parallel
imptementation of Floyd's algorithm on a
commodity cluster, salving a problem of
size 1,000.

153

154 .

CHAPTER 6 Floyd's Algorithm

X = 25.5 nsec, A = 250 usec, and A = 10". The average crror between the
predicted and actual execution times on 2, ..., 7 processors is 3.8 percent.

6.8 SUMMARY

We have developed a parallel version of Floyd’s algorithm in C with MPI. The
program achieves good speedup on a commodity cluster for moderately sized
matrices. Our implementation uscs point-to-point messages among paits of pro-
cessors. We have introduced the local communication functions MPI_Send and
MPI_Recv that support point-to-point messages. .

We have also begun the development of a library of functions that will even-~

tually support the input. ontput, and redistribution of matrices and vectors witha
variety of data decompositions. The two input/output functions referercad in this
chapter are based on a rowwise block-striped decomposition of a matrix. Function
read’ row_striped_matrixreadsamatrix fromafile and distributes its el-
ements to the processes in a group. Functionprint _row_striped matrix
prints the elements of a matrix distributed among a group of processes.

6.9 KEY TERMS

adjacency matrix graph

all-pairs shortest-path poini-to-point
problem commugication

directed graph weighted graph

6.10 BIBLIOGRAPHIC NOTES

Floyd’s algorithm originally appeared in the Commsnications of the ACM in
1962 [27]. Tt is a generalization of Warshall's transitive closure algortikm, which
appeared in the Journal of the ACM just a few months earlier [111].

Foster compares two parallel versions of Floyd’s algorithm [31]. The first ag-
glomerates primitive tasks in the same row, resulting in 2 rowwise block- striped
data decorposition. The second agglomerates two-dimensional blocks of primi-
tive tasks. In the next chapter we'll see this introduced as a “block checkerboard”
decomposition. Foster shows that the second design is superior.

Grama et al. also describe a parallel implementation of Floyd’s algorithm
based on a block checkerboard data decomposition [44).

6.11 EXERCISES

6.1 Suppose we have chosen a block agglomeratior: of n elemenss [abeled
0,1,...,n—1)to p processes (labeled 0, 1, ..., p — 1) in which

6.2
6.3

-y

0.6

6.7

6.8

0.9

SECTION 6.11 FExercises

process i is responsible for clements [in/p) through (i + Dn/p] — 1.
Prove that the Jast process is responsible for {r/ p] elements.
Reflect on the example of file input itlustrated in Figure 6.6. What is the
advantage of having process 3 input and pass along the data, rather than
process ()7 '
Outline the changes that would need to be made to the parallel
implementation of Floyd’s all-pairs shortest-path algorithm if we decided
to use a columnwise block-striped data distribution.
Outline the changes that would need o be made to the parallel
implementation of Floyd’s all-pairs shortest-path algorithm if we decided
to use-a rowwise interleaved striped decomposition (illustrated in
Figure 12 3a).
Consider another version of Floyd's algorithm based on a third data
decomposition of the matrix. Suppose p is a square number and # is a
multiple of ,/p. In this data decomposition, each process is responsible
for a square submatrix of A of size (n/./p) x (n/./P).
a. Describe the communications necessary for every iteration of the
outer loop of the algorithm.
b. Derive an expression for the communication time of the parailel
algorithe, as a function of #, p, A, and §.
¢. Compare this communication time with the communication time of
the parallel algorithm developed in this chapter.
Suppose the cluster used for benchmarking the parallel program
developed in this chapter had 16 CPUs. Estimate the execution lime that
would re<1!r from solving a problent of size 1000 on 16 processors.
Assuming the same parallel computer used for the benchmarking in this
chapter, estimate the execution time that would result from solving
problems f size 500 and 2000 on 1,2,, 8 processors.
Assume that the time needed to send an n-byte message is & +n/f.
Write a program implementing the “ping pong” test to determine A
(latency) and § (bandwidth) on.your parallel computer. Design the
program to run on exactly two processes. Process 0 records the time and
then sends a message to process 1. After process 1 receives the message,
it immediately sends it back to process 0. Process 0 receives the message
and records the time. The elapsed time divided by 2 is the average
message-passing time. Try sending messages multiple times, and
experiment with messages of different lengths, to generate enough data
points that you can cstimate A and §.
Write your own version of XPI_Reduce using functions MPI_Send
and MPI_Recv, You may assume that

datatype = HPI_INT,
operator = MPI_SUM, and
comm = MPI_COMM_WORLD

155

158 CHAPTER 6 Floyd's Algorithm) i

o .
§ 08 08 8000
00 0O

Figure 6.12 An initial state and three iterations of Conway's game
of Life.

are updated simultaneously. Figure 6.12 iflustrates three iterations of
Life for a small grid of cells.

Write a parallel program that reads from a file an m x r matrix
containing the initial state of the game. It should play the game of Life
for j iterations, printing the state of the game once every & iterations,
where f and & are command-line arguments.

oSt R e B el

CHAPTER

Performance Analysis

The highest and best form of efficiency is
the spontaneous cooperation of a free people.
: Woodrow Wilson

7.1 INTRODUCTION

Being able to accurately predict the perforinance of a parallel algorithm you have
designed can help you decide whether fo actually go to the trouble of coding and
debugging it. Being able to analyze the execution timée exhibited by a parallel
program can help you understand the barriers to higher performance and predict
how much improvement can be realized by increasing the number of processors.
This chapter will help you develop both of these skills.

We begin by deriving a gencral formula for the speedup achievable by a
parallel program. We then look at well-known performance prediction formulas:
Amdahl’s Law, Gustafson-Barsis’s Law, the Karp-Flatt metric, and the isoeffi-
ciency metric. Amdahl's Law can help you decide whether a program merits
parallelization. Gustafson-Barsis’s Law is a way to evaluate the performance of
a parallel program. The Karp-Flatt metric can help you decide whether the prin-
cipal barrier to speedup is the amount of inherently sequential code or parallel
overhead. The isoefficiency meiric is a way to evaluate the scalability of a paralle]
algorithm executing on a parallel computer. It can help you choose the design that
will achieve higher performance when the number of processors increases.

7.2 SPEEDUP AND EFFICIENCY

We design and implement parallel programs in the hope that they will run faster
than their sequential counterparts. Speedup is the ratio between sequential

159

DL

160

CHAPTER 7 Performance Analysis

execution time and paralle] execution time:

Sequennal execution time

Speedup
pe Parallel execution time

In the case studies we have worked through, we have discovered that the
operations performed by parallel algarithm can be put into three categories:

Computations that must be perforied sequentially
Comgputations that can be performed in parallel
Parallel overhead {communication operations and redundant computations)

Wlth these.categories in mind, we can produce a simple model of speedup. Let

' yf(n p) denote the speedup achieved solving a problem of size 1 on p processors,

¢ (n) denote the inherently sequential (serial) poition of the computation, ¢(r)
denote the pottion of the computation that can be executed in parallel, and « (n, p)
denote the time required for parallel overhead.

A sequential program, executing on a single processor, can only perform one
computation at a time. Hence it requires time o (1) + ¢{n) to execute the-required
computations. A sequential program requires no interprocessor communications,
so the expression for sequential execution time does not have the x (1, p) term.

Now Iet’s consider the best possible paralle] execution time. The inherently
sequential portion of the computation cannot benefit from parallelization. It con-
tributes o (n) to the execution time of the parallel program, no matter how many
processors are available. In the best case the portion of the computation that can
be executed in parallel divides up perfectly among the p processors. In this case the
time needed to perform these operations is ¢(n)/ p. Finally, we must add in time
«c(n, p) for the interprocessor communication required for the parallel program.

We have made the optimistic assumption that the parallel portion of the
computation can be divided perfectly among the processors. If this is not the
case, the parallel execution time will be larger, and the speedup will be smaller.
Hence actual speedup will be less than or equal to the ratio between sequentia]
execution time and parallel execution time as we have just defined. Here, then, is
our completed expression for speedup:

a(n)+pln)

vy S . «
v p) gm+e)/p+«ln, p)

Adding processors reduces the computation time (by dividing. the work
among more processors) but increases the communication time. At some point the
communication time increase is Jarger than the computation time dectease (see
Figure 7.1). At this point the execution time begins to increase. Since speedup is
inversely proportional to execution time, the speedup curve “elbows” and begms
to decline.

The efficiency of a parallel program is a measure of processor utilization. We
define efficiency to be speedup divided by the number of processors used:

. Sequential execution time
Efficiency = a

Processors used x Parallel execution time

SECTION 7.3 Amdzhis Law 161

Execution time

Figure 7.1 Nontrivial paraliel
algerithms have a computation
" component (black bars) that is a

decreasing funttion of the number of

| processars used and a communication
component (gray bars) that is an
increasing function of the number of
pracessors, For any fixed problern size
there is an optimum number of
processors that minimizes overall
execution time.

* "More formally, let ¢(n, p) denote the efficiency of a parallel computation solv-
ing a problem of size n on p processors. Building on our earlier definition of

speedup
ain) + g(n)
eln p) < plo(n) +eln)/p+«in, ,D))
= 8n, p) < ol +pl)

po(n) + @) + px(n, p)

Since all terms are greater than or equal to zero, 0 < e(x, p) < L.

7.3 AMDAHL'S LAW
Consider the expression for speedup we have just derived.
L o(n) + @)
O e)
~ Since x{n, p) >0,
o(n)+pn) L o) +el
o(n) +@ln)/p+ilr, p) ~ oln) +eln)/p

¥, p)

A

162

CHAPTER 7 Performance Analysis

Let f denote the inherently sequential portion of the wmpulanon In other words,
f=a(n)/(aln) + @(r)). Then

wmmsﬁ%i%%
=>d(mp) = (1) +a(n’)l(l{f —b/p

wmm_rﬁﬁgﬂﬁ
2Vnp)s f+(11 fip.

Amdahl’s Law is based on the assunp tion that we are teying to solve a problem
of fixed size as quickly as possible. It provides an upper bound on the speedup
achievable by applying a certain number of processors to solve the problem in
parallel. It can also be used to determine the asymptotic speedup achievable as
the number of pracessors incr eases.

Suppose we are trying to delermine whether it is worthwhile to develop a parallel version
of a program solving 2 pacticular problem. Benchmarking reveals that 90 percent of the
execution time is spent inside functions that we believe we can execute in parallel. The
remaining 10 percent of the execution time is spent in functions that must be executed on
a single processor. What is the maximum specdup that we could expect from a parallel
version of the program executing on eight processors?

Solution
By Amdahl’s Law

¥ < _ =47
01+(1-01)/8

We should cxpect a speedup of 4.7 or less.

1f 25 percent of the operations it a parallel program must be perfarmed sequentially, what
is the maximum speedup achievable?

SECTION 7.3 Amdanls Law 163

g Solution
The waximum achievable speedup is
i
fim =4
p-0 .25+ (1 - 0.25)/p

Suppose we have implemented a paralle] version of a sequential program with time com-
plexity @(n?), where n is the size of the dataset. Assume the time needed to input the
dataset and output the result is

(18000 + r) psec

* This constitutes fhe sequential portion of the programn. The computational portion of the
program can be executed in parallel; it has execution time

{n*100) psec
What i;sthe maximam speedup achievable by this parallel program on a problem of
size 10,0007 -

& Solution
By Amdahl’s Law
(28,000 + 1,000,000) usec
The dashed line in Figure 7.2 is the upper bound on speedup derived from Amdahl’s Law.

16
14 -
12k
x"
10+ -
§ 5 Val
] 7y s
: 2 oL
3 e
w ’ 4
6 (s
k)
£
4 d
>
'Z_
ol e o g
B S S I S N R

2 4 6™ 10 12 1416

Processors

Figure 7.2 Speedup predicted by
Amdahl's Law (dashed line) is higher than
speedup prediction that takes communica-
tion overhead into account (solid line).

164

CHAPTER 7 Performance Analysis

7.3.1 Limitations of Amdahl's Law =~

Amdahi’s Law ignores overhead associated with the introduction of paralielism.
Let’s return to our previous example. Suppose the parallel version of the program
has [log n} communication points. At each of ihese points, the communication
time is

10,00001og p] + (n/10) sec
For a problem of size 10,000, the total communication time is
14(10, OOOﬂog p1+ 1,000) ;Lsec

Now we have taken into account all of the Factors mcludcd in our formula for
speedup: o {n), ¢(r), and k(r, p). Our prediction for the speedup achievable by
the parallel program solving a problem of size 10,000 on p processors is

(28,000 + 1,000,000) asec
(42,000 + 1,000,000/ p + 140,000(log p1) usec
The solid line in Figure 7.2 plots a new upper bound on speedup predicted by this

more comprehensive formula. Taking communication time into account gives us
amore realistic prediction of the parallel program’s performance.

¥ <

7.3.2 The Amdahl Effect

Typically, «(n, p) has lower complexity than @(n). That is the case with the
hypothetical problem we have been considering: £ (1, p) = ®(nlogn+nlog p),
while ¢(n) = B(n?).Increasing the size of the problem increases the computation
time faster than it increases the communication time. Hence for a fixed number of
processors, speedup is usually an increasing function of the problem size. This is
called the Amdahl effect [42]. Figure 7.3 illustrates the Amdahl effect by plotting
expected speedup for our hypothetical problem. As prob em size 1 increases, 50
does the hmght of the speedup curve.

7.4 GUSTAFSON-BARSIS’S LAW

Amdahl’s Law assumes that minimizing execution time is the focus of paral-
lel computing. It treats the problem size as a constant and demonstrates how
increasing processors can reduce time.

Often, however, the goal of applying parallelism is to increase the accuracy
of the solution that can be computed in a fixed amount of time. For example,
an engineer studying airflow around the body of a hypersonic aircraft may want
her computer to determine the solution to a problem in an hour {e.g,, the length
of a lunch break). If she has access o a computer with more processors, it is
better for her to get a more detailed answer than to get the same results more
quickly.

SECTION 7.4 QGustafson-Barsis’s Law

>
1

= x = 30,000
14+ { - n = 20,000

12 - |7 = 10.000

10+
N
2
g o a
7 o o7
. b s

G-
’U;r .
4 o ".ak.’,‘.-t“"‘"*-‘
gie

s
H

S N NS S SUVR NOW SO |
1 4 6 8§ 10 12 14 16

Pracessors

Figure 7.3 For any fixed number of

processors, speedup is usually an .
increasing function of the problem size.

This is called the Amdaht effect.

. What happens if we treat ime as a constant and let the problem size increase
‘with the number of processors? The inherently sequential fraction of a computa-
tion typically decreases as problem size increases (the Amdahl effect). Increasing
the ‘number of processors enables us to increase the problem size, decieasing
the inherently sequential fraction of a computation, and increasing the quotient
- between serial exccution time and parallel execution time (speedup).
Consider the expression for speedup we have denved. Siace «(n, p) > 0,

aln) +en)

v p) < o) +9(n/p

* Let 5 denote the fraction of time spent in the paraflel computation performing
inherently sequential operations. The fraction of time spent in the parallel compu-
tation performing parallel operations is what remains, or (1 —s). Mathematically,

. o(n)
T o +em)/p
(1—35)= ﬁﬂ(n)/fl
o(m)+pln)/p

Hence

o(r) = (o(n) +pln)/p)s
pny = (o(n) +)/p)(L - 5)p

165

166

EXAMPLE 1

- CHAPTER 7 Performanca Analysis -

Therefore

a(n) +p)
voup s o(n)+¢(n)/p
(o) + o)/ p){s + (1 -5)p)
a(n)+¢@m)/p
=S¢ p) <s+(-s)p

>¢ym,p)<p+{l-pys

= ¥(n, p) <

While Amdahl’s Law determines speedup by taking a serial computation and
predicting how quickly that computation could execute on multiple processors,
Gustafson-Barsis’s Law does just the opposite. It begins with a parallel compu-
tation and estimates how much faster the parallel computation is than the same
computation execuling on a single processor.

Tn'many cases, assuming a single processor is only p times slower than p pro-
cessors is overly optimistic. For example, imagine solving a problem on a parallel
computer with 16 processors, each with one gigabyte of local memory. Suppose
the dataset occupies 15 gigabyies, and the aggregate mempry of the parallel com-
puter is barely large enough to hold the dataset and multiple copies of the program.
If we tried to solve the same problem on asingle processor, the entire dataset would
not fit in primary memory. If the working set of the executing program exceeded
one gigabyte, it would begin to thrash, taking much more than 16 times as long
to execute the parallel portion of the program as the group of 16 processors.

That is why we say that in Gustafson-Barsis’s Law, speedup is the time
required by a parallel computation divided into the time that would be required
to solve the same problem on a single CPU, it had sufficient memory. We refer
(o the speedup predicted by Gustafson-Barsis’s Law as scaled speedup, because
by using the parallel computation as the starting point, rather than the sequential
computation, it allows the problem size to be an increasing function of the number
of processors.

An application executing on 64 processors requires 220 seconds to run. Benchmarking”
reveals that 3 percent of the time is spent exeeuting serial portions of the computation on
a single processor. What is the scaled speedup of the application?

SECTION 7.5 The Karp-Flatt Metric 167

2 Solution
Since § = 0.03, the scaled speedup on 64 processors is

¥ =64+ (1 - 64)(0.05) = 64 — 3.15 = 60.85

Vicki plans Lo justify her purchase of a $30 million Gadzooks supercomputer by demon-
strating its 16,384 processors can achieve a scaled speedup of 13,000 on a problem of
preal importance to her employer. What is the maximum fraction of the parallel execution
Hme that can be devoted to inherently sequential operations if her application is to achicve
this goal?

@ Solution
Using Gustafson-Barsis's Law:
15,000 = 16,384 — 16,3835
= 1 =1384/16383
= 5 =008

7.5 THE KARP.FLATT METRIC

‘Betause Amdahl’s Law and Gustafson-Barsis’s Law ignore «(n, p), the paral-
‘Iel overhead term, they cam overestimate speedup or scaled speedup. Karp and
. Flart have proposed another metric, called the experimentally determined serial
*fraction, which can provide valuable performance insights [59].

3 Recall that we have represented the execution time of a parallel program
“ executing on p processors as

T, p)=0c@) +en)/p+kin, p)

where ¢ (n) is the inherently serial component of the computation, ¢(x) is the
partion of the computation that may be exccuted in parallel, and « (1, p) is over-
-head resulting from processor communication and synchronization, and redun-
dant computations. The serial program does not have any interprocessor comumu-
 fication or synchronization overhead, so its execution time i

T,)=o)+ o)

We define the experimentally determined serial fraction e of the parallel com-
putation to be

e={o(n) +xn, p)/Th1)

168

CHAPTER 7 [earformance Analysis

Hence
o)+, p)=Tr, e
We may now rewrite the parallel execution time as
T, p)=Tn, De+ T (1 —e)/p

Let's use 4 as a shorthand for ¢ (n, p). Since speedup ¥ = T{n, 1)/ T (n, p), we
have T{n, 1) = T'(n, p)¢. Hence

T(n, py=Tn, p)re+ T, py¥(l —e)/p

- . R S

= 1 =ve+y(-o/p
= ¥ =etd-o/p
= 1y =ed+ljp—elp
A S Uy =e(l-1/p)+1p
/=1

The experimentally determined serial fraction is a wseful metric for two
reasons. First, it takes into account paralle] overhead fthe x (1, p) term} that
Amdahl’s Law and Gustafson-Barsis's Law ignore. Second, it can help us detect
other sources of overhead or inefficiency that are ignored in our simple model of
parallel execution time. For example, we assume that p processors execute the
paralfelizable portion of the computation p times as quickly as a single proces-
sor. That is why the @(n) term in T, 1) becomes the ¢(r)/ p term in T(n, p).
This assumption ignores the fact that the amount of work to be done may not
divide evenly among the processors. For example, suppose we have 19 equal and
undividable pieces of work, each of which takes one unit of time to complete. If
six processors are avaitable, one processor must take four pieces while the other
processers take three. The parallel execution time is 4, not 19/6.

For a problem of fixed size, the efficiency of a parallel computation typically
decreases as the number of processors increases. By using the experimentally
determined serial fraction, we can determine whether this efficiency decrbase is
due to (1) limited opportunities for parallelism or (2) increases in algorithmic or
architectural overhead.

SECTION 7.5 The Karp-Fait Metric 169

EXAMPLE 1

éenchmarkinga parallel programon 1, 2,, 8 processors produces the following speed-
up resulls:

p | 2] 3 I 5 [6 [71 | 3
' gir 182 | 250 | 308 | 357 [400 [438 | 47

Whal is the primary reasen for the parallel program achieving a .speedup of only 4.1 on
. mght processors?

Solutlon
“Using the formula we have devt.loped we can cumpute the experimentally determined
- serial fraction & corresponding to each data point:

{2 3 4 5 § 7 8
(87 | 250 | 308 | 357 | 400 | 438 | 471
¢ 040 | 010 | 000 | 010 | 010 | 610 | €10

Since the experimentally determined serial fraction is not increasi ng with the number
. of processors, the primary reason for the poor speedup is the limited opportunisy for
paraltelism—that is, the large fraction of the computation that is inhercntly sequential.

EXAMPLE 2

Benchmarkinga parallel programon |, 2, ..., 8 processors producec the following speed-
up results:

) 2 3 4 5 6 7 8
v | 187 | 260 | 313 | 37 | 414 | 446 | 47

What is the primary reasan for the paralie] program achieving a speedup of only 4.7 on
eight processors?

 # Solution
We begin by computing the experimentally determined serial fraction for each of these
Program runs:

P 2 3 4 5 6 7 8§ |
v | 187 | 26 313 373 414 446 | a7
¢ | 0070 | 0075 | 0080 | 0085 | 0090 | 0095 | 0.1

A

" Since the experimentally determined serial fraction is steadily increasing as the number of

- processors increases, the principal reason for the pobr speedup is parallel overhead. This
could be time spenl in process Sta11up, communication, or synchronization, or it could be
an architectural constraint.

170 CHAPTER 7 Performance Analysis

7.6 THE ISOEFFICIENCY METRIC

Let’s tefer to a parallel program executing on a parallel computer as a parallei
system. The scalability of a parallel system is a measure of its ability to increase
performance as the number of processors increases.

As we have already seen, speedup (and hence efficiency) is typically an
increasing function of the problem size, because the communication conplexity
is usually lower than the computational complexity. We call this the Amdahl
effect. In order to maintain the same level of efficiency when processors are
added, we can increase the problem size.

These ideas are formalized by the iscefficiency relation. To derive the iso-
efficiency reiation, we return to our original definition of speedup:

a(n) +¢ln)
o(m +e@)/p+xn, p)
d)+
Sy g — PO RO
- po(a) + @) + pela, p}
plom) +o@m)
o(m)+¢@n) +(p~ Do)+ pxln, p)
We define T,(n, p) to be the total amount of time spent by all processes doing
work not done by the sequential algorithm. One component of this time is the
time p — | processes spend executing inherently sequential code. The other
component of this time is the time all p processes spend performing interprocessor

communications and redundant computations. Hence T, (1, p) = (p — o (n) +
pk(n, p). Substituting T,(n, p) into our previous equation, we get: -

plo() + p(n))
o(n)+ @)+ T,(n, p)
Since efficiency equals speedup divided by p:

o(n) +pn)
o(n) + o) + T,(n, p)

1

Tinp)
! + a (n)4pin)

y(n, p) <

= ¥(n,p) <

> ¥, p) <

eln, p) <
=>¢e@,p) =

Recalling that T'(n, 1) represents sequential exccution time:

1
S T L@ p/Tm D
L p) _ 1—e(@m p)
T, 1) = el p)

e(n, p)

T 1) > ————T,(n,]
= T)= = etnp) (. p)

> &, p)

SECTION 7.6 The Isoefficiency Metric

if we wishi to maintain a constant level of efficiency, the fraction

g(n, p)
1 —e(n, p}

+ is a constant, and the formula simplifies to

T{n, 1) > CT,(m, p)

We can use a parallel system's isoefficiency relation to determine the range
of processors for which a particular level of efficiency can be maintained. Since
parallel overhead increases when the number of processors increases, the way to
~ maintzin efficiency when increasing the number of processors is to increase the
size of the problem being solved. The algorithms we are designing assume that the
~ data structures we manipulate fit in primary memory. The maximum problem size
* wecansolve is limited by the amount of primary memory that is available. For this

reason we need to treat space as the limiting factor when we perform this analysis.

Suppose a parallel system has isoefficiency relationn > f(p). if M(n) de-

~ notes the amonnt of memory required to storc a problem of size n, the relation

"~ M'(n) > f(p) indicates how the amount of memory used must increase as a

function of p in order to maintain a copstant level of efficiency. We can rewrite

this relation as n > M(f(p))-The total amount of memory available is a linear

function of the number of processors used. Hence the function M (f(p})/p indi-

cates how the amount of memory used per processor must increase as a function

of p in order to maintain the same level of efficiency. We call M(f(p))/p the
scalability function.

The complexity of M (£ ())/ p determines the range of processors for which

- aconstant level of efficiency can be maintained, as illustrated in Figure 7.4. If

M(f(p))/p = ©(l), memory requircments per processor are constant, and the
parallel system is perfectly scalable. If M(f(p))/p = ©(p), memory require-
ments per processor increase linearly with the number of processors p. While
memory is available, it is possible to maintain the same level of efficiency by
increasing the problem size. However, since the memory used per processor in-
creases linearly with p, at some point this value will reach the memory capacity
of the system. Efficiency cannot be maintained when the number of processors
increases beyond this point.

17

172 CHAPYER 7 Porformance Analysis

\,Cp

{_ | ‘ RN

Memory needed per processor

Processor’s
Hemory
capacity
Efficiency of the paratlel
system can be maintained
Clogp
c

- Number of processors

Figure 7.4 The way to maintain efficiency
when increasing the numbar of processors is to
increase the size of the problem being solved.
The maximum problem size is limited by the
amount of memaory that is available, which is a
linear function of the number of-processors.
Starting with the isoefficiency relation, and
taking into account memory requirements as

a function of n, we can determine how the
amaunt of memory used per processor must
increase as a function of pto maintain
efficiency. The lower the complexity of this
function, the more scalable the parallet system.

Similar arguments hold for the cases where M{f(p1Y/p="0(logp) and
M{f(p))/p=0(p log p). While constants of proportionality must be taken into
account, in gencral we say that the lower the complexity of M(f {p))/p, the
higher the scalability of the parallel system.

B Foccir

In Chapter 3 we developed a parallel reduction algorithm. The computational complex-
ity of the sequential reduction algorithm is (). The reduction step has (ime comiplexity
©(log p). Every processor participates in this step, s0 T,(n, p) = ©(p log p). Big-Oh no-
tation ignores constants, but we can assume they are folded into the efficiency constant C.

SECTION 7.6 The Isoefficiency Metric

. Hence the isoefficiency relation for the reduction algoﬁthm is

n>Cplogp

The sequential algorithm reduces r values, so M(n) = n. Therefore, B

M{Cplogp)/p=Cplogp/p=Clogp

We can mentally confirm that this result makes sense, Suppose we are sum-reducing
- values on p processors. Each processor adds about 2/ p values, then participates in a
" reduction that has [log p] steps. If we double the number of processors and double the
value of n, gach processor’s share is still about the same: n/p values. So the time each
processor spends adding is the same. However, the number of steps needed to perform
- the reduction has increased slightly, from {log p| to [log{2p)]. Hence the efficiency has
.. dropped a bit. In arder to maintain the same level of efficieacy, we must more than double
+the value of n when we doublc the number of processors. The scalability function confirms
- this, when it shows that the problem size per processor must grow as ©(log p).

172

~ Let's determine the isoefficiency function for the paralle] implementation of Floyd's al-
“. gorithm we developed in Chapter 6. The sequential algorichm has time complexity ©{n”),
Fach of the p processors executing the parallel algorithm spends 8(a* log p) time pﬁ:f-
forming communications. Hence the isoefficiency relation is

w > C{pr*logp) =>n > Cplog p

This looks like the same relation we had in the previous example, bui we have to be

- careful 1o consider the memory requirements associated with the problem size 4. In the

. case of Floyd's algorithm the amount of storage needed to represent a problem of size n
is n% that is, M (n) = n?. The scalability function for this system is:

M(Cplogp)/p=Cplog’ p/p=Clplog'p

* This parallel system has poor scalability compared to parallel reduction.

Finite Difference Method

Floyd's Algorithm B e, |

EXAMPLE3 -

Consider a parallel algorithm implementing a finite difference method to solve a partial
differential equation. (We'll consider these algorithms in more detail in Chapter 13.)
The problem is represented by a n x n grid. Each processor is fesponsible for a subgrid
of size (n/./p) x (n/./p) (Figure 7.5). During each iteration of the algorithm every
 processor sends boundary valueg 10 its four neighbors; the time needed to perform these
" communications is ©(#1/./p) pet iteration.

~ The time complexity of the sequential algorithm solving this problem is @(n?) per
> iferation,
 The isoefficiency relation for this parallel system is

nt > Cpin/yp)=>n2 C/p

i74

CHAPTER 7 Performance Anaiysis

7
1
1
1
v 1
1

o v e o o e o e]

______ S

t
i
i
1
{
N
1
t
1
3
4
SISO
‘ |
i
|
Lo ems i e e it o it o e e
¢
%
|
i

{a) ‘ . {b)

Figure 7.5 Pariitioning for a paraflel finite difference algofittm.

{a) Each process is responsible foran (nx /D) x (nx ,/P) block of the
i x nmatrix. {b) During each iteration each process sends n/sgrf p
boundary values to each of its four neighbaring processes.

When we say a problem has size z, we mean the grid has »” elements. Hence M(n) =
2
n” and

MCYPp=(Cy)p=Cplp=C

The scalability function is ©(1), meaning the parallel system Is perfectly scalable.

7.7 SUMMARY

Qur goal in parallel computing is to use p processors to execute a program |
times faster than it executes on a single processor. The ratio of the sequentia
execution time to parallel execution time is called speedup.

Sequential execution time
Speedup = 4

Parallel execution time
The efficiency of the parallel computation (also called processor utilization
is the speedup divided by the number of processors:

Speed
Efficiency = Speedup
P

To achieve a speedup of p, the parallel execution time must be i/ p that of th
sequential program. Since there are only p processors, that means each processc
must do an equal share of the work, all of the processors must be busy during th
entire parallel execution, and there can be no extra operations introduced whe
the algorithm is made parallel. In other words, speedup equals p if and only ;
utilization equals [00 percent. In reality, this is rarely the case.

SECTION 7.9 Bibliographic Notes

Why? First, there is usually some portion of the algorithm that cammot be
- performed on multiple processors. This is called serial code, and it prevents us
from keeping all the processors busy all the time.

Second, virtually all paraliel programs require at least some interactions
‘among the processors. These communications operations do not exist in the se-
quential program. Hence they represent extra operations introduced when the
" algorithm is made parallel.

We have developed a general formula for speedup that takes into account the
inherently sequential portion of the computation, the parallelizable porion of the
computation, and parallel overhead {communication operations and redundant
computations). We have also discussed four dlfferent lcmcs tor andlyung the

_performance of parallel programs. - S
: The first lens, Amdah!’s Law, is forward looking. It relies upon an evaluation
* . of the sequential program to predict an upper limit to the speedup that can be
achieved by using multiple processors 1o speed the execution of the parallelizable
portion of the program.

The second lens, Gustafson-Barsis's Law, is backward looking, It relies upon
tenchmarking of a parallel program to predict how long the program would rake

to run on a single processor, if that processor had enough memory. We say that ~

Gustafson-Barsis’s Law provides an estimate of scaled speedup, since the size of
the problem is allowed to increase with the number of processors.

The third lens, the Karp-Flatt metric, examines the speedup achieved by a
parallel program solving a problem of fixed size. The experimentally determined
serial fraction can be used to support hypotheses about the performance of the

. program on larger numbers of processors.

The fourth and final lens, the isoefficiency metric, is used 10 determine the
scalability of a parallel system. A parallel system is perfectly scalable if the
same level of efficiency can be sustained as processors are added by increasing
the size of the problem being solved. The scalability function, derived from the
isoefficiency relation, identifies how the problem size must grow as a function of
the number of processors in order to maintain the same level of efficiency.

7.8 KEY TERMS

Amdahl effect " Gustafson-Barsis's Law scalability function
Amdahl’s Law isoefficiency relation scaled speedup
efficiency Kerp-Flatt metric speedup
experimentally defermined parallel system

serial fraction scalability

7.9 BIBLIOGRAPHIC NOTES

The seminal paper of Gustafson, Montry, and Benner [47] not only introduces the
notion of scaled speedup, but also is the first to report scaled speedups in excess
of 1000. Tt provides a fascinating glimpse into strategies for extracting maximum

175

176

CHAPTER 7 Performance Analysis

speedup from a massively. parallel computer (in their case a 1024-CPU nCUBE
multicomputer). The authors won the Gordon Beli Award and the Karp Prize for
this work.

You can find a much more detailed introduction to the isoefficiency metric
in Introduction to Parallel Computing by Grama et al. [44]. Note that { have
not adopted their definition of problem size. Grama et al. define problem size
to be “the number of basic computation steps in the best sequential algorithm
to solve the problem on a single processing element.” In other words, when
they say “problem size” they mean “sequential time.” I believe this definition is
counterintuitive, which is why I do not use it in this book.

7.10 EXERCISES

7.1 Using the definition of speedup presented in Section 7.2, prove that there
exists a pg such that p > pg = ¥(n, p) < ¥(n, pp). Assume
k{n, py="Clogp.

7.2 Starting with the definition of efficiency presented in Section 7.2, prove
that p' > p=> e(n, p') <eln, p). .

7.3 Estimate the speedup achievable by the parallei reduction algorithm
developed in Section 3.5 on 1,2, ..., 16 processors. Assume
r = 1,00,000, x = 10 nanoseconds and A =-100 psec.

7.4 Benchmarking of a sequential program reveals that 95 percent of the
execution time s spent inside functions that are amenable to
parallelization. What is the maximum speedup we could expect from
executing a parallel version of this program on 10 processors?

7.5 For a problem size of interest, 6 percent of the operations of a parallel
program are inside I/O functions that are executed on a single processor.
What is the minimum number of processors needed in order for the
parallel program to exhibit a speedup of 107

7.6 What is the maximum fraction of execution time that can be spent
performing inherently sequential operations if a parallel application is to
achieve a speedup of 50 over its sequential counterpart?

7.7 Shauna’s parallel program achieves a speedup of 9 on 10 processors.
What is the maximum fraction of the computation that may consist of
inherently sequential operations? :

7.8 Brandon’s parallel program executes in 242 seconds on 16 processors.
Through benchmarking he determines that 9 seconds is spent performing
initializations and cleanup on one processor. During the remaining
233 seconds all 16 processors are active. What is the scaled speedup
achieved by Brandon’s program?

7.9 Courtney benchmarks one of her parallel programs executing on
40 processors. She discovers that it speads 99 percent of its time inside
parallel code. What is the scaled speedup of her program?

ALY

AT

712

713

SECTION 7.10 Exercises

The execution times of six parallel programs, labeled I-V1, have been
benchmarked on 1,2, .. ., 8 processors. The following table presents the
speedups achieved by these programs.

- 1.00 1.00 1.00 1.00 1.00 1.00
1.67 1.89 1.89 1.96 174 194
2.14 263 2.68 2.88 2.30 282
2.50 3.23 3.39 3.67 274 3.65
278 368 403 4.46 3.09 442

3.18 4.22 5.45 593 - 362 584
333 435 5.63 6.25 381 6.50

.
Q0 =1 AN L e LI b e [

For each of these programs, choose the statement that best describes its

likely performance on 16 processors:

A. The speedup achieved on 16 processors will probably be at least
40, percent higher than the speedup achieved on eight processors.

B. The speedup achieved on 16 processors will probably be less than
40 percent higher than the speedup achieved on eight processors, due
to the large serial component of the computation.

C. The speedup achieved on 16 processors will probably be less than
40 percent higher than the speedup achieved on eight processors, due
to the increase in overhead as processors are added.

Both Amdahl’s Law and Gustafson-Barsis’s Law are derived from the

same general speedup formula. However, when increasing the number of

processors p, the maximum speedup predicted by Amdahl’s Law
converges on |/f, while the speedup predicted by Gustafson-Barsis’s

Law increases without bound. Explain why this is so.

Given a problem to be solved and access to all the processors you care to

use, can you always solve the problem within a specified time limit?

Explain your answer.

Letn > f(p) denote the isoefficiency relation of a parallel system and

M (n) denote the amouat of memory required to store a problem of size

n. Use the scalability function to rank the parallel systems shown below

from most scalable to least scalable.

a. f(p)=Cpand M(n) =n?

b. f(p)=C/plogp and M(n) = n*

c. f(p)=Cypand M(n)=n’

d. f(py=Cplogpand M(n) = r?

e. f(p=CpandM(n)=n

f. f(p)=p" and M(n) = n. Assume 1 < C <2,
g. f(p)=p® and M(n) = n. Assume C > 2.

3.00 4.00 4.62 522 "33 505 .

177

CHAPTER

Matrix-Vector Multiplication

Anarchy, anarchy! Show me a greater ewl !
This is why cities tumble and the great houses rain down
Thiss what scatters armies!

Sephocles, Anfigone

8.1 mrnonucﬂou'

Matrix-vector multiplication is embedded in algorithms solving a wide variety of
problems. For example, many iterative algorithms for solving systems of linear
equations rely upon matrix-vector maltiplication. The conjugate gradientmethod,
which we will examine in Chapter 12, is such an algorithm.

Another practical use of matrix-vector multiplication is in the implementa-
tion of neural networks. Neural networks are used in such diverse applications
as handwriting recognition, petrolewm exploration, aitline seating allocation, and
credit card fraud detection |1 14]. The most straightforward way to determine
the output values ol a k-level neural network from its input values is to perform
k — 1 matrix-vector multiplications. Moreover, training neural networks is typ-
ically done using the backpropagation algorithm, which also has matrix-vector
multiplication at its core [98]. '

In this chapter we design, analyze, implement, and benchmark three MP1
programs to mulfiply a dense square matrix by a vector. Each design is based
upon a different distribution of the matrix and vector elements among the MPI
processes. Altering the data decomposition changes the communication pattern
among the processes, meaning different MPI functions are needed to route the
dafa elements. Hence each of the three programs is significantly different from -
the other two.

178

SECTION 8.2 Sequenfial Algorithm

In the course of developing these three programs we introduce four powerful
" MP! communication functions:

g MPI_Allgatherw, an all-gather function in which different processes
may contribute different numbers of elements

MPI_Scatterv, ascatler operation in which different processes may end
up with different numbers of elements

MPI_Gatherv, a gather operation in which the number of elements
collected from different processes may vary -

MPT_Alltoall, anall-to-all exchange of data elements ameng processes

We also introduce five MPI functions that support grid-oriented
communicators:

a MPI_Dims_create, which provides dimensions for a balanced
Cartesian grid of processes

MPI_Cart_create, which creates a communicalor where the processes
have a Cartesian topology

MPI_Cart_coords, which returns the coordinates of a specified process
within a Cartesian grid

MPI_Cart_rank, which retums the rank of the process at specified
coordinates in a Cartesian grid

MPI_Comm_split, which partitions the processes of an exisling
commugicator into one or more subgroups

8.2 SEQUENTIAL ALGORITHM

The sequential algorithm for multiplying a matrix by a vector appears in Fig-
~ure 8.1. Matrix-veclor muldiplication is simply a series of inner product {or dot
product) computations, as illusirated in Figure 8.2. Since computing an inner

Matrix-Vector Multiplication:

Tputt af0.un — 1, O0un — 1) — mateix with dimensions m x n
b10.a1 - 1} — vector with dimensions n x 1

Output: c[0..1r ~ 1]— vector with dimensions m x 1

fori < Otom— 1|
il + 0
forj «<0ton—1
i)« cfif +ali. j] x b1
endfor
endfor

Figure 8.1 Sequential matrix-vector multiplication
algorithm.

179

180

CHAPTER 8 Mairix-Vector Multiplication

o]
s
o

Figure 8.2 Matrix-vector
multiplication can be viewed as a
series of inner product (dot product)
operations. FOr examples, «= - wam
q=5x3+(-Nx1+2x4+

(-2} x0+4x3=34

{a) b Bte]

Figure 8.3 Three ways fo de=compose a two-dimensional matrix. In tha
a 10 x 10 matrix is decomposed among six processes. (a) Rowwise block-3
dacomposttion. (b} Columnwise block-striped decompasition. (¢) Checks:
decomposition {processes are organized into a virtual 3 x 2 grid).

product of two r-clement vectors requires n multiplicati v and n — 1 additions,
it has complexity © (n). Matrix-vector multiplication pertoris a2 inner products;
hence its complexity is @{mn). When the matrix is squarz. the algorithm’s com-
plexity is ©(n").

8.3 DATZ DECOMPOSITION OPT" M5

We use the dornin decomposition strategy to develop -+ parallel algorithms.
There are a varieiy of ways to partition, agglomerate, 2+t map the matrix and
vector elements. Each data decomposition results in a diff..cent parallel algorithm.

There are three straightforward ways to decompose an m x n matrix A:
rowwise block =+ iping, columawise Bio K striping, anif - - vissckerboard block
decomposition : ~igure 8.3). We have ~'ready seen th vise block-striped -
decomposition; .. ts how we divideu tic matrix elemet. wiong the processes

SECTION 8.4 Rowwise Block-Striped Decormpasition

in our parallel implementation of Floyd’s algorithm in Chapter 6. In this decom-
sitipn each of the p processes is responsible for a contiguous group of either
Jm/p] or {m/ p] rows of the matrix,

A columnwise block-striped decomposition is analogous, except that the
matrix is divided into groups of columns. Fach of the p processes is responsible
for a contiguous group of either {n/p] or {n/p] columns of the matrix.

In a checkerboard block decomposition the processes form a virtual grid,
- and the matrix is divided into two-dimensional blocks aligning with that grid.
. Assume the p processors form a grid with rows and ¢ columas, Each process
is responsible for a block of the matrix containing at most T#/r] rows and [n/c]
golumas,
=S There are two natural ways to distribute vectors b and ¢. The vector elements
may be replicated, meaning all the vector elements are copied on all of the tasks,
or the vector elenents may be divided among some or all of the tasks. In a block
decomposition of an n-element vector, each of the p processes is responsible
for a contiguous group of either {r/ p| or Tn/p] vector elements.

Whiy is it acceptable for a task to store vectors b and ¢ in their entirety, but not
matrix A? To simplify our argument, let’s assume m = a. Vectors b and ¢ contain
~ only n elements, the same nurmber of elements as in a single row or column of A.
" Atask storing a row or column of 4 and single elements of & and ¢ is responsible
for @ () elements. A task storing a row or column of A and all elements of b and
¢ is responsible for @ (x) elements. Hence whether the vectors are replicated or
distributed in blocks among the tasks, the storage requirements are in the same
complexity class.

With three ways to decompose the matrix and two ways to distribute the
vector, six possible combinations result. In this chapter we consider three of
the six combinations: a rowwise block-striped decomposition of the matrix and
replicated vectors; a columnwise block-striped decomposition of the matrix and
block-decomposed vectors; and a checkerboard block decomposition of the
matrix and vectors block decomposed among the processes in the first column of
the process grid.

8.4 ROWWISE BLOCK-STRIPED
DECOMPOSITION

" 8.4.1 Design and Analysis

In this section we develop a paralle] matrix-vector multiplication algorithm based
o a domain decomposition that associates a primitive task with each row of
the matrix A. Vectors b and ¢ are replicated among the primitive tasks. A high-
level view of the algorithm resulting from this domain decomposition appears
in Figure 8.4. To compute an inner product, a primitive task needs a row and a
column vector. Task i has row i of A and a copy of b, so it has all the data it
needs to perform the inner product. After the inner product computation, task i

181

182 CHAPTER 8 Matrix-Vector Muttiplication

Task §

Innev product computation

All-gather communication

Task

(1117 ¢+

Rowiof A

Figure 8.4 In our chosen domain
decomposition, each primitive task
has a row of the matrix and a copy
of the vector. An inner product
computation creates an element of
the result vector c. An all-gather
communication is needed io
replicate vector ¢

has element i of vector c. However, vectors are supposed to be replicated. An
all-gather step communicates each task’s element of ¢ to all the other tasks, and
the algorithm terminates.

'In dense matrix-vector multiplication the number of compulational steps
needed to perform each inner product is identical. Hence our mapping strategy
decision tree suggests we agglomerate primitive tasks associated with contiguous
groups of rows and assign each of these combined tasks 10 a single process,’
creating a rowwise block-striped partitioning (shown in Figure §.3a).

SECTION 8.4 fowwise Block-Striped Decomposition

As we saw in Figure 8.4, at the end of the inner product computation, each
primitive task computes a single elemen of the result vector. If the matrix decom-
position is rowwise block striped, then each process (corresponding lo a group of
agglomerated tasks) will have a block of elements of the result vector.

When m = n, sequential matrix-vector multiplication has time complexity
6(n). Let’s determine the complexity of the parallel algorithm. Each process
multiplies its portion of matrix A by vector b. No process is responsible for
. morethan [#/p] rows. Hence the complexity of the mulupllcatmn portion of the

~ parallel algorithm is a(n?/p).
In Chapter 3 we showed that in an efficient all-gather communication each
rocess sends flog pl messages; the tolal number of elements passed is

“1)/ p. when*pis a power of 2. Hence the communication complexity

of the parallel algorithm is @(log p + n).

A Combining the computational portion of the algorithm with the final all-
gather commumication step, the overall complexity of our parallel matrix-vector
multiplication algorithm is @(n?/p + n + log p)-

Now let’s determine the isoefficiency of our parallel algorithni. The time
complexity of the sequential algorithm is @(n). The only overhead in the paral-
lel algorithmtis performing the all-gather operation. When 1 is reasonably large,

. message lransmission time in the all-gather operation is greater than the message
- latency. For this reason we simplify the communication complexity to & (n).

Hence the iscefficiency function for the parallel matrix-vector maltiplication

algorithm based on a rowwise block-striped decomposition of the matrix is

> Cpn=n>Cp

When the problem size is , the matrix has n® elements. Hence the memory
- utilization function M(n) = %, Computing the scalability function of our parallel
algorith:

MCp)/p=Cplp=Cp

To maintain conslant efficiency, memory utilization per processor must grow
linearly with the number of processors. The algorithm is not highly scalable.

8.4.2 Replicating a Block-Mapped Vector

Afier each process performs its portion of the matrix-vector product, it has pro-
duced a block of result vector ¢. We must transform this block-mapped vector
into a replicaled vector, as shown in Figure 8.5.

Let’s thinksabout what we must to do to accomplish the transformation.
First.-each process needs Lo allocate memory to accommodate the entire vector,
rather than just a piece of it. The amount of memory to be allocaled depeads on
the type of the elements stored in the vector: characters, inlegers, floating-point
numbers, or double-precision fioating-point numbers, for example. Second, the
processes must concatenate their pieces of the vector into a compleie vector and

183

184

CHAPTER 8 Matrix-Vector Multiplication

Process 0 . Process 0
o .

Process 1

Process 2 Process 2

Figure 8.5 Transforming a block-distributed vector into
a replicated vector. The elements of a block-distributed
vector are distributed among the processes. Each
element s stored exactly once. In contrast, when a vector
is replicated, every process has every element.

Before After

dilll
'
' Allgatherv

2

I
i

Figure 8.6 Function MPT_ Allgatherv enables
every process in a communicator to construct a
concatenation of data items gathered from all of the
processes in the communicator. If the same number of
items is gathered from each process, the simpler
function MPI_Al1gather may be used.

Processes

share the results of the concatenation. Fortunately, a function that can perform
the concatenation is in the MPI library.

8.4.3 Function MPI_allgatherv

An all-gather communication concatenates blocks of a vector distributed ainong
a group of processes and copies the resulting whole vector to-all the processes.
The correct MPI function is MPI_A1lgatherv (illustrated in Figure 8.6).

SECTION 8.4 Rowwise Block-Striped Decomposition 185

If the same mimber of items is gathered from every process, the simpler
function MPI_Allgather is appropriate. However, in a block decomposition
of avector, the number of elements per process is a constant only if the number of
- clements is a multiple of the number of processes. Since we cannot be assured of
that, we will stick with MPTI_Allgatherv.

Here is the function header:

int MPI_Allgatherv (void* send_buffer, int send_cnt,
MPI_Datatype send_type, void* receive buffer,
int* receive_cnt, int* receive_disp,

MPI_Datatype receive_type, MPI_Comm communicator)

" Bvery parameter éxcept the Tourth is aninput parameter:

send_buffer: the starting address of the data this process is contributing
to the “all gather.”

send_cnt: the number of data items this process is contributing.
send_type: the types of data item_s this process is contributing.
recejve_cnt: an array indicating the number of data items to be
received from each process (including itself).

receive_disp: an array indicating for each process the first index in the
receive buffer where that process’s items should be put.

receive_type: the type of the received elements.

communicator: the communicator in which this collective
communication is occurring.

The fourth parameter, receive_buffer, is the address of the beginning -
of the buffer used to store the gathered elements.

Figure 8.7 illustrates function MPI_Allgatherv in action. Each pro-
cess sets the scalar send_cnt to the number of elements in its block. Array
receive_cnt contains the number of elements contributed by each process;
it always has the same values on each process. In this example every process
is concatenating elements in the same process order, so the values in array
receive_ disp are identical.

As we have seen, MPT_Allgatherv needs to be passed two arrays, each
with one element per process. The first array indicates how many elements each
process is contributing. The second array indicates the starting positions of these
elements in the final, concatenated array.

We often encounter block mappings and in-order concatenation of array
elements. We can write a function to build the two arrays needed for this common
situation. Our function, called create_mixed_xfer_arrays, appears in
Appendix B. -

With these utilities in place, we can create a function to transform a block-
distributed vector into a replicated vector, the last step in the matrix-vector
multiplication algorithm. Function replicate_block_vector appears in
Appendix B.

186 CHAPTER 8 Matrix-Vector Muttiplication

Process Provess 0

send_buffer

[c 0 send_cnt =3 receive_buffer

;eceive_cnt receive disp | :> ET&F—! CE{tﬂth[q
lele] [ols]7]

Process | Frocess 1

send_buffer

receive buffer

“:Fend_cat =4 |
receive_cnt receive disp

slefd] [of3]7]

Process 2 Process 2

send pbuffer

["Ji@ send_cnt =4 receive buffer
e |[<Tol] Tt el [i 7

receive_cnt receive disp

Llefel Dols]7]

Figure 8.7 Example of how processes initialize variables send_cnt,,
receive cnt,and receive_disp when performing a straightforward
concatenafion using function MPI_Allgatherv.

8.4.4 Replicated Vector Input/Output

We need a function to read areplicated vector from an input file. We are assuming
the file was created with calls to fwr i te and should be read with calls to fread.
Thefile begins with an integer 1 representing the number of elements in the vector,
followed by the n vector elements.

Process p — 1 tries to open the data file for reading. If it can open the file, it
reads n and broadcasts it to the other processes. If it cannot open the file, it broad-
castsazeroto the other processes. If that should happen, allthe processes terminate
execution. Otherwise, every process allocates memory to store the vector. Process
p — 1 reads the vector and broadcasts it to the other processes. The source code
for function read_replicated_vector appears in Appendix B.

From a parallel programming point of view, printing a replicated vector
is simple. Typically we want a single process to do all the printing, to ensure
that messages to standard output don’t get scrambled. Since cvery process has
a copy of the vector, all we have to do is ensure that only a single process

SECTION B.4 Rowwise Block-Striped Decomposition

executes the calls to printf, and we're set. The source code for function
print_repl icated_vectorisin Appendix B.

8.4.5 Documenting the Parallel Program

With the support functions in place, we can now write a parallel program to
perform matrix-vector multiplication. Take another look at Figure 8.4, which
summarizes the principal steps of our implementation. The complete C program
appears in Figure 8.8,

We begin with the standard include files. We also include the header file
MyMPI . h for the utility functions we have developed.

We want to be able to change the mairix and vector types avitha minimum
amount of program editing. In the bodv of the program we will use dtype
to indicate the data type of the matrix and vecior elements, and we will use
.mpitype as the type designator needed for MPT function calls. At the beginning
of the program we usec a typedef and 2 macro definition to establish values for
dtype and mpitype.
~ After MP1 initializations, the processes read and print matrix A. (We devel-
oped these functions in Chapter 6.) We also read and print vector b.

Each process allocates its portion of the result vector ¢ and performs its share
of the inner preducts.
At this point every process has a block of . We convert ¢ to a replicated
vector, print it, and end program execution.

8.4.6 Benchmarking

Now let’s develop an expression for the expected execution tiime of the parallel
program on a commodity cluster. Let x represent the time needed to compute a
- single iteration of the loop performing the inner product. We can determine by
dividing the execution time of the sequential algorithm by n°. The expected time
for the computational portion of the parallel program is xn{a/p].

The all-gather reduction requires each process to send {log p] messages.
Each message has a latency A. The total number of vector elements transmitted
during the all-gather is n(2™571 — 1y72% 71 Each vector element is a double-
precision floating-point number occupying § bytes. Hence the expected execution
time for the all-gather step is ATlog p] + 8n {27! — 1y /2Merl) 4p.

Benchmarking on a commodity cluster of 450 MHz Pentium IT processors
connected by fast Ethernet reveals that x = 63.4 nsec, A = 250 usec, and § =
10¢ byte/sec.

Table 8.1 compares the actual and predicted execution times of our matrix-
vector multiplication program solving a problem of size 1,000on 1,2, ..., 8 and
16 processors. The actual times reporied in the table represent the average execu-
tion time over 100 runs of the parallel program. We determine the megaflops rate
by dividing the total number of floating-point operations {21%) by the execution
time, and then dividing by a million. The speedup of this program is illustrated
in Figure 8.20 at the end of the chapter.

187

/*

* Matrix-vector multiplication, Version 1
*/

#include <stdio.h>

#include <mpi.h>

#include "MyMPI.h"

/* Change these two definitions when the matrix and vector
element types change */

typedef double dtype;
#define mpitype MPI_DOUBLE

int main {int argc, char *argv[]) {

dtype **a; /* Flrst factor, a matrix */
dtype *b; /* Second factor, a vector */
dtype *c_blocK; /* Partial product vector */
dtype ‘*c; /* Replicated product vector */
dtype *storage; /* Matrix elements stored here */
int i, 3; /* Loop indices */

int id; /* Process ID number */

int m; /* Rows in matrix */

int n; /* Columns in matrix */

int nprime; /* Elements in vector */

int D; /* Number of processes */

int rows; /* Number-of rows on this process */

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);)
MPI_Comm_size (MPI_COMM_WORLD, &p);
read_row_striped_matrix {argv[l], (void *) &a,
(void *) &storage, mpitype, &m, &n, MPI_COMM_WORLD} ;
rows = BLOCK_SIZE(id,p,m};
print_row_striped matrix ({void **) a, mpitype, m, n,
MPI_COMM_WORLD) ;

read_replicated_vector {argvi2], (void *) &b, mpitype,
&nprime, MPI_COMM_WORLD);

print_replicated_vector (b, mpitype, nprime,
MPI_COMM_WORLD) ;

c_block = (dtype *) malloc (rows * sizeof {dtype)}
¢ = (dtype *) malloc {n * sizeof{dtype));

for (i = 0; i < rows; i++) {
c_block[i] = 0.0;
for (j = 0; j < n; j++)
¢_blockli] += a{1]{i] * b[j);
}

replicate_block_vector (c_block, n, {void *} ¢, mpitype,
MPI_COMM_WORLD) ;

print_replicated_vector (c, mpitype, n, MPI_COMM_WORLD);

MPI_Finalize(); ’
return 0;

Figure 8.8 Version 1 of parallel matrix-vector muttiplication.

SECTION 8.5 Columnwise Block-Striped Decomposition

Table 8.1 Predicted versus actual performance of rowwise striped matrix-vector
rnult«phcatlon program muinp1ymg a 1,000 x 1,000 matrix by a 1,000-element vector.

Megaﬂops
1 0.0634 3.6
2 0.0324 61.2
3 0.0223 88.1
4 0.0170 112.4
5 0.0141 131.6
-9 0.0120 1 -4 1504
7 0.0105 0.0122 5.19 1639
© 8 0.0094 0.0111 5.70 180.2
16 0.0057 00072 879 27718

The parallel computer is a commodity cluster of 450 MHz Pentium Ils. Each processor has a fasl

.. Fthermet connection to a shared switch.

8.5 COLUMNWISE BLOCK-STRIPED
DECOMPOSITION

8.5.1 Design and Analysis

In this section we will design another parallel matrix-vector multiplication
algorithm, assuming that each primitive task i has column i of A and element ;
of vectors b and c. The structure of the tesulting parallel algorithm is shown in
Figure 8.9.

The computation begins with each task i multiplying its column of A by
b;, resulting in a vector of partial results. At the end of the computation task i
needs only a single element of the result vector: ¢;. What we need is an all-to-all
communication: every partial result element j on task i must be transferred to
task j. At this point every task i has the » partial results it needs to add in order
to produce ¢;.

Because every primitive task has identical computation and communication
requirements, agglomerating them into larger tasks with the same number of
columas (plus or minus one) ensures we have balanced the workload. Hence we
will agglomerate the primitive tasks into p metatasks and map one metatask to
each process.

In the previous section we assigned to each process a block of rows of 4,
which we called a rowwise block-striped decomposition. Now we will use a
columnwise block-striped decomposition, agglomerating contiguous groups of
columns of A, as shown in Figure 8.3b.

Let’s determine the complexity of this parallel algorithm, assuming m = &.
Each process multiplies its portion of matrix A by its block of vector b. No process
is responsible for more than [/ p] columns of A or elements of b. Hence the
initial multiplication phase has time complexity ©(n(n/p)) = ©(n?/p). After
the all-gather step, each processor sums the partial vectors collected from the other
processors. There are p partial vectors, each of length at most [n/p]. The time

189

190

CHAPTER B Matrix-Vector Muliplication

Task i

Column i of A

Partial inner products

Column j of A

All-to-all exchange

+[] [TTLT]

Column f of A

Sum partial resulty

Column i of 4

Figure 8.9 In this parallel matrix-vector multiplication
algorithm each task has a column of the matrix and an
element of the vector. An all-to-all communication moves the
appropriale partial results to the tasks that will add them up.

complexity of this step is @(r). Therefore, the overall computational complexity
of the parallel algorithm is ©(n?/p).

An all-to-all exchange can e performred in [log p1 steps, using a bypercube
communication pattern. During-each step every process sends r/2 values to its
partner and receives /2 values from its partner. The total number of elements
sentand received in the all-to-all exchange is n[log p]. Hence the communication
complexity of this implementation of all-gather is @(r log p). '

Another way to perform an all-to-all exchange is for each process to send a
message to each of the other p — 1 processes. Every message contains just those

SECTION 8.5 Columnwise Block-Siriped Decomposition

elements the destination process is supposed to receive from the source. Tn this
implementalion the total number of messages is p — 1, but the total number of
elements passed by each process is less than or equal o ». The communication
complexity of this algorithm is &(p + n).

When we combine the computational portion of the algorithm with the final
all-gather communication step, the overall complexity of our parallel matrix-
vector multiplication algorithm is either O(n*/ p+nlog p) or O/ p +1 + p),
depending upon which way the all-to-all exchange is implemented.

. Now let’s determine the isoefficiency of the parallel algorithm. The time
complexity of the sequential algorithm is ©(s%). The paralle] overhead is limited
to the all-to-all exchange operation. When # is reasonably large, the time for

the all-to-all exchange is dominated by message transmission time rather thas =~ e

message latency. Using the second approach to implementing all-to-all exchange,

we have ©(n) complexity for this step, which is performed by all processes.
Hence the isoefficiency function for the paralle] matrix-vector multiplication

algorithm based on a columnwise block-striped decomposition of the matrix is

n*>Cpn=n>Cp

This is the same isoefficiency function we derived for the parallel algorithm based
- on arowwise block-striped decomposition of the matrix. The paralle] algorithm
is not highly scalable, because in order to maintain a constant efficiency, memory
used per processor must increase linearly with the number-of processors.

8.5.2 Reading a Columnwise Block-Striped Matrix

Let’s develop a function to read from a file a matrix stored in row-major order
and distribute it among the processes in columnwise block-striped fashion. When
a row-major matrix with multiple rows has a columnwise block-striped decom-
position among multiple processes, the matrix elements controlled by a process
are not stored as a contiguous group in the file. In fact, each row of the matrix
must be scattered among all of the processes.

We will maintain our tradition of making a single process responsible for
/0. See Figure 8.10. In the first step, one process reads a row of the matrix into a
temporary buffer. In step 2 that process scatters the elements of the buffer among
4ll of the processes. The algorithm repeats these steps for the remaining rows of
the matrix. The code for function read_col_striped matrix appearsin
Appendix B.
~ Function read_col_striped_matrix makes use of MPI library rou-
tine MPI_ Scatterv to distribute rows among the processes. Let’s take a closer
look at this function.

8.5.3 Function MPI_Scatterv

The MPT function MPI_Scatterv (Figure 8.11) enables a single root process
to distribute a contiguous group of elements to all of the processes in a commu-
nicator, including itsclf.

191

192 CHAPTER 8 Matrix-Vector Multiplication

Step |

Figure 8.10 In a columnwise block-striped decomposition,
each row of the matrix is distributed among the processors.

- One process inputs a row of the matrix {step 1) and then
scatters its elements (step 2).

Before After

Processes

3

Figure 8.11 The collective communication
function MPT_ Scatterv allows a single MPI
process to divide a contiguous group of data
items and distribute unique portions to the rest
of the processes in the communicator. If the
same number of data items is distributed to
every process, the simpler function
MPI_Scatter is appropriate.

Here is the header of function MPI_Scatterv:

MPI_Scatterv (void *send_buffer, int* send_cnt,
int* send_disp, MPI_Datatype send_type, N
vold *recv_buffer, int recv_cnt,
MPI_Datatype recv_type, int root, MPI_COMM communicator)

SECTION 8.5 Columnwise Biock-Striped Decomposition

The function has nine parameters. All but the fifth are input parameters:

send_buf fer: pointer to the buffer containing the elements to be
scattered.)

send_cnt: element { is the number of contiguous elements in
send_buffer going to process i.

send_disp: element i is the offset in send _buffer of the first element
goling to process i.

send_type: the type of the elements in send_buffer.

recv_buf fer: pointer to the buffer containing this process’s portion of
the elements received.

recv_cnt: the number of elements this process will receive.
recv_type: the type of the elements in recv_buffer.

root: the ID of the process with the data to scatter.
communicator: the communicator in which the scatter is occurring.

MPI_Scatterv is a collective communication” function—all of the pro-
cesses in a communicator participate in its execution. The function requires that
each process has previously initialized two arrays: one that indicates the number
of elements the root process should send to each of the other processes, and one
that indicates the displacement of this block of eleménts in the array being scat-
tered. In this case we want to scatter the blocks in process order: process 0 gets
the first block, process 1 gets the second block, and so on. While we developed
the function create_mixed xfer_ arrays in the context of a gather oper-
ation, we can use it in this context, too. The number of elements per process and
the displacements are identical.

8.5.4 Printing a Columnwise Block-Striped Matrix

Now it’s time to design a function to print a columnwise block-striped matrix. To
ensure that values are printed in the correct order, we want only a single process
to print all the values. In order to print a single row, a single process must gather
together the elements of that row from the entire set of processes. Hence the
data flow for this function is opposite that of function read_col_striped_
matrix. The code for function print_col_striped_matrix appears in
Appendix B.

Function print_col_striped_matrix makes use of MPI function
MPI_Gatherv to collect row elements onto process 0, which then prints the
row, The following subsection documents function MPT_Gatherv.

8.5.5 Function MPI_Gatherv

The MPI collective communication function MPI_Gatherv (Figure 8.12) per-
forms this data-gathering function.

193

CHAPTER B Matnx-Vector Mulliplication

Processes

Figure 8.13 Function NPT Alltoally allows every MPI
process o gather daia iterns from all ihe processes in the
communicator. The simpler function MPT_211toall should be
used in the case where all of the groups of data items being
transferred from one process to another have the same number
of elements. i

send_type is the type of the elements in send_butfer.
recv_luf fer is the starting address of the buffer used to collect
incoming elements (as well as the elements the process is sending to itself).
recv_count is an array; element / is the number of elements Lo receive
from process i. .
recv_displacement is an aay; element / is the starting point in
recv_buffer of the clements received from process 1.
recv_type is the type the elements should be converted to before they
are putin recv_buffer.
communicator indicates the set of processes participating in the
all-to-all exchange.

8.5.8 Documenting the Parallel Pragram

We now have a firm foundation on which to build our second parallel matrix-vector
multiplication program. The source for the program appears in Figure 8.14.

After the usual MPI initializations, we call fupction read _col _striped
matrix to inpul the contents of the data file containing a matrix and distribute
it among the processes, We then print the matrix.

Similarly, we read vector b and print it.

Each process allocates memory to store c_part_out. the “outgoing” par-
tial result vector, Most of these elements will end up on other processes. Each
process also allocated memory for c_part _in, the “incoming” pieces of the
other processes” partial result vectors.

Next is the actual computation. Each process multiplies its portion of the
matrix (having dimensions n x Local _els)by its portion of the vector (having
length lacal_eise), resulting in a partial result vector of length .

SECTION 8.5 (olumnwise Block-Striped Decomposition

/‘A

* Matriz-vector multiplication, Version 2
*f

finclude <stdio.h>

#include «mpi.h>

#include "MyMPI.h"

/* Change these two definitions when the matrix and vector
elemernz tvpes chamge */

typedef double divpe;
#define mpitype MPI_DOQUBLE

int main (int arge, char *argvi{]) {

dtype **a; /* The first factor, a matrix */

dtype *bi /* The second factor, a vector */ ’

dtype *c; /* The product, a vector */

dtype *c_part_out; /* Parrial sums, sent */

dtype *c_part_in; /* Partial sums, received */

int *ent_ouk; " /* Blements sent Lo each proc */

int *cpl_ing /* Elements received per proc */

intd £ /* Indices of seat elememts */

int *digp_in; /* Indices of recsived elements */

int i, Js /* Loop indices */

inf id; /* Process 1D number */

int local_els; /* Cols of *a‘ and elements of 'b*
N neld by this process */

ing m; /* Rows in the mafrix */

ink n; /* Columns in the macrix */

int nprime; /* Size of the vector */

int p; /% Humber of prov 3 ¥

dtype *storage; /* This process’s'r *

MPI_Init {%argc, &argv);
MPT Comm_rank (MPI_COMM_WORI
MP(_Comm_size (MPT_COMM_WC

D, &14);
LD, kp):

read_col_striped matrix largy{l], {void ***} ia,
{void **} >orage, mpitype, &m, &n, MPI_COMM WORLD);

print_col striped_matrix ({void **| a, mpitype, m, n,
HMPT_COMM_WORLD) ;

rvead block_vector (argv[2], (veid **} &b, mpitype,
snprime, MPI_COMM_WORLD) ;

print_block_vector {(veoid *) h, mpitype, nprime,

MPT_COMM_WORLD) ;

{* Bach protess muliiplies its columas of 'a’ and vector
'b*, resulting in a partial sum of product ’c’, */

c_part_out: = {(dtype *} my_malloc (id, n * sizeof (dtype)):
local_els = UOCK_312E{id,p,n);

for {1 = 0; 1 < n; i++) {
c_part_ouk|il = 0.0;

Figure 8.14 Second parallel matrix-vector multiplication program.

197

198 CHAPTER 8 Malrix-Yector Multiplication

for (3 = ; i < local_els; j++)
c_part_put{i} +- alillj] * b(jl;

}

create_nixed xfer arrays {id, p. n, icnt_out, &disp_outi;
create uniform xfer arrays (id, p, n, &ont_in, &disp_in);
c_part_in = -

{dtype*} my_malloc {id, p*local_els*sizecfid
MPI_Allloallv {c_parl_oubL. cat_out, disp_oul, mpitype,
c_part_in, cnt_in, disp_in, mpitype, MPI_COMM_WORLD) ;

¢ = {(dtype*} my_malloc {id, local els * sizeof{diypel);
for (1 = 0; 1 < local_els; i4+} {
. cfil = 0.0; e
for (3=0; j<prd+e) T T -
clil += c_part_in[i + j*local_elsl:
}
priat_block vector {{void *] ¢, mpilype, n, MPI_COMM_WORLD);
MPI Finalizei);
ralurn 0;

)
;

Figure 8.14 {contd) Second parallel matrix-vecior multiplication program,

The outgoing picces of ¢_part_out have different sizes. A call to
create mixed_xfer_arrays sets up the counts and displacements for
these pieces. In contrast, the incoming pieces of c_part _in all have lhe same
size. Calling create_uniform xfer_ arrays comectly initializes the
counts and displacements for these pieces. The MPI fanctionMPT_ Alltoallv
performs the all-to-all communication, routing each piece to its destination. -

Now each process has n chunks of length 1ocal els. Adding these to-
gether yields its portion of the result vector c.

8.5.9 Benchmarking

Now let’s develop an expression for the expected execution time of the parallel
program on a commodity cluster. As before, x is the time needed Lo compute a
single iteration of the loop performing the inner product. The expected time for
the computational portion of the parallel program is xa[n/ p].

The algorithm performs an all-to-all exchange of partially computed portions
of the vector ¢. There are two common ways to perform an all-to-all exchange. The
first way is for each process to send [log p} messages of length n/2. This requires
that each process send [log p] messages and transmit a total of {log p{n/2 data
elements. n

The second way is for each process lo send directly to each of the other
processes the elements destined for that process. This requires that each process
send p — 1 messages and transmit a total of about n(p — 1)/ p data elemerits.

For a large n, the message transmission time dominates the message latency,
and the second approach is superior. Assuming each message has latency A, the

SECTION 8.8 Checkerboard Block Decompasition 199

i'able 8.2 Comparison of predicted versus actual performance of our second
matrx-vector mulfiplication program on a commodity cluster of 450 MHz Pentium Hs.

- 0.0634 0.0638 - 100 314

1

2 0.0324 0.0329 192 608
3 0.0222 0.0226 280 885

4 0.0172 0.0475 362 1143
5 0.0143 0.0145 437 1379
6 - 00128 - 0.0126 502 158.7
7 00113 00112 565 178.6
8 0.0104 0.0100 633 2000
16 0.0085 - 0.0076 8.33 2632

" time needed to transmit a single byte is 1/8, and the time needed to perform an
all-gather of double-precision floating-point variables is (p — 1)(A + 8n/(pB)).
- Benchmarking on a commodity cluster of 450 MHz Pentium II processors
connected by fast Ethernet reveals that x = 63.4 msec, A = 230 usec, and g =
“ 10° byte/sec: ‘
Table 8.2 compares the actual and predicted execution times of our matrix-
- vector muliiplication program solving a problem of size 1,000 on 1,2,...,8
- and 16 processors. The actual times reported in the.table represent the average
- execution time over 100 tuns of the parallel program. The speedup of this program
-, is illustrated in Figure 8.20 at the end of the chapter.

- 8.6 CHECKERBOARD BLOCK
DECOMPOSITION

8.6.1 Design and Analysis

In this domain decomposition we associate a primitive task with each element of
the matrix. The task responsible for a; ; maltiplies it by b;, yielding d; ;. Each
element ¢; of the result vector is Z,'j’:é d; ;. Inother words, for each row i, we add
all the d; ; terms lo produce element i of vector ¢, as shown in Figure 8.15.
We agglomerate primitive tasks into rectangular blocks and associate a task
* with each block (as shown in Figure 8.3c). Since all the blocks have about the
" same size, the work required within each block is about the same, so we will set
the block sizes so that we can map one task to each process. We can think of the
processes as [orming a two-dimensional grid. Vector & is distributed by blocks
among the tasks in the first column of the task grid (Figure 8.16).
Now we can lay out the three principal steps of the parallel algorithm and the
. communications patterns necessary to accomplish these steps (see Figure §.17).
. The task associated with matrix block A; ; performs a matrix-vector multiplica-
tion of this block with subvector b;. Our first step, then, 15 to redistribute vector
b so that each task has the correct portion of b. (We’ll figure out how to do this

200 CHAPTER 8 Malrix-Vectar Multiplication
N S . :
4553) :>‘4\xlﬂ—3x2+3x5 - pA)
LRV Gx1+2x2+1%3 13
3

by
dy; 4, V
Gna o4 o2 P doy do; doz N 21
da G mzf 3, dig diy dig a
) ’

Figure 8.15 Our third parallel matrix-vector
multiplication algorithm associates a primitive
task with each element of matrix A. Every task
multiplies ils a ; term with by, forming d ;.
Rowwise reductions of the @ ; terms yield the
elements of the product vector ¢.

S

Figure 8.16

After agglomeration,
tasks form a two-
dimensional grid in
which each task is
responsible for a

block of matrix A. Mattix-vector

This figure shows a multiply

3 x 2 task grid.

Veclor bis divided i Lo

into blocks allocated ‘ [: : J

1o tasks in the first T e Reduce veclogs ~-=-==-1--—--~--
cofumn of the task H ! ACI0SS [OWS !

grid. E :

Figure 8.17 Phases of the parallel matrix-vector
multiplication algorithm based on a checkerboard block
decomposition of the matrix elements. First, vector bis
distributed among the tasks. Second, each task performs
matrix-vector multiplication on its block of matrix A and
portion of veclor b. Third, each row of tasks performs a
sum-reduction of the result vectors, creating vector c.

a little later.) In the second step, each task performs a matrix-vector multiplica-
tion with its portions of A and b. In step 3, tasks in each row of the task grid
perform a sum-reduction on their portions of c. Afier the sum-reduction, result
vector ¢ is distributed by blocks among the tasks in the first column of the task
grid.

SECTION 8.6 Checkerboard Black Decomposition

- Now let’s go back and figure out how ta do the redistribution of vector b.
> Assume that the p tasks are divided into a & x ! grid. Initially vector b is divided
~ among the k tasks in the first columan of the task grid. After the redistribution, a
- copy of b is divided among the / tasks in each row of the task grid.

5 Itk = {, theredistribution is easier. See Figure 8.18a. The task at grid position
(i, 0) sends its portion of b to the task at grid position (0, i). After this wransfer
each process in the first row of the task grid broadcasts its portion of & to the other

tasks in the same column of the grid.

Send/Recv Broadcast
. blocksof b blocks of &

o
o
T

b nw

[

4
t
(
'
i
1

T S 1 Y ¢ S 7 Ly S S

o
[SR SV,

[OOU U PR

1
]
H
!
1
|
i

ot

Broadcast
Gather 5 Scatter b blocksof b

{b)

Figure 8.18 Redistributing vector b. (a) Algorithm is
simpler when process grid is square. Processes in the first
column send their blocks of b 1o processes in the first row.
Then each process in the first row broadcasts its block of b
to the other prpcesses in its column. (b) An algorithm to
handle the case when process grid is nat square. First the
processes in the first column gather vector bonto process
at grid position (0, 0). Next the process at {0, 0) scatters b
ta the processes in the first row. Finally, each progess in
the first row broadcasis its block of b to the ather
processes in its column,

201

202

CHAPTER 8 Malrix-Vector Multinlication

However, ifk # {, the redistribution is more complicated, because the sizes of

- the blocks of b change. See Figure 8.18b. In this case, we first gather the elements

of b onto the task at grid position (0, (3. Next we scatter the elements of & among
the tasks in the first row of the grid. Finally, each process in the first row of the
task grid broadcasts its portion of b to the other tasks in the same column of the
grid.

Let’s analyze the complexity of the parallel algorithm, assuming m = n,

- We'll also assume that p is a square number and that the processes are arranged

into a square grid. (Admittedly, this is the best-case assumption, but when the grid
is size p x 1, the decomposition devolves into a rowwise block-striped decom-
posilion. Analogously, when the grid is size | x p, the decomposition devolves
nto a columnwise block-striped decomposition. We have already determined the
complexity of paralle] algorithms based on these two decompositions.)

Each process is responsible for a matrix block of size at most [n//p] x
[n//p . Hence the time complexuy of the matrix-vector multiplication step is
Q(n’/p).

When p is a square number, the redistribution of & is done in two steps. First
each process in the first column sends its portion of b to the process in the first row.
The time required for this message-passing step is ©(r/./p). Next each process
in the first row broadcasts its portion of & to the other processes in the same column.
This broadcast has time complexity ©(log ,/p(r//P)) = Onlog p/ /7).

Afier the matrix-vector multiplication step, processes in each row sum-
reduce their portions of b, The time needed for this communication operation

 is@(log /pln//F)) = Ofnlog p//p).

Combining these terms, the overall time complexity of the parallel matrix-
vector multiplication algorithm based on a checkerboard block dec.omposmon of
the matrix is ©(n*/p + nlog p/ /7). _

Now let's determine the isoefficiency of this parallel algorithm. The sequen-
tial algorithm has time complexity @(n2). The parallel overhead is p times the
conununications complexity, or rplog p/,/p = n,/plog p. Hence the isoeffi-
ciency function is

n* > Cnplogp=n>C/plogp
Since M{n) = n’, we get the following scalability function:
M(C/plog p)/p=C"plog’ p/p=Cllog'p

This parallel algorithm is more scalable than the other two implementations of
matrix-vector multiplication.

8.6.2 Creating a Communicator

Recall that a communicator is an opaque object that provides the environment for
message-passing among processes. [n the MPI programs we have implemented so
far, the collective communications involved all of the processes, and we could re-

ply upon the default communicator, MPT _COMM_WORLD. In our implementation

SECTION 8.6 Checkerboard Block Decomposition

of matrix-vector multiplication based upen a checkerboard block decomposition
of the matrix, there are four collective communication operations involving sub-
sets of the processes:

The processes in the first column of the virtual process grid participale in
the communication that gathers vector b when p is not square.
The processes in the first row of the virtual process grid participate in the
communication that scatters veclor b when p is not square.
Each first-row process broadeasis its black of b to other processes in the
same column of the virtual process gnd.

 Each row of processes in the grid performs an independent sum-reduction,
yielding vector c in the first column of processes.

- In order to involve only a subset of the original process group in a collective
_communication operation, we need {0 create a new Communicator.

A communicator consists of a process group, a context, and other properties
called attributes. The topology of the processes 15 one of the most impertant
attributes of 'a communicator. A topology allows you to associate an addressing
scheme other than the rank with the processes. Topologies are virtual in the sense
that they are not fied to the actual organization of the processors upon which
. the processes are executing. MPI supports two kinds of topologies: a Cartesian
(or grid) topology and a graph topology. Our application requires the creation
of a communicator with a Cartesian topology, a two-dimensional virtual grid of
processes. ‘

8.6.3 Function MPI Dims create

We want to create a virtual mesh of processes that is as close to square as possi-
* ble, which results in an algorithm having maximum scalability. Passed the total
- number of nodes desired for a Cartesian grid and the number of grid dimensions,

. function MPT_Dims_create retums an array of integers specifying the num-
ber of nodes in each dimension of the grid, so that the sizes of the dimensions are
. as balanced as possible. The function has this header:

int MPI_Dims_create (int nodes, int dims, int *size)

The function has three parameters:

nodes: an jnput parameter, the number of processes in the grid.

dims: an input parameter, the number of dimensions in the desired grid.
gize: an input/output parameter, the size of each grid dimension. The
elements of si.ze (s1ze[0],...,sizeldims-1]) must be injtialized
hefore calling the function. If size[1] =0, the function is free to

determine the size of that grid dimension. If size {i] >0, the size of that
dimension has been determined by the user.

203

CHAPTER 8 Matrix-Veoior Multiplication

For example, suppose we want to find the dimensions of a balanced two--
dimensional grid containing p processes. The following code segment accom-
- plishes this.

int p;
int size{2];

sizel0] = size[l] =
¥PI_Dims_create (p,

0;
2, size);

‘After function MPI_Dims_create has returned, size[{] contains the
number of rows in the grid, and size[1] contains the number of columns in
the grid.

8.6.4 Function MPI_Cart create

After determining the size of each dimension of the virtual grid of processes,
we want to create a communicator with this topology. Collective function MPI_
Cart _create does this for us. It has this header:

int MPI_Cart_create {

MPI_Comm old_comm, int dims, int *size, int *pericdic,

int reorder, MPI_Comm *cart_comm)

The function has five inpul parameters:

01d_commn: the old communicator. All processes in the old communicator
must collectively call the function.

dims: the number of grid dimensions.

*size: anarray of size dims. Element size{7] is the number of
processes in dimension j.

*periodic: an array of size dims. Element pericdic[J] should be I
if dimension j is periodic (communications wrap around the edges of the
grid) and 0 otherwise.

reorder: a flag indicating if process ranks cap be reordered. If reorder
15 0, the rank of each process in the new communicator is the same as its
rank in o1d_coma,

Function MPL_Cart_create has one output parameter. Through cart _
comr it returns the address of the newly created Cartesian communicator.

Let’s see how we would use this function in our application. The old commu-
nicator is MPT _COMM_WORLD. The grid has two dimensions. Function MPY _
Dimg_create initialized array size containing the size of each dimension.
There are no wraparound communications, and we do not care if the ranks of the
processes have the same order in the new communicator. These decisions lead to

SECTION B.6 Checkerboard Block Decomposition

the following code szgment:

. MPI_Comm cart_comm; /* Cartesian topology communicator */

int p; /* Processes */
. int periodic[2]; /* Message wraparound flags */
Coint size[Z]; /* Size of each grid dimension */
gize{0] = size[l] = 0;

MPI_Dims_create (p, 2, size):
periodici@) = periodici{l] = {;
MPI_Cart_create (MPI_COMM_WORLD, 2, size, periodic,

1, &cart_comnl;

s e e T oAl

8.6.5 Reading a Checkerboard Matrix

We will maintain our tradition of having a single process responsible for opening
the data file containing the matrix, reading its contents, and distributing them to
the appropriate processes. The disiribution pattern is similar to the pattern we saw
when we decomposed the matrix using columnwise striping. The difference is
that instead of scattering each matrix row among all the processes, here we must
scatter each row among a subset of the processes—those in the same row of the
virtal process grid. See Figure 8.19. Process 0 is responsible for matrix input.
Eachtime it reads in a row of the matrix, it sends the matrix row to the first process
in the appropriate row of the process grid. After the receiving process reads the
matrix row, it scatters it among the processes in its row of the process grid.

In order to accomplish all this, we need to add a trio of MPI functions to our
repenoire,

8.6.6 Function MPI_Cart rank

Tn order to send a matrix row to the first process in the appropriate row of the
process grid, process 0 needs to know its rank. Function MPT_Cart_rank,
when passed the coordinates of a process in the grid, returns its rank. It has this
header:

MPI_Cart_rank (MPI_Comm comm, int *cocords, int *rank)

The first paramelter, comm, is an input parameter whose value is the Cartesian
communicator in which the communication is occurring. The second parameter,
coords, 15 another input parameter: an integer array containing the coordinates
of a process in the virtual grid. The function returns through the third parameter,
rank, the rank of the process in comm with the specified coordinates.

For example, suppose the virtual process grid has r rows. The matrix being
read has m rows. Row i of the input matrix is mapped to the row of the process grid
specified by BLOCK_OWNER (1, r, m) . The following code segment illustrates
how process 0 could find the rank of the process that should receive the input row.

205

208

CHAPTER 8 Matrix-Yector Multiplication

each.of these new subgroups. It has this header:

nt MPI_Comm_split (MIP_Comm old comm, int partition,
int new_rank, MPI_Comm *new_comm)

The first three variables are input parameters:

old_comm: the existing communicator to which these processes belong.
This 15 a collective function: every process in the old communicator must
call it

partition: the partition number.
new_rank: rank order of process within new. communicator.

"The function returns through new_comm a pointer to the new communicator to
which this process belongs.

We've already seen how to use function MPI_Cart_create to creale a
Cartesian communicator that organizes the processes into a virtual two-.
dimensional grid, gr 1d_comm. We’ve also seen how each process can call func-
tion MPI_Cart_coords to defermine its coordinates in the grid, stored in the
two-element array of integers grid_coords. Element grid_coords{0] is
the row number, and element grid_coords{1] is the column number.

Atthis point we canuse functionMPL_Comm_spl1it topartitionthe process
grid into rows. Because we want to proup together processes in the same row,
we use the value of grid_coords{0] as the partitioning number. We rank
processes according to their column indices by usmb grid_coords{1] asthe
determinant of the ranking order.

MPI_Comm grid_comm; /* 2-D process grid */

MPI_Comm grid_coords(2]; /* Location of process in grid */
MPI_Comm row_comm; /* Processes 1n same row */

MPI_Comm_split (grid comm, grid_coords(0],
grid_coords[1], &row_comm);

We will also use this function to divide the Cartesian communicator into
separate communicators for every column in the process grid.

With the original grid comimunicator and these two additional communicators
we can perform all the communications needed to redistribute the elements of 5
and perform the final surn-reduction resulting in c.

8.6.9 Benchmarking v

We have written an MPI program implementing matrix-vector multiplication
based on a checkerboard block decomposition of the matrix. Writing the key
functions of this program is left as a series of exercises at the end of the ‘chapter.

Let’s develop an analytical model for the performance of this program on the
same target cluster we used for the previous two programs. We will only consider
the case where p is a square number.

SECTION 8.6 Checkerboard Biock Decomposition

Again, we let y denote the time needed to perform a single iteration of the

- loop computing the inner product. Each process is responsible for a block of 4

having size at most [/ /p1 x {r/./p . Hence the estimated computation time
of the parallel program is x [n/./p1 % {n//p 1.

In the first step of the redistribution of b, the processes in the first column of
the prid pass their blocks of b to processes in the first row of the grid. A process is
responsible for at most {1/, /p | elements of b. Hence the time needed to send or

" receive a message containing these elements is A + 8{a/,/p]/B. In the second
step of the redistribution, each process in the first row of the grid breadcasts its
* block of b to the other processes in the same column. The time required for this
- stepislog /p(A+8{u/./p1/B).
' Aftereach processhas performed its share of the matrix-vector muluphcauon
~ the processes in each tow of the grid cooperate to reduce their portions of c.
We ignore the time needed to perform the additions, which is swamped by the
" communications time. The communications time is the same as that nceded to
 perform the columnwise broadcast: log ./p(A + 8{n/,/p1/8).
. Benchmarking on a commodity cluster of 450 MHz Pentium IT processors
. connected by fast Ethernet reveals that ¥ = 63.4 nanoseconds, & = 250 usec,
" and B = 10° byte/sec.
Table 8.3 compares the actual and predicted execution times of acheckerboard
* matrix-vector multiplication program solving a problem of size 1,000 on 1,4, 9,
and 16 processors. The actual times reported in the table represent the average
execution time over 100 runs of the parallel program. The speedup of this program
is compared with the speedups of our other two implementations of matrix-vector
multiplication in Figure 8.20.

The number of messages sent by this program is virtually identical to the
number of messages sent by the other two programs implementing matrix-vector
multiplication. The principal difference between this algorithm and its predeces-
sors is that the number of elements of & and ¢ transmitted per processis @(z/./p),
whereas the other two algorithms transmitted ©(r) elements. For this reason, we
should expect the checkerboard algorithm to perform better thaa either the row-
wise striped or the columnwise striped algorithms, once the number of processors
gets large enough. Our experimental data bear this out. While the program based
on the checkerboard decomposition does not outperform the other two programs
on 1, 4, and 9 CPUs, it comes out on top when we increase the number of CPUs
to 6.

Table 8.3 Predicted versus actual performance of checkerboard matrix-vector
multlpllcatmn program multiplying a 1,000 x 1,000 malrix by a 1,000-element vector.

ors - Predicted time ’Acmal time - Specdup jf‘g-f.Megaﬂops

1 0.0634 0.0634 1.00 316
4 0.0178 0.0174 3.4 1149
.9 0.0097 0.0097 6.53 206.2

16 00062 0.0062 10.21 3226

The parallel computeris 2 commodity cluster of 450 MHz Pentiun Ils. Each processof fras a fast
"Ethernet connection (o a shared switch.

210

CHAPTER 8 Matrix-Vector Muliiplication

Speedup
k=4

S N B
2 04 6 8 10 12 W 16

Processars

Figure 8.20 Speedup of three MP}
programs multiplying a 1,000 x 1,000 -
matrix by a 1,000-element vector on a
commodity cluster. The speedup of the
program based on a rowwise block-striped
decomposition of the matrix is indicated
with a dotted line, the speedup of the
columnwise block-striped implementation is
shown with a dashed ling, and the speedup
of the checkerboard block implementation
is drawn with a solid fine.

8.7 SUMMARY

In this chapter we have designed, analyzed, and benchmarked three MPI pro-
grams to perform matrix-vector multipiication. The first design is based upon
a rowwise block-striped decomposition of the matrix among the processes, the
second springs from a columnwise block-striped decomposition, and the third
anises from a checkerboard block decomposition of the matrix.

We have determined the isoefficiency of each of these algorithms. The
checkerboard-decomposed algorithm has the bestisoefficiency function, meaning
it is more suitable for scaling to large numbers of processors than the algorithms
based on the other two decompositions. Benchmarking reveals the superiority of
the checkerboard-decomposed algorithm as the number of processors increases
{Figure 8.20). :

Because each algorithm is based on different matrix and vector decomposi-
tions, the resulting programs bave much different communication patterns. As a
result, we have encountered many powerful MPI communications functions for
scattering and gathering data. We have also leamed how to create communicators
with a grid topology and how to partition the processes of a communicator into
subgroups, each with its own communicator.

SECTIONM 8.10 Exercises

Compared to a € program performing matrix-vector multiplication, our par-
allel programs and their supporting fanctions are many times longer. The actual
amount of code spent performing the computations is about the same, but read-
ing and distributing matrices and vectors is much more complicated in a parallel
setting. Developing and debugging these functions is a tedious process. That is

- why it makes sense to make them as general as possible, put them in a library,

and reuse them. It also makes sense to use freely available librades. The ScalLA-

PACK projectresultedin the creation of a large suite of MPI-compatible furctions

supporting computational science and engineering. See the Bibliographic Notes
section for more information on ScaLAPACK.

8.8 KEY TERMS

all-gather commmication columnwise block-stiiped - replicated vector

all-to-all communication decomposition topology
- attmbutes © communicator
" Hock-decomposed vector contexi
- checkerboard block distributed vecior
decomposition process group

8.9 BIBLIOGRAPHIC NOTES

Other introductions to paralle]l matrix-vector multiplication algorithms include

Paclieco [89] (rowwise striped), Bertsekas and Tsitsiklis [9] (rowwise striped
~ and columnwise striped), Fox et al. [33] (checkerboard), and Grama et al, j44]
(rowwise striped and checkerboard),

In the mid-1990s several U.S. government agencies provided funding to the
Scal APACK project, a collaborative effort between Ozk Ridge National Labo-
ratory, Rice University, the University of California, Berkeley, the University of
- California, Los Angeles, the University of Illinois, and the University of Ten-
nessee, Knoxville. These institutions developed many MPI~compatible libraries
of numerical functions. These freely available libraries serve a wide vadety of
functions, including performing basic operations on'matrices and vectors, solving
linear systems of equations, computing eigenvalues and eigenvectors, and precon-
ditioning matrices for iterative solvers. Sec www.net 1ib. org/scalapack/
{or more information about these libraries.

The March 1994 issue of Communications of the ACM focuses on artificial
intelligence. It contains three survey articles on neural networks.

- 8.10 EXERCISES

8.1 Benchmark the parallel matrix-vector multiplication programs developed
in this chapter on your parallel computer, this ime including time spent
reading the matrix and the vector from files. Which program exhibits
higher performance? Why?

241

212 CHAPTER 8 Matrix-Yector Multiplication

8.2

33

8.4

85

8.6

8.7

88

89

Using the performance model developed in Section 8.4 of this chapler,
estimate the cxecution time, speedup, and megaflops rate of thie first

- matrix-vector multiplication program on 9, 19, .. ., 15 processors,

assuming i = 1,000.

Write a matrix-vector multiplication program in which marices are
distributed among the processes in block-row fashion and vectors are
distributed among the processes as blocks. You may assume both the
mairix and the vector are input from a data file, using the same format as

" described for the example programs in this chapter. At the end of the

program’s execution, the result vector ¢ should be distributed among the
processes as blocks. o S
Implement another version of function read_col_striped_

mat rix. As in the function described in the chapter, a single process
should be responsible for opening and reading the conients of the file.
Unlike the function described in the chapter, the matrix distribution
should be accomplished with p — 1 simple send-receive messages. For
each row of the matrix, the process reading the file should call
MPI_Send p~ 1 times; each of (he other processes should call
MPI_Recv once. No process, including the process reading the file,
should alocate memory for more than n[r/p] matrix elements.

Implement another version of function read_col_striped

mat rix that requires no calls to MPI functions. Each process opens the
data file and reads its portion of the matrix.

Write a matrix-vector multiplication program in which mairices are
distributed among the processes in block-column fashion and veclors are
replicated. You may assume both the matrix and the vector are input from
a data file, using the same formal as described for the example programs
in this chapter. At the end of the program’s execution, vector ¢ should be
replicated.

Assume grid_comn is 2 communicator with a Cartesian topology that
organizes processes into a two-dimensional grid. Write a code segment
that partitions the process grid into columns. At the end of the code
segment, each process’s value of col_comm should be a communicator
containing the calling process and all other processes in the same column
of the process grid, but no others.

Suppose grid_ couun is a communicator with a Cartesian topology that
organizes processes into a virtual two-dimensional grid. Write a code
segment illustrating how function read_block_vector can be used
to open a file containing a vector and distribute it among the first column
of processes in grid _comm. The name of the file is “Yector,” and it
contains double-precision floating-point values.

As part of a program that implements matrix-vector multiplication based
on a checkerboard decomposition of the mattix, write a function that
redistributes vector b. Assume the vector has » elements and the

SECTION 8.10 Exercises 213

processes are organized into a grid with dimensions r x c. Initially
vector b is distributed by blocks among the pracesses in the first column
of the grid. The process at grid location (7, 0) is responsible for BLOCE
SIZE(i, r, n} elements of b, beginning with the element having indcx-
BLOCK_LOW({1, r, n}. After the redistribution, every process in
column j of the prid is responsible for BLCCK_SIZE{J, ¢, n}
elements of b, beginning with the element having index
BLOCK_LOW(7,c,n}.

a. Assume p is a square number; i.e., r =¢.

b. Assume p is not a square number; Le., r # c.

c. Make no assumptions about the value of p.

8.10 Write a program that impiements matrix-vector multiplication based on a
checkerboard block decomposition of the matrix. The program should
read the matrix and the vector from an input file and print the answer to
standard output. The names of the files containing the matrix and the
vector should be specified as command-line arguments.

8.11 Write a function Lo transpose an n x n matrix A. Assume that before the
function call, A is rowwise block decomposed among the'p processes.
After the function retums, A should be columnwise block decomposed
among the p processes.

"~ 812 A binary scarch tree is a way of organizing n keys from a linearly
ordered set to ensure their retrieval in @{Jog 1) time. If we know the
probability of each key being accessed, we can creale an optimal binary
search tree that minimizes the average scarch time (Figure 8.21).

brown 0.16
dog 013)
fox 0.06

jumped 1 0.08
lazy 0.07
nver 0.17

quick | 005

the 325

Figure B.21 Given a set of keys and the probability of each key being
accessed, an optimal binary search tree minimizes the average fime needed 1o
retrieve a key. =

Figure 8.22 is a C program implementing a dynamic programming
algorithm to find an optimal binary search tree, given a set of »
probabilities. The program is adapted from pseudocode in Baase and Van
Gelder [3]; consult their textbook for more details on the algorithm,

214

CHAPTER B Malrix-Yacior Mulliplication

Given p{8], pill], ..., piN-1l,the probability of each kay
in an orderad list of keys being the target of a search,
this program uses dynamic programming to compute the
vptimal binary search tree thal minimizes the average
number of comparisons needed to find a key.

Last moditication: 12 Septewber 2002

#include <stdio.h>
#include <values.h>

mai

n {int argc, char *argv{]) |

float bestcost; i* Towest cost subtree found so far */
‘int bestroot; /* Rool of lowest cost subtree */
int high; i* Highest key in subtree */

int is 3

int low; /* Lowest key in subtree */

int oag /% Number of keys */ ‘

int r; /* Passivle subtree root */

float rcost: /¥ Cost of subtree rooted by r */
int **root; {* Best subtree roots */

float **cost; /* Besl subtree cosis */

float *p; /* Probability of each key */
void alloc_matrix {veid ***, int, ipt, int};

Fig

to i

void print_root {int **, int, int);
/* Input the number ot keys and probabilities */

scanft (*%d", &n);
p = (float *) mallpc i * sizeof({loatjl;
for (L = 0; 1 < n; i+4)

S ("3, wplily;

L

i

/¥ Find optimal binary search tree */
alloc_matrix {{void ***)} &c . on+l, nel, sizeof(:loat)%
alloc_matrix ((void ***} groot, n+l, ns+l, gizeof (int
for {low = n; low »= 0; low--} {
cost[low) [low] = 0.0;
roat {low] ilowl = low;
for (high = Yow+l; high <= n; high++) {
bagtvost = MAXFLOAT;
for {r = low; < high; r++) |
reost = LObtinW}Lr] + cost[r+1i[highl;
tor (3 = lows 3 < high; j++} rcost += plijl;
1¥ {rcost < bestcost) {
bestcost = roost:
bestroat =

n

i

s

ure 8.22 C program implementing dynamic programming algorithm
nd an optimal binary saarch tree.

SECTION 8.10 Exercises

cost [low) [high] = bestcost:
rool [low] [highi = bestroot;
) .

}

/* Prink structure of binary search tree */

print_rootiroct, 0, n-1);
.
i
/* rint the root of the subtree spanning keys
"low through “highs */

void print_rogt (int **root, int low, int high) {
" printf ("Root of tree spanping 3d-%d is 3din",
low, high, root{low]{high+1]}; ‘
1L (low « rootllow) [high+l]l-1)
print_root ircet, low, root{low] {high+1]-1};
i€ {root[low] [high+l] < high-1)
print_root (root, woot{low]lhigh+li+l, high);
.

/% Allocate a two-dimensional array with ‘m’ rows and
s

n’ colunas, where each entry occupies ’size’ bytes ¥/
void alloc_matrix (void ***a, int m, int n, int size)

int i;

vaid *storags;

storage = (void *) mallov (m * o * size);

*a = (void **) malloc {m * sizeof{vaoid *j);

for 11 =0; 1 «my f+s) |

{*a}ii1] = storage + i * n * size;

1 -
)

Figure 8.22 (contd.) G program implementing dynamic programming
algorithm to find an optimal binary search tree.

Use the partitioning-communication-agglomeration-mapping design
methodology to implement a parallel version of this program. (Hint; You

need to find an agglomeration that will allow multiple processes to be
computing concurrently.)

215

216

CHAPTER

Document Classification

Itis impossible to enjoy idling thoroughly unless one has plenty of work to do.
Jerome Klapka Jerome, 1dle Thoughts of an 1dle Fellow

9.1 INTRODUCTION

The World Wide Web contains miflions of text documents. Many questions 'can
be answered by retrieving the right documents, but automated Sci}rch engines
are needed 1o fnd the documents most likely to contain relevant information.
To simplify the comparison of documents with querics or against cach other,
practitioners often use a vector to represent the contents of a document. Each
dimension of the vecior represents the “fit” between the document and a concept,
which may take the form of a word or phrase.

In this chapter we develop an application that reads a dictionary of key words,
locates a set of text documents, reads the documents, generates a vector for each
document, and writes the document vectors, [n contrast to most of the Prob}ems
we have examined in previous chapters, this problem is amenable to a tullCllol‘l'fll
decomposition. We developa manager/worker—style parallel programto solve this
problem. In the course of developing the program and discussing enhancementst
to it, we add the following MPI functions to our repertoire:

MPI_Irecv, (o initiate a nonblocking receive

MPI_ 1send, to initiate 2 nonblocking send

MPI_Wait, to wait for a nonblocking communication to complete
MPI_Probe, to check for an incoming message
MPI_Get_count,tofind the length of 2 message

HPT_Testsome, to return information on all completed nonblocking
communications k

SECTION 9.2 Parallei Algorithm Design 217

Read
docoments

Generate
document
VECLOrS

1 Figure 9,1 The document
classification problem consists of five
general tasks.

9.2 PARALLEL ALGORITHM DESIGN

Our objective is aprogram that reads adictionary and searches adirectory structure
. for plain text files (such as .html, .tex, and ,txt files). For each of these
- files, the program opens the file, reads its contents, and generates a profile vector
. that indicates how many times the text document contains each word appearing
. inthe dictionary. The program writes a file containing the profile vectors for each
of the plain text files it has examined. A data dependence diagram for the five
- steps appears in Figure 9.1.

9.2.1 Partitioning and Communication

While reading the dictionary and identifying the documents may be performed

. concurrently, we need to break the tasks into finer pieces if we are going to exploit

parallelisry more fully. Let’s assume that reading documents and generating the

profile vectors consnme the vast majority of execution time. It makes sense, then,

to generate two tasks for each document: one to read the document file and another

to generate the vector. The resulting data dependence graph appears in Figure 9.2.

This algorithm is a natural candidate for a functional decomposition. Each

" operation is a primitive task. A dataelement (i.., a document) is associated with
each task.

5.2.2 Agglomeration and Mapping

The number of tasks is not known at compile time. Tasks do not communicate
with each other. The time needed to perform each task (process each document)

218 CHAPTER 9 Document Classification

Read
dictionary

{dentify
documents

Read
document 0

Generate
document
vector)

Read
document -1

Read
document |

Generate
document
vector 1

Generate
document
yeotor 7]

Figure 9.2 The reading and profiling of each document may
occur in paralie), -

Assign task Assign task

Retum Return
completed completed
fask tagk

Figure 9.3 In a manager/worker—style parallel
algorithm, a manager process assigns tasks to and
receives results from a set of worker processes.

may vary widely, because the documents may have radically different sizes, and
some documents (such as .html files) may be more difficult to process than
others (such as . txt files). Given these characteristics, our mapping decision
tree (Figure 3.7) suggests we sbould map tasks to processes at run-time.

9.2.3 Manager/Worker Paradigm

To support the run-time allocation of tasks to processes, we will construct a
manager/worker—style parallel program. One process, called the manager, is
responsible for keeping track of assigned and unassigned data. It assigns tasks
to the other processes, called workers, and retrieves results back from them
(Figure 9.3). h

The advantage of allocating only a single task at a time to each worker is
that it balances workloads, A worker is done when it completes a task and the

SECTION 9.2 Paralle! Algorithm Design

manager has no more tasks to assign. At this point, no worker has more than one
task left to complete.

The disadvantage of allocating a single task at a time to each worker is
that it introduces additional communication overhead into the parallel algonthrn
increasing execution time and lowering speedup.

To date, all of the paralle] programs we have written are in the SPMI) (Single
Program Multiple Data, sometimes pronounced “spim-dee™) style. In SPMD pro-
grams every process executes the same functions (though a designated process
may be responsible for file or user 1/0). The manager/worker model is a clear
break from the SPMD style of programming. The manager process has different

* responsibilities from the worker processes. In a paralle! program implementing
a manager/worker algorithm, there is typically a control flow split early in the
program’s execution that sends the manager process off executing one function
and the worker processes off executing another function,

Keeping workloads balanced is essential for high efficiency, and we choose

" the manager/worker paradigm as the basis for our parallel algorithm design. Our

first step is to decide which tasks should be done by the inanager and which should
be done by the workers. Identifying the documents is clearly a job for the manager,
since it is the manager that will be assigning file names to the workers. Reading the
dictionary should be done by the workers, since they are the processes that will be
constructing the profile vectors. Given a document file name, a worker will read
the file and produce the document profile vector. Finally, we’ll give the manager

. responsibilily for gathering the document vectors and writing the resulis file.

In the rask/channel graph of Figure 9.3, you can see there is an interaction
cycle between the manager and each worker. The manager provides the worker
with a task. Some time later the worker returns the completed task to the manager
(or simply reports that the task is done). At this point the manager may give the
worker another task.

The cycle may begin with either a message from the manager to the worker or
. vice versa. Which should come first? In our design, we choose to have the worker
initiate the dance by sending a message to the manager indicating it is ready to
receive a task. We do this because we cannot be certain when the MPI processes
on different processors begin execution. This way, the manager only sends fasks
to workers it knows are active.

9.2.4 Manager Process

Pseudocode for the manager process appears in Figure 9.4. The manager begins
by identifying the n plain text documents in the directlory specified by the user. It
receives from worker () the value of &, the number of elements in each document
vector, so that it can allocate # x k matrix s for storing the vectors it receives from
the workers. Itinitializes variables d and f showing that no documents have been
assigned and no workers have been terminated, respectively.

The manager enters aloop that it repeats until it has terminated all workers. In
_ thisloop itreceives amessage from a worker. If the message contains a document’s

219

220 CHAPTER 8 Document Classification

Manager
Laocal variables
¢ — aray showing document assigned to each process
d — documents assigned
§ =D of worker requesting docament
k—document veclor length
n — number of documents
p — total number of processes {p — | are workers)
§ - storage array contaming document vectors
t — terminated workers
© -— individual document vector

{dentify n documents in user-specified directory
- Recejve dictionary size k from worker 0
Allocate 5 with dimension z1 X & Lo store document vecrors
d <0
t 1
repeat
Receive message from worker j
if message contains dochment vector v
LR V

else

endif
ifd < n then
Send name of document d to worker j
ofjl < d _ ‘
ded¥1
else
Send termination message to wocker §
Lot
.endif
untile =p--1
Wiite 5 to ouiput file

Figure 9.4A Pseudocode for the document
classification manager process.

profile vector, it stores the vector in the appropriate place in 5. Otherwise, the
worker is simply indicating it is ready for a document. (This only happens once
per worker.) If there are any documents left, the manager sends the file name to
the worker, records in array ¢ which document it assigned, and increments d,
the number of documents assigned. If there are no documents left, the manager
sends a termination message to the worker and increments the termination count.
It repeats the loop until it has terminated all of the workers.

Exiting the loop, the manager process writes to a file the document profile
vectors stored in 5.

9.2.5 Function MpPI_abort

Recall that after the manager identifies the n plain text documents in the directory
and receives k, the document vector size, from process 0, it must allocate an 1z k

SECTION 9.2 Faraliel Algorithm Design

matrix for storing the vectors. This is an operation that only the manager process
performs—ihe worker processes are off doing other things at this point.

If the memory allocation fails, we need a simple way to terminate the execu-
tion of the MPI program. Function MPT _Abort gives us this power. It has this
header:

int MPI_Abort {MPI Comm comm, int error_code}

Function MPI_2bort makes a “best effori” attempt to aborl all processes
in the communicator passed as comm. It returns to the calling environment the
value of error_code.

8.2.6 Worker Process

Now lel’s think about the worker processes. Every worker needs a copy of the dic-
tionary. One solution is for every worker to open the dictionary file and read its con-
- tents. Another option is for one worker to open the dictionary file, read its contents,
and then broadcast the dictionary to the other workers. If the broadcast bandwidth
inside the parallel computer is greater than the bandwidth between the file server
and the paralle! computer, the second strategy is betier. It is the one we adopt.
The pseudocode for the worker process is in Figure 9.5. As soon as a worker

becomes active, it notifies the manager it is ready for work. (Technically, this

Worker
Local variables
[—filename
- - k ~— dictionary size
v — document vector

Send first request for work to manager
- if worker 0 then
Read dictionary from file
endif
Broadeast dictionary among workers
Build hash table from dictionary
if worker 0 then’
Send diclionary size k 10 manager
endif
tepeat
Receive file name f from manager
i f indicates tesmination
exitloop
else
Read documen from fie f
Generate docament vector v
Send » to manager
endil
" forever

Figure 9.5 Pscudocode forthe
document classification worker
process.

221

222

CHAPTER 9 Document Classification

is not true, because the worker has not yet acquired the dictionary. However,
making the request early allows the time spent sending the message and receiving
the first document’s file name from the manager to be overlapped with dictionary
setup time.) Worker 0 reads the dictionary. All workers (but not the manager)

. participale in the collective communication operation to breadcast the dictio-

nary. Each worker constructs a hash table from dictionary elements. This will
enable constant-time access (in the average case) to dictionacy entries, speeding
the profiling of the documents. Worker 0 also sends the dictionary size to the
manager, i

The worker process enters a repeat . . . forever loop. It receives a message
from the manager. If the message is the name of a file containing a document, the
worker reads the file, generates the document vector, sends the document vector
to the manager, and iterates. If the worker receives a (ermination message from
the manager, there are no more documents (o process, and the worker ceases
execution.

We can create a task/channel graph for this manager/worker design. It is
illustrated in Figure 9.6 for the case when there are five processes {one manager
and four workers).

We need to decide which process will be the manager. It makes no parficular
difference, but for the sake of simplicity, let’s assign management responsibil-
ities to the process with rank 0 in MET _COMM_WORLD; processes with ranks
L2,..., p— 1 will be the workers.

Directory
information

Results file

Document
file

Document
file

Document
file

Document
file

Dictionary
file

Figure 9.6 Task/channel graph for the parallel document classification algorithm.
Dashed arrows represent channels used to broadcast the dictionary. Heavy gray
arrows represent channels that carry document names to workers. Heavy black
arrows represent channels that carry document vectors to the manager.

SECTION 9.3 Nonblocking Communications

_Note-that our design assumes al least two processes will execute the
program—one manager and at least one worker. Our implementation needs to
check to easure at [east two MPI processes are active.

9.2.7 Creating a Workers-Only Communicator

. In the paralie] algorithm we have designed, the dictionary is broadcast among the
workers while the manager is seatching the directory structure for plain text files.
FunctionMPI_Bcast isacollective communieation operation, meaning it must
be performed by every process in a communicator.

To support a worker-only broadcast, we must creale a new communicator
that includes all the workers but excludes the manager. In Chapter § we saw
how to use MPI_Comm_split 1o split a communicator into one or more new
communicators.

In this case, however, we do not want the manager process to be a member
of a new communicator. We can exclude the manager process by having it pass
the constant MPT _UNDEFINED as the value of split_key. The return value
of new_comm will be MPT_COMM_NULL.

We can create a new, workers-only communicator with this code:

int id;
MPI_Comm worker comm;

f {!id) /* Manager */

MPI_Comm_split (MPI_COMM_WORLD, MPI_UNDEFINED, id,
sworker_comm) ;

else /* Worker */

9.3 NONBLOCKING COMMUNICATIONS

The work of the manager process has three phases. In the first phase the manager
finds the plain text files in the directory structure specified by the user, receives
" the dictionary size from worker 0, and allocales the two-dimensional array that
is used o store the document profile vectors. In phase 2, the manager allocates
documents to workers and collects profile vectors. 1t writes Lthe complete set of
profile vectors to a file in phase 3.

Let's focus on phase |. The manager must search 2 directory structure and
receive a message from worker 0. Is there a way Lo overlap these two activities?

To date, we have used MPI_Send and MPT_Recv for point-to-point
message-passing. These are blocking operations. Fanetion MPI _Send does not
return until either the message has been copied into a system buffer or the message
* has been sent. In either case, you can overwtite the message buffer as soon as
the function retarns. Function MPI_Recv does not return until the message has
been received into the bufier specified by the user; you may access the message
values as soon as the function returns.

MPI_Comm_split (MPI_COMM_WORLD, 0, id, &worker_ comm);

223

CHAPTER 9 Document Classitication

Blocking sends and receives may limit the performance of a paralle! program.
With ¥PI_Send, there may be some reason why the system does not copy the
message into a system buffer. In this case the function blocks until the message
has been sent, even if you have no intention of overwriting the buffer right away.

Posting a receive before a message arrives can save time, because the system
can save a copy operation by transferring the contents of the incoming message
directly into the destination buffer rather than a temporary system buffer. It is
difficult to do this with MPI_Racv. If the function is called too soon, the calling
process blocks until the message arrives. If the function is called too Lite, the
incoming message has already been copied into a system buffer and must be
copied again.

Fortunately, the MPI library provides nonblocking send and receive func-
tions. Calls toMPI_Tsend and MPI_Irecv simply post, or initiate, the ap-
propriate communication operaiion. {Think of the “I” as standing for inifiate.)
The message buffer may not be accessed by the user process uatil it explicitly
completes the communication with a call to MPT_Wait.

Posting a message, performing other computations or 1/O operations, and then
completing the message, may save time in two different ways. First, it may allow
the system to elintinate message-copying by the sending and/or the receiving
processes. Second, it allows dedicated communication coprocessors, if they exist
on the parallel computer, 10 perform communication-related activities while the
CPU assigned to the-computation manipulates local data.

9.3.1 Manager's Communication

Getting back to our manager process, it knows at the beginning of its execution
that it needs to receive the dictionary size frof a worker, even though it does
not actually use this value until after it has identified the document files to be
pracessed. (Of course, the value of a nonblocking read is higher when the length
of the message to be received is greater.) Let’s look at the two MPI functions
needed to perform a nonblocking receive.

9.3.2 Function ¥PI_TIrecv

Function MPI_ Irecv has this header:

int MPI_Irecv (void *puffer, int cnt, MPI_Datatype dtype,

int src, int tag, MPI_Comm comm, MPI_Request *handls)

The first six parameters are identical to those of MPI_Recv. However,
since MPI_Irecv only initiates the receive, you cannot access buffer un-
til 2 matching call to MPI_Wait has returned. The function returns, through the
last parameter, a handle (pointer) to an MFT_Reguest object that 1dent1ﬁes the
communication operation that has been initiated.

Note that the function does not return a pointer to an MPI_Status object,
since the receive has not yet been completed.

SECTION 9.3 Nonblocking Communications

- 9.3.3 Function Mp1I_wWait

Here is the header for function MPI_Wait:
int MPI_Wait (MPI_Raquest *handle, MPI_Status *status)

Function MPT _Wait. blocks until the operation associated with pointer

handle completes. In the case of a send operation, the butfer may then be

* assigned new values. In the case of a receive operation, the buffer may be refer-

enced, and status points to the MPI_Status object containing information
about the received message. ‘

- 9,3.4 Workers’ Communications

Now let’s examine the needs of the worker processes for new MPI functionality.
Before being assigned its first document, each worker must notify the manager
process that it is active. It can initiate this send to the manager, then proceed
immediately to the broadcasting of the dictionary and the construction of the

hash table. -
‘ The worker also must receive file names (actually, complete path names)

from the manager. There is no way of knowing in advance how long these names
* may be, since directory structures may be deeply nested. For this reason it would
be convenient if the worker could check on an incoming message and determine
its length before actually reading it.

Here are the three MPI functions that meet these needs of the workers.

9.3.5 Function MPT Isend.

int MPI_Isend (void *hbuffer, int cnt, MPI_Datatype dtype,
: int dest, int tag, MPI_Comm comm, MPI_Request *handle)

Function MPI_Isend posts a nonblocking send operation. The first six
parameters have the same meaning as in MPI _Send. The last parameter is an
output parameter —a handle to an opaque MPI _Request. object created by thie
run-time system. It identifies this communication request. The message buffer
may not be reused until the matching call to MPI_Wait has returned.

9,3.6 Function MPI Probe

int MPI_Prcbe (int src, int tag, MPI_Comm comm,
MPI_Status *status)

Passed src, the rank of the message source; tag, the incoming message’s
tag; comm, the communicator; and st:atus, a pointer 0 an MPI_Status ob-
ject, function MPI_Probe blocks until a message matching the source and tag
specifications is available to be received. It returns tarough the status pointer
information about the source, tag, and length of the message, but it does not
actually receive the message.

226

CHAFTER 9 [Document Classification

By passing MPT_ANY_SOURCE as the src argument, you can probe for a
message from any other process. Passing MPT _ANY_TAG as the tag argument
allows you to probe for any message from the process you specified in src. Using
both MPI_ANY_SCURCE and MPI_ANY TAG will allow the probe to match
any sent message.

In general, it is best to keep the source and tag specifications as narrow
as possible, to minimize mismatch bugs that occur when messages arrive in an

- unexpected order. In this case, the worker knows both the source and the tag of

the message it is expecting from the manager, and there is no need for it to use
these constants.

9.3.7 Function ¥PI_Get count

int MPI_Get_count (MPI_Status *status, MPI Datatype dtype,

int *cnt)

Passed st atus, a pointer toanMPT _Status object; dtype, the datatype
of the message elements; and cnt, a pointer to an integer, function MPT_Get _
count returns through ent the number of elements in the message.

9.4 DOCUMENTING THE PARALLEL PROGRAM

With these new MPI functions in hand, we may now construct a parallel program
to perform the document classification task. We do not include the entire program
in this section; we omit the directory-searching and profile-writing functions
called by the manager process and the hash-table-building and profile-generating
functions called by the worker processes. Our focus is on the general structure of
a manager/worker MPI program and how the new MPI functions introduced in
this chapter fit into the overall design.

The program appears in Figure 9.7.

We define four constants to be used as tags for the four types of messages the
processes are sending and receiving,

Using message tags helps document the code. It also allows a process to
receive messages from another process in a different order than they were sent.

For example, worker 0—like all workers—sends an initial request for work
to the manager. After it has read, broadcast, and processed the dictionary, worker
0 sends the dictionary size to the manager. The manager, on the other hand, needs
to construct the document vector profile storage area before it begins handting
requests for work from processes. For this reason it wants to receive the dictionary
size message from worker (} before it receives worker 0's initial request for work.
We give these two messages different tags, enabling their out-of-order reception,
We use DICT SIZE_MSG as the tag for the message from worker 0 to the
manager that contains the number of words in the dictionary file. It and all other
workers inform the manager that they are active by sending the manager an empty
message with the tag EMPTY MSG.

SECTION 9.4 Documerting the Paralle! Program

/i
* Document Classification Program
]

#include <mpi h>
tinclude <stdio.h»
<gtring.h>
#¥include <sys/stat.h>
#include «fiw.h>

#define DICT SI2ZE_MSG [/* Msg has dictionary size */

#deline FILE_NAME MSGC 1 /% Msg is file name */
VECTDR_MSG 2 J/* Msg is profile */
EMPTY_MSG 3 /* Msg ils empty */

#define DLR_ARG 1 /* Dlrectory argument */

#define UICT_ARG 2 /* Dictionary argument */

Bdefine RES_ARG 3 /* Results argument */

rypedef unsigned char uchar;

int main (int argc, char *argvil) {

ing id; /* Process rank */
iRt pi /* Numher of processes */
MPI_Comm worker_comm; /% Workers-only communicazor */

void manager {int, char **, int};
void worker {int, char **, MPI_Comm);

MPI_Init {&argc, &argv);
MPI_Comm_rank {(MPI_COMM_WORLD, &id):
MPE _Comm_gize (MPI_COMM WORLD, &p);
if {arge 1= 4) {
1 {2id) |
printf ("Program needs three arguments:\n");
printf (*%5 <dirs <dicts <resuits»\n®, argv{d]};

)
yoelse If (p < 2) ¢
i ("Program needs at least two processes\n'};

} else {

1E {rid) {

MPI_ Comm_split (MPI_COMM_WORLD, MPI_UNDEFINEL,
1d, ﬁ‘w’O;r\et‘_C\)zm‘l);

manager {argec, Aargv, p);

} else {
MPI_Comm_splilb (MP1_TOMM WORLD, 0,1d, &worker comm);
worker {arge, argy, worker_comm};

y
!

Figure 9.7 Document classification program.

227

CHAPTER 9 Document Classification

void manager (int arge, char *argv{]l, int p} |

inl assign_cobs /* Docs assigned so tar */

int *assigned; /* Document aasigmments */
wuchar /* Store profile vectors here ¥/
int dict_size; /* Dicilonary @

int file_ v text fi

char *¥file name; file (path) names */
int i;

MPI_Reguest pending: /* Handle for recv reguest */
ink 8IC; /* Message source process */
MPI_Starus status; /* Messaye status */

int tag: /* Message tag */

int terminated; /* Count of terminated procs */
uchar *ryector; /* Profile veclor repository */

vold build_Zd.array (int, int, uchar ***);

void get_names {char *, char *x*, int *j:

void write_profiles (char *, int, int, char *¥, uchar **);

/* Put in request to receive dictionary size */

MPI_Irecv (&dict_size, 1, MPI_INT, MPI_ANY_ SOURCE,
DICT_SIZE_MSG, MPI_COMM_WORLD, &pending);

/* Collect the names of the documents to he profiled +/
get_names (argvI[DIR_ARG), &file_name, gfile_cnt);

/* Wait for dictiomary size to be received */
MPI_Wait (&pending, &status): .

/* Set aside_buffer to catch profiles from workers */
buffer = (uchar *)
malloc (dicrt_size * s

zeof (MPI_UNSIGNED_CHAR));

/* Set aside 2-D arrav to hold all profiles.
f the allocation fails. */

Call MPL_Abort
ild_2d array (fi

/* Respond to reguests by workers. */

terminated = 0;
assign_cnt = 0;
asgigned = {int *) malloc {(p * sizeof{int)};

do {

/* Get profile from worker */

MPI_Recv (buffer, dict_size, MPT_UNSIGNED_CHAR,
MPL_ANY_SOURCE, MPT_ANY_TAG, MPI_COMM_WORLD,
&status});

rc = status.MPI_SOURCE;
ag - stafus.MPI_TAG;
if (tag == VECTOR_MSG) {

for (1 = 0; i « dict H

vectorjassignad[src]iil] = wuffer[il;

Tom

@y Le+)

Figure 9.7 (contd) Document classification program.

SECTION 9.4 Documenting the Paraliel Program

/* Assign more work or te‘L WOL

if {assign_cat < file_ca

MPI _Send {f.llemname{au
strlen(file_namelassign_cntlj+l, -

MPI_CliAR, src, FILE_NAME_MSG, MFI_COMM_WORLD) ;
assigned|src) -
assign_cnb++;

} else {
MPI_Send (WULL, (1, MPI_CHAR, src, FILE_NAME MSG,

MPI_COMM_WORLD);
terminatedss;

1

¥

} while (terminated < (p-1});

- write_profiles (argviRES_ARG!, file_ent, dict gize
>_name, veckor);

void worker {int argc, char *argv[], MPI_Comm worker comm!
{

char *buffers i* Words in dicticnary */
hash_gl **dick; /* Hash table of words */

int dict_size; /* Profile wector size */
long file_len; /* Chars in dictiomary */

ink i

char *name; /% Mame of plain text file */
int name_len; /* Chars in file name */

MPI_Request pending; “/* Handle for MPI_Isend */

uchar *profile; /* Document profile vector */
MPI_Status status; /* Info about message */
int worker_id; /* fank in worker_comm */

vold build_hash_table {char *, int, hash_a21 *** int *J;
void make_profile {char *, hash_el **, int, uchar *);
vold read_dictionary {char *, char **, long *);

/% Worker gets its worker ID number */
MPI_Comm_rank {worker_comm, &worker_id);
/* Worker makes initia®l request for work */

MPI_Isend (NULL, 0, MPI_UNSIGNED_CHAR, 0, EMPTY_MSG,
MPI_COMM_WORLD, &pandingi;

/* Read and broadcast dictionary file */

if {iworker_id)

read dictionary {argv|DICT_ARG]
MPI_Beast (&file_len, 1, _LONG, 0, s
it (worker_id) buffer = (char *) malloc
MPT_Bcast (buffer, file_len, MPI_CHAR,

Figure 9.7 {contd.) Document classification program.

229

230 CHAPTER 9 Document Classification

/* Build hash table */

build_hash_table {(buffer, File_len, &dict, &dict_size);
profile = (uchar *} malloc (dict_size * sizeof{uchar));
/* Worker 0 sends msg to manager re: size of dictionary */

if {!worker_id) MPI Send (sdict_size, 1, MPI_INT, 0,
DICT SIZE MSG, MPI_COMM_WORLD;;
tor (;:) {
- /* Find out length of file name */

MPI_Probe (2, FILE_MAME_MSG, HPI_COMM_WORLD, &status);
MPT_Get _count (&kstatus, MPI_CHAR, &name_len);

/* Drop out if no more work */

if ('name_len) break;
name = (char *) matloc (name_ien);
MPI_Recv {(name, name_len, MPI i

L, 0, FILE _NRME MSG,
MP1_COMM_WORLD, &status:;

make_profile (name, dict, dict_size, profile);
free (name);

MPI_Send (profile, dict _size, MPI_UNSIGNED CHAR, 0,
VECTOR_MSG, MPT_COMM_WORLD) ;

}

Figure 9.7 {contd.) Document classification program.

When the manager assigns a document to a worker, it uses message tag
FILE_NAME_MSG. When a worker responds with the profile vector for that
document, it uses message tag VECTOR _MSG.

We also define constants to refer to the three command-line arguments. The
tirst argument, indexed by DTR_ARG, is the name of the directory that scrves as
the root of the directory structure to be searched for plain text files. The second,
DICT_ARG, is the name of the file containing the dictionary. The third argument,
indexed by RES_ARG, is the name of the output file that contains the set of
document protile vectors upon successful completion of the program.

Function main contains code that all processes execute before the manager
goes one way and the workers go another. Execution begins with the traditienal
calls to initialize MPI and retrieve the process rank and the process group size.

The function checks to ensure that the user supplied the correct number of
argument(s on the command line. If not, execution will not continue. The fanction
also checks to ensure that (here are at leasi two processes. Without at least one
worker, no documents will be processed. If these conditions are satisfied, all

SECTION 9.4 Dccumenting the Parallet Program

processes cooperale {0 create a new, workers-only communicator. After this has
- been done, the roles of the manager and the workers diverge. Process 0 (the
manager) calls manager and the other processes call worker.

Only asingle process executes function manager. Refer back to the pseudo-
" code of Figure 9.4 for a refresher on how it is structured. The manager begins
by posting a seceive for the message containing the size of the dictionary. It then
- calls get _names to construct £11e_name, an areay of strings. These strings
are the names of the plain text files in the directory tree specified by the user on
the command line. After the function returns, £11e_cnt is the number of files
“that need to be processed.

At this point the manager needs to allocate the memory that will be used to
hold the document profile vectors, The number of vectors is equal to the number
of documents (file_cnt). The length of the vectors depends on the number
of dictionary entries. So the manager must wait until the receive it pasted has
heen completed. After the message containing the dictionary size has arrived, the
manager constructs the two-dimensional arcay holding the vectors.
~ Before the principal loop of the function, the manager initializes the aumber of
‘terminated processes and the number of assigned documents to 0. It also allocates
the array that will be used to keep track.of the document currently assigned to
cach process.

Inside the loop, the manager receives the next message from a worker, If the
message tag indicates the message contains a document profile vector, the manager
stores it. If upassigned documents remain, the manager sends the name of the
next unassigned document to the worker and increments the number of assigned
-documents. Otherwise, it sends an empty file name to the worker, indicating to the
worker that it sheald cease, and increments the number of terminated workers.
The loop continues until all of the workers have been terminated.

The manager exits the loop only after it has received all of the document
'prohlc vectors from the workers. It writes the vectors to the file the nser specified
on the command line.

Now let’s look at function worker. If you need to refresh your memory of
what the worker does, refer to the pseudocode in Figure 9.5. Each worker begins by
finding its rank in the worker-only communicator. If the workers did not interact,
-thig would not be necessary, but in this algorithm, worker 0 is responsible for
‘reading the dictionary file and broadcasting it to the other workers. Heace the
‘workers need to know their ranks.

. After calling MPT_Comm_rark, each worker makes its initial request for
work. The message tag EMPTY_MSG indicates to the manager that this is the
_worker’s initial request for work, not a message containing a document profile
Yector,

. Next, worker 0 reads he dictionary and broadcasts it to the other workers.
ote that before broadcasting the dictionary worker 0 broadcasts an integer con-
taining the size of the dictionary. That way, the other workers can allocate enough
pace (o hold the dictionary’s contents. The workers extract the words from the
ictionary and put them in a hash table. This will speed the document classification

231

232

CHAPTER 9 Document Ciassification

task by enabling the process to determine in constant tuue (on average) if a worc
in the document appears in the dictionary.

Aftter extracting words from the dictionary, the workers know how large th
document profile vectors will be. In this implementation the document profil
vector contains an unsigned character for each dictionaty entry, enabling the
correlation between the document and that entry to be expressed as an intege
between O and 255. Each worker allocates room for a profile vector. Worker (
sends the dictionary-size message to the manager.

Now the worker enters its principal loop. It probes for 2 message from th
manager containing the name of a plain text document file. It allocates enoug
reom to receive (he file name, then calls MPI_Recy to actually get the name
Given the file name and the -hash table, function make_profile builds the
document profile vector. The worker sends this vector back to the manager. Whe
the worker receives a zero-length file name from the manager, that means there
are nio more documents to process, and the worker returns from the function.

9.5 ENHANCEMENTS

In this section we consider ways to improve the execution time of our paralle
document classification program.

9.5.1 Assighing Groups of Documents

In some applications a preallocation of data to processes can result in an im
balanced workload. Imbalanced workloads lead to idle processors, which lower:
speedup. Allocating dala to processes at run-time balances the workloads. O
the other hand, it introduces additional interprocessor communication overhead
which lowers speedup. Sometimes, the best design chooses a middle point be
tween the two extremes. For example, we might construct a manager/worke

algorithm in which the manager assigns k tasks at a time 1o workers.

9.5.2 Pipelining

Let’s reconsider the task graph of Figure 9.2. If onc process can refrieve th
dictionary file from the file server as quickly as k tasks, then there is not much wi
can do with that task. We’re already allowing processes to build thelr hash table
concurrently. We will consider this task no further. :

On the other hand, we can make improvements to the document identificatio
and results writing tasks. When we began our design, we assumed that nearly al
of the time would be spent reading documeat files and generating the associate
profile vectors. We left the tasks of identifying the plain text files and writin
the results file as sequential tasks. No document files are processed until th
manager has identified all of them. If the time needed to perform these tasks i
not negligible, then our design will not scale well to larger numbers of processe
(Amdahl’s Law).

SECTION 9.5 Enhancements 233

{dentify
docunent

Read
document 0

Generate
document
vector ()

=

Write
document
vector 0

Idenufy
document {

Tdentfy
document 2

Generate
document
yector |

Write
document
vector |

Generate
docament
vector 2

Write
document «
vector 2

Figure 9.8 By dividing the task of identifying
documents into s elemental tasks, we can
expose the opportunity for pipefining the
pracessing of the documents. We can be
canstructing the profile vector for document 0
while we are reading document 1 while we are
identifying document 2.

Let’s reconsider the task graph of Figure 9.2, ignoring the dictionary con-
struction task. What happens when we divide the document identification task
into smaller units? We end up with the new task graph shown in Figure 9.8. If we
“dangle” the graph by the “Identify Document 0" node, we can see that while we
* are identifying document 1, we could begin reading document 0. While we are
in one phase of processing document i, we can be in later phases of processing
documents i — 1,7 — 2, etc. This is an eximple of pipelining.

Pipelining can dramatically reduce the execution time of a parallel algo--
- fithm exhibiting functional parallelism. For example, Figure 9.9 illustrates how
a pipelined program with one read process, two worker processes, and one write
+ process could outperform a nonpipelined program with one manager and three
. workers.

Manager

Warker)

Worker | S
Worker2 [+ o i

Read process

Worker 0 [:

~ Worker t

Wit process

CHAPTER 9 Document Classification

Figure 9.9 Pipelining tasks can reduce the execution time of programs with
functional parallelism. i this figure 1i refers o the task of identifying text file /, RGJ
refers to the task of reading file / and generating document profile vector i, and Wi
refers to the task of writing document profile vector J to a file. The dark gray bars
represent time spent communicating. (a) A manager process identifies all text files
before assigning them to workers. It collects all document vectors before writing
them. This is the approach taken for the program developed in this chapter. {b) A
pipelined solution. One process identifies text files, two more processes read text
fites and generate profile vectors, and a fourth task writes the profile vectors to a file.

The downside of implementing a manager/worker program incorporating
pipelining is that it can be much more complicated. [n the previous implementation
the manager identified all the document file names before responding to any =
worker requests. Suppose we want to implement a manager that gets workers
busy as soon as possible. In other words, as soon as the manager has identified at
least one document and has received at least one request for wark from a process,
it starts sending document names to processes. That means the manager must
multiplex its time between identifying documents and responding to the requests
of the workers.

Here is one way we might implement the document identification/task as-
signment logic. Let j be the number of unassigned tasks and w be the number
of workers waiting for something to do. If j > 0 and w > 0, then.the manager
can assign min(J, w) tasks to workers. I j > 0, the manager should check to see
if any messages from workers have arrived. If so, the manager can receive these
messages. Then we're back in the situation where j > 0 and w > 0. Otherwise,
the manager should find more tasks.

9.5.3 Function MPI_Testsome

To implement this functionality, we need a way to check, without blocking,
whether one or more expected messages have arrived. The MPY library provides
four functions 1o do this: MPI_Tegt, MPI Testall, MPI Testany, and

SECTION 9.6 Summary

MPI_Testsome. All of these functions require that you pass them handles to
MPI_Request objects that result from calls to nonblocking receive functions.
We’ll describe how to use MPI_Test some, which is the best function to use
for the purpose we have described.

The manager posts a nonblocking receive to each of the worker processes.
It builds an array of handles to the MP1_Request objects returned from these
function calls. In order to determine if messages have arrived from any or all
of the workers, the manager calls MPI_Test some, which returs information
about how many of the messages have arrived.

Function MP1_Testsome has this header:

int MP1_Testsome (int in_cnt, MPI_Request *handlearray,
’ ’ int *out_cnt, int *index array,
MPI_Status *status array)

Passed in_cnt, the number of nonblocking receives to check, and
handlearray, an array containing MPL_Request handles, function MPT_
Test some returns out_cnt, the number of completed communications. The
fisst out _cnt entriesof index_array contain the indices in handlearray
of the completed communications. The first out _cnt entres of status_
- array contain the status records for the completed communications.

9.6 SUMMARY

The manager/worker paradigm is an effective way to think of parallel computa-
 tions where it is difficultto preallocate work to processes and guarantee balanced
- workloads. In this chapter we considered the problem of classifying a set of plain
- text documents according to a user-supplied dictionary. Since document sizes can
" vary widely, and since some documents may be easier to process than others, the
- manager/worker design is appropriate.

In the process of developing this application, we introduced some additional
.MPI capabilities. We used functionMPT _Comm_sp 11t tocreateanew, workers-
- only communicator that facilitated the broadcast of the dictionary among the
- workers. We discovered several places where communications could be over-
lapped with either computations or other 1/0 operations. We introduced the non-
- blocking communications functions MP1_Isend and MPI_lrecv and their
* companion completion fuaction, MP1 _Wai t. We also saw how it could be ben-
~eficial for the worker processes to check the length of the path names sent by the
manager before actually reading them. Functions MP1__Probe and MPI_Get_
* count allow this to be done.

We examined two ways to enhance the performance of the parallel program.
The first enhancement is to consider a “middle ground” between preallocating all
documents to tasks (which can lead to an imbalanced workload) and allocating
documents one at a time to tasks (which can lead to excessive interprocessor
. communication). In some applications the best performance may be obtained by
llocating small groups of tasks to workers.

235

238

CHAPTER 9 Document Classification

9.10

Figure 9.10 The Mandelbrot setisan. -
example of a fractal. In this figure the lower
left corner of the box represents the complex
aumber —1.5 - {. The upper right comer of
the box represents the complex number .
0.5 + 1. Black points are in the set.

The magnitude of z is its distance from the origin; i.c., the length of
the vector formed by its real and imaginary parts. If z = a + &1, the
magnitude of 7 is +/a2 + b2 If the magnitude of z ever becomes greater
than or equal to 2, its subsequent values will grow without bound, and we
know fhat ¢ is not a point in the Mandelbrot set. If we iterate times and
find that the magnitude of z,, is still less than 2, we can conclude ¢ is in
the Mandelbrot set. '

Your program should compute a Mandelbrot set for 600 x 600 evenly
spaced points in a square region of the complex plane bounded by
—Ll.5—iand | 4. Let n = 1,000. If 73900 < 2, you should display
point ¢ as a member of the Mandelbrot set.

A perfect number is a positive integer whose value is equal to the sum

of all its positive factors, excluding itself. The first two perfect numbers
are 6 and 28:

6=1+2+3
B=1+2+4+7+14

The Greek mathematician Euclid {c. 300 BCE) showed that if 2" — 1 is
prime, then (2" — 1)2"! is a perfect number. For example, 2> — 1 =3 is
prime, so (2* — 1)2' = 6 is a perfect number. Write a parallel program to
find the first eight perfect numbers.

CHAPTER

Monte Carlo Methods

O! many a shaft at random sent

Finds mark the archer little meant!

And many a word, at random spoken,

May soothe or wound a heart that’s broken!
Sir Walter Scott, The Lord of the Isles

10.1 INTRODUCTION

A Monte Carlo method is an algorithm that solves a problem through the use of
statistical sampling. The name is derived from the resort city in Monaco, famous
for its games of chance. While early work in this field began in the nineteenth
century, the first important use of Monte Carlo methods was for the development
of the atomic bomb during World War II.

The Monte Carlo method is the only practical way to evaluate integrals of
arbitrary functions in six or more dimensions. It has many other uses, including
predicting the future level of the Dow Jones Industrial Average, solving partial
differential equations, sharpening satellite images, modeling cell populations, and
finding approximate solutions to NP-hard problems in polynomial time.

To illustrate the Monte Carlo method, let’s begin with a physical analogy.
Suppose we want to compute the value of 7. We know that the area of a circle
with diameter D is 7 D?/4. We also know that the area of a square having sides
of length D is D, Imagine slipping a round cake pan with diameter D inside a
D x D cake pan and putting the pans out in the rain. After a few hours, we retrieve
the pans and measure the amount of water in each. The ratio of the amount of
water collected in the round pan to the total amount of water collected in both
pans should be about 7 /4:

aD4 &
DT 4

239

240

CHAPTER 10 Monte Carls Metheds

0. ; (L
N
+ o+t
oy
+ *
+ +
0.0 0

Figure 10,1 Using the Monte |
Carlo method to astimate Lhe valus
of =. The area inside the quarter
circle is pij4. In ihis llustration, 12
of 15 points randomly chosen from
the unit square are inside the circle,
resuliing in an estimate of 0.8 for
/4 ord2form.

We can use random numbers to perform a similar estimation. (This example
shows the methodology, but keep in mind numerical integration is a better strategy
when the number of dimensions is small.) Figure 101 illustrates a quacter circle
with radius 1 embedded in a it square. A complete circle with radius | has area
m; hence the area of the quarter circle is /4. We will generate a series of pairs
(x, ¥), where both x and y are taken from a uniform random distribution between
0 and 1. Each pair represents a point inside the unit square. We keep track of the
fraction f of points falling inside the quarter circle; that is, the points for which
x2 4 y* < 1. Since f ~ /4, we know 4 f ~ 7.

We have implemented a C program to compute 7 using this methodology
(Figure 10.2). Table 10.1 shows how the absolute error between the computed
value of and the actual value slowly decreases as the sample size » increases.
(Given estimated value ¢ and correct value a, the absolute error is |e —a]/a.) The
function 1/(2,/n) closely approximates the absolute error of this Monte Carlo
method.

10.1.1 Why Monte Carlo Works

The mean value theorem states that
b
I={ fxyde=b-af o

where f represents the mean (average) value of f(x) in the interval [a,], (Sec
Figure 10.3.))

The Monte Carlo method estimates the value of / by evaluating f(x;) at
n points selected from a uniform random distribution over [a, b]. The expected

SECTION 10.1 introduction

~ table 10.1 As the sample size increases, so does the accuracy of the estimated
 solution.

17Q/n)
0.15811
0.05000
0.01581
0.00500
0.00158
0.00050
! 0.00016
0.00012 0.00005
0.00001 0.00002

* This C program uses the Monte Caric method to
compute the valus of pil.
.y

finclude <stdio.h»
#inciude «<stdlib.hs

int. main (int argc, char *argv(])
{

int count ; /* Points inside circle */
int 1;

int n; /* Number of samples */
double pi; /¥ Estimate of pi */
_unsigned short xi[3]1; /* Random number seed */
double X, v; /* Point‘s coordinates */

if {argec t- 5) {
pristf {"Correct command line: "),
printf ("%s «# sampless <seed(> <seedl> <sasd2s\n",
argvl0j};
return -1;

X

I

n = atoifargvilll;

for (1= 05 1 < 3; fe4]
¥i{i] = atoi{argvii+2]);

for {3 0= 0; 1 < n; i+4) |
x = erand48{xi);
v = erandf8ixi);
1D Ixtxeyty <= 1.0) counti+;

1
i

pi = 4.0 * (double) count / (double) n;
printf ("Samples: %d Estimate of pi: ¥7.5fAn", 1. pil;

i

Figure 10.2 A C program computing = using the Mente Carlo method.
The precision of the answer is related to the number of samples and the
quality of the pseudae-random number generator.

24

242

CHAPTER 10 Monte Carlo Methods

Figure 10.3 By the mean value theorem we know
that the area under curve f{x) is identical to the area
under f, where f is the mean value of f(x) in the
interval {a, b},

@ (b

Figure 10.4 By the mean value theorem we know the volumes
beneath both these surfaces are identical. {a) Within the square
bounded by 0 < x, y < 1, the height of the surface is 1 where
X%+ y? < 1 and 0 otherwise. (b) Within the square bounded by
0 < %, y < 1, the height of the surface is /4.

value of £ S0 f(x;) s f. Hence

n—1

b _ 1
I:f f(x)dx:(b—a)f%(b—u)—z_f(x;) :
4 "o

Let's see how this applies to the 7 estimation algorithm we’ve already de:
scribed. We know that the ratio in area between a quarter circle of radius 1
and a square having sides of length 1 is /4. Consider the surface illustrated ir
Figure 10.4a. This surface has height I if x*> + y? < 1 and 0 otherwise. If we se
an accumulator to (), randomly generale pairs of points x, y from the unil square
add 1 to the accumulator if x? 4 y? < | and add nothing to the accumulator il
%%+ y* > 1, we are sampling from this surface.

SECTION 10.2 Sequential Random Mumber Generators

If, after n-samples, we divide the contents of the accumulator by #, we
produce a mean. The expected value of the calculated mean is /4, as il lustrated
in Figure 10.4b. Heace multiplying the calculated mean by 4 yietds a Monte Carlo
estimate of 7. -

Importantly, the error in the Monte Carlo estimate of [deceases by a factor
of 1//. The rate of convergence is independent of the dimension of the inte-
grand. This is in sharp contrast to deterministic numerical integration methods,
such as Simpson’s rule, which have a rate of convergence that decreases as the
dimension increases. [t explains why Monte Carlo techniques are superior to
deterministic numerical integration methods when the integrand has more than
_ about six dimensions.

10.1.2 Monte Carlo and Parallel Computing

Monte Carlo algorithms often migrate easily onto parallel systems. Many parallel
Monte Carlo programs have a negligible amount of interprocessor commanica-
tions. When this is the case, p processors can be used either to find an estimate
about p fimes faster or to reduce the error of the estimate by a factor of ./p.
Another way of expressing the second point is to say that p processes can reduce
the variance of the answer by a factor of p. ’
Of course, these levels of improvement are based on the assumption that the
random numbers are statistically independent. A principal challenge in the de-
velopment of parallel Monte Carlo methods has been the development of good
parallel random number generators. It is widely claiined that half of all super-
computer cycles are dedicated to Monte Carlo calculations. For that reason it’s
important to understand what makes a good parallel random number generator.
We will start with a quick overview of sequential random number generators.

10.2 SEQUENTIAL RANDOM NUMBER
GENERATORS

Technically, the random number generators you'll find on today’s computers are
pseudo-random number generators, because their operation is deterministic,
and hence the sequences they produce are predictable. In the best case these
sequences are a reasonable approximation of a truly random sequence. However,
since “pseudo-random number generator” is a mouthful, we'll stick with the
simpler phrase. In the remainder of this chapter, when you see the phrase “random
number generator,” understand we’re talking aboutl a pseudo-random number
generator.

Coddington [17] has*identified ten propetrties of the sequence of numbers
produced by an ideal random number generator:

m Itis uniformly distributed, meaning each possible number is equally
probable.
& The numbers are uncorrelated.

244

CHAPTER 10 Monte Carlo Methods

It never cycles; that is, the numbers do not repeat themselves.
It satisfies any statistical test for randomaness,
It is reproducible.
It is machine-independent; that is, the generator produces the same
sequence of numbers on any computer.
- It can be changed by modifying an initial “sced” value.
It is easily split into many independent subsequenues
‘It can be generated rapidly.

It requires limited computer memory for the generalor.

There are no randorn number generators that meet all of these requirements.
For example, computers rely upon finite precision arithmetic. Hence the randorn
number generator may take on only a finite number of states. Eventually it must
enter a state it has been in previously, at which point it has completed a cycle and
the numbers it produces will begin to repeat themselves. The period of a random
number generator is the length of this cycle.

Similarly, since we demand that the sequence of numbers be reproducible,
the numbers cannot be completely uncorrelated. The best we can hope for is that
the correlations be so small that they have no appreciabie impact on the results
of the computation.

There is often a trade-off between the speed of a random number generator
and the quality of the numbers it produces. Since the time needed to generate
4 random number is typically a small part of the overall computation time of a

. program, speed is much less important than quality.

In the following sections we consider two important classes of random num-
ber generators: linear congruential and Jagged Fibonacci.

10.2.1 Linear Congruential

The linear congruential method is more than 50 years old, and it is still the most
popular. Linear congruential generators produce a sequence X; of random
integers using this formula:

Xi=(ax Xiy+c)mod M

where a is called the multiplier, ¢ is called the additive constant, and 3 is called the
modulus. [n some implementations ¢ = 0. When ¢ = 0, itis called amultiplica-
tive congruential generator. All three values must be carefully chosen in order to
ensure that the sequence has a long period and good randomness properties. The
maximum period is M. For 32-bit integers the maximum period is 2%, or about
4 billion. This is too small a period for modem computers that execute billions
of instructions per second. A quality gencrator has 48 bits of precision or more.

The particular sequence of integer values produced by the generator depends
on the initial value X, which is called the seed. Typically the user provides the
seed value.

SECTION 10.3 Parallel Random Number Generatars

Linear congruential methods may also be used to generate floating-point
numbers. Since the generator produces integers between 0 and M — 1, dividing
X: by M produces a loating-point number x; in the interval [0, 1).

- The defects of linear congruential generators are well documented. The least
significant bits of the numbers produced are correlated. (This is particularly true
- when the modulus M is a power of 2.) If you produce a scatter plot of ordered
tuples {x;, x; 4y, - . ., Xize—1) in ak-dimensional unit hypercube, you'll sec a lattice
structare {791, Since this problem becomes more pronounced as the number of
- dimensions increases, it can affect the quality of high-dimensional simuiations
relying on a linear congruential random number generator.

Desplte these flaws, linear congruential generators with 48 or more bits of
" precision and Carefulfy cfidsen parameters “work very well for all known appli-

cations, at least on sequential computers” {17].

10.2.2 Lagged Fibonacci

~The popularity of lagged Fibonacci generators is rising, because they are capable

. of producing random number sequences with astonishingly long periods, while
atso being fast The method produces a sequence of X, s. Fach element is defined
as follows:

Xi = X;_p * X,'._q

where p and g are the lags, p > 7, and « is any binary arithmetic operation. Fx-
amples of suitable « operations are addition modulo M, subtraction modulo M,
multiplicationmodulo M, and bitwise exclusive or. In the ease of addition and sub-
traction, the X;s may be either integers or floating-point numbers. If the sequence
contains floating-point numbers, M = 1. If» is multiplication, the sequence must
consist solely of odd integers.

Note that unlike linear congruenfial generators, which require only a single
seed value, lagged Fibonacci generators require p seed values Xo, Xy, ..., X,-.
Careful selection of p, g, and M, as well as Xo, ..., X,_; results in sequences
with very long periods and good randomness. If the X; s have & bits, the maximum
periods attainable are 2¥ — 1 for exclusive or, (27 — 1)2°~! for addition and sub-

traction, and (2” — 1)2° -3 for multiplication. Notice that increasing the maximum
lag p increases the storage requirements but also increases the maximum period.

Function random, callable from C, is an additive lagged Fibonacci generator
with a default lag of 31. Ceddington veports this lag is much too small. He
recommends setting (p, ¢) to at least (1279, 1063).

10.3 PARALLEL RANDOM NUMBER
GENERATORS

Parallel Monte Carlo methods depend upon our ability (o generate a large number
of high-quality random number sequences. In addition to the properties mentioned
in the previous section for sequential random number generators, anideal parallel

245

CHAPTER 10 Monte Carlo Methods

- random number generator would have these properties:

No correlations among the numbers in different sequences.
Scalability; that is, it should be possible to accommodate a large number of
processes, each with its own stream(s).

m Locality; that is, a process should be able to spawn a new sequence of
random numbers without interprocess communication.

In this section we discuss four different techniques for transforming a sequential
random number generator into a parallel random number generator.

10.3.1 Manager-Worker Method

Gropp et al. [45] have described a manager-worker approach to parallel random
number generation. A “manager” process has the task of generating random
numbers and distributing them to “worker” processes that consume them. Here
are two disadvantages of the manager-worker approach.

Some random number generators produce sequences with long-range cor-
relations. Because each process is sampling from the same sequence, there is
a possibility that long-range correlations in the original sequence may become
short-range correlations in the parallel seqnences.

The manager-worker method is not scalable to an arbitrary number of pro-
cesses. [t may be difficult to balance the speed of the random number producer
with the speed of the consumers of these numbers. k clearly does not exhibit
locality. On the contrary, it is communication-intensive.

These disadvantages are significant, and this method is no longer popular.
Let’s consider methods in which each process generates its own random nurber -
sequence.,

10.3.2 Leapfrog Method

The leapfrog method is analogous to a cyclic allocation of data to tasks. Suppose
our parallel Monte Carlo method is executing on p processes. All processes use
the same sequential random number generator. The process with rank r takes
every pth element of the sequence, beginning with X,

er Xr+p: Xr+2p: [

Figure 10.5 illustrates the elements used by the process with rank 2 in‘a seven-
process parallel execution in which each process generates its own random number
sequence.

OOOW& OOOQOOWOWQC

Figure 10.5 Process 2 (of 7) generates random numbers using the leapirog
technigue.

SECTION 10.3 Parallel Random Number Generators 247

It is easy to modify a linear congruential generator to incorporate leapfiog-
ging. A jump of p elements is accomplished by replacing a with a” mod M
“and ¢ with c{@” — 1)/{a — 1) mod M. Makino has demonstrated how to modify
lagged-Fibenacci generators to use leapfrogging {77].
Monte Carlo algorithms often require the generation of multidimensional ran-
dom values. For instance, in the 7 estimation example we gave in Section 10.1,
we generated coordinate pairs. If we want the parallel program to generate the
“same pairs as the sequential algorithm, the leapfrog method must be modified:
we need fo generate (Xor, Xary1, Xor2p, Xorpopyts .), 00t (X, Xop o, Xrgay,
Xr43ps---)- This is a straightforward modification of the leapirog method
_ (Figure 10.6). o
A disadvantage of the leapfrog method i thateven if the elements of the orig-
inal random number sequence have low correlation, the elements of the leapfrog
subsequence may be correlated for certain values of p. This is especially likely
- to happen if p is a power of 2, a linear congruential generator is being used, and
the modulus 3 is a power of 2. Even if this is not the.case, leapfrogging can turn
~ long-range correlations in the original sequence into short-range correlations in
the parallel sequences.
Another disadvantage of the leapfrog method is that it does not support the
dynamic creation of new random number streams.

10.3.3 Sequence Splitting

Sequence splitting is analogous to a block allocation of data to tasks. Suppose
a random number generator has perod P. The first £ numbers emitted by the
generator is divided into equal-sized pieces, one per process (Figure 10.7). S

This method has the disadvantage of forcing each process to move ahead to
its starting point in the sequence. This may take a long time. On the other hand,
this only needs to be done at the initialization of the algorithm, After that, each
process generates the elements in order.

Linear congruential generators with a power of 2 modulus have long-range
correlations. Since the sequences produced by different processes represent el-
~ements far apart in the cycle, there may be correlations between the sequences
- produced by difference processes.

Figure 10.6 Process 2 (of 6) generates random number pairs ina modified leapfrog
scheme.

Figure 10.7 In sequence splitting, each process is allocated a contiguous group of
random numbers.

CHAPTER 10 Monte Carlo Methods

Lol [u] 2] [] | w] o] -
() () () (=) () () -
[effu][e] [[s] [s]-

Figure 10.8 By using different
parameters o initialize a sequential
random number generator, it is often
possible for each process to produce its
own sequence. - -+ .

Sequence splitting could be moditied to support the dynamic creation of new
sequences. For example, a process creating a new stream could give up half of its
section to the new streamt.

10.3.4 Parameterization

A fourth way to implement a parallel random number generator is to run a sequen-
tial random number generator on each process, but to ensure that each generator,
produces a different random number sequence by initializing it with different
parameters (Figure 10.8). »

Linear congruential generators with different additive constants produce dif-
ferent streams. Percus and Kalos have published a methodology for choosing the
additive constant that works well for up to 100 streams {91].

Lagged Fibonacci generators are especially well suited for this approach.
Providing each process with a different initial table of lag values allows each
process to generate a different random number sequence. Cbviously, correlations
within lag tables or between lag tables would be fatal. One way to initialize the
tables 1s to use a different lagged Fibonacci generator to gencrate the needed seed
values. The processes could use the leapfrog technigue or sequence splitting to
ensure that they filled their tables with different values.

The number of distinct streams a lagged Fibonacci generator can produce
is truly awesome [82]. For example, the default multiplicative lagged Fibonacci
generator provided by the SPRNG library has around 2'*® distinct streams, al-
lowing plenty of opportunities for creating new streams during the execution of
the parallel program [33].

10.4 OTHER RANDOM NUMBER
DISTRIBUTIONS

Our discussion to this point has focused on the problem of generating random
numbers from a uniform probability density function. Sometimes we need to
generate random numbers from other distributions.

SECTION 10.4 Gther Random Number Distributions 249

Figure 10.9 Given a probability density function f{x), its
cumulative distribution function F{x), and , a sample from a
uniform distsibution, then F'{u} is a sample from £{x).

10.4.1 Inverse Cumulative Distribution
Function Transformation

Let u represent a sample from the uniform distribution [0, 1).
~ Suppose we want to produce random variables from a probability density
fanction f(x). Tf we can determine the cumulative distribution function F(x) and
invert it, then F~!(u) is a random variable from the probability density function
f(x) (see Figure 10.9).

As an example of this transformation; we will derive a formula that yields a
sample from the exponential distribution.

Exponential Distribution The decay of radioactive atoms, the distance a neu-
tron travels in a solid before interacting with an atom, and the time before the
next customer amives at a service center are examples of random variables that
are often modeled by an exponential probability density function.

The exponential probability density function with expected value m is the
function f(x)=(1/m)e™*/™. We can integrate {(x) to find the cumulative dis-
tribution function F(x) = 1 —¢™. Inverting F(x), we find the inverse function
tobe F~{u) = —~m In(1 — u). Since 4 is uniformly distriboted between 0 and 1,
there is no difference between 1 and 1 - 1. Hence the function F~'(4) = —m lna
is exponentially distributed with mean /.

 EXAMPLE1

Produce four samples from an exponential distribution with mean 3.

¥ Solution
We start with four samples from a uniform distribution:

0.540 0.619 0462 0.095

250

CHAPTER 10 Monte Carlo Methods

Taking the natural logarithm of each value and multiplying by —3:
=-3In{0.540y 30619 -3In(0.462) —3{0093)
yields four samples from an exponential distribution with mean 3:

1.850 1440 2317 7072

A simulation advances in time steps of sccond. The probability of 2 particular event
occursing is from an exponential distribution with mean 5 seconds. What is the probability
of the event occurring in the next time step? How do- we determine if the event happens
in the next time step?

H Solution

The probability of an event occurring in the next time step is 1/5. To determine if the event
happens in the next time step, we generate a random number from the uniform distribution
between Oand 1. If the random number is fess than or cqual to 1 /5, the event has occurred.

10.4,2 Box-Muller Transf@rmation

We cannot invert the cumulative distribution function to come up with a formula
yielding random numbers {rom the nomal (gaussian) distribution -

1 1
@) =~=e*" -
T0="5 _
Fortunately, the Box-Muller transformation allows us to produce a pair of standard
deviates g, and g, from a pair of uniform deviates u, and u; [65]:

repeat
vy <2 -1
vy < 2ip—]
re vt

unil 7 > Oandr < 1

f </ Zhnr/r
g < fu
g+ fur

Ay

EXAMPLE 1

Produce four samples from a normal distribution with mean 0 and standard deviation 1.

A r 1 & 3]

0.568 | 0.605 | 1.290 | —0.686 | 0732 |
~0.921 | 1.269
—0.648 | 0.439 | 1.935 | —0.271 _—1.254

SECTION 10.4 Other Random Number Bistributions

8§ Solution

From the uniform random samples 0.234 and 0.784 we derive the two normal samples

—(.686 and 0.732. The next pair of uniform random samples 0.824 and 0.039 results in a
" value of 7 > 1, 50 we mus discard thesc samples and generate another pair. The uniform

samples 0.430 and 0.176 result in the normal samples —0.271 and —1.254.)

EXAMPLE 2

Produce four samples from a normal distribution with mean 8 and standard deviation 2.

@ Solution
We modify the Box-Muller transformation by replacing the assignment

&< fu
with
- gt < 2fu 4+ 8

We do a similar replacement for the assignment (o g;.

i - o !) r f 2 &
0017 | 0262 | —0965 | —0.475 | 1.138 .
0832 | 0743 | 0.663 | 0486 | 0.676 | 1.075 | 9426 | 9.045
0.670 1 0439 | 0339 | —0.122 . 0.130 | 5.602 | 11860 | 6.630

The value of r resulting from the uniform samples 0.017 and 0.262 is too large, and
we mus reject these samples. However, the uniform samples 0.832 and 0.743 produce
the normal samples 9.426 and 9.045. The uniform samples 0.670 and 0.439 produce the
normal samples 11.800 and 6.630.

You can use the Box-Muller transformation to create a function that returns a
single standard deviate. On the first, third, fifth, etc. invocations of this function, it
performs the Box-Muller transformatin, stores gz, and returns g;. On the second,
fourth, sixth, etc. invocations of this function, the function returns the value of g,
produced in the previous invocation.

10.4.3 The Rejection Method

The rejection method, first proposed by John von Neumann, allows us to pro-
duce samples from a probability density function f{x) that we cannot integrate
* and/or invert analytically. Suppose we can generale samples for another proba-
bility density function £(x), and we can find a constant § such that f(x) < 5k(x)
for all x {Figure 10.10). We produce samples from f in the following way: We
generate a sample x; from h and another sample u; from the uniform distribution.
If u;8h(x;) < f{x;) we accept x; as asample from f(x) and return it. Otherwise,
we repeat the test with another x; and another .

™0

252 CHAPTER 10 Monte Carlo Methods

X X

Figure 10.10 The rejection method aflows us 1o generate samples from
a probability density function f(x). We produce x; from probabity density
funetion H{x) and ; from the uniform probahility density function over

{0, 1). Inthis figure uy = 0.8, ush{x) > f(x;), and we reject sample x;.
On the cther hand, u, = 0.15, wih{x%) < f(x), and we accept sample X,.

The points {x;, #;5/(x;)) uniformly sample the area under the curve 8 (x).
‘Since we only accept those points under the curve f{x), the resulting sequence
of x;5 reflects the probability density function f (x).

The rejection method works best when there is a relatively small amount of
error between f(x) and 8h(x). The larger this arca, the greater the frequency
at which candidate random numbers will be rejected, slowing the process. The
efficiency of the rejection method can decrease sharply as the number of dimen-
sions increases. For example, suppose that 75 percent of the random numbers
are accepted for a one-dimensional integral. If the same efficiency holds true as
the number of dimenstons increases, the efficiency for a six-dimensional integral
wotld be {0.75)%, or about 18 percent.

EXAMPLE

A random variable has the probability density function

sinx, f0<x <m/4
Fy={ (~4x+ 7 +8)/8v2), ita/d<r<2tn/4;
0, otherwise

This probability density function is illustrated in Figure 10.1L.

Solution

We can use the rejection method to generate random variables from this distribution. We
need to find § and A(x) such that £(x) < §A(x)forall x. We note that the probability density
function s greater than 0 for the values of x between 0 and 24-7/4, and it has a maximum
value of /2 /2. We choose to use a uniform probability density function as our A(x):

1/2+m/4), H0<x<24x/4,
hix) = .
] 0, otherwise

SECTION 10.5 Case Studies

17/4 2‘1'11',"4

Figure 10.11 Using a uniform random variable and the
rejection method to produce variables from a fwo-part
probability density function.

If we multiply A{(x) by § = (2 +Jr/4)(\/§/2), then §hix) > f{x) for all x. Simplifying
the terms, we see that

2, if0 < .
Cah(y = | VA DS <Dt/
0, otherwise

We generate « random number from the uniform distribution between @ and 1 and mul-
tiply it by 2+ 7 /4, giving us a random variable x; from the uniform distribution between
0 and 2 + z/4. Next we generate a random number u; from the uniform distribution
between O and . If u;8h(x;) < f(x;), then we accept x; as a sample from f(x) and
resurn it. Otherwise we generate another pair (x;, 1;) and repeat the test.

oy u; widhix) | fx) Outcome
0860 | 0975 | 0.689 0681 | Reject
1518 | 0357 0.252 0448 | Accept
0357 | 0920-] 0630 0349 | Reject
06 | 0am 0.192 0523 | Accept |

253

10.5 CASE STUDIES

The five case studies in this section provide a glimpse into a few of the many
domains in which Monte Carlo methods are useful.

10.5.1 Neutron Transport

We consider a simplified model of neutron transport in two dimensions (see
Figure 10.12). A source emits ncutrons against a homogencous plate having
thickness H and infinite height. A neutron may be reflected by the plate, absorbed
by the plate, or it may pass through the plate. We wish to compute the frequency
at which each of these events occurs as a function of plate thickness H.

Two constants that describe the interaction of the neutrons in the plate are
the cross section of the capture C, and the cross section of the scattering C;. The
total cross section C = C,. + C,.

254

CHAPTER 10 Monte Carfo Methods

)il

i

Figure 10.12 A neutron encountering a
homogeneous medium may be (a) reflected,
{b) absorbed, or (c} transmitted,

The distance L a neutron travels in the plate before interacting with an atom
is modeled by an exponential distribution with mean 1/C. As we saw in the
previous section, if » is a random number from the uniform distribution [0, 1),
the formula _

|
L=——1nu
C

is arandom number fromthe appropriate exponential probability density function.

When a neutron interacts with an atom in the plate, the probability of bouncing
off the atom is C;/ C, while the probability of being absorbed by the atomis C/C.
‘We may use a random number from the uniform distribution [0, 1) to determine
the outcome of a neutron-atom interaction.

If 4 neutron scatters, it has an equal probability of moving in any direction.
Hence its new direction D (neasured in radians) can be modeled by a random
variable uniformly distributed between 0 and 7. (Since the plate has infinite
height, we do not need to distinguish between bouncing upward and bouncing
downward.) Given direction D, the actual distance in the x direction the neutron
travels in the plate between collisions is L cos D.

The simulation of a neutron continues untilone of the following events occurs:

1. The neutron is absorbed by an atom.

The x position of the newtron is Jess than 0, meaning the neutron has béen
reflected by the plate.

3. The x position of the neutron 15 greater than ff, meaning the neutron has
been transmiited through the plate.

SECTION 10.5 Case Studies

Neatron Transport Simulation:
{ — Mean distance between nentron/atom interactions is 1/C
C, — Scattering component of C
C— Absorbing component of C
H — Thickaess of plate
L — Distance peutron travels before collision
d — Direction of newtron {measured in radians between 0 and 7)
4 — Uniform random number
x — Position of particle in plate {0 < £ < H)
1 — Nuimber of samples
a — True while panticle siill bouncing
1, b, — Counts of reflected, absorhed, trmsmitted nevtrons
" begin
rhte
" fori « 1tonde
4«1
i «0
a < frue
while a do
L & —1/C) xIny
x « x+ L x cos{d)
if x < Othen (Reflected } - -
rer+l
a - false
else il x = H then { Teansmitted }
1ot
a « falsz .
else if 1w < C/C then { Absorbed |
b+bh+1
a « false
else
deuxn
endif b
endwhile
endfor
prnt rfn, a/n,1/n
end

Figure 10.13 Pseudocode for a neutron transport
simulation using the Monte Carlo method.

Psendocode for the neutron transport simulation appears in Figure 10.13.
Note that time does not advance by the same amount in each jiteration of the while
loop. Instead, the simulation advances from one event {one interaction) to the
next. This pseudo-time progression is called Monie Carlo time.

10.5.2 Temperature at a Point Inside a 2-D Plate”

Irmagine a very thin plate of homogeneous material. We wish to compute the
steady-state temperature at a particular point in the plate. The top and the boitom
of the plate are insulated, and the temperature at any point is solely determined
by the ternperatures suriounding it, except for the temperatures at the edges of
the plate, which are fixed.

GHAPTER 10 Monte Cario Methods

The interior temperature distribution is described by Laplace’s equation,
V2T = (), which means the temperature at a point is the average of the tem-
peratures around it.

One approach to solving Laplace’s equation numerically is to make the prob-
lem discrete by overlaying the plate with a two-dimensional mesh of points. In
this case the temperature at a point is the average of the temperatures of the points
above it, below it, 10 its righ, and to its left (which we can think of as “north,”
“south,” “east,” and “west”).

We can use a Monte Carlo technique to find the lemperature at a particular
point S, We compute the temperature of § by randomly choosing one of the four
neighbors and adding its temperature to an accumulator. After we have sampled

2 random neighbor’s lemperature n times, we divide the sum by # to yield the -’

temperature of §. This average has an expected value of (7, + T, + T, + T,)/4.

Of course, we do not know the temperatures of the neighboring points, but
we could use the same technique to find their temperatures, too. Applying this
idea recursively, we end vp doing a random walk on the plate. The recursion
and the random walk do terminate, because the temperatures on the edges of the
plate are known,

Following are the Monte Carlo algorithm results (see Figure 10.14). We
start at intersection § and randomly choose which direction to move {north,

Figure 10.14 Use of a random walk to
estimate the temperature of paint Son a
thin plate. The boundary temperatures
are fixed. Edge points contacting the
U-shaped white bar have temperature 0.
Edge points contacting the gray bar have
temperature 100. This random walk from
§ illustrated by heavy lines, results in the
temperature 0 being added to the sample.

SECTION 10.5 Case Studies

south, east, or west). We continue to move in a random fashion until we hit
one of the edges of the plate. At this point we add the temperature at the edge
to our accumulator and repeat. At each iteration we can also determine
the average edge lemperature encountered over all random walks we have
taken so far. We terminate the algorithm when the average temperature value
converges.

10.5.3 Two-Dimensional i1sing Model

The two-dimensional Ising model may be used to simulate the behavior of simple
- magnets as well as other phenomena (see Figure 10.15). The problem domain is
a square lattice. Each intersection is called a site, Every site gy has an associated
- spin. Each spin can be in one of two states: up or down. We associate the value 1/2
with up and the value — /2 with down. The energy of the system is determined

P T e e e e e

B € S B > e € > B P e e € S > e B e <

B w e > > W > e > P B > < > o > e
- — e B > e B e > > € D W B B € > > > > -
B S w € € B > D e € > > i € > > > e
B e - D w— — w— D D X € D - € e >
o e S e B K > > € P € P > o > € >
S B w E — w aP w— € D € > B € >
€ e = D D K K e e P K D e B D € >
S > > > > € B D e e D > d € - € > € -

€ > e B e D e W " B D € e > G B i e >
o e € D € > W W D € - € € € € e = o > e
- - D B - K e D D W W € B P w € a— < —
> B € > € B D € > e > e = > € > > € >
€ € € e B e B € D D e W N S > e < S >
B e > B > e e e e D W € € > G > >
I e w— K e D I e - e e P K € € B S e > -
S B > B e > > K D e B D € € e B P € > -
e e e D B G e € D e G S > € € S >
B e e e B B e B B o B W e > € P G o > -

S > - -

Figure 10.15 A 20 x 20 Ising model. Each of the 400 sites
has an agsociated spin, either up or down. The energy of the
system is a function of the spins. The model may take on any
of 2 different states. The probability of entering each of
these states is influenced by both the current state of the
system and its temperature.

257

258

CHAPTER 10 Monte Carky Methads

by the function .
E()=~) Jow;—BY o
iJ i

where the first sum is over nearest neighbors, J is a constant indicating the
strength of the spin-spin interaction, and B is another constant having to do with
the external magnetic field.

Our goal is to estimate the specific heat per particle, a problem analogous to
performing integration over the possible configurations of the system. Given the
temperature T and Boltzmann’s constant £, the probability density function over
all possible configurations is

e EOYiT
Z(T)

where Z(T) is a weighted sum over all states.

Unfortunalely, it is difficult to sample from distribution y. Here, a random
sample x; represents a configuration of spins. Note that the number of configu-
rations i5 exceedingly large, even {or small lattices. For example, our example
20 x 20 lattice has 400 sites. Each site has two possible values, meaning the num-
berof configurations is 2**°. Because the probability density function is an inverse
exponential function, the probabilities associated with most states are extremely
small. If we try to take a uniform sample of the configurations, it is unlikely
we will “hit"” on enough of the higher-probability configurations to yield 2 good
estimate of the integral. Instead, we need to find a sampling of the configurations
that is biased toward those that have higher probability. The Metropolis algorithm

wlo) =

- generates such a sampling.

The Metropolis algorithm uses the cutrent configuration x; (current random
sample) to generate the next configuration x;,; (next random sample). Given
X;, the algorithm generates a neighboring configuzation x'. If E{x) < E{x;),
then x;,; =x". If E(x")> E(x;), then x;,; = x" with probability g™l -ENAT,
olherwise x;4; =x;. The series of random samples, called a Markov chain,
represents a random walk through the possible configurations. When applied
to the Ising model, the Metropolis algonthm takes the form shown in
Figure 10.16.

While short series of random samples produced by the Metropolis algorithm
are highly corrclated, if the algorithm is allowed to produce enough samples, it
can provide good coverage of an entire probability density function.

How can we be sure that the Markov chain of configurations visited by the
Metropolis algorithni corresponds to the underlying probability density function?
One way to be sure is to satisty (he detailed balance condition. Let P(x;) repre-
sent the probability of being in configurations x;, and lel P (x; | x;) represent the
probability of the random walk moving to configuration x; from configuration
;. The detailed balance condition holds if

Px)Plxglx) = P(x) P(xy] x2)

SECTION 10.5 C(ase Studies

Metropolis Algorithm:
k — Doltzmann’s constaut
T — Temperature
E — Energy function
A — Change in energy
p — Probability of changing to state x'
 — Uniform randmn vanable

begin
Xy « Initial statz of model
i~0 -
repem
¢ <+ randomly selected site (from uriform distribation)
%'« Xdentigal to x; except spin al.o is ruersed
A«F (x) E (x;)
if A < Olhen
p1
clse
p—e
endif
ifu < p then
X X
alse
Xy = X
endif
i<+l
forever
end

Y

Figure 10.16 The Metropolis algerithm applied
{o the Ising model,

. Suppose £{x') > E(x;) The Metropohs algorithm satisfies the detailed bal-
ance condition if

PP %)

tl

PGP | 3)

g EWNET e s BT
= : X e~lu(.r)—E\1;]|/kT — < 1
Z(T) 2T
e EXRT e~ Nk
= e = -
Z(T) Z(T)

. The equality also holds if E(x") < E{x;). Hence the Metropolis algorithm
" satisfies the detailed balance condition.

10.5.4 Room Assignment Problem

" Given , an even number of college freshmen, our goal is to assign them to r/2
~ tooms in a residence hall so that interpersonal conflicts are minimized. Every
siudent has completed a survey, and a computer program has produced 2 table
of “dislikes™—in other words, the value of entry (7, j) of the table indicates the
extent to which students ¢ and ; are likely to get on each other’s nerves. (The value

260

CHAPTER 10 Monte Carlo Methods

of entry [i, f] equals the value of entry {7, i].) We will solve this problem using
a technique called simulated annealing,

Physical annealing is the process of heating a solid until it melts, then cooling
it slowly. The purpose of physical annealing is to produce a strong, defect-frez
crystal witha regular structure. When the material is hot, the atoms are in a higher-
energy state and more easily rearrange themselves. As the temperature drops, the
atomic energies decrease, and the atoms do not rearrange themselves as easily.
Slow cooling allows the material to reach a state of minimum erergy, which is its
crystalline form.

Simulated annealing makes an analogy between physical annealing and
solving a combinatorial optimization problem. A solution to the optimization
problem corresponds to a state of the material, the value of the objeciive function
for a particular solution corresponds to the energy associated with a particular
state, and the optimal solution to the problem corresponds to the minimum energy
state,

Simulated annealing is an iterative algorithm. During each iteration the cur-
rent solution is randomly changed to create an alternate solution in the neighbor-
hood of the current solution. If the value of the objective function for the pew
solution is fess than the value of the objective function for the current solution,
then the new solution becomes the current solution. If the value of the objective
function for the new solution is greater than the value of the objective fanction
for the current solution, then the new solution becomes the current solution with
probability e~2/", where A is the difference between the values of the objective
function and T is the cusrent “temperature.”

Why would we wanl to move to a solution that is inferior to one we have
already found? The reason is that solution spaces usually have local minima.
We do not want the algorithm to settle too quickly into a local minimum. When
the temperature is higher, the algorithm can easily “climb out of” local minima
{Figure 10.17a). When the temperature decreases, the probability of doing so is
reduced (Figure 10.17b).

Note that simulated annealing and the Metropolis algorithm are closely re-
lated. Both use the same probability function to determine if a jump should be
made 10 a higher-energy state. The difference is that in simulated annealing we
are seatching for the minimum value of the function, rather than computing an
integral.

In order to solve a problem using simulated annealing, we must:

decide how (o represent solutions

define the cost function

define how to generate a new, nelighboring solution from an existing solution
design a cooling function

Let's go through each of these steps for the room assignment probfem. We
start with an incompatibility matrix D; entry d; ; is a floating-point value hetween
0 and 10 that indicates how much students i and j are going to dislike each other.
Note that dg{j = djl,'.

SECTION 10.5 Case Studies

@ V (lé)

Figure 10.17 Simulated annealing always allows the search to move to
a newly generated solution of fower cost. The probability of moving to a
newly generated selution of higher cost shrinks as the temperature drops.
{a) When the temperature is high, moving to a solution of higher cost is
more prahable, (b) When the temperature is low, rmoving to a solution of
higher cost is less probable.

" A solution is an assignment of the r students fo /2 rooms. We create array
a to keep track of (hese assignments, Each entry g; is an integer between 0 and
n/2 — 1, representing the roomi person / is assigned to. Each value j in the range
0 through /2 — 1 appears exactly twice in array a.

The cost function is simply the sums of the incompatibilities of the students
in the rooms. Let r; represent the roommate of student i. Then the cost function
is defined to be

n~1
WY
L d["‘
i=0

We can generate a new selution near the current solution by choosing two
students at random and switching their toom assignments.
~ Finally, we need to choose the temperature function. The choice of tempera-
ture function can have a great effect on the performance of the algorithm. A poor
function may cause a simulated annealing algorithm to find a poor solution, take
too long to execute, or both.

For this problem we choose a simple geometric temperature function:

Ty=1\
T} = 09997;

Figure 10.18 illustrates the convergence of the simulated annealing algorithm
solving the room assignment problem using a geomefric temperatuse function.
‘Both algorithms find the same solution, but the algorithm starting with Ty = 10
iterates twice as long as the algorithm starting with Ty = 1.

Pseudocode for a simulated annealing solution to the room assignment prob-
lem appears in Figure 10.19.

261

262

CHAPTER 10 Monte Carlo Methods

S

Figure 10.18 Convergence of simulated annealing
algorithms solving the room assignment problem. in both
cases the gaomatric temperature function 7, =0.999T; is
used. Both algorithms converge on the optimal solution.
However, when the initial temperature is higher, the
convargence is slower.

Sitnulated annealing is not guaranteed to find an optimal solution. In fact,
the same algorithm using different streams of random numbers may converge on
different solutions. Hence it makes sense to execute the same algorithm multiple
times with different random number seeds. This is an cbvious opportunity to use
a paralle} computer to speed overall execution time.

10.5.5 Parking Garage

A parking garage has S stalls. The length of lime between successive arrivals of
cars at the entrance to the garage is a random variable from a Poisson distribution
with mean A minutes. If a car arives at the garage and a stall is available, il
occupies one of the stalls, The length of time a car stays in the garage is a randon
variable fror a normal distribution with mean M minutes and standard deviatior
M /4 minutes. If a car arrives at the entcance and no stalls are available, the car it
turned away. We wish to determine the steady-state characteristics of the parking

SECTION 10.5 Case Studies

Room Assignment Problem:

afdl.n — 1] — =n-element array containing room assignments

¢l,v2 —two persons involved in possible room swap

(0.1 — 1, 8.1 — {]— 1 x # matrix containing roommate iscompatibilities
suny — swm of distikes of best sotution fornd so far

new__sum — sure of dislikes of aewly generated solution

t - temperature

begin
Randomly assiga students o rooms
sum < 0
fori « Oton—{do
for j <~ 0ton —1do . c
if aff] = ol j] then
sun & sum + d{i][]
endfor
endfor
t el
i«0
while i < 1000 do {Stop if no changes {or L000 ilerations}
repeat
ol « luxnj
2« luxn)
wnlid afct] £ a{c2]
Compure new__rum assuming ¢l and c2 swap rooms
i new_sum < sum or y < WIS fhen
Swap ropn assignments for ¢ and £2
sum < new_sum
i«0
elsei « 41
_ endif
1099 %t
endwhile
printa and sum
end

Figure 10.19 Solving the room assignment problem using
simulated annealing.

garage: the average number of stalls occupied by cars and the probability of a car
being turned away because the garage is full,

We model time in minutes as a real variable #, When the simulation begins,
t=0.

We model the parking garage stalls as an array G with § elements. Element
G; contains the time that stall is available. At the beginning of the simulation
R =0forali 0 <i<S.

We begin the simulation with the artival of the first car; that is, it arrives at
time 0.
; Since car arrivals are characterized by a Poisson distribution, the time between

“car arrivals is an exponential distribution with mean A, As we saw in the previous

section, we can use the expression — A Inu to determine the next car arrival time,
where u is a random number uniformly disiribated in {0, 1).

264

CHAPTER 10 Monte Carlo Methods

We increment ¢ by this amount and look for an available stall; that is, a stall
i such that G; < ¢.

When we assign a car fo a stall , we must reset G; to reflect the fime the
car feaves the parking garage. Since this is a normal distribution, we can use the
Box-Muller transformation described in Section 10.4.

10.5.6 Traffic Circle

A wraffic circle {alsd called a rotasy or a roundabout) is a way of handling traffic
at an intersection without using signaj lights. Often seen in Europe and the nosth-
eastern United States, traffic circles supp()rt lhe concurrem movement of f multiple
cars in the same direction.” ' -

Figure 1020 illustrates a simple traffic circle. Traffic feeds into the circle
from four roads, labeled N, W, S, and E. Every vehicle moves around the circle
in a counterclockwise direction.

Figure 10.20 A model of a traffic circle. Cars within the traffic circle
travel in a counterclockwise dlrechon and take pnomy over cars trying to
enter the circle,

SECTION 10.5 Case Studies

NWSE
1]02{05]02]

2j01]03]04]
slo]o1os

: yloz 0.1

Figure 10.21 Probabilities
associated with the traffic
circle problem. Array efement
f; is the mean time between
vehicle arrivals at entrance /.
Matrix efement d ; is the
probability that a car entering
the circle at 7 will exit af |.

In our simulation of the circle we divide the circle into 16 sections. During a
single time step all vehicles inside the circle move to the next seciion in the coun-
terclockwise direction (or leave the circle at one of the four exits). Vehicles within
the traffic circle take priority over vehicles trying to enter the circle. Hence vehi-
cles inside the circle are never prevented from moving forward during a time step.

A vehicle wishing to eater the circle may do so if there is no vehicle already
in the circle atiempting Lo enter the same zone. In Figure 10.20, for example, the
vehicles waiting at N and S may enter the circle at the next time step, since there
are no vehiclesin the potential conflict zanes S, and N.. The vehicle waiting at W

" may also enter the circle, because the car at W, is leaving the ciscle. However,
the vehicle waiting at E may not enter the circle, becanse the car at E, is slaying
in the circle and has precedence.

To complete our model of the traffic circle, we must know the frequency at
which cars arrive at the four access points. We must also know the frequency
at which cars entering at a certain point exit at cach of the four points. See
Figure 10.21. The probability of a car arriving at an entrance during a particular
time step is a randem variable from an exponential distribution with mean .
Array f provides the mean time between arrivals at each of the four entrances.
Element d; ; of matrix D is the probability that a var entering at i will exit at j.
For example, the probability that a car entering at E will exit at § is 0.20.

Qur goal is to construct a simulation of the traffic circle in order to answer
two questions:

1. Foreach of the four traffic circle entrances, what is the probability that a car
will have to wait before entering the circle?

2. For each of the four traffic circle entrances, what is the average length of the
queue of vehicles waiting to enter the traftic circle?

Eight principal arrays ate sufficient to perform the simulation and store the
information needed to answer these two questions. See Figure 10.22. The traffic

266

CHAPTER 10 Monte Carlo Methods

' Treration

S E

o
[o] arrival
arrival_cat
[11] wait_cnt
T Cle

al-1]al-1]8]sT2]0 —18 oﬂzla'fde

61 23 4567891001213 14145

=
[l E] =] F]=
[N4
2

”

2] [][] =] [=]=
[£]

Figure 10.22 Data structures supporting the traffic circle
simulation.

circle itself is represented by circle, a circular buffer implemented as an array of
16 integers. Array offset indicates the index in circle associated with each of the
four entrances and exits. Index O represents the northern entrance/exit, index 4 is
the location of the western entrance/exit, and so on. Each element of array circle
represents acircle segment that is either empty orholds one cac. If circleli] = —1,
the segment is empty. Otherwise, circleli] contains an integer that represenis the
car’s exit (0, 4, 8, or 12).

When cars arrive at one of the entrances to the traffic circle, the appropriate -
element of array arrival is set to 1 at that time Step. Array arrival_cnt contains
the total number of arrivals at each entrance, and array wait_cnf is a count of
the number of cars that could not enter the traffic circle immediately. Array
quete keeps track of how many cars are waiting to enter the traffic circle at each
entrance, and array queue_accum is a total, over all time steps of the simulation,
of the values in gueue.

Pseudocode for the traffic circle simulation appears in Figure 10.23. Bach
time step of the simulation is divided into three phases. First, new, cars arrive
at the traffic circle. Second, cars already inside the traffic circle move forward.
(Array new_circle, not shown in Figure 1022, facilitates this phase.) Cars that
reach their destination exit are removed from the circle. Note that there is no need
to simulate the lanes leading away from the circle. Third, cars enter the circle if
there is room.

When a car does enter the traffic circle, the simulation must determine the
desired exit of that car by generating a uniform random variable and referring
to matrix D. In the pseudocode this step is represented by a call to function
ChooseExit. We illustrate this process with an example. Suppose a car is entering

SECTION 10.5 Case Studies

Traffic Circle Simulation:

Data Structures Representing the Traffic Circle
circlef0..15] — Current state of traffic circle
new_circle[0..15] — Next state of traffic circle

Data Structures Representing the Four Entrances
offset{0..3] — Each entrance’s location (index) in traffic circle
arrival(0..3] — 1 if a car arrived this time step
wait_cnif0..3] — Number of cars that have had to wait
arrival_cnif0..3] — Total number of cars that have arrived
queue[0..3] — Number of cars waiting to enter circle
guene_aceam{0..3] — Accumulated queue size over all time steps
begin .
fori « 0to15do
circlefi] « ~1
endfor
fori < 0to3do
arrival_cnt]i], wair_cntfi], quenefi], queue_accumfi] < 0
endfor
for iteration < 010 requested_jterations
[New cars arrive at entrances }
fori < 0to3do
if # < 1/f1i] then { u is a uniform random number }
arrivalfi] « 1
arrival_cntfi] « arrival_cntfi] +1
else arrivalfi] <0
endif
endfor :
{ Cars inside circle advance simultaneously }
fori « 0to 15do
j < i+1)modls
if circle[i] = —~1 or circle[i] = j then new_circlefj] + —1
else new_circlefj] « circlefi]
endif
endfor
circle < new_circle
{ Cars enter circle }
fori «0to3do
if circle[offset{i]] = —1 then
{There is space for car to enter]
if quenefi] > 0 then
{Car waiting in queue enters circle}
quene[i] < queuefi] —1
circlefoffset{i]] < Choose_Exit(i)
elsé if arrivalfi] > 0
{Newly arrived car enters circle}
arrivalfi] « 0
circlefoffset{i]] < Choose_Exit(i)
endif
endif

Figure 10.23 Pseudocode for traffic circle simulation.

267

268

CHAPTER 10 Monte Carlo Methods

if arrivalfi] > 0 then
{Newly arrived car queues up}
wait_cntfi} + wait_entfif +1
queaeli] + queue{i] +1
endif
endfor
fori «0to15do
queue_accum(i] < queue_accum{i] 1+ queuefi]
endfor
endfor {itcrafion}
end

Figure 10.23 (contd.) Pseudocode for traffic circle
simulation.

from the west, and we gemerate the random variable 0.55. We work through row
W of matix D until the total of the probabilities exceeds 0.55. The first entry is
0.2, which is not greater than 0.55. That means the destination is not the north
exit. The second entry is 0.1. Adding this value to the first gives us 0.3. Since
0.3 1s not greater than 0.55, the destination is not the west exit. Adding the third
entry, 0.3, to the total gives us 0.6. Since 0.6 is greater than 0.53, the south exit is
the destination. The car is entering at the west entrance (offset 4) and leaving at
the south exit (offset 8). Hence we perform the assignment circle[4] « 8.
When the traffic circle simulation begins, there are no cars inside the traffic
circle, and delays are at a minimum. As the simulation progresses, traffic jaros

" develop and then dissipate. The simulation should continue until the answers to

the two questions have converged.

10.6 SUMMARY

Monte Carlo methods use statistical sampling to find approximate solutions t0 a
wide variety of problems. Two important applications of Monte Carlo methods
are numerical integration and simulation. Monte Carlo methods are superior to
deterministic numerical algorithms for finding integrals when the number of di-
mensions is larger than about six. It is difficult to derive analytical answers to
many questions arising from systems with stochastic behavior. Monte Carlo sim-
ulations of these systems can be good tools for generating approximate answers
to these questions. ’

In order to produce reliable results, a Monte Carlo method must have access
to a good stream of random numbers, The maximum period of a random number
generator returning 32-bit integers is 2%, or about four billion. This is too small
a period for modern computers. Make sure you use a generator that has at least
48 bits of precision.

Sometimes a random number generator that is good in general may not work
well for a particular application. If you have a critical application, if is a good

idea to run it twice using two different random number generators to see if both

runs produce similar results.

SECTION 10.8 Bibliographic Notes

A variety of methods have been proposed for generating random numbers
on a parallel computer, including the leapfrog method, sequence splitting, and
maintaining independent sequences.

The most popular random number generators produce a pseudo-random se-
quence of values from a uniform distribution. Often a Monte Carlo method re-
quires a random number from another distribution. Straightforward algorithms
exist to transform samples from a uniform distribution into samples from an ex-
ponential disiribation or a normal (gaussian) distribution. The rejection method
allows us to produce numbers from other distributions.

We have considered six applications of the Monte Carlo method that demoa-
strated a variety of solution techniques. In the process of solving these problems

“we introduced two important algorithms. The Metropolis algorithm is a particu-
larly good way to produce-a sample from a high-dimensional space. Simulated
annealing is an algorithm for finding approximate solutions to combinatorial op-
timization problems.

10.7 KEY TERMS

detailed balance condition ~ multiplicative congruential seed

linear congruential generator - generator simulated annealing
Markov chain period site

Metropolis algorithm pseudo-random number uniform distribution
Monte Carlo method generator

Monte Carlo time random walk

10.8 BIBLIOGRAPHIC NOTES

Fasy-to-understand introductions to the Monte Carlo method and the Metropolis
algorithm appear in Computational Physics: Problem Solving with Computers
by R. Landau and Paez {65]). In contrast, A Guide to Monte Carlo Simulations
in Statistical Physics by D. Landau and Binder provides a more rigorous pre-
sentation of the design and implementation of Monte Carlo simulations and
the analysis of their results 164). 1 first saw the “raindrops in cake pans” anal-
ogy in another introductory book, Monte Carlo Methods, written by Kalos and
Whitlock {58].

Lehmer published the linear congruential method in 1951 [69]. For a time
it was called “Lehmer’s algorithm.” Work on linear congruential generators with
much longer periods continues. Wu gives a multiplicative congruential generator
with the lacge prime-modulus 2°' — 1 and four forms of multipliers [118]. How-
ever, L'Ecuyer and Simard warn that this generator fails a test of independence
between the number of Is in the binary representations of consecutive random
numbers {68].

269

270

CHAPTER 10 Wonte Carlo Methods

A variety of algorithms have been proposed for generating random variables

* from important nonuniform distributions. Wallace describes a fast way to generate
- normal and exponential random variables without relying on a source of uniform

random variables [110]. L.eva presents a fast algorithm for gererating normal
random variables that requires on average only 0.012 logarithm evaluations per
standard deviate {72]. Marsaglia and Tsang describe a fast method for generating
normal, exponential, and other random vanables [80].

Mascagni surveys methods for generating parallel streams of random num-
bers via parameterization rather than sequence splitting [84]. His article contains
a useful bibliography of earlier work.

The Scalable Parallel Random Number Generalors {SPRNG) library, briefly
documented by Mascagni and Srinivasan in ACM Transactions on Mathematical
Software 183}, is freely available from Florida State University. The URL is
http://sprong.cs. fsu.edu.

The traffic circle problem is based on an example from Manno’s Introduction
to the Monte-Carlo Method [78]. .

10.9 EXERCISES

10.1 Suppose you are using the Monte Carlo method to compute an integral.
The methodology is similar to the 7-finding example in Section 0.1,
except that the function to be integrated has 70 dimensions rather than
2. What sort of problem should you look out for if you are using a linear
congruential random number generator?

10.2 An approach to parallel random number generation not discussed in the
book is to assign each process the same linear congmiential generator
{with identical values for the multiplier, additive constant, and
modulus). However, each process starts with a different seed value X.
What is the principal risk associated with this approach?

10.3 Write a C function that uses the Box-Muller transformation to return a
double-precision floating-point number representing a random value
from the normal distribution.

10.4 A cylindrical hole with diameter o is drilled completely through a cube
with edge length 5 so that the center of the cylindrical hole intersects
two opposite corners of the cube. (See Figure 10.24.) Write a program
to determine, with five digits of precision, the volume of the portion of
the cube that remains when s = 2 and d = 0.3. Hint: The distance
between the poink{x;, v;,7;) and thelinex =y =z is

. Hnt+ytz
sin {cos‘1 (71__)2_1_1_)1 Vi tyi+ad

W+t

105

10.6

107

168

10.9

SECTION 10.9 Exsrcisss

@ ; ®

Figure 10.24 Two views of the object described in
Exercise 10.4. (a) Looking down on one corner of the cube,
we see that the hole goes completely through to the
apposite corner. (b} Looking from the side of the cube, we
see that all material within distance d/2 of the line

X = y=zis removed.

Write a program to evaluate (he definite integral

4 @B
/ / / 4 +xy* + 5y + yr + bz dz dy dx
A= Sy=0 JS2=G

to five digits of precision.
Write a program to evaluate the definite integral

4 3 T+y R 5
/ / / 45+ xy + Sy +yz+6zdzdydx
=0 Jy=0 /20 "

to five digits of precision.

A radioactive atom has a mean lifetime of m time units. The probability
that a radioactive atom will decay in any given time unitis (1/m)e™'/",
Given an initial pool of 100,000 radioactive atoms, compute how many
aloms decay at each time step in the first 1,000 time umits, when

n =250.

Implement a parallel program solving the newtron trznsport problem
described in Section 10.5.1. Let C. = 0.3 and C; = 0.7. Determine

the probability of absorption, reflection, and transmission for H = 1, 2,
3,..., 10. Base your results on 0 million tests (neuirons) for each
value of H.

Implement a parallel program solving the sleady-state temperatare
problem described in Section 10.3.2. Assume the square plate has been
discretized into a 20 x 20 grid of smaller squares. Assume the
temperature on three sides of the plate is 0° and the temperature on the
fourth side is 100°. Compute the temperature at the middle of the plate
to three digits of precision.

211

272

st Bl

CHAPTER 10 Mante Carlo Methods

10.10

10.11

10.13

Write a paralle] program implementing the Ising model described in
Section 10.5.3. The objective is to find the energy level of a 100 x 100
syste after 1,000,000 iterations. et J = 1, B = 0,and kT = . Give
the system a “cold start” by inilializing every site o to “up” in state x,.
Evaluate } . - Ja,0; for every pair of sites that are horizontally ot
vertically adjacem Repeat the experiment 1,000 times.
Implement a paralel program solving the room assignment probiem
posed in Section 10.5.4. Assume # = 20 and T = 1. Use a random
number generator to construct matrix D. Each entry should be a
uniform random variable between 0 and 10. Each process should solve
the problem for the same matrix D, but with difterent seeds for the
random number generator.
Implement a parallel program solving the parking garage problein
posed in Section 10.5.5. Assume 5= 80, A = 3, and M = 240.
Determine the average number of stalls occupied by cars, and the
probability of a car being turned away because (he garage is full, as
I — oo, that is, in the steady state. .
Implement a parallel program solving the traffic circle problem posed in
Section 10.5.6. Use the program to answer these tWo questions:
a. For each of the four traffic circle entrances, what is the steady state
probability that a car will have to wait before entering the circle?
b. For each of the four iraffic circle entrances, what is the average
Jength of the quene of vehicles waitiag to enter the traffic circle, in
the steady state?

CHAPTER

‘Matrix-Multiplication

We go on maltiplying our conveniences only to multiply our cares. We increase
our possessions only to the enlargement of our anxieties.
Anna C. Brackett, The Technique of Rest

11.1 INTRODUCTION

Considering how often the matrix multiplication algorithm is presented in com-
puter science classes, it's ironic that few scientific and engineering problems
require the multiplication of farge matrices. Here are two domains in which ma-
trix multiplication is used. Computational chemists represent some problems in
terms of states of a chemical system. Each index corresponds Lo a different basis
state, and the matrix approximates the Hamilionian of the system. A change of
basis 1s accomplished through matrix multiplication. As another example, some
transforms used in signal processing rely on the multiplication of large matrices.
This chapter presents two sequential matrix multiplication algorithms and
thenexplores two different approaches to parallel matrix multiplication. In Section
11.2 we review the standard sequential matrix multiplication algorithm. Charting
the algorithm’s performance as matrix sizes increase, we see how perforinance
drops dramatically once the second factor matrix no longer fits inside cache
memory, We then show how a recursive implementation of matrix multiplication
that multiplies blocks of the original matrices can maintain a high cache hit rate.
In Section 11.3 we design a parallel algorithm based upon a rowwise black-
striped decomposition of the matrices. We derive an expression for the expected
computation time of this algorithm, and we analyze its isoefficiency. In Sec-
tion 11.4 we go through the same design and analysis methodology for a paralle]
algorithm based on a checkerboard block decomposition of the matrices.

273

274

CHAPTER 11 Matrix Mulfiplication

11.2 SEQUENTIAL MATRIX MULTIPLICATION

11.2.1 Iterative, Row-Oriented Algorithm

The product of an / x m matrix A and an m x n matrix B is an ! x » matrix ¢
whose elements are defined by

m-{
G = Zﬂi,kbk,j
k=0

nos ~~A~wu¢nﬁalgkgodthm implementing matrix multiplication appears in Figure 11.1,

The algorithm requires Z7in additions and the same mumber of multiplications.
Hence the time complexity of multiplying twon x n matrices using this sequen-
tial algorithm is @(n). Sequential matrix multiplication algorithms with a lower
time complexity have been developed, such as Strassen’s algorithm, but every
algorithm developed in this chapter is a parallelization of the straightforward
algorithm.

It’s easy to implement this algorithm. We've benchmarked a C implementa-
tion of this matrix multiplication algorithm on a node of a Beowulf cluster: a Linux
computer with a 933 MHz Pentiura TII CPU with a 233 Kilobyte level 2 cache.
The results of the benchmarking appear in Figure 11.2. For smaller matrices the
execution speed is about 220 megaflops, but for larger matrices the execution
speed is about 80 megaflops. What accounts for this drop in performance? {

Consider Figure 11.3. During each iteration of the outer i loop, every element
of matrix B is read. If matrix B is too large for the cache, then later elements
read into cache displace earlier elements read into cache, meaning that in the next

Matrix Multiplication (row-oriented):

Input:
al0.f—-1,0.m—-1]
b[0.m —1,0.n — 1]

Output:
ofdd—1,0.n—1]

fori «0tel~|
for j «Dten—1

ci.jle0

fork «Owm-1
cfi, j1 = cfi, J1+dli, k] x bk,]]
endfor
endfor
endfor

Figure 11.1 lterative, row-
oriented matrix multiplicafion
algorithm,

SECTION 11.2 Sequential Mairix Multiglication 275

250

20+
£ ISO’—
g
by
Z 0F Row-orented

0

IR S NN SV WS N N
10 PV St R
Matrix size

Figure 11.2 Performance of row-oriented matrix
mulfiplication algorithm on a computer with a 933 MHz
Pentium il CPU. When matrix 8 no longer fits in the
cache, the performance of the row-otiented matrix
milltiplication aigorithm drops sharply.

A 8 C

S

Figure 11.3 In a single iteration of the loop indexed
by i, row / of matrix A and all of matrix B are read,
while row i of C is written.

iteration of the loop indexed by £, all of the elements of B will need to be read
into cache again. Hence once the matrices reach a certain sige, the cache hit rate
falls dramatically, lowering the performance of the CPU.

The CPU we used for benchmarking has a 256 Kilobyte cache. We are mul-
tiplying double-precision floating-point numbers, meaning cach matrix element
fills eight bytes. Hence the cache can hold at most 32,768 matrix elements. The
square oot of 32,768 is about 181. The performance of the algorithm reflects that
when 12 < 150, the cache hit rate is much higléer than when n > 200.

11.2.2 Recursive, Block-Oriented Algorithm

Tn order to perform the matrix multiplication AB, the number of columns of A
must be equal to the number of rows of B.

276 CHAPTER 11 Matrix Multickication

double a{N]iH], biMV{M), ciN]iN);

void mm {(int crow, int cccl, /* Corner of ¢ block */
int arow, int acol, /* Cornerv of A block */
int brow, int beel, /* Corner of B block */
int 1, /* Block A is L x m */
int m, /* Block B is m x n */
int ol /Y Block € s 1 xon ¥/

int 1Thalf{3], mhalf[3}, nhalf(3]: /* Quadrant sizes */
int i, j, k; double *aptr, *bptr, *cptr; -0

if (m * n > THRESHOLD) {

T g 3
‘rn g

y doesn ply blocks of A, B */

!

lhalf(0] = 97 1lhalffi] = 1/2; lhalf(21 = 1 - 1723
@mhalf{0) = 0; mhalf[l] = m/2; whalil[2) = m - @w/Z;
nhalf{o] 0; nhalf{ll = n/2; nhalf[2) = n - 5/2;

for (1 =0

;loe 27 1)
for {j =07 § < 2; i)
for tk = 0; k < 2; k++)

mm {crowslhalfli], cool+mhaltiil,
arow+lhalfli], acol+smbhalfik},
browsmhalf k], beol+nhalflj;,
lhalfli+l], mhalf(k+3], nhalf(3+11);

} else {
/* B fits in cache --- do standard multiply */
for {1 =0: 1 < 1; i+4)
for (3 =0; 3 <m; J++) {

cptr = &olcrowsil(ccdl+i);
aptr = &alarow+i]{acol];
bptr = sbibrow) (boolsi);
for (k= 0; k < m; ket}
*cptY += *(aptr++) * *botr; bptr += ¥;

Figure 11.4 C tunction implementing recursive, block-oriented matrix
multiplication. The initial call to this funclionismm {0, 0, 0, 0, G, 0,
N, N, Nl

Let’s suppose A has { rows and m columns, while B has m rows and n
columns. If we divide A into four smaller matrices

Ay Ag
A=
(Am An)

and divide B into four smaller matrices

Bu Bm)
B=
‘(310 By

SECTION 11.3 Rowwise Block-Striped Parallel Algorithm

alis

Figure 11.5 A recursive matrix multiplication
algorithm breaks the matrices into smailer and smaller
blocks urdil they can fit in cache. Here the algorithm
has recursed twice before the blocks are small enough.
Each block of Cis the sum of the results of two block™
matiix multiplications.

such that the namber of columns in Agy and Ay is equal to the number of rows
in By and By, then the matrix product

C= AwBw +Ag B AwBo + Agi By
ApBg+AnByw ApBu+ Auby

where each Ay By; represents muliiplication of the block matrices and each +
represents matrix addition, .

Qur goal is to compute the matrix product C = AB. 1f wmatrix B is too large
to fiit into cache, we can divide it into four pieces and use the idea of block matrix
multiplication tocompute C. Ifblock B;; is too large to fit into cache, we can apply
this idea recursively until we have blocks that do fit in cache. A C implementation
of the resulting recursive algorithm appears in Figure 11.4.

Figure 11.5 illustrates how the recursive matrix multiplication algorithm
works. [n this example, matrix B is oo large for cache, so it is divided into
four pieces. Each of the four pieces is still too large, so the algorithm recurses a
second time.

We've benchmarked a C implementation of this recursive mateix multipli-
cation algorithin on the same computer we wsed to measure the speed of the
straight{forward algorithm. The results of both benchmarking experiments appear
in Figure 11.6. The recursive algorithm maintains high performance, even as the
sizes of the matrices grow well beyond the cache capacity.

11.3 ROWWISE BLOCK-STRIPED
PARALLEL ALGORITHM

I this section we develop a parallel matrix multiplication algorithm based upon
arowwise block-striped decomposition of the matrices.

11.3.1 ldentifying Primitive Tasks

Each element of the product matrix C is a function of elements in A and B. Since
A and B are not modified during the algorithm, it is possible to compute every

277

278

CHAPTER 11 Matrix Multiplication

250 l’
Biock-oriemed
200
E 150 -
5
oy
= 100 Row-orented
50
RN TN N N RN N R RS S

R 2000 0 300 odO0r 500
Matrix size

Figure 11.6 Performance of both sequential matrix
multiplication algorithms on a computer with a 933 MHz
Pentium 11l CPU. The block-oriented matrix multiplication
algorithm keeps the cache hit rate high and achieves
better performance than the row-oriented algorithm.

element of C simultaneously. As a first step in our parallel design, then, we can
associale one primitive task with every ¢lement of C.

Precisely which elements does each of these tasks need? Computing element
¢; ; of the product matrix involves finding the inner produci (dot product) of row
i of A and column j of B.

11.3.2 Agglomeration

We can use this data dependence information to agglomerate tasks. It is natural to
agglomerate tasks associated with either a row of C or a column of C, since they
share a need for either arow of A oracolumn of B, respectively. Algorithms bascd
on either of these design choices are guite similar. Let’s choose to agglomerate
tasks associated with a row of C.

It’s simpler if we use the same agglomeration for all matrices. That way.
the result of one matrix multiplication can be used as either factor matrix in
another matrix multiplication. We assume, then, that each task is responsible for
corresponding rows of 4, B, and C.

Let’s think about what task { can do with row 1 of A, row j of B,-and row i
of C. Recall that

m-1

Cij= Z (I-;,];bkj
=0

With row { of matrices A and B, the task can compute «; ;5; o, which is one of the
terms of ¢; . It can also compute g; ;b; ;, which is one of the terms of ¢; |, and so
on. In other words, the task can perform n multiplications that represent partial
sums for the n elements of row { of C.

SECTION 11.3 ‘Rowwise Block-Striped Parallel Algorithm

Then what? We've already noted in an earlier section that row i of C is the
product of row i of A and matrix B. 8o (o complete its wark each task must ~
eventually access each row of B.

11.3.3 Communication and Further Agglomeration

I we organize the tasks as a ring, and each task passes its row of B to the next
task in the ring, after a series of m iterations every task will have had possession
of every row of B. :

Figure 11.7 illustrates this process assuming there are four rows in C.

The number of processes on which we execute our parallel algorithm is
probably much less than the sumber of rows in the product matrix, so we need
to think of further agglomeration. Given the communication pattern we have
developed, it makes sense to use a rowwise block-striped decomposition scheme,

11.3.4 Analysis

To simplify our analysis, we assame that A, &, and C are all n X # matrices. We
also assume that is a multiple of p, the number of active processes. Each process
controls the same n/ p rows of A and C throughout the algorithm. The contiguous
groups of n/p rows of B ate passed from process to process as illustrated in
Figure 11.7.

When the algorithm begins, each process initializes its (2/p) x z portion of C
to 0. During eachiteration every process multiplies an {n/ p) x n/ p block of A by
the 11/ p) x n poition of B it currently possesses. It adds the resulting (n/p) x n
matrix to its portion of C. If y is the time needed for one of the add-multiply
steps inside an inner product, the computational time of each iteration is

x(n/p)n/p)n = xn'[p*

During every iteration, each process must also communicate its portion of B
to the next process on the ring. If the communication is done after the computation,
the time needed to send these elements would add A 4 {(#/p)n/§ to the execution
time of each iteration. Receiving the next section of B from the predecessor ring
" process would occur at the same time.

The algorithm has p iterations. The total computation and communication
time, then, is

plen’ [P+ A+ 02 (pB = xn*[p + pr+ 0’/ B

Let's double-check on this expression. The sequential algorithm would have
execution time yn®. Since the computations are divided perfectly among the
processes, it makes sense that the computational portion of the paraliel algorithm
has execution time x7°/ p.

Every process sends p messages, so the pA term also makes sense. Finally,
every process handles all of B and sends all of it (one piece at a lime) to its
successor process, so the n/p term fits.

280

CHAPTER 11 Matrix Mulfipiication

Fiest

HeL BB ,
S~
B [EEE
a0 BEE

Figure 11.7 Communication of Bin
row-oriented parallel matrix multiplication
algorithm. Each task is respansible for a row of

A arow of B, and a row of C. If Bhas mrows,
then after m—1 communication steps each task
has had access fo every row of B. '

Q

* Let’s determinc the isoefficiency of the rowwise block-striped matrix multi-
plication algorithin. The sequential algorithm has time complexity ®(a"). The
communication complexity of the parallel algorithm is @(r?). We multiply the
community complexity by the number of processors p to get the overhead term:
T,(n, p) = O(pn*).Hence theisoefficiency relation for the rowwise block-striped

SECTION 11.4 Canron's Algorithm

matrix multiplication algorithm is
n>Cpn*=n>Cp

We nole that the memory ntilization function M(n) = r”. Let’s deterinine how
memory utilization per processor must increase in order to maintain a constant
level of efficiency:

M(Cp)/p=C*'{p=C"p

This algorithm is not highly scalable,

. Finally, this algorithm presents a good opportunity for overlapping commu-
ﬁications with computation. Assuming there is enough memory to receive a new
section of B while performing computations on the current section, each pro-
cess could inifiate its send/receive of B sections before it performed the matrix
gultiplication step. Since the communication complexity is ©(n*) and the com-
putational complexity is 0(n), the communication step can be almost completely
overlapped with computations when the matrix sizes are large enough. (The time
to initiate the comimunication cannot be overlapped with a computation.) When
this happens, speedup can be very high.

Can we do better?

Let’s consider the computation/communication ratio of the parallel row-
.orignted 2lgorithm. When multiplying two n x n matrices on p processes, where
n is amultiple of p, each process iterates through p iterations of a loop in which
it multiplics an (a{p) x (n/ p) submatrix of A withan (n/p) x » submatrix of B.
Since the matrix multiplication steps are interleaved with communication steps
in which elements of B are being passed from process to process, the ratio of
‘computations per element of B is

W p? I
ntp p
The ratio 1s relatively low, because the submatrices of B have p times as many
columns as rows.

In the next section we will develop an algorithm that improves the
compitation-to-communication ratio.

11.4 CANNON’S ALGORITHM

In this section we develop a parallel algorithm based upon a checkerboard block
decomposition of the matrices. The algorithm is often referred to as Cannon’s
algorithm {14],

11.4.1 Agglomeration

The row-oriented parallel algorithm has a low ratio of computations per element
of B because the blocks of B being manipulated are short and fat—having p
times as many columns as rows.

291

282 CHAPTER 11 Matrix Multiplication

()

Figure 11.8 Comparison of number of elements’of A
and B needed fo compute a process's portion of Cin —
the two parallel matrix multiplication algorithms. (a} In
the row-oriented algorithm, each process is
responsible for computing n/ prows of C. It needs to
reference n/prows of Aand every element of B. (b} In
Cannon's algorithm, each process is responsible for
computing an {n/./P} x (n/ /p) block of C. It needs to
reference a/,/p rows of Aand n/./pcolumns of B.

The task responsible for computing element c; ; of the product matrix require:
access to every element of row i of A and every element of column j of B
With a row-oriented agglomeration, every process is responsible for computin
elements of entire rows of C, meaning it requires access to every element of B
(See Figure 11.8a.)

If, in contrast, we agglomerate tasks responsible for a square (or nearly square
block of C, the number of elements of B any process needs to access is dramati
cally reduced.

Let’s figure out how much better this scheme is. To simplify the math, let’
assume that matrices A, B, and C have dimensions n x n, that p is a squar
number, and that is a multiple of . /p. Each process is responsible for computing
an (n/,/p) x (n/./p)block of matrix C. To compute these elements, the proces:
needs to reference n/,/p tows of A and n/,/p columns of B (See Figure 11.8b.

Each process still performs an equal share of the computations—2r°/ p. The
number of elements each process needs access to is 21(12/./p). The computation
to-communication ratio is

3/ p _n
225 P

SECTION 11.4 Cannon's Algorithm

Let’s determine when the computation-to-communication ratio for Cannon’s
algorithm is supexior to the ratio for the “rowwise” algorithm:
n 2n
—>—=./p>2=>p>4
NI
Cannon’s algorithm seems to hold more promise when the number of processes
is greater than four.

ﬂ.4.2 Communication

Now that we’ve established the potential for an algorithm based on a checker-
board block deeomposition, let’s see if we can unlock that potential. First, let’s
take a look at how A and B are distributed among the processes in a checker-
" board block decomposition {Figure 11.9a). Process P; ; contains blocks A;,; and
B; ; and is responsible for computing block C; ;. Except for the processes on
the main diagonal, processes hold blocks of A and B that do not need to be
multiplied.)

We need to move the blocks around so that every process P, ; has a pair of
blocks whose multiplication will contribute to the calculation of C; ;: One way to
do this is illustrated in Figure 11.9b. Each process in row i of the process mesh
cycles its block of A to the process i places to its left. Each process in column j
of the process mesh cycles its block-of B to the process j places above it. Now

Aoo 11 Aor || A2 || A3 Aop 11 Aoy 11 A2 || Aoa
Boo || Boa [Boz || Bos Byg || Biy {| B2 || Bas
A 1] Ay] A | A A | A || A] A
Big || By 1| Bz || Bis Big || But {{ Bs2 || Bos
—
ho || Aar || Aoa || Aa Ao || A || Ao 1] Aui
Byg || By || Baa] Bus Bag 1| Bax || Boz || Bia
Asg || Ay || A2 || s Ay 11 As || A || Az
Big || By || Baa || B33 Big || Boa || Bia || Bas
(2) (b)

Figure 11.9 Alignment of blocks for matrix multiplication. (a} Initial
distribution of blocks among processes. Process P, ; contains
blocks A, ; and B;;. The block matrix multiplication algorithm
multiplies all pairs A; x By ;. Note that in the original distribution only
the processes on the main diagonal (R g, A 1, P2, and B 3) have
stich pairs. (b} The parallel algorithm cycles each row i of Ato the
left by i column positions. It cycles each column j of matrix B
upward by i Tow positions. Now every processor P, ; has a pair of
blocks to muttiply.

283

CHAPTER 11 Matrix Multiplication

we've satisfied our condition: each process can multiply the blocks of A and B it
controls to produce a partial result for its block of C.

Recall the size of the process mesh is ,/p x /p. After the initial step to
rearrange the blocks of A and B, the parallel checkerboard matrix multiplication
algorithm has , /p steps. Each process multiplies the blocks of A and B it controls,
adding the result to its partial sum of C. It cycles its block of A to the process to
its left, and it receives a new block of A from the process on its right. It cycles
its block of B 10 the process above it, and it receives a new block of B from
the process below it. Figure 11.10 illustrates this block-cycling activity from the
point of view of process P, 7 ina 4 x 4 process mesh.

11.4.3 Analysis

" In this subsection we'l] defive an expression for the expected execution time of
Cannon’s-algorithm. To simplify our analysis, we assume that A, B, and C are
all n x n matrices. We also assume that p is a square number and that r is a
multiple of ,/p, the number of active processes. Each process is responsible for
computing an {n/,/p) x {n//p) portion of C.

First let’s consider the computation time. When the.algorithm begins, cach
process initializes its portion of C to 0. During each iteration, every process
multiplies an {n/,/p) x {n/./p) block of A by an {n//p) x {n/,/p) block of
B and adds the result to its partial result for C. If x is the time needed for one
of the add-multiply steps inside an inner product, the computational time of each
iteration is

xn/yp) = xn’/p"

The algorithm has ,/p iterations. Hence the total computation time is (as we
should expect)

Vo[p =y fp

Now let’s look at the communication requirements. Before the first iteration,
each process must send its blocks of A and B to the appropriate destination
processes and receive the blocks of A and B it needs for the first iteration. Cur
model assuimes that messages may be sent and received concurrently, bul it allows
only a single message at a time to be sent or received. Let 1/f be the time
needed to transmit a single matrix element. The time needed for the initial block

distribution is
n
2(1 i)
pb

During each of the , /p iterations, every process must passalongits A and B blocks
and receive new blocks to multiply. The total time required for these steps is

)‘12
i)

SECTiON 11.4 Cannon's Algorithm

w

Figure 11.10 Cannon's Matrix multiplication algorithm from the point of
view of pracess P, p. Note that processes are organized into a 2-D mesh,
and each process has already sent its blocks of Aand Bto the process
that needs them for the first ileration. (a) First block multipfication step.
After each block muttiplication pracess P, sends its block of Ato the
multiplication step. {c) Third block matrix multiptication step. (d) Final block

matrix muttipfication step. Summing the results of all block matrix

right. Similarly, it sends its block of B to the process above it and receives
multiplications yields C, ».

pracess onits left and receives a new block of Afrom the process onits
a new block of B from the process below it. {b) Secona block malrix

286

CHAPTER 11 Matrix Multiplication

Adding these three terms, our expression for the expected overall execution
time of Cannon’s algorithm is

"

- 2
X /p+2Jp+ l)(,k + 5)

What is the isoefficiency of Caanon’s algorithm? The sequential algorithm
has time complexity ® (n°). The communication complexity of the parallel algo-
rithm is ©(n?/./p). We multiply the community complexity by the number of
processors p io get the overhead term: T,(n, p) = ©(,/pn’). Hence the isoefti-
ciency relation for the rowwise block-striped matrix mulliplication algorithm is

>Cy/pn’=n>CJp

Recall M () = n*. Hence the scalability function is: -

M(CJp)/p=Cplp=C"

Because constant memory utilization per processor is sufficient to maintain ef-
ficiency as processors are added, we conclude Cannon’s algorithm is highly
scalable. ‘

As in the case of the row-oriented algorithm, Cannon’s algorithm presents
a good opportunity for overlapping communications with computation. If there
is enough memory to buffer new A and B blocks while working on the current
blocks, each process can initiate its sends and receives of A and B blocks before
starting the matrix multiplication for that ieration. After the matrix multiplication
step, the process can check for the completion of the message receives before
starting the next iteration. Since the communication complexity is ®(n?) and
the computational complexity is €(n), the communication step can be almost

- completely overlapped with computations when the matrix sizes are large enough.

11.5 SUMMARY

In this chapter we have developed two parallel afgorithms for matrix multiplica-
tion. The first algorithm is based on a rowwise block-striped matrix decompo-
sition, while the second (Cannon’s algorithm) is based on a checkerboard block
matrix decomposition. Both algorithms divide the computations evenly among
the processes. Cannon’s al gorithm, however, requires less communication among
processes. Isoefficiency analysis reveals that Cannon’s algorithm is highly scal-
able, while the first is not. If sufficient memory is available, both algorithms can
benefit from communication/computation overlapping.

We also explored perforimance issues related to sequential matrix multiplica-
tion, The straightforward algorithm has a memory reference pattern that results
in a poor cache hit rate once the second factor matrix no longer fits in cache. We
presented a recursive matrix maltiplication algorithm that divides matrices into
blocks when the matrices are too large to fitin cache. We showed how a program

SECTION 11.8 [xercises

hased on this algorithm maintains high CPU performance, even as the matrix
sizes grow-beyond the cache limits.

In order to achieve best performance, parallel programs performing matrix
multiplication should rely upon a high-speed sequential matrix multiplication
function, such as the recursive function presented in this chapter, when multiplying
subatrices.

11.6 KEY TERMS

Cannon’s algorithm

11.7 BIBLIOGRAPHIC NOTES

In this chapter we showed how a recursive matrix multiplication algorithm led
to an improved cache hit rate. Recursion is often an effective variable blocking
technique for dense linear algebra algorithms, as pointed out by Gustavson {48]..

11.8 EXERCISES

/o2 -
12 -3 -2 .
11.1 SopposeA=1{4 | -1 3|andB=
4 -l
32 1 -4 L

a. Compute C = AB.
b. Consider the submatrices
Am:(l 2) A()]:(v:i —2)

4 1 -1 3
AI0=(3 2) A11=(| _4>

and

wr(3 a-()
oe(l) e ()

AwBow + AuBw AwBo + Ag By

Compute C = (A103m+ AuBy AgBn + AllBll)

Show the result of each block matrix multiplication.

1512 In the parallel mairix multiplication algorithm based upon a rowwise -
block-striped matrix decomposition, each process ends up multiplying
its portien of A by the entire matrix B. If we replicated 5 across all
processes, it would greatly simplify the algorithm. What is the
fundamental problem with this approach?

287

288 CHAPTER 11 Matrix Multiplication

113

114

115

116

Both the rowwise algorithim and Cannon’s algorithm can call the
recursive sequential matrix maltiplication algorithm as a subroutine
when multiplying their portions of A and B.

a. Why is Cannon’s algorithm a better match for the recursive sequential
matrix multiplication algorithm than the algorithm based ona
rowwise striped decomposition?

b. Design a modification to the recursive sequential matrix multi-
plication algorithm that addresses the problem raised in part (a).

Consider the optimization of overlapping communication steps with

computation steps in the two parallel matrix multiplication algorithms

 discussed in this chapter. Suppose p = 16, § = 1.5 x 10%/sec,

A =250 psec, and x = 10 nanosec.

a. For what values of n can we expect the communication time per
iteration of the rowwise algorithm to be less than the computation
time?

b. For what values of x can we expect the communication time per
iteration of Cannon’s algorithm to be less than the computation time?

Write a program implementing the parallel matrix multiplication

algorithm described in Section 11.3. The program should read the factor

matrices from files and write the product matrix to a file; the names of the
files should be specified on the command line. Assume the matrices
contain double-precision foating-point values. They should be stored in
the files according to the protocol first described in Chapter 6: two
integers m and n, indicating the number of matrix rows and columns,
respectively, followed by ma double-precision floating-point values.

a. Benchmark your programon 1,2, 3,4, ..., p processors for square
matrices of size 100, 200, 400, and 800, ignoring file 1/0 time. Plot
the four speedup curves on a graph.

b. Benchmark your programon 1,2, ..., p processors for square
matrices of size 100, 200, 400, and 800, taking into account file 1/0
time. Plot the four speedup curves on a graph.

Write a program implementing Cannon'’s algorithm described in

Section 11.4, assuming that the number of processes executing the

program is a square number. The program should read the factor matrices

from files and write the product matrix to a file; the names of the files
should be specified on the command line. Assume the matrices contain
double-precision floating-point values. They should be stored in the files

according to the protocol first described in Chapter 6: two integers m

and n, indicating the number of matrix rows and columns, respectively,

followed by mn double-precision floating-point values.

a. Benchmark your program on 1,4, 9, ..., p processors for square
matrices of size 100, 200, 400, and 800, ignoring file I/O time, Plot
the four speedup curves on a graph.

117

L3

b. Benchmark your programon 1,2,3,4

SECTION 11.8 Exercises

b. Benchmark your program on [, 4,9, ..., p processors for square
matrices of size 100, 200, 400, and 800, taking into account file /0
time. Plot the four speedup curves on a graph.

Design a version of Cannon’s algorithm that works when the number of

processes is not a square number.

Write a parallel program based on Cannon’s algorithin that takes

advantage of all processes available, even when the number of processes

1 not a square number. The program should read the factor matrices from

files and write the product matrix 1o a file; the names of the files should

be specified on the command line. Assume the matrices contain
double-precision floating-point values. They should be stored in the files
according to the protocol first described in Chapter 6: éwo integers m and

n, indicating the number of matrix rows and columns, respectively,

followed by mu double-precision floating-point values.

4. Benchmark your programon 1, 2,3, 4, ..., p processors for square
matrices of size 100, 200, 400, and 800, ignoring file 1/O fime. Plot
the four speedup curves on a graph.

- .-, p processors for square

matrices of size 100, 200, 400, and 00, taking into account file I/O

time. Plot the four speedup curves on a graph.

290

CHAPTER

Solving Linear Systems

Concern for man himself and his fate must always form the chief interest
of all technical endegvors, concem for the great unsolved problems of the
organization of lobor and the distribution of goods—in order that the creations
of our mind shall be a blessing and not a curse so mankind, Never forget rhzv in
the midst of your diagrams and equations,

Albert Einstein, Address at the California Institute of Technology, 1931

12.1 INTRODUCTION

Many scientific and engineering problems can take the form of a system of lin-
ear equations. Here i3 a sampling of the domains from which thesc problems
arise:

structural analysis (civil engineering)
heat transport (mechanical engineering)

]
u
= analysis of power grids (electrical engineering)
®m production planning {economics}

u

regression analysis (statistics)

Because linear systems derived from realistic problems are often quite large, there
is good reason to learn how to solve them efficiencly on parallel computers.

In Section 12.2 we define the terminology to be used in the rest of the chapter,
InSections,12.3 and 12.4 we consider direct methods for solving dease systems of
linear equations. We begin with an examination of upper triangular systems, which
can be solved using the back substitution algorithm. We then consider how to solve
dense systems of linear equations. The Gaussian elimination algorithm transforms
a dense system into an upper triangular system, which can then be solved using
back substitution. In the course of developing a parallel Gaussian elimination

SECTION 12,2 Terminology 201

~algorithm, we'll introduce a new kind of reduction, called a tournament, and
explain how to implement it in MPL
The discretization of partial differential equations often results in the creation
of sparse systems of linear equations. iterative methods are more appropriate for
- these systems than Gaussian elimination. They solve a system of linear equations
" by generating aseries of increasingly better approximations to the solution vector.
We introduce the Jacobi method and the Gauss-Seidel method in Section 12.5.
" These methods slowly coaverge on the solution. In contrast, the conjugate gra-
dient method, presented in Section 12.6, converges on the solutibn much mote
capidly.
g For three of these sequential algorithms—back substitution, Gaussian elim-
. ination, and the conjugate gradient method—we develop a pair of parallel algo-
. rithms hased on different data decompositions. In all three cases we see that there
are conditions under which each of the decompositions is preferable.-

12.2 TERMINOLOGY

A linear equation in the n variables xy, xy, ..., x,_| is an equation that can be
expressed as

G+ aiXp+ -+ By Xy = b

where dg, €y, - .- , 0,1 and b are constants.

A finite set of linear equations in the variables xp, xy,...,x,.; is called a
system of linear equations or a linear system. A set of numbers sg, 51,, 8,1
is asolution to 4 system of linear equations if and only if making the substitutions
" Xp = 5g, X = 3, ..., Xyo = S, Satisfies every equation in the linear system.
A system of r linear equations in n variables

Gpoty Hapax +o o = by
agpXe Fax e tagorno = by
10X +an~1,1x1 +--- +ﬂn— La=1Xp—) = bu—i

is usually expressed as Ax = b, where A is an # X n matrix containing the ; ;5.
and x and b are n-element vectors storing x;s and b;s, respectively.
Ann x n matrix A is symmetrically handed with semibandwidth w if

i—j >‘w:‘>a,_,~=0 and j—*i>W :>a;‘;»=0

In other words, all of the nonzero elements of A are on the main diagonal, one
of the w adjacent diagenals above the main diagonal, or one of the w adjacent
diagonals below the main diagonal.

Ann x n matrix A is upper triangular if

i>j=2a;=0

CHAPTER 12 Soiving Linear Systems

Ann x n matrix A is lower triangular if
i<j=a;=0
A matrix is strictly diagonally dominant if

laid > Y la;l.0<i<n
i#H
Ann x n matrix A is symmetric if @, ; = a;; for0<i, j<n—1.
An n x n matrix A is positive definite if for every nonzero vector x and its
transpose x”, the product x Ax > 0

12.3 BACK SUBSTITUTION

Back substitution is an algorithm that solves the lincar system Ax = b, where
Ais upper triangular. In this section we'lt look al the sequential back substitution
algorithm and evalnate different ways to executé it on multiple processors.

12.3.1 Sequential Algorithm

Let’s start by lookimg at an example of the back substitution algorithm in action.
Suppose we want (0 solve the system

lyg +lx, ~lp +4x; = 8
-2ty —Ax 4l = 5 B

2 3 = 0

2)(3 = 4

We can solve the last equation directly, since it has only a single unknown. After
we have determined that x3 = 2, we can simplify the other equations by removing
their x; terms and adjusting their values of b:

lxg +Hx —1x = 0
v2x, -3 3
21y = 6

4

2)(3 =

Now the third equation has only a single unknown, and a simple division yields
xp = 3. Again, we use this information to simplify the,two equations above it:

IXU +1X| 7 = ,';
V—le = 12
21 = 6

2I3 = 4

SECTION 12.3 Back Substitution

Back Substitation:

{0 — 1,0..n — 1) — coefficient matrix
B[0..n — 1] — coastant vector
x{0..n — 1} — sofulion vector

fori «-n—1downto | do
i1+ bi)/afi, {]
forj «D1oi-1do
b} « bl - xli} x alj, i
alj, 7] « 0 [This line is optional}
endfor
endfor

Figure 12.1 The back
substitution algorithm soives

Ax = bfor xwhere Ais an upper
triangular matrix.

- We have simplified the second equation to contain only a single unknown, and
dividing b; by ay| yields x; = —6. After subtracting x) x ap; from by we have

1xg . =
—211 =
ZXZ

2.1’3 =

r—
o N VY

and itis easy Lo see thal xo = 9.
© Pseudocode for the sequential back substitution algorithm appears in
Figure 12.1. The time complexity of this algorithm is & (n2).

Now let’s look for ways (o execate this algorithm in parallel. We begin by
drawing a data dependence diagram that has one vertex for each of the oniginal
mairix and vector efements, plus an additional vertex for each time an element of

- vector bis assigned a new value, As always, an arc from vertex u to vertex v means

‘that the value of i is used to compute the new value of v. The data dependence
diagram appears in Figure 12.2. We use heavy lines to illustrate a critical path
through the graph. It is evident from the critical path that the elements of x must

* be computed one at a time. In other words, we cannot execute the outer for loop
in parallel.

 However, we can execute the inoer for loop in parallel. Each new valug of b i
depends only on ts previous value, the value of x;, and the value of a;;.

12.3.2 Row-Oriented Parallel Algorithm

- Suppose we associale a primitive task with each row of A and the corresponding
“elements of x and b. During iteration i the task associated with row j must

293

294 CHAPTER 12 Soling Linear Systems

Figure 122 Data dependence diagram for the back
substitution algorithm. As the algorithm progresses,
the values of elements of bget changed. Overlapping
circles indicate that the previous value contributes io
the new value.

- I -
=
S

el — T I S]
_‘jr

. ,L,S F B .

(a) (b)

Figure 12,3 Two more ways to decompose a two-dimensional
matrix. (The first three ways appeared in Figure 8.3.) (a) Rowwise
interleaved striped decomposition. Hete eight rows are decompased
among three processes. (b) Columnwise interleaved striped
decompasition. Here ten columns are decomposed amang four
processes, ’

compute the new value of b ;, Meaning it needs access to the current values of x;
and a;;. Since it controls row j of A, it has direct access to a; ;. However, it does
not have access to x; unless i = j, Hence task / must first compute x; and then
broadcast its value to all of the other tasks.

Let’s determine the time complexity of this parallel implementation of back
substitution, assuming we agglomerate primitive tasks into p larger tasks {one
per process) so that process k controls all rows | where { mod p = k. We call this
arowwise interleaved striped decomposition. It is iflustrated in Figure 12.3a.

SECTION 12.3 Back Substitution

‘ Over the course of the algorithm the average number of iterations of loop j
performied by any process is about r/(2p). Since the algorithm has — | itera-
tions, the computational complexity of the pasallel algorithm is ©{x?/ p).

7 During each iteration the process controlling row i broadcasts x; to the other
processes. Since the algorithm has # — 1 iterations, the overall message Jatency is

@{nlog p). Because all messages contain a single element, the overall message

transmission time is also Oz log p). ‘

Deriving the isoefficiency relation and scalability function for this algorithm
is left as an exercise at Lhe end of the chapter. ‘

1?,:!.3 Column-Oriented Parallel Algorithm

- Analternative design associates one primitive task per column of 4. We’ll assume
that task j, where @ < j < n, is responsible for column j of A and x;. At the
" beginning of the algorithm task n — 1 is also responsible for vector b.

We agglomerate tasks in an interleaved fashion, creating a columnwise in-
terleaved striped decomposition of the matrix (Figure 12.3b). We can determine
the complexity of the parallel algorithm based on this decomposi tion.

During iteration i process i- is responsible for computing x; and vpdating

vector b. Tn the first iteration (when { = n — 1), process n — | mod p already has
column n — 1 of A and vector b, so it may compute x,_; and update b without
any communications. However, communications are needed at this point. In the
second iteration, process n — 2 mod p has column 2 — 2 of A, but it doesn’t have
acopy of b {unless p = 1). The process that updated b in the first iteration must
- passn — | elements of it to the successor process.
\ For each iteration of the outer loop, one process is responsible for computing
x; and updating 5. There is no computational concurrency, and hence the com-
putational complexity of the parallel algorithm is identical to the computational
complexity of the sequential algorithm: © (n?). Between iterations, elements of b
must be sent from one process to another. The average number of elements passed
is about n/2. Since there are n — | iterations, the overall communication latency
is ©(n) and the overall message (ransmission time is ©(n*).

12.3.4 Comparison

The row-oriented parallel back substitution algorithm has computational time
complexity © (#°/ p) and message transmission time & (n log p). In contrast, the
column-oriented algorithm has computational time complexity ©{n?) and mes-
sage transmission time &{n*). For any fixed value of p, the row-oriented algorithm
mmust eventually prove to have better execution time as » increases without bound.

The row-oriented algorithm has overall message latency of €{n log p), while
 the column-riented algorithm has overall message latency of @(n). Hence for
any fixed value of n, the column-oriented algorithm must eventually prove to have
better execution time as p increases without bound.

We can draw a graph that illuserates the values of # and p for which each
algorithm is superior. The result is Figure 12.4. The row-oriented algorithm

"CHAPTER 12 Solving Linear Systems

P

Column-oriented
algorithm superior

Row-oriented
algorithm superior

2 n
Figure 12.4 A comparison of the
row-oriented and column-oriented
designs for a parallel back substitution
algorithm reveals that each
implementation would be superior to
the other for certain combinations of
nand p. '

divides the computational load among the processes, but it requires n broad-
cast steps. Hence it is superior when » is relatively large and p is relatively small.
In contrast, the column-oriented algorithm has no parallelism in the computation,
but it requires osly n point-to-point messages, making it the preferred algorithm
when n is relatively small and p is relatively large.

12.4 GAUSSIAN ELIMINATION

12.4.1 Sequential Algorithm

Gaussian elimination is a well-known algorithm for solving the linear system
Ax = b when the matrix A has nonzero elements in arbitrary locations. Gaussian
elimination reduces Ax = b to an upper triangular system Tx = ¢, at which
point back substitution can be performed to solve for x.

We may perform three operations on a system of linear equations without
changing the value of the solution [4};

B Multiply every term of an equation by a nonzero constant
Interchange two equations
Add a multiple of one equation to another equation

Hence we can replace any 1ow of a linear system by the sum of that row and
a nonzero multiple of any row of the system.

SECTION 12.4 Gaussian Eimination

Let’s look at an example. Here is a dense system of linear equations that we
want to get into upper triangular form:
dyg +6x; +Ixp 2y =
ZX‘] +5x; —2X3 = 4
~dxy -3y S Hx = |
8xp +18.Xl -2x; +3n = 40
Coefficient.a; o = 2 and apy = 4. Dividing 2 by 4 yields 0.5. If we replace
row | by the sum of row 1 and —0.5 times row 0, the first term of row | becomes 0.
- Similarly, if we replace row 2 by the sum of row 2 and [times row 0, the first

“term of row 2 becomes 0 Replacing row 3 by the sum of row 3 and —2 imes
row 0 causes the first term of row 3 to become 0;

4,!'0 +6X1 +2X2 “213 =
—311 +4X2 "})Cj; =
+3nq =3x 42 =
tox —bx; +Tn = 24
. Now that we've driven toDall coefficients befow ay g, let’s focus on coefficient
in the column below a; ;. We replace row 2 by the sum of row 2 and 1 Gmes row 1.
‘We replace row 3 by the sum of row 3 and 2 times row 1. Here is the resulting
system:
dry +ox; 1y 2 = 8§
—3x; +4x;, —lxy = 0
+],X2 +1X} = 9
+2x 4513 = A

Finally, we need to drive to 0 the coefficient below a; ,. We replaw row 3 by
the sum of row 3 and —2 times row 2:

dxg +60x; +2% -2 = §
=3 +dxy, ~1xy = 0
+lx; +lx3 = 9

+3x; = 6

This completes our transformation of the dense linear system into an upper
triangular system. At this point we can use back substitution to transform the
systen1 into diagonal form, allowing us to determine the solution vector.

Figure 12.5 illustrates one iteration of the algorithm. All nonzero elements
below the diagonal and to the left of column i have already been eliminated. In
step i the nonzero elements below the diagonal in column £ are eliminated by
replacing eachrow j, where i -1 < j < n, with the sum of row j and —a;;/a; ;
times row . After n — 1 such iterations, the linear system is upper triangular.

In the straightforward Gaussian-¢limination algorithm just described, during
iteration i row i is the pivot row, that is, the row used (o drive to zero all nonzero

297

298

CHAPTER 12 Solving Linear Systems

M Elements that will
s not be changed

TroIIooozaEsg;— Pvolow

Elements that will
be changed

Elements already

driven 1o 0

|
1
[}
|
i
1
[}
i
[}
1

i

Figure 12.5 Heration 7 of the Gaussian elimination
algorithm drives to.0 all elements of column i below row /.
For eachrrow j below row /, it subtracts a mutiple of row {
from row j. The multiple-is chosen so that after the
subtraction the element is column { is 0.

elements below the diagonal in column i. However, if the pivotelementa; ; is close
to zero, dividing by it can result in significant roundoff errors. Hence this approach
does not in general exhibit good numerical stability on digital computers.

Fortunately, a simple variant, called (raussian elimination with partial
piveting, does produce reliable results. In step i of Gaussian elimination with
partial pivoting of rows, rows i throngh n — | are searched for the row whose
column i element has the largest absolute value. This row is swapped (pivoted)
with row i. Once this has been done, the algorithm uses multiples of the pivot
row, now stored as row i, to reduce to zero all nonzero elements of column { in
rows i + 1 through n — 1. See Figure 12.6.

A sequential algorithm to perform Gaussian elimination with patial pivoting
of rows followed by back substitution appears in Figure 12.7. The algorithen has
two notable features. First, note that there is no separate amray to hold vector b,
Since the manipulations of the elements of b are identical to the manipulations of
the elements of A, we adjoin b to A, creating an augmented matrix with r rows
and n+1 columns. Hence in this algorithm array a represents the augmented
matrix.

Second, note that rather than actually swapping the pivot row and row
in each iteration, the algorithm makes use of indirection. Array element loc(i]
contains the index of the pivot row of iteration i.

12.4.2 Parallel Algorithms

Let’s determine how well-suited Gaussian elimination is to parallelization. The
sequential algorithm requires about 2n* /3 floating-point operations [93]. Most of
these operations occur inside the innermost for loop. A study of the algorithm’s
data dependences reveals that both the innermost for loop indexed by & and the
middle for loop indexed by j can be executed in parallel. In other words, once
the pivot row has been found, the modifications to all unmarked rows may occur
simultaneously. Within each row, once the multiplier alloc(1, 1/allocli]. i] has

SECTION 12.4 Gaussian Elimination

A ' 4 foc

1

@ ()]

Figure 12.6 Comparing simple

. Gaussian elimination and Gaussian

" glimiiation with partial pivoting. {a) Simple
Gaussian elimination fransforms
coefficient matrix Ainto an upper
triangular matrix. (b) Gaussian efimination
with partial pivating transforms coefficient
matrix Ainto an upper triangular matrix

- with permuted rows. Array element loc]

indicates where to find row of the
triangular matrix. For example, array
element foc{0] = 2 means the Uth row of
the triangular matrix is stored in row 2.

- been computed, modifications to elements i + | through n — 1 of each row may
occur simultaneously. Hence the algorithm is well swited to parallelization.
We will consider two parallel implementations, based on two different data
decompositions.

12.4.3 Row-Oriented Algorithm

Let’s associate a primitive task with each row of A and the corresponding elements
of b and x. If we examine the data dependences for iteration i, we see that
determining the pivot row picked requires a kind of reduction of the values in
column i, which are distributed among the tasks.

We call the interaction to determine the pivot row a tournament, because we
are integested in the identity of the pivot row (the winner) more than the magnitude
of the value stored at column i in the pivot row (the score).

How can we implement a tournament in MPT? One way to do it would be to
perform two all-reductions. In the first all-reduction, every task from an unmarked
row wouid contribute the absolute value of the column i element of its row of
A. (If atask’s row had already been used as a pivot row, it would contribute the
value 0, to ensure the row 1sn’t chosen again.) After the first all-reduce step, every
task would know the maximum value contributed by any task. Now it’s time for
the second reduction step. Each task compares its value with this “winning” value.
If its value matches the winning value, it contributes its ID number; otherwise, it

299

300

CHAPTER 12 Solving Linear Systems

Gaussian Elimination (Row Pivoting):
fori «0ton-1
fecfi) « i
endfor

fori «-0ton—1

{Find pivot row picked}
magnitide « 0
forj «~iton—1
if [afloc[j], if} > magnitude
magnitude < \aflocfj]]|
picked « j
- endif
endfor-
tnp « loci]
locfi] « locfpicked)
locfpicked] « mp

- {Drive 10 0 coluron i ¢lements in unmarked rows}
forj «i+lon-1 ‘
t « aflocfj), if{aflocfi] i)
fork «—it+ltondl.
afloc(j], k] < afloch), k] — aflocfi], k) xt
endfor
endfor
endfor |

{Back substitation}
fori + a - 1downioQ
xfi] « aflocfi], nj{aflocfi], i]
for j « Otoi—Ldo
aflocfj], n) < afloc{j}, n] — x[i] x afloc(j}. i
eadfor
endfor

Figure 12,7 Sequential Gaussian
elimination algorithm with partial pivating,
foliowed by back substitution.

contributes - 1. After another all-reduce step with the maximum operator, every
task knows the ID number of a task with the largest value. (We say a task rather
than the task, because more than one task may tie for having the largest value in
column i.)

While this works, it seems wasteful to perform (wo all-reductions, one right
after the other. Fortunately, MPI provides a way to implement a tournament in
a single all-reduction. The operator ¥PT_MAXLOC, applied to a sequence of
p pairs (v, i), (01, i1), - ., (vp-y, Ep-y), finds the maximum value v, among
Ug, Uy, ..., Y, and teturns the pair (v, iy).

In order to use MPI_MAXLOC (or its analog MPT_MINLOC) in a reduce
operation, you must provide a datatype thai represents a {value, index) pair. MP1-
provides six predefined (value, index) datatypes. They are shown in Table 12.1.

SECTION 12.4 (aussian Efimination

Table 12.1 MP! dalatypes representing (value, index) pairs. Note that the
index must aiways be a variable of type int.

MPI_2INT Two ints

MPI_DOUBLE_INT A double followed by an int
MPI_FLOAT_INT A float followed by an int
MPI_LONG_INT - Along followed by an int
MPI_LONG_DOUBLE_INT Afong double followed by an int
MPI_SHORT_INT A short followed by an int

We need to create a C structure to contain the (value, index) pair. We pass
the structure to the reduce function. Here is how we could use this feature in a
parallel implementation of Ganssian elimination:

struct {

double value;
int index;
} local, global;

local .value = fabs (Va[ji {il):
local.index = j;

MPI_Allreduce (&local, &gicbal, 1, MPI_DOUBLE_INT,
MPI_MAX_LOC, MPT_COMM_WORLD);

Every process in the communicator passes its (value, index) pair to MPT_
Allreduce through struct 1ocal. When the function returns, the maximum
value and the index associated with that value are in struct global.

Determining the pivot row during iteration { happens in two steps. First, each
process finds, among the unmarked rows it is responsible for, the row having the
largest magnitude value in column i. This has time complexity @ (n/ p). Second,
the processes participate in a tournament to find the pivot row. The tournament
has time complexity ®(log p).

That is the first communication step needed per iteration, but there is another.
See Figure 12.8. In order to compute the new value of a(j, k], a task needs access
to the values of a{j, i}, a{ picked, i], and af picked, k]. We've assigned each task
atow of A, so the task controlling a[, k] also controls a[, /], but the values of
af picked, i] and o[picked, k] are held by another task. Hence a broadcast step is
also needed.

The task controlling row picked could broadcast a[picked, k] to the other
tasks for each iteration of the for loop indexed by &, but this would resultin O (n)

301

302

CHAPTER 12 Solving Linear Systems

i k
T B S
13 3]
11 tl
it 8
i i
i1 il
1 1
11 afjjlkj 4
P 13 .
afilfify B]
AN (
it i
i 1
[11
B o
11 i .
a{picked}g'i}” 7 picked
U aipicked i)
i 11
I 1
i 11
i 11
11 [
1 ol
i 11
1} 11
1) i1
L 1

Figure 12.8 |n order to update 4 jJ A}, a task
needs to have the values of 4]fi), alpicked][/],
and alpickedl{K].

broadcast steps per iteration. It makes more sense for the broadcast to 1ake place
before this for loop. In other words, elements i through n of row picked shauld
be broadcast al once to the other tasks. The average number of elements being
broadcast is about 1/2, Hence the message latency of the broadcast is ©(log p),
and the message (ransmission time of the-broadeast is ©(n log p).

Combining both communication steps, we see that the row-oriented pasal-
lel Gaussian elimination algorithm has overall message latency © (1 log p) and
overall message transmission time O{a’ log p).

We still need to decide how to agglomerate the primitive tasks into larger
fasks that can be associated with MPI processes. Using a rowwise block-striped
decomposition is a sound strategy. The use of partial pivoting means that (in the
absence of other information) one unmarked row has as great a chance as any
other of being chosen as the pivot row for a particular iteration. As the algo-
rithm progresses, the expected number of unmarked rows per process will remain
balanced, and the computational complexity of the parallel algorithm is B/ p).

Let’s determine the isoefficiency of this parallel Gaussian elimination algo-
rithm. The total communication overhead across p processes is On’plogp).
Hence

n* > Cnplog p=n>Cplogp

Let’s find the scalability function of this parallel system. Since M(n) = n?, we
have

M(Cplogp)/p=C*p*logt p/p=Cplog’ p
This algorithm has poor scalability.

SECTION 12.4 Gaussian Eiimination

12.4.4 Column-Oriented Algorithm

Let’s look at an alternative design for a parailel Gaussian elimination algorithm,
We associate one primitive task with each column of A and another primitive task
with vector b.

During iteration i of the algonthm, the task controlling column ¢ of A is
responsible for finding the candidate element with the largest magnitude. it must

onfy consider rows that have not yet been used as pivot rows. Hence every task .

needs a copy of array loc.
In a single iteration, the column-oriented algorithm spends ©{n) time iden-
nfymg the pivot row.

After the task responsible for column i has identified the pivol row, it must

broadcast the identity of the pivot row and the column i elements of the upmarked
rows (o the other tasks, which need this information in order to do their share
of the updates of A and b. This step has message latency €)(log p) and message
‘lransmlssmn time ©(r log p). Over the course of the entire algonthm the over-
all message latency is @z log p) and the overall message transmission time is
e(n’log p).
*_If we agglomerate the primitive tasks ia an interleaved fashion, we end up
with a columnwise interleaved striped decomposition of A. This decomposition
ensures that the workload remains balanced as the algonithm progresses.
" Each processor performs nearly an equal share of the computations each
iteration. Hence the computational complexity of the parallel algorithm is
B(n/ p).

The isoefficiency of the column-oriented algorithm is the same as the row-
oriented algorithm. The algorithm is not highly scalable.

12.4.5 Comparison

Both the row-oriented and the column-otiented parallel Gaussian elimination
algorithms evenly divide the computational work inside the doubly nested for
loops indesed by j and k. The row-oriented algorithm requircs that the process
responsible for the pivot row broadcast it to the other processes. The column-
onented algorithm requires that the process responsible for column ¢ broadcast
it to the other processes during iteration {. In these two respects, therefore, the
expected execution time of both parallel algorithms should be about the same.

The most significant difference between the two algorithms, therefore, is in
‘the identification of the pivot row. The row-oriented algorithm divides the work
to find the pivot row among the processes at the cost of an all-reduce step. The
column-oriented algorithm performs this step sequentially; no communication is
required. Hence the row-oriented algorithm should be superior when n is relatively
larger and p is relatively smaller, while the column-ofiented algorithm should be
superior when pis relatively larger and n is relatively smaller. Note that this is the
same conclusion we reached when we discussed the row-oriented and column-
oriented back substitution algorithms.

303

304

CHAPTER 12 Solving Linear Syslems

Neither of these algorithms, however, exhibits good scalability. We need to
find a way to reduce the communication overhead.

12.4.6 Pipelined, Row-Oriented Algorithm

The row-oriented and column-oriented algorithms we have just considered are
synchronous in the sense that they neatly divide the parallel program’s execu-
tion into communication and computation phases. Consider the row-oriented
algorithm. First the processes patticipate in a tournament to determine the pivot
row, Then the process controlling the pivot rows broadcasts it to the other pro-
cesses. After the broadcast step, all of the processes use the pivot row to reduce the
portions of the submatrices they control. Once this has been done, the processes

- again participate in a tournament to determine the next pivot row.

The disadvantage of the synchronous approach is that processes are not
performing compatations during the broadcast steps, and the cumulative time
complexity of the broadcasts, @@/ p), is large enough to ensure the paralle]

algorithm has poor scalability.

We need to find a way to overlap communication time with compulauon time,
We could do this if we knew in advance the pivot row for iteration ;. Recall that
we introduced partial pivoting of rows in order to ensure numerical stability, but
by doing this we make it impossibie to predict the row that will serve as the pivot
row for iteration ;. What if instead of applying the partial pivoting principle to
the rows of the mairix, we applied partial pivoting (o its columns? In iteration
i we will cxamine row | to find the element with the largest magnitude. We let
this serve as the pivot element. We then reduce rows i + 1 through # — 1 of
the coefficient matrix, zefoing out their elements in the column containing the
pivot element. Pseudocode for Gaussian elimination based on partial pivoting of
columns appears in Figure 12.9.

Let’s design a parallel algosithm from the sequential algorithm based on
pivoting of columns. We choose a rowwise interleaved striped decomposition of
the augmented matrix, and we organize the processes as a logical ring.

When the algorithm begins execution, process 0 searches row { to determine
the columa containing the element with the largest magnitude. As soon as it
finishes the search, it sends a message to task 1 containing row 0 and the index of
the pivot element. While this message is being transmitted, process 0 can reduce
the rest of its share of the augmented matrix.

Process 1 waits uatil it has received row 0 from process {. After receiving
row (), it immediately passes it along to process 2. Then it uses row { and infor-
mation about the pivot element to reduce its share of the matrix. At this point it
can determine the pivot efement for row 1. It does so and then initiates a send
of row 1 to process 2. While these messages are being passed, process | can use
row 1 toreduce its share of the rows of the matrix.

Row 0 is sent from process 0 to process 1, from process 1 to process 2, and
so on until it reaches process p — 1. Row 1 is sent from process 1 to process 2,
from process 2 to process 3, and continues around the logical ring of processes

SECTION 12.4 Gaussian Elimination

Gaussian Elimination (Column Pivating):
fori «Qton
Tocfi] «i
endfor

for! «0ta—-1

{Find pivou cotunan picked)
magnitude -« {)
for j «<iton—1
if{ofi, fac[j]] | > magniiude
rmagninude +— jafi toc{j]])
picked « j
endif
endfor
tmip locfi]
loc[i] <~ loe[picked]
loc[picked] + tmp

{Drive to O column focfif elements in rows § + 1 thiough 2 — 1)

for j—i+lton—|
t < aff, locfil] { aff, locfi]]
fork «iton+1

afj, foclk]] « afj, locfk]] — afi, locfk)] x¢ -

endfor

endfor

endfor

{Back substitution| .
fori «a—ldowato®
*floc[ij] « afi, n] / ali, locfi)]
forj < Oii—1tdo
‘alj, n) —afj, n)- xflocfij] x afj, locfi)]
endfor
endfor

Figure 12.9 Sequential Gaussian efimination
algorithm with pivoting of columns, followed by back
substitution.

unti] it reaches process 0. Each row sent by a process works its way around the
ring until it reaches the process’s predecessor.
“Qur previous two parallel implementations of Gaussian elimination rely on
_ broadcasts. This implementation replaces the broadcast step with a series of point-
* to-point messages being sent around a ring of processes. Why is this approach
superior? By pipeliming the flow of messages, the parallel algorithm has two
decidedvadvantages, First, it facilitates asynchronous execution: processes can
reduce their portions of the augmented matrix as soon as the pivot rows are
. available. Second, it allows processes to effectively overlap communication time
with computation time.
If n is sufficiently large, it is reasonable to assume that the time spent trans-
mitting row elements overlaps the time spent reducing matrix elements, because
the total reduction time is ©¢n*/p), while the total message transmission time

305

306

CHAPTER 12 Solving Linear Systems

is ®(n%). Message start-up time cannot be overlapped with computation. Since a
process must send # — | messages, the total communication time of this algorithm
15 8 (n).

Let’s determine the isoefficiency of this parallel system. The sequential time
is ©(n%). Paralle] overhead is ®(np). Hence

> Cp=n> \@
Since M{n) = n*, our scalability function is:
M(/Cp)/p=Cpip=C

Assuming # is large enough to ensure that message transmission time‘es;scfltial,ly
overlaps with computation.time, this parallel system is perfectly scalable.

12.5 ITERATIVE METHODS

Gaussian elimination followed by back substitution is an example of a direct
method for solving a system of linear equations, The algorithm werks through
a prescribed number of steps, and at the end of the algorithm the value of the
solution vector is known.

Gaussian elimination works well when the system of linear equations is
dense. However, if we apply Gaussian elimination to a sparse system of linear
equations (one that has relafively few nonzero elements), the coefficient matrix
graduallyills in with nonzero elements. Figure 12.10 illustrates this phenomenon
with a small, 9 x 9 system. (The fill becomes more dramatic when the matrix |
size increases and the distance between the diagonal stripes of nonzero elements
grows.) Element fill is undesirable, because it increases storage requirements and
the total operation count.

An iterative method is an algorithm that comes up with a series of approx-
imations to the value of the solution. Typically, iterative methods require less
storage than direct methods. By avoiding operations on zero elements, they can
also save a lot of computations. Often, they are amenable to parallelization. In this
section we consider two simple iterative methods for solving a system of lincar
equations.

Assume we want to solve the linear system of equations Ax = b, where
the diagonal elements of A are nonzero; that is, a; # Ofor 0 < i < n. The
Jacobi method hegins with an initial approximation x” to the solution vector. It
repeatedly computes a new approximation x*+' from the current approximation
¥ using the formula

i
= — (b - Zaijxf
WA

The Jacobi method in psendocode appears in Figure 12.11.

SECTION 12.5 |terative Methods

1

2

ERCECO0000 EEOEQ0O000 EROEO0000
RREOROO0C UEEEROO00 CEERECO0O0
OREOJOROC0C OEROOERO00 OONREEOCO
E0ONRORCD0 COECEECEOO OONMNEORCOO
OECEEEROND COECORERCED OONEERORC
COROEROON ODOEOEEOCE CSCONCOEROCE
OoomoreRd [COORCCOEE0 OO0OEDOERd
OoooECmaEE O000mOEER OO00OROEEE
onooomoER 0OO0O0OECER O0000OECEN
3 1 5
ERCOROCO00 mE0E00000 EROECO000
ORRRROCCO ORNEEO000 OwWERREOO0O0
OONNEEOO0 OONEEROO00 OOEEEEOO0
OOONERRO0 OOOREEEOO ODOOEREEEOO
OOJONEECEC OOOCEEEED OO00COEEEEO
gnOiEEEO0OR OCOOEEEOE o0Cfd0EEEE
OJoOROOREO OO00CEEEEC J0000CEERO
oooomcoRaR 00OcmOEER O0000O00CEEER
gooocOomORR O0OO0O0O0EOEE O00O00OECOEE
¢ 7 8
ARORO0000 SEEORCO0O0O0 EROROO0O0CO
OERERCO0O0N OEERRO0O00 COERRECO00
OOmEEEO00 OCOEEEROO0 OOEREEE0O0
OCONERRON OOUNNEROO0 OCOOEREEEROO
OOUCEEEED (OO0O00ONEEEO OO000EEERO
ooooONEER OOo0OOEEEE O00000EEEE
ooodoOmEm DOOOCOEER O000000ONEN
ooodoCmER OoO000cO00OmR O0o0000mm
gooooOomER JOO00OOONR O0O00000O0OM

Figure 12.10 Application of Gaussian elimination lo a sparse
system of nine linear equalions. The matrix labeled @ is the state of
the system at the beginning of the algorithm. Black squares
represent nonzero coefficients; white squares represent zeroes. The
matrices labeled 1 through 8 show the coefficients after each of the
g iterations of the algorithm.

307

Figure 12.12 illustrates the successive vajues of a two-dimensional vec-
tor as the Jacobi method solves a system of two linear equations with two
unknowns.

Note that in the Jacobi method computing x**! from x* is a perfectly par-
allel operation: each new element of x**! is computed using the values of x*.
Convergence is quicker if we always use the latest value of x; that is avail-
able. We can accomplish this in our pseudocode-algorithm by replacing the
line

new(j] < (1/alj, j1) x (bLj] - sum)

308

CHAPTER 12 Solving Linear Systemns

Jacobi Methed:

af0.n — 1, 0.1 — 1] — coefficient malrix
b{0..n - |] — constant vector

newfd.n — 1] — new value of result vector
st — accumulates partial sesulls

x{0..n — 1] — result vestor

fori «Q0ton —1do
xfi] « 0
endfar
repeat
forj «0ton-1do
sum « 9§ .
fork —fton—1do
if k # j then
s 4+ sum -+ afj.kf x x[k]
endif
endfor
newfj] « (fafiihy x (blj] — sum)
endfor
for j «0ton—1do
x{j] + new(j}
endfor
antil valaes in x converge

Figure 12.11 The Jacobi method
is an iteralive algorithm for solving
Ax = bwhere the elements of Aon
the main diagonal are nonzero.

with
x[j} < (1/atj. ji) x (b[j} — sum)

and deleting the for loop that copies the elements of vector aew into vector x.
The algonthm that results from this change is called the Gauss-Seidel
method,

Recall that a matrix is strictly diagonally dominant if

la;] > Zlugi,ﬂ <i<n
i#i

If the coefficient matrix A is strictly diagonally dominant, both the Jacobi
method and the Gauss-Seidel method converge on the unigue solution to Ax = b
for any nitial vector x°.

Even when the Jacobi method and the Gauss-Seidel method are guaranteed
to converge on a solution, the rate of convergence is often too slow to make
them practical. For this reason, we are not going to develop parallel versions of
cither algorithm. In Section 12.6 we present an iterative method with much better
CONVErgence properties.

SECTION 12.6 The Conjugate Gradient Meathod

Figure 12.12 Plot of vectors x7, x2, x3, x*
generated by the Jacobi method as it solves the pair
of equations 2x + y=7 and x + 3y= 11, given

x° = (0, 0). The successive values of x converge on
the solution vector (2, 3).

12.6 THE CONJUGATE GRADIENT METHOD

Recall that n x n matrix A is positive definite if for every nonzero vector x and
its transpose x7, the product x7 Ax > 0. {f A is symmetric and positive definite,
then the function

1 .
g(x) = -z-xTAx —x"b4c

has a unique minimizer that is the solution to Ax = b {41]. The conjugate
gradient method is one of many iterative algorithms ‘that solve Ax = b by
minimizing ¢ (x). If rounding error is ignored, the conjugate gradient method is
guaranteed to converge on 2 solution in n or fewer iterations [9, 41].

12.6.1 Sequential Algorithm

An iteration of the conjugate gradient method is of the form

(1) = x(t ~ D) 4 5(0)d(1)

The new value of vector x 1s a function of the old value of vector x, a scalar step
size 5, and a direction vectos d.

309

310

CHAPTER 12 Solving Linear Systems

Before iteration 1, values of x (0), 2(0), and g(0) must be set. In our imple-
mentation of the algorithm x(0) and d(0) are both initialized to the zero vector
and g(0) is initialized to —b. Every iteration 7 calculates x(¢) in four steps.
Step 1 Compute the gradient

g« Ax@g-—-1—b

Step 2: Compute the direction vector

275
W 8Ot G g

where g(¢)7 g(7) represents the inner product of the transpose of vector g(¢) and
vector g(2).
Step 3: Compute the step size

dit-1)

d()"g(1)
S(f) o —dm

Step 4: Compute the new approximation of x:
() <2t = 1) +s(d(@®) -

A pseudocode implementation of the conjugate gradient method appears in
Figure 12.13.

Figure 12.14 shows how the conjugate gradient method, given the same
system of two linear equations as the Jacobi method (Figure 12.12), finds the
solution in two iterations. '

Suppose matrix A is symmetrically banded with semibandwidth w. (Fig-
ure 12.15a). In this case, finding the inner product of a row of A and a vector has
time complexity & (w). Hence the matrix-vector multiplication steps have time
complexity &(nw). The other vector operations, including the inner product (dot
product) operation, have time complexity S(n).

12.6.2 Parallel Implementation

We have discussed parallel algorithms to perform matrix-vector multiplication in
Chapter 8. Here we must modify the algorithm to take advantage of the fact that
matrix A is banded. In particular, processors only store the portions of the rows of
A that contain nonzero elements (Figure 12.15b), This saves memory and makes
the algorithm execute faster, but it means that various indices in the matrix-vector
multiplication algorithm must be modified.

Suppose we choose a rowwise block-striped decomposition of A and repli-
cate all vectors. In this case the multiplication of A and a vector may be per-
formed without any communications, but an all-gather communication is needed
toreplicate the result vector. The overall time complexity of the parallel algorithm
is ®(n’w/p +nlog p).

SECTION 12.6 The Conjugate Gradient Method

Conjugate Gradient:

fori «Cton-1do
dli] <0
xi] <0
gli] < ~bii]
endfor
forj «{tondo
d1 <« Toner_Product(g, g)
g + Matrix_Vector_Product (4, x)
fori —¥ton=1do
gli] + gli] - bli]
endfor
#l + lnner,_Product (g, g)
“ifnl < £ break endif
fori +Qton~—1 .
dfi] e —gli] + (n1/d1) x dfi]
endfor
12 « Inner_Product{d, g)
t « Matrix_Vector_Product{A, d)
d2 « Inner_Productid, #)
§ - —n2/d2
fori «-0ton -1
x[i} « ali] + ¢ xdlid
endfor
endfor

Figure 12.13 Sequential
conjugate gradient algorithm.

4 —
o
3+ W
y s
l fom
| 1 P i
W [2 3 4

Figure 1214 The conjugate gradient method requires
two iterations to solve the pair of equations 2x + y=7
and x+ 3y = 11. The solution vector is {2, 3).

311

32

CHAPTER 12 Solving Linear Systems

_iu] I
] _juin] |
coamom

E0RO00000000
OmROOmEOO0O0CO0 (WOOEEOE
OOmsCECOnDOn (NOEEOED
EoOmEORCO0pnn (URESEEN
OEOEEOR00C00
COOeEEmmmnon |ECOOBOOA
goomoOmOCeco |(DESEECE
gDDDDIIIIDID sl] L IN| I¥
fJo0COEmEORn
0o0oooooOamm {COONMEE
doooooOmoOomo (MOOEO
OOoogoooOmogow (MO0

@ ®

Figure 12.15 Rowwise block-striped
decomposition of a symmetrically banded matrix.
{a) A symmetrically banded matrix with
semibandwidih 3. All nonzero elements
{represented by black squares) are on the main
diagonal or one of the three diagonals
immediately above or below the main diagonal.
{b) Storing the matrix on four processors. Since
the matrix has semibandwidth 3, each row is
represented by 7 = 2 x 3+ 1 elements. Note that
the fourth {i.e., the middle} entry of each row
contains oneof the elements on the main
diagonal of the matrix. - -

If, on the other hand, we choose a block decomposttion of vectors, an all-
gather communication is needed before the matrix-vector multiplication takes
place, but no communication is needed to replicate the blocks of the result vector.
The overall time complexity of this approach is the same as the first method:
Onlw/p +nlogp).

Let's see how the two different data distributions for the vectors affect the
complexity of the rest of the algorithm. First let’s consider the case where vectors
are replicated. Since every process has a complete copy of every vector, it must
execute every iteration of every loop updating a vector. Hence the paralle] time
complexity of the loops madifying values of vectors g, x, and d is ©{n). Likewise,
the time required to perform the inner product of two n-element vectors is also
o).

Now let’s consider the csse where vectors are decomposed by blocks among
the processes. In this case the time needed to initialize a vector to 0 or subtract one
vector from another is 8/ p). On the other hand, performing an inner product
requires that each process find the inner product of its subvector, followed by a
sum-reduction step. The complexity of the inner product operation, then, would
be @1/ p +log p).

SECTION 12.T Suymmary

»

Replicated veclors
Superior

Block-decomposed
vectors

Figure 12,16 Comparison of two
approaches to performing inner
product (dot product). As 1 — oo,
distributing the vector elements
among processes, performing parfial
inner products, and then performing a
sum-reduction operation is faster than
replicating vectors and having each

. process perform the sequential
algorithm. However, for small values
of nthe fime required to perform the
reduction is greater than the time
saved by distributing the computation,
and replication is the preferred
alternative.

If we fix p and increase n, eventually the computational time becomes the
dominant factor. In this case the algorithm that decomposes the vectors by blocks
among the processors is superior, If we fix # and increase p, eventually the
communication fime becomes the dominant factor. In this case the algorithm
that replicates the vectors and avoids all communications is superior. When n
dominates p, Figure 12,16 illustrates the regions for which each data distribution
scheme is Superior.

12.7 SUMMARY

In this chapter we have examined both direct and indirect methods for solving
systems of linear equations. We have considered parallel versions of back sub-
stitution, Gaussian elimination, and the conjugate gradient method. In cach case
we have explored two distinct implementations, based on different data decom-
positions. In each case we have discovered that neither implementation is clearly

313

314

CHAPTER 12 Soling Linear Systems

supetior to the other. Instead, which parallel algorithm is faster depends upon
the size-of the problem, the mmber of available processors, the speed of the
processors, and the speed of the communication network,

12.8 KEY TERMS

augmenied mafrix Ganss-Seidel method solution

back substitution iterative method sparse matrix

handed matrix Jacobi method serictly diagonally dominant

. colurfinwise and rowwise linear equation Symmetric

interteaved striped -linear system - symmetrically banded
decompositions - lower triangnlar system of lingar equations

conjugate gradient method ~ partial pivoting ' towmament

direct method positive definite matrix upper triangular

Gaussian elimination pivot row

12.9 BIBLIOGRAPHIC NOTES

The textbook by Bertsekas and Tsitsiklis [9] is the primary source for this chapter.
They discuss algorithms to solve systems of linear equations, nonlinear problems,
shortest-path problems, and network flow problems, among many others. Consult
Golub and Ortega [41] for a thorough, mathematical cxplanation of how the
conjugate gradient method works.

Other books describing parallel numerical algorithms include Dongarraet al.
[22] and Fox et al. [33].

Gallivan et al. [36] have surveyed parallel algorithms for dense linear algebra
computations.

12.10 EXERCISES

121 Use back substitution to solve the upper triangular system ptoduced in

Section 12.4.1,

12.2 a. Derive the isoefficiency relation and the scalability function for the
row-oriented parallel back substitution algorithm described in
Section 12.3.2.

b. Design a parallel back substitution algorithm that uses pipelining to
overlap communications with computations. Analyze the time
complexity of your algorithm, and determine its isocfliciency
relation and scalability function.

123

124

125

12.6

12.7

SECTION 12.10 Exarcises

Forward substitution is an analog to the back substitution algerithm. It
is used to solve lower triangular systems. Write a sequential forward
substitution algorithm in pseudocode.

Implement a C program to solve a system of linear equations Ax = b
using Gaussian elimination with row pivoting followed by back
substitution. Your program should input the system of equations from a
file. The file contains a matrix of doubles in the same format used to
store matrices in Chapters 6 and 8. The first two elements of the file are
two integers. The first has the value ni; the second has the value s + 1.
The remainder of the file contains n{n + 1) doubles, comesponding to
the elements of A and b stored in this order:

.0, G0 - « - » Bon—1, Do,
a0, 411, v iat, b1,
Ap 1,04 Gy 1y +++y Bn—1 15 by

Using a C program as your starting point, implement three parallel

programs solving a system of linear equations Ax = b using fow

pivoting. The programs should read the system of equations from a file.

The format of the data file is the same as in Exercise 12.4. The

programs should print the result vector x to standard output.

a. Use arowwise block-striped decomposition of the augmented
matrix Ab.

b. Use a columnwise interleaved striped decomposition of the
augmented matrix Ab. The program should rely on broadcasting to
transfer columns.

“¢. Use a columnwise interleaved striped decomposition of the

augmented matrix Ab. The program should use pipelining to overlap
communications with computations,

a. Derive an expected execution time for the row-oricnted Gaussian
elimination program designed it Section 12.4.

b. Derive an expected execution time for the column-oriented Gaussian
elimination program designed in Section 12.4.

¢. Using parameters from your parallel computer, draw a graph similar
to the one of Figure 12.4 that illustrates the ranges of values of » and
p for which programs based on each of the two designs is expected
to be superior.

Implement a C program to solve a system of linear equations Ax = b

using Gaussian elimination with column pivoting followed by back

substitution. Your program should input the system of equations from a

file. The file contains a matrix of doubles in the same format nsed to

store matrices in Chapters 6 and 8. The first two elements of the file are

two integers. The first has the value n; the second has the value n + 1.

The remainder of the file contains n{n 4 1) doubles, corresponding Lo

315

316 CHAPTER 12 Solving Lingar Systems

‘the elements of A and b stored in this order:

a0,0v ao‘!! ey Ho,fi—lﬂ bOv
L5yt oy Bks PLo -
1,00 Q=115 - - = A= La—1s bn—]

128 Write a parallel program that jmplements a pipelined version of
Gaussian elimination with column pivoting to solve a system of linear
equations Ax = b. The augmented matrix Ab should be divided among

" the processes using a rowwise interleaved striped decomposition. The
program should read the system of equations from file, The format of
the data file is the same as in exercise 12.7. The program should at the

 result vector x to standard output.

12.9 Design a paralle]l Gaussian elimination algorithm based on a
checkerboard block decomposition of the augmented matrix Ab.
Determine the isoefficiency of this algorithm and its scalability function.

12,10 Implement a parafel program solving a systéin of linear equations
Ax = b, using a checkerboard block decomposition of the augmented
tatrix Ab. Your program should input the system of equations from a
file. The file contains a matrix of doubles in the same format used to
store matrices in Chapters 6 and 8. The program should print the
solution vector x to standard output.

12.11 Implement a C program to solve a system of linear equations Ax = b
using the conjugate gradient method. You can be assured that A is a
symmetric, positive definite matrix.

Your program should input the system of equations from.a file. The
file contains a matrix of doubles in the same format used to store
matrices in Chapters 6 and 8. The first two elements of the file are two
integers. The first has the value n; the second has the value n+ 1. The
remainder of the file contains n(x + 1) doubles, corresponding to the
elements of A and b stored in this order

o0, o1+ - -, Gg.a-1, o,
(TR IR Q-1 bh R
au—l,ﬂ: af:—l,l-, U 4 A P bn-—l

Your program should print the result vector x to standard output.

1212 The file format we first used in Chapter 6 assumes the matrix is dense.
The purpose of this excrcise is to develop and exploit a new file format
designed for symmetrically banded matrices.

a. Design a file format to store symmetrically banded matrices. The
size of a file should be proportional to the number of rows in the
matrix times its semibandwidth.

b. Implement a C program to solve a sparse system of linear equations
Ax = b using (he conjugate gradicnt method. You can be assured
that A is a symmetric, positive definite matyix. Your program shouid

SECTION 12.10 - Exercises

input matrix A from a file, using the file format you have designed. It
should input vector & from another file. Yous program should print
the result veetor to standard output.

. Using the C program as a starting point, implement a parallel
program for the conjugate gradient method that assumes vectors are
replicated among PrOCESSOrs. Benchmark your program on your
parallel computer for various sumbers of processors and different
problem sizes.

. Using the C program as a smmng point, implement a parallel
program for the conjugate gradient method that assumes a block
decomposition of vectors among ProCessors. Benchmark your
program on your parallel computer for various numbers of
processors and different problem sizes.

7

318

CHAPTER

Finite Difference Methods

Big words de not smite like war-clubs,
Boastful breath is not a bow-string,
Taunts are not 5o sharp as arrows,
Deeds are better things than words are,

_ Actions mightier than boastings.

Henry Wadsworth Longfellow, The Song of Hiawatha

13.1 INTRODUCTION

Anordinary differential equation is an equation containing derivatives of a func-
tion of one variable. A partial differential equation (PDE) is an equation contain-
ing derivatives of a function of two or more variahles. Many phenomena studied
by scicntists and engineers can be modeled by PDEs. Here are a few examples:
Airflow over an aircraft wing

Blood circulation in the human body

Water circulation in an ocean (see Figure 13.1)

Deformations of a bridge as it catries traffic

Evolution of a thunderstorm

Oscillations of a skyscraper as it is hit by an earthquake

Strength of a toy

Temperature distribution of a CPU’s heat sink

Vibrations of a subwooler

Itis possible to derive analytical solutions to simple PDEs in simple geometric
regions. In general, however, analytical solutions are not possible, and we must
seek an approximate result to the equation through numerical (computationa)

SECTION 13.1 - Infroduction

Figure 13.1 Sea surface temperature from a high-resolution
{1/12¢, approximately 6 kilometer grid spacing on the average)
Nerth Atlantic finfte difference numerical calculation with the
Miami Isopyenic Coordinate Ocean Mode! (MICOM]. (Courtesy
MICOM group at the Resenstiel School of Marine and
Atmospheric Science, University of Miami.)

methods. These numerical methods often consume a large number of CPU cycles.
That's why it’s worthwhile to explore parallel methods for solving PDEs.

The two most common ways to solve PDEs numerically are the finite ele-
ment method and the finite difference method. This chapter focuses on the finite
difference method. .

The finite diference method converts a PDE into a matrix equation. As we
observed 1n the previous chapter, the matrices produced by the finite difference
method are sparse. (1ypically there are only a few nonzero elements per row.) Im-
plementations of the finite difference method fall into one of two broad categories,
depending upon how they represent the sparse matrix. Matrix-based implemen-
tations represent the matrix explicitly, using data siructures that support efficient
access of the nonzero clements. In the last chapter we demonstrated how iterative
methods can he used to solve these linear equations. Matrix-free implementations
represent the matrix values implicitly. In this chapter we focus on matrix-free im-
plementations of the finite differcnce method.

319

320

CHAPTER 13 Finite Difference Methods

We begin by defining linear second-order PDEs. Linear second-order PDEs
can be put into three categories, and each has different solution methods. We also
show how difference quotients approximate lhe first and second derivatives of a

- continuons function at a point.

Two case studies—the vibrating string and the steady-state heat distribution
problem-—iHustrate techniques for parallelizing programs.

13. 2 PARTIAL DIFFERENTIAL EQUATIONS

13.2.1 categorlzlng PDEs

As we have already noted, a PDE is an equation contammg derivatives of a

function of two-or more variables. For example, assume « is a fuaction of x and

y:u = f(x,y). We denote the partial decivative of u with respect to x as u,;
slmllarly, we denote the parllal derivative of u with respect to y as u,. Because
only a single partial derivative is taken, these partial derivatives have order one. If
k partial derivatives are taken, we say they have order k. Here are the three partial
derivatives of & with ‘order two: ., u o a0d 1y, :

A second-order partial differential equation contains no partial derivatives
of order more than two. Second-order PDEs are the PDEs raost frequently used
to solve problems in the physical sciences and engineering.)

Linear second-order partial differential equations are of the form

Attge + 2Bugy + Cityy + Euy + Fu, + Gu=H (13.1)

where A, B, C, D, E, F, G, and H are functions of x and y only.
Here are examples of linear second-order PDEs:

du,x 4 byt =0
ity + XUy, = sin(xy)
Here are examples of equations that are not linear second-order PDEs:
W tuy, =0
Wity +Sin(xp)uy, =x + ¥

The first is not a linear second-order PDE because the u,, term is squared; the
second is not a linear second-order PDE because the 1., term is multiplied by «.

Based on the values of A, B, and C in equation (13.1), we can classify linear
second-order PDES info three categories:

® Elliptic PDEs are those for which B® - AC < 0.
Parabolic PDEs are those for which B> — AC =10.
Hyperbolic PDEs are those for which 5% — AC > 0.

Each of. these calegories has a well-known representative equation.

SECTION 13.2 Partial Differential Equalions

The Poisson equation, u,, + &,, = f(x,), is an example of an elliptic
PDE. Tt arises from the study of potential problems in electricity, magnetism, and
~ gravitating matter, steady-state distribution of heat or electricity in homogencous
" conductors, and certain fluid flow and torsion problems. When f(x, y) = 0, the
. Poisson equation is called the Laplace equation.

The heat equation, ku,, = u,, is an example of a parabolic PDE. The heat
equation arises from the study of heat conduction in solids. The study of ditfusion
of Hiquids and gases results in the same equation as the heat equation, but in this
context it is called the diffusion equation.

The wave equation, cluy; = 1y, is an example of a hyperbolic PDE. The
wave equation arises from modeling wave propagation and the vibration of strings..
and membranes.

13.2.2 Difference Quotients

While different algorithms are used to solve elliptic, parabolic, and hyperbolic
‘PDEs, all finite difference methods approximate the solution to a PDE by
dividing the variables (often time and space) into discrete intervals. To illustrate
this process, let's consider how to approximate the first and second derivatives of
a function.

Consider function f in Figure 13.2. (We're assuming f is a continuous
function that has a derivalive at each point.) We want to compute the first and
second derivatives of f at a particular point x. A reasonable approximation to
f(o)is:

iy JERD = F =)

h

.T-'-'h x-h2 X xth2 oy

Figure 13.2 Approximating the derivative of
function f at x.

£
v

321

322 CHAPTER 13 Finite Differance Methods

By reducing h we can reduce the eror in the approximation. We canuse this same
formula to estimate "{x} = f"{f'(x)):

FUHh-h[D - FOHhI-b/2) F-hiBHRD G -b/2-/2)

f”(x) P [; ——
N Fle4h) - f0) - ((f(x) - Flx—hY)
h?
L JETR -2+ —h)
h'l

13.3 VIBRATING STRING

As our first case study in the finite difference method, we consider an example of
a hyperbolic partial differential equation. This section presents only the briefest
sketch of the algorithm’s development; see Plybon [92] for more details.

13.3.1 be'!jving Equations

Examine Figure 13.3. Our goal is to model the behavior of a vibrating string {such
as a guitar string). In particular, we want to be able to determine the position of
the string at some future time, based upon its initial position.

The endpoints of the string are fixed. We let vaniable x represent poinis along
the imaginary line between one endpoint and the other. The left endpoint is where
x = {; the right eadpoint is where x = 1. Hence 0 < x < 1.

We let variable ¢ represent time. The initial position of the string is its position
at time 0. Hence ¢ > Q.

Function u(x, 1) describes the displacement of the string at point x at time 1.

1.5
t=00and 1.0
I P -
/0,1 ﬂndN
0.5 [

t=02and 0.8

t=03a0d 0.7

K N‘l 'dml‘lﬁ/
_._I“ —
=05
~15 —

Figure 13.3 Motion of a vibrafing string over time.

SECTION 13.3 \ibrating String

This particular problem is modeled by a set of equations. The first equation,
alinear second-order PDE, expresses how the displacement changes with respect
to time:

iy =uy, 0<x<l, O0<t
The second equation expresses the fact that the string is fixed at both ends:
w(0,5)=u(l,t)=0 wheret >0

~ The third and fourth equations describe the imitial position and velocity of the
string at time {, respectively:

=u(x,0) =sin(wx), #,(x,0)=0 whered<x <1

Our problem is a specific example of the wave equation, which has this
eeneral form:

Czu.u:un DSISH,?ZQ
w(x,0) = F(x) and u,(x,0)=G(x) on [0,a]
#(0,9) = ula, 1) =0

| In general, we want to find a solution to the problem for values of x between

. O and g, for all times from 0 to T. We divide space into i intervals and time into
m intervals, and we define i =a/n and k=T /m. In other words, & is the time
step and i is the “space step.” If the time step & is too large, our discretization will
~ be too crude, and the algorithm will not be stable (i.e., the difference hetween our
approximate solution and the actual solution will grow rapidly with every time
step). This is the case when the fraction kc/h > 1. On the other hand, if the time
step is too small, round-off errors can accumulate, which alsoreduces the accuracy
of the estimate. This is the case when the fraction kc/h < 1. Hence the best
accuracy is obtained when kc/h = 1.

- After we have checked to ensure ke/ h < 1, we can push ahead. We define

X =ih i=01....n
5= jk j=01....m

Now we can define u;; = u(x;, ¢;) to be the displacement of the string at
position x; and time f; (see Figure 13.4).

13.3.2 Deriving the Sequential Program

Using the formula we derived in Section 14.2, we can come up with an approxi-
mation to the second partial derivative u,,:

uln A1) =2l 1) uly — b, 1)

As 7

By = gty

N

Hyelin 1)

323

324

CHAPTER 13 Finite Difference Mathods

. ui‘},=u(x,~,\z‘}«)/_1_\
N
T
T N
' / \
/
\
¢ »
]
i
0 -~ >

X

Figure 13.4 Dividing space and time into discrete intervals creales
a rectangular lathce. The boundary conditions are along the bottom
and sides of the rectangle. Each intersection i ; represerts an
approximation of for x and #—in other words, the displacement of
one paint of the string at some point in time.

Simtilarly, we can approximate the second partial derivative u,,:

u(x.»,Ij + k) —2u(xi-,t,-) +u(x‘, lj — k)
kZ
Ui = 2y e
e
These approximations can be substituted back into the wave equation. After
a series of further approximations and refinements (see Plybon [92] for more
details), the C program appearing in Figure 13.5 results. Note: In the process of

translating the lattice of Figure 13.4 into the matrix u of Figure 13.5, the subscripts
are reversed.

u“(x;, t_z) ~

13.3.3 Parallel Program Design

As usual, we begin hy choosing primitive tasks, identifying data communication
patterns among them, and looking for ways to agglomerate tasks. Thesfinest-
grained tasks are those that compute the value of an element of-matrix u. Exam-
ining the C code in Figure 13.5, we find that the value of u{j+17 [1] depends
upon the values of w31 [i-11,ulji{i],uljliirl],and ulj-17 [1].
For a particular value of u[j+1] (1], the graph appears in Figure 13.6. If we -
drew the complete task /channel geaph, it would look similar (though not identical)
to Figure 3.11a.

SECTION 13.3 Vibrating String

" /*“Sequenfial solution Lo String vibration problem */

¥include «stdio. by
#include cmath.h>

Fix} sin{3.14158*(x}} /* Initial string pesition */
> Gix) 0.0 /* Initial string velccity */
2 a 1.0 /* Length of siring */

c 2.0 /* String-related conetant */
fdefine m 20 /* Discrete time intervals */
fdefine n 8 /* Discrete space intervals */
#defipe T 1.0 - /* Bnd time of simulation */

int main (int arge, char *arge(])

{

sdauble © o /* Space interval length */
int
double /% Time interval length */
double /* Computed coefficient */
double u[mell{mi1); #* Stxing displacements */
h=a/n;
k=T/m)

L = (k*c/h)*{k*c/h); .
for 13 =0; 7 <= m; J+4 ul31(01 = u(jlIn] = 0:
for (i =1;-1 <« n; i++) wlDI(i} = Fii*h);
for {i = 1: 1 < n; 144)
uf1i1{i] = (L/2.0)*(uf0]{L+1) « wlQ}Qi-1T7} + -
(1.0 - LY * uf0)[i] + k * G{i*h};
Cfor (3 =1 1 <em; Jei)
for (L =1; 1 < n; 114}
ulj+311[i] = 2.0%{1.0-L)*ulj] [i] +
Le(ulyl (1«14 + u[3T0i-1]) - u{i-1)(a)s
for {j = 05 § e=m; j+4) |
for (1 =0; i <=n; ie+) printf ("86.3f =, u[jl[1i]):
putchar (‘\n‘);
}

ragurn §;

1
i

Figure 13.5 C program implementing a finite difference method to solve
the string vibration problem (adapted from pseudocode of Plybon {92]).

Computing the displacement at a particular point for different times is inher-
ently sequential: the value of u[j+17 (1] depeadsuponw(71{i] andulj-
1) {1]. For this reason we should agglomerate all tasks associated with cach
value of x;. At this point all the communications are between adjacent tasks. If
we agglomerate tasks associated with contiguous regions of the string, commu-
nication among tasks will be minimized.

Suppose the n + 1 elements of the string are divided among p processes. Let’s
consider the communications that need to happen when computing row j+1 ofthe
matrix. See Figure 13.7a. Process ¢ is responsible for computing u [+1] (1] for
four different values of i. It can compute the values of the gray cells without any
communications. However, it cannot compute the vatues of the black cells until it

325

326

CHAPTER 13 Finite Difference Methods

uljHT

//T\

ul1{i~1] Wl W jLi+]

ufj—1fi]

Figure 13.6 The value ofd{j+1] 1]
- depends upon the values of u{jJ (i-1],
alilii, uliJ (i+1}, and u(j-1]{i].

Process g ‘Process g-1 Process g Process q+1

11
oA N
(@) (b}

- - -
N N BN
R SR I
==t by (e B e il B et
i i1 § § t 1! 1 1 11 I
o FIN s v
atale B et (I Ton e
[I L S B [|
AL | SR I | [N U |
[AN L T rT
| L [B [B
[I | FEE S | [R I
E b ¥ T T it I k]
I | 1 : (] b
oL] [[R |
[TN v T
[oy [
i) T L i PR | S PPN, |

()

Figure 13.7 Ghost points simplify parallel finite difference programs. (a) When
computing row j -+ 1, process g has the data values it needs to fill in the gray cells, but
it needs values from neighboring processes to fill in the black cells. {b) Every process
sends its edge values to its neighbors. Every process receives incoming values into
ghost points. Ghost points, then, contain copies of data values. {c) Programming is
easier when the ghost poirits are freated as extra columns or rows in the data array.
After the vatues are received, a single for loop can update every element in row 3+1.

gets values from neighboring processes. In Figure 13.7b we show how process
¢ must exchange values with processes ¢ — 1 and ¢ + 1. After these values are
received, the black cells may be assigned values. '
H The parallel program is much easier to code if the same loop that updates the
values of the cells on the edge also updates the values of the cells in the interior.

SECTION 13.3 Vibrating String

"This can be done by allocating two extra columns for process g. These columns
will receive the values received from the neighboring processes {(one column
element per iteration). Ghost peints are memory locations used to store redundant
copies of data held by neighboring processes. Figure 13.7c illustrates how to set
up the ghost points when n = 16 and p = 4, assuming no communications wrap
around from one side to the other.

During the iteration that computes row j+1, each process sends each of its
neighbors the appropriate border value from row § and receives the neighbor’s

points, asingle £or loop allows the process to compute all of ts row J +1 values.
' 13.3.4 Isoefficiency Analysis ~

The computation time per element is constant, so the sequential time complexity
of the algorithm is ©(n) per iteration. If each of the p processes has an equal
share of the clements, the complexity of the parallel algorithm is & (n/ p) per
iteration.

During each iteration a typical process must send messages to its two neigh-
hors, each message of length [, and receive messages from these neighboring
processes. The communication time required for these sends and receives is ©(1).
Hence the overatl communication overhead of the parallel algorithm is ©(p).

The isoefficiency relation for this algorithm is

n>Cp

While we have described a solution that uses about sum elements to store the
position of the string at every point in time, it is possible to implement a solution
that uses only about 3n memory locations to store values of u as the simulation
progresses. Hence M (n) = n. The scalability function is

M(Cp)fp:cpl!pzc
The algorithm we have described is perfectly scalable.

13.3.5 Replicating Computations

What can we do to reduce commanication overhead? Since processes are sending
messages confaining only a single data value, communication time is dominated
by the message latency component. We can send two values in virtually the same
amount of time it takes to send one value. Let’s explore the implications of sending
the multiple data values.

Take a look at Figure 13.8. Part (a) illustrates what happens in the algorithm
as originally designed. The white squares represent the cells an interior process
is responsible for. The dashed white squares are the ghost points, When values
are received into the ghost points, the process can compute the values in the gray

squares—the values of its section of cells at the next time step.
~ Part {b) illustrates what we can do if we increase the number of ghost points
to two cells on each side. Each process now sends two values to each of its
neighboring processes. When it has received a pair of values from each of its

row J horder value in return. After the values have been received into the ghost

a27

« 328

CHAPTER 13 Finite Difference Msthods

Step 1

B D/?f_mw munEfia

Step 2

Step 1

Exch;inge
data

{b)

Figure 13.8 Communication time can be reduced by replicating computations.

{a} Passing a single edge element alows the algorithm to proceed only a single time
step for each communication. (b} If two edge elements are passed, the algorithm
can proceed two time steps for each communication, at the cost of two extra
computations.

neighbors, it can advance the simulation two time steps. In the first time step it
generates values for all the cells it is responsible for, plus values for the ghost
points on either side (the gray boxes edged by dashed lines). These are redundant
computations, because the Value of each of these ghost points is being computed
by a neighboring process that is officially responsible for that location. With the .
redundant values in hand, the process can compute values for the second time
step without further message passing.

Increasing the number of ghost points has three effects: increasing message
length, reducing message frequency, and adding redundant computations. We
want to determine parallel overhead per iteration as a function of the number of
ghost points. If there are k ghost points on each side, then messages of length &
are sent and received to and from neighboring processes every k iterations. The
number of redundant computations added is

k-1

Y i=kk—1)/2

i=l
The parallel overhead per process per iteration, then, is
200 +k/P) +xkk—D/2 24 2 xk-=1
k T kB 2
The message latency term is inversely proportional to k, while computation
time increases quadratically with k. Hence the function typically has the shape

SECTION 13.4 Steady-State Heai Distribution

Parailel overhead

Figure 13.9 Increasing the number of ghost points can
reduce parallel overhead up to a point, after which the
expense of the redundant computations outweighs the
benefits of reducing the number of sends and receives.

illustrated in Figure 13.9. The value of ¥ that minimizes the function depends
upon the values of A and .

13.4 STEADY-STATE HEAT DISTRIBUTION

As our second case study, we consider the parallelization of a program that finds
the steady-state heat distribution over a thin square plate. (The presentation in
this section follows the notation of Plybon [92].)

13.4.1 Deriving Equations
The underlying PDE is the Poisson equation
Uy iy =flx,y), 0<x<a 0<y<bh
We complete the boundary value problem by adding boundary conditions
ux,0) =Gy(x) and u(x,b)=Gy(x) 0<x<a
w(0,) = G3(y) and ula,y)=0Gau(y) 0<y<bh

Since the region is rectangular, this is called the Dirichlet problem. If functions
G, G3, Gy,and G 4 are continuous on the boundaries and function f is continuous
inside the rectangle, then the problem has a unique solution.

Asin the previous case study, we will create a two-dimensional grid. However,

the interpretation of the grid is different in this case study. In the vibrating string

problem, each grid point (x;,7;) represented the displacement of the string at
point x; at time ¢;. In this case study, each grid point (x;, y;) represents the value
of the steady-state solution at a particular (x, y) location in the rectangle. In the
last case study, we only computed the value at each grid point once. In this case

329

330

CHAPTER 13 Finite Difference Methods

study, we will repeatedly update the values of every interior grid point until the
values converge.

13.4.2 Deriving the Sequential Program
We divide spatial dimension x into . pieces and spatial dimension y into mm pieces.
We define h = x/nand k = y/m.

Using the approximation to the second derivative developed in Section 14.2,
we determine that :

ulx; +h,yy) - 2uls,) +ulx; — b, y)
V e

bt~ 20t

Y "

uxr(xis yj) R

Similarly,
(X, ¥7) & Mijat = A ¥ Mgt ‘2221 el
I we insert thesé approximations into the Poisson equation, we 'get
Wigt,j — 2+ Uiy L M =2 4w
hl - k?.
Assume A = & h. Aftera series of further approximati;ms (detailed in Plybon

[921), we come up with a new formula for the value of the solution at each grid
point

:f(xiv y;)

_ MWy +wiog) A wi Wi — K Sy
AL+

Now let’s look at the particular problem we want to solve. A thin steel plate is
surrounded on three sides by a condensing steam bath (temperature 100 degrees .
Celsius). The fourth side touches an ice bath (temperature 0 degrees Celsius). An
insulating blanket covers the top and the bottom of the plate. Our goal is to find
the steady-state temperature distribution at evenly spaced points within the plate.

Since the points are evenly spaced, h = & and A = 1. Since the plate is
insulated, no heat is being introduced inside the plate—only on the edges. That
means f; ; = 0. Hence our finite difference approximation to the solution of the
linear second-order PDE reduces to

Wigr,; T Wicj + Wi + Wi
Wi =
4

Starting with initial estimates for all the w; ; values, we can iteratively com-
pute new estimates from previous estimates until the values converge. Relying on
the estimates from iteration i to calculate new estimates for iteration i 4 1 is called
the Jacobi method [56]. (Note that this is the same algorithm we first encoun-
tered in Chapter 12.) A C program implementing a solution fo the steady-state
heat problem appears in Figure 13.10.

Wij

SECTION 13.4 Steady-State Heat Distrbution

/* Saquential Selutien to Steady -SLate Heat Problem */

include «math.h>
0 00
EPSILON 9.01

~int main {int arge, char *argvli)

{
doub:le diff; /* Change 1n value */
int i, j:
double ‘mean; /* Average hboundary value */
double uiNj{N]; /* 01d values */
dauble wiN] N1 /* New values */
J* set boundary values and compute mesn houndary valie %/
mean = 0.0;
For (1 =07 1 <N; 1+e) {
uf11{0] = w{i]IN-1] = w(0][i) = 100.0:
u(B-11111 = 0.0;
mean += Wil][0] + wil}iM-1Y + al@J{i] + u{¥-1][i};
!
mean /= {4.0 * W);
/* Initialize interior values */
for (1= Ly 1 < W-1; 1++)
for (j = 1: j < N-1% j++) ulil[j] = mean;
/* Compute steady-state solubion */
for ;i) {
diff - 0.0;
for {i = 1; 1 < §-1; 1+¢)
for (J = 1; § < #-1; je+} ! .
wiil(j] = (u[i-31037 + ali+11{5] +
u[ilf3-1% + uli]l[§+11)/4.0;
if {fabs(wli)[Jj) - w[i][3]}) > diff) =
diff = fabs(wli] (1] -~ uli}[j]);
}
if {diff <= EPSILON) break;
for (L = 1; 1 < N-1; 1++)
for (3 = 1; 3 < N-1; J++) uli)Ti} = wl[il[3];
1
/* Print solution */
for (1 - 0y 1 < Ky i++) {
for {1 =0; § < N; jes)
printt {"%5.2F *, wli!{jii;
putchar {‘\n'};
¥
}

Figure 13.10 C program solving the steady-state heat distribution
problem using the Jacobi method.

a3t

33z

CHAPTER 13 Finite Difference Metiods

uldi+ 1] [

dil {j-1] wii] (7] Wl [j+1]

fi-111j)

Figure 13.11 The value of w{i) {1]
depends upon the values of u[1-1] {11,
u{i1{j+i], uli+13 131, and

ufi] [i-11.

13.4.3 Parallel Program Design

We can associate a primitive task with the computation of each w{1, 3. In the
Jacobi method the updating step is perfectly parallel. To compute w (i, 71 each
task requires the # values from its neighbors to the north, south, east, and west

“{Figure 13.11).

We want to agglomerale fasks and assign one agglomerated task to each
parallel process. What is the best way to do the agglomeration? If each process
is responsible for a rectangular region, then computing elements of w on the
interior of the rectangle can be performed using locally available values of u.
Computing elements of w on the edge of the rectangle requires values held by
other processes.

We can introduce ghost points around each block of values held by a pro-
cess. After values received from other processes have been stored in the ghost
points, then a single doubly nested loop will allow all of the values of w to be
computed.

One choice is a rowwise block-striped decomposition (Figure 13.12a). With
this decomposition each interior process exchanges messages with two other
processes. An obvious alternative is a checkerboard block decomposition. In this
case each interior process exchanges messages with four other processes.

13.4.4 Isoefficiency Analysis

Suppose we are working with an n x # mesh. Since the compugation time pet
mesh point is constant, the computational complexity of the sequential algorithm
is &(n?) per iteration.

Let’s consider the rowwise block-striped decomposition. Each of the p pio-
cesses manages a submesh of size approximately (r/p) x n. During each it
eration, every interior process must send n values to each of its neighbors anc

SECTION 13.4 Steady-State Heat Distribution

@)

Figure 13.12 Possible data decompositions for sohving the
two-dimensiona! sleady-state temperature distribution problem.

(a) Hlustration of a 16 x 16 mesh mapped onto four processes using
a rowwise block-striped decomposition. Each process manages an
(n/ p) x nregion. Ghost points appear as cells edged by dashed
lines. {b) Nustration of a 16 x 16 mesh mapped onlo 16 processes
in a checkerboard block decomposition. Each process manages a
region of size {n/,/7) x {n/,/B). Ghost points are the cells edged by
dashed fines.

" receive n values from each of them, leading to a communication complexity
- of ®{n). The communication overhead of each ieration of the parallel algorithm
is B(np).

- Theisoefficiency function for the algorithm baged on a rowwise block-striped
* decomposition is

‘ n*>Cap=n>Cp

~ Since M(n) = n? the scalability function is

M(Cp)/p=C*p*[p=Cp

The parallel system is not highly scalable.
~ Now let's look at the checkerboard block-striped decomposition. Each of
the p processes manages a submesh of size approximately (n/,/p} x (n/./p).
During each iteration every interior process must send 5/./p valies to each of
_ its neighbors and receive n/,/p values from them, leading to a communication
complexity of @(r/,/p). The communication overhead of each iteration of the
parallel algorithm is O(a,/p).

The isoefficiency function for the algorithm based on a checkerboard block
decomposition is

>Cnfp=n>Cyp

333

34

CHAPTER 13 Finite Difference Methods

Computing the scalability function:

MECp)p=Cplp=C"
The parallel system is highly scalable.

13.4.5 Implementation Details

Putting ghost points around two-dimensional blocks means message-passing op-
erations require extra copyiag steps. In C, two-dimensional atrays are stored in
row-major order. The ghost paints for the top and bottom rows are in contiguous
memory locations, but the ghost points for the left and right columns are uot.
Since the elements are not in contiguous memory locations, yon can’t receive a
message directly into a set of ghost points. Instead, you need to receive messages
into a temporary buffer and then copy the values into the ghost points, Similarly, a
temporary buffer must be used when assembling values to be sent to a neighboring
process’s column-oriented ghost poiats.

13.5 SUMMARY)

A partial differential equation is an equation containing derivatives of a function
of two or more variables. Scientists and engineers use partial differential equations
to model the behavior of a wide variety of physical systems. Realistic problems
yield partial differential equations that are too complicated to solve analytically.
Instead, scientisls and engineers use computers to find approximate solutions to
partial differential equations,)

The two most common numerical techniques {or solving partial differen-
tial equations are the finite element method and the finite difference method.
Matrix-based implementations of the finite difference method represent the ma-
trix explicitly, using daa structures that support efficient access of the nonzero
elements. Matrix-free implementations represent the matrix values impicitly, In
this chapter we have designed and analyzed parallel programs based on matrix-
free implementations of the finite difference method.

Linear second-order partiat differential equations can be classified as elliptic,
parabolic, and hyperbolic. Different algorithms are used to solve each of these

" types of PDE, but they do have some similarities. As our case studies, we looked

at the solution of the wave equation (an example of a parabolic PDE) and the
solution of the heat equation (an example of an elliptical PDE). Hyperbolic PDEs
are typically solved by methads not as amenable to parallelization. For each
case study, we used our standard parallel algorithm design methodology. We
started by identifying primitive tasks and the communicatioipattern among them.
We then chose an agglomeration that represented the best compromise between
minimizing communication and maximizing utilization.

In both case studies we used ghost points to store values received from other
processes. Once values have been received into the ghost points, all cells can be’
updated in the same section of code.

SECTION 13.8 Exprcises

We also explored how we could increase the number of ghost points and
send extra data values, thereby reducing the frequency of communications at the
expense of adding redundant computations. The optimal number of ghost points
depends upon latency, bandwidth, and the time needed to compute the value

of acell.

13.6 KEY TERMS

" Dirichfet problem Jacobi method ordinary differential equation
diffusion equation heat equation partial differential equation
finite difference method Laplace equation Poisson equation

finite element method - linear second-order partial ~ wave equation

ghost points differential equation

'13.7 BIBLIOGRAPHIC NOTES

Numerical Solution of Partial Differential Equations: Finite Difference Methods,
by G. D. Smith, is a detailed examination of finite difference methods [104].
Plybon’s book, An Introduction to Applied Numerical Analysis, has a chapter on
solving partial differential equations using finite difference methods {92]. For a
quick introduction to the field, you may find it easier to undesstand than Smith’s
monograph.

A comprehensive look at finite element methods is M. J. Fagan's Finite
Element Analysis: Theory and Practice [23].

Most finite tlement models and some finite difference models make use of
ieregular meshes. Much research has been devoted to the problem of decomposing
irregular meshes in order to minimize communications and balance computations.
Unstructured Scientific Computation on Scalable Multiprocessors is an introduc-
tion to methods for solving imegular problems on parallel computers [86].

A group centered at Purdue has developed PELLPACK, a problem-solving
environment for modeling objects described by partial differential equations.
Behind PELLPACK’s interactive graphical user interface is more than one million
lines of code. For a description of this problem-solving environment, see Houstis
etal. [53].

13.8 EXERCISES

131 Letu = f(x,y)be a function of two variables. Function « has two
unique partial derivatives with order [, ., and u . Explain why « has only
three unigue partial derivatives with order 2, rather than [our (2 x 2).

13.2 Write a paralle] version of the sequential program that solves the wave
equation. Benchmark your program for various values of » and p.
Produce a 3-D graph that shows speedup as a function of n and p.

335

336 CHAPTER 13 Finite Difference Methods

133

134

13.5

13.6

u L

Figure 13.13 A process solving the heat
equation is responsible for a 4 x 4 block of
the grid. We declare malrices u and wio
have 6 rows and 6 columns. The inrier
white squares contain the values in the
process'’s portion of the grid. The exira
rows and columns provide rooms for u's
ghost points {gray). The charcoal gray
corner elements of matrix « are not used.
The inner white squares of w hold its newly

" computed values; the charcoal gray
squares are unused.

This exercise assumes you are solving the heat equation by assigning a
(n//P) x (n/,/p) region to each process. Suppose k = n/./p. The
matrices u and w on each process have dimensions (k 4-2) x (k +2) (see
Figure 13.13). The extra rows and columns in u provide room for both
elements and ghost points. Making w the same size as u allows us to use
the same indices in both matrices to represent the same point in the finite
difference mesh.
Write a C code segment that performs the communications needed

for processes to update the ghost points of their neighbors.
Write a parallel version of the sequential program that solves the heat
equation. Assume a block-row decomposition of matrices to processes.
Benchmark your program for various values of n and p. Produce a 3-D
graph that shows speedup as a function of n and p.
Write a parallel version of the sequential program that solves the heat
equation. Assame a two-dimensional block decomposition of matrices o
processes. Benchmark your program for various values of n and p.
Produce a 3-D graph that shows speedup as a function of n and p.
Analyze the effectiveness of replicaling computations to reduce
communications in a parallel program solving the heat equation. Assume
each process is responsible for a (n//F) x (n/./p) block of the mesh.
a. Assume n is an integer multiple of , /p. Determine the average

“communication cost” per iteration, where communication cost

includes the time spent performing redundant computations. Your

137

SECTION 13.8 Exaicises

answer should express average communication cost per fieration as a
fonction of guard wrapper width £, A, A, and y.
b. Assume n =35000, p = 16, x = 10 nanosec, A = 100 psec, and
B =5 x 109 elements/sec. Plot communication cost as 2 function of
ghost wrapper width &, where 1 < £ < 10.
Write a program to solve the component labeling problem. A binary
image is stored as an n x n amray of Us and 1s. The 1 represcnt objects,
while the (s represent cmpty space between objects, The component
labeling problem is to associate a unique positive integer with every
object. When the program completes, every |-pixel will have a positive

. integer label. A pair of 1-pixels have the same label if and only if they are

in the same component (object). The 1-pixels are in the same component
if they are linked by a path of 1-pixels. Two 1-pixels are contiguous if
they are adjacent to each other, either horizontally or vertically.

For examgle, given this image:

1T 9 0 0 0 0 0 0 -
o0 170 1 0 0 0 o0
o 1 1+ 1 & 0 0 o0
o 1 1 0 1 1 1 1
6 0o ¢ 0 1 0 0 1
11 1 0 1 1 0 1
1 1r 1 1 ¢ 1 1 1
o o0 ¢ G ¢ 0 1 1

one (hut certainlji not the o_nly) valid output would be:

1 0 0o ¢ O 0 0 0
0 w0 9 10 0 0 0 o0

0 10 10 20 0 0 T O

10 10 G 22 29 29 29

o 0 ¢ 0 20 0 O 29
41 41 41 0 29 28 0 29
41 41 41 41 0 29 2% 29
0 0 6 0 0 0 29 29

Note that a (i a particular position of the input image results in a0 in
the same position in the output image. If two posilions in the output
image have the same integer value, it means there is a path of 15 between
the two positions in the input imnage.

o

337

CHAPTER

Sorting

Had [been present at the creation, [woula‘ have given some useful hints for the
better ordering of the universe.

Reaction of Alfonso X to a description

of the intricacies of the Ptolemaic system

14.1 INTRODUCTION

Given a sequence of n numbers {ay, al, 1y ey Bl 1} the sorting problem is to
find a permutation {gg, a), ay, ..., a,_) such that g <ai<ay <. <a.
Sorting isone of the most common activities performed on serial compu tera Many
algorithms incorporate a sort so that information may be accessed efficiently later.

Usually the numbers being sorted are part of data coljections called records.
Within cach record, the value being sorted is called the key. The rest of the record
contains satellite data. The information being accessed later is typically in the
satellite dava, so while it is the keys that are being compared, it is the complete
records that must actually be permuled. If there are relatively little satellite data,
entire records may be shuffled as Lhe sort progresses. If there are large amounts of
satellite data, the Sort may actually permute an atray of pointers to the records. For
the purposes of this chapter, however, we will focus exclusively on the problem
of sorting a sequence of numbers, leaving the issues associated with the satellite
data as an implementation detail.

Researchers have developed many parallel sorting algorithms. Unfortunately,
most of them are designed for theoretical models of paraliel compulation ox
special-purpose kardware, making them useless for those trving 10 implement an
efficient sort on a general-purpose parallel computer.

Qur focus in this chapter will be on methods suitable for multiple-CPU
computers. We’ll narrow our coverage in iwo additional ways. First, we’ll be

338

SECTION 14.2 Quicksort

considering internaf sorts—algorithms that sort sequences small enough to fit
entirely in primary memory. (In contrast, an external sort orders a list of values
too large tofil at one time in primary memory.) Second, the algorithms we consider
here sort by comparing pairs of numbers. (Radix sort is an example of a sofl that
does 1ot compare pairs of numbers.) ~

In this chapter we briefly summarize how quicksort works and then develop
three parallel quicksort algorithms, assuming our target machine is a modem
multicomputer that has equal latency and bandwidth between arbitrary pairs of
Processors.

'14.2 QUICKSORT

Since you're probably familiar with the sequential quicksort algorithm, we’ll
only present a short refresher here. If you need a more in-depth review, consult
"Cormen et al. [18], Baase and Van Gelder {5}, or another introductory analysis of
 algorithms textbook.)

Quicksort, invented by C. A. R. Hoare about forty yearsago {31}, is a recursive
algorithm that relies upon key comparisons to sort an unordered list. When passed
a list of numbers, the algorithm selects one of these numbers to be the pivot. It
partitions the list into two sitblists: a “low list” containing numbers less than or
equal to the pivol, and a “high lis¢” containing those values greater than the pivot.
I calls itself recursively to sort the two sublists. (If a sublist has no numbers, the

call may be omiited.) The function ends by returning the concatenation of the low

list, the pivot, and the high list.

For example, Figure 14.1 illustrates the operation of quicksort as it sorts
the list of integers {79, 17, 14, 63, 89,4, 95, 22, 63, 11}. Lel's assume the algo-
rithm always chooses the first list element to be the pivot value. With 79 as
the pivol value, the low list contains {17, 14,65,4,22, 63, 11} and the high
list contains {89, 95). The function calls itseM recursively for each of these
sublists. :
~ The recursive execttion of quicksort on the sublist containing {17, 14, 65, 4,
22,63, 11} begins by removing 17 as the pivot value. The function creates a low
fist containing {14, 4, 11} and a high list containing {22, 63, 65}. Again, it calls
itself recursively for both of these sublists.

The recursion eventually terminates because the removal of the pivot element
guarantees the lengths of the lists continue fodecrease. If a sublist has no elements,
there 15 no need to sort it, If quicksort is called with a single element, that element
becomes the pivot, and the algorithm simply returns that element as the sorted
list. . ©

Each function invocation results in the function returning the concatenation
of the two sorted sublists and the pivot element. For example, Yook at the node
Q(17,14,65,4,22,63,11). The call to Q(14,4,11) returns {4, 11, 14}. The pivot ele-
mentis 17. The call to Q(63,22,63) returns {22, 63, 65}. Concatenating these lists,

the function retums {4, 11, 14,17, 22, 63, 65).

339

340 CHAPTER 14 Sorting

[4,11,14,17,22,63,65,79,89,95) (l

) Q(79]7146589495'2263H)
14.11,14,17,22,63,65)

89,95
QUIT.1465.422.63, 11) 089.95)
(4.11.44] '\-mas; wlgﬁ
Q[14411 6522,63) Q05)
{41) e
411; Q(2263)
\ {1 \ (63)
QIH Ge3)

Figure 14.1 Sorting a 10-element fist using quicksort. Each Q
represents a call to quicksort. The algorithm removes the first
element ftom the fist, using it as a pivot to divide the list into two
parts. It calls itself recursively to sort the two sublists. (The call is
omitted for empty sublists.) it retums the concatenation of the
sorted “low list," the pivot, and the sorted “high fist”

14.3 A PARALLEL QUICK‘SORT ALGORITHM

O—r Quicksort is a good starting point for a parallel sorting algorithm for two rea-
sons. First, it is generally recognized as the fastest sorting algorithm based on
compatison of keys, in the average case. We always prefer to base our parallel
algorithms on the fastest sequential algorithms. Second, quicksort has some nat-
ural concurrency. When quicksori calls itself recursively, the two calls may be
executed independently.

14.3.1 Definition of Sorted

We want an algorithm suitable for implementation- on commodity clusters and
multicomputers. Before we go any further, we must determine what it means for
a multicomputer (o sort an unordered list. We could say that at the beginning of
the algorithm a single processor contains the unsorted list in its primary memory,
and at the end of the algorithm the same processor would contain the sorted list
in its primary memory. The problem with this definition is that it does not allow
the maximum problem size to increase with the number of processors.
Instead, we’ll adopt a different definition ef what we mean by parallel sort-
00— ing on a multicomputer. We assume that the list of unordered values is initially

SECTION 14.3 A Parallal Quicksort Algorithm

distributed evenly among the primary memories of the processors. At the com-
pletion of the algorithm, (1) the list stored in every processor’s memory is sorted,
and (2) the value of the last element on P;’s list is less than or equal to the value
of the first element on F;,"s list, for 0 <7 < p — 2. Note that the sorted values
do not need to be distributed evenly among the processors.

14.3.2 Algorithm Development

Let’s imagine how a parallel quicksort algorithm could work. Because the quick-
sort function calls itself twice, the numbes of “leaves” in the call graph is a power
of 2 (ignoring omitted calls due to empty sublists). For this reason we're going
to assume that the number.of active processes is-also-a power of 2.

Take a look at Figure 14.2. The unsorted values are distributed among the
memories of the processes. We choose a pivot value from one of the processes
and broadcast it {Figure 14.2a). Each process divides its unsorted numbers into
two lists: those less than or equal to the pivot, and those greater than the pivot.
Fach process in the upper half of the process list sends its “low list” to a partner
process in the lower half of the process list and receives a “high list” in retum
(Figure 14.2b). Now the processes in the upper half of the process list have values
greater than the pivot, and the processes in the lower half of the process list have
values less than or equal to the pivot (Figure 14.2¢).

At this point the processes divide themselves into two groups and the algo-
rithm recurses. ln each process group a pivot value is broadcast (Figure 14.2¢).
Processes divide their lists and swap values with partner processes (Figure 14.2d).

After log p recursions, every process has an unsorted list of values completely
disjoint from the values held by the other processes. In other words, the largest
value held by process i is smaller than the smallest value held by process 7 + 1.
Each process can sort the list it controls using (what else?) sequential quicksort,
and the parallel algorithm terminates.

14.3.3 Analysis

If we were to implement this algorithm, how well would it perform? The execution
time of the algorithm begins when the first process starts execution and ends when
the last process finishes execution. That is why it is important to make sure all
processes have about the same amount of work, so that they will all terminate
4t about the same time. In (his algorithm, the amount of work is related to the
number of elements controlled by the process.

Unfortunately, this algorithm is likely to do a poor job of balancing list sizes.
For example, take another look at the example of sequential quicksort illustrated
in Figure 14.1. The original list-splitting step produces one list of size 7 and an-
other list of size 2. If the pivot value were equal to the median value, we could
divide the list into equal parts, but in order to find the median we must go a long
way toward sorting the list, which is what we're trying to do in the first place. So
it’s not practical to insist that the pivot value be the median value.

However, it is clear that we could do a better job balancing the list sizes
among the processes if instead of choosing an arbitrary list clement to be the

341

CHAPTER 14 Soring

% Lnsm'tedLls{ —

(a} b @

4th “quartec”

il

2nd “quarter”..

e

Lower "half *of u ”
lower “]mlf” : Ist quartc"l/
@ ' © ®

" Figure 14.2 High-level view of a paralle! quicksort algorithm. (a)
Initially the unsorted values are distributed among the memories of
all the processes. A single value is chosen as the pivot. The pivat is
broadcast to the other processes. {bj Processes use the pivot to
divide their numbers into those in the “lower half” and those in the
“upper half” Each process in the upper half swaps values with a
pariner in the lower half. {c) The algorithm recurses. A single value
from each “half” is chosen as the pivot for that “haif” and broadcast to
the other process respansible for that “half” {d) As in step (b),
processes use the pivot to divide their numbers. Upper pracesses
swap with lower processes, swapping smaller values for larger values.
(e) At this point the largest value held by process | is less than the
smallest value held by process i + 1. (f} Each process uses quicksort
to sort the elements it controls. The list is now sorted.

SECTION 14.4 Hyperguicksort e[%]

- pivol value, we chose a value more likely to be close to the true median of the
. sorted list. This insight is the motivation for the next parallel algorithm we will
cossider: hyperguicksort.

14.4 HYPERQUICKSORT

. 14.4.1 Algorithm Description

- Hyperquicksort, invented by Wagar | 108], begins where our first paralle! quick-
- sort algorithm ends, with each process using . qulcksort to sort ifs portion of the. .
. list. At this point condition 1 of the parallel sortedness: requ1rement has been met,
. but not condition 2.

" To meet the second condition, values still need to be moved from process
fo process. As in the first parallel quicksort algorithm, we will use a pivot value
~ ta divide the numbers into two groups: the lower “hal(” and the upper “half”
 Because the list of elements on each process is sorted, the process responsible for '!'_0
supplying the pivot can use the median of its list as the pivot value. This value is
far more likely to be close to the trae median of the entire unsorted list than the
~vatue of an arbitrarily chosen list element.

The next three steps of hyperquicksort are the same as the pardllel quicksort
"~ algorithm we already developed. The process choosing the pivot broadcasts it to
the other processes. Each process uses the pivot to divide its elements into a “low
list™ of values less than or equal to the pivot and a “high List” of values greater
* than the pivot. Every process in the upper half swaps its low list for a high list
provided by a partner process in the lower half,

Now we addan additional step to hyperquicksort. After the swap, each process
has a sorted sublist it retained and a sorted sublist it received from a pariner. It
merges the two lists it is responsible for so that the elements it controls are sorted.
It is important that processes end this phase with sorted lists, because when the
algorithm recurses, two processes will need 1o choose the median elements of
their lists as pivats.

After log p such split-and-merge steps, the original hypercube of p processes
has been dividedinto log p single-process hypercubes, and condition 2 is satisfied.
Since the processes repeatedly merged lists to keep their local values sorted
throughout the divide-and-swap steps, there is no need for them to call quicksort
at the end of the algorithm. Figure 14.3 gives an example of hyperquicksort in
action.

Hyperquicksort assumes the number of processes is a power of 2. If we
arrange the processes as a hypercube, we can set up the communication pattern
of the hyperquicksort algorithm so that all communications are between pairs
of adjacent processes (see Figure 14.4). For this reason hyperquicksost was a
particularly good fit for first-generation multicomputers, such as the Intel iPSC
and the nCUBE/ten, that organized processors as a hypercube.

7 |1 [50]53]95]36]67] 86 44] [ss]us]i] 1 [m]m]15]5] s

po {97]18] 6] & [s6]0s[17]w0] [58]76]54]39] 82

ales|si] m

[t] 48
{

p2 {1 [as[as] 0] 37s6[s5] T] 16i§]1‘iw »
T o
PO ﬁ|15%17[48149]{5(@_]_96!97{) @ﬁ Bl ﬂes‘ra{m g2| pi

b2 []sss[or|so[sa[en[ssfos] {st]se]sses[6]wefsl] o

{©) swap swap

po [8 16] ur] 36w [o]ar] 1 [s [1sTs] 23 [35]wa] i

67

p2 [a9]5053] 66756 o595 ﬁil@i@a P

(d)
PO [@WW\TI {5 [15] 162335]3] 4] 7]

swap

p [10]5053]6s)51 |5 s8[es] [ss]os |06 | o]]s1n2| B3 ‘

@ , PN)
P [8] ufie]i7] 15 1s]ss) 36) 44]a8|23] 35|39] 44| 47| 1

v [49]50]s1 53] 5e[s8[es|o 7] I76]sr]s]ss]9s]o6]o7] o

m{nls]glu 15[16]16] 17 ﬁz@[aﬁbé}ﬂ]ulwlm[m

Figure 14.3 lliustration of the hyperquicksort algorithm. In this example

32 elements are being sorted on four processes logically organized as a
two-dimensional hypercube. (a) Initially, sach process has eight numbers.

{b) Each process sorts its own list using quicksort. Process 0 broadeasts its
median value, 48, to the other processes. {c) Processes in the lower half of the
hypercube send values greater than 48 to processes in the upper half. The
pracesses in the upper half send down values [Bss than ar equal to 48, (d) Each
process merges the numbers it kept with the numbers it received. Pracess 0
broadcasts its median value to process 1, and process 2 broadcasts its median
value to process 3. {e) Processes swap values across anather hypercube
dimension. (f) Each process merges the numbers it kept with the numbers it
received. At this point the list is sorted.

SECTION 14.4 Hyperquicksort

oo &
oo oo

' Figure 14.4 Communication pattern of hyperduicksort aigorithm. In this
example there are eight processes, so the algorithm goes through log p=3
swap-and-merge steps.

'

14.4.2 Isoefficiency Analysis

Let’s determine the isoefficiency of hyperquicksort. We assume p processors are
sorting n elements, where n. 3> p. At the start of the algorithm each process has
o more than [#/p] values. The expected time complexity of the initial quicksort
~ step is ©[(n/p) log(n/p)]. Assuming that cach process keeps n/2p values and
transmits #/2p values in every split-and-merge step, the expected number of
comparisons needed to merge Lhe two lists into a single ordered Tist is r/p.
Since the split-and-merge operation s executed for hypercubes of dimension
log p, (log p) - |, ..., 1, 1he expected number of comparisons performed over
the split-and-merge phase of the algorithm is ©(n/p)log p, and the expected
number of comparisons performed during the entire algorithm is ®f(rn/ p)(logn+
log p)t.

If processes are logically organized as a d-dimensional hypercube, broad-
casting the splitter requires communication time ®(d). However, since n 3> p,
the broadcast titne will be dwarfed by the time processes spend exchanging list
elements. Assuming each process passes half its values cach iteration, the time
~ needed to send and reccive 11/2p sorted values to and from the partner process is
©(n/p). There are log p iterations. Hence the expected communication time for
the split-and-imerge phase is &(n log p/p). Since the original quicksort phase re-
quires no interprocess communication, this value is the expected commaunication
complexity of the entire hyperquicksort algorithm.

The sequential time complexity of quicksort is 7 logr. The communica-
tion overhead of hyperquicksort is p times the communication complexity, or
@(nlog p). Hence the isoefficiency function for hyperquicksort is

nlogn > Cnlogp = logn > Clogp = n > p°

Memory requirements for this problem are linear; that is, M(n) = n. So the
scalability function for hyperquicksort is p*'. The value of C determines the
scalability of the parallel system. If C > 2, scalability is low.

There i another factor that, when considered, makes the scalability of hyper-
quicksort even worse. Our analysis has assumed (hat the median element chosen

345

346

CHAPTER 14 Sorting

by a single process is always the true median, and that every process always
sends 1/(2p) elements to its partner and receives n/(2p) elements in return each
iteration, In reality, the median elements are not the true medians, and the work-
load among the processes becomes unbalanced. Processes with more elements
spend more time communicating and merging. The imbalance tends to increase as
the number of processors increases. That’s because each process’s portion of the
complete list is smaller. With a smaller sample, it is less likely that the process's
median value will be close to the true median value.

In short, hyperquicksort has two weaknesses that limit its usefulness. First, the
expected number of times akey is passed from one process to another is (log p) /2.
This communication overhead limits the scalability of the parallel algorithm. We
could reduce this overhead if we could find a way to'routé keys directly to their
final destinations. Second, the way in which the splitter values are chosen can
lead to workload imbalances among the processes. If we could get samples from
all of the processes, we would have a better chance of dividing the list elements
evenly among them. These two ideas are incorporated into our third and final
algorithm: parailel sorting by regular sampling.

14.5 PARALLEL SORTING BY
" REGULAR SAMPLING

Parallel sorting by regular sampling {PSRS), developed by Li et al. [74], has
three advantages over hyperquicksort. It keeps list sizes more balanced among the
processes, it avoids repeated communications of the keys, and it does not require
that the number of processes be a power of 2.

14.5.1 Algo'rithm Description

The PSRS algorithm has four phases (Figure 14.5). Suppose we'te sorting n keys
on p processes. In phase |, each process uses the sequential quicksort algorithm
to sort its share of the elemients (no more than [n/ p] elements per process). Each
process selects data items at local indices 0, n/ p*. 2n/p%, ..., (p = D(n/p*) as
a regular sample of its locally sorted block.

In the second phase of the algorithm, one process gathers and sorts the local
regular samples. It selects p— 1 pivot values from the sorted list of regular samples.
The pivot values are atindices p+ {p/2] — 1,2p+1p/2i - 1,....(p—)p+
Lp/2] in the sorted list of regular samples. At this point each process partitions its
sorted sublist into p disjoint pieces, using the pivot values as separators between
the pieces.

In the third phase of the algorithin each process i keeps its ith partition and
sends the jth partition to process j, for all j # i.

During the fourth phase of the algorithm each process merges its p partitions
into a single list. The values on this list are disjoint from the values on the lists of -
the other processes. At the end of this phase the elements are sorted.

SECTION 14.5 Parallel Soriing by Reguiar Sampling 37
@ [s]es[us]nlnle[nfafu] [ss]eas0]ss]ar]sr]12]an]s4] 53]o7]s4]s8]32]27]33]72])

Rk Lo [ulislao[ss]as[nforfes] [i2fui]s6fa0]s4]en[eo]s0]o7] @?}32{33\53]58]72134]97}

> 6 39 72 12 40 69 20 33 72

Bw® 36
@ [6]1s]is|mlaslas|mlot]os] [12fai]s]40]s4]s1]es]s0]o7]]20{27]32]332158 72]34]97]
@ [6Julis{efalolalnls] [n[]s 36]40154161159 5358 | {72]91]s3]80]57|72[84]7]
0 T6][uls[nj]n]n]n| 13613'9{40146]48‘53154158161169[727284]85]51[93]97{57]

Figure-14.5 This example illusirates how three processes would sort 27 elements using the PSRS
algorithm. (a) Original unsorted list of 27 elements is divided among three processes. (b} Each process sorts
its share of the list using sequential quicksort. {c) Each process selects regular samples from its sorted
sublist. A single process gathers these samples, sorts them, and broadcasts pivot elements from the sorted
list of samples to the other processes. {d) Processes use pivol elements computed in step (¢} (o divide their
sorted sublists into three parts. {g) Processes perform an all-to-all communication to migrate the sorted

sublist paris to the correct processes. (f) Each process merges its sorted sublists.

Li et al. [74] have proven that the largest number of elements any process
may have to merge in phase 4 of the PSRS algorithm is less than 2n/ p; that s,
twice its share of the elements. In actuality, experiments have shown that if the
elements are selected from a uniform random distribution, the largest partition
size is usnally no more than a few percent larger than 2/ p. the average partition
size.

14.5.2 Isoefficiency Analysis

Let's determine the iscefficiency of the PSRS algorithm, assuming p processors
are sorting 1 elements, where 1 3> p.

In phase 1, each process performs quicksort on »/p elements. The time
comptexity of this step is ©((n/p) log(n/ p)]. At the end of phase 1, a single
process githers p regular samples from each of the other p — | processes. Since
relatively few values are being passed, message latency is likely to be the dominant
term of this step. Hence the communication complexity of the gather is ©(log p)-

In phase 2 of the PSRS algorithm one process sorts the p” elements of Y.
This sort has time complexity ©(p? log p?) = G(p* log p). The sorting process
broadcasts p — | pivots to the other processes. Siace only p — 1 values are

348

CHAPTER 14 Sorling

being communicated, message latency is most likely the dominant term, and the B
communication complexity is ©{log p).

In phase 3 of the algorithm, each process uses the pivots to divide its portion
of the list into p sections. The processes then perform an all-to-all comtnuni-
cation. In the alt-to-all communication each process sends and receives p — |
messages. Assuming the list s1zes are balanced, the total number of elements sent
per process is about (p — 1)n/ p?, which is approximately a/ p. Since n 3> p, the
messages are long, and thg time needed to pass 4 message is dominated by the
time needed to transmi its elements, rather than its latency. Hence it makes sense
to structure the all-to-all communication so that each process sends and receives

— | messages. That way, every list element is passed only once—directly-to..

the process that needs it. We asstme that the processor infefconnection network
supports p simulaneous message transmissions. In other words, the capacity of
the interconnection network increases with the number of processors. (As we saw
in Chapter 2, the 4-ary hyperiree is an example of an interconnection network for
which the bisection width increases linearly with the number of processors.) With
this assumption, the overall communication complexity of this step is ©(n/ p).

In the fourth phase of the algorithm each process merges p sorted sublists,
Assuming the list sizes are balanced (which experiments show to be a reasonable
assumption), the time required for the merge is ©{(n/ p) log pl.

The overall computational complexity of the PSRS algorithm is

Oln/p)logln/p) + p*log p + (n/ p)log)

Since n 3> p, the fime needed to sort the regular samples is negligible. The
constant of proportionality for the merge step in phase 4 is higher than for the
quicksort in phase 1. Hence we need to include the ©[(n/ p) log p) term for this
phase. Hence the overall computational complexity is

Ol(n/ plog n+log P

Assuming the communication capacity of the parallel system increases linearly
with p, the overall communication complexity is

O(logp +n/p)

Again, since 2 3> p, the communication time is dominated by the time the pro-
cesses spend sending sublists to each other, so we can simplify the communication
complexity to

OW/p

The parallel overhead of this system is p times the communication complexity,
or B(n), plus p times the complexity of the parallel merge step, or ©(n log p).
The 1soefficiency function for the PSRS algorithm is

nlogn2Cn10gp=>logn_>_C10gp=>nzpC

SECTION 14.7 Key Terms
Since M{n) = n, the scalability function is

piip=p

This is the same scalability function we saw for hyperquicksort. However, the
PSRS algorithm is likely to achieve higher speedup than hypenquicksort because
it keeps the number of keys per processor well balanced.

14.6 SUMMARY

Sorting is an important utility on both serial and parallel computers. In this chapter
- - we have looked at three quicksort-based parallel algorithms suitable for imple-
- mentation on both multicomputers and multiprocessors.

Our first alporithm introduces the idea of repeatedly halving the lists and
exchanging values hetween pairs of processes until the processes control non-
overlapping sublists. Unfortunately, it docs not do a good job balancing values
AMONg PIOCESSes.

Hyperquicksort retains the idea of recursively splitting ard exchanging sub-
lists. However, by moving the quicksort step from the end of the algorithm to
the beginning, it allows a better choice of the pivot value. The design of hyper-
quicksort was inspired by the architecture of many 1980s multicomputers having
a hypercube processor organization. In these systems the time required to send a
. message was directly proportional to the number of “hops” between the sending
and the receiving processors. Hyperquicksort can be implemented so that all mes-
sages are between adjacent processors. Hence it optimizes communication. time
on hypercubes. Because hyperquicksort relies upon a single process to choose
the pivot value for the entire cube (or subcube), as the aumber of processors
grows, the quality of the pivot value degrades. As the pivot value strays from the
irue median, the workloads among the processes become imbalanced, fowering
efficiency.

Parallel sorting by regular sampling (PSRS) addresses the load imbalance
problem of hyperquicksort by choosing pivot elements from a regular sample of
elements held by all the processes. It has the additional advantage that its single
all-t0-afl communication can be implemented so that each element is moved only
once (rather than log p times). This is 2 good fit for contemiporary switch-based
clusters, in which the time nceded fo send a message is about the same for any
pair of processars.

T
14.7 KEY TERMS
external sort key record
hyperquicksort parallel sorting by regular salellite dala

internal sort sampling sorting problem

350

CHAPTER 14 Soriing

14.8 BIBLIOGRAPHIC NOTES

Parallel sorting algorithms have been the object of much study. In fact, an entire
book has been devoted to the topic: Pasalle! Sorting Algorithms by Akl [1].

In 1968 Batcher introduced a paralle] sorting algorithm called bitonic merge
18]. A network of /2 comparator elements can sort a list of # values in time
O(log” n). However, algorithms based on bitonic merge have poor scalability on
multiprocessors and multicomputers [44]. For this reason, we have not discussed
parallel implementations of hitonic mergesort in this chapter.

Various authors have proposed multiprocessor sorting algorithms that have
two phases: a phase in which each process quicksorts its own subset of the data,
followed by a phase in which processes cooperate to merge: their soried sub-
sets. References to such algorithms in the litcrature include work by Francis and
Mathieson [35], Quinn 194], and Wheat and Evans [l 13].

Quinn {94] discusses a parallel shell sorton UMA muluproccssors. Foxetal.
[33] and Grama et al. [44] also describe a paralle]l “shell sort” algorithm that is
not a strict parallelization of the sequential algorithm but has the same flavor.

14.9 EXERCISES

14.1 A stable sorting algorithm preserves the original order of keys with the
saine value. Is quicksort a stable sorting algorithm?
14.2 Assume we ate sorting four-byte keys on a multicomputer with 16
processors. Assume it takes 70 nanoseconds to compare two keys,
message latency is 200 psec, and message bandwidth is 107 byte/sec.
a. Perform a computational experiment fo determine the expected
maximum list size held by any process after the log p list-splitting
steps of the first parallel quicksort algorithm, for | < p < 16.In
gach case compare the expected maximum list size to [n/p].

b. Predict the speedup achievabie by this parallel computer using the
first parallel quicksort algorithm to sort 100 million keys on
1,2,..., 16 processors.

14.3 Assume we are sorting four-byte keys on a multicomputer with 16
processoss. Assume it takes 70 nanoseconds to compare two keys,
message latency is 200 psec, and message bandwidth is 107 byte/sec.

a. Perform a computatwnal experiment to determine the expected
maximum list size held by any process after the log p list-splitting
steps of the hyperquicksort algorithm, for 1 < p < 16. Ineach case
compare the expected maximum list size to [n/ p].

b. Predict the speedup achievable by this parallel computer using the
hyperquicksort algorithm to sort 100 million keyson 1.2,..., 16
PIOCESSOrs.

144

14.5

SECTION 14.9 Exercises 351

In the average case about 1.386 # logn — 2.846 n comparisons are
performed by sequential quicksodt sorting » keys [5]. Assume we are
sorting four-byte keys on a multicomputer. Assume it takes

70 nanoseconds to compare two keys, message latency is 200 psec, and
message bandwidth is 107 byte/sec. The PSRS algorithm typically

divides the keys nearly evenly, so that at the final step no process is

responsible for merging more than about {1.03 n/p] keys. Predict the
speedup achievable by this parallel computer using the PSRS algorithm
to sort 100 million keyson 1,2, ..., 16 processors.

Qur analyses of hyperquicksort and the PSRS algorithm assume that the
initial ordering of the n keys is'a random permutation of their sorted

“*% ~order; that is, cach of the 11 possible permutations is equally likely.

14.6

147

14.8

149

Suppose the initial list of keys is already sorted; that is, ag < @y < ...
< 1. Which of the two algorithms is less disrupted by this
permutation? Why?

In the last step of the PSRS algorithm, each process must merge p

sorted sublists, each of size aboutn/ p*. (The total number of elements

to be merged is typically about n/ p and guaranteed to be less than
2r/ p.) Describe the algorithm(s) and data structure(s) that can

accormplish the merge in time B{(n/p}log p].

a. Wrile a paralle| program implementing the hyperquicksort
algorithm.

b. Using your system’s vatues for y, A, and f#, predict the speedup your
program will achieve for various numbers of processors p and
various problem sizes #.) V

¢. Benchmark the program for the same combinations of p and .

d. What is the etror between the prediction and the experimental
results? [dentify the largest source of error in your speedap
formula.

2. Write a parallel program implementing the PSRS algorithm.

b. Using your system’s values for x, A, and §, predict the speedup your
program will achieve for various numbers of processors p and
various problem sizes n.

c. Benchmark the program for various combinations of p and n.

d. What is the error between the prediction and the experimental
results? [dentify the largest souree of error in your speedup formula.

This chapter has focused on paralle] implementations of quicksort, a

O(n logn) sorting algorithm. Another well-known, recursive,

O(nlogn) sorting algorithm is mergesort. Here is pseudocede tor

mergesort. It relies on function Merge, which merges two sorted

lists.

joo

352 CHAPTER 14 Soriing

14.10

14.11

14.12

Mergesort (list).

if length{list) = 1 then
return [ist

else -
part| « Mergesort {first half of /is)
part2 « Mergesort (remainder of fist)
return Merge (partl, part2)

endif

If you need a more detailed explanation of mergesort, consult Cormen

+ el al. [18), Baase and Van Gelder {5], or zmolher mtroduclorv analysisof

algorithms textbook.

a. Design a parallel version of mergesort for a mullicomputer. Make
these three assumptions. At the beginning of the algorithm’s
execution all unsorted values are in the memory of one processor. At
the end of the algorithm’s execution the sorted list is in the memory
of one processor- The number of processors p is a power of 2.

b. What is the complexity of this algorithm?

c. What is the isoefficiency of your parallel mergesort algorithm?

d. Write a program implementing your parallel algorithm. Benchmark
the program for various combinations of p and .~

Suppose the values of n keys are uniformly distributed in the interval
[0, k). Bucket sort divides the interval [0, k) into j equal-sized
subintervals called buckess. Each key is placed in one of the buckets,
based upon its value. Alter all the keys have been placed in buckets, the
keys in each bucket are sorted. Once the keys in each bucket are sorted,
the sequence is sorted.

a. Design a parallel version of bucket sodt. Initially the # keys are
distributed among the p processes. The interval [0, k) should be
divided into p buckets. In step 1, every process divides its n/ p keys
into p groups, one per bucket. In step 2, each process assumes
responsibility for one of the buckets. An afl-to-all communication
routes groups of keys to the correct processes. In step 3, each process
sorts the keys in its bucket.

b. What is the complexity of this algorithm?

¢. What is the isoefficiency of your parallel bucket sort algorithm?

d. Write a program implementing parallel bucket sort. Benchmark the
program for various combinations of p and n.

Write a parallel program to find the kth largest clement in an unsorted

list of n elements initially distributed among p processors.

A file contains r signed integers, each four bytes long. Write a parallel
program to determine which integer value eccurs most frequently in
the file.

CHAPTER

- The Fast Fourier Transform -

The meeting of two personalities is like the contact of two chemical
substances; if there is any reaction, both are transformed.
Carl Gustav Jung, Medern Man in Scarch of a Soul

15.1 INTRODUCTION

The discrete Fourier transform has many applications in science and engineering.
For cxample, it is often used in digital signal processing applications such as
voice recognition and image processing. A straightforward implementation of the
discrete Fourier transform has time complexity ©(n*). The fast Fourier transform
is a @(nlog) algorithm to perform the discrete Fourier transform, and it can be
panallelized easily.

In this chapter we illuminate how the discrete Fourier transform works by
using an example from speech recogrition. We formally present the discrete
Fourier transform and the inverse discrete Fourier transform. We move on to
present the fast Fourier transform algorithm and describe how to implement it on
a multicomputer.

15.2 FOURIER ANALYSIS

Fourier analysis studies the representation of continuous functions by a po-
tentially infinite series of sinusoidal (sine and cosine) functions. We can view
the discrete Fourier teansform as a function that maps a sequence over time
{f(k)} to another sequence over frequency {F(j)}. The sequence { f ()} repre-
sents a sampling of a signal’s distribution as a function of time. The sequence

353

CHAPTER 15 The Fast Fourier Transform

4 P R 5 T
3 - [-~ 204 Real part .
5 -=-=- Imaginary part
ho2r N i5¢; ¢
o &)
= @ i 9 yqpd H—
2 1k 4 d i '
5 ¢ 2 spi '
o .
n o0 % b I | i i
¢ [al D -t 3 -
5-lp @ ® 4 B H
g % ® g -4y : .
AR S E
.,1 10k 1 .
5] ° 1 1
_3J’ oe - -18 ! =
_a !] { ' 1 1 gpldl 1 [B |
0 1 2 3 4 5 6 1 3 35 5 3 1
Time Freguency
@ ~ ®
5 — Sample cerve 4 T THT T T T
«- s () }@, 1
: —— 2 sinfxl B L3 ;f 1 -
ﬁ 3 === -2 aiajex) "u‘ 2 Il \‘
o e n s cos B - 4
£ 4 2.5 cos{5x) oo é &
5- DS o i -
o1 A i 1 ﬁ\bk
0] 0 D] 1 L
0] i i N
- .) \
LY T 1R }5 \ §§ .
ET o3 B ? i
" =2 f? -2k \ ' .
@ 0 o !
-3 s W@ B
-4 A | i i i 1) { i 1] i
o 1 2 3 4 5 3 it 1 2 -3 4 5 8
Time Time
©) (d

Figure 15.1 Example of the discrete Fourier iransform. {a) A set of 16 data points
representing samples of signal strength in the time interval 0 to (but nol through) 2x.
{b) The discrete Fourier fransform yields the amplitudes and frequencies of the
constituent sine and cosine functions. (c) A plol of the four conslituent functions and
their sum, a continuous function. {d) A plot of the continuous function and the ariginal
16 samples.

(F ()} represents a distribution of Fourier coefficients as a function of frequency.
We can use {F(f)} to compute the sinusoidal components of the sampled signal.
Figure 15.1 illustrates this process. We begin, in Figure 15.1a, with a plot of
(f(k)}, 16 samples of signal sirength between time 0 and time 2. Figure 15.1b
is the plot of {#()}, a sequence of 16 complex numbers representing the fre-
quency distribution. From the nofizero elements of {F{j}] we can determine the
frequency of the terms generating the signal, where frequency means the number
of complete cycles the wave completes between time 0 and time 2. Nonzero
real components correspond to cosine functions; nenzero imaginary cormponents
correspond to sine functions. From Figure 15.1b we see that there are nonzero
real components with frequency 2 and 5 and nonzero imaginary components with

SECTION 15.3 The Discrete Founer Transform

frequency 1 and 2. Hence the function generating the éignal is of the form
51 8In % 4 €2 €08(2x) + 5 5in(2x) + ¢5 cos(5x)

Foreach frequency, we divide the amplitude shown in the left half of Figure 15.1b
by 8 (half of 16, the number of sample points) to determine the coefficients of the
various sinusoidal components. The frequency 1 component is 16i. Dividing 16
by 8 yields a coefficient of 2 for the function sinx. The frequency 2 component is

— 16i. Dividing —8 by 8 vields a coefficient of —1 for the function cos(2x),
just as the coefficient for the function sin(2x) is - 2. We use the same method
{o calculate that 0.5 is the coefﬁuent of lhe fuuctlon cos(3x). The four terms
generating the s1gnal are e

-2sinx — cos(2x) — 2 sin(2x) + 0.5 cos(5x)

InFigure L5.1cwe plot the four sinuscidal components and their sum, a continuous
function, and in Figure 15.1d we plot the continuous function against the sampled
data points.

Let’s took at how Fourier analysis is used in speech recognition. Most speech
analysis has been done by studying the spectral parameters of the speech signal.

Decomposing complex speech signals into periodically recurmrent sinusoidal compo-
nents is the central activity of signal processing work, and is justified by (1) sinusoids
being “natural signals” of linear physical (electronic) systems; (2) resonances being
prominent cues lo articulation configurations; (3) voice sounds being composed out of
harmonics of the voice fundamental frequency; and (4) the ear appearing to do some
form of spectral analysis. Also, sinusoids (and some other exponential signals) can be

added (“superimposed”) in linear systems without interfering with each other; thus -

the sinusoidal parts that we decompose the signal input into for frequency analysis
act as independent, “orthogonal signals” [67].

The discrete Fourier transform can be used to convert digitized samples of
human speech into two-dimensional plots (see Figure 15.2). The graph shows
detected frequencies as a function of time. Each narrow vertical strip shows the
amplitudes of the detected frequencies as shades of gray. As the person talks, the
speech signal changes, and so do the frequencies that make up the sigmal. Plots
such as this can be used as inputs to speech recognition systems, which try to
identify spoken phonemes through pattern recognition.

15.3 THE DISCRETE FOURIER TRANSFORM

Given an n element vector x, the discrete Fourier transform (DFT) is the matrix-
vector product F,x, where f; ; = o/ for 0 < i, j < n and e, is the primitive nth
root of unity. (For a review of complex number*;, refer to Appendix D.}

For example, to compute the discrete Fourier transform of the vector (2, 3),
we need to know w;, the primitive square root of unity. The primitive square root

355

as56

CHAPTER 15 The Fast Fourier Transiorm

Figure 15.2 Discrete Fourier transform of the waveform corresponding to “Angora
cats are furier. ..." The upper portion of the chart plots the strength of the input
signal as a function of ime. The lower portion plots frequency and amplitude as a
function of time. Each narrow vertical strip reprasents the discrete Fourier transform
of the waveform-using a moving 10 ms window within a 3 ms increment. The darker
the piot at some vertical position, the higher the amplitutie at that frequency. (Figure
courtesy Ron Cole and Yeshwant Muthusamy of the Oregon Graduate Institute.)

of unity is —1..The DFT of (2, 3), then, is

0 WP N 1IN 2\ (5
w%XO wéx‘l X] - 1 —l 3 - _1
Now let’s compute the DFT of the vector (1, 2, 4, 3). We will need to use the
primitive fourth root of unity, which is 7.

of of of of X 11 1 I1\/1 10
of of of of | [\ |1 i -1 <if|2] |-3-i
(z)(4] a)ﬁ w! a)g 5 2% I B) N B 4| 0
0,3 .6 6) \x3 1 - -1 i 3 =3+

w, Wy (@ 2]

Let'sput the DFT to use by returning to the example preseated in the previous
section. We have a vector of 16 complex numbers representing signal strength in
the time interval 0 to 2. To simplify the presentation we show each number to
only three digits of accuracy:

(—=0.500, —1.55, —0.939, 1.60. 3.00,3.51,3.77, 1.66,
—1.50, -2.70, -3.06, —3.02, —1.00, 0.736, 0.232, —0.250)

SECTION 15,3 The Discrete Fourier Transform:

The DFT of this vector is
{0, 16/, -8 — 164,0,0,4,0.0,0,0,0,4,0,0, —8 + 16i, —16i)

To determine the coefficients of the sine and cosine functions making up
this signal, we exarnine the nonzero elements in the first half of the transformed
sequence. (The terms at positions 9 through 15 are a reflection of the terms in
positions 1 through 7, with-the signs of the imaginary parts reversed.) If we
begin counting at 0, the real portion of ierm & is 8 times the coefficient of the
function cos(kx), and the imaginary portion of term & is 8 times the coefficient

of the function sin{kx). (Eight is half the number of sample pmms) Thus the
combination of sine and cosine functlom makmg up the i

25in(x) — cos(2x) — 25in(2x) +0.5 cm(s){)

15.3.1 Inverse Discrete Fourier Transform

Given an n element vector x, the inverse discnate Fourier transform (inverse
DFT) is | /nth the matrix-vector product F, Lx, where f71(ij) = w " for 0 <
i, j < n and w, is the primitive # root of umly

For example, the inverse DFT of the vector (10, =3 — i, 0, =3 +i) is

(] 0 0 0

R IR RS T T B 10
Lief o o o || {1 - -1 i} |-3-i
o) 0 o] of |] 41l -1 1 -l 0

1

< 36 9 \K i =1 ~i] \-3+i
ﬂ)g HJ43 {l)d6 (049 3

- 4 |
ifsl |2

41167 |4

3

15.3.2 Sample Application: Polynomial Multiplication

We can use the DFT and inverse DFT to multiply polynomials. First, we need to
understand what the DFT and inverse DFT do. The DFT evaluates a polynomial at
the 1 complex nth roots of unity. Let’s see why this is true. If f(x) = a,_1x" ' +
y2X" 4+ ax + @y is apolynomial of degree n — 1, and w is the primitive
ath root of unity, then

f(w‘:) ay
floy | _ Pl
f(w”_l) .1

because f{o') = ap + a0 + @ + -+ @, 0"V for 0 <i <n.
The inverse DEFT takes the values of a polynomial at the n complex nth roots
of unity and produces the polynomial’s coefficients.

357

358

CHAPTER 15 The Fast Fourier Transform

Now, suppose we want to multiply two polynomials

n--1 n—1

p(x) = Zafx" and g(x) = Zb,-xi
i=0 =

The product of these two polynomials of degree # — 1 is the (2n — 2) degree

- polynomial

-2 i

pix)gx) = ZZaJ i Jr

1—(] _,A=l)

gL

We can compute (hz, wefﬁc;ents of the fesullmg po]ynomlal p()q(x) by convo-
luting the coefficient vectors of the original polynomials.
For example, to multiply the two polynomials

px) =2x ~4x2 450 — |
g(x) =0+ 342 '

vielding
r(x) = agx® + as¥’ + agx* 1 o’ + i + @ x + 4

we convolute the coefficient vectors:

ag=2x1=2

as=2x24+ (-4 x1=0
a=2x3+(-4x24+5x1=3
a=2x24+ (-4 x3+5x2+(-N)x1=1
m=(-4) x24+5x34+{-)x2=5
a=3x2+(-)x3=7
gp=(-1)x2=-2

resulting in
r(x) =2+ 3 x4+ 5070 +7x =2

Another way to multiply two polynomials of degree n - 1 is to evalvate them
at the n complex nth roots of unity, perform an element-wise multiplication of the
polynomials’ values at these points, and then interpolate the results to produce the
coefficients of the product polynomial. Let’s apply this method to the previous
example.

Firstwe perform the DFT on the coefficients of p(x) We list the cnefﬁments in-
order from low to high. Since the polynomial has degree 3, the last four cocfficients

R N

e e e e b

20
— e e b e

1 1 1 1
o' o o o
o o @ &
o o o
o 1 ot |
o & o of
o ot 0
& o & &

I 1 1 1
o o O o
o ot o of
o o o o
o ol Wt
o o o o
ot o W |
o o o o

2
L12+4 95i
3+3i
~3.1248.95i
-12
~-3.12 - 8.95i
3-3i
.12 — .95

1 1 1 1
o o & o
of ot o 1
@ o o o
ot 1 ot]
@ o o o
& o o |1
o o © o

SECTON 15.3 The Discrate Fourier Transform

L1y
o o W
o o' of
o & W
ot 1 &
o o o
o o' &
o o o

> E,8. & —~

=
S
R

g &8 & & & —
— Tk W Tr3 la
E B & E B —

o

[=2)
g 8
eM

e
&

w

8
341 +4.83%
2
39+ 83i
0
59— 83

—~2i
341 -483%)

I 1 1
& o o
of o o
o o &
ot 1 @
o o o
o o of
(l)s (1)6 (1)7

are 0. To simplify the figure, we only show two digits past the decimal point,

1 2
5 142+ 95i
-4 343
2| |-3124895i
01=] i
0{ {-3.12-895
0 33
0) \ 11295

16
=6+ 6i
0

6~ i

16
—.76 + 8.66i
w6+ 6
~0.25 4 2,66
0
—9.25 — 2.66:

—6—6i
-.76 -- 8.66

—.76 + 8:66i -
—9.25 +2.66i
-9.25 — 2.66i

—.76 —8.66i

Next we perform the DFT on the coefficients of g(x). Again, we‘,z'tr,eonly s
showing two digits beyond the decimal point. o R

2 3
31 13414483
2 -2
(1]] 59483
0] 0
D 59~ 83
0 ~2i
0 341 —4.83i

Now we perform an element-wise multiplication of the two polynomials at
these eight points. :

In the final step we perform the inverse DFT on the product vector. Note that
we have replaced the negative powers of w with equivalent values expressed as
positive powers. For example, when w is the primitive 8th root of unity, w™! = o
and w™? = o®. Here is the inverse DFT:

-2

7
5
l
3
0
2
0

359

CHAPTER 15 The Fast Fowier Translorm

The vector produced by the inverse DET contains the coeffients of the product
polynomial in order from low to high. In other words,

=843+ S -2

15.4 THE FAST FOURIER TRANSFORM

Atthe end of Section 13.3 we demonstrated how we can use the DFT and inverse
DFT to multiply two polynomials, Why would we use this complicated algo-
rithm to perform convolutions or multiply polynomials, when these can be done
directly in time ©(n")? The reason is that.we-do not have to perform the DFT
and inverse DET using matrix-vector multiplication. An algorlthm with complex-
ity O{n logn) exists, and (luckily for us) it is amenable to parallelization. The
improved algorithm is called the fast Fourier transform (FFT).

The FFT uses a divide-and-conquer strategy to evaluate a polynomial of
degree n at the n complex nth roots of unity. To evaluate f(x), a polynomial of
degree n where n is a power of 2, the algorithm defincs two new polynomials
of degree /2. Function f1%(x) contains the elements of f(x) associated with the
even powers of x, while function f (x} contains the elements associated with
the odd powers of x:

- Y= gyt + @t - tax !
M=a +ax+ asti 4o+ an_]x"/z"1

Note that f (x) = fOx?) + xfM(x?), so the problem of evaluating f(x)
at the points %, @!,..., @' reduces to. evaluating /™ and f1 at (@))%,

f

@), .. (co"/2 1)2 and then computing f (x) = fw](xZ)-Hf[”(r

Halving Lemma Ifn is an even positive number, then the squares of the » com-
plex nth roots of units are identical to the n,/2 complex (r/2)th roots of unity.

Proof See Appendix D.

By the halving lemma, we know that the set of points (&), {w!)?, ...,
(@) consists of only n/2 unique values, In other words, to evatuate the
polynomial f(x) at the # complex nth roots of unity we need only evatuate
the polynomials f®(x) and f"')(x) at the n/2 complex (n/2)th roots of unity.
Hence our divide-and-conguer strategy will save us computations.

The most natural way to express the FFT algorithm resulting from the divide-
and-conquer strategy is to use recursion. Pseudocode for a recursive implemen-
tation of FFT appears in Figure 15.3. The time complexity of this algorithm is
easy to determine. Let T(r) denote the time needed to perform the FFT on a
polynomial of degree 1, where n is a power of 2.

T(n) =2T(n/2) + B(n)
= O(nlogn)

SECTION 15.4 The Fast Fowier Transiorm

Recursive_ FFT (g, n)

Parameier n Number of elements ina
aff...(n~1)] Coeflicients
Locll o, Primitive sith root of unity
7] Evaluate polynomial at this point
5% Even-nymbered coefficients
all Odd-numbered eocfficicnts
¥ Result of teansforin
W Result of FFT of &
Wi Result of FFT of al!}
if n = I then retum ¢
else -
B, « g
@« 1

a™ <« {al0),al2,... aln - 2]}
all — (@f1), «f3).... aln — 13
P < Recursive_ FFT (a'%, a/2)
"« Recursive_ FFT (a/!f, n/2)
fork +0ton/2~ | do
k] < YO+ o x K]
yik + 0/ < VO] - o x ' [k]
G WX,
endfor
retum »
endif

Figure 15.3 Recursive sequential implementation
of the fast Fourier transform algorithm (adapted
from Cormen et al. [18]).

While the recursive formulation of the FFT algorithm is (relatively) easy to
understand, we have two reasons for developing an iterative FFT algorithm. First,
a well-written iterative version of the FET algorithm can perform fewer index
computations and eliminate the second evaluation of f y/[k] every iteration of
the for loop. Second, it is easier to derive a parallel FFT algorithm when the
sequential algorithm is in iterative form,

~ Figure 5.4 illustrates the derivation of an iterative algorithm from the recur-
sive algorithm. In Figure 15.4a we see how the recursive algorithm transforins
a vector of four elements. Each rounded rectangle represents a call to function
fft. The vector to be transformed is inside the parentheses. The function keeps
dividing the vector in half and calling itself recursively on each half until the
vector size is 1. The DFT of a single value is that value. (Remember the FFT
is simply a fast way of performing the DET.) The heavy curved arrows show
the values returned from each invocation of the function. The function combines
the values received in two vectors of length 7 and returns a vector of length
2i. Performing the FFT on input vector (1, 2,4,3) produces the result vector
(10, -3 —4,0,~3+4).

361

362

CHAPTER 15 The Fast Fourier Transform

(10, -3-i,0, =345

i@ -] {2410 2-10)

Figure 15.4 Evolution of the fterative algorithm from the recursive algorithm.
{a) Recursive implementation of FFT. (by Determining which computations are
perormed for each function invocation. (c) Tracking the flow of data values.

In Figure 15.4b we look inside the functions and determine exactly which
operations ate performed for each invocation. The expressions of form a + b(c)
and @ — b{c) correspond to the pseudocode stalements

¥k« ¥k + o x yOik)
ylk+1/2) « yOk) — o x y"k]

Figure 15.4¢ tracks the movement of the data values. At the beginning of the
algorithm the vector elements are permuted, The element at index 7 of the input

SECTION 15.5 Paalel Program Design

Iterative_ FFT (a, n):

Parameter s Number of elements in o
afd...(x—1)] Coelficients

Local Primitive dth reot of unity
@ Evaluate polynomial af this peint
¥ Result of transform

y + Bit_Reverse_ Permutation(a)
forj « 1tologn
d+%
Wy ¢
-+ 1
fork + Gtod/2—1
form < kton—1stepd
1 —axym+d/2)
x « ¥)
YR < x -+
wWEk+d2«x—t¢
endfor
endfor
W 00Xy
endfor
fetum y

2rifd

Figure 15.5 [terative, sequential implementation
of the fast Fourier transform algerithm {adapted
from Cormen et al. {18]).

vector is moved to index rev(i), where rev(i) represents the bits of 7 in reverse
order. Value-2, initially at index 01, is moved to index 10. Value 4, in‘itially at
index 10, is moved to index 01. Values 0 (at index 00) and 3 (at index 11) stay
. put. To the first stage the algorithm is finding the DFT of individual values, and it
simply passes the values along. In each of the remaining stages the computation
of a new value depends upon two values from the previous stage. The data flow
_arrows form butterfly patterns.

We can derive the iterative algorithm directly from Figure 15.4. After an initial
permutation step, the algorithm will iterate log 7 times. Eachiteration corresponds
to 2 horizontal layer in Figure 15.4c. Within an iteration the algorithm updaes
values for each of the 7 indices. The algorithm, illustrated in Figure 15.5, has the
same time complexity as the recursive algorithm: @{(n logn). The use of tempo-
rary vartable ¢ cuts the number of complex number multiplications nearly in half.

15.5 PARALLEL PROGRAM DESIGN

15.5.1 Partitioning and Communication

The efficient iterative algorithm is our starting point for designing a parallel FI'T
function suitable for implementation on a multicomputer. We'll use a domain

364

CHAPTER 15 The Fast Fourier Transform

XAN/SL N/
(an DY AED
__/ AX A\N\//
\/ X

VAR §.F.

CHYA XK o)
X X 000
(a0 N/ DD
(>N

/
[\ AN AN
A [\

)
VANV
< a7 A7)

Figure 15.6 Task/channel graph for the FFT algorithm when n = 8. Tasks are
represented by long, rounded reclangles so that the channels needed at each
stage of the algorithm can be distinguished.

N
|
<]
™~
=
e’

>

<

P>
N

decomposition, associating primitive task with each clement of the input vector
and the corresponding element of the output vector ¥ (Figure 15.6).

The first step of the algorithm is to perform the permutation of vector u. Each
clement a[i] is copied to ¥{j), where ; is the index found by reversing the bits
of i. For example, when n = §, we have

001 - 100
010010
011 > 110

110 = ¢11
11— 111

v
We draw chanaels for this initial communication.

The mzin loop of the function has logr iterations. During each iteration,
each task computes its new value of y[k] from the previous values of y[k] and
either y[k +m/2] or y{k — m/2]. The task/channel graph illustrates the butterfly
communication pattern.

© SECTION 15.5 Parallel Program Design

' 15.5.2 Agglomeration and Mapping

Agglomerating primitive fasks associated with contignous elements of the vector
eliminates some of the communication steps. For example, if # = 16and p =4,
process 0 has coefficients with subscripts 0, 1, 2, and 3; process 1 has coefficients
with subscripts 4, 5, 6, and 7; and 50 on,

We can draw another task/channel diagram that indicates the communi-
cation pattern between the processes. In this new diagram (Figure 15.7), each
agglomerated task (process) is represented by a gray rectangle. Every process
controls two arrays of complex values. The first array, a, contains a contiguous
- group of input coefiicients. The second aray, y, holds intcrmediate values. At
the end of the computation, atray y contains a contiguous group of transformed
values.

The parallel algorithm has three phases. In the first phase the processes per-
mute the #'s. This is an example of an all-to-all communication. In the sec-
ond phase the processes perform the first logn — log p iterations of the FFT
by performing the required multiplications, additions, and subtractions on com-

R plex numbers. No message passing is required. In the third phase the processes -

perform the final log p iterations of the FFT by swapping v's and perform-
ing the requisite multiplications, additions, and subtractions. Think of the pro-
cesses as being organized as a logical hypercube. During each of the final log p
iterations, pairs of processes swap values across a different dimension of the
hypercube,

15.5.3 Isoefficiency Analysis

Each process performs an equal share of the computations. Since the computa-
tional complexity of the sequential algorithm is ©{nlogn), the computaticnal
complexity of the parallel algorithm is O(n logn/p).

Each process controls at most [#/p] elements of 4. We assume the pro-
cesses are organized as a logical hypercube. The all-to-all communication step
is implemented as a scries of swaps across each hypercube dimension; it has
time complexity O[{n/p) log p]. There are log p iterations in which each pro-
cess swaps about n/ p values with a partner process along one of the hypercube
dimensions. The total time complexity of these swaps is ®[(n/p) log p]. With
these assumptions, the overall communication complexity of the algorithm is
Bl(n/p) log p1.

Let’s determine the isoefficiency of the parallel program. The sequential
algorithm has time complexity & (n log n). The parallel overhead is p times the
communication complexity. Hence the isoefficiency function is

nlogn > Cnlogp = logn > Clogp = n > p©

The scalability of the FFT algorithm is similar to the scalability of the hyper-
quicksort and PSRS algorithms.

365

368

CHAPTER 15 The Fast Fourier Transform

15.3

154

For each of ihe following vectors, show the result of applying the DIFT
toit.

a (7,11

b. (13,17, 19,23)

¢ (2,1,3,7,5,4,0,6) :

For each of the following vectors, show the result of applying the inverse

© - DFTtoit.

et o - e A

155
15.6
15

15.8

159

a (3.-2

b (10, -2+2%,-2,-2-2i)

¢ (14,3 =4i, 1 -4, -1+340,-1 35144, -3+ 40)
Implemént a parallel FFT program based on the design developed in this
chapter. Benchmark your program for various values of n and p.
Implement a serial program implementing the inverse EFT algorithm.
lmplement a parallel program implementing the inverse FFT algorithm.
Benchmark your program for various problem sizes on various numbers
of processors.

Excluding the initial all-to-all communication, the body of the fast
Fourier transform algorithm exhibits a butterfly communication pattern.
Name a parallel algorithm described in an earlier chapter that also has a
butterfly communication pattern. ‘

The scalability of the FFT algorithm is similar to the scalability of the
hyperquicksort algorithm. Explain the similarities between the two
algosithms.

‘Combinatorial Search

Attempt the end, and never stand to doubt; ' .
Nothing’s so hard but search will find it out.
Robert Herrick, “Seek and Find,” Hesperides .

16.1 INTRODUCTION

Combinatorial algerithms perform computations on discrele, finite mathemati-
cal structures [97]. Combinaterial search is the process of finding “one or more
optimal or suboptimal solutions in a defined problem space” [109] and has been
used for such diverse problems as:

laying ont circuits in VLSI to minimize the area dedicated to wires
planning the motion of robot arms to minimize total distance traveled
assigning crews to airline Aights

proving theorems

playing games

There are two kinds of combinatorial search problems. An algorithm to splve
a decision problem attempts to find a solution that satisfies all the constraints.
The answer to a decision problem is either ves, meaning a solution exists, or no,
meaning a solution does not exist. Here is an example of a decision problem: “Is
there a way to route the robot arm so that it visits every drill site and moves no
more than |5 meters”™ An algorithm that selves an optimization problem must
find a solution that minimizes (or maximizes) the value of an objective function.
Here is an example of an optimization problem: “Find the shortest route for the
robot arm that visils every dnll site.”

This chapter discusses four kinds of combinatorial search algorithms nsed
to solve decision and optimization problems. These algorithms are divide and

369

- 370

CHAPTER 16 Combinatorial Search

(a)

Figure 16.1 A search prob)
cyARANDIOR e

) R

L be Eepresented by atree. (a) An AND tree. (b) An OR tree.

conquer, backtrack, branch and bound, and alpha-beta search. Different algo-
rithms explore different kinds of search irees. In all cases the root of the search
tree represents the initial problem to be solved, but the nonterminal nodes vary
according to the kind of search tree. An AND node represents a problem or sub-
problem that is solved only when atl its children have been solved; an OR node
represents a problem or subproblem that is solved when any of its children has
been solved. Every nonterminal node in an AND tree is an AND node (Fig-
ure_16.1a). The search tree corresponding to a divide-and-conquer algorithm is
an AND free, since the solution to a problem is found by combining the solutions
to all its subproblems. Every nonterminal node in an OR tree is an OR node
(Figure 16.1b), Backtrack search and branch-and-bound algorithms explore OR

- trees. An AND/OR tree is characterized by the presence of both AND nontermi-

nal nodes and OR nonterminal nodés (Figure 16.1c). Game trees are examples of
AND/OR trees.)

16.2 DIVIDE AND CONQUER

Divide and conquer is a problem-solving methodology that invol ves partitioning
a problem into subproblems, solving the subproblems, and then combining those
solutions into a solution for the original problem. The methodology is recursive:
that i3, the subproblems themselves may be solved by the divide-and-conquer
technique. The quicksort algorithm of Chapter 14 is an example of the divide-
and-conguer technique.

The divide-and-conquer problem solution can be represented by an AND
tree, since the solution Lo any problem represented by an interior node requires
the solution of all its subproblems, represented by the children of that node. In
other words, every node in the tree must be examined.

Divide-and-conquer algorithms are more easily implemented on centralized
multiprocessors than on multicomputers. In a centralized multiprocessor the list
of unsolved subproblems can be kept in a single stack manipulated by all the
processors. Processors needing work can access the stack to retrieve an unsolved
subproblem. Processors with extra subproblems can put them back in the stack for

SECTION 16.3 Backirack Search

other processors to retrieve. The central stack is an effective workload-balancing
mechanisin, though it eventually becomes a bottleneck as the number of proces-
$0TS increases.

In a multicomputer, the lack of a shared memory means subproblems must be
distributed among the memories of the individual processors. Two fundamentally
different designs emerge. [u the first design the original problem and the final
solution are stored in the memory of a single process. The parallel search of an
AND tree can be divided into three phases. In the first phase, problems are divided
and propagated throughout the parallel computer. For most of the first phase there
are fewer tasks than processors, and processors are idle until they are given a
problem to divide and propagate. In the second phase all the processors stay busy
computing. In the third phase there are agaift fowr SRR A TrOCESEOrS, dnif some
PIOCESSOLS combrine restlts while other processors are-idle. Hence the maximum
speedup achievable is limited by the propagation and combining overhead.

In the second multicomputer design, both the original problem and the
final solution are distributed among the memories of the processors. This de-
sign eliminates the starting up and winding down phases in which only some
of the processors are active. It also allows the problem size to increase with the
number of processors. We used this approach when developing parallel quick-
sort algorithms in Chapter 14. As we saw in our discussion of paraile! sorting
algorithms, it can be difficult to balance the workloads of the processors when
subproblems are distributed among their memories.

16.3 BACKTRACK SEARCH

Backtrack is a method for solving combinatorial optimization problems that
relies upon depth-first search to consider alternatives. Given the original problem
{the root of the state space tree), backtrack generates its children and chooses
one of them as the place to continue the search. It recursively applies the same
methodology at the selected node. If the search reaches a node that cannot be

expanded (i.e., 2 “dead end”), or if all of its children’s subtrces have already been *

explored, then control backtracks to the previous node.

16.3.1 Example

Consider the problem of generating a crossword puzzle. Given a blank crossword
puzzle (Figure 16.2a) and a dictionary of words and phrases, our goal is to assign
letters to blank spaces so that every horizontal row and vertical column of two or
more letters contains a word or phrase from the dictionary (Figure 16.2b). This is
an example of adecision problem: we arc answering the question, “Is there a way
to fill in this particular crossword puzzle pattern with words from this particular
dictionary?”

Each number in the blank crossword puzzle corresponds to the beginning of
a horizontal word, the beginning of a vertical word, or both. We'll use the phrase
“incomplete word” to refer to a word that has not yet been completely determined;
that is, a word with at least one unassigned character in it,

an

372

CHAPTER 16 Combinatorial Search

EERRE T Js e RERE 1+ 5 s
UiM|FP GlI1 N

7 B 7 8
PO E E|{W|E

9 1t 0
RKIRIOGIW

1

OB
2 B u {15 w5
DIL1L]GiY

16 17 16 %
S$1A]C LIiY{E

19] 18 19
- It N K S{PiA

(@) b

Figure 16.2 The crossword puzzle problem is o create a crossword puzzle
solution from a dictionary of words and phrases and a blank puzzle template.
(a) The blank puzzle template. (b) A crossword puzzle salution. This salution
was generated by Crossword Weaver (www.CrosswordWeaver.com).

'fo fill in the puzzle, we use the following search strategy: We identify the

Jongest incomplete word in the puzzle and look for a word or phrase in the

dictionary of that length. If there is more than one word or phrase that fits, we
choose one of them arbitrarily. At each subsequent step we locate the Jongest
incomplete word that has at least one letter assigned and find a dictionary word of
the correct length that matches the characters already assigned. Again, if there is
more than word or phrase that would work, we select one arbitrarily. We continue
in this fashion until no incomplete words remain.

With these eriteria we can define the order in which we will try to ill in the
incomplete words. Here is one word ordering that fulfills our criteria: 3 DOWN,
9 ACROSS, 4 DOWN, 12 ACROSS, 1 DOWN, 2 DOWN, 5 DOWN, 6 DOWN,
10 DOWN, 12 DOWN, 13 DOWN, 14 DOWN, 15 DOWN.

The different choices for the various word assignments can be represented
by a state space tree. At the root of the tree is the empty crossword puzzle. The
children of the root represent all the seven-letter words that can be used to fill the
incornplete word 3 DOWN. Each node in the tree represents a possible dictionary
clement assignment to an incomplete word, given all the assignments that have
been made so far. The tree has depth d if J assignments must be made to fill all
the blank squares. Since any tre¢ leaf at depth 4 represents a valid solution to the
crossword puzzle problem, a state space tree is an example of an OR tree.

We can look for solutions to the crossword puzzle problem by performing a
backtrack search of the state space tree, It has this mame because if at any point
in the search our choices lead us fo a “dead end,” we backtrack to the previous
level and consider an altemate choice.

Let's see how this search would work for the blank crossword puzzle of
Figure 16.2. Figure 6.3 accompanies the description that follows.

SECTION 16.3 Backirack Search 373

5 [6
il
23 W[5
I [
- [[L
U {2 3T 4 15 Te ‘ -
7 R [}
51 o 1]
"L)
A C 14 15
Jm E 17

[§ 156 1 [3T 75 T4
7 R 8 7 X [
clulol®]elr|s| [cirfolo|ulelr
"L L
e s 16 115 EEEN 15
% E 7 16 e 7
8 Y L I3 »]]
N JT AT 5 s
7 R %
clrioflulelT
AR
SN p 4B
7 £ g
[Y N

Figure 16.3 Stari of a backtrack search of the state
space free for an instance of the crossword puzzle
problem.

374

CHAPTER 16 Combinatorial Search

Our first step 1S to find a scx;en-leﬁéf Twﬁd torfl’)OWNLookmg in the

dictionary for a seven-letter word, we find TROLLEY.

Next we consider 9 ACROSS. Looking in the dictionary for a seven-letter
word whose third letter is O, we find CLOSETS.

At the third level in the state space tree we consider 4 DOWN. We need a
seven-letter word whose third letter is E. Suppose we can’t find such a word in
our dictionary. in this case, we must backtrack, and we look for another choice
tor 9 ACROSS. Another seven-letter word whose third letter is O is CROQUET.

Having filled in 9 ACROSS, we return to 4 DOWN, looking for a seven-
letter word whose third letter is U. The dictionary word TRUMPED meets these
crileria. T S o -

The search coatinues until 5o incomplete words remiain ot all possible alter-
natives have been exhausted for each word.

16.3.2 Time and Space Complexity

If the average branching factor in the state space iree is b, then searching a tree
‘of depth k requires examining

kit

b-1
nodes in the worst case. In other words, backtrack search of a state Space tree
takes exponential time in the worst case.

However, the amount of memory required by backtrack is linear in the depth
of the search, or ©(k), since only the currently chosen altemative at each level
of the state space tree needs to be maintained in memory. Heace the size of the
problem that can be solved by backtrack search is limited by the speed of the
computer, not its primary memory capacity.

[+h+H+- +H = +1= 00

16.4 PARALLEL BACKTRACK SEARCH

Since we are dealing with an algorithm requiring exponential time in the worst
case, there ought to be ample opportunities for parallelism. How can we pertorm
backtrack search in parallel?

An obvious strategy is to divide the search of subtrees among the processes.
See Figure 16.4. Suppose the tree has branching factor & and the number of
processes p = b*. Each process searches the state space tree to level &, and then
explores only one of the subtrees rooted by a node at level k. If the depth of the
search d is greater than 2k, the time required for each process to traverse the first
k levels of the state space tree is relatively small, and speedup can be high.

If there is no & such that p = b, the sequential search can go to level m in
the state space tree, and each process can explore its share of the subtrees rooted
by nodes at levef m.

For example, suppose the branching factor of a state space tree is 3, and we
are searching 10 levels deep. Suppose further we want o perform the search with

e g

SECTION 16.4 Paraliei Backirack Search

Subiree
searched
by
process 3

Figure 16.4 If p = b*, then every process can search the state space tree to
Jevel k and then explare only ane of the subtrees raated by a node at level k.

- This is a good strategy if all the subtrees have the same number of nodes; itisa
poor sirategy if there are significant differences in the sizes of the subtrees.

five processes. If the parallel scarch starts at level () (the root) of the state space
tree, there is only one node to search, and only one process has work to do. The
resulting speedup of the search is 1.

If the parallel search starts at level 1 of the state space tree, there are three
nodes to search, and three processes can be occupied. The time needed to expand
the root node is negligible, and the resulting speedup is very close to 3.

If the parallel scarch starts at level 2 of the tree, there are nine nodes
search. Four processes examine two subtrees each,.and ene process examines the
remaining subtree. The resulting speedup is very neatly 9/2 = 4.5.

There is no value of k such that 3¢ is a multiple of 5. However, as we go
deeper into the tree, we generate a greater number of nodes, which means we
can divide them up more evenly among the processes, improving speedup. On
the other hand, going deeper into the tree means each process is spending more
time generating the top levels. This is a redundant computation that increases the
sequential portion of the overall computation. Figure 16.5 plots best-case speedup
against the depth in the state space tree at which the parallel search begins. As you
carl see, the best-case speedup stays reasonably high throughout a broad range of
depths.

Unfortunately, in most cases the state space tree is not balanced. Some sub-
trees have many more modes than others. For example, in the case of the crossword
puzzle problem, you can imagine that some early word cheices would lead to dead
ends and backtracking much sooner than other choices. Hence we need an algo-
rithin that works reasonably well even when the tree is imbalanced.

One approach is to make the sequential search go deep enough in the state
space trec that each parallel process is responsible for examining a large number
of subtrecs. This strategy is based upon a probabilistic argument; I each process
handles a large number of subtrees, then the differences in the total time spent per

375

376 CHAPTER 16 Combiratorial Search

Figure 16,5 Maximum speedup)
achievable by five processes performing -
backtrack search of a state space tree with
branching factor 3 and depth 10, as a

_ lunction of the tree level at which the nodes

* are divided among the processes.

3“ ‘“‘ K‘Hl 101 u

f

Figure 16.6 Parallel search of an unbalanced state space free. Allocating a
large number of subtrees to each process increases the probabifity that each
process will search about the same number of nodes. In this example subtrees
are allocated in an interleaved fashion to four processes. The nodes and subtrees
explored by process 0 are black.

process are more likely to be smaller than if each process handles oaly a small
number ol subtrees. ©

Figure 16.6 illustrates how this strategy could be'used to divide the search of
an unbalanced state space tree among four processes. Process p; searches the state
space tree to Jevel 3. [t numbers the nodes at level 3 and continues the search only
from those nodes whose numbers are equal to p; modulo 4. The figure highlights
in black the nodes and subtrees explored by process (0.

SECTION 16.5 Dishibuted Termination Detection

“Glohal Variables:
cutoff_counr — Count of nodes at cutoff depth
curoff. depth — Depth at which subtrees are divided among processes
depth — Depth to which state space tree is searched
maves - Records position in search tree (i.e., moves made so far)
id— Process rank
7 — Number of processes

Parallel_Backtrack (board, level):
if level = depth then
if board represents a sofution Lo the problem then
Print_Salution (moves)
endif
else
if level = cutoff _depth then
cutaff_count « cutgff_count +1
if cutoff_count mod p # id then
fefunt
endif
endif) .
possible_moves « Count_Moves(board)
for | 1 to possible_moves do
Make_Move (baard, [)
movesievel] +-i
Parallel_Backtrack (board, level+1)
Unmake_Move (board, i)
endfor
endif
tefurn

Figure 16.7 Parallel backtrack search aigorithm that
divides subtrees among processes. This algorithm prints
every solution.

Figure 16.7 gives pseudocode for a paralle] backtrack search algorithm based
on this approach. Every MPY process initializes vaniable board 1o represent the
unsolved problem. It sets level to 0, becanse the search begins at the root of
the state space tree, which is at level 0. It also assigns 0 to cutoff_count, the
count of nodes the process has encountered at level cutoff_depth in the state
space tree. Every process then calls function Parallel_Backtrack with actual
parameters board and fevel. Processes search (he entire tree to level cutoff depth,
Each process performs a backlrack search on its portion of the subtrees rooted at
level cutoff _depth. :

16.5 DISTRIBUTED TERMINATION
DETECTION

Note that each process executing the paralle] backtrack algorithm of Figure 16.7
~ only terminales after il has searched its portion of the entire state space tree to
the specified depth. In other words, this algorithm finds every solution. When

377

378

CHAPTER 16 Combinalorial Search

using backtrack to solve an optimization problem, the processes must find every
solution and then select the optimum solution.

However, at other times we only want a single solution. In these circum-
stances we would like afl of the processes to halt as quickly as possible after
one process has found a solution. How do the processes know when to stop
searching? If we want processes to halt before they have completely searched
their portions of the state space tree, a process that finds a solution must send a
message—either directly or indirectly—to the other processes, and all processes
must periodically check for messages. One way to add a periodic message check
is to have each process look for a message every time the search reaches a par-
ticular level, such as cutoff_depth. Function MPI _Iprobe is a good choice to

implement this message check, because it allows a process to determine, without -

blocking, if a message has arrived. It is easy enough to add this check to fanction
Parallel_Backtrack.

A simple (but incomect) approach to terminating the program is to have a
process that finds a solution send a message to all of the other processes. A
process halts after any one of the following events has occurred:

m [t has found a solution and has senl 2 message to all of the other processes.
m It has received a message from another process.
m [t has completely searched its portion of the state space free.

Unfortunately, if a process calls MPT_Finalize before another, active
process tries to send it a message, we get a run-time error. The approach we have
suggested is subject to this error. How could this happen?

Here is one scenario that could lead to this particular run-time error. Sup-
pose process.A. finds a solution, sends messages to the other processes, and calls
MPI_Finalize. Meanwhile, process B finds another solution and sends mes-
sages Lo the other processes before it receives the message from process A.
If process B tries to send a message to process A after process A has called
MPI_Finalize, we will get arun-time error.

‘We must ensure that all processes are inactive and no messages arc en foute
before we allow he processes to call MP1_Finalize. This is called the dis-
tributed termination detection problem. About 20 years ago Dijkstra, Seijen,
and Gasteren invented an algorithm to solve this problem 21].

Figure 163 illustrates their algorithm. The processes are organized into a
logical ring (Figure 16.8a). One process {in this example process 0)) probes the
state of the system by passing a token to its successor in the ring. When the token
returns to process 0, it will be able to determine if it is safe for all the processes
Lo terminate. ;

Each process has a color and a message count. When a process begins exe-
cution, il is white and its message count is zero. A process turns black when it
sends or receives a message. When a process sends a message it increments its
message count, and when a process receives a message it decrements its message
count. »

SECTION 16.5 Dislributed Terminalion Detection 379

. Figure 16.8 Dijkstra et al’s algorithm to solve the distributed termination
problem. (a) A token (square) is passed around a logical ring of processes
(circles). (b) Process 0 initiates a probe. (c) An intermediate process
maodilies the token and passes it along. (d) The loken returns to process 0.

The idea behind Dijkstra et al.’s algorithm is that if all processes are white 1;-—0
and the suim of all message counts is zero, then we know there are no messages
pending in the system, and we can terminate the processes.

The token being passed also has a color and a count. When process 0 initiates
the probe, the token is white, and its count is 0 (Figure 16.8b).

Now let’s look at what happens when an intermediate process handles the
token {Figure 16.8c). Wiien a process receives the token, il adds its message
count to the count of the token. If the process is actively processing, it holds
the token until it is inactive. At this point if the process is black, it changes the
token to black. Otherwise, it does not change the color of the token. The pro-
cess changes its own color to white and sends the updated token to ifs successor
process.

380

Figure 16.9

Goal state of the
8-puzzle, a
simplified version of
the 15-puzzle
inverted by Sam
Loyd in 1878.

CHAPTER 16 Combinatorial Search

Eventually the token returns to process 0 (Figure 16.8d). If the token is white,
the process is white, and the sum of the token’s count and process ()’s message
count is 0, then the system is quiescent, and it is safe to terminate the processes.
(This can be done by having process 0 send a message to the other processes,
telling them to exit.} Otherwise, process () must probe the ring of processes again.

For our paratlel backirack algorithm, we can implement distributed termi-
nation detection in the following way: All processes begin searching with their
message counts set to zero. When a process finds a solution, it sends a “sofution
found” message to process O and ses its message count to 1. When process 0 re-
ceives a “solution found” message, it decrements its message count. After finding
a solution or receiving a “solution found” message from another process, process
0 initiates a distributed termination detection probe by initializing the token and
passing it to its successor process in the ring.

If a process is actively searching, it stops scarching as soon as it receives a
token, because receipt of a token means another process has found a solution.
Hence we do not have to worry about a process hanging on to a token until
it is inactive. Intermediate processes simply change the color of the token, if
appropriate, modify the count associated with the token, and pass it on. Note that
processes do not decrement or increment their message counts when receiving o
sending a token.

When process 0 receives a token and determines the system is quiescent,
it sends a “termination” message to the other processes and then calls MPI_
Finalizeand exit.The other processes cancall MPI_Finalizeand exit
as soon as they receive a “termination” message.

16.6 BRANCH AND BOUND

The branch-and-bound method is 2 variant of backtrack that takes advantage of
information about the optimality of partial solutionsto avoid considering solutions
that cannot be optimal.

16.6.1 Example

As an example of the branch-and-bound technique, consider the 8-puzzle (Fig-
ure 16.9), a simplified version of the well-known 15-puzzle invented by Sam Loyd
in 1878. The 8-puzzle consists of eight tiles, numbered 1 through 8, arranged on
a3 x 3 board. Eight locations contain exactly one tile; the ninth location is empty.
The object of the puzzle is to repeatedly fill the hole with atile adjacent to it in the
horizontal or vertical direction until the tiles are in row-major order. Unlike the kid
at summer camp who is happy to slide tiles about uatil they are correctly ordered,
our goal 1 o solve the puzzle in the least number of moves—an optimization
problem.

We can use a state space tree to represent the board positions that can be
reached from the initial position (Figure 16.10). One way to solve the puzzle is
to pursue a breadth-first search of this staie space tree until the sorted state is
discovered. However, the goal is to examine as few alternative moves as possible.

SECTION 16.6 Branch and Bound

Figure 16.10 A portion of the state space tree corresponding fo the searchiora
- solufion to a particular arrangement of the 8-puzzle.

We can achieve that goal and examine far fewer tree nodes if we associate with
each state an estimate of the minimum number of tile moves needed to solve the
puzzle, given the moves made so far.

One such function adds the number of tile moves made so far to the Manhattan
dislance between each out-of-place tile and its comect location (Figure 16.11).
Given such a function, we can concentrate our search on the portions of the state -
space tree that contain the most promising moves. We always continue our search
from the node having the smallest function value. If two or more nodes have the
same value, we examine the node farthest from the root of the state space tree.
If there are two or more nodes the same distance from the root with the same
function value, we just pick one arbitrarily.

The branch-and-bound search of an example 8-puzzle appears in Figure 16.12.
Let’s look at how we assign to each node in the state space tree a lower bound on
the cost of a solution going through that node. The first node we'll examine is the
root of the tree. Looking at the state of the puzzle at the root, we see that tiles 2,
3,5, and 6 are out of place by 1, 2, [, and 1 positions, respectively (calculating
the Manhattan distances). The sum 1 +2+ 1 + | = 5. Since 0 moves have been
made so far, a lower bound on the cost of any solution is five moves. In other
words, there is no way to solve the puzzle in fewer than five moves. (Since 5 is a
lower bound, not an exact bound, it may take more than five moves to solve the
puzzle.) 3

Now let’s consider the left child of the root node. Tiles 2, 3, and 5 are out of
place by one, two, and one positions, respectively. The sum [+2 4+ 1 = 4. Since
one move has been made so far (the node is one level deep in the state space tree),

a lower bound on the cost of any solution using this first move is 5.

Finally, let's consider the left child of the left child of the root node. Tiles 5,

2,3, and & are out of place by a total of five positions. Since two moves have been

382

CHAPTER- 16 Combinatorial Search

I
Lt
2z —1—90— 12
N
3— 21— 1 —2—3
O
4 — 3 —2—1—4

Figure 16.11 The Manhattan
distance between a pair of points is
the shorlest path between those
points when all movement must be
in either the horizontal or verfical
direction. This figure illustrates the
Manhattan distance from the
central intersection. (Imagine

. Traveling from one intersection to
another along a rectangular grid of
streets.) Formally, the distance
between poinis with coordinates
(x,) and (%,) is
1% =%+ 14—l

made so far, 7 is a lower bound on the cost of any solution using the two moves
leading to this puzzle position.

The best-first search focuses on nodes with the smallest lower bounds. The
search finds a solution to this particular puzzle in five moves. At thi$ point there
is no need to look for a better solution. We know from the lower bounds that
all other solutions require at Jeast seven moves, Note that the branch-and-bound
search finds a solution with far fewer node examinations than would have been
required if we had used a breadth-first search.

16.6.2 Sequential Algorithm

Now that we have seen a concrete example, let’s develop a more general for-
mulation of the branch-and-bound technique. Given an initial problem and some
objective function f 1o be minimized, a branch-and-bound algorithm decomposes
the problem into a sel of two or more subproblems of smaller size. Every sub-
problem is characterized by the inclusion of one or more constraints. We repeat
the decomposition process until ¢ach unexamined subproblem is decomposed, -
solved, or shown not be leading te an optimal solution to the original problem.

[wY

l
4
7]

Solution

Figure 16.12 The best-irst branch-and-bound search for a solution to an arrange-
ment of the 8-puzzle. The nodes actually searched form a highly unbafanced iree.

In the 8-puzzle cxample, the problem is to put the pieces in order. The objec-
tive function f is the number of moves needed to order the pieces. If the pieces
are in row-major order, the problem is solved. Otherwise, branch-and-bound
decomposes the problem by generating a number of subproblems, one per legal
move. Moving a tile represents the addition of a constraint. -

As we have seen in the case of the 8-puzzle, we can represent the decompo-
sition process applied to the original problem as a state space tree. The nodes
of this tree correspond to the decomposed problems, and the arcs of the tree cor-
respond to the decomposition process. The original problem is the root of the
tree. The leaves of the tree are those partial problems that are solved or discarded
without further decomposition.

Recall that the goal of the branch-and-bound technique is Lo solve the problem
by examining a small number of elements in this tree. Assume that a minimum
cost solution f* is desired. We calculate a lower bounding function g for each
decomposed subproblem as we create it. This lower bound represents the smallest

386

CHAPTER 16 Combinatorial Search

16.7.1 Storing and Sharing Unexamined Subproblems

- The sequential algorithm keeps all uncxamined subproblems in a priority queue.

Matataining a single priotity queue on a distributed memory computer is imprac-
tical; the communication time required to send another processor an unexamined
state space tree node and receive in return cither a solution or the children of the
node may well be greater than the time needed to do the computation locally.
Giving a single processor responsibility for performing all priority queue manip-
ulations also creates a performance bottleneck, limiting the maximnm number
of processors that can be applicd to solving the problem. Finaily, maintaining a
single priority queue on one processor does not allow us to scale the problem size

--as:the-number of processors increases.

For these reasons, we make the design decision that each process must main-
tain its own priority queue of unexamined subproblems. In each of ifs iterations
every process with a nonempty priority quetie removes the unexamined subprob-
fem with the smallest Jower bound. If the subproblem is not a solution node, it
divides it into b subproblems. (Note: Although each process iterates through a
sequeace of operations, there is no synchronization among processes.) If a pro-
cess divides a problem into b subproblems, it puts the new subproblems into its
priority queue. k

Occasionally a process sends an unexamined subproblem to another process
(Figure 16.15a). At the beginning of the program’s execution, process 0 contaitis
the original problem in its priority queue. The priority queues of the oher pro-
cesses are empty, and they have pothing to do. After process O distributes an
unexamined subproblem, two processes may be active. After another distribu-
tion step, four processes may have subproblems to examine. If the distribution
of unexamined subproblems is organized properly, [log p] distribution steps are
sufficient to give all processes an uncxamined subproblem.

(@) 0 (©

Figure 16.15 The parallel branch-and-bound algorithm uses three types of
messages. (a) Processes send UnexaminedSubproblem messages to other
processes. Each message contains an unexamined subproblem that the sending
process deleted from its priority queue. The receivirg process inserts the
unexamined subproblem into its priority queue. (b) Processes form a logical ring
to pass the token used for distributed termination detection. (¢) Process 0 sends a
termination message to all other pracesses when it is safe for them fo exit.

SECTION 16.7 Paralflel Branch and Bound

16.7.2 Efficiency

In order for a solution to be found and guaranteed optimal, two conditions must
be met. First, at least one of the solution nodes (and hence all its ancestors in the
state space tree} must be examined. Second, processes must examine all nodes
in the state space tree whose lower bounds are less than the cost of the optimal
solution. The execution time of the algorithm is determined by whichever event
occurs last. The event occurring last is determined by the number of processes
and the shape of the state space tree. ,

The sequential best-first branch-and-bound algorithm, relymg upon a single
priority queue, examines the minimum number of nodes possible, given a partic-

ular bounding function g. It always examines the-node.with-the-smallest-lower -

bound. Hence it can cease execution as soon as it encounters a solution node,
because by definition no nodes with smaller lower bounds exist.

In contrast, the parallel best-first branch-and-bound algorithm may examine
unnecessary nodes. That is becanse each process is examining the node that is
only locally best—the node with the smallest lower bound in its local priority
quese. While one process is guaranteed to be examining a node that is globally
best, the rest of the processes may not. If a process examines a node whose

lower bound is greater than the cost of the best solution, then examining that’

node is wasted work, and the overall efficiency of the parallel computation drops.
The reason processes send out unexplored subproblems throughout the execution
of the parallel algorithm is because it promotes the distribution of subproblems
with good lower bounds among all the processes, reducing the amount of wasted
work. On the other hand, passing around unexplored subproblems increases the
communication overhead of the parallel algorithm.

16.7.3 Halting Conditions

Distributed termination detection for branch-and-bound algorithms is more com-

plicated than for backtrack search. Inthe case of backtrack search we were simply

looking for any solution. Now we are looking for an optimum solution. The first
solution found by a process may not be the optimum solution. Hence we can only
terminate when we have both (1) found a solution and (2) verified that no better
solutions exist. Assume we are solving a minimization problem; that is, trying to
find a solution of minimum cost. The two conditions are met when the cost of the
best solution fourd so far is less than or equal to the lower bound on the cost of
any solution from an unexamined subproblem.

We can solve this problem by modifving Dijkstra et al.’s distributed termi-
nation detection algorithm. A process turns black if it receives a message or
manipulates an unexamined subproblem with a lower bound less than the cost
of the best solution found so far. How does a process know the cost of the best
solution found so far? We add additional information to the termination token
passed around the logical ring of processes (Figure 16.15b).

Recall that in the original algorithm the termination token had a count and
a color. Now we add two additionat fields: the cost of the best solution found so

387

388

CHAPTEH 16 Combinatorial Search

far and the solution itself {i.e., the moves made to reach the solution). When a
process receives the token, it updates the color and count fields. It also checks to
see if the best solution it has found has a lower cost than the solution carried by
the token. If so, it updates the token so that it now carries a better solution with
its cost. Finally, the process compares the cost of the best solution found so far
with the lower bound associated with the unexamined subproblem at the head of
the priority queue. If this unexamined subproblent’s lower bound is greater than
or equal to the cost of the best solution found so far, there is no point in exploring

it or any of the other nodes in the priority queue, since they cannot lead to a

solution better than the best solution found so [ar. In this case, the process should
re- mmallze {ie. , Empty) its prlonty queve.

* Withi these modifications, process 0 still uses the same check to identify
when the parallel algorithm has terminated. If it is white when it receives a white
token, and if the sum of the token’s count and process (V's message count is
zero, then all work on the computation has ceased. Process 0 sends a termination
message to all other processes (Figure 16.15¢), and all processes can call functions
MPL_Tinalizeand exit.)

In effect, the token being passed around the ring serves two purposes. Intially
its purpose is to keep the processes abreast of fic value of the best solution found
s0 far. Bventually, every process empties its priority queuc when it discovers it
cannot possibly find a solution better than the best solution already discovered. At
this point the token’s purpose is distributed termination detection: ensuring that
all processes are inactive and all messages containing unexamined subproblems
have been delivered.

The pseudocode for our parallel best-first branch-and- bound algorithm ap-
pears in Figure 16.16. -

16.8 SEARCHING GAME TREES

The most successful computer programs to play tWo-person Zero-sum games
of perfect information, such as chess, checkers, and go, have been based on
exhaustive search algorithms. These algorithms consider series of possible moves
and countermoves, evaluate the desirability of the resulting board positions, then
work their way hack up the tree of moves to determine the best initial move.

16.8.1 Minimax Algorithm

Given a trivial game, the minimax algorithm can be used to determine the best
strategy. Figure 16.17arepresents the game tree of ahypothetical game, withules
left umstated, played for money. Dotted edges rephesent moves made hy the first
player; solid lines represent moves made by the second player. The root of the tree
is the initial condition of the zame. The leaves of this game tree represent outcomes
of the game. Interior nodes represent intermediate conditions. The outcomes are
always put in terms of advantage to the first player. Thus positive numbers indicate
the-amount of maney in dollars won by the first player, while negative numbers
indicate the amount of money lost by the first player. The algorithm assumes that

SECTION 16.8 Searching Game Trees

Constants:)
Comm_Interval — Time belween communication stzps
Terininuttion —- Tags lecmination messages
Token — Tags token message i
Unexamined_Subproblem — Tags message containing unexamined subproblem

Functions:
Current_Time() — Wall clock time
Delete_Min() — Delete subproblem with least fower bound from priority queue
First_Element() — Retiwns fisst element from priority queue without deleting it
Inttialize() — Set priotity queve size 4o 0
Insert()— Insert subproblem into priority queve
Is_Empty{) — Retomns true if priorily queue is empty
Lower_Bound() — Returns lower bound associated with unexplored subproblem . .

Variables:
color — Process color (for terminarion detection)
globat_¢ -— Cost of globally best solution found so far
id — Process rank
inftial — Initial problem
last_comm — Time of last communication
loeaf_¢ - Cost of hest sotution found so far by this process
local_s — Best solution found so far by this process
msg_coun! — Messages sent minus messages received
g — Priority quese
ioken — TFoken passed around ring for termination detection
1 — State space tree node M
v — New node with additional constraint

Parallel Best-Firsl Branch and Bound {minimization):
Initialize (g)
if id = 0 then
Tnsed {g, initial)
fokent +— 00
tokescolor «— WHITE
ioken.count « 0
Send foken Lo successor process
endif
focal _c + o0
best_soln + oo
last_comm < Current_Time()
msg_comi « 0
color — WHITE
repeat
if Is_Empty(q) or (Cwvent_Tune()—last_comm > Comm_Interval) then
BandB_Communication()
last_camm + Current_Time()
else if not fs_Empty(g) then
u « Delete_Min(y)
if Lower_Bound(u) < best_c then
color — BLACK
if uis a solution then
ifLower_Bound{i) < global_¢ then
focal_s < u
{ocal_c + Lower_Bound{Jocal_s)
endif

Figure 16,16 Parallel branch-and-bound algorithm.

aao

R I

390 CHAPTER 16 Combinatorial Search

else
fort « 1 1o Possible_Constraints(u) do
Add constraint { 10 &, creating v
if Lower_Bound{z} < global_¢ then
Insert(g, v)
eadif
endfor
endif
endif
endif
forever

BandBCommunication():
if there is a pending ressage with a Termination tag then Halt endif
if there is a pending message with a-Token-tag then o ’
Receive message confainiag foken
if local ¢ < token.c then
token.c « local_¢
token.s local_s
endif .
if token.c < Lower_Bound{First_Element(q)) then Initialize(g) endif
global_¢ < token.c
il id = O then
il (color = WHITE) and (token.color = WHITE) and
{token.count + msg_caunt = 0) then
Send messages with a Termuinarion tag to all oltier processes
Halt
else
token.color < WHITE
token.count < O
endif
else
if color = BLACK then tokercolor « BLACK
token.count < loken.count + msy_count
endif
Send token to successor
color « WHITE
endil
while these are pending messages with lag Unexamined_Subprobiem do
Reveive message with unexamined subproblem
msg_count < isg_count —1

color « BLACK
if Lower_Bound{u) < globa! _c then Insent (g, u)
endwhile -

if there is more than one unexamined subproblem in g then
Scnd ncxamined subgroblem to ancther process
msg_coun! + mig_count +1
color « BLACK

endil

returm

Figure 16.16 (conid.) Parallel branch-and-bound algorithm.

SECTION 16.8 Searching Game Trees

A

R

s

E8RESERER

AT /\ \ \
ﬁ)
OINICICI01010101610[0ITI0ITI010

- W]

Figure 16.17 (a) A game free. Dashed edges represent the moves availabie to
the first player; solid edges represent moves available to the second player. (b) The
same tree with the values of the interior nodes filled in. By taking the first
alternative, the first player is guaranteed a resuft of atleast 2.

the second player tries to minimize the gain of the first player, while the first
player tries to maximize his or her own gain, hence the name of the algorithm,
Figure 16.17b is the same tree with the values of the interior nodes filled in. The
value of this game to the first player is 2. If the first player plays the minimax
strategy, he or she is guaranteed to win al least two dollars.

A game tree is an example of an AND/OR tree. The player moving first is the
one evaluating the tree. The AND nodes represent positions where it is the second
player’s turm to move. In order Lo protect herself, the first player must consider
every move an opponent might make. The OR nodes represent positions where it
is the first player’s turn to move. The first player does not need to consider every
possible move, if she has already found a good one.

Nonirivial games such as chess have game trees that are far too complicated to
be evaluated exactly. For example, de Groot has estimated that there may be 38%

391

392

CHAPTER 16 Combinatorial Search

positions ina chess game tree [19]. Thus current chess-playing programs examine -
moves and countermoves only 0 a certain depth, then, at that point, estimate the
value of the board position to the first player. Of course, evaluation functions are
imperfect. If a perfect evaluation function existed, the need for searching would
be eliminated.

As we have seen, all possible moves from a position to some predetermined
look-ahead fiorizon can be represented by a game tree. We can find the minimax
value of a game tree by applying the evaluation function to the leaves of the
tree {the terminal nodes), then \ﬁorking backward up the tree. If it is the second
player’s move at a particular nonterminal node in the game tree, the value we
assign is the minimum over all its children nodes. If it is the first player’s move,
we assign the value that is the maximum over all its children nodes. Givena game |
tree in which every position has b legal moves, iU’s easy 10 see (hal a minimax
search of the game tree to depth d requires an examination of b leaves.

16.8.2 Alpha-Beta Pruning

As arule, the deeper the search, the better the quality of play. That is why alpha-
beta pruning is valuable. Alpha-beta pruning, a form of branch-and-bound algo-
rithm, avoids searching subtrees whose evaluation cannot influence the outcome
of the search, that is, cannot change the choice of best move. Hence it allows a
deeper search in the same amount of time.

The alpha-beta algorithm, displayed in Figure 16.18, is called with four argu-
ments: pos, the current condition of the game; & and §, the range of values over
which the search is to be made; and depth, the depth of the search that is to be
made..The function returns the minimax value of the position pos. The original
game position is a MAX-NODE. Every child of aMAX-NODE is a MIN-NODE.,
Every child of a MIN-NODE is a MAX-NODE. ‘

To illustrate the workings of the alpha-beta algorithm, consider the game tree
in Figure 16.19. This tree represents the same game as that in Figure 16.17, except
that nodes not examined by the alpha-beta algorithm are not included. When the
algorithm begins execution, @ = —oc and fi = cc. The algorithm traverses the
nodes of the game tree in preorder (i.e., depth first); the values of @ and § converge
as the search progresses.

The nodes drawn in heavy lines in Figure 16.19 represent places where
pruning (elimination of the search of a subtree) occurs. To explore the con-
ditions under which pruning happens, let’s consider an arbitrary interior node in
the search tree. When the search reaches this node, we know that some sequences
of moves already considered leads to a value of at least « for the player moving
first. We also know that correct play on the part of the opponent will ensure that
the first player cannot get a value more than #. Hence « and 3 define a window
for the search.

If the interior node pos is a MAX-NODE, then it is the first player’s move.
If val, the value of the game tree searched from pos, is greater than o, then « is
changed to val, meaning a better fine of play has been found for player !.

SECTION 16.8 Searching Game Trees

Constant:
e - Maximom gossible number of moves

Alpha_Beta (pos, a, 5, depth):

Parameters:

pos — Position

a— Lower cutoft valae
« 8 — Upper cutoft value
depth —- Search depth

Variables:
- ¢fl..maxc]— Children of pos in game free
cutoff — Set to TRUE when okay 10 prune
i - Itepates through legal moves
val -— Value returned from search
widifi-— Number of legal 1moves

begin
if depth < O then
feturn (Evaluate(pos)) {Evaluate terminal node}
endif)
widtfy < Geperats_Moves(pos)
if width = 0 then
return (Evafuate{ pos)} {No legal moves}
endif
curgff « FALSE
i1
while (i < widih) and (cutoff = FALSE) do
val <— Alpha_Beta(c{i], w, 8, depth—1)
if Max_Nadef pos) and val > ¢ then
@« val
elseif Min_Node(pos) and val < B then
B «val
endif
ife > fthen
cutgff « TRUE
endif
Peitl
endwhile
il Max_Node{ pos) then return o
else return 3
endif
end

Figure 16.18 Sequential alpha-beta
pruning algarithm,

Analogously, if the interior node pos is a MIN-NODE, then it is'the second
player’s move. If val, the value of the game tree searched [rom node pos is less
than §, then 3 is changed 1o val; a better line of play has been found for player 2.

However, if at any time the value of o exceeds the value of g, there is no
need to search further, becawse it is in the best interests of on¢ of the players to
block the line of play leading to the position (node) being considered.

394 " CHAPTER 16 Combinatorial Search

£ER4 M@

Figure 16.19 An iliustration of alpha-beta pruning. The number
inside each node is the value of the position. in the case of leaf
nedes, an evaluation function computes the value of the position. In
the case of interior nodes, the value is computed from the values of its
children. Highlighted circles represent nodes at which pruning occurs.
Note how many fewer nodes are examined than in minimax search
(Figure 16.17).

Figure 16.20 Alpha-beta pruning of a perfectly ordered game tree. The
number inside each node indicates its classification as either type 1, type 2, or
type 3. The root of the tree is a type 1 node. The first child of a type 1 node is a
type 1 node. Al other children of a type 1 node are type 2 nodes. The first child
of a type 2 node is a type 3 node; all other children of a type 2 node may be
pruned. Al children of a type 3 node are type 2 nodes.

For example, consider the node'labeled A in Figure 1 6.19. The value reurned
from the search of the first child of A is 3, which is greater than 2, the value of f,
It is not in the second player's interest to allow play to reach this position, since
there is another line of play guaranteeing a value no higher than 2. Hence there
is no point in continuing the search from this game position.

To what extent can alpha-beta pruning reduce the number of leaf nodes that
must be examined? The algorithm does the most pruning on a perfectly ordered -
gamne tree, that is, a game tree in which the best move from each position is always
examined first (seg Figure 16.20). Assuming a perfectly ordered game tree with

SECTION 16.9 Paraliel Alpha-Beia Search

a search depth of d and uniform branching factor b, Siagle and Dixon {103] have
shown that the number of leaf nodes examined by the alpha-beta algorithm is

Opt(h, dy = b 4 plé _ |

In other words, in the best case it is possible for the alpha-beta algorithm
{0 examine no more than approximately twice the square root of the number of
nodes searched by the minimax algorithm.

The effective branching factor of an algorithm searching a game tree of
depth d is the dth root of the number of leaf nodes evaluated by the algorithm.
An alpha-beta search reduces the effective branching factor from 5 to +/b when
searching a perfectly ordered game tree, In other words, in the best case alpha-beta
‘pruning allows the game tree search to go twice as deep in the game tree as the

minimax algorithm in the same amount of time. Experimental evidence indicates
that sequential alpha-beta algorithms often seatch no more than 50 percent more
nodes than would be searched if the tree were perfectly ordered. Hence in practice
the alpha-beta search algorithm exhibits much higher performance than minimax.

16.8.3 Enhancements to Alpha-Beta Pruning

Two common ephancements to alpha-beta pruning are aspiration search and it-
efrative decpening. Aspiration search makes an estimate of the value v of the
board position at the Toot of the game tree, figures the probable ertor ¢ of that
estimate, then calls the alpha-beta algorithm with the initial window (v—e, v+¢).
If the value of the game tree does indecd fall within this window of values, then
the search will end sooner than if the algorithm has been called with the initial
window (—00, 00). If the value of the game tree is less than v ~ e, the search will
return the value v - ¢, and the algorithm must be called again with another win-
dow, such as (~oc, v — ¢). Similarly, if the value of the game tree is greater than
v+ ¢, the searchreturns the value v + ¢, and another search will have to be done
with a modified initial window, such as (v 4 ¢, 00).

Another variant on the standard alpha-beta algorithm is called iterative
deepening. Each level of a game tree is called a ply and coresponds to the
moves of one of the players. Tterative deepening is the use of a (d —1)-ply search
to prepare for a d-ply search. This technique has three advantages. First, it allows
the time spent in a search to be controlled. The search can be continued deeper
and deeper into the game tree until the allotted time has expired. Second, results
of the (d — 1)-ply search can be used to improve the ordering of the nodes during
the d-play search, making the node ordering similar to the perfect ordering, and
increasing the amount of pruning. Finally, the value returned from a (d — 1)-ply
search can be used as the center of the window for a -ply aspiration search.

16.9 PARALLEL ALPHA-BETA SEARCH

Alpha-beta search has a number of opportunities for parallel execution. One
approach is to parallelize move generation and position evaluation. The custom
chess machine HITECH™, with 64 processors organized as an 8 x § array, is an

396

CHAPTER 16 Combinatorial Search

example of this approach. However, the speedup that can be achieved with this
approach is limited by the parallelism inherent in these activities.

Further speedup improvements lie in parallelizing the search. This is the ap-
proach taken by the team that programmed 1BM’s Deep Blue, a 32-node RS/60600
multicomputer augmented with 192 VLSI chess processors. Capable of search-
ing more than 100 million positions per second, Deep Blue defeated world chess
champion Gary Kasparov in a six-game match in 1997 by the score of 3 1/2
to21/2.

16.9.1 Parallel Aspiration Search'

- Astraightforward parallelization of the alpha-beta algorithm is done by perform-

ing an aspiration search in parallel. If three processors are available, then each
processor can be assigned one of the windows (—o0, v — ¢), (v — &,v + e),
and {v + ¢, o0). Ideally the processor searching (v — e, v + ¢) will succeed,
but all three processors will finish no later than a single processor searching the
window (o0, 0o). We can accommodate additional processors by creating nar-
rower windows.

Experiments with paralle] aspiration search for the same of chess has led to
two conclusions. First, the maximum expected speedup is typically five or six,
regardless of the number of available processors, This is because Opt(b, d) is a
lower bound on the cost of alpha-beta search, even when both & and § are initially
set to the value eventually returned from the search. Second, parallel aspiration
search can somefimes lead to superlinear speedup when two or three processors
are being used.

16.9.2 Parallel Subtree Evaluation

Another approach is to allow processors to examine independent subtrees in
parallel. When taking this approach, we must consider two overheads. Search
averhead refers to the increase in the number of nodes that are examined owing
to the introduction of parallelism. Communication overhead refers to the time
spent coordinating the processes performing the search. Search overhead can be
reduced at the expense of communication overhead by keeping every processor
aware of the current search window (o, 8). Commnunication overhead can be
reduced at the expense of search overhead by allowing processors to work with
outdated search windows.

For example, consider this simple method of performing alpha-beta search
in parallel. Split the game tree at the root, and give every processor an equal share
of the subtrees. Let every processor perform an alpha-beta search on its subtrees.
Each processor begins with the search window {—oa, 0a), and no processor ever
notifies other processors of the changes in its search window. Clearly this algo-
rithm minimizes communication overhead. What is the speedup achievable by -
this method?

SECTION 16.9 Paallel Alpha-Beta Search

- Slagle and Dixon showed that in a perfectly ordered uniform game tree of
depth d and branching factor b, the number of node examinations performed by
alpha-beta search is Opr(h, d). We can use the $ame formula to determine that
the number of node examinations in the first branch of a perfectly ordered game
tree is Opr(h, d — 1).

What this means is.that the examination of the first branch of a perfectly
ordercd game tree takes a disproportionate share of the computation time. For
example, consider a 10-ply search of a perfectly ordered tree that has a branching
factor of 38 (such as a chess game tree). The minimum number of node exami-
nations is 138,470,335. The minimum number of node examinations in the first
branch is 81,320,303. By Amdahl’s Law it is clear that if only one processor is
resporisible for aearchmg ihe first move’s subfree, speedup will be less than 2.

In addition, because every processor’s search mustbegin with —oo and 00 as
the values of & and 8, respectively, the parallel algorithm will not prune as many
subtrees as the sequential algorithm. A complete elimination of communication
overhead creates significaat search overhead.

Let’s look at the other extreme. What must be done to eliminate seafch
nverhead completely? We will make the assumption that the game tree is perfectly
ordered. Look at Figure 16.20. If we want to eliminate search overhead, we
must ensure that the parallel algorithm prunes the same nodes as the sequential
algorithm, First consider searching the subiree of a type 1 node. The first child is
atype 1 node; the remaining children are type 2 nodes. Searching subtrees rooted
by iype 2 nodes requires up-to-date values of @ and § in order to prune all but
the first children of the type 2 nodes. To get up-to-date values, the search of the
subtrees rooted by type 2 nodes cannot begin until the search of the subtree rooted
by the type 1 node has finished, returning o and 8. However, once the values of &
and £ are known, all type 2 nodes may be searched in parallel without procéssor
interaction.

In practice, search trees are not perfectly ordered, but this study has demon-
strated that a parallel alpha-beta algorithm can significantly reduce search over-
head by delaying the search of some -subirees until more accurate bounds
information is available. That is the basis for our next algorithm.

16.9.3 Distributed Tree Search

Ferguson and Korf [26] have developed a parallel tree searching algorithm called
_ Distributed Tree Search (DTS), which, when evaluating game trees, has achieved
good speedups. Although the DTS algorithm is suitable for solving a variety
of tree search problems, we will describe its use as a tool to perform parallel
alpha-beta search.

The DTS algorithm executes by assigning processes to nodes of the search
teee. Each process controls one or more physical processors. When the algorithm
begins execution, a single process, called the root process, is assigned to the root
node of the search tree. It controls the eatire set of physical processors performing
the seaich.

397

398

CHAPTER 16 (ombinatorial Search

When a process is assigned to a nonterminal aode, it generates the children
of that node by evaluating the legal moves. The process assigns processors to
the children sodes based upon the processor allocation strategy. The bound-and-
branch strategy comresponds closely to the algorithm described at the end of
the previous subsection. When the search reaches a type | node, all processors
are allocated to the leftmost child. After the search retums with cutoff bounds
from the subtree rooted by the leftmost child, the processors are assigned to the
remaining children in a breadth-first manner. When the search reaches a node
having type 2 ar 3, cutoff bounds already exist, and the processors are assigned
to children godes in a breadth-first fashion. At this point a new process is created
for each child node that is allocated at least one processor. The parent process
suspends operation until il receives a message from another process (either one
of its children or its parent). -

When a process is assigned to a terminal node, it returns the value of that
node and its set of allocated processors to the parent, then terminates.

The first child process to complete the search of its subtree sends a message
with its values of & and § to the parent. It retures a set of processors to the parent

- and terminates. The parent process wakes up when it receives the message from

its child. It reallocates the freed processors to one or more of its active child
piocesses. It may also send one or more of its child processes new values of o
and f. The reallocation of processors from quicker processcs to slower processes
producés efficient load balancing. Notice that in this scheme a child process may
be awakened by its parent, which is passing along additional processors. After
reallocating processors, parent processes suspend operation until they receive
another message. When all child processes have terminated, the parent process
returns . f, and the set of processers ta its parent and terminates. When the root
process terminates, the algorithm has been compieted.

- Three implementation details improve the performance of the DTS algorithm.
First, every blocked process should share a physical processor with one of its child
processes. In this way all processors stay busy. Second, when a blocked parent
process is awakened, it should have a higher priority for execution than processes
corresponding to nodes deeper in the search tree. Third, when the search reaches
a point where there is only a single processor allocated to a node, the process
controlling the processor should execnte the standard sequential alpha-beta search
algonithm.

Given auniform game tree with branching factor b, if the alpha-beta algorithm
searches the Iree with effective branching factor b (where 0.5 < x < 1), then
DTS with p processors and breadth-first allocation will achieve a speedup of
0(p*).

To test the DTS algorithim, Ferguson and Korf [26] have implemented the
game of Othello, Their node-ordering function resuits in an effective branch-
ing factor of about #*%. The program implements parallel alpha-beta search
using the DTS algorithm. Executing the program on 40 midgame positions ot
a first-generation multicomputer, they reported a speedup of about {2 on 32
Processofs.

SECTION 16.10 Summary

16.10 SUMMARY |

Combinatorial search is used to find solutions to a variety of decision and opti-
mization problems on discrete, finite mathematical siructures. One way to differ-
entiate between combinatorial search problems is to categorize them by the kind
of state space tree they traverse. Divide-and-conquer algorithms traverse AND
trees; the solution to a problem or subproblem is found only when the solution
to all its children is found. Backtrack and branch-and-bound algorithms traverse
OR trees: the solution to a problem or subproblem can be found without explor-
ing every subproblem. Two-person games can be represented by AND/OR trees
combining both kinds of nodes.

* One way to think-of parallel dividé-and-conquer is to imagine that a single
process is responsible for the computation that divides a problem (or subprob-
lem) into pieces and combines the solutions to the subproblems. The speedup
that can be achieved this way is [imited by the propagation and combining over-
head. In contrast, if the original problem and the final solution are decomposed
among processors, then the efficiency of a parallel divide-and-conquer algorithm
can be much higher. However, balancing workloads among processors can be a
significant challenge.

Backtrack is depth-first search methodology for exploring state space trees. It
can be used to find a single solution to a probler or every possibie solution. it does
nol take advantage of knowledge abort the problem to avoid éxploring subtrees
that cannot possibly lead to a solution. It has the advantage of only requiring space
linear in the depth of the search. Since state space trees are often unbalanced,
the principal challenge in parallel backtrack is providing every process with the
same amount of work. We discussed the strategy of assigning many subtrees
to each process, which increases the probability that the total number of nodes
searched by each process will be roughly equivalent.

Ensuring that parallel backtrack terminates without a run-time error requires
that the processes perform distributed termination detection. Dijkstra et al’s al-
gorithm allows the processes to detect quiescence in @ (p) time.

Sequential branch-and-bound algorithms find solutions to combinatorial op-
timization problems much faster than exhaustive search algorithins such as depth-
first search or breadth-first search, because they can bypass the examination of
subtrees that cannot possibly lead to a solution. However, the fact that the state
space trees actually explored by branch-and-bound algorithms have irregular
shapes makes it difficult to assign processors to subtrees so that their workloads
are balanced. The fundamental problem faced by designers of parallel branch-
and-bound algorithms is keeping the efficiency of the processors high by focusing
the seurch on the nodes the sequential algorithm examines.

Alpha-beta pruning is the preferred method for evaluating game trees. In the
best case it allows the computer to look ahead twice as many moves as it would
have time to explore using the brute-force minimax algorithm. Its performance can
be fusther improved through the use of aspiration search and iterative deepening.
We examined several methods to parallelize alpha-beta search: parallel move

399

402

CHAPTER 16 Combinatorial Search

163

16.9

16.10

16.11
16.12

16.13
16.14

16.15

If a perfect evatuation function existed, the need for searching a game
tree would be eliminated. Explain.
Use the minimax algorithm to evaluate the game tree of Figure 16.21.

Figure 16.21 A game tree.

Explain why alpha-beta algorithm prunes the game tree of Figure 16.19
at the node labeled B.
Use the alpha-beta algorithm (o evaluate the game tree of Figure 16.21.

"Extend the perfectly ordered game tree of Figure 16.20 by one level

to illustrate how nodes are pruned at level 4. Assume a branching
factor of 2. .

Explain why alpha-beta search is simply a special case of DTS.

How does improving the pruning effectiveness of the underlying
alpha-beta algarithm affect the speedup achieved by the distributed tree
search (DTS) algorithm on a particular application?

The ¥ queens problem is to place & queens onan N x N chesshoard
so that no queen may attack another. Figure 16.22 illustrates a solution
o the four queens’ problem. Write a parallel program that counts the
number of solutions to the N queens problem for a particular value of
N input from the command line. Benchmark your program for various

S

Figure 16.22 A solution to
the four queens problem.

16.16

16.17

16.18

16.19

SECTION 16.13 [xercises

valves of N and p. Plot the speedup achieved by your program as a
function of N and p.

Write a parallel program that finds a single solution to the N queens
problem for a particular value of N input from the command line.
After printing the solution, the program should terminate. Benchmark
your program for various values of N and p. Plot the speedup achieved
hy your program as a function of N and p.

Figure 16.23 llusizates a puzzle. The puzzle has 21 holes in it. Initially
every hole is filled with a peg, except for the center hole (shown in
black). Pegs are moved and semoved by doing checkers-style hopping.
You are allowed to move a peg in a straight line from its hole over an
ocwpled hole to an empty hole on the other side and remave the peg
that was just hopped. You may hop pegs in a horizontal, vertical, or
dizgonal direction.

The object of the puzzle is to remove pegs unul only one peg
remains, and that peg is in the center hole. A sequence of 19 moves
(hops) is necessary to reduce the original 20 pegs to a single peg.

Wiite a parallel program to find a solation to the puzzle.
Benchmark the execution time of your program for various values of p.
Plot the speedup achieved by your program as a function of p.

Figure 16.23 A peg puzzle.

The 15-puzzle, invented by Sam Loyd, is a larger version of the
8-puzzle presented in this chapter. Fifteen tiles, numbered 1 through 15,
and a hole occupy a4 x 4 grid. Write a parallel program that takes as
input a scrambled version of the 15-puzzle and finds the shortest
sequence of moves needed to pus the tiles back in order, Benchmark
your program on at least five puzzles, each of which requires at least six
moves to solve. Plot the speedup achieved by your program on each
puzzle, as a function of p.

Write a parallel program that plays the game of Othello (also called
Reversi} against a human opponent.

403

CHAPTER

- Shared-Memory Programming

Nor what we give, but what we share—
For the gift without the giver is bare;
Who gives himself with his alms feeds three—
Himself, his hungering neighbor, and me.
James Russell Lowell, The Vision of Sir Launfal

17.1 INTRODUCTION

In the 1980s commercial multiprocessors with a modest number of CPUs cost
hundreds of thousands of dollars. Today, multiprocessors with dozens of proces-
sors are still quite expensive, but small systems are readily available for a low
price. Dell, Gateway, and other companies sell dual-CPU multiprocessors for less
than $5,000, and you can purchase a quad-processor system for less than $20,000.

It is possible to write parallel programs for multiprocessors using MPL but
you can often achieve better performance by using a programming language
tatlored for a shared-memory environment Recently, OpenMP has emerged as
a shared-memory standard. OpenMP is an application programming interface
(AP for parallel programming on maltiprocessors. It consists of a set of cornpiler
directives and a library of support functions. OpeaMP works in conjunction with
standard Foriran, C, or C++.

This chapter introduces shared-memory parallel prograrnming using OpenMP.
You can use it in twagifferent ways. Perhaps the only parallel computer you have
access to is a multiprocessor. [n that case, you may prefer to write programs using
OpenMP rather than MP1.

On the other hand, you may have access to a multicomputer consisting
of many nodes, each of which is a multiprocessor. This is a popular way to
build large multicomputers with hundreds or thousands of processors. Consider

404

SECTION 17.2 Ths Shared-Memory Model

these examples (circa 2002):

g IBM’s RS/6000 SP system contains up o 312 nodes. Each node can have
upto 16 CPUs in it.

n Fujitsu’s AP3000 Series supercomputer contains up to 1024 nodes, and
each node consists of one or two UltraSPARC processors.

u Dell’s High Performance Computing Cluster has up to 64 nodes. Each node
1s a multiprocessor with two Pentinm 111 CPUs.

In this chapter youll see how the shared-memory programming model is
different {rom the message-passing model, and you'll learn enough OpenMP

compiler directives and functions to be able to parallelize a wide variety of C code .

segments.
This chapter introduces a powerful set of OpenMP compiler directives:

a parallel, which precedes a block of code to be executed in parallel by
maitiple threads

s for, which precedes a for loop with independent iterations ihat may be
divided among threads executing in parallel

w parallel for,acombination of the parallel and Lor directives

® sections, which precedes a series of blocks that may be executed in
parallel

m parallel sections,acombination of the parallel and
sect ions directives
m critical, which precedes a critical section
® single, which precedes a code block Lo be executed by a single thread

You'll also encounter four important OpenMP functions:

@ onp_get num_procs, which returns the number of CPUs in the
multiprocessor on which this thread is executing

= dmp_get_num_t hreads, which returns the number of threads active in
the current paralle! region
omp_get thread num, which returns the thread identification number

@ omp_set num_threads, which allows you to fix the number of
threads executing the parallel sections of code

17.2 THE SHARED-MEMORY MODEL

The shared-memory model (Figure 17.1) is an abstraction of the generic central-
ized multiprocessor described in Section 2.4. The underlying hardwareis assumed
to be a collection of processors, each with access to the same shared memory.
Because they have access to the same meniory locations, processors can interact
and synchronize with each other through shared variables.

405

406

O—r

CHAPTER 17 Shared-Memory Programming

1 Processor (ch&ssor I?roccssor 1 Processor I

Memory

Figure 17.1 The shared-memory model of parallel
computation, Processors synchronize and
communicate with each other through shared variables.

' THé Staridatd ¥iew of parallefism in°as até‘ﬁimginory pragram is fork/join
parallelism. When the program begins exccution, only a single thread, called the
master thread, is active (Figure 17.2). The master thread executes the sequential
portions of the algorithm. At those points where parallel operations are required,
the master thread forks {creates or awakens) additional threads. The masler thread
and the created threads work concurvently through the parallel section. At the end
of the parallel code the created threads die or are suspended, and the flow of
control returns to the single master thread. This is called a joir.

A key difference, then, between the shared-memory model and the message-
passing model is Lhat in the message-passing model all processes typically remain
active thraughout the execution of the program, whereas in the shared-memory
maode! the number of active threads is one al the program’s start and finish and
may change dynamically throughout the execution of the program.

You can view @ sequential program as a special case of a shared-memory par-
allel program: it is simply one with no fork/joins in it. Paralle] shared-memory
programs range from those with only a single fork/join around a single loop
to those in which mosl of the code segments are executed in parallel. Hence
the shared-memory model supports incremental parallelization, the process
of transforming a sequential program into a parallel program one block of code at
a time. S

The ability of the shared-memory model to support incremental paralleliza-
tion is one of its greatest advantages over (he message-passing model. 1t alfows you
to profile the execution of a sequential program, sort the program blocks accord-
ing to how much time they consume, consider each block in turn beginning with
the most time-consuming, parallelize each block amenable to parallel execution,
and stop when the effort required to achieve further performance improvements
is not warranted.

Consider, in contrast, message-passing programs. They have no shared mem-
ory to hold variables, and the parallel processes are active throughdt the execution
of the program. Transforming a sequential program into a parailel program is not -
incremental at all—the chasm must be crossed with one giant leap, rather than
many smal] steps.

In this chapter you'll encounter increasingly complicated blocks of sequential
code and learn how to transform them iato parallel code sections.

SECTHON 17.3 Parale! For Loops 407

Master thread
L Other threads
Ty Fok
g3ofel-dodododod gy
5 Join
[¢]
Tqetetod-d-dod g

Figure 17.2 The
shared-memory model is
_ characterized by fork/join
parallelism, in which
parallglism comes and
goes. At the beginning of
execution only a single
thread, called the master
thread, is active. The
master thread executes
the serial portions of the
program. It forks additional
threads to help it execute
parallel portions of the
program. These threads
are deactivated when
serial execution resumes.

17.3 PARALLEL for LOOPS

Inherently parallel operations are ofien expressed in C programs as £or loops.
OpenMP muakes it easy to indicale when the iterations of a 1or loop may be
executed in panllel. For example, consider the following loup, which accounts
for a large proportion of the execution time in our MPI implementation of the
Sieve of Eratosthenes:

for (i = first; 1 < size; 1 += prime) markedii] = 1i;

Clearly there is no dependence between one iteration of the loop and another.
How do we convert it into a parallel loop? In OpenMP we simply indicate (o

408

CHAPTER 17 Shared-Memory Programming

the compiler that the iterations of a for loop may be executed in parallel; the
compiler takes care of generating the code that forks/joins threads and schedules
the iterations, that is, allocates iterations to threads.

17.3.1 parallel for Pragma

A compiler directive in C or C++ 15 called a pragma. The word pragma is short
for “pragmatic information.” A pragma is a way to communicate information
to the compiler. The information is nonessential in the sense that the compiler
may ignore the information and still produce a correct object program. How-
ever, the information prouded by the pragma can help the compller optlrmze the
program. =
Like other lines that provide mformatlon to lhe preprocessor, a pravma begmb
with the # character. A pragma in C or C++ has this syntax:

#pragma omp <rest of pragma>

The first pragma we are going to consider is the parallel for pragma.
The simplest form of the parallel for pragmais:

#pragma omp parallel for

Putting this line immediately before the £or loop instructs the compiler to try to
parallelize the loop:

#pragma omp parallel for)
for (i = first; 1 < size; 1 += prime) marked[i] = 1;

In order for the compiler to successfully transform the sequential loop into
a parallel loop, it must be able to verify that the run-time system will have the
information it negds to determine the number of loop iterations when it evaluates
the control clause. For this reason the control clause of the £or loop must have
canonical shape, as illustrated in Figure 17.3, In addition, the £ox loop must not
contain statements that allow the loop to be exited prematurely. Examples include
the break statement, return statement, exit statement, and got o statements

index++
++1ndex
index -

) --index

for (index = start; index{ ~ end;< index += inc)

o= index -= ino
index = index + inc
index = Inc + index
index - index - inc¢

<

Figure 17.3 In order to be made parallel, the control clause of a for
loop must have canonical shape. This figure shows the legal variants.
The identifiers start, end, and inc may be expressions.

SECTION 17.3 Paraiiel for Loops

to dabels outside the loop. The cont 1nue statement is allowed, however, because
its execution does not affect the number of loop iferations.
Our example for loop

for {1 = first; 1 « size; 1 += prime] marked{i] = 1;

meets these crienia: the control clause has canonical shape, and there are no
premature exits in the body of the loop. Hence the compiler can generate code
that allows its #erations to execute in parallel. ,

During parzllel execution of the £ o r loop, the master thread creates additional
threads, and all threads work together to cover the iterations of the loop. Every
thread has its own execution context; an address space containing all of the
variables the thread may access. The execution context includes static variables,
dynamically allocated data structeres in the heap, and variables on the run-lime
stack.

The execution context includes its own additional run-time stack, where the
frames for functions it invokes are kept. Other variables may either be shared
- or private. A shared.variable has the same address in the execution context of
every thread. All threads have access 1o shared variables. A private variable has
a different address in the execution context of every thread. A thread can access
its own private variables, but cannot access the private variable of another thread.

Inthecase of the parallel for pragma, variables are by default shared,
with the exception that the loop index variable is private.

Figure 174 illustrates shared and private variables: In this example the iter-
ations of the £or loop are being divided among two threads. The loop index 1 is
a private variable—each thread has its own copy. The remaining variables b and
ptr, as well as data allocated on the ﬁeap; are shared.

How does the run-time system know how many threads to create? The value of
an environment varable called OMP_NUM_THREADS provides a default number
of threads for parallel sections of code. In Unix you can use the printenv
command to inspect the value of this variable and the set.enyv command fo
modify its value.

int main {int argc, char* argvl])

int bi3l;
char* cptr ;
int 1i;

cptr = walloc (i);
#ipragma omp parallel for
for {i=0; ied; i++) ©

b{ij=i;

Master thread Theead |
(Thread D)

Figure 17.4 During parallel execution of the for loop, index i is a private
variable, while b, cpt:r, and heap data are shared.

410

CHAPTER 17 Shared-Memory Programming

Another strategy is to set the number of threads equal to the number of multi-
processor CPUs. Let’s explore the OpenMP [unctions that enable us to do this.

17.3.2 Function omp get num_procs

Function cmp_get _num_procs retums the aumber of physical processors
available for use by the parallel program. Here is the function header:

int omp_get_num_procs (void)

The integer returned by this function may be less than the total number of
physical processors in the multiprocessor, dependmc' on how the run- tlme system
gives processes access o processors. S '

17.3.3 Functlion omp set num threads

Function omp _set _num_threads uses the parameter value to set the number
of threads to be active in parallel sections of code. It has this function header:

vold omp_set_numﬁthreads- {int t)

Since this function may be called at multiple points in a program, you have
the ability to tailor the level of parallelism to the grain size or other characteristics
of the code block.

Setting the number of threads equal to the number of available CPUs is
straightforward:

int t;

b = omp_get_num procs{)
omp_set_num_threads{t);

17.4 DECLARING PRIVATE VARIABLES

For our second example, let’s look at slightly more complicated loop structure.
Here is the computational heart of our MP implementation of Floyd’s algorithm:

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
for (3 = 0; j < n; j++)
alil(j] = MIN(a{i1[J], afillk] + tmp[i]);

In our carlier analysis of this algorithm, we determined that either loop could
be executed in parallel. Which one should we choose? If we parallelize the inner
loop, then the program wil! fork and join threads for every iteration of the outer
loop. The fork/join overhead may very well be greater than the time saved by
dividing the execution of the niterations of the inner loop among multiple threads.
On the other hand, if we paralleiize the outer loop, the program only incurs the
fork/join overhead once.

SECTION 17.4 Declaring Private Variables

Grainsize is the number of computations performed between communication
or synchronization steps. In general, increasing grain size improves the perfor-
mance of a parallel program. Making the outer loop parallel results in larger grain
size. It is the option we choose.

It’s easy enough to direct the compiler to execute the iterations of the loop
indexed by 1 in parallel. However, we need to pay attention to the variables
accessed by the threads. By default, all variables are shared except loop index 1.
That makes it easy for threads to communicate with each other, but it can also
cause problems.

Consider what happens when multiple threads try to execute different itera-
tions of the 1 Joop in parallel. We want every thread to work through 1 values
 j for each iteration of the 1 loop. However, all of the threads try to inifialize
and increment the same shared variable j—meaning that there is a good chance
threads will not execute all n iterations.

The solution is clear—we need to make j a private variable, too.

17.4.1 private Clause

A clause is an optional, additional component to a pragma. The private clause’

directs the compiler to make one or more variables private. It has this syntax:
private (<varigble list>)

The directive tells the compiler to allocate a private copy of the variable for each
thread executing the block of code the pragma precedes. 1n our case, we are
making a for loop parallel. The private copies of variable j will be accessible
only inside the L or loop. The values are undefined on loop entry and exit.

Using the pr i vate clause, a correct OpenMP implementation of the doubly
nested loops is

tpragma omp parallel for private{j!
for (i = 0; 1 < BLOCK_SIZE{id,p,n); i++}
for (j = 0; 3 < n; J++)
alil(3] = MIM{ali](j], aliilk} + tmpli));

Even if j had a previously assigned value before entering the parallel for
loop, none of the threads can access that valne. Similarly, whatever values the
threads assign to j during executicn of the parallel for loop, the value of

the shared j will not be affected. Put another way. by default the value of a =

private variable is undefined when the parallel construct is entered, and the value
is also undefined when the construct is exited.

The default condition of private variables (undefined at loop entry and exit)
reduces executiop time by eliminating unnecessary copying between shared vari-
ables and their private variable counterparts.

411

412

CHAPTER 17 Shared-Memory Pragramiming

17.4.2 firstprivate Clause

Sometimes we want 2 private variable to inherit the value of the shared variable.
Consider, for example, the following code segment:

x[0) = complex_function{};

for {1 = 0; 1 < n; i++) {
for {j =1 ; 3 < d; J++)
x[31 = gti, =x[3i-11):
answer (1] = x{1] - x[3];

I8
J

Assuming function ¢ has no side effects, we may execute every iteration of the |
outer loop in parallel, as long as we make x a private variable. However, x[0]
is initialized before the outer for loop and referenced in the first iteration of
the inner loop. It is impractical to move the initialization of x[0] inside the
outer for loop, because it is too time-consurning. Instead, we wanl each thread’s
private copy of array element x [0] to inherit the value the shared variable was
assigned in the master thread.
The firstprivate clause, with syntax

firstprivate {(<variable list>)

does just that. It directs the compiler to create private variables having initial
values identical to the value of the variable controlled by the master thread as the
loop is entered.

Here is the correct way to code the parallel loop:

x{0}] = complex_function();
fpragma omp parallel for private{j) firstprivate(x)
for (i = 0; 1 < n; i+4) {
for (3 =1 ; 3 < 4; 3++)
x{31 = gli, x[i-11);
answer{i] = x[1] - x{3];

Note that the values of the variablesin the f irstprivate listare initialized
once per thread, not once per iteration. If a thread executes multiple iterations of
the parallel loop and modifies the value of one of these variables in an iteration,
then subsequent iterations referencing the variable will get the modified value,
not the original value.

17.4.3 lastprivate Clause

The sequentially last iteration of a loop is the iteration that occurs last when the
loop is executed sequentially. The 1ast private clause directs the compiler to
generate code al the end of the parallel for loop that copies back to the master

SECTION 17.5 (ritical Sections

thread’s copy of a variable the private copy of the variable from the thread that
execuled the sequentially last iteration of the loop. :
For example, suppose we were parallelizing the following piece of code:

n

for (1 =0; 1 < n; 1+4) {
x[0] = 1.0;
for (3 = 1 J < 4; j++)
x[31] = x[j-11 * (i+1};
sum_of_powers[1] = xi0] + x[1] + x[2] + x[3];

}

n_cubed = x[3];

- “Inthe sequéntially lastiteration of the Ioop, x [3] gets assigned the value .

In order to have this value accessible oulside the parallel for loop, we must
declare x o be a Llastprivate varable. Here is the correct paralle] version
of the loop:

#pragma omp parallel for private(j) lastprivate(x)
for (1 =07 1 < 1+4) {
x[0] = 1.0;
for (1 =1 ; 3 < &; J++)
x[7] = x[j-11 * (i+1);
sur_of_powers{i] = x[0] + x[1] + x[2] + x[3];

}

h_cubed = x[3];

A parallel for pragma may contain both firstprivate and
lastprivate clauses. If the same pragma has both of these clauses, the clauses
may have none, some, of all of the variables in common.

17.5 CRITICAL SECTIONS

Let’s consider part of a C program that estimates the value of 7 using a form of
numerical integration called the rectangle rule:

double area, pi, X;
int 1, n;

area = 1.0;
for (1 = 0; 1 < n; i++) |
¥ = {1+0.5)/n;
area += 4.0/(1.0 + %x*x);
}

pl = area /[n;

413

414

CHAPTER 17 Shared-Memory Programming

Unlike the for loops we have already considered, the iterations of this loap
are not independent of cach other. Each iteration of the loop reads and updaies
the value of area. If we simply paralelize the loop:

double area, pi, x;
int 1, n;

area = 0.0;

fpragma omp parallz]l for private(x)

for (1 = 0; 1 < n; 144) |

x = {1+0.5)/n;

area += 4.0/(1.0 + x*x): /* Race conditlon! */
1

pl = area / n;

we may not end up with the correct answer, because the execution of the as-
signment statement is not an atomic (indivisible) operation, This sets up a race
condition, in which the computation exhibits nondeterministic behavior when
performed by multiple threads accessing a shared variable.

See Figure 17.5. Suppose thread A and thread B are concurrently executing
different iterations of the loop. Thread A reads the current value of area and
computes the sum ’

area + 4.0/{1.0 + x*x)

Before it can write the value of the sum back to area, thread B reads the
current value of araa. Thread A updates the value of area with the sum.
Thread B computes its sum and writes back the value. Now the value of area is
incorrect.

Valuz of arca Thread A Theead B
11.667 —>
+3.763
11.667 >
15432 < +3.503
13230 <~

Figure 17.5 Example of a race condtion. Each thread is adding a
value 10 ares, However, Thread B retrieves the original value of
area before Thread A can write the new value. Hence the final value
of area is incorrect. If Thread B had read the value of area after
Thread A had updated i, then the final value of area would have
been correct. In short, the absence of a critical section can lead lo
nondeterministic execution.

SECTION 7.6 Reductions

The assignment statement that reads and updates area must-be put in a
critical section—a portion of code that only one thread at a time may execute.

17.5.1 critical Pragma

We can denote 4 critical section in OpenMP by putting the pragma
#pragma omp critical

in front of a block of C code. (A single stalement is a trivial E:xamp]e of a code
block.) This pragma directs the compiler to enforce mutual exclusion among the
threads trying to.execute the block of code. -

~ After adding the critical pragma, our code looks like this:

double area, pl, X;
int 1, n;

area = (0.0;
#pragma omp parallel for private({x)
for (1 =0; 1 < n; 1+6) {
x = {1+0.5)/n;
#pragma omp critical
aréa += 4.0/(1.0-+ x*x);
}

pi = area / n;

At this point our C/OpenMP code segment will produce the correct result.
The iterations of the for loop are divided among the threads, and only one thread
at a fime may execute the assignment statement that updates the value of area.
However, this code segment will exhibit poor speedup. Since it admits only one
thread at a time, the critical section is a piece of sequential code inside the for
loop. The time to execute this statement is. nontrivial. Hence by Amdahl’s Law
we know the critical section will put a low ceiling on the speedup achievable by
parallelizing the for loop.

Of course, what we are really trying to do is perform a sum-reduction of n
values. [n the next section we’ll learn an efficient way to code a reduction.

17.6 REDUCTIONS

Reductions are so common thal OpenMP allows us to add areduction clause to our
parallel for pragma. All we have to do is specify the reduction operation
and the reduction variable, and OpenMP will take care of the delails, such as
storing partial sums in private variables and then adding the partial sums to the
s]lﬁlred variable after the loop.

415

416

CHAPTER 17 Shared-Memory Programming

The reduction clause has this syntax:
reduction{<op>:<varigble>)

where <op> is one of the reduction operaters shownin Table 17.1 and <variable>
is the name of the shared variable that will end up with the resuit of the reduction.

Here is an implementation of the 7-finding code with the reduction clause
replacing the critical section:

double area, pi, x;
int 1, n;

- area = 0.0;
#pragma omp parallel for private{x) reduction(+:area)
for (1 = 0; 1 < mn; i++) {
X = {1+0.5)/n;
area += 4.0/(1.0 + x*x);
}

. pl = area / n;

Table 17.2 compares our two implementations of the rectangle mle to com-
pute 7. We set n = 100,000 and execute the programs on a Sun Enterprise
Server 4000. The implementation that uses the reduction clause is clearly
superior the one using the critical pragma. It is faster when only a single
thread is active, and the cxecution time improves when additional threads are
added.

Table 17.1 OperMP reduction cperators for C and C++.

Operator . Meaning . Aliowabletypes ~ - Initial value
+ Sum float, il 0
* Product Aoat, int 1
g Bitwise and int all bits 1
| Bitwise or int 0
Bitwise exclusive or nl 0
&& Logical and -t i
I Logical or int G

Table 17.2 Excculion times on a Sun Enterprise Server 4000 of two pragrams that
compute 7 using the rectanigie rule.

Execution time ﬂ[gmgrz}m (sec) -

Threads =~ Uﬁng‘q‘fi‘tidél—pfagmn ' Using reduction dause

1 0.0780 0.0273
2 0.1510 0.0146
3 0.3400 0.0105
4 0.3608 0.0086
5 04716 0.0076

SECTION 17.7 Performance Improvements

17.7 PERFORMANCE IMPROVEMENTS

Sometimes transforming a sequential for loop into a parallel for loop can
actually increase a program’s execution time. In this section we’ll look at three
ways of improving the performance of parallel loops.

17.7.1 Inverting Loops

Consider the following code segment:

for {1 = 1; 1 < m; 1++)
for (3 = 0; oy Ja)r wooon
ali]{ji = 2 * ali-1] {715

We can draw a data dependence diagram to help us understand the data
dependences in this code. The diagram appears in Figure 17.6. We sec that
two rows may not be updated simultaneously, because there are data depen-
dences between rows. However, the columns may be updated simultaneously.
This means the loop indexed by 7§ may be executed in parallel, but not the loop
indexed by 1.

If we insert aparallel for pragma before the inner loop, the resulting
parallel program will execute correctly, but it may not exhihit good performance,
because it will require m- 1 fork/join steps, one per iteration of the Guter loop.

However, if we invert the loops:

¥pragma parallel for private{i)
for {3 = 0; 3 < mn; d++4)
for {1 =1; 1 < m; 1++)
alilld] = 2 * afi-11[]];

e
omsudonnm
o
ot

e
o .
el

P
JEUIN PR NS
.
i

{
Y

Figure 17.6 Data
dependence diagram for a
particular pair of nested
‘ loops shows that while
(columns may be updated
' simultaneously, rows
cannot.

417

418

CHAPTER 17 Shared-Memory Programming

only a single forkfjoin step is required {surrounding the outer loop). The data
dependences have not changed; the iterations of the loop indexed by 7 are
still independent of each other. In this respect we have definitely improved the
code.

However, we must always be cognizant of how code transformations affect
the cache hit rate. In this case, each thread is now working through columas of 2,
rather than rows. Since C matrices are stored in row-major order, inverting loops
may lower the cache hit rate, depending upon m, n, the number of active threads,
and the architecture of the underlying system.

17.7.2 Conditionally Executing Loops

If a loop does not have enough iterations, the lime spent forking and joining
threads may exceed the time saved by dividing the loop iterations among multiple
threads. Consider, for example, the parallel implementation of the rectangle rule
we examined earlier:

area = (§.0;
fpragma omp parallel for private{x) reduction (+:area)
for (i = 0; i < n; i++) {
X = {1+ 0.5)/n;
area += 4.0 / {1.0 + x * xj;
}

pl = area / n;

. Table 17.3 reveals the average execution time of this program segment on
a Sun Enterprise Server 4000, for various values of n and various numbers of
threads. As you can see, when n is 100, the sequential execution time is so small
that adding threads only increases overall execution time. When n is 100,000, the
parallel program executing on four threads achieves a speedup of 3.16 over the
sequential program,
The if clause gives us the ability to direct the compiler to insert code
that determines at run-time whether the loop should be executed in parallel or

Tabie 17.3 Execution time on a Sun Enterprise Server 4000 of
a parallel C program that computes using the rectangle rule,
as a function of nutnber of rectangles and number of threads.

*‘Execuliontime (msec)

SECTION 17.7 Performance improvements

sequentially. The clause has this syntax:
if (<scalar expression>

If the scalar expression evaluates to true, the loop will be executed in parallel.
Otherwise, it will be executed sexially.

For example, hete is how we conld add an i T clause to theparallel for
pragma in the parallel program computing 7 using the rectangle rule;
#pragma omp parallel for private{x) reduction(+:area)

r

for {1 =10; 1 <mn; i++)

if(n

In this case loop iterations will be divided afnoﬁg‘ mul/lipviev}h’reads only if N

n > 5,000.

r

17.7.3 Scheduling Loops

In som¢ loops the time needed 1o execute different loop iterations varies consid-
erably. For example, consider the following doubly nested loop.that tnifializes an
upper triangular matrix:

for (1 =0; 1 < n; i+t
for {7 = i; J < n; J++;
alillj] = alpha_omega(i,j);

Assuming there are no data dependences among iicrations, we would prefer
o execute the outermost boop in paralle! in order to minimize forkfjoin overhead.
If every call to funciion alpha_omega takes the same amount of time, then
the first iteration of the outermost loop {when 1 equals 0) requires n times more
work than the last iteration {when 1 equals n-1). Inverting the two loops will not
remedy the imbalance,

Suppose these # iterations are being executed on 7 threads. If each thread is
assigned{a contiguous block of either [n/1] or [n/¢] threads, the parallel loop
execution will have poor efficiency, because some threads will complete their
share of the iterations much faster than others.

The schedule clause allows us to specify how the iterations of aloop should
be scheduled, thal is, allocated to threads. In a static schedule, all iterations
are allocated 10 threads before they execute any loop iterations. In a dynamic
schedule, only some of the 1terations are allocated to threads at the beginning of
the loop’s execution. Threads that complete their iterations are then eligible to get
additional workg, The allocation process continues until all of the iterations have
been distributed to threads. Static schedules have low overhead but may exhibit
high load imbalance. Dynamic schedules have higher overhead but can reduce
load imbalance.

In both static and dynamic schedules, contiguous ranges of iterations called
chunks are assigned to threads. Increasing the chunk size can reduce overhead

~
>

5000)

M9

420

CHAPTER 17 Shared-Memoary Programming

and increase the cache hit rate. Reducing the chunk size can allow finer balancing
of workloads,
The schedule clause has this syntax:

schedule (<fype > [, <chunk>])

In other words, the schedule type is required, but the chunk size is optional. With
these two parameters it’s easy to describe a wide variety of schedules:

8 schedule(static): A static allocation of about n/t contiguous
iterations to each thread.

» schedule{statig, C).: Aninterleaved allocation of chunks to tasks.
Each chunk contains C contiguous iterations.

a schedule{dynamic) : Iterations are dynamically allocated, one at a
time, to threads.

a schedule{dynamic, C): A dynamic allocation of C iterations at a time
to the tasks.

a schedule(guided, C}: A dynamic allocation of iterations to tasks
using the guided selt-scheduling henristic. Guided self-scheduling begins
by allocating a large chunk size to each task and responds to further
requests for chunks by allocating chunks of decreasing size. The size of the
chunks decreases exponentially to a minimum chunk size of .

® schedule{guided): Guided self-scheduling with a minimum chunk
size of 1.

schedule (runtime): The schedule type is chosen at run-time based on
the valug of the environment variahle OMP_SCHE DULE. For example, the
Unix command

setenv OMP_SCHEDULE "“static,1*
would set the run-time schedule to be an interleaved allocation.

Whenthe schedule clause isnotincluded in the parallel for pragma,
most run-time systems default to a simple static scheduling of consecutive loop
iterations to tasks.

- Going back to our original example, the run-time of any particular iteration of
the outermost for loop is predictable. An interleaved allocation of loop iterations
balances the workload of the threads:

#pragma omp parallel for private(3i) schedule(static,1)
for {i = 0; 1 < n; i++)
for (= 1y J < n; J++)
ali)lj] = alpha_omega(i,j);
Increasing the chunk size from | could improve the cache hit rate at the

expense of increasing the load imbalance. The best value for the chunk size is
system-dependent.

SECTION 17.8 More General Dala Paraliglism

17.8 MORE GENERAL DATA PARALLELISM

To this point we have focused on the parallelization of simple for loops. They are
perhaps the most commaon opportunity for paralielism, particularly in programs
that have already been written in MPL. However, we should not ignore other
opportunities for concurrency. In this section we look at two examples of data
parallelism outside simple for loops.

Firstlet's consider an algorithm to process a linked list of tasks. We considered
a similar algorithm when we designed a solution o the document classification
problem in Chapter 9. In that desigr, we assumed a message-passing model.
Because that model has no shared memory, we gave a single process, which we

called the manager, responsibility for maintaining the entire list of tasks. Worker

tasks seat messages to the manager when they were ready to process another task.

In contrast, the shared-memory model allows every thread to access the same '3—0

“to-do” list, so there i5 no need for a separate manager thread.
The following code segments are partof a program that processes work stored
in a singly linked to-do list (see Figure 17.7);

int wain (int argc, char argv[])
struct job_struct job_ptr;
struct task’ strucl task _plr;

task_ptr = get_next_task (&job_ptr);
while (task_ptr != NULL) {
complete_task [task_ptr);
task_ptr = get_next_task {(&job_ptr);

}

char get_next_task(struct job_struct job_ptr) {
struct task_struct answer;
if (job_ptr == NULL} answer = KULL;
elsé {
answer = (job_ptr)->task;
job _ptr = (job_ptr}-snext;
1
return answer;
} N
How would we like this algorithm to execute in parallel? We want every thread
to do the same thing: repeatedly take the next task itom the list and complete it,
until there are no more tasks to do. We need to ensure that no two threads take
the same task from the list. In other words, it is important to cxecute function
get_next_task atomically.

421

422

CHAPTER 17 Shared-Memory Programming

Master thread

Thread 1

Figure 17.7 Two threads work their way through a singly
linked o do” list. Variable 30b_ ptr must be shared, while
task_ ptr must be a private variable.

17.8.1 parallel Pragma

The parallel pragma precedes a block of code that should be executed-by all of
the threads. It has this syntax:

fpragma omp parallel

If the code we want executed in parallel is not a simple statement (such as
an assignment statement, 1 f statement, or for loop) we can use curly braces to
create a block of code from a statement group.

Note that unlike the paraliei [or pragma, which divided the iterations
of the for loop among the active threads, the exceution of the code block after the
parallel program is replicated among the threads. Qur section of function main
now looks like this:

int main (int argc, char argv([])

{

struct job struct job_ptr;
struct task_struct task_ptr;

#pragma omp parallel private: (task_ptr)

{

task_ptr = get_next_task ({(&job_ptrj;

SECTION 17.8 More General Data Parallslism 423

while (task_ptr != NULL) {
complete_task {task ptr);
task_ptr = get_next_task {&job_ptr);

Now we peed to ensure function get_next_task executes atomically.
Otherwise, allowing two threads to execute function get _next_task simul-
taneously may resuit in more than one thread retummg from the function with
the same value of task_ptt

We use the critical pragma to ensure fnutually exclusive executionof
this critical section of code. Here is the rewritien function get _next task:

char get_next_taskistruct job_struct job_ptr) {
struct task _struct answer;

#pragma omp critical

1f {job_ptr == NULL) answer = NULL;
else {
answer ‘= (job_ptr}->task;
job_ptr = (job_pLr)->next;

}

retiurn answer;

17.8.2 Function omp get thread num

Earlier in this chapter we computed 7 using the rectangle rule. In Chapter 10 we
computed 1 using the Monte Carlo method. The idea, illustrated in Figure 17.8, is
to generate pairs of points in the unit square {where each coordinate varies between
0 and 1). We count the fraction of points inside the circle (those points for which
x*+ y* < 1. The expected value of this fraction is 7/4; hence multiplying the
fraction by 4 gives an estimate of 7.

Here is the C code implementing the algorithm:

int . count; /* Points inside unit circle */
unsigned short xi[2]; /* Random number seed */

int 1;

int sanples; /* Points to generate */

double x, v; /* Coordinates of point */
samples = atol {argv[i]);

xi[0} = atoi (argv[2]);

x1[l] = atol {argv{3]):

424 . CHAPTER 17 Shared-Memory Programming

Figure 17.8 Example of a Monte
Carlo algonithm to compute x. In this
éxample we have genesated 1,000
pairs trom a uniform distribution
between G and 1. Since 773 pairs are
inside the unit circle, our estimate of
7 is 4(773/1000), or 3.092.

x1{2] = atol {argv{4]);

count = 0;

for (1 = 0; 1 < samples; i++) {
“x = erand48(xi);
y = erand48{xi);
if (xX*x+y*y <= 1.0) count++;

}
printf {"Estimate of pi: %7.5f\n", 4.0*count/samples);

If we want to speed the execution of the program by using multiple threads, we
must ensure that each thread is generating a different stream of random numbers.
Otherwise, each thread would generate the same sequence of {x, y) pairs, and
there would be no increase in the precision of the answer through the use of
parallelism. Hence xi must be a private variable, and must find some way for
each thread to initialize array x i with unique values. That means we need to have
some way of distinguishing threads.
In OpenMP every thread on a multiprocessor has aunique identification num-
S ber. We can retrieve this number using the function omp_get _thread_num,
which has this header;

int omp_get_thread num (void)

[f there are ¢ active threads, the thread identification numbers are integers ranging
from O through ¢ — 1. The master thread always has identification number 0.

SECTION 17.8 More General Data Parallelism

Assigning the thread identification number to xi {2] ensurea eaéﬁ.'At‘iuead has a
different random number seed.
17.8.3 Function omp get_pum threads

In order to divide the iterations among the threads, we must know the number of
active threads, Function omp _get_rnum_threads, with this header

int omp_get_num_threads (void)

returns the number of threads active in the current parallel region. We can use this

information, as well as the thread 1denuﬁcanon number to dmde the iterations

among the threads.
Each thread will accumulate its count of points inside the circle in a private
variable. When cach thread completes the [or loop, it will add its subtotal to
count inside a critical section.
The OpenMP implementation of the Monte Carlo 7-finding algorithm ap-
pears in Figure 17.9.

17.8.4 for Pragma

The parallel pragma can also come in handy when parallelizing for loops.
Consider this doubly nested loop:

for {1 = 0; 1 <« m; 1++) {

low = a[i};

high = bli];

if (low > high) { .
printf ("Ekiting during iteration %d\n", 1}:
break;

}

for {7 = low; j < high; j++}
clj] = {cljl - alil)/bli]

We cannot execule the iterations of the outer leop in parallel, because it
contains a break statement, if we put a parallel for pragma before the
loop indexed by 3, there will be a fork/join step for every iteration of the outer
loop. We would like to avoid this overhead. Previously, we showed how inverting
for loops could solve this problem, but that approach doesn’t work here because
of the data dependences.

If we put the parall=] pragma immediately in front of the loop indexed
by 1, then we'll only have a single fork/join. The default behavior is that every
thread executes aif of the code inside the block. Of course, we want the threads to
divide up the iterations of the inner loop. The Lor pragma directs the compiler
to do just that;

#pragna omp for

425

426

CHAPTER 17 Shared-Memory Programming

IS 4
i
* OpenMP implementakion of Monte (arlo pi-finding algorithm

‘
+/

#includs <sidioc.n>
int main {int argc, chav *argvij){

int Counk ; /* Points inside unit circle */
int i;

int local_count; /* This chread‘s subrotal */
int smp‘es, /* Poinks tao generate */

unsigned short xi03); /* Rendom nuwber seed */

int [f* Humber of Lhreads */
ine ouig /* Thread id */
double x, v; - j* Coordinates of point */

[* Number of points and number ob threads are
command-line arguments */

samples = atollargv(l));
‘owp_set_pum_threads {atoi {argvi2ly;

count. = 05
fpragma omp parallel private(xi;t,i, x.¥, local count)
IS

local_count = 0
* xi{0) = atoifaraviil):
®1{11 = atoi(argvid]}
®1[Z] = tid = omp_get_thread nami);
t = omp_get_num_threads();

for (i = tid; 1 < samples; i #+= t} {
X o« eranddBixiy; -
v = erandd8{xi}:
1f (x*xpyry <= 1.0} iocal_count++;
}
dpragma omp critical
count += local count;
} .
printt {"Estimate of pi: %7.58\w", 4.0*comt/samnples);

Figure 17.9 This C/OpenMP program uses the Monte Carlo method to
compute 7.

With these pragmas added, our code segment looks like this:

fpragma omp parallel private{i,j)

for

(1 = 0; 1 <m; 1e4) { ©
low = a[i};
high = bli};
if (low > high) {
printf ("Exiting during iteration %d\n", i);
break;

SECTION 17.8 Mure General Data Paralielism

tpragma omp for
for {j = low; J < hlg‘l J++)
clil = {ci{il - afil}/bIil;

Our work 1s not yet complete, however.

17.8.5 single Pragma
We have parallelized the execution of the loop indexed hy ;. What about the other

- code inside the outer loop? We certainly don’t want to see (he etror memge more

than once.
The single pragma tells the compiler that only a smgle thn,ad should
execule the block of code the pragma precedes. Its syntax is:

#pragma omp single
Adding the single pragma lo the code block, we now have:

#pragma omp parallel private(i,j!
for (1 = 0: 1 < m; i+4) {
low = a{i]a
high = b[i);
if (low > high) {
#pragma omp single
printf {"Exiting during iteration %d\n", 1i);
break;
}
#pragma omp for
for (i = low; j < high; j++)
clil = (c{3l - alil)/blil;

The code block now executes correctly, but we canimprove its performance.

17.8.6 nowait Clause

The compiler puts a barrier synchronization at the end of everyparallel for
statement. In the example we have been considering, this barriet is necessary,
because we need to ensure that evesy thread has completed-one iteration of the
loop indexed by 1 before any thread begins the next iteration. Otherwise, a thread
might change the value of 1ow or high, altering the number of iterations of the
3 loop performed by another thread.

On the other hand, if we make 1ow and high private variables, there is no
need for the barrier at the end of the loop indexed by j. The nowait clause,
added 10 aparallel for pragma, tells the compiler to omit the barries syn-
chronization at the end of the parallel for loop.

427

428

CHAPTER 17 Shared-Memory Programiming

Affter making Low and high private and adding the nowait clause, our
final version of our examgple code segment is:

fpragma omp parallel private(l,j,low,high)
for (i = 0; 1 < m; 1++} {
low = alil;
high = bli];
if (low > high} {
fpragma omp Single
printf {"Exiting during iteration %G\n*, i);
break; '
})
#pragma omp for nowait
for {(j = low; § < high; j++)
c{j] = {eli] - alily/B(il;

17.9 FUNCTIONAL PARALLELISM

To this point we have focused entirely on exploiting data parallelism. Another
source of concurrency is functional parallelism. OpenMP allow$ us to assign
different threads to ditferent portions of code.

Consider, for example, the following code segment:

v = alpha();
w = betal);
x = gamma (v, w);
y = deltal);

printf ("%6.2f\n", epsilon{x,v});

It all of the functions are side-effect free, we can represent the data dependences
as shown in Figure 17.10. Clearly fonctions alpha, bet a, and delta may be
executed in parallel. If we execute these functions concugrenily, there is no more

Figure 17.10 Data dependence diagram
for core segment of Section 17.9.

SECTION 17.9 Functional Paralighsm

functional paraticlism to exploit, because function gamma must be called after
fonctions alpha and beta and before {unction epsilon.

17.9.1 parallel sections Pragima

The parallel sections pragma precedés a block of k blocks of code that
may be cxeculed concurrently by k threads. It has this syntax:

fpragma omp parallel sections

17.9.2 section Pragma

The section pragma precedes each block of code within the encompassing A
block preceded by the parallel sections pragma. (The sect ionpragma
may be omitted for the first parallel section after the parallel sections
pragma.)

In the example we considered, the- calls to functions alpha, bela, and

delta could be evaluated concurrently. In our parallelization of this code seg-

ment, we use curly braces to create a block of code containing these three assign-
met statements. (Recall that an assignment statcment is a trivial exzunple of a
code block. Hence a block containing three assignment statements is a block of
three blocks of code.j

#pragma omp parallel séct’:ions
{
#pragma omp section /* This pragma optional */
v = alpha{); ‘
#pragma omp section
w = beta();
#pragma omp section
y = delta();
}
x = gamma (v, w);)
printf {"%6.2f\n", epsilonix,y));

Note that we reordered the assignment statements to bring together the three
that could be executed in parallel.

17.8.3 sections Pragma

Let’s take another look at the data dependence diagram of Figure 17.10. There is
a second way to exploit functional parallelism in this code segment. As we noted
earlier, if we execute functions alpha, beta, and delta in parallel, there are
no further opportunitics for functional parallelism. However, if we execute only
functions alpha and beta in parallel, then after they return we may execute
functions gamma and delta in parallel.

In this desizn we have two different parallel sections, one following the other.
We can reduce fork/join costs by putting all four assignment statements in a single

430

CHAPTER 17 Shafed-Memory Programming

block preceded by the pafallel pragma, then using the sect: ions pragma

+ to identify the first and second pairs of functions that may exccute in parallel.

The sections pragma with syntax
#pragma omp sections

appears inside a parallel block of code. It has exactly the same meaning as
the parallel sections pragma we have already described.

Here is another way to express functional parallelism in the code segment
we have been considering, using the sect ions pragma:

#pragma omp parallel

{
#pragma omp sections
{
#pragma omp section /* This pragma optional */
v = alpha{}: . -
#pragma omp section
w = hetal();

)
H

tpragma omp sections
{
#pragma omp section /* This pragma optional */
X = gamma{v, w);
#pragma omp section
v = deltal);
}
) .
printf {*%6.2f\n", epsilon{x,y));

In one respect this solution is better than the first one we presented, because
it has two parallel sections of code, each requiring two threads. Our first solution
has only a single parallel section of code that required three threads. If only
two processors are available, the second section of code could result in higher
efficiency. Whether or not that is the case depends upon the execntion times of
the individual functions.

17.10 SUMMARY

OpenMP is an APl for shared-memory paralle] programming. The shared-memory
made} relies upon fork/join paralielism. You can envision the execution of a
shared-memory program as periods of sequential execution alternating with pe-
riods of paralle! execution. A master thread executes all of the sequential code.
When it reaches a parallel code segment, it forks other threads. The threads conr-
municate with each other via shared variables. At the end of the parallel code
segment, these threads synchronize, rejoining the master thread.

SECTION 17.10 Summary

- This chapter has infroduced OpenMP pragmas and clauses that can be used to
transform asequential C program into one that ruas in parallelon amultiprocessor.
First we considered the pacallelization of for loops. In C programs data paral-
lelism is often expressed in the form of for loops. We use theparallel for
pragma to indicate to the compiler those loops whose iterations may be performed
in parallel. There are certain restrictions on fox loops that may be executed in
parallel. The control clause must be simple, so that the run-time system can deter-
mine, before the loop executes, how many iterations it will have. The loop cannot
have a break statement, got.o statement, or another statement that allows early
loop termination.

We also discussed how (o take advantage of functional parallelism through

the use of the parallel sections pragma. This pragma precedes a block
of blocks of code, where each of the inner blocks, or sections, represents an
independent task that may be performed in parallel with the other sections.

The parallel pragma precedes a block of code that should be executed
in parallel by all threads. When all threads execute the same code, the result is
SPMD-style parallel execution similar to that exhibited by many of our programs
using MPL A for pragma or a sections pragma may appear inside the block
of code marked with a parallel pragma, allowing the conipiler to exploit data
or functional parallelism.

We also use pragias tg point out areas within parallel sections that must be
executed sequentially. The critical pragma indicates 2 block of code forming
acritical section where mutual exclusion must be enforced. The single pragma
indicates a block of code that should only be executed by one of the threads.

We can convey additional information to the compiler by adding clauses to
pragmas. The private clause gives each thread its own copy of the listed] vari-
ables. Values can be copies between the original variable and private variables
using the firstprivate and/or the lastprivate clawses, The reduc-
tion clause allows the compiler (o generate efficient code for reduction opera-
tions happening inside a parallel loop. The schedule clanse lets you specify
the way loop iterations are allocated to tasks. The 1 clause allows the system to
determine at run-time if a construct should be executed sequentially or by mul-
tiple threads. The nowait clause eliminates the barrier synchronization at the
end of the paraliel construct.

" While we have introduced clauses in the context of particular pragmas, most
clauses can be applied to most pragmas. Table 17.4 lists which of the clauses we
have introduced in this chapter may be attached to which pragmas.

We have examined various ways in which the performance of parallel for
loops can be enhanced. The strategies are wnverting loops, conditionally paral-
lelizing loops, and changing the way tn which loop iterations afe scheduled.

Table 17.5 compares OpenMP with MPL. Both programming environments
can be used to program multiprocessors. MPLis suitable for programming muhi-
computers. Since OpenMP has shared variables, OpenMP is not appropriate for
generic multicomputers in which there is no shared memory. MPI also makes
it casier for the programmer (o take control of the memory hierarchy. On the

431

432

CHAPTER 17 Shared-Memory Programming

Tahlé 17.4 This table summarizes which clauses may be atfached to which pragmas,

ritical None

cr
for firstprivate, lastprivats, nowait,
private, reducticn, schedule
parallel firstprivate, if, lastprivate,
- private, reduction
parallel for : firstprivate, if, lastprivate,

private, reduction, schedule

parallel sections firstprivate, if, lastprivate,
privage, reducticn

sections tirstprivate, lastprivate, nowait,
private, reduction

single firstprivate, nowait,private

Note: OpenMP has additional clauses not introduced in this chapter.

Table 17.5 Comparison of OpenMP and MP,

Suitable for mmultiprocessors Yes Yes

Suitable for multicomputers No Yes
Supports incremental paralelization Yes No
Minimal extra code Yes No
Explicit control of memory hierarchy No Yes

other hand, OpenMP has the significant advantage of allowing programs to be
incrementally parallelized. In addition, unlike programs using MPL which often
are much longer than their sequential counterparts, programs using OpenMP are
usually not much longer than the sequential codes they displace.

17.11 KEY TERMS

canonical shape grain size race condition

chunk guided self-scheduling reduction variable
clause incremental parallelization schedule

critical section master thread sequentially last iteration
dynamic schedule pragma -shared vanable
execution context private clause static schedule

fork/join parallelism private variable

17.12 BIBLIOGRAPHIC NOTES

The URL for the official OpenMP Web site is www.OpenMP.org. You can
download the official OpenMP specifications for the C/C++ and Fortran versions
of OpenMP from this site.

SECTION 17.13 Exercises

- Parallel Programming in OpenMP by Chandra et al. is an excellent introduc-
tion to this shared-memory application programming interface [$6]. 1t provides
broader and deeper coverage of the features of OpenMP. It also discusses perfor-
mance tuning of OpenMP codes.

17.13 EXERCISES

171 Of the four OpenMP functions presented in this chapter, which two
have the closest analogs to MPI functions? Name the MPI function each
of these functions is similar to.

1722 For each of the following code segments, use OpenMP pragmas to
make the loop parallel, or explain why the code segment is not suitable
for parallel execution.

a for (1 = 0; 1 < (int) sqrt(x); 1++) |
alil-= 2.3 * i;
if (i< 10) blil = alil;
}
b flag = 0;
for (i = 0; (i < n) & (!flag); i+4) {
ali] = 2.3 * 1;
if (ali] < bii]) flag = 1;
1
c. for (i = 0; i < n; i++)
) ali] = fooli};
d for (1 = 0; 1 < n; i++) {
ali] = foo(i);
if {ali] < b[i]) al[l] = bli];
c. for 11 = 0; 1 < mn; 1++) { -
alil = fooli);
if {(ali] < b[i]) break;
}

for (1 = k; 1 < 2*%k; i++)
afi] = afil] + ali-k];

g=

433

434 CHAPTER 17 Shared-Memory Programming

17.3

17.4

175

17.6

17.7

17.8

179

h. for (1 = k; 1 <n; 1++4)
‘ ali] = b * a[i-k];

Suppoéé OpenMP did not have the reduct ion clause. Show how to
implement an efficient parallel reduction by adding a private variable
and using the critical pragma. Nlustrate your methodology using
the 7 -estimation program segment from Section 17.5.

Section 17.7.3 discusses an interleaved scheduling of tasks to balance
workloads among threads initializing an upper friangular matrix.
Explain why increasing the chunk size from 1 could improve the cache
hit rate. ;

Give an example of a simple parallel £or loop that would probably
execute faster with an interleaved static scheduling than by giving each
task a single contiguous chunk of iterations. Your example should not
have nested loops.

Give an original example of a paralle] for loop that would probably
execute in less time if it were dynamically scheduled rather than
statically scheduled.

In Section 17.8 we develop a parallel code segment allowing multiple
threads to work through a single “to-do” fist. Explain how two threads
could end up processing the same task if function get _next_task
is not executed atomically.

Figure 17.9 illustrates a C/OpenMP program that uses the Monte Carlo
algorithm to compute . Note that the iterations of the £or loop are
divided among the threads explicitly. Implement another version of this
program that uses the for pragma to delegate the allocation of loop
iterations to the run-time system. Benchmark your program for various
values of » {number of samples) and ¢ (number of threads).

Use OpenMP directives to express as much parallelism as possible in
the following code segment from Winograd’s matrix multiplication
algorithm {adapted from Baase and Van Gelder [5]).

for (1 =0; 1 < m; i++) {
rowterm[i] = 0.0;
for (3 = 0; 3 < p; j++)
rowterm{i] += a(i}[2*j] * a[i]l[2*j+1};
T
for (1 = 0; 1 < q; i++) |
colterm[i] = 0.0;
for (j = 0; J < p; J++)
colterm[i] += b{2*j1{1] * bi2*%j+11[1];

R—

17.10
17.11
17.12

17.13

17.14

17.15

17.16

SECTION 17.13 Dxercises

Use OpenMP ditectives to implement a parallel program for the Sieve
of Eratosthenes. Benchmark your program for various values of 2 and 7
(number of threads).

Use OpeaMP ditectives to implement a parallel program for Floyd's
algorithm (Figure 6.2). Benchmark your program for differeat values of
n and £ (number of threads). ‘

Use OpenMP directives to implement a parallel version of
matrix-vector maltiplication (Figure 8.1). Benchmark your program for
different values of » and ¢ (number of threads).

Use OpenMP directives to implement a parallel program that solves a
dense system of linear equations using Gaussian elimination with row
pivoting, followed by back substitution (Figure 12.7). Benchmark your
program for different values of # and ¢ (number of threads).

Use OpenMP directives to implement a parallel version of the conjugate
gradient method (Figure 12.13), assuming the coefficient matrix A is
symmetrically banded. Benchmark your program for different values of
nand ¢ (number of threads).

Use OpenMP directives to implement a parallel version of Parallel
Sorting by Regular Sampling (Figure 14.5). Benchmark your program
for different values of 1 and ¢ {(number of threads).

Use OpenMP directives to implement a parallel program that solves the
15-puzzle (Chapter 17). For a variety of scrambled puzzles, benchmark
your program for different values of ¢ {number of threads).

435

CHAPTER

~~ Combining MPI and OpenMP

The good things in life are not to be had singly, but come to us with a mixture.
Charles Lamb, That You Must Love Me and Love My Dog

18.1 INTRODUCTION

Most commercial multicomputers with hundreds or thousands of CPUs are ac-
tually collections of centralized multiprocessors, and many commodity clusters
are madc up of dual-processor or even quad-processor nodes. For these reasons
it is good to know how to transform a program using MPI into a program us-
ing both MPI and OpenMP, suitable for execution on a multicomputer cluster of
multiprocessors.

It is true that you can execute an MPL-only C program on a multiprocessor
cluster by creating one MPI process for each CPU on the system (Figure 18.1a).
In this case some MP1 processes will happen to be-on the same multiprocessor, but
all process interactions will happen via message-passing. Sometimes, however,
it is better to construct a hybrid parallel program {Figure 18.1b). In this case one
MPI process executes on each multiprocessor. Inside parallel sections of code the
MPI processes [ork threads to occupy the multiprocessor CPUs, and these threads
can interact via shared variables.

O_!r In many cases hybrid programs using both MPI and OpenMP execute faster
than programs using only MPL

Sometimes hybrid programs cxecuie faster because they have lower com-
munication overhead. Suppose we are execliting our program on a cluster of m
multiprocessors, where each mulliprocessor has k CPUs. In order to ulilize every
CPU, a program relying an MPL must create mk processes. During communica-
tion steps, mk processes are active. On the other hand, a hybrid program need only
create m processes. [n parallel sections of code, the workload is divided among
k threads on each multiprocessor. Hence every CPU is utilized. However, during

436

SECTION 18.1 |Introduction

Nemws| [ecom

I EEECINH TR

1 EEEERE | Clisis

Hepwe] | fEoom
@ . b

Figure 18.1 Two ways to execute parallel programs on
mulfiprocessor clusters. {a} Create an MP process (P) for
every CPU. (b) Create an MP process {P) for every
multiprocessor and create threads (1) to accupy the CPUS.

communication steps, only m processes are active. This may well give the hybrd
program lower communication overhead than a “pure” MPI program, resulting
in higher speedup.

Another way a hybrid program can achieve higher speedup is if it is practical
to paralelize some portions of the computation via lighter-weight threads, but
not via heavier-weight processes. Consider the following example.

Suppose we arc parallelizing a serial program that executes in 100 seconds.
The program spends five seconds {35 percent of the execution time) performing
inherently sequential operations. It spends 90 seconds (90 percent of the execution
time) performing operations that are perfectly parallelizable. We translate this
portion of the program into parallel code that achieves linear speedup.

The last five seconds (5 percent) are spent doing operations that could be
performed in parallel, but require substantial communication overhead. The time
required for the MPI function calls is so great that it is not worth making these op-
erations parallel. Instead, we will replicate these operations on the MPI processes.

However, suppose thal in a shared-memory environment it is practical to
execute these operations in parallel. Suppose further that if these operations are
performed on two processors, the parallel overhead is negligible.

Let’s compute the speedup our program will achieve, assuming we are ex-
ecuting it on a cluster of eight dual-processor systems. With 16 MPI processes,
the maximum speedup achievable (by Amdahl’s Law) is

i :
e = (4
{0.10+ 0.90/16)
Alternately, we can execute the program on eight MPI processes and allow
doubie-threaded execution within each process. For the 90 peccent of the code

that is perfectly parallelizable, the 16 threads execute these operations 16 times
faster, For the 5 percent of the code that is replicated across the nodes, two threads

437

438

CHAPTER 18 Combiring MP! and OpenMP

will execute it twice as fast. The 5 percent of the code that is inherently sequential

remains. The maximum speedup achievable is

1
=76
0.05 +0.05/2 + 0.90/16

In this case the hybrid program is 19 percent faster than the program using
only MPL

A third situation in which hybeid parallelism can be useful is when some MPI -
processes are idle while others are busy. Suppose an application is executing on a
muliiprocessor cluster. On one of the multiprocessors three of the MPI processes
are waiting. foramgssages, while the fourth process is active. If the active process

v

could exploit the idle CPUs to exccute some parallel operations faster, then it
would be worthwhile to fork some threads.

In this chapter we’ll illustrate the transformation of programs using MPI
into programs using both MPI and OpenMP through two case studies. The first

"case study is an implementation of the conjugate gradient algorithm described in

Chapter 12. The second case study is an implementation of the Jacobi method .
described in Chapter 13. Tn both cases relatively small changes to the MPl-only
C program are sufficient (o translate it into an MPL/OpenMP C program that
achieves significantly higher speedup.

18.2 CONJUGATE GRADIENT METHOD
18.2.1 MI;'I Program

The program presented in Figure 18.2 implements the conjugate gradient method
to solve a system of linear equations Ax = b, where the coefficient matrix A is
positive definite. The program desiga is based upen a block-row decomposition
of matrix A among the processes. It assumes vector & and all other vectors are
replicated.

Function main invokes the usual sequence of MPI start-up functions, then
uses two of the utility fonctions developed in earlier chapters to read matrix A
and vector b from files. If matrix A is not square, or if the number of columans in
A does not match the number of rows in b, the algorithm terminates. Assuming
the matrix is s x # and the vector has n elements, function ma in allocates space
for the solution vector x, calls function cg to solve Ax = b for x, and prints the
solution.

Function ¢g is a straightforward implementation of the conjugate gradient
method as described in Chapter 12. Code to initialize, add, and subtract vectors
appears in line, but dot (inner) products and matrix-vector multiplications are
accomplished through function calls. The conjugate gradient method is an iterative
algorithm that generates successively better approximations to the solution vector.
The function terminates either when it has converged on the solution or when it has

SECTION 18.2 Conjugate Gradient Melhod

/* Conjugate Gradient Method in MPT *+/ & 777 R
finclude <stdlib.h>
#inciude <stdio.h>
#include "mpi.h"
#include "MyMPI.h*
main (int arge, char *argvl])
{
double **a; /* Solving Ax = b for x */
double *agtorage; -#* Holdg elements of & */
double *b: /* Constant vector */
double *x; /* Solution vector */
int B /* MPT Processes */
int ig; /* process rank */ -
int m; /* Rows in A */
int n; /* Columns in A */
int nl; /* Elements in b */

MPI_Init {&arge, &argy);
MPT_Comm_size (MPI_COMM WORLD, &p):
¥PI_Comm_rank {MPI_COMM_WORLD, &id);
read block_row matrix (14, p, argvill, (void *} &a,
{vold *} %astorage, MPI_DJUBLE,- &m, &0);
ni = read_replicated_vector (id, p, argviZ},
(void **) &b, MPI_[?OU_BLEE;
if {{m t=n) il (o !=nl)) { .
1f {(#id) o
printl {*Incompatible dimensions (3dx%d) x (%d)\n",
m, n, nil;
} else |{
x = {double *) malloc (n * sizeof{double}):
cg fp, id, a, b, x. n);
princ_replicated vector (id, p, x, MPI_DOUBLE, n;
MPI_Finalize{};

}

" Figure 18.2 MPI program implementing the conjugate gradient
method.

- iterated » times, whichever comes first. The algorithm typically finds a solution
in far fewer than 1 iterations.

Function dot_product, when passed two vectors, returns a double-
precision scalar value that1s the dot product of the two vectors. Since all vectors are
replicated, every process has all the values it needs to compute any dot product—
no communications are needed. The function has time complexity €(»).

Function matrix_wector_product, when passed a matrix and a vec-
tor, returns through another parameter the matrix-vector product, another vector.
Each process is assigned a contiguous group of rows of the matrix, while vectors
are replicated. Hence multiplying these rows times a vector results in the solu-
tion being distabuted in blocks across the set of processes. The computational
complexity of this function is @(n*/ p).

439

CHAPTER 18 Combining MPI and OperMP

arion ¥/

#define EPSTLON 1.0e-10 /* Convergence crit
.allocated once */

double *plece: /* Temp storage
&/

J* Conjugate gradient method solves ax - b for x */

cg {int p, int id, double **a, double *b, double *x, inL n }

{
int i, dg /* Loop indices */
double *d;
double *g; /* Gradienl vector */
double Zenoml, deromZ, numl,
numz, s, *Lmpvac; I Temporaries */

e , int); -
nt, int, double ,
double ¥, double *);

double dot_product [double
void matrix_vector_produdt

/* Initialize gradient vectors */

@ - [double *) malloc {n * sizeof|double)):

g = (double *) malloc (o * sizeof(double))s

topvec = {double *} malloc (n * sizeof({double)):

piece = {(double *) malloc {BLOUCK SIZE{id,p,n} *
sizeof (double});

<n; l++) 4

/* Algorithm converges in n or fewer iterations */

for (it = 0; it < ny it++)
deroml = dot__product (g, g, nl;
matrix_vector _product {id, p, n, a, x, g);
for (i = 0; 1 < n; i++)
gl[i] -= blil):
numl = dot _product {g, g, n):

/* When g is sufficiently close to §, time to halt */
if (numl < EPSILON) break;

for (1 . 0; 1 < n; i+4)

dfil = -gfi] + (numl/denoml) * d(i];
nun? = dot_ product (4, g, nj;
matriz_vector_product {id, p, n, a, d, tmpvec);
denow? = dot_ product (4, tmpvec, n);
s « -num? / denom?;
for (1 = 0; 1 < n; i+2) x{i] += s * d[i];

h

Figure 18.1 {contd.) MP) program implemanting the conjugate
gradient mathod.

SEGCTION 18.2 Conjugaie Gradient Method

/k
* Return the dot product of two vectors
*/

double dot__product {doutle *a, double *b, iaf n!
int i;
double answer;

answer = G.9J;

for {1 =0; 1 <
answer += afi

return answer;

n; i++)
7% bfil;

¥ Compute the producl of marrix a and vector b and
store the result in wvector <.

void matrix_vector_product {int id, int p, int n,
’ double **a, double *bL, double *c¢)
{
int i, 3;
double trp; /* accumulztes sum ¥/

for (1 = 0; 1 < BLOCK_STZE{id,p,n}; i++} {
tmp = 0.0;)
for (j = 0; § < n; j++l .
tmp += alil (3} * bij];
pieceli) = tmp;
1
new_replicate_block vector {id, p, piecs, o,
{void *} ¢, MPI_DOUBLE;};
}

Figure 18.1 (contd} MPI program implementing the conjugate gradient
method.

In order to replicate the solution vector, function matrix_vector_
product calls function new replicate_block_vector. Function
new_replicate_block_vector differs from funclion replicate_
block_vector in that it does not allocate space for the replicated veclor.
Instead, the calling function passes a pointer to the memory where the replicated
vector should be stored. Using the new function saves time, because it saves func-
tion matrix_vector_product from having to copy the replicated vector
to where it is needed. Replicating a block vector i% an example of an all-gather
operation that has time complexity G(log p + n).

We see that the most computationally intensive pottion of the conjugate
gradient method is in the matrix-vector multiplications. In addition, the only
communications required inside the method’s whi le loop occur as part of the
matrix-vector multiplications.

449

CHAPTER 18 Combining MP! and OpentvP

Table 18.1 Resuit of profiling the conjugaté gradie:h{ program on one and
eight CPUs of a commodity chister.

matrix_vector_product 99.55% 97 49%

dot _product 0.19 1.06
cg 0.25 1.4

18.2.2 Functional Profiling

Our first step s to profile the program to discover where the greatest oppormmtles
for further parallelization lie. '

We insert calls to function MPT_Wt ime inside the program to monitor the
amount of time spent inside each of the principal functions{cg, dot _product,
and matrix_vector_product). We record the average time spent inside
each function as the program solves systems of size 768 on 1 CPU and on 8 CPUs
of a commodity claster. Table 18.1 reveals the results of this benchmarking. (The
figure for function cg excludes time spent in the functions it calls.)

As you can see, virtually all of the execution time is spent within function
matrix_vector_product. This makes sense, since it is the part of the
algorithm with the highest computational complexity. This function should be
the focus of our paralielization.

18.2,3 Parallelizing Function matrix_vector_product

Function matrix_vector_product has nested £or loops. We maximize
grain size by parallelizing the outermost pOSblblC loop. The outer loop, indexed by
i, computeselement i of the result vector. While various matrix and vecior values
* areread inside the loop, the only values written are tmp, 3,andpiece [1]. Every
iteration of the outer loop may be executed in parallel if each thread has a private
copy of tmp and j.

We can use the parallel for pragmato make pdrallel the loop indexed
by i.The for loop index 1 is private by default. As we noted earlier, each thread
needs its own copy of tmp and 7, so we declare them to be private variables. Our
completed pragma is

#pragna omp parallel for private(j,tmp)

We also want to give the user the opportunity to specify the rumber of active
threads per process. To do this, we add a call to omp_set_num_threadsto
function ma in. Its argument comes from the command line. We put this function
call into ma in immediately after the call to MPT_Comm_rank:

omp_set_num_threads (atol(argv[3]));

We have added only two lines to the program using MPI to transform it into’
a program using both MPI and OpenMP!

SEGTION 18.2 Conjugate Gradient Method

18.2.4 Benchmarking

Now let’s benchmark our program on a commodity cluster containing four dual-

- processor computers. First we run the original program. When it executes on one,
two, three, and four processes {one to four CPUs), each process is on a different
node. By doing this we maximize memory bandwidth to the CPUs. When we
execute five processes on five CPUs, two of the processes are on the same node.
By the time we get to eight processes, a process is assigned to every available
CPU, two per computer.

In our MP1/OpenMP benchmarking, we create only one MPI process per
computer. In our first experiment we run one process with two threads en one
computer. Our second experiment runs two processes with a total of four threads
on two computers, and 5o on. Our last experiment runs four processes and eight
threads, so that one thread is assigned to every available CPU. In other words, we
execute the program using MPI and OpenMP on two, four, six, and eight CPUs.

Figure 18.2 illustrates the results of our benchmarking. Each time plotted in
the graph represents the average of five executions of the program. The original
program executes faster than the hybrid program when two CPUs are used. This
makes sense, because both OpenMP threads are executing on the same computer.
The CPUs executing the OpenMP threads will have lower memory bandwidth and
alower cache hit rate. By the same reasoning, we’d expect the program using only
MPI to execute faster when four CPUs are used, and this is the case. .However,

800 -

1 -4 MPI
L Y 5 MPL 4 OperMP
wl

Time (imsec)

3{)0_
‘j_l()O-
l()()r .
1 (RO I N N
12 3 4 5 6 7 8
Processors

Figure 18.2 Result of benchmarking the
original and hybrid parallel programs using
the conjugate gradient method to solve a
dense system of 768 equations. All times are
in milliseconds. The target architecture is a
commodity cluster containing four
dual-processor nodes.

43

CHAPTER 18 Combining MPI and OpenMP

once we get to six CPUs, computers are being shared for pairs of MP1 processes,
so the previous advantage disappears. At this point the lower communication cost
of the hybrid program begins to pay off. The final data point shows that executing
four MPI processes, each with two threads, results in 27 percent lower execution
time Lthan executing eight MPI processes.

18.3 JACOBI METHOD
18.3.1 Profiling MPI Program

For our second case study we will look at a more complicated example, We -
have written a C/MPI program that uses the Jacobi method to solve the steady-
state heat distribution problem, as described in Chaptér 13. To make our exam-
ple easier to understand, we have chosen a rowwise block-striped decomposition
of the two-dimensional matrix representing the finite difference mesh. The pro-
gram’s exccution is divided into three phases. Function initialize_meshis
responsible for allocating a process’s portion of the matrix and initializing both
the boundary and interior values. Function find_steady_state implements
the Jacobi method for solving the partial differential equation. It iterates until the
values at the mesh points have converged. Function print _solutjon prints
to standard output the values at each mesh point.

Our first step is to profile the parallel program’s execution on one and four
processors of a commodity cluster. The results are summarized in Table 18.2. The
vast majority of time is spent inside function find_steady_state. For that
reason we will focus our parallelization efforts on this function, which appears
in Figure 18.3.

18.3.2 Parallelizing Function find_steady_state

Except for two early initializations and a return statement, function find _
steady_state consists of a for loop. There are many reasons we cannot
execute the loop in parallel. It is not in canonical form. It contains a break state-
ment. It contains calls to MPI functions. The most significant reason, however, is
that there are data dependences between iterations. Each iteration relies on values
computed in the previous iteration. So we need to look for parallelism inside an
iteration of the outer £or loop.

Table 18.2 Result of profiing a C/MPI program implementing the
Jacobi method. The target architecture is a commadity cluster,

initialize mesh 0.01% 0.03%
find_steady state 98.48% 93.49%

print_solution 1.51% 6.48%

SECTION 18.3 Jacobi Method

double **u, double **w}

double diff;
double global diff;

fer (;3) {
if (id > 0}

MPI_Send (:[1), N, MPI_DOUBLE, id-1, 0, MPI_COMM WORLD):
L Gl <p1) | .

y_rows-2], N, MPI_DOUBLE, id+1, 8, MPL_COMM_WORLD);:
rows-1, N, MPT_DOUBLE, id+l, 0, MPL COMM_WORLD,

t
if (id » ¢)

MPI_Recv (u[0], ¥, MPI_DOUBLE, id-1, 0, MPI_COMM WORLD, fstatus);
difif = 0.0; :
for {1 = 1; i « my_rows-1; 1++)

for { = 1; J <« H-1; j++) |
wlil{j] = (ufi-1i13] + wfi«11{3) +

wii] {3-1] + u(i)[3+17)/4.0;

it {fabeiwiil(3] - u{1]ij]) = Aiff}

diff = fabs(w[i][3} - uw{11{j)i;

I
for (1 = 1; 1 < my_rows-1; 1++}
for (i = 1; 3 < N-1; je+}
ulilij] = wlilljl;
MPT_Bllreduce (&diff, &global_dift, 1, MPI_DOUBLE, MPT_MAX,
MPI_COMM_WORLD) ;
if (global_diff <= EPSILON} break; -
iEs++;

!

Figu;e 18.3 More than 90 percent of the program's execution fime is spent inside
function £ind_steady_state. This is where we will loak for opportunities for
parallelization through multithreading.

Our focus shifts to the first £or loopindexed by 1. Thisis the loop that iterates
through the rows of this process’s share of the matrix, computing elements of w
from elements of u. These assignment statements are independent of each other
and may execute simultaneousy.

However, when the absolute value of w[i] [j] is greater than the current
value of di ££, we need to update 41 £ 1. If we want multiple threads to reference
the shared variable di £ £, we would need to put the if statement inside a critical
section. This would reduce speedup.

Instead, we are going to introduce a new, private variable called t d1 £. Bach
thread will initialize its copy of td1£f to zero before the for loop indexed by
i and compare ¢ach value of w[1] [§] it computes with tdiff. Since all the

446

CMAPTER 18 Combining MP| and OpeniP

threads are assigning values Lo different elements of w and different Pﬂf’ale copies
of tdiff, wecanuse the For pragma lo indicate that the for loop indexed by
1 may be made parallel. .

The second For loop indexed by 1 copies elements of w o the correspond}ng
elements of u. We place a for pragma before this loop to instruct the compiler
to make it paralle].) L

After the second for loop indexed by i we create a critical seculon in WthICh
each thread compares its value of t:d £ £ with the value of shared variable di £ £,
and updates the value of A1 £f to tditf when tdifF is largef' L.

Note that creating private variable tdiff allows us o blflld a solution in
which each thread only enters 2 critical section once per iteration of the Jacobi _ ’
method. If all threads had referenced 41 £ in the original pair of neﬁled 1.00PS,
each thread would have entered a critical section 3 times i times per iteration of
the Jacobi method,

We use curly braces to create a block of code surrounding the WO for prag-
mas, the critical pragma, and the statement that initializes private variable
tdiff. At the top of this block of code we insert a parallel prapma. Our
modified version of function £ind_steady_state appears in Figure 184

We also modify function main, adding the statement

Omp_set _num_threads (atcilargvi1]));

so that the user can specify the number of active threads per MPT process from
the command line.

18.3.3 Benchmarking

We benchmark both the oiginal program and the hybrd programona commo@ﬁy
cluster containing four dual-processor nodes. First we run the C‘progrzun using
only MPL Our allocation of processes to nodes is the same as in the previous
example. When executing on one to four CPUs, each process is on a different
Node, to maximize memory bandwidth to the CPUs. When we execute five pro-
cesses on five CPUs, two of the processes are on the same node. By the time
We get to eight processes, a process is assigned to every available CPU, two per
Computer. '

In our MPT/OpenMP benchmarking, we create only one MPL process pet
node. Two threads are associated with each process. Hence our four data points
fepresent two, four, six, and eight active CPUs.))

Figure 18.5 illustrates the results of ow benchmarking. Each time plotied in
the graph represents the average of five executions of the program. the that the
hybrid program is uniformly faster than the original program exccuting on the
same number of CPUs. This is because the computation/communication ratio
of the hybrid program is superior. The number of mesh points updated per ele-
Ment communicated is twice as high per node for the hybrid program. The lowg
Communication overhead leads 10 a higher speedup. On eight CPUs the hybrid
program is 19 percent faster than the parallel program relying solely on MPT.

SECTION 18.3 Jacohi Method

My _rows,

int find_steady_state (int p, int ig, inc
Le *¥w)

deuble **u, doubl

(

double diff;
doukle global_giff;
int i, i

inE its;

double tdifs;

MPI_Status staftus;

its = 0;
for (;;1 {
if iid > @)
,MPI_Seqd:(u[l], A, MPIfDOUELE, id-1, 0, MPI_COMM_WORLD);
if fdcp-ly U
MPT_Send {uimy_rows-2}
MPT_Recv |

I, N, MPT_DOUBLE, idil, 0, MPT_COMM_WORLD);
_rows-1], N, MPI_DOUELE, id+1, 0, MPI_COMM_WORLD,

wstatus);

]
it (id » Q)

MPI_Recv fu{D], N, MPI_DOUBLE, id-1, 0, MPI_COMM WORLD, &status);

diff = 0.0;
fpragma omp parallel private (i, 3, tdiff)
{

tdiff - 0.0;
#pragma omp for

for {1 = 1; 1 .« mv_rows-1; Lit}
for {3 = 1: j < N-%; Jr+)
wlil (31 = (uii~-11{3] + wii=1}{j) +

Glil{i-1] + u{ii[i+11)/4.0;
if {fabs(w[11{31 - uli){j]) » tdifi)
cdiff . fabsi(wlil(3) - uli)[i}):

3
I

#pragma omp for nowalt
for (1 = 1; 1 < my_rows-1; i++)
for (j = 1 3 « B-1; j++)
il il = wlijfil;
#pragma omp critical
Lf (tEiff » Aiff) diff = tdiff;

MPT_Allreduce {&diff, &global diff, 1, MPI_DOUBLE, MP1_MAX,
MPT_COMM_WORLD) ;
if {global_diff <

1hgi+;

TLON) break;

;
refurn its;

}

Figure 18,4 Funclion find_steady_state afier OpenMP pragmas have been
inserted.

447

CHAPTER 18 Combining MP! and OpenMP

B0 o
770+ ‘Q‘ -'I-f MPI

‘ 3 =C MPL + OpenMP
6.0 r

Tiine {see)
= =1 =1
H T T

[
=4
T

‘ 11.0L

Figure 18.5 Result of benchmarking the
" original and hybrid paralle! programs using the
Jacobi method o solve the steady-state heat
equation on a 200 x 200 grid. All times are in
seconds. The target architecture is a
commodity cluster containing four
dual-pracessor nodes.

18.4 SUMMARY

Many contemporary parallel computers, including most of the world’s fastest sys-
tems, consist of a collection of multiprocessors. While it is possible to program
a collection of multipracessors solely using MPL, you can often improve perfor-
mance by using both MPI and OpenMP. MPI handles the larger-grained commu-

i
nications among multiprocessors, while the lighter-weight threads of OpenMP
handle the processor interactions within each multiprocessor

In this chapter we have looked at two examples of transforming a C program
with MPI calls program into a hybrid program suitable for execution on a cluster
of multiprocessors. The first step of the transformation is profiling the original

parallel program to discover the functions consnming the most CPU cycles. These
need to be the focus of the parallelization effort. Often, relatively few function
calls and/or pragmas need to be added to the original program to complete its con-

version mto amixed cqde that leverages the strengths of both MPI and OpenMP.
18.5 EXERCISES

18.1 Which functions of the document class1ﬁcat10n program of Chapter 9
are most likely to be suitable for parallelization with OpenMP pragmas?

SECTION 18.5 Exercises

*={Consider all of the program’s functions, not s:mply those listed in

18.2

184
185
186

187
1838
189

18.10

Figure 9.7.) Justify your answer.

Suppose your institution’s computer center operates a commodlty
<luster made out of multiprocessor nodes, Suppose farther that most of
the cluster’s CPU cycles are devoted to executing Monte Carlo methods
wiitten in programs using the MPI library. The director of the computer
center would like these programs to execute faster. Knowing what you

- do about Monte Carlo methods, what are the prospects for significantly

improving their performance by converting them into hybrid programs

- that also invoke OpenMP pragmas? Defend your position.
183

Convert the program implementing Floyd’s algonthm (Figure 6.9) into
a hybnd program that includes OpenMP pragmas. Set the iumber of
threads equal to the number of processors available to the program.
Contrast the speedup achieved by your program with the original
program. ,

Convert the matrix-vector multiplication program appearing in

Figure 8.8 into a hybrid program that includes OpenMP pragmas. Set
the number-of threads equal to the number of processors available to the -

_ program. Contrast the speedup achleved by your program with the

original program.

Convert the matrix-vector multiplication program appearing in
Figure 8.14 into a hybrid program that includes OpenMP pragmas.
Set the number of threads equal to the number of processors available
to the program. Contrast the speedup achieved by your program with
the original program.

Write 2 hybrid C progtam with both MPI function calls and OpenMP
pragmas that solves a dense system of linear equations using Gaussian
elimination followed by back substitution. Benchmark your program for
various values of # and p; where p is the number of multiprocessor
nodes being used.

‘Write a hybrid program mplementmg Parallei Sorting by Regular

Sampling. Benchmark your program for various values of n and p,
where p is the number of multiprocessor nodes being used.

Write 2 hybrid program implementing the fast Fourier transform.
Benchmark your program for various values of n and p, where p is the

* number of mulﬂprocessor nodes being used. -

Wiite 2 hybrid program solving the n-queens problem. Benchmark your
program for various values of n and p, where p is the number of
multiprocessor nodes being used.

Write 2 hybrid program to solve the 15-puzzle. Benchmark your
program for various values-of n and p, where p is the number of
multiprocessor nodes being used.

hls appendix describes every funcuon inthe MPI- l standard Every parameter
is commented w1th one of these three notanons- N

IN (input parameter)—the caller prowdes 1he value
OUT (output parameter)—{he function sets the value

IN/OUT (input/output parameter)—the value is set by both the catler and
the function

int MPI_Abort (
MPI_Comm comm, /* IN - Communicator */
int error_code /* IN - Error code */

MPI_Abo‘r't ‘makes a “best effort” attempt to abort all processes in the
specified communicator, It returns the erfor code to the calling environment.

int MPI_Addreas (
void *location, /* IN - A location in ‘offsets’ */
MPI_Aint *offsets /* IN - Array of addresses */

Function MPI_Address retuns the byte address of location in armay
of fsets. Itis useful when bu:ldmg derived datatypes.

int MPI_Aligather’ (- -~ 0 v
void *send_buffer, ~/* IN'—'Send'buffer */

int send_cnt, /* IN - Elements in send buffer */
MPI_Datatype: . .

send_dtype, /* TN - Bend buffer element type */
void *recv_buffer, /* OUT - Receive buffer */
int recv-cnt, /* IN - Elements gathered

from each process */

APPENDIX A WMPI Functions

MPT_Datatype ERA : :
recv_dtype, /* IN - Receive buffer element type */
MPI_Comm comm /* TN - Communicator */

MPI_Allgather is a collective communication function that performs
an all-gather operation. All processes gather send_cnt elements from every
process ia the comamunicator. When the function returns, the concatenation of
these elements is in recv_buf fer of every process. Use MPT_Allgatherv
if different processes contribute different nusmbers of elements to the gather or if
the elements are ot concatenated in process rank order.

e e,

int MPI_Allgatherv |
void *send_buffer, /* IN - Bend buffer */
int send_cnt, /* IN - Number of elements sent by
’ this process */-

MPI_Datatyps

send_dtype, /* IN--'Send buffer element typa */
‘void *recv buffer, /* OUT - Receive buffer */ °)
int *recv_cnts, /* IN - Group-sized array. Entry j is

number of elements to receive

. . from process j */ .

int *recv_disp, /* IN - Group-sized array. Entrjf i is
" the offset from the start of

recv_buffer where the elements

received from process j should

be put */
MPI_Datatype :
recv_dtype, /* IN - Receive buffer element type */
MPI_Comm comm /*IN = Communicator */

)

MPI_Allgatherv is a collective communication function that performs
an all-gather operation. The number of ¢lements contributed by each process
may vary. Array disp indicates where in recv_buffer each process’s chunk
should be placed; the pieces need not be assembled in process rank order. When the
function returns, the gathered elements are in recv_buf fer of every process.
Use the simpler¥PT_A11gather if all processes contribute the same numbers
of elements tothe gather and the elements are concatentated in process rank order.

int uPI_Allreduce { .
void *send buffer, /* I - Send buffer */
void *recv_buffer, /* OUT - Receive buffer. */

int ent, /% IN - Number of elements to reduce */
MPI_Datatype dtype,/* IN - Element type */
MPI_Op op, /* IN - Reduction operator */

MPT_Comm comm /* IN - Communicator */

APPENDIX A MPI Functions

MPI_Allreduce is a collective communication function ‘that performs
cnt reductions. When the function retugns, all processes have the results of the
teductions. Use MPT_Reduce if only a single process needs the results of the
reductions.

int MPI_Alltoall (_ _
~ .veid *send buffer, - /* IN.- Send buffer */
- int gend cnt, . /* IN - Elements sent to each
) o) process %/
MPI_Datatype send dtype, /* IN - Sent element type */
void *recv_buffer, . /* OUT - Receive buffer */
int recv_cnt, ' /* IN - Elements received from
i each process */
MPI_Datatype recv_dtype, /* IN - Received element type */
MPI_Comm comm /* IN - Communicator */

MPI_Alltoall performs an all-to-all exchange within a communicator.

Each process sends (and receives) the same nurnber of elements to {and from) ev-

ery process, including itself. Use the more general function MPT_Alltoally

- if the number of elements sent from any process to any other process is not a
constant. '

int MPI_aAlltoally (
void *send_buffer, /* IN - Send buffer */ ‘
int *send cnts, /* IN - Group-sized array. Entry j
indicates number of elements of
' send_buffer to send to
process i */
int *send disp, /* IN - Group-sized array. Entry i
indicates the displacement from
the start of send buffer of the
elements sent to process j */
- MPI Datatype -)
send_dtype, /* IN - Send buffer element type */ '
void *recv_buffer, /* OUT - Receive buffer */ :
int *recv_cnts, /% IN - Group-sized array. Entry j is
’ the number of elemerits being
. received from process j. v/

. int *recv_disp, /* IN - Group-sized array. Entry j is
the d1°plab<m9nt from the
start of recv_buffer where the
elements received from process
i should ke stored. */

MPI_Datatype
. recv dtyp@ /* IN - Receive buffer element type */
MPI_Comm comm - /* IN - Communicator */

APPENDIX A MPiFunctions

Function MPT_A11toallv performs an all-to-all data exchange. Use the
-simpler function MPI_A11toall if each process contributes the same number
of elements fo the exchange and the received elements are concatenated in process
rank order. -

int MPI_Attr delete {
MPI_Comm comm, /* IN - Communicator */
int key /* IN - Attribute identifier */

MPI_Attr delele deletes the cached attribute comesponding to key.

int MPI_Attr get { .- mei

MPI_Comm comm,. /* IN -~ Communicator */

int key, /* IN - Attribute identifier */

void *attr, - /* OUT - Pointer to attribute */
. int *flag /* OUT - Existence flag */ .
}

* Function MPI_Attr_get retums through al tr a pointer to a previously
cached attribute with identifier key. Successful refrieval is indicated by the return
value of £1ag. Itis 1 if the atiribute was retrieved, and 0 otherwise.

int ‘MPI_Attr_ put {

MPI_Comm comm, /* IN - Communicator */ o
int key, /* IN - Attributed identifier */
void *attr /* IN - Pointer to attribute */

>‘,

Function MPT_Attr_put associates the integer value of key with the
attribute record pointed to by attr.

int MPI_Barrier (
MFI_Com /* IN - Communicator */
)

MPI_Barrier is a collective communication function that performs a
barzier synchronization among all processes in the specified communicator.

int MPI_Bcast |

void *buffer, /* IN/OUT - Message address *-/
int cnt, _/* IN - Elements in message */
'MPI_Da:tatype dtype, ' /* IN - Element type */
int root, /* IN —QRank of root process */
MPI_Comm comm /* IN -~ Communicator */

+ Function MPI_Bcast is & collective communication operation allowing
one process fo broadcast a Toessage to ‘all other processes in a communpicator.
Parameter root is the rank of the process with the message to broadcast.

as3

456

APPENDIX A MPI Funclions

Passed the handle to a Cartesian communicator and the number of dimensions
inthe grid, MPI_Cart _get retums the size of each grid dimension, whether or
not each dimension is periodic (wraps around), and the coordinates of the process
calling the function.

int MPI_Cart_map (

MPI_Comm comm, /* IN - Cartesian communicator */

int dims, /* IN - Grid dimensions */

int *size, © /* IN - Size of each grid dimension */
int *periodic, /* IN - Periodicity of each dimension */

int *new_rank - ' /* OUT ~ “Opt—imized!1p.rocess rank */

Passed the handle to a Cartesian communicator, the number of grid dimen-
sions, the size-of each dimension, and information about whether each dlmeﬂleﬂ
is periodic (wraps around) function MPT _Cart map returns Lhe ‘optimized’
rank of the calhng process through new_rank.

int MPI_Cart_ramk (

MPI_Comm comm, /* IN - Cartesian communicator */
. int: *eoords, /* IN-- Process coordinates */
int *rank /* QUT - Process rank */

Passed a Cartesian communicator handle and the coordinates of a process,
function MPI_Cart _rank returns the rank of that process.

int MPI_Cart_shift {

MPI_Comm comm, ~ /* IN - Cartesian communicator */

int shift_dim, /* IN - Dimension of shift */

int directionm, /* IN - >0 up; <0 down */

int *src, © /% QUT - Source of received message. */
int *dest /* OUT - Destination of sent message */

Function MPI_Cart_shift provides the calling process with the source
and destination information it needs to petform a send-receive operation along a
particular dimension of a Cartesian grid. If there is no wraparound, the function
returns MPT_PROC_NULL in szc and/or dest to indicate out-of-range shifts.

int MPI_Caxt_sub
MPI_Comm comm, /* IN - Cartesian communicator */
int *free, /* IN - Array of size dimensions. .
Entry freel[i] is 1 if coord i
P B : . can vary, [0 otherwise. */
MPJ. (‘omm *new -comm /* OUT - Handle to new communicater */

APPENDIX A MPI Functions

Function HPT_Cart_sub partitions a Cartesian grid into muitiple grids
of lower dimension. The number of dimensions in the new grids is equal to the
number of elements of free that have value 0. The function returns, through
new_comm, a handle to the new communicator to which the calling pmcess
belongs.

int ®PI_Cartdim get |
MPI_Comm cowm, /* IN - Cartesian communicator */
int *dims | - /* QUT - Dimensions */

Function ¥PI_Cartdim_get retums the number of dunensmns ina
Cartesian commumcator

int MPI_Com_compare {

MPI_Comm comml, /* IN - First communicator */
MPI_Comm comm2, /* IN - Second commumicator */
int *result /* OUT - Result of comparison */

Function MPT_Comm_ compare compares two communicators. The result
of the comparison, returned through rasult, may be MPT_IDENT if the con-
texts and the groups are the same; MPT_ CONGRUENT if the contexts are different
‘but the groups contain the same processes with the same ranks; MPT_SIMILAR
if the contexts and process ranks are different but the groups contain the same
processes; and MPT_UNEQUAL otherwise.

int MPI_Comm create (

* MPI_Comm old_commn, /* IN - 0ld communicator */.
MPI_Group group, /* IN - Process group */
MPI_Comm *new_comm /* QUT - New communicator */

The collective function MPT_Comm_ create creates a new com municator
from the processes listed in group.

int WPI_Comm dup (
MPI_Comm -¢id comm, /* IN ~ 014 communicator */
MPI_Comm *new_comm /* QUT - New communicator */

The collective functlon MPT_Comm_dup duplicates a communicator, re-
turning a new communicator with the same group but a new context.

int MPI_Comm_free (
¥PI_Comm* comm /* IN - Communicator */

" The collective funclmn MPI_Comm_free frees the Tesources associated
w1th commumcawr comn.

457

458

APPENDIX A MP| functions

int MPI_Comm_group {
MPI_Comm comn, /* 1IN - Communicator */
MPI_Group *group /* OUT - Process group */

Function MPI_Comm_group returns the process group associated with
communicator comm.

int MPI_Comm rank {
MPI_Comm comm, /* IN - Communicator */
int *rank /* OUT - Rank of zalling process */

Function MPT_Comm_rank returns the rank of the calhng process ina
COIRMURICator.

int MPI_Comm_remote group (.
MPI_Comm comm, /* IN - Handle to inter- communlr'ator */
MPI_Group *procs /* OUT - Handle to remote group */

) -

Passed the handleto an inter-communicator, MPI_Comm_remote_group
returns the remote process group. ‘

int MPI_Comm remote _size (. .
MPI_Comm romm, /* IN - Handle to inter- coumunlcator */
int *size /* OUT - Remcte group size */
) - -
Passed the handle to an inter-communicator, MPI_Comm_remote size
returns the number of processes in the remote group.

int MPI_Comm_size |
MPI_Comm comm, /* IN - Communicator */ .
int *size /* OUT - Number of procs in communicator */

MPI_Comm_size returns the number of processes in a communicator.

int MPI_ Comm split (
‘MPI_Comm 0ld_comm, /* IN - 0ld communicator */
" int partltlon, /* IN - Partition mumber */
int new_rank, /* IN - Ranking value */’
MPI_CBrm *new_comm /* OUT - New communicator */

Collective function MPT_Comm_sp1 it partitions the processes in an ex-
1st1ng communicator (1d_comm) inta one or more subgroups. Processes with
the same value of partition are put in the same subgroup Wthlriu subgroup, ’
processes are ranked according to the values of new_rank;.ties are broken

APPENDIX A MP! Functions

according to the processes’ ranks in 01d_comm. The function returns to each
process a pointer to the new communicator to which it belongs.

int MPI_Comm test_inter (
MPI_Comm comm, /* IN - Communicator */
int *flag /* OUT - Result of test */

Function MPT_Comm_test_inter, passed a communicator Comm, sets
f1ag to tru¢ if comm is an inter-communicator and false otherwise.

int MPI_Dims create |

int nodes, /* IN - Wumber of grid nodes */
int dims, /* IN - Number of dimensions */

int *size /* OUT - Size of each dimension */

- Passed the total number of nodes desired for a Cartesian grid and the number
of gnd dimensions, MPT_Dims_creat e returns an array of i mtegers specifying
the number of nodes in each dimension of the grid, so that the sizes of the
dimensions are as balanced as possible.

int MPI_Errhandler create (
MPI_Handler_function
ah_func, f/ IN - Error handler function */
MPI_Errhandler *eh /* OUT - Handle to error handler */

Call functionMPT_Errhandler_create toregister function eh_func
as an MPI exception handler. The funcnon returns a pomter to-the error handler
an opaque object.” -

User-created error handlers should beC funcuons oftype MPT_Handle
function, which has this definition:

typedef void (MPI_Handler_ function) (MPI_Comm *, int *, ...);

The first argument is the communicator in use. The second argument is the
error code that should be returned by the MPT function raising the exception. The
number and meaniag of the remaining arguments are implementation dependent.

int MPI_Errhandler free |
" MPI_Errhandler *eh /* IN - Handle to error handler */

Function MPI_Errhandler_ free marks for deallocation the error
handler associated with eh, replacing it with MPT_ERRHANDLER NULL.

int MPI_Errhandler get (
MPI_Comm commm, /* IN - Communicator */
MPI_Errhandler *eh_func /* IN - Error handler function */

459

460

APPENDIX A MPI Functions

MPI_Errhandler_get associates, for the calling procesa the error han-
dler function eh func w1th communicator Com.

int MPI_Errhandler_set { , .
¥PI_Comm comm, /* IN - Commanicator */ -~
MPI_Errhandler eh /* IN - Error handler */

MPI_Errhandler_set associates, for the calling pmcéss, the error han-
dler 2h with communicator comm.

int MPI_Error_class |
int code, . /* IN - Error code */
int *class . /* OUT - Error class */

Exrvor codes are unplementanon dependent. Ervor classes are part of the MPI
standard. Passed an error code, function MPI_Error_class returns via the
second parameter the error class that the code mdps to.

int MPI_Error_string (
int err_code, +/* IN - Error code */
char *err_string, /* OUT - Error string */
int *err_string length /* OUT - Length of error string */

Passed an ervor code or class, function MPI_error string retums the
error string associated with that code or class, as well as the length of the string.
Allocate the buffer for exr_string before calling the function; the buffer
should be at least MPT_MAX_ERROR_STRING bytes long,

int MPI_Fipalize (void)
MPI_Finalize terminates the MP] execution environment. Every process
must call this function before exiting,

int MPI_Gather {
void *send_buffer, /* IN - Send buffer */

int send_cnt, /* IN - Elements in send buffer */
MPT_Datatype ‘

) send_dtype, /* IN - Send buffer element type */
void *recv_buffer, /* OUT - Recelve buffer */

int recv_cnt, /* IN - Number of elements gathered
i from each process */
MPI_Datatype ; o
recv_dtype, - /* IN - Receive buffer element type */
int root, . : © /¥ IN - Rank of gathering process */
© MPI_Comm comm ' /* IN - Communicator */

APPENDIX A MPI Functions 461

MPI_Gather is a collective communication function that performs a gather
operation. The root process gathers send_cnt elements from every process in
the communicztor (including itself). When the function returns; the result, a.con-
catenation of elements, is in recv_buffer. Use MPT Gatherv if different
processes contribute different numbers of elements to the gather or if the elements
are not concatenated in process rank order.

int MPI_Gatherv ()
void *send_buffer, /* IN - Send buffer */

int send_cnt, /* IN.- Elements in send buffer */
MPI_Datatype ‘ B)

. 'send_dtype, /* IN - Send buffer element type */
void *recv_buffer, /* QUT - Address of receive buffer */
int *recv_cnt, /* IN - Elements to gather from

each process */

int *displacements, /* IN —'Displacement in recv_buffer
of elements gathered from
each process */

- MPT_Datatype - .
recv_dtype, */* IN - Receive buffer element type */

int root, /* IN - Rank of gathering process */
MPI_Comm comm ~ /* IN - Communicator #*/

) V : ‘ :

MPT_Gatherv is a collective communication function that performs a
gather operation. The root process gathers send_cnt [1] elements from every
process i in the communicator (including itself). It puts the elements collected
from process i in a contiguous group of elements of recv_buffer begin-
ning with element displacements[i]. When the function returns, the result,
a concatenation of elements, is in recv_buf fer. Use the simpler function
MPI_Gather if all processes contribute the same number of elements to the
gather.and the gathered elements are concatenated in process rank order.

int MPI_Get_count |
MPI_Status *status, /* IN - Result of receive */
MPI_Datatype dtype, /* IN - Type of elements received */
int* cnt /* OUT - Count of elements received */

[: ‘

Passed both a handle to the stdfus variable containing the result of & receive
operation and the type of the elements received, function MPI_Get _count
returns the number of elements (rof bytes) actually received.

int MPI_Get_elements (
MPI_Status *status, 7* IN - Result of receive */
MPI_Datatype dtype, /* IN - Type of elements received */
int* pe_cnt /* OUT - Count .of elements received */

462

NAME.

APPEMDIX A MPI Functions

Passed both a handle to the status variable associated with a receive operation
and the type of the elements received, function MPT_Get_elements retums
the number of primitive elements actually received.

- int- HPI Get_processor name (

char *name, /* OUT - Processor name */ .
int *length /* OUT - Length of processor name */

Fanction MPI_Get_processor_name fetums the name of the physical
processor on which the calling process is executing. Allocate buffer name before
calling the fanction; the buffer should have length MPT_MAX_PROCESSOR_

int MPI_Get_version (
int *major, /* OUT - Major version mumber {1 or 2} */
int *minor /* OUT - Minor version number */

Tunction MPT (;et _version returus the major and mivor MP{ version
numbers.

int MPI_Graph create’(

" MPI_Comm
. 0ld_comm, - /* IN - 01d communicator */
int rr, /* IN - Nodes in _process graph */
int_*degree, /* IN - Array of size n with vertex degree

) stored indirectly. Eptry 0 is
. ~ degree of vertex 0. For all cother
V © vertices i, degree{ij-degreeli-1]
Co ‘ is degree of vertex i. */
int- *edge, = ./* IN - Array with rest of edge info. Entry
: i is destination of edge 1. */
int reorder, /* IN - Ranks changeable (logical) */
MPI_Comn
graph_comm / OUT - Graph communicator */

Function MPT_Graph_create returns a pointer to a new communicator
containing information about the directed graph structure of a group of processes.
If reorder. ;A,false the system, may not. change the rank of the processes.
Otherwise, it may- reorder process ranks 1o improve efficiency. The source of
each ditected edge can be determined from array degree the destination of
each edge is stored in amray edges. , '

int MPI_Greph_get |

_ MPT_Comm comm, ~ /+ IN - Graph communicator */

ing n, /* IN - 'Number of vertices in graph *
/% IN > Mumber of edges in graph */

APPENDIX A WPI Functions

int *index, #* QUT - Index information %/
int *edge /* QUT - Edge information */

Passed a communicator associated with a graph topology, the number of ver-
tices (processes) in the communicator, and the number of edges (connections be-
fween processes) in the communicator, MPI_Graph_get returns arrays index
and edge that together represent the structure of the graph. See the description
of function MP1_Graph_create for an explanation of the graph structure.

int MPI_@raph_map ({ L
‘MPI_Comm comm, . /*.IN - Graph communicatar */

int o, - /% IN - Vertices in graph.*/
int *index, i /* IN - Index information */
int *edge, /* IN - Edge information */
int *new_rank /* OUT - Hew rank of process */

-, Collective function MPT_Graph_map attempts to optimize the placement’
of processes on processars, given the connections specified in a graph communi-
cator. The new rank of the calling process is returned through the last parameter.
This value {s MPI _UNDEFINED if the ca!lmg process is not part of the graph
commuricator. '

int MPI_®Graph meighbors (

MPI_Comm Comm, /* IN ~ Graph communicator */

int rank, /* TN - Process rank */ ‘

int max_neighbors, /* IN - Max number of neighbors */ -
int *neighbors /* OUT - Ranks of neighbors */

Function MPT_Graph_neighbors returns through the last parameter the
rank numbers of the processes that are neighbors of the specified process. (This
1ist of neighbors is part of the edoe array used to create the graph communicator.)

1nt MPI_Graph neighbors count { -

¥MPI_Comm comm, /* IN - Graph communicator */
int rank, - /* IN -~ Process rank */
int *neighbors /* OUT - Number of neighbors */

FunctionMPI_G raph_neighbors_count returns the number of neigh-
bors in the specified communigator for the process having the specified rank.

int MPI_Grapbdims_get (-

MPI_Comm cComm, /* IN - Graph communicator */
int *vertices, ©/* OUT - Vertices in the graph */
int *edges - /* OUT - Edges in the graph */

464

APPENDIX A MP!Functions

Passed a graph comnmumicator, MPT _Graphdims_get returns the aumber
of vertices (processes) in the communicator and the number of directed edges
(links) between these processes.

int MPI_Group_compare |

MPI_Group groupl, ~/* IN - First process group */
MPI_Group group2, /* IN - Second process group */

int *result /* OUT - Result of comparison */

Function MPI_Group_ compare compares two groups of processes. It
returns MPI_ IDENT if the two groups have the same processes and the same
process ranking; MPI_STMILAR if the two groups have the same processes but
their rankings are different; and MPI_ UNEQUAL otherwise.

int MPI. Group_difference {

MPI_Group groupl, /* IN - First group */
MPI_Group group?2, /* IN - Second group */
MPI_Group *group_diff - /* OUT - Difference */

Function MPI_Group_difference, when passed two process groups,
produces a new process group whose members are all processes in the first group
that are not:in the second group. The ordering of the processes is the same as in
the first group.

int MPI_Group_excl (
MPI_Group group,' /* IN - Existing process group */
int excl_num, /* IN - Number of processes to exclude */
int *excl_ranks, /* IN - Ranks of excluded processes */
MPI_Group *new; /* OUT - New group */

Function 'MPI_Group_excl-creates a new- group by removing processes
with particular rank numbers from an existing group. The processes in the new
group have the same order as in the original group.

irit MPI_Group_ free (
MPI_Group *group /* IN - Process group */

Furiction MPT_Group_free marks a group object for deallocation and
changes the group handle to MPT_ GROUP_NULL. The group object will not be
deatlocated until all operations using the group have completed.

int MPI_Group_inel { _ i
MPI_Group old; /* IN - Existing process group */
~ int new_size, /* IN - Number of procs in new group */

APPENDIX A MPI Functions

int *old_ranks, /* IN - Order of procs in new group */
MPI_Group *new; /* OUT - New process group */

FunctionMPI_Group_incl producesanew group from an existing group.
The new group may be smaller than the existing group: The size of the-new group
is specified by parameter new_size. Only the processes whose ranks appear
in 01d_ranks are in the new group. The order in which rank numbers appear
in 01d_ranks determines the processes’ rankings in the new group. The first
process identified in 01d_ranks has rank 0 in the new group. The last process
identified m 01d_ranks has the highest rank in the new group.

int" MPI_Group_intersection {
MPI_Group groupl, /* IN - Group 1 */
MPI_.Group group2, /* IN - Group 2 */
MPI_Group *mew_group /* OUT - Intersection group */

<)

. Function MPI_Group_intersection produces a new group that is the
intersection of two existing groups. The ordering of processes is as in the first
group. :

int MPI_Group_range excl (-
MPI_Group group, /* IN - Existing process group */
int n, /* IN -~ Ranges to evaluate */
int range[][3]., /*.IN - Ranges of processes to exclude */
MPI_Group *new /* OUT - New process group */

Function MPTI_Group_-range_excl produces a new group from an old
group and a set of n ranges. Each range consists of a first rank, a last rank, and
a stride. For example, the range {3, 11, 3} represents processes with ranks 3, §,
and 11. The new group consists of processes in the original group that are not
included in any of the ranges. The ordering of these processes is identical to their
ordering in the original group.

int MPI_Group range_imcl [
MPI_Group old, /* IN - Existing process group */
int n, /* .IN - Ranges to evaluate */
int rangell{31, /* IN - Ranges of processes to include */
MPI_Group *new /* OUT - New process group */

Function MPI_Group_range_incl produces a new group from an old
group and a set of i ranges. Each range consists of a first rank, a last rank, and a
stride. For example, the range {5, 11, 3} represents processes with ranks 5, §, and
11. The new group consists of only those processes included in one of the ranges.
The ordering of these processes is identical to their ordering in the original group.

465

APPENDIX A MPI Functions

int MPI_Group_ramnk (
MPI_Group group, /* IN - Process group */
int *rank /* OUT - Rank of process */

Passed a process group handle, MPI_Group._rank remms the rank of the
calling process in that gmup

int MPI. _Group_| size | .
MPI_Group group, /* IN - Process group */
int *size _/* OUT - Size of group */

Passed a process group handle, MPI Group size retums the number of
processes in the group.

int MPI_Group_translate_ranks
MPI_Group groupl, /* IN - First group */

int n, .- - /* IN - Number of ranks to compare */
_int *rankl, /* IN - Valid ranks in first group */
MPI_Group group2, /* IN - Second group */

int *rank2 /* OUT - Ranks in second group */

} .

Use function MPT_Group_translate_ranks to determine, for partic-
ular processes in one group, their ranks in a second group. Parametern. represents
the number of comparisons to make. Array rank1 lists ranks of processes in
groupl. The function returns through array rank? the comesponding ranks

of these processes in group?2. For example, suppose the process with rank”

3 in groupl has rank 4 in group2. Them if rankl{i]="3, then
rank2{i]=4

int MPI_Group_union {
MPI_Group groupl, . /* IN - First group */
MPI_Group groupz, /* IN - Second group */
MPI_Group *new_group /* QUT - Union of two groups */

Function MPT_Group_union returns a new group that is the union of the
groups supplied as the first two parameters. The ordering of the processes is all
elements of the first group folluwcd by all elements of the second group that are
not in the first group.

int MPI_Ibgend (.
void *buffer, /* IN - Message buffer */

int ent, /* IN - Elements in message */
MPI_Datatype ‘dtype, /* IN.- Element type */.
int.desk,. . /* IN.- Rank of destination process */

it tag, -. CLJ*IN - Aessage 1denr1f1er £

APPENDIX A MP Functions

MPI_Comm comm, 7% IN - Communicator */
MPI_Request *handle /* OUT - Handle to request #/

Function MPI _Ibsend initiates an immediate (nonblocking) buffered send.
Use the request handle to query the status of the send or wait for its completion.
Because the call is nonblocking, do not access the message buffer until the send
completes. / '

int MPI_Init (
int *arge, /* IN - First parameter to function main */
char ***argv /* IN - Second parameter to furction main */

" -Function MPI_Init allows the parallel environment to be set up. An MFI
program must call MPT_Init before any other MPI function. (The only ex-
ception is function MPI - Initialized.) Subsequent calls to MPT_Init are
erroneous. Pass painters to the same pammeters argcand argv appeanng in
function main. ‘ o ‘

int MPI_Init_thread {

int *arge, 7% IN - Pirst parameter to function main */
char ***argv, /* IN - Second parameter to function mdin */
int desired, /* IN - Desired level of thread support */
int *provided /* QUT - Provided level of thread support */

Function MPI_Init_thread initializes MPI in the same wéy as MPT_
Tnit. Inaddition, it initializes the thread environment. IfMPT_Init_thread
is called, then a call to MPI_Init is omitted. The first two arguments are the
same as to MPT_Tnit. The third argument is the desired level of thread support:

1. MPI THREAD SINGLE%mgle thlead execution.

2. MPI_THREAD_FUNNELED—While the process may be multithreaded,
only the main thread will make MPI calls. ’

3. MPI_THREAD_SERIALIZED—Multiple threads may make MPI calls,
but these calls are serialized.

4, MPI_THREAD_MULTI PLE——Multlpl(. threads may make MPI calls
concurrently

Ahigher number represents ahlgher level of support. The function returns through
the last parameter the value of the support the system can provide.
Implementations of MPI are not required (o support threads.

int-MPI.Initialized
int* fldg ' /* QUT - Indicates if MPI has been initialized */

467

468

APPENDIX A MPi Functions

- Functioh t-iPIfInit ialized, whenpassed a pointer to an integer, sets the
value of the integer to true if MET_Tnit has been called, and false otherwise.
This is the-only function that may be called before MPI_Init.

int MPI Intercomm create { B
MPI_Comm local_comm, /f IN - Local communicator */

int loéa1~leader, /* IN - Rank of local "leader® */
MPI_Comm remcte_comm, /* IN - Remote communicator */

int remote_leader, /* IN - Rank of remote *leader® */
int tag, /* IN - Intercomm identifier */..

MPI_Comm *new_comm /* OUT - Inter-communicator */

The collective function MPT _Intercomm_create creafes a new inter-
communicator from an existing, local communicator (of which the. precess is
a member) and a remote Communicator (of which the process is not-a mem-
ber). Parameter t ag is used to disamibiguate messages associated with setting up
the inter-commaunicator in the event that multiple inter-communicators are being
constructed concurrently. The resulting inter-communicator still has the notion of
“local” and “remote” groups, At least one member fromreach group (the leaders)
have the ability to communicate with each other.

int MPI_Intercomm merge {
MPI_Comm inter, #* TN - Handle to inter-communicator */
int high, /* IN - “High® group indicator */°
MPI_Comm *intra /* OUT - Handle to intracommunicator */

j - -

Collective function MPT_Tntercomm_merge converls an inter-
communicator into an intracommunicator. All the processes in one group of the
inter-comrunicator should-set high to true, while all processes in the other
group should set high to false. When determining the ranks of the processes
in the new intracommunicator, the system ordérs the “low” processes before the
“high” processes.

int MPI_Iprobe (

int src, /* IN - Rank of sending process */
int tag, /* IR - Incoming message tag */
MPI_Comm comm, /* IN - Communicator */ '
int *flag, /* OUT - Success flag */ =

MPI_Status *status /* OUT - Pointer-to status -cbject */
) .)

MPI_Iprobe is a nonblocking function that checks for an incoming mes-
sage without actually receiving the message. When the function returns, f1ag is
true if a message from the specified source process with the-specified tag is ready
tobe received. Otherwise, £1ag s false when the functionjretums Ifflagistre, '
information ahout the message can be retrieved through the status pointer. This

APPENDIX A MPI Functions

function is useful when you want to allocate a receive buffer based on the size of
an incoming message. To allow any message source, use MPI. ANY SOURCE.
To allow any message tag, use MPT_ANY TAG. If you.want your program to
block until the message is ready to be reczived, nse function MPI_Probe.

int MPI_Irecv {

void *buffer, /* OUT - Address of receive buffer -*/
int cnt, /* IN - Elements to receive */
MPI_Datatype dtype, /* IN - Type of message eleménts */
int src, /* IN - Source process of message */
int tag, /* IN - Message ID */

MPI_Comm ‘comm, /* IN - Communicator */

MPI_Request *handle /* OUT - Request handle */ ;

MPI- Ifecv implements a nonblocking, or immediate; receive: It posts a
“request for the receive to the ru-time system, then retums control tmmediately to
thie calling funetion. Do ot access the receive buffer until (.omplelmg thc ['C(.Elve
thhaca]ltoMPI _Wait. - o

int MPI_Irsend (

void *puffer,’ /* IN - Message buffer */

int cnt, - /* IN - Elements in message */
MPI_Datatype dtype, /* IN'- Element type */

int dest, /* IN - Rank of destination process */
int tag, " /* IN - Message identifier */

MPI_Comm comm, /* IN - Communicator */

MPI_Request *handle /* OUT - Handie to request */

Function MPI_TIrsend initiates an 1mmed1ate (nonblocking) ready send.
Use the request handle to query the status of the send or wait for its completion.
Becduse the call is nonblocking, do not access the message buffer until the send
completes.

int MPI_Isend {

void *huffer, /* IN - Message buffer #*/

int cnt, /* IN - Elements in message */
MPI _Datatype dtype, /* IN - Type of elements */
int dest, /* IN - Destination process */
int tag, /* IN - Message identifier */
MPI_Comn comm, /* IN - Communicator */

MPI_Request *handle /* OUT - Reguest handle */

. FunctionMPI_Isendisanonblocking, or immediate, communication func-
tion. It posts the communication request to the run-time system and retumns imme-
diately to the calling procedure, having mmahzzd a porter to an opagque object

470 APPENDIX A ‘MP [Functions

containing formation about the pending send. You must complete the fuaction
by passing the handle to another MPI function, such as MPT_Wait. Until then,
you should not modify the contents of the send buffer.

int MPI_Iseend (

void *buffer, /* IN - Message buffer */

int cnt, /* IN - Elements in message */
MPI_Datatype dtype, /* IN - Element type */

int dest, /* IN - Rank of destination process */
int tag, /* IN - Message identifier */
MPI_Comm comm, /* IN - Communicator */

"MPT Request *handle /* OUT - Handle to request ¥/

Function ¥PI_ Issendinitiates a synchronons mode immediate (nonb!ock-
ing) send. Control does not retumn to the calling function until the corresponding
receives have started. Use the request handle to query the statos of the send o wait
for its complefion. Because the call is nonblocking, do not access the message
buffer until the send completes. ‘

int MPI_RKeyval create |
MPI. Copy_fungtion

copy_fn, / IN - Ptr to copy attribute function */
MPI_Delete function ;
del_fn, / IN - Ptr to delete attribute func */
Sint *key, /* OUT - Ptr to attribute key */
. void *extra J* IN - Extra info for callbacks */

Function MPI_Keyval_create creates a new attribute key, identified by
key.

int MPI_Keyval free (.)
int *keyval /* IN - Key value */

Function MPI_Keyval free marks an integer key value for deallocation
and sets the value of keyval to MPI_KEYVAL_INVALID.

int MPI_Op create (
MPI_User_function

assoc_func, / IN - Associative function */
int commutative, /* IN - Commutativicy flag (1oq1Cu1) */
MPI_Op *op - /* QUT - Op handle */

- You::can define. your ‘own . global -reduction -operation and- use funetion
MPI . Opztréate tobind it to-an op handle that can be used in calls to MPT
Reduce;MPI Allreduce,MPT "Raduce. scatter,andMPI . Scan. The

APPENDIX A MPI Functions

global.operation must be associative. If the operation s commutative as well, make
the second parameter true. The- funcnon Tetims the op handle through the third
parameter.

The ANSI-C prototype for thc funcnon perfonnmg your gIobal operanon is

typedef void MPI_User function(void *in_vector,
void *in_out_véctor, int *length, MPI_Datatype *dtype);

Let uf0), u[1], ..., ullength — 1] represent the elements of in_vector
when the function is invoked; v[0), v[1],.. ., v[length — 1] represent the ele-
ments of in_out_vector when the fusction is invoked; and w (0], w[l], ...,
wlength — 1] represent the elements of in_out. vect or when the function
returns. Finally, let & represent the associative pperation computad by the func-
tion. Then the elements of w. shavld be computed as follows: w[i].= uli] &
vfi], for all i <length. In-other words, your function overwrites the values in
in_out._vector with theresult. :

int MPI_.Op_ free |
MPT Op *op /* IN - Handle to a user-defined operation */.

Function MPI_Op_f ‘ree‘ marks 2 user-defined operation for deallocation.
1t changés the value of op to MPT_OP,_NULL.

int MPI_ Pack (-
void *in_buffer, - - /* IN - Original message buffer */

int elements; - /* IN - Elements in message buffer */

MPI_Datatype dtype, /* IN - Type of elements */

v01a *out buffef /* OUT - Packed Message buffer */

int out size, © /% IN - Bytes in out] buffer *f

int *offset, /* IN/QUT - Tndex in out_buffer where
packing starts/ends */

MPI_Comm comm /* IN - Communicator used in

subseguent send */

You can use functionMPI_Pack topack noncontiguous data into a contigu-
ous huffer before sending it. After the message is received, it must be unpacked.
Analternative to packing.and unpacking is to use derived datatypes. Anather use
of packing and unpackin g is to- aveid- system buffering.

int MPI_Pack_gize |

int ent, /* IN -~ Flements in message */

MPI Dagatype (dtype, /* IN.- Elemeni type */

MPI_Camm, comm, o ,/*;IN};,CQ@mynicator */
:Upper hound on packed

1nt *bound o /% OUT.-
‘ nessage size */

LYal

472

APPENDIX A MP| Functions

Function MPI_Pack_size computes an upper bound on the number of
bytes a packed message will occupy. By calling this function before MPT _Pack,
you can determine how large to make the buffer containing the packed message.

int MPI_Probe (

int src, /* IN - Rank of message source */
int tag, /* 1IN - Incoming message tag */
MPI_Comm comm, - /* IN - Communicator */

MPI_Statys *status. /* OUT - Pointer to status. object */

Functxon MPI_Probe checks for an incoming message without actually

receiving the message. It is usefal when you wanl to allocate a receive buffer

based on the size of an incoming message. To allow any message source, use
MPI_ANY - SOURCE. To allow any message'tag, use MPT _ANY_TAG. This func-
tion blocks until a message matching the source and tag has arrived. To check for
the existence of a message without blocking, use function MPT_Tprobe.

int MPI_Recv -{ ‘)
void* buffer, /* OUT - Receive buffer */
int cnt, | . /* IN - Max number of elements
ST " to receive %/
MPI_Datatype dtype, /* IN = Type of message elements */

int src, /* IN - Source process of message */
int tag, /* IN - Message ID */
MPI_Comm comm, /* IN - Communicator */

MPI_Status *status /* OUT - Result of receive */

MPI_Recv implements a blocking receive. Assuming the receive is suc-
cessful, when contro! returns from MPI_Recv, buf fer points to the received
message.

int MPI_Recv_init (
void *buffer, /* QUT - Receive buffer */
int cnt, /* IN -~ Max number of elements
’ to receive */
MPI_Datatype dtype, /* IN ~ Type of element */

int src, - /* IN - Rank of message source */
int tag, . fXIN - Message identification */
MPI_{omm-comm, - “/* IN - Communicator */

MPI_Request *handle /* OUT - Request handle */

Function MPI_Recv_init creates a persistent communication request for
astandard mode receive operation. It is useful when your program repeatedly calls
the receive function W1th 1dentlcal arguments. The receive is actu ally 1mt1ated with
acall to MPI Start :

APPENDIX A MP| Functions

int MPI_Reduce | S
‘void *send_huffer, = . /* IN - Send buffer */

- void *recv_buffer,. . /* OUT - Receive buffer. oOnly root
) . Drocess gets results. */
int cnt, /* IN - Number elements to reduce */
MPI_Datatype dtype. /* IN - Element type */
MPI_Op op, /* IN - Reduction operator */
int root, /* IN ~ Rank of root process */
MPI_Comm comm /* IN - Communicator */

MPT_Reduce is a collective communication function that performs cnt
reductions. When the function returns, the process withrank root has the results
of the reductions. Use MPI _Allreduce if you want all processes to have the
results of the reductions.

int MPI_Reduce scatter { S
) void *send _buffer, /* IN - Send buffer */ L.
© void *recV_butfer, /* OUT - Receive buffpr *

int *récv_cnts, /* IN - Group-sized array. Entrj j

is the number of result
. : elements to send process j. */

MPI_Dataiype dtype, /* IN - Element type */

MPI_Op op, /* "IN - MPT reduction operator */

MPI_Comm comm /* IN - Communicator */

FunctionMPT_Reduce_seat ter is a collective communication fimc,tion
that performs a reduction and then scatters the resulting elements. The number of
elements reduced is the sum of the values in array recv_cnts.

int MPT Request free |
MPI_Request *handle /* IN - Message request handle */

Function MPI_Request_free requests deallocation of an MPI_
Request object associated with a persistent communication. Any outstanding
communication associated with the request object will finish before the system
deallocates the objecl. ‘

int MPI_Rsend (

void *buffgr, /* IN - Message buffer */

int cnt, /* IN - Elements in message */
MPI_Datatype dtype /* IN - Type of elements */
int dest, /* IN - Destination process */
int tag, Ry /* IN - Megssage identifier */

MPI_Comm comm /* IN - Communicator */

a7s

474

APPEHDIX A MP| Functions

Function MPI_Rsend implements a ready mode send. In the ready mode, a
send may only be started if the matching receive is already posted. If the matching
receive has not already been posted, it is an error condition, The use of ready mode
sends can improve performance on some systems by eliminating a handshake
operation. When this function returas, the send buffer may be rensed.

int MPI Rsend_init (

void *buffer, /*-IN"- Send buffer */.

int cnt, /* IN - Elements in message */

MPI Datatype dtype, /* IN - Type of elements */

int dest,) /* IH - Bank of destination */
“int tag, = k /* IN - Message identifier */ "~
MPI Comm “cormm, Y% IN - €ommunicator */ -

MPI_Reguest *handle /* OUT - Request handle */

MPI_Rsend_init createsa persiﬁtem communication request for a ready
mode send It is useful when your program repeatedly executes a communication
with the same argument list. A ca]i toMPT_Start actually initiates the message
send.

int MPI_Scan |
void *send_buffer, /* IN - Send buffer */
vold *recv_buffer, /* OUT - Receive buffer */
int ent, /* IN - Size of send buffer */
MPI _Datatype dtype, /* IN - Type of sent elements */
MPT_Cp op, ©/* IN - MPT operator */)

MPI_Comu comm /* IN - Communicator */

MPT_Scan performs a parallel prefix operator. After the function has re-
turned, each element in recv_buffer is the result of using the MPI operator
ap to combine the similar recv_buffer elementsin all processes having equal
or lower rank.

int MPI_Secatter | })
void *send_buffer, /* IN - Send buffer */

int send_gnt, | /* IN - Elements sent each prdcess */
MPI_Datatype

send_dtype, /* IN - Type of sent elemerts */
vold *recv_butffer, /* OUT - Address of receive buffer */

int recv’cnt, ©/* IN - Number of elements this process
' ' receives */
MPI_Datatype . '
Tecv_ dtype, . /* IN - Type of received elements */
-, int Toot, . /* IN--Rank of sending process */
MPI_Comm comm /* IN -~ Communicator */

APPENDIX A MPi Functions

MPI_Scatter is a collective communication function that performs a scat-
ter: a group of elements held by the roat process is divided into equal-sized chunks,
and one chunk is sent to every process in the communicator (including the root).
Use the more general function MPI_Scatterv if the group of elements is
divided into chunks of varying size.)

int MPI_Scatterv
void *send buffer, /* IN

Send buffer */

int *send_cnts, /* IN - Number of elements to send to
each process */
int *send disp, - /* IN - Element i is the offget in

R T . send _buffer of the first data
: element going to process i */

* MPI Datatype

send_dtype, /* IN - Type. of sent elements */
void *recv_buffer, /* OUT - Receive buffer */
int recv_cnt, /* IN - Number of elements this
‘ progess will receive */
5 MPI_Datatype o))
recv_dtype, /* IN - Type of received elements */
int root, /* IN - Rank of sending process */
MPI_Comm comm . /* IN - Communicator */

) .
MPI_Scatterv is a collective communication function that performs a
_ scatter: 2 group of elements held by the root process is divided into chunks, and
one chunk is sent to every process in the communicator (including the root). The
" array send_cnt. s indicates the number of elements going to each process; array
send_disp contains the offsetinside send_buf fer of the chunk destined for
each process. Use the simpler function MPT_Scatter if the group of elements
is divided into equal-sized chunks and the chunks are distributed in process rank
order.

int MPI_Send {
void *buffer, /* IN - Message buffer */
int cnt, /* I§ - Elements in message */
MPI_Datatype dtype, /* IN - Type of elements */
int dest, /* IN - Destination process */
“int ‘tdg, - y* IN - Message identifier */

FMPI;cémm‘f‘cbmm’ © o /*IN - Communicator */

Function: MPI _Send 1mplements a blockmg send operanon wheu the func-

mess4ge rectly il ; ‘
not choose to buffer ¢ the outgomg message Lhe call toMPL_. end wﬂl not return
until the message has been sent to the receiving process.

475

476 APPENDIX A MP! Functions

int MPI_gend imit | .
void *buffer, /% IN - Send buffer */

int ent, - /* IN - Elements in message */
MPI_Datatype dtype, /* IN - Type of elements */
int dest, /* 14 - Rank of destination */
ink tag, ' /* IN - Messagé identifier */
MPI_Comm comm,' /* IN - Communicator */ ‘

MPI_Request *handle /* OUT - Request handle */

MPI_Send_init createsapersistentcommunication request for astandard
mode send. It i8 useful when your program repeatedly executes a communication
with the same argument list. A call to MPI_Start actudlly initiates the message
send.

int MPI_Sendrecv :
void *send_buffer,/* IN - gend buffer */

int serid_bnt,) /* IN - Elements to send */
MPI_Datatype
- send_dtype, /* IK - Qutgoing message element type */

int dest, /* IN - Destimation process for
: . outgoing message */

IN - Outgoing message ID */

oUT - Receive‘buffer */

“ IN - Elements to receive */

IN - Ircommg message element type */

" int ‘sre, J* IN - Source process of mcomng
o R © ' message */
int recv_tag, /* IN - Incoming message 1D */
MPI_Comm comm, /* IN - Commumicator */

MPI_Status *status/* OUT - Status of received message */

MPT_Sendrecv combines in a single function call the sending of a mes-
sage to one process and the receiving of a message from that process or another
process. It is particularly useful when procgsses form a ring and each process
is sending a message to its nenghbor Tf ordinary blocking sends and receives
are hsed, careful choreogrdphy is needed to prevent deadlock. Replacing two
individial sefid-receive: function calls with a ‘single call to MPT_Sendrecv
guarantees a deadlock wnil not oa:ur Fll[lCthll MPI Sendx ecv 1s a blockmg

APPENDIX A MP! Functions

int MPI_Sendrecv_replace (

void *buffer, /% IN/OUT - Message buffer */

int cnt, /* IN - Elements in message */
MPI_Datatype dtype, /* IN - Type of message elements */
int dest, /* IN - Destination process */

int send_tag, ©J* IN - Sent message ID */

int src, /* IN -~ Source process */

int recv_tag, /* IN - Received message ID */
MPI_Comm comm, /¥ IN - Communicator */

MPI_Status *status /* OUT - Received message status */

Funcuon MPI_Sendrecv_replace pufonns a blocking send and re-
ceive. It is similar to MPT_Sendrecv, except that the buffer containing the
message to be sent is also where the received message will be stored. The length
of both the sent and received messages must be identical.

int MPI_Ssend (

:void *buffer, /* IH - Send puffer */

int cnt, /* IN - Number of elements to send */
MPI_Datatype dtype, /* IN - Type of elements */

int dest,) - /* IN - Destination process */

int tag, . . . /* IN - Message tag */

MPI_Comm comm /*-IN - Communicator */

Function ME]_Ssend implements a synchronous mode send operation, in
which the send fanction successfully finishes only when a matching receive has
been posted and the receiving process has begun to receive the message. Com-
pletion of MPT_Ssend indicates the send buffer can be reused.

int MPI_Seend init {

void *buffer, ~/* IN - Send buffer */

int ent, © /*¥ IN - Elements in message */ -
MPI_Datatype dtype, /* IN - Type of elements */

int dest, /* IN - Rank of destinatiom */
int tag, /* IN - Message identifier */
MPI_Comm Comm, /* IN - Communicator */ N

MPI_Request *handle /* IN - Request handle */

MPI_Ssend_init creates a persistent communication request for a syn-
chronous mode send. It is useful when your program repeatedly executes a com-
munication with the same argument list. A call to MPT_Start actually initiates
the message send. »

int MPI_ Start (. . S R
MPI Request *handle /% IN - Reguest handle */

an

478 APPENDIX A MP!Funciions

Call function MPI_Start to initiate the persistent communication request
{either a send or a receive) represented by the handle.

int MPI_Startall (:
int size, ‘ /* IN - Elements in request_array */
MPI_Requesl. *requests /* IN - Array of pointers to
communication objects */

Calling function MPT_Startall with an armay of size communication
handles is equivalent to a series of size calls to MPI_Start that pass the
handles in requec,ts in somg- arbltrary order.

int MPI Test { ;))
MPI_Request *handle, /* IN = Persistent request handle */
int *flag, . /* OUT - Completion flag */
MPI_Status *status /* OUT ~ Results of communication */

Use function MPT_Test to determine if the operation associated with a
communication request has been completed The function returns the value true
for flag if the operation has been completed, and false otherwise. If a re-
ceive operation has ended, you can access status to find the message source
(status->MPI_SOURCE), message tag (status >MPI TAu) and emor
code (statua >MPI. ERROR).

int' MPI Test_ cancelled ('
MPI_Status--*handie; /% IN - Communication handle */
int *flag ' /* OUT - Result flag */

Function MPI_Test_cancelled, when passed the handle to a commu-
nication object, returns through £1ag the value true if the communication was
successfully cancelled, and false otherwise.

int MPI_Tesgtall {
int cnt, /* IN - Reguests to test */
MPI_Request *handle, /* IN - Array of request handles */
--int *flags .. -./% OUT ~:Result-flag */ e
MPI,SCat‘iD,‘fS,tQ‘tFJS /* OUT - Array of status info */

When passed handles to cnt communication request objects,- function
MPT_Testall returns a value of true through f1ag if and only if all of the
communications have ended. If £ 1ag is true, thenthe elements of o ﬂrray status
are set to reﬂect the outcomes of the wmmumcatmns

APPENDIX A - MP! Functions

int MPI_Testany |
int ont, ©/* IN - Number of requests to check */
MPI_Request *handle,/* IN - Handles to request objects */

int *index, /* OUT - Index of a completed
communication */
int *flag, /* 0T - Result flag */

MPI_Status *status /* OUT - Status informaktion */

You can use function MPT _Testany to check to see if any of a list of cnt
communications have ended. If £ 1ag is false when.the function retumns, none of
the communications have been completed. If £1ag is true, then at least one of the
communications has been complcted The value of index indicates the position
in array handl eof:the handie to the completed communication. If the completed
communication is a receive, additional information about it is available through
status.

int MPI_Testsome {)
int in_cnt, - /* IN - Number of regquests to test */
MPI_Request

handlearray, / IN - Array of reguest handles */
int *out_cnt, /* OUT - Mumber of completed requésts */
“int *index array. /* OUT —'Array of request ‘indices */
MPI_Status ‘ , R .

status_array / OUT - Array of ‘status records */

Function MPT_Testsome returns information on all completed commu-
nications. Array index_array indicates which request handles in handle-
array cortespond to completed communications. Additional information about
receives is available in status_array.

int MPI_Topo_;est {
MPI_Comm comm, /* IN - Communicator */
int *topology = /* OUT - Communicator’s topology */

Function ¥PI_Topo_test returns the topology type of a communicator.
The possible return values of topoloqy are MPI_GRAPH for a graph topology,
MPT_CART fora Canesxan topology, and MPT_UNDEFINED for no topology.

int MPI_Type_ commit (
MPI_Datatype *dtype /* IN - Derived datatype ocbject */

: Function MPI - Type - commit commiits a derived datatype so that it can be
used in communication operations. See MPI_Type_free.

479

APPENDIX A ' MPI Functions

int MPI Type contiguous |
int cut, /* IN - Copies to make */
MPI;Datatype old_dtype, /* IN - 01d datatype */
MPI_Datatype *new_dtype /* 0UT - New datatype */

Function MPI_Type_contiguous creates a new datatype consisting of
cnt copies of 01d_dtype concatenated fogether.

int MPI Type count {
. MPI_Datatype dtype; /* IN - Datatype */
~int *ent /* OUT - Top-level entry count */

Functmn MPI_Type_count returns the number of “top-level” entries in
datatype dtype. :

int MPI_Tj{pe_extent {
MPI_Datatype dtype, /* IN - Datatype */
MPI_Aint *extent /* QUT.- Extent of dtype */

Function MPI_Type_extent returns the extent of a datatype dtype.
A datatype s extent is the number of bytes a single instance of the datatype
would occupy in a message. It 15 equal to the number of bytes occupied by
the datatype’s elements, rounded up to satlsfy the underlying hardware’s data
alignment requirements.

int MPI_Type_free {
MPI_Datatype *dtype /* IN - Derived datatype */
y o 4 ;

Function MPI_Type_free marks for deallocation the datatype object
associated with dtype and sets dtype to MPI_DATATYPE NULL. Any out-
standing communications involving dt ype will end normally. See MPI_Type
commit.

int MPI_Type_hindexed {

int ent, /* IN - Number of blocks */

mt *hlock_ len_array, /* IN - Elements in each block */
MPT ~Aint *disp_array, J* I “Block byte displacements */
MPI_Datatype old, /* IN - Handle to old datatype */
MPI_Datatype *new /* OUT - Bandle to new datatype */

Function MPT_Type_hindexed is idenfical to function MPI_Type_
indexed; except that theblock dlsplacemems gWen in dlsp array are; glven
in bytes ' S ,

APPENDIX A MP(Functions

int MPI_Type hvector | o
int cnt, /* IN - Number of blocks */
int len, . /* IN - Mumber of elements per block */
MPI_Aint stride, /* IN - Displacement in bytes between
start of each block */
MPI_Datatype old, /* IN - Handle to old datatype */
MPI_Datalype *mew /* OUT - Handle to new datatype */

' Fﬁucﬁcn MPI_Type_htrec tor construets ahewderiveddatatype by repli-
cating-an existing datatype. The new datatype consists of cnt blocks. Each block

confains block_length coples of old The dlsmnce between blodcs (mea—

sured in bytes) 1s stride.:~

int MPI_Type indexed { .
int-cnt, - /* IN - Numbér of blocks in 'new' */

int *block_len, /* IN - Array indicating copies of old
L) o datatype in each block */
int *disp, " J* IN - Block displacements array */

MPI Datatype old, /* IN - Handle to old datatype */
"MPI_Datatype *new /* QUT - Handle to new datatype */

Function MPT_Type_indexed takes a sequence of one or more blocks,
each consisting of one or more copies of an old datatype 014, and concatenates
them together to form a derived datatype new. Integer cnt is the number of
blocks to concatenate. Amray block_len gives the number of copies of 01d in
each block. Array disp gives the displacement of each block in multiples of the
extent of 01d.

int MPI_Type_lb { ,
MPI_Datatype dtype, /* IN - Handle to datatype */
MPI_Aint *1b /* OUT - Lower bound's displacement */

Function MPT_Type_1b retums the displacement in bytes of the lower
bound of datatype dtype from the origin,

int MPI_Type size {
MPI Datatypf1 dtype, /* IN - Handle to datatype */
int *size = J* OUT - Total size of type
signature emntries */

~ The type sngnature ofa datAtype is the sequence of basic types it contains.
FunctionMPI_Type_s1ze retums the number of bytes occupied by the entries
in the type 1gnature of dtype. It is equal to the number of bytes of data in a
in ge ¢ ntzunmg one: element of the datatype

481

282

APPENDIX A MP|Functions

int MPI_Type struct {

int cnt, ' /* IN - Mumber of blocks in ‘new’ */
int *block_len, /* IN - Elements in each block */
MPI_Aint *disp, /* IN - Displacement of each block */

MPI_Datatype *dtype, /* IN - Array of datatype handles */
MPT_Datatype *new /* OUT - Eandle to new datatype */

PunctionMPI_'Pype_struct constructs 4 new datatype consisting of cnt
blocks. Each block i contains block_len[i] copies of the datatype corre-
sponding to handle dtype [1] The dlSpldCCmem of each block 1 is mdlcatcd
by dlS [il. . :

int MPi_Type_ub {)
MPI_Datatype dtype, /* IN - Handle to datatype */
MPI_Aint *ub /* OUT - Upper bound’s displacement */

Function MPT_Type_ub retums the displacement in bytes of -the
upper bound of datatype dtype from the origin.

int MPI_Type vector |

int cnt, /* IN - Number of Hlocks */ .
©int bleck_length,” /* IN - Elements -in each block */
int stride, - /* IN - Elements between start ~

J . . . : of each block */ -
MPI_Datatype old_dtype, /* IN - Handle to old datatype */

MPI.Datatype *new Utvpe, /* OUT - New datatype’s handle */

Function MPT_Type_vector constructs a new derived datatype by repli-
cating an existing datatype. The new datatype consists of cnt blocks. Eachblock
contains block_length copies of 01d_dtype. The distance between blocks
{measured in terms of multiples of the cxtent of 01d_dtvpe) is stride.

int MPI_Unmpack {

void *in_huffer, /* TN - Input buffer */

int len, /* IN - Length of input buffer */

int *position, /* IN/OUT - Position in ‘in_buffer’ */
vold *out_buffer, /* QUT - Output buffer */ ‘

int out_ent, /* IN - Number of items ko l.npack */
MPI_Datatype dtype, /* IN - Handle to

MPI_Comm comn /* IN - Communicator */

Funcﬂon MPI Unpa~k unpacks a message len bytes long from
in buffe into out _buffer. ~
At 'the beginning of the fun , executi ,
in_buffer ofthcbegmmng of th packedmessage When thefuncuonremms,

APPENDIX A MP/ functions

position is the index of the first byte after the message that was unpacked.
The position parameter allows several messages to be packed into a single
packing unit, sent, and then unpacked individuafly. '

int MPI_Wait {
MPI_Request *handle, /* 1IN - Request handle */
MPI_Status *status /% DUT - Result of communication */

Functwn MPI_Wait completes any gonblocking operatlon, If the ¢ operation
was a send, this function waits’ unti} the message has been either buffered or
sent by the run-time system. At this point the send ‘buffer may be reused Tf the -
operation was a receive, it waits until the message has been. copxed mto Ihe receive
buffer. .

int MPI_Waitall (

" int cnt, N L - Number of cofims to wait on */

-~ MPI Requesr *handle, /* TN - Requeit Handles array’ *j ‘
MPI_Status *status /* OUT - Status of completed comms */

Function MPT_Waitall blocks until all cnt of the communication opera-
tions associated with the handles stored in handle_array have cnded. When
the function returns, the status array contains information about all of the
completed communications.

int MPI_Waitany (

int cnt, /* IN - Number of comms to check */
MPI_Request *handle, /* IN - Array of request handles */
int *index, /* OUT ~ index of completed comm */

MPT_Status *status /* QUT - Status of completed comm */

Function MPI_Wait.any blocks until one of the specified communications
operations has been complcted. When it returns, the value of index is the index
into hand1= of the completed communication, and status points to the status
record of the completed cormunication.

int MPI_Waitsome (

Snt in_cnt, /* IN - Humber of comms to check */
MPI_Request *handie, /* IN - Array of request handles */
int *out_cnt, /* OUT - Humber of completed ops */
int *index_array, /* QUT - Array of completed ops */

¥PI_Status *status /* OUT - Array of status info */

APPENDIX A MP! Funations

Function MPI_Waitsome blocks until one or more of the specified com-
" . munication operations have ended. When it returns, the value of cut _cnt is the
aumber of operations that have been completed. The first out _cnt elements of
index are the indices in handle of the completed operations, and the first cut.
elements of st atus are the completion status objects for these communications.

double MPI_Wtick (void)

Function MPT_Wt i ck returns a double-precision floating-point number in-
dicating the number of seconds between ticks of the clock vsed by function
MPI_Wtime. .For examplc if’ the clock is incremented every mlcrosecond func-
tion MEL: Wt ick should retuen the valté 10)

double l[PI_WtiJne (void)
Function MPY_Wt. ime returns a double-precision floating-point number rep-
resentmg the number of seconds since some time in the past. The defibition of
“some time in the past” is guaranteed not to change during the life of a pro-
cess. Hence the elapsed time of a block of code can be determined by calling
MPI_Wt ime before it and after it and computing the difference.

B.1 HEADER FILE wupr.h

7%

*/

Utility Functions =

MyMPI.h i
Header file for a library of matrix/vector
input/output/redistribution functions.

.

Programmed by Michael J. Quinn

Last medification: 4 September 2002

/*****i**t**t***i*i**i*i** MACROS *i***********i**iv‘!****tiii/

#define DATA MSG

#define PROMPT M:G 1

#define RESPONSE_MSG 2

#define OPEN_FILE_ERROR -1

#define MALLOC_ERROR -2

#define TYPE_ERROR -3

#define ¥IN(a,b) tal<(p)?{a) : (b))

¥define BLOCK_LOW(id,p.p) ({idf*in)/{p))
#define FLOCK_HIGH{id,p,n) {BLOCK_LOW ({id)+1,p,n) -1}
#define BLOCK _SIZE(id,p,n) \

(BLOCK_HIGH({id,p, a) -BLGCK_LOW{id,p,n)+1}

#define BLOCK_OWNER(j,p,n) | el +1)1-13/(n))
#define PTR_SIZE (sizeof (void*))
#define CEILING(i,7) (L +09) -1/ (5

485

485

APPENDIX B Utility Functions

/***t*i***i***t*** MISCELLANEQUS FUNCTIONS ****i**:i;:****t*/

volid terminate (int, char *);

/i**t*i***kt**ii DATA DISTRIBUTION FUNCTIONS *************xi/

void replicate block_vector (void *, int, veid *,
MPI_Datatype, MPI_Commi;
void create_mixed_xfer arrays (int, int, int, int**, int**j;

- void create uniform xfer arrays {int, int, int, int**,int*+*);

******/

JEERRE R ALK

INPUT FUNCTTONS .

void read_checkerboard matrix (char *, vold ***, void **,
MPI_Datatype, int *, int *, MPI_Comm);

void read_col _striped_matrix {char *, void ***, vpid **,
MPI_Datatype, int *, int *, MPI_Comm);

‘void read_row_striped_makbrix -ichar *, ‘Void ¥+, void **,

MPI_Datatype, int *, int *, MPI_Comm}; .

void read_block_vector {char *, wvoid **, MPI_Datatype,
int *,.MPI_Comm);

void read_replicated_vector {char *, void **, MPI_Datatype,
int *, MPI_Comm);,

/*tii**i*******t*** OU’[‘P(}T FL]IJC‘PIONS i};*‘*r'*****it*******ii**/

void print_checkerboard_mat‘rix {void **, MPI_Datatype, int,
int, MPI_Comm); ..

void print_col_striped matrix (void **, MPI_Datatype, int,
int, MPI_Comm);

void print_row_striped_matrix (void **, MPI_Datatype, int,
int, MPI_Comm};

void print_block_vector {void *, MpI_Datatype, -int,
MPI_Comm) ;

void print_replicated vector {void *, MPI_Datatype., int,
MPI_Comm} ;

B.2 SOURCE FII.E MyMPI.c

/*

* MyMPI.c -- A library of matrix/vector
* input/output/redistribution functions
*

* Programmed by Michael J. Quingn

N]

* Lask modification: 4 September 2002
*/

APPENDIX B Utilty Functions

#include <stdic.h>
#include «<stdlib.h>

#in

clude <mpl.h>

#include "MyMPI.h

/**

/*

*

*
,
*f

int

Fhkkkkkkkkk bk k MISCELLANEOUS FUNCTIONS i*i*******i*t**‘**/

Given MPI_Datatype ‘t‘, function 'get_sizef returns the
size of a single datum of- that data type.

get size (MPI_Datatype t) |
if (t ==-MPI_BYTE) return gsizeof(char);

Jif (t == KPI_DOUBLEj return sizeof (double);

*l

vol

if {t == MPI_FLOAT) return sizeof{float);

1f (¢t == MPI_INT) return sizeof{int};

printf (*Error: Unrecognized argument to 'get_size’:\n"};
fflush (stdout];

MPI_Abort (MPI_COMM_WORLD, TYPE_ERROR);

Function ‘my_malloc’ is called when a process wants
to allocate some space from the heap. If the. memory
allocation fails, the process priants an error message
and then aborts execution of the program.

d *my_malloc |
int id, /* TN - Process rank */
int bytes) /* IN - Bytes to allocate */

void *huffer;

if ({buffer = malloc {{size_t} bytes)) == NULL) {
printf {“Error: Malloc failed for process %din", id);
fflush (stdout);
MPI_Abort (MPI_COMM_WORLD, MALLOC_ERROR};

]

return buffer;

487

APPENDIX B Utility Functions

* Function ‘terminate’ is called when the program should

* ot continue execution, due to an errcr condition that

* all of the processes are aware of. Process 0 prints the
* error message passed as an argument to the function,

* Aall processes must invoke this function together!
ir/ .

void termipate { ‘

int 1d, /* IN - Process rank */

char *error_message) /* IN .- Message to print */

{
if (1id) {
printf ("Error: %s\n", error_message];
fflush {stdout);
}
MPI_Finalize();
exit (-1};
}

J#*ereeeseass DATA DISTRIBUTION FUNCTIONG *#%#¥*¥srksékakens)

/*

* This function creates the count and displacement arrays
* needed by scatter and gather functioms, when the number
* of elements send/received to/from other processes

* varies.

*/
void create_mixed_xfer arrays (
int id, /* IN - Process rank */
int p, /* IN -~ Number of processes */
int n, /* IN - Total number of elements */

int **count, /* OUT - Array of counts */
int **disp) /* OUT - Array of displacements */

int i;

*count = my_malloc {id, p * sizeof(int));
*digp = my_malloc (id, p * sizenf{int});
{(*count) [0] = BLOCK_SIZE{0,p,n);
(*aisp) (0] = 0;
for {1 = 1; 1 < p; i++) {
(*disp) [i} = (*disp)[i-1] + (*count)[i-1];
[*count} [i] = BLOCK_SIZE(i,p,n);
; o

APPENDIX B Utility Functions

/i

* This function creates the count and displacemant arrays
* needed in an all-to-all exchange, when a process gets

* the same number of elements from every other process.
*/

void create_uniform_xfer arrays (

int id, /* IN - Process rank */
int o, /* IN - Number of processes */
int n, /* IN - Number of elements */

int **count, /* OUT - Array of counts */
int **disp) /¥ OUT - Array of displacements */

(
int 1;-
~*count = my_malloc {id, p * sizeof (int));
*disp = my_malloc {id, p * sizeof({intj);
{*count}[0] = BLOCK_SIZE{id,p.n);
{*disp) (C] = 0; i
for {i = 1 1 < p; i++} {
(*disp) (1] = {*disp)[i-1] + {*count)[i-1};
{(*count) [1] = RLOCK_S1ZE(id,p,n};
}
/*

* This function is used to transform a vector from a
* block distribution to a replicated distribution within a
* communicator.

*/

void replicate block_vector |

void *ablock, /* IN - Block-distributed vector */
int n, /* IN - Elements in vector */

void *arep, /* OUT - Replicated vector */
MPI_Datatype dtype, /* IN - Element type */

MPI_Commn comm) /* IN - Communicator */

int *cnt; /* Elements contributed by each process */
int: *disp; /* Displacement in concatenated array */
int id; /* Process id */

int p; /* Processes in commumicator */

MPI_Comm_size (comm, &p);

MPI_Comm_rank (comm, &id);

create_mixed xfer_arrays [id, p, n, &cnt, &disp);

MPI_allgatherv (ablock, cnt{id], dtype, arep, cat,
disp, dtype, comm);

490 APPENDIX B Uliity Funclions

free {cnti;
free (disp);

[ao

/**f**i******ii—**ii*** INPUT E'UNCTION’S *iki***t******f**i**ﬁ/

* Function 'read_checkerboard matrix® reads a matrix from
* a file. The first two elements of the file are integers
* yhose values are the dimensions of the matrix (‘m’ rows
* and 'n' columns). What follows are 'm‘*'n’ values

* representing the matrix elements stored in row-major

* order. This functicn allocates blocks of the malrix to
* the MPY processes.

* The number of processes must be a square number.

i/‘

void read_checkerboard matrix !

char *s, /* IN - File name */
3 voild ***subg, /* QUT - 2D array */
void **storage, “/* QUT - Array elements */
MPI_Datatype dtype. /* TH - Elewent type */
int *m, /* QUT - Array rows */
int *n, f* QUT - Array cols */
MPI_Comm grid_comm) /* IN - Communicator */
; L
void *buffer; /* Pile buffer */
int coords(2]; /* Coords of proc receiving
next row of matrix */
in datum_size; /* Bytes per element */
int dest_id; /* Rank of receiving proc */
int grid coord{2]; /* Process coords */
int grid_id; {* Process rank */
int grid _period[2]; /* Wraparound */
int grid_sizef2]; /* Dimensiocns of grid +/
int i, 3, ki
FILE *infilepty; /* Input file pointer */
void *laddr; /* Used when proc 0 gets row */
int local_colg: /* Matrix cols on this .proc */
int local_rows; /* Matrix rows on this 'proc */
void **1ptr; R /* Pointer into ‘subs’ */
int P /* Yumber of processes */
vold *raddr; /* Bddress of first element
to send */
void *yptr; /* Pointer into ‘storage’ */

MPI_Status status; /* Results of read */

APPENDIX B - Utility Functions

MPT_Comm_rank (grid comm, sgrid_id);
MP1_Comm size [grid comm, &p);:
datum_size = get_size (dtype):

/* Process { opens file, gets number of rows and-
number of cols, and broadcasts this information
to the other processes. */

il {grid_ig == 0) {
infileptr = fopen (s, "r");
if (infileptr == WULL} *m = 0;
else { '
“fread {m, sizeof(int), 1, infileptr);
fread (n, sizeof(int), 1, infileptr};
}
] .
MPI_Bcast {m, 1, MPI_INT, 0, grid_comm);

if (1 (*m)} MPI_zbort {MPI_COMM WORLD, GPEN_FILE_ERROR);
MPI_Brast (o, 1, MPI_INT, 0, grid_comm);

/* Each process determines the size of the submatrix
it is responsible for. */)

MPI_Cart_get (grid_comm, 2, grid_size, grid_period,
grid_coord);

local_rows = BLOCK_SIZE{grid_coord[0],grid_size[0],*m};

local_cols = BLOCK_SIZE(grid_coord{l},grid_sizell},*n);

/* Dynamically allocate two-dimensional matrix ‘subs’ */

*storage « my_malloc {grid_id,
local_rows * locai_cols * datum_size);
*subs = (void **) my_malloc (grid_id,local_trows*PTR_SIZE);
lptr = (void *) *subs;
ptr = {void *) *storage;
for (1 = 0; 1 < local_rows; i++) {
*(1ptr++) = (void *) rplr;
rptr += local _cols * datum_size;

/* Grid process 0 reads in the matrix one row at a time
and distributes each row among .the MPI processes. */

if {(grid_id == 0}
buffer = my_malloc (grid._id, *n * datum_size);

a9

492

APPENDIX B Uity Functions

/* For each row of processes in the process grid... */
for {1 = 0; 1 < grid_sizel0]; i++) {
coords{0] = 1i;

/* For each matrix row controlled by this proc row...*/
for {3 = 0; j < BLOCK_SIZE(i,grid_size{0],*m}; j++) {

/* Read in a row of the matrix =/

if {grid_id == 0} {
fread (buffer, datum_size, *n, infileptr);
})

/* Distribute it amony processes in the grid row */

for {(k = U; k < grid_sizell]; k++) {
coords{l) = k;

/* Find address of first clement to send */
raddr = buffer +
BLOCR_LOW(k,grid_size{1l],*n) * datum_ size;

/* Determine the grid ID of the process getting
the subrow */

MPI_Cart_rank {(grid_comm, coords, &dest_id};

/* Process U is responsible for sending...*/
if lgrid_id == 0} { .

/* It is sending (copyingj to itself */
if (dest_id ==) { .
laddr = (*subs)[j];
memcpy {laddr, raddr,
local_cols * datum_size);

/* 1t is sending to another process */
} else {
MPI_Send (raddr, :
BLOCK_SIZE(k.grid_sizefl],*n), dtype,
dest_id, @, grid_comm); - :

/* Process 'dest_id’ is responsible for
recelving... */ :
} else if (grid_id == dest_id) (
MPI_Recv {(*subs){j], leocal_cols, dtype, U,
0; grid.comm,istatus);

APPEMDAX & Utility Functions

} o
if (grid_id == 0} free {buffer);

Function 'read_col_striped_matrix’ reads a matrix from a
file, The first two elements of the file are integers
whose values are the dimensions of the matrix {'m’' rows
and 'n’ columns). What follows are ‘m‘*'n’ values
representing the mabrix eélements stored in row-major
order. This function allocates blocks of columns of the
matriz to the MPI processes.

void read_col_striped matrix (

{

char *g, /* IN - File name */
void ***gubs, /* QUT - 2-D array */
void **storage, /* OQUT - Array elements */
MPI_Datatype dtype, /* IN - Element type */ .
int *m, . /* OUT - Rows ¥/
int . *n, /* OUT - Cols */
MPI_Comm comm) /* IN - Communicator */
void *buffer; /* File buffer */)
int datum _size; /* Size of matrix element */ V
int i, j:
int id; /* Process rank */
FILE *infileptr; /* Input file ptr */
int local_cols; /* Cols on this process */
void **]ptr; /* Pointer imto ’subs’ */
void *rptr; /* Pointer into ’‘storage” */
int jsH /* Number of processes */
int *send_count; /* Each proc’s count */
int *send_disp; /* ¥ach proc’s displacement */

MPI_Comm_size {comm, &p);
MPI_Comm_rank (comm, &id};
datum_size = get_size (dtype);

/* Process p-1 cpens file, gets number of rows and
cols, and broadcasts this info to other procs. */

if {id == (p-11} (
infileptr = fopen (s, “r");
if (infileptr == NMULL) *m = 0;

493

APPENDIX B Ulility Functions

/*
*

*

*

elge {
fread (m, sizeof{int), 1, infileptr);
fread (n, sizeof{int), 1, infileptr);

}
MPI_Bcast {m, 1, MPI_INT, p-1, commi;

“if {'{*m)) MPI_Abort {comm, OPEN_FILE_ERRORE}:

MBI _Brast (n, 1, MPI_INT, p-1, commj;
local_colg = BLOCK_SIZE(id,p,*n); .
/* Dynamidably allocate two-dimensional matrix ‘subs’ */

*storage = my_malloc {id, *m * local_cols * datum_size);
*aubs = (void **) my_malloc (id, *m * PTR_SIiZE);
lptr = (void *) *subs;

rptr = {void *) *storage;

for (1 = 0; 1 < *m; i++) {
*(1ptr++) = (void *) rptr;

rptr += local_ceols * datum_size;

/* Frocess p-l.reads in the matrix one row at a time and
distributes each row among the MPI processes. ¥/

1f {id == (p-1)) .
buffer = my malloc (id, *n * datum_size);
create_mixed xfer_arrays (id,p,*n,&send_count,&send _dispj;
for (1 = 0; 1 < *m; 1+¢) {
if {id == {(p-1})
fread {buffer, datum_size, *n, infileptr);
MPI1.Scattery (buffer, send_count, send_disp, dtype,
(*storage)+i*local_cols*datur_size, locai_cols,
dtype, p-1, commj;
}
free {(send_count);
free (send_displ;
if {id == (p-1}} free [buffer);

Process p-1 cpens a file and inputs a two-dimensional
matriz, reading and distributing blocks of rows to the
other processes. : :

*/

APPENDIX B Uliiity Finctions 498

void read_row_striped_matrix {

char *s, /* IN - File name */

void ***qubg, /* OUT ~ 2D submatrix indices */

void **storage, /* OUT ~ Submatrix stored here */ —
MPI_Datatype dtype, /* IN - Matrix element type */

int *m, /* OUT ~ Makrix raws */

int *n, /* OUT - Matrix cols */

MPI_Comm comm) /* IN - Communicator */

{ N

int datum_size; /* Size of matrix element */

int i;

int id; /* Process rank */

FILE *infileptr; ~ /* Tnput filk pointetr */

int local _rows; /* Rows om this proc */

void **Iptr; /* Pointer into ‘subs’ */

int i /* Number of processes */

void *rper; /* Pointer into ‘storage’ */

MPT_Status status; /* Result of receiva */ .
Cint TX; /* Result of read */

MPI_Comin_size (comm, &p};
MPI_Comm_rauk {comm, &id);
datum_size = gel_size (dtype):

/* Process p-1 opens file, reads size of matrix,
and broadcasts matrix dimensions to other procs */

if {(id == (p-1)) { - -
infileptr = fopen (s, “r*};
if [infileptr == NULL) *m = O,‘
else {
fread (m, sizeof (int), 1, infileptz};
fread {n, sizeof{int}, 1, infileptri;
1

i

MPI_Hcast {m, 1, MPI_INT, p-1, comm);

if (! {*m}) MP1_Abort (MPI_COMM_WORLD, OPEN FILE ERROR);
‘MP1_Brast {n, 1, MPI_INT, p-1, comm);

local_rows = BLOCK;SIZEgidjb,*m);

/* Dynamically allocate matrix, Alld& double subscripting
through ra*. */

*storage = (void *} my_malloc {id,
local_rows * *n * datum size);
*subs = {void **) my malloc (id, local_rows * PIR_STZE!:

496

APPENDIX B Utiity Functions

Iptr = {vold *) &{*subsiC});

ptr = {void *) *storage:

for {i = 8; 1 < local_rows; i++) {
*{lptr++)= {void *) rptr;
rptr += *n * datum size;

/* Process p-1 reads blocks of rows from £ile and

" sends each block to the correct destination process.

The last hlock it keeps. */

LE (id == (p-1)) {

for (1 = 051 < p-1;
%= fread (*storage, datum size,
BLOCK_SIZE{i,p,*m} * *n, infileptr);

MP3_Send (*storage, BLOCE_SIZE(i,p,*m)
i, DATA_MSG, comm);

iee) o

] .
x = fread (*storage, datum_size, local_rows * *n,

infileptr);
fclose {infileptr};
} else

MPI_Recv {*storage, local_rows * *n, dtype, p-1,
DATA_MSG, comm, &status):

Open a file containing a vector, read its contents,
and distribute the elements by block among the
processes in a communicator.

void reed_block_vector {

char *s,

void *ry,
MPI_Datatype dtype,
int *n,
¥PI_Comm comn}
int datum_size;
int i;
FILE *infileptr;
int - local els;
MPI_Status status:
int 14;

int- . p;

int - X5

/*
/*
/*

/x

IN - File name */

OUT ~ Subvector */

IN - Element type */
QUT ~ Vector length */
IN - Communicator */

/* Bytes per element */

/* Input file pointer */

/* Elements on this proc */
/* Result of receive */

/* Process rank */

/* Number of processes:*/
/* Result. of read */

* *n, dtype,

/t

APPENDIX B Utility Functions

datum_size = get_size (dtypel;
MPI_Comm_gize{comm, &p);
MPI_Comm_rank(comm, %idj;

/* Process p-1 opens file, determines number of vector
alements, and broadcasts this value to the other
processes, */

if {id == {p-1}) {
infileptr = fopen (s, "r"):
if (infileptr == NULL) *n = §;
else fread (n,. sizeof(int), 1, infileptri;

} . .
MPI_Bcast (n, 1, MPI_INT, p-1, comm};
if (1 *n) {

if (1ig) {
printf ("Input file ‘%3’ cannot be opened\n®, s);
fflush (stdout); C

/* Block mapping of vector elements to processes */

local_els = BLOCK_SIZE(id,p,*n);
/* Uynamically allocate vector. */

*v = my_mailoc {id, local_els * datum_size};
if (id == (p-1)) {
for {1 = 0; 1 < p-1; i++) { ’
X = fread (*v, datum_size, BLOCK_SIZE{i,p,*n),
infileptr);
. MPI_Send {*v, BLOCK_SIZE{i,p,*n}, dtype, i, DATA_MSG,
comm) ;

}
X = fread {*v, datum_size, BLOCK_SIZE(id,p,*n),
infileptr);
fclose (infileptr);
P else {
MPI_Recv (*v, BLOCEK_SIZE(id,p,*n). dtype, p-1, DATA MZSG,
comm, &status);. ‘

Open a file containming a vector, read its contents,
and replicate the vector among all processes in a
communicator. */

497

APPENDIX B Utility Functions

r

void read replicated vector (
char *s, /* IN - File name */
void iy, /* oUT - Vector */
AMFI_Datatype dtype, /* IN - Vector type */

int *n, /* OUT - Vector length */-
MPI_Comm comm) /¥ IN - Communicator */
(
int datum_size; /* Bytes per vector element */
int i;
int id; /* Process rank */
FILE *infileptr; /* Input file pointer */
int p:r .. /* Number of processes */

MPI_Comm_rank {comm, &id);
MPI_Comm_size [comm, &p);
datum size = get_size (dtype};
if {id == {p-11) {
infileptr = fopen {s, "r");
if (infileptr == NULL) *n = 0;
else fread (n, sizeof(int), 1, infileptr};
)
MPI_Bcast {n, 1, MPI_INT, p-1, MPI_COMM_WORLD);
if {! *n) terminate (id, "Cannot open vector file");

*v = my_mglloc (id, *n * datum_size);

S if (id == (p-1)1 {
fread (*v, datum _size, *n, infilleptr);
felose {infileptr);

!
MPI_8cast (*v, *n, dtype, p-1, MPI_COMM_WORLD);

}

I/***iit***i*kt*i*i*if OUTP:JT FU‘NCTIQNS *ii***i*i***tii*****/

/*
* Print elements of a doubly subscripted array.
* f

void print_ submatrix (

void ¥*z, .~ /% OUT - Doubly gubscripted array */
MPT_Datatype dtype, /* QUT - Type of array elements */
int LOWS, /* QUT - Matrix rows */
int cols) /* OUT - Matrix colg */

.

int i,.3;~

for (1 = 0; 1 < rows; i++) {
for (j = 0; j < cols; j++) {

APPENDIX B Uity Functions 493

if {dtype == MPI_DOUBLE)

printf (*%6.3f ", {(double **)a)[il1{j]);
else { :
if {dtype == MPI_FLOAT}

printf (*%6.3f ", ({float **)a)[i1{j)1);
else if (dtype == MPI_INT}

printf (*¥64 ", ((Int **)a)[i][j]);

}
} -
putchar {(‘\n’});
}
) .
/*)
* print elements of a singly subscripted array.
*/
void primt_subvector () :
. void *a, /* IN - Array pointer */
MPI_Datatype dtype, /* IN - Array type */
int n! /* IN - Array size */
{
int 1;

for (i = 0; 1 < n; i++) {
if (dtype == MPI;DOUBLE)
printf (*%6.3f *, ({double *}a)[i]);
- else |
if (dtype == MPI_FLOAT) .
printf {"%6.3f ", ((float *)a)[il};
else if (dtype == MPI_INT)
printf (*%6d ", ({int *j}a)[i]):

* Print a matrix distributed checkerboard fashion among
* the processes in a communicator.

'y
*/

void print_checkerboard matrix (

void kg, /* IN -2D matrix */
MPI_Datatype dtype, /* IN -Matrix element type */
int m, /* IN -Malrix raows */

int n, | /* IN -Matrix columng */

MPI_Comm grid comm) . /* IN - Communicator */

APPENDIX B Utility Functions

{
void *buffer; /* Room to hold 1 matrix row */
int k coordsizl; . /* Grid coords of process
. sending elements */
int . datum_size; . /* Bytes per matrix element */
int . els; /* Elements received */
int - grid_coords[21; /* Coords of this process */
int grid_id; /* Process rank in grid */
int " grid_period[2]; /* Wraparcund */
int grid_size{2]; /*.Dims of process grid */
int i, ‘, k; .
void - *laddr; © /¥ Where to put subrow */
int local_cols; /* Matrix cols ou this proc */
int Pi /* Number of processes */
int sro; /* ID of proc with subrow */
MPI_Status status; /* Result of receive */

MPI_Comm_rank {grid_comm, kgrid_id);
PI_Comm_size (grid_comm, &p);
datum_size =.get_size {dtype);

MPI_Cart_get {grid comm, 2, grid_size, grid period,
grid_coords};)
local cols = BLOCK_SIZE(grid_coords[1],grid_sizeli],n);

if (tgrid_id)
tuffer = my_malloc (grid_id, n*datum_size);

/* For each row of the process grid */
for (t = 0; 1 < grid_sizel0]; i++) {
coords[0] = i;

/* For each matrix row controlled by the process row */
for {(j = 0; j < BLOCK_SIZE(i.grid_gize[0],m); J++) {

/* Collect the matrix row on grid process G and
print it. */
if {1grid_id) {
for (k = 0; k < grid size[l]; k++) {
coords (1] = k;
MPI_Cart_rank (grid_comm, coords, &src);
els = BLOCK_SIZE(k,grid size(il,n);
lagdr = buffer + }
BLOCK_LOW(k,grid_size{l],n) * datum size;

if {sre == 0} { .
memcpy (laddr, a{j], els * datum_size)
}.else {

MPI_Recv{laddr, els, dtype, src, Q,
grid_comm, &status); C

APPENDIX B Utiity Functions 504

}
print_subvector (buffer, dtype, n};
putchar ("\n’);
} else if {grid_coords (0] == i} {
MPI_Send (af{j], local_cols, dtype, 0, 0,

grid_comm) ;
}
} .
) .
if (lgrid_id) {
free (buffer):;
putchar {’\n’);
} : .
}
/*

* Print a matrix that has a columnwise-block-striped data
* decomposition among the elements of a communicator.

*/

void print_col striped matrix (

void **a, /¥"IN - 2D array */
MPI_Datatype dtype, /* TN - Type of matrix elements */
int m, /¥ 1IN - Matrix rows */
int n, /* IN - Matrix cols */
MPI_Comm comm}) /* IN - Communicator */

(.
MP1_Status status; /* Result of receive */
int datum_size; /* Bytes per matrix eiement */
volid *buffer; - /* Enough room to hold 1 row */
int i, i;
int id; . /* Process rank */
int pi /* Number of procesges */
int* rec_count; /* Elements received per proc */
int* rec_disp; /* Dffset of cach proc's block */

MPI_Comm_rank {comm, .&id);

MPI_Comm_size {comm, &p};

datum_size = get_size (dtype);)
create_mixed xfer arrays (id, p, &, &;ec_,count,&rec_disp);

if (!id)
buffer = my_malloc (id, n*datum_size):
for (i = 0; 1 «my 1++) {

MPI_Gatherv (a{i], BLOCK_SIZE{id,p,n), dtype, buffer,
rec_count, rec_disp, dtype, 0, MPI_COMM_WORLD) ;

APPENDIX B Utifity Functions

if (rid) {
print_subvector i{buffer, dtype, ni:
putchar -{(“\n');

1

} .
free (rec_count);
free (rec_disp);
if (Jid) {
free (buffery;
putchar (‘\n’);

/i

* Print @ matrix that is distributed in row-striped
* fashion among the processes in a communicater.

*/

void print row_striped matrix { _

void **a, /* TN - 2D array */

WPI_Datatype dtype, /* IN - Matrix element type */

int m, /* IN - Matrix rows */

int n, ‘ /* IN - Matrix cols */

MPI_Comm comm) /* 1IN - Communicator */

{

MPI_Status status; /* Resuit of receive */

oid *bstorage; /* Elements recelved from
another process */

void *xh. /* 2D array indexing into
'bstorage’ */

int datum_size; /* Bytes per element */

int 1;

int id; /* Process rank */

int local_rows; /* This proc's rows */

int wax_block_size; /* Most matrix rows held by

) any process */
int proiept ; /* Dummy variable */
int D; /* Number of processes */

MPI_Cowm_rank (comm, &id);
MPI_Comm,_size {comm, &p};
local_rows = BLOCK_SIZE(id,p,m);
1€ (1id) |
print_submatrix (e, dtype, local_rows, n};
if (p>» 1) {
datum_gize = get_size {dtype);
‘max_block_size = BLOCK_SIZE(p-1,p,m);
bstorage = my_malloc "(id,

APPENDIX B Utility Functions

max_block_size * n * datum size);
b = (void **} my_malloc (id,
max_block_size * datum_size);
bil} = bstorage;
for (i = 1; 1 < max_block_size; i++} {
b{i] = pli-1] + n * datum_scize;
}
for {1 = 1; 1 .<p; i++4).{
MPI_Send (&prompt, 1, MPI_IWT, i, PROMPT MSG,
MPI_COMM_WORLD) ;
MPI_Recv {bstorage, BLOCK_SIZE{i,p,m)*n, dtype,
i, ‘RESPONSE__MSG, MPI_COMM_WORLD, &status);
print_submatrix (b, dtype, BLOCK_SIZE{i,p,m), n);
}
free {(b);
free (bstorage);
o
putchar {’\n‘};
.} eise { .
MPI_Recv (&prompt, 1, MP{_INT, 0, PROMPT MSG,
MPI_COMM. WORLD, &status);
MPI_Send (*a, local_rows * n, dtype, O, RESPCNSE_MSG,
¥PI_COMM WORLD) :

o

. I*
* Pprint a vector that'is block distributed among the
* processes in a communicator.
*/

void print_block_vector {

void *y, /* IN - Address of vector */

MPI_Datatype dtype, /* IN - Vector element type */

int T, /* IN - Elements in vector */

Mpi_Comm COm) /* IN - Communicator */

{

int datum_size; /* Bytes per vector element */
: int i; :

int prompt; /* Dummy variable */

MPi_Status status; /* Result of receive */

void *Lmp; /* Other process’s subvector */

int id; /* Process rank */

int joH /* Number of processes */

MPI_Comm_size {comm, &p);
MPI_Comm rank {comm, &id);
datum_size = get_size (dtype);

804 APPENDIX B Utility Functions

if (ridy
print_subvector {v, dtype, BLOCK_SIZE{id,p,n));:
if (p>1) 1
tmp = my_malloc (id, BLOCK_SIZE(p-1,p,n)*datum_size);
for {i =1; i <p; i+4) (
MPI_Send (&prompt; 1, MPI_INT, i, PROMBT MSG,
comm) ;
MPI_Recv (tmp, BLOCK_SIZE{i,p.,n), dtype. i,
. RESPOMSE_MSG, comm, &status);
‘ print_subvector {tmp, dtype, BLOCK_SIZE(i,p,n}):

)
free (tmp); . - ; .
- printf ("\n\n®);
} else { .
MPI_Recy {(&prompt, 1, MPI_INT, 0, PROMPT_MSC, comm,
&status};

MPI_Send (v, BLOCE_SIZE(id,p,n), dtype, 0,
< RESPONSE_MSCG, comm);

Print a vector that is replicated among the processes
* in a communicator.

*/

void print_replicated vector |

void *y, /* IN - Address of vector */
MPT_Datatype dtype, /* IN - Vector element type */
int n, /* IN - Elements in vector */
MPI_Comm comm) /* IN - Communicator */ .

{

int id; /* Process rank ¢/
MPI_Comm_rank {(comm, &id);
if (tidy (

print_subvector (v, dtype, n);
printf ("\nin"};

Debugging MPI Programs

C.1 INTRODUCTION

Programming is.an error- -prone actmty While careful design s perhaps the smgle

most important step in developing a correct program, vnrtually every programmer

writes programs that need debugging. Most programmers use a symbolic debugger
to isolate some bugs and printf statements to find the. rest; the amouvnt of
time spent with each methodology depends upon the programmer’s skill and the
complexlty of the application.

Debugging parallel programs is much harder than debugging serial pro-
. grams. Fisst, there is much more to go wrong. Multiple processes are performing
‘computations that interact with each,other through a variety of message-passing
functions. Second, parallel debuggers are not as advanced as serial debuggers.
Typically, parallel programimers do not have access to good tols.

‘This appendix lists the kinds of bugs typically found in MPI programs, and
it provides some rules of thumb for debugging your programs.

€.2 TYPICAL BUGS IN MPI PROGRAMS

C. 2.1 Bugs Leadmg to Deadlock

A process.is deadlocked if itis “blocked waiting for a condition that will never
become. true” {3].-An MPI program will not be completed if one or more of its
processes are deadlocked. You can often trace deadlock in an MPI program to
one of the two following bugs:

Deadlock Bug 1 A single process calls a collective communication function.
; For example, only the root process calls MPL_Reduce or MPI_Bcast.

~ Prevention - Do not-put a call to a collective communication function inside
conditionally executed code. If you must put the call inside conditionally executed

505

506

APPENDIX € Debugging MP! Programs

code, ensure that the conditional expression evaluates to the same value on
every process, so that either all or none of the processes enter the block of code
containing the collective communication function.

Deadlock Bug2 Two or mere processes are trying to exchange data, but all call
a blocking receive function such as MPT_Recv before any calls an MPI send
function.

Prevention There are several ways to prevent this bug, First, you could structure
your programt so that processes always call MPT_Send or another message-
sendmg funcuon before they call MPT_Recv. Second, you could replace the
s MPI Send and MPI_Recv with the single function call
guaranteed 10t to deadlock. Third, youcould replace

the blockmg call NPT Recv with the nonblocking call MPT_Trecw and place

the matching call to MPT _Wait after the call to MPT_Send.

Deadlock Bug 3 A process tries to I'BLCIVC data from a process that will never
send it, resultmg in deadlock,

Prevention If the rank number does not correspond to a process in the com-

‘municator, the MPI run- time system will catch the error. However, this does not
help you if the fank is in the acceptable range. The best way to avoid this bug is
to use colleenve commumcatlons functions whenever possible. If point-to-point

' commugications are necessary, keep the communication pattern simple.
. D_ead_loc,k Bug 4 A process-iries to receive data from itself.

~ . Prevention A simple examination of the source code can weed out instances
*of this bug Asan altemauve yoerouId put a run-time check before each call to
a recelve functlon ‘

c.2.2 Bugs Leadmg to Incorrect Results

Incorrect Result Bug 1 Type mismatch between send and receive. For exam-
ple, the sending process may put a message with element type MPT__INT into
the buffer, while the receiving pmcess may read a message with element type
MPT _F LOAT. -

Prevention Structure your program so that each call to a message-sending func-

. tion has exactly one matching call to a message-receiving function. Make sure it
%+ isieasy todetermirie the receive that goes with each send. Double-check to ensure
. that:the paired: fum:tmn call§ assume the méssage has the same- length and the

- sainé element type: - :

Incorrect Result Bug2 Mixed-up parameters. Anvexample of this kind of error

18 reversmg the-order of the first and second parameters to MPT_Reduce.

 Prevention Most MPI funcuons have many parametem Your safest strategy
~is:to refer 4o the: function: hieaders.in' Appendix -A. whenever coding up an MPI
furmciion; 1o énsuréithat:you put the:argiments in the.correctorder. -

APPENPIX ¢ Debugging MPI Programs

C.2.3 Advantages of Collective Communications

There are more opportunities for bugs with point-to-point communications (e.g.,
send and receive) than with collective communications (e.g., broadcast and
reduce). In a collective communication, typically all processes are at the same
point of execution in the program. All processes usually invoke the function from
the same line of the source program. Hence all the arguments are the same. If one
process has called the function correctly, all have.

In contrast, consider point-to-point communications. In most local commu-
nications the sender and the receiver are calling different MPI functions, creating
opportunities for argument mismatches or other errors. It is possible to indi-
cate the wrohg source or desfinatiog; 4pugetsthe-typesaf-one crgare arguments
wrong, to get wrong the number of data elements heing passed, or to specify the
wrong tag.

For these reasons, use collective communications whenever it makes serse.

C.3 PRACTICAL DEBUGGING STRATEGIES

m f the parallel program will run on a single process, your first step should be
to get the one-process version of the parallel program working correctly. It
often tests much of the program’s functionality, such as 1/0. More
importantly, you can take advantage of a sequential debugger to set
breakpoints, test values, etc.

m Afier you have the program working correctly with one process, work with
the smallest number of processes that allows H of the program’s
functionality to be exercised. Usually two or three processes are sufficient.

m Work with the smallest problem size that exercises all of the program’s
functionality. For example, when writing a program that solves a system of
lingar equations, 24 x 4 system might exercise the same functionality as a
1024 x 1024 system. By using a smaller problem size, you can put in
printf statements that let you look at entire data structures. In addition,
since the program has less output, the output you do get will be easier to
understand. R

m Put fflush{stdout); after every printf statement, Otherwise, you
may not get all of the output produced by every process before your
program crashes/deadlocks.

m For point-to-point messages, print the data that are being sent and print the
data that are received to make sure that the values match.

m The messages received from any one process will be in chronological order,
but messages received from different processes do not necessarily arrive in
chronological order. Do not assume if a message from process X appears
before a message from process Y, that message X was printed before
message Y. Prefix each message with the process rank, then run the output

507

508 : APPENDIX € Debugging MPI Programs

of the program through the Unix sort utility. This will orgamze output by
process, which is about as well as you'can do.

m First debug the initialization phase of the program to make sure that all the
data structures have been set up correctly.

m Check to make sure that the local fndices used to access local data on each
pracessor are correctly calculated.

a When debugging the program, do not combine messages or ase complex
data structures to optimize performance. First get the logic right. Then

- worry about combining messages or takmg other performance-enhancing
©steps. .

Review of.;COfm:plext;z~;»N»umhers,;

his appendix reviews how to perform arithmetic on complex numbers. The

material closely follows the presentation of Weaver {112].

A complex number is anordered pair of real numbers, denoted (x, y). Wecall
x the real part of the complex number and y the imaginary part. Two complex
nambers (¥, y;) and (x2, y;) are equal if and only if x; = xp and y; =

Let z;-= (x1, 1) and 2 = (%, y2) be two complex numbers. The sum of
these complex numbers is :

ztz=(t+x 0+
‘The product of these complex numbers is
1z ={xxm — Y. f1y2 +y10)

Addition and multiplication with complex numbers is commutative, associa-
tive, and distributive.

Any real number x can be represented as the complex number (x, 0).

Three special complex numbers are the zero element, the unit element, and -
the imaginary unit element.

The zero element, denoted 9, is the complex number {0, 0).

The sum of any complex number z and the zero element is z:

0=+ 00 =G+0y+0) =@y =2
The product of any complex number z and the zero element is {;
=@ W0)=(xx0-yx0xx0+yx0)=0,0=0

The unit element, denoted 1, is the complex number (1, 0).
The product of any complex number z and the unit element is z:

ixI=0,NA,0=Exl-yx01xy+0xx)=(x,y) =z

509

510 APPENDIX D Review of GCompiex Numbers

The imdginary element, denoted i, is the complex pumber (0, 1). The
imaginary element is the square root of —1:

P=0,DOD=0x0-1xL0xt+1x®)=(-1,0)=~1

See Figure I.1. We have represented the complex number 7 as x 4 iy, where
the horizontal axis corresponds to the real part of z and the vertical axis corre-
sponds to the imapinary part of z.

e linaginacy

L BV VU P PR,

Real

Figure D.1° Every complex number zcan
~ . berepresented as an ordered pair of real
numbers (x, y), where x is the real part and
yis the imaginary part. It can also be
represented as.a vector having length r and
angle 0, whete ¢ is measured
counterclockwise from the real axis.

APPENDIX D Review of Complex Numbers 511

We can also thiok of 7 as a vector having length r and angle #, where § i§~
measured counterclockwise from the real axis. Note that

1=rcosf
y=rsind
Using these equations we can wiite 7 = x + iy=r(cost + isinf).

When we study the discrete Fourier transform we want to represent z in
exponential form, which we derive here. Using Taylor’s series we can show

93 65 97
NP =0 —— +— - —
- 3571
92 94 06‘ RS R
=1 —— 4+ — — F.:-
cos Sty t
Y 92 ;9’+94 :95'+
T D A R T
3 4 -5

4 92'94 9 6
et N rife -
(sttt)+a(@ 3+5+>

Combining these equations yields
¢ = cosf +isinf
and
e =cosf —isind
Recall that z =x + iy = r{cosf +isinf). Hence“

i=re

is another way (o represent a complex number.

One propeity of the exponential representation of complex numbers is that
it simplifies multiplication and division. Let z; = r(e™ and 75 = rpe® be two
complex nnmbers. Then

&
22y = ne"re® = rrehtt

afn= (’138’)/02992) = ‘(Tl/Tz P

A complex uth root of unity is a complex number o such that " = 1, the
unit element.
There are exactly n complex nth roots of wnity, represented by e% for
=12,
The complex number >/, denoted w,, is the principal nth root of unity.
Figure D.2 illustrates the principal eighth root of unity and its powers, the
other complex eighth roots of unity.

iew of Complex Numbers

EVIBW O

APPENDIX D R

512

(L)

o =

-i)

- 0

)

ighth oot

€

“The-pring
s powers.

igure D.
ity and i

Fi
un

OpenMP Functions

T his appendlx describes all the C/C++ functions in the OpenMP standard.
Every function has either no parameters or one parameter. All parameters are
input parameters, where the caller provides the value. All results are returned to
the user through the function’s return value.

int. omp_get dymamic (void)

Function omp_get_dynamic returns 1 if dynamic threads are enabled and
0if they are disabled.

int omp_get_max_th‘re‘ads: '(void)

Function omp_get _max_threads returns an integer whose value is the
maximum aumber of threads that the run-time system will let vour program create.

int omp get_nested {void)

Function omp_get_nested returns 1 if nested paia]]elism is enabled
and 0 otherwise. All current OpenMP implementations have nested parallelism
disabled by default.

int omp_get num procs (void)

Function omp_get _num_procs retumns the number of processors the
parallel program can use.

int omp_get _num threads (void)

Function omp_get_num_threads retumns the number of threads that are
currently active. If it is called from a serial portion of the program, the function
retums 1.

M

513

514

APPENDIX E ' OpeniMP Functions

* int omp_ get thread num. {void)

Function omp._get_thread num returns the thread’s ldentlﬁcatlon num-
ber. If there are ¢ active threads, the thread identification numbers range from (
tot— 1.

int omp_in_parallel {void)

Functionomp_in _parallelreturns 1 ifithas been called inside a parallel
block and 0 otherwise.

vold omp_get dypamic { .
‘int ko /* 1 =UON, O = FA[SE

Function omp_set__dynamic can be used to enable or disable dynamic
threads. If dynamic threads are enabled, the run-time systern may adjust the
number of active threads to match the number of physical processors available.

. 'You may wish (o disable dynamic threads if you want to know exactly how many
gﬂlreads are created when parallel regions are en[ercd

void omp_«set_nested {
int k /* 1 = enable; 0 = disable */

Function omp_set _nested isused to enable or disable nested parallelism.
Current implementations of OpenMP only support one level of parallelism. Nested -
parallelism is turned off by default, and activating it has no effect. Hence this
function call has no value in current OpenMP imiplementations.

v01d omp .set_num threads {
int t © /* Number of threads d(—’SlI‘E‘d */

)

Function omp_set_num_threads sets the desired number of parallel
threads for subsequent executions of parallel regions. The number.of threads may
exceed the number of available processors, in which case multiple threads fnay
be mapped to the same processor. This call must be made from a serial portion
of a program.

BIBLIOGRAPHY

. Ak, S. G. Parallel Sorting Algorithms. Orlando,

FL: Academi@ Press, 1085.

. Amdahl, G. “Validity of the single processor

approach to achieving large scale computing
capabilities.” Tn AFIPS Conference Proceedings,

=+ Vol. 30, pages 483485, Washington, D.C.:

Thompson Books, April 1967.

. Andrews, Gregory R. Concurrent Programming:

Principles and Practice. Redwood City, CA:
Benjamin /Cummings, 1991.

. Anton, H. Elementary Linear Algebra. 3d ed.
" New York: John Wiley & Sons, 1981.

. Bazase, Sara, and Allen Van Gelder. Computer

Algorithms: ntroduction 1o Design and Analysis.
3d ed. Reading, MA: Addison-Wesley, 2000.

. Babb, Robert G. II. Introduction. Tn Robert

G. Babb I, (ed.), Programming Parallel
Pracessors, pages 1-6. Reading, MA:
Addison-Wesley, 1988.

. Bacon, David F, Susan L. Grahars, and Oliver J.

Sharp. “Compiler transformations for
high-performance computing.” ACM Computing
Surveys 26(4):345~420, December 1994,

. Batcher, K. E. “Sorting networks and their

applications.” In Proceedings of the AFIPS

‘Spring Joint Computer Conference, Vol. 32,

pages 307-314. Reston, VA: AFIPS Press, 1968.

. Bertsekas,D. P, and J. N. Tsitsiklis, Paralle! and

10,

11,

12

Distributed Computation: Numerical Methods.
Englewood Cliffs, NJ: Prentice-Hall, 1989.
Bhattacharya, S., and A. Bagchi. “Searching
game trees in parallel using SSS*” In
Proceedings AAAI-90, pages 42-47. The AAAIL
Press, 1990.

Bressoud, David M. Factorization and Primality
Testing. New York: §pringer— Verlag, 1989.
Browne, James C., Syed 1. Hyder, Jack Dongarra,
Keith Moore, and Peter Newton. *“Visual
programming and debugging for parallel
computing.” JEEE Parallel & Distributed
Technology 3(1):75-83, Spring 1995,

13.

14,

16.

17.

18.

19.

20.

21

2,

23

Camp, W. 1., S. J. Plimpton, B. A. Hendrickson,
and R. W. Leland. “Massively parallel methods
for engineering and science problems”’
Communications of the ACM 37(4) 30— 41

April 1994,

Cannon, L. B. A Cellular Compuser to Imp!emem
the Kalman Filter Algorithm. PhD thesis,
Montana State University, Bozeman, MT, 1969.

, Carriero, Nicholas, and David Gelerntmer. How

to Write Paralle! Programs: A First Course.
Cambridge, MA: The MIT Press, 1990.
Chandra, Rohit. Léonardo Dagum Dave Kohr,
Dror Maydan, Jeff McDonald, and Ramesh
Menon. Parallel Programming in OpenMP.
San Francisco: Morgan Kaufmenn, 2001.
Coddington, Paut D. “Random rumber
generators for parallel compaters.” Technical
report, Northeast Parallel Architectures Center,
Syracuse University, Syracuse, NY, April 1997,
Cormen, Thomas H., Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. 2d ed. Cambridge,

MA: The MIT Press, 2001.

de Groot, A. D. Thought and Choice in Chess.
The Hague: Mouton, 1965.

de Kergommeaux, Jacques Chassin, and Philippe
Codognet. “Parallel logical programming
systems.” ACM Compging Surveys 263):
295-336, September 1994.

Dijkstra, E. W., W. H. Seijen, and A. . M. V.
Gasteren. “Derivation of a termination detection
algorithm for a distribated computation.”
Information Processing Letters |6(5):217-219,
1983,

Dongarra, J. 1., 1. §. Duff, D. C. Sorenson, and
H. A. van Ger Vorst. Solving Linear Systems on
Vector and Shared Memory Computers.
Philadelphia: SIAM Press, 1991.

Fagan, M. J. Finite Element Aralysis: Theery and
Practice. Singapore: Longman Scientific &
Technical, 1992.

515

516

Bibliography

24. FEeitelson, Dror G., Anat Barat, Gabriel

Benhanokh, David Er-El, Yoav Etsion, Avi
Kavas, Tomer Klainer, Uni Lublin, and Marc A.
Volovic. “The PasPar system: A software MPE”

- InRajkumar Buyya (ed.), High Performance

25.

26,

2%

Cluster Computing: Architectures and Systems.
Vol. 1, pages 754-770. Upper Saddle River, NJ:
Prentice-Hall PTR, 1999.

Felten, E. W., and S. W. Otto. “A highly parallel
chess program.” In Proceedings of the
International Conference on Fifth Generation
Computer Systems 1988, pages 1001-1009.
1COT, 1988.

vFergueon C., andR E. Korf. “Distributed tree

search and its application to alpha-beta pruning.”
In Rmceedlngs AAAI -88, pages 128-132, 1988.
Floyd, R. W. Algorithm 97: Shortest paih

; Commumcanom of the ACM 5(6) 343, June

29.

3L

32.

3.

1962,
: Flynn Michael J. “Very high-speed computmg

systems.” Proceedings of the IEEE 54(12):
19011909, December 1966,
Flynn, Michag] J. “Same coniputer organizations

and thieir effectiveriess.” JEEE Transactions on
 Computers C-21(9):948-960), Scptember 1972.
. Flynn, Michael J., and Kevin W. Rudd. “Parallel

architectures.” ACM Computmg Sunveys B
28(1):67-70, March 19%. * - B

“Foster, lan. Designing and Building Parallel

Programs: Concepts and Tools for Paralle]
Software Engineering. Reading, MA:
Addison-Wesley, 1995.

Foster, Ian, and K. M. Chandy. “'Fortran M: A

language for modular parallel programming.”
Journal of Parallel and Distributed Computing
25(1), 1995.

Fox, G.C., M. A. Johnson, G. A. Syzenga, S. W.
Otto, J. K. Salmon, and D. W. Walker, Solving
Problems an Concurrent Processors. Vol. 1.

. *Englewood Cliffs, NJ: Preatice-Hall, 1988,

, Fox, Geoffrey C., Roy D. Williams, and Paiil C.
««Messina.. Parallel Computing Works.

s SanFrancisco: Morgan Kaufmann, 1994,

. Francis; R:8:,; and [-D.:Mathieson. “A

benchmark patallel sort for shiared r‘nernbry
uluprocesbon. VAIEEE Transactions en -
rvﬁC-‘?»‘ 52331619 1626, December

36

37.

38,

39,

40.

Gallivan, K. A, R.J, Plemmons, and A. H.
Sameh. “Parallel algorithms for dense linear
algebra computations.” SIAM Review 32:54-135,
March 1990.

Galloway, Robert L., W. Andrew Bass, and
Chaistopher E. Hockey. “Task-oriented
asymmetric mulfiprocessing f{or interactive
image-guided surgery.” Parallel Computing
24(9-10):1323-1343, September 1998.
Garey, Michael R., and David S. Johason. -
Computers and Intractabdzty A Guide fo the

W H. Freeman]979

Geist, Al Adachguelm Jack Dongdn'a,

Weicheng Jiang, Robert Manchek, and Vaidy
Sunderam. PVM: Parallel Virtual Machine: A
Users’ Guide and Tworial for Networked
Parallel Computing. Cambridge, MA: The MIT
Pness 1994. .

Gill, S. “Parallel program:mng Computer

* Journal 1{1):2-10, April 1958,

41

4.

43.

45,

46.

47,

Golub, Gene, and James M. Ortega. Scientific.
Computing: An Introduction with Paralle]
Computing. Boston, MA: Academic Press,
1993. ; o
Goodman, §. E., and S: T. Hedetniemi..
Introduction to.the Design and Analysis of
Algorithms. New York: McGraw-Hill, 1977.
Grama, Ananth Y., Anshul Gupta, and Vipin
Kumar. “Tsoefficicacy: Measuring the scalability
of paralle] algorithns and architectures.” JEEE
Parallel & Distributed Technology 1(3):12-21,
August 1993.

Grama, Ananth, Anshul Gupta, George Karypis,
and Vipin Kumar. Introduction to Parallel
Computing. 2d ed. Harlow, England:
Addison-Wesley, 2003.

Gropp, William, Ewing Lusk, and Anthony

.Skjellum.; Using MPI: Portable Parallel.

Programming with the Message-Passing -
Interface. Cambridge, MA: The MIT Press, 1994.
Gustafson, John L. “Reevaluating Amdahl’s law.”
Communications of the ACM 31(5):532-533,
May 1988.

Gustafson, Iohn L; Gary R. Montly, and -
Robert E. Benier. “Development of parallel
methods for a-1024-processor hypereube.” SIAM

Journal on Scientific and Statistical Compurmg
- 9(4):609-638, March 1988.

48. Gustayson, F. G. “Recursion lcads to automatic-
variable blocking for dense linear-algebra
algorithms.” /BM Journal of Research and
Development 41(6), 1999. .

49. Hatcher, Philip J., and Michael §. Quinn. Darta-
" Parallel Programming on MIMD Computers.
Cambridge, MA: The MIT Press, 1991.

30. Hillis, W. Daniel, and Guy L. Steele, J “Data

parallel algorithms.” Comvmunications of the
%1 ACH 29(12):1170 1183, Decernber 1986.
51. Hoare, C. A. R. “Quicksort.™ (‘mnputen'oumal
5(1):10-15, 1962. ‘
52. Hockney, R. W., and C. R. Jesshope. Paralle!
Computers: Architecture, Programming and
Algorithrms. Bristol: Adam Hilger Ltd, 1981.

:53. Houstis, E. N., J. R. Rice, S. Weerawarana, A. C. -

Catlin, P. Papachiou, K.-Y. Wang, and

M. Gaitatzes. “PELLPACK: A problem-solving
environment for PDE-based applications on
malticomputer platforms” ACM Transactions
on Mathematical Software 24(1%:30-73,

March 1998.

54. Ysu, Feng Hsiung. Behind Deep Blue: Building
the Computer that Defeated the World Chess
Champion. Princeton, NJ: Princeton Universi[y
Press, 2002.

55. Huntbach; M. M., and F. W. Burton. “Alpha beta

search on virtual tree machines.” Information
Sciences 44:3-17, 1988,

56. Tacobi, C. . J. “Uber eine neue auflosungsart
der bei dermethode der keinsten quadrate
vorkommenden linearen gleichungen” Astr,
Nachr. 22(523):297-306, 1845.

57. Jain, A. K., M. N. Monty, and P. J. Flyon. “Data
clustering: A review”” ACM Compuring Surveys
-31(3):264 323, 1999.

58, Kalos, Malvin H., and Paula A. Whltlmk Monte

-Carlo Methods, Volume [Basics. New York:
John Wiley & Sons, 1986.

59. Karp, Alan H., and Horace P. Flatt. “Measuring
parallel processor performance.”
Communications of the ACM 33(5):539-543,
May1990.

60. Kauffmano, William J. I11, and Larry L Smarr,
Supercomputing and the Transformation

Bibliography 517

of Science. New York: Scientific American
Library, 1993,

61. Kernighan, Brian W., and Dennis M. Ritchic. The

C Programming Language. Enplewood Cliffs,
NJ: Prentice-Hall PTR, 1988.

62. Koelbel, Charles H.. David B. Loveman,

63.

65.

66.

67.

68.

69.

.

71

72.

Robert 8. Schreiber, Guy L. Steele, Jr., and

Mary E. Zosel. The High Performance Fortran
Handbook. Cambridge, MA: The MIT Press,
1994,

Lai, T. H., and S. Sahni. “Anomalies in patallel
branch-and-bound algorithms.” Communications
of the ACM 27(6):394-602, June 1984. -

. Landau, David P., and Kust Binder. A Guide to

Monte Carlo Simulations in Statistical Physics.
Cambridge: Cambridge Univemity Press, 2000.
Landau, Rubin H., and Manuel J. Pacz.
Computatioral Physics: Problem Solving with
Computers. New York: John Wiley & Sons,
1997. -

Lawrie, Duncan H. “Acccss and alignment of
data in an array processor.” IEEE Transactions
on Computers C<24(12) 1145-1153, December
1975.

Lea, W. A, “Speech recugnitjou: Past, present,
and future.” In Trends inSpeech Recognition.
Englewood Cliffs, NJ: Prentice-Hall; 1980.
L’Ecuyer, Pierre, and Richard Simard. “Beware
of the linear congruential geperators with
multipliers of the form a = £29 £2"” ACM
Trarsactions an Mathematical Software
25(3):367-374, September 19%9.

Lehmer, Derrick Henry. “Mathematical methods
in large scale computing units.” In Proceedings of
the Second Symposium on Large-Scale Digital
Calculating Machinery, pages 141-146.
Cambridge, MA: Harvard University Press,
1951

Leiserson, Charles E. Area-Efficient VLST
Computarion. Cambridge, MA: The MIT Press,
1983.

Lester, Bruce P. The Arfof Paralle!
Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1993.

Leva, Joseph L. “A fast normal random number
generator.” ACM Transactions on Mathematical
Software 18(4):449-453, December 1992,

518

13.

75.

7.

Bitlicgraphy

Levin, E. “Grand challenges to wmputation%l
science”” Communications of the ACM
32(12):1456-1457, December 1989.

. Li, X., P Lu, J. Schaeffer, I. Shillington,

P. S. Wong, and H. Shi. “On the versatility of
parallel sorting by regular sampling.” Parallel
Computing 19:1079-1193, 193,

Luhn, H. P “The automatic creation of literature
abstracts” IBM Journal of Research and
Development 2(2):159-163, 317, April 1938,

. Luo, Xuedong “A practical sieve algorithm for
- “findmg price pumbers.” Commumca!wns of the

ACM 32(3):344-346, March 1989, -
Makino, fun. “Lagged-Fibonacci random number

 generators on parallel computers” Parallel

.

~Computing 2009):1357-1367, 1994,

Manno, fstvan. . Jntroduction to the Monte-Carla

* Method.. Akademlar ‘Kladoo Budapest Hungary,

7.

1999. Y

Marsaglia, George. Random numbem fall
mainly in-the planes.” Proceedings of the..
National: Academy-of Sciences of the United”

- States.of Americd 62:23-28, 1968,

80.

Marsaglia, George, and Wai Wan Tsang, “The

-Monty Python method for generating random

. variables.” ACM Transactions on Mathematical

L1 8

82

3.

Software 24(3):341-350), September

1998,

Marsland TA, andM Campbell “Parallcl
search of strongly ordered game trees”
Computing Surveys 14(4): 533—531 December
1982,

Mascagni, M., S. A. Cuccaro, D. V. Pryor, and
M. L. Robinson. “A fast, high-quality, and
reproducible lagged-Fibonacei psendorandom
number generator” Computational Physics
19:211-219, 199s.

Mascagni, M., and A. Srinivasan, “Algonthm
806. SPRNG:; A scalable library for

-+ pseudoraidom:riumber generation.” AGM ‘

Transactions on Mathematical Software:
26(4):618-619, December 2060. -

)

. Mascagii, Michael. “Sothe methods of parallel

pseudoraridom number generation.” In -

'iAlgonthms for. Parallel. Fracessmg, New Yerk
*.r SpringertVerlag,1999.+: :

$5.

87.

88.

89,

91.

92,

93.

9.

95.

96.

97,

McGraw, James R., and Timothy S. Axelrod.
“Exploiting multiprocessors: Issues and options.”
In Robert G. Babb II, (ed.), Programming
Parallel Processors, pages 7-25. Reading, MA:
Addison-Wesley, 1988.

. Mehrotra, Piyush, Joel Saliz, and Robert Voigt,

editors. Unstructured Scientific Computation on
Scalable Mulfiprocessors. Cambridge, MA: The
MIT Press, 1992. :

Moore, Gordon. “Cramming more components
onto integrated cirevits.” Electronics Magazine
38(8):114-117, April 1965, -

Nagendra, Bhavana, and Lars Rzymianowicz.
“High speed networks.” 1n Rajkumar Buyya,
(ed.), High Performance Cluster Compufing:
Architectures and Systems. Vol. 1, pages
204-245. Upper Saddle Rrver, NJ: Prentice-Hall
PIR, 1999. o ‘

Pacheco, Peter S. Parallel Programming with
MPI. San Francisco: Morgan Kaufmana, 1997.

. Patterson, David A., and John L, Hennessy.

Computer Architecture: A Quantitative Approach.
2d ed. San Frantisco: Morgan Kaufmann, 1996.
Percus, Ora E., and Malvin H. Kalos. “Random
number generators for MIMD parallel
processors.” Journal of Parallel and Distributed
Computing 6:477-497, 1989.

Plybon, Benjamin B An Introduction to App[red
Numerical Analysis. Boston, MA: PWS-Kent
Publishing Company, 1992. -

Pountain, Dick, and David May. 4 Tutorial
Introduction to Occam Programming. Oxford:
BSP Professional Books, 1987,

Quinn, Michael J. “Parallel sorting algorithms
for tightly coupled multiprocessors.” Purallel
Computing 6:349-357, 1988.

Quinn, Michael 1. Parallel Computing: Theory
and Pracnc& 2d ed. New York McGraw-Hrll,
1994, s

‘Quilnn, Mrchael] and NarsmghDeo Annpper

bound for the speedup of paralle! best-bound
branch-and-bound algorithms.” BIT 26(1):35-43,
March 1986. ’

Reingold, E. M., J. Nievergelt, and N. Deo.
Combinatoria] Algorithms: Theory and Practice.

. Englewood Cliffs, NJ: Prentice-Hall, 1977:

98.

99.

100;

< 1k

Rupiethan, David ., Bernard Widrow, and
Michael A. Lehr. “The basic ideas in neural
networks.” Communications of the ACM
37(3):87-92, March 1994,

Sabot, Gary W. (ed.). High Performance
Computing: Problem Solving with Parallel and
Vector Architectures. Reading, MA:
Addison-Wesley, 1995,

Schaeffer, I. “Distributed game-tree searching”
Journal of Parallel and Distributed Computing
6:90-114, 1939.

-Siil, Hi;:and I Schaeffer. “ParallaF sorting by ™ ~1~12

regular sampling” Journalof Parallel and

' Distributed Computing 14:361-372,

; 1oz,

103,

104,

105.

186,

107.

108.

1992.

Skillicom, David B., and Donsenico Talia.
“Models and languages for pasallel computation.”
ACM Computing Surveys 30(2):123-169,

June 1998.

Slagle, J. R., and J. K. Dixon. “Experiments with
some programs that search game trees.” Journal
of the ACM 16(2):189-207, April 1969.

Smith, G. D. Numerical Solution of Partial
Differential Equations: Finite Difference
Methods. Oxford: Oxford University Press, 1985.
Sterling, Thomas, (ed.). Beownlf Cluster
Computing with Limux, Cambridge, MA: The
MIT Press, 2002. .

Tentner, A. M., R. N, Blomquist, T. R. Canfield,
P. L. Garner, E. M. Gelbard, K. C. Gross,

M. Minkoff, and R. A. Valentin. *Advances in

“parallel computing for reactor analysis and

safety.” Communications of the ACM
37(4):54-64, 1994.

Valiant, Leslie G. “A bridging model for pasallel
computation.” Communications of the ACM
33(8). August 1950.

Wagar, Bruce. “Hyperquicksort: A fast sorting
algorithm for hypercubes.” In Hypercube

Bibliography 519

- Multiprocessors 1987, pages 292-299.

109.

110,

111,

113

114,

115.

116.

117.

118,

Philadelphia, PA: SIAM, 1987.

Wah, B. W., G. Li,and C.-F Y.
“Multiprocessing of combinatorial search
problems.” Computer 18(6):93-108, June 1985.

Wallace, C. S. “Fast psendorandom generators
for normal and exponential variables.” ACM
Transactions on Mathematical Software
23{1):119-127, March 1990.

Warshall, S. “A theorem on boolean matrices.”
Journal of the ACM 9(1):11-12, January 1962.
Weaver, H. 1. Applications of Discrete and
Continuous Fourier Analysis. New York: John
Wiley & Sons, 1983.

Wheat, M., and D. J. Evans. “An efficient parallel
sorting algorithm for shared memory
rukiprocessors Parallel Computing
18:91-102, 1992.

Widrow, Bemard, David E. Runethart, and
Michael A. Lehr. “Neural networks: Applications
in industry, business, and science” Communica-
tions of the ACM 37(3):93-103, March 1994.
Wilkinson, Bamy, and Michael Allen. Parallel
Programming: Technigues and Applications
Using Nesworked Workstations and Paralle! .
Contpusers. Upper Saddle Rivar, NJ:
Prentice-Hall, 1999

Wilson, Gregory V. Practical Farallel
Programming. Cambridge, MA: The MIT Press,
1993.

Wolfe, Michael. High Performance Compilers
for Parallel Computing. Redwoed City, CA:
Addison-Wesley, 1996.

Wau, Pei-Chi. “Multiplicative, congruential
random-number generators with multiplier
+25 4 2 and modulus 27 ~ 1 ACM
Transactions on Mathematical Software
23(2):235-265, June 1997,

AUTHOR INDEX

A
AKL, S. G., 350
Allen, M., 236, 367
Amdahl, G., 162

Anton, H.; 206
Axelrod, T: 8., 17, 19

B

Jaase, S., 213,339,

367,434 .
3abb, R. G., 18
Jacon, D. F, 22—
3agchi, A., 400
3arat, A., 53,60
Batcher, K. E., 350
enhanokh, G., 53, 60
ertsekas, D. P,

21,314
hattacharya, S., 400- -
inder, K., 269
Homgquist, R. N, 22
jressoud, D. M., 123
ownce, J. C., 19
urton, B W., 400

c
amp, W. 1,22
ampbell, M., 400
anfield, T. R., 22
annon, L. E., 281
arriero, N., 90, 236
atlin, A. C,, 335
handra, R., 433
oddington; P. D., 243
odognet, P., 22

ormen, T. H., 139, 339, 361,

363, 367 ©

D
agom; L., 433
,Ksrgnmmeﬂux 1.C,22
e, N, 400 .- ,
1jkstra E. W 378

* BeE, D, 53, 60

Dixon, 1. K., 395
Dongarra, J., 19,314
Duff, 1. 5., 314

Eision, Y., 53, 60

Evans, D. I.,350

. F

Fagan, M. ., 335
Feitelson, D. G.,

53,60
Felten, E. W., 400
Ferguson, C., 397,398
Fiatt, H. P, 168
Floyd, R W., 154
Flynn, M. 1, 54
Flynn, P.J., 23
Foster, T, 63,64, 67,

68,69,73,90,

110, 154, 367

" Fox, G.C., 6,211,

314,350
Francis, R. §., 350

G

Guitatzes, M., 335

Gallivan, K. A, 314
Garey, M.R,, 71,9
Gamer, P.L., 22
Gasteren, A.J. M. V,, 378
Gelbard, E. M., 22
Gelernter, D., 90, 236
Gill, 5., 110

Golub, G., 314

Graham; S: L., 22

Grama, A., 154, 171, 211, 350,

367, 400
Gropp, W., 110, 246
Gross, K. C., 22
Gupta, A., 154, 171, 211, 350,
367, 400
Gustafson, J. L, 166
Gustayson, F G., 287

o -Hyder, S:1,19°

- Hatcher, P.J,, 18

Hendrickson, B. A, 22
Hennessy, 1. L, 5,22, 45, 59
Hillis, W.D., 37 :

Hoare, C.A.R,, 339

Hockney, R. W., kil
H(mws E N, 335

Hsu, E ., 400
Huntbach, M. M., 400

. J
Jacopi, C.G.J,33
Jain, ALK, 23
Jessiope, C. R.,37

* Johnson, D, 8,71, 96

Johuson, M. A, 211,
314,350

K
Kalos, M. H., 269 -
Karp, A. M., 168 -
Karypis, G., 154, 21[350
367,400
Kauffiman, W.1, 4,22
Kavas, A, 53,60
Kemighan, B. W., 112
Klainer, T, 53, 60.
Koelbel, C. H., 22
Kohr, 1., 433
Korf, R.E., 397,398 -
Kumar, V., 154, 171, 211, 350,
367, 400

L

ke

Lai, T. H., 400
Landau, D. P, 269
Landau, R. H,, 269
Lawrie, D. H,, 60
Lehmer, D. H,, 269

Leiserson, C. E,, 55,139, 339, 361,

363, 367
Lcland,,R. W, 22

Leva, J. L., 270
Levin, E, 4

Li, X., 346
Loveman, D. B., 22
Lu, P, 346

Lublin, U., 53,60
Lubn, H. P, 236
Luo, X., 134

Lusk, E., 110,246

.M
Makine, J., 247

Manno, 1,270 - -

Marsaghia, G., 270"~
Marsland, 1. A.; 400

Mascagmi, M., 248,270 -

Mathieson, 1. D., 350-
 May,D.23 .
Maydan, D., 433
McDonald, J., 433
McGraw, J. R., 17,19
Mehrotra, P, 335
Meaon, R., 433
Messing, P.C., 6
Minkoff, M., 22
Moore, G., 23
Moore, K., 19
Murty, M. N., 23

Nagends, G., 60
Newton, P, 19

0

Ortega, 1. M., 314
Otto, 8. W, 211,314,
350, 400

Pacheco, P. S., {19, 211
Paez, M. J,, 269

“Papachiou, P, 335

Patierson, D. A, 5, 22,45, 59
Plemmons, R. 1., 314
Plimpton, S.)., 22

Plybon, B. E, 335

Pountain, D., 23

@ .
Quinn, M. 1., 18,298,
350, 400

e, DM, 112
Rivest, R. L, 139, 339,361,
363, 367
Rudd, K. W., 54
Rzynﬁanowigz, L., 60

s .
Sabot, G. W., 22
Sahni, S., 400
Salmon, J. K, 211,
314,350

Saltz, J., 335

Sameh, A H,, 314
Schaeffer, J., 346, 400 .
Schreiber, R. §., 22
Seijen, W. H, 378
Sharp, 0.1, 22

Shi, H., 346
Shillington, J., 346
Simard, R., 269
Skillicora, D. B, 23
Skjellum, A, 110, 246
Slagle, I.R., 395
Smar, L. L., 4,22
Smith, G.D., 335
Sorenson, D. C., 314
Srinivasan, A., 248, 270
Steele, G. L., 22,37

Author Index . B

“Stein, C., 139, 339, 361,
363, 367
Sterding, T., 60
Syzenga, G. A., 211, 314,350

T
Tafia, D.,23
Tentner, A. M., 22
Tsang, W. W., 270
Tsitsiklis, J. N, 211, 314

v

“Valentin, R. A, 22

Valiant, L. G., %0

van der Vorsi, H. A, 314

Van Gelder, A., 213,339,
367,434

Voigt, R., 335

Volovic, M. A., 53,60

w

Wagar, B., 343
Walker, D. W, 211,

314,350 ‘
Wallace, C.S., 270
Wang, K-V, 335
Warshall, S., 154
Weaver, H. 1., 511
Weerawarana, S., 335
Wheat, M, 350
Whitlock, P. A., 269
Wilkinson, B., 236, 367 .
Williams, R. D., 6
Wilson, G. V., 6, 22,

45,110
Wolfe, M., 22
Wong, P. S., 346
Wu,P-C., 269

Z
Zose, M.E, 22

_SUBJECT INDEX

! 85, 86

(., P, 161

(n, p), 160

., 76,82, 85,86

w160,

), 160

(,76, 82, 86

r(n, p}, 160

|-D decomposition
block, 118-121

for conjugate gradient method,

310-312 .

for fast Fougier transform,
363-366

for finite difference method,
324-327)

for Floyd™s algotithm, 142-143

for matrix multiplication,
277279

for matrix-vector multiplication,
181-182,189 -~

“for sieve of Eratosthencs, 121

" for sorting, 340-34] -
" for steady-state heat distribution
problem, 332-333 -
eyclic (interleaved), 118
for back substitution; 293-295
for backirack search, 376
for circuit satisfiability, 97
for Gaossian elimnation,
299-305
2-D decomposition
block)
for Floyd's algorithm, 155
for matrix multiplication,
281-285
“for matrix-vector multiplication,
199202
for sicady-state heat distribution
problem, 333-334
-D domain decompesition, 66
1) domain decomposition, 66
-D domain decomposition, 66

A
Adjacency matrix, 138
Advanced Steategic Computing
Initiative, 8-9

~ Agglomeration design step, 68-70
T Alfonso X738 T

All-gather communication, 84, 184
All-pairs shortest path problem, 138
Floyd's algorithm, 137-158
All-reduce communication, 299
All-4o-all communication, 91, 189
All4o-one reduction. See Reduction
Alliant, 7
Allocation
cyclic {interleaved), 98
Alpha-beta search
parallel, 395-398
sequential, 392-395
Amdahl effect, 164
Amdahl's Law, 161-164
Ametek, 7
AND tree, 370
ANDYOR tree, 370 -
Anomalies
specdup, 166, 400
ANSL 19
Applications
aircraft design, 318
airline flight crew scheduling, 369
antificial intelligence, 178, 388
audio system design, 318
autormobile manufacturing, 4-5
blood circulation modeling, 318
chess playing, 388
circuit layout planning, 369
computational chemistry, 273
computer-assisted surgery, 66-67
COMputing integrals, 239
data mining, 14
disposable diaper design, 5
drug design, 5 R
grand challenge problems, 4
heat fransport modeling, 290
neural network traiming, 178, 211
nuclear stockpile management, 8
 ocean circulation modeling, 318

oil exploration, 4
- power grid analysis, 290
production planning, 290
regression analysis, 290
robot anmm motion planning, 369
scientific data analysis, 14
signal processing, 273
stock market modeting, 239:
structural analysis, 290, 318
theorem proving, 369
thunderstorm modeling, 318
Argonne National Laboratory, 96
systolic, 5556, 57
Armrays
creating at run time, $39-140
ASCL See Advanced Strategic
Computing Initiative
Aspiration search
parallel, 396
Assembly line analogy
automobile, 12-13 '
Asymmetrical multicomputer, 495
Asynchronous message-passing
operation, 64
Atomic bomb
Moate Carlo metheds and, 239
Autribwtes
communicator, 203
Augmented matrix, 298
AXIS gperating system
sCUBE, 49

B .

Back substitution
column-oriented paraliel, 295-296
row-oriented parallel, 293-295
sequential, 262-293

Backpropogation algorithm, 178

Back¥rack search, 371
parallel, 374-377
sequential, 371-374
storage requirements, 374
termination desection, 377-380

Barrier synchronization, 45
MPI_Barrier, 108-109, 433

Becker, Don, &
Benchimarking
circuit satisfiability progran, 109
Beowulf, 7-8
Best-first branch and bound. See under
Best-first search
Besi-ficst search
example, 380-382
. parallel, 385-390.
. sequential, 382-385
storage requirements, 3835
termination detection, 387-388
Binary a-cube, 33-34
Binary scarch tree
optimal, 213
Binary tree network, 30-31
Binomial tree, 79
Bisecuon width
" switch network, 29
Bit reversal, 362-363 -
Bitonic merge sort, 350 .
Block data decomposition, 118
Block vector decomposition, 181 -
Blocked message, 64
Bloeking communication, 223

Bolt, Beranck and Newman (BBN), 6 _

Boundary value problem, 73-77
Box-Muller transformation, 250-251
Brackett, Anna C., 273
Branch-and-bound search

Ioad balancing, 386

parailel, 383390

sequential, 382-385

storage requirements, 385

teraination detection, 387388 .
Bmadcast, 28,37,91,121-122
Bubblesort, 92
Bucket sort, 352-353
Bush, President George Herbert

Walker, 8

Butterfly network, 32-33
Butterfly pattern, 363

C
C program
calcnlating pi, 241
canstruct optimal binary search tree,
214-215
Jacobi method, 331
matrix multiplication, 276
rectangle Tule, 114 -
Simpson's rule, 114
string vibration problem, 325

C* 20
C+, 9%
C-0AC,7
Cache coherence
directory-based protocol, 47—49
problem description, 44-45
write invalidate protocol, 44
Cache hit rate
improving, 131, 275-278
Caesar Aupustus, |
Caltech, 6, 8
Cancellation lemma, 514
Cannon’s algorithm, ..81—286
Canoniéal shape; 408 ~
Cards
shuffiing a deck of, 23
Center for Research on Parallel
Computing, 96
Centralized multiprocessor, 2
Chaanel, 64
Checkereboard decomposition.
See Decomposition,
checkerboard block
Checklist
agglomeratian, 69-70
communication, 68
mapping, 73
partitioning, 67
Chunk, 419.)
Circuit satisfiability problem,
96-110
MP! programs, 100-191, 105
Circular shift, 279-280
Classical science
methodology of, 3
Clause
firstprivate, 412
lastprivate, 412413
nowait, 427-428
private, 41l
reduct ion, 415416
schedule, 420
Clinton, President William, 8
Clock rates '
increase in, §)
CODE. Se¢ Computationally Oriented
Display Environment
Cocfiicient matrices
types of, 291-292
Cole, Ron, 356
Collective communication, 104
Collisions
resolving message, 28

Subject Index 523

Columnwise decomposition.
See Decomposition, columnwise
Combinatonial search, 369
- Commodity
off-the-shelf (COTS) system, 3
Commodity cluster, 49
constructing a, 60
network of workstations versus,
- 53
Communication
bandwidth, 85-86
blocking, 223
deadlock in point-to- porut l48—l49

Rt dexig stip, 67-68

global, 67
latency, 76, 82, 85, 86
local, 67
nonblocking, 223-226
overhead, 396
point-o-poini, 145-149
Conmununication/computation
overlap, 281
Communicator, $9--100, 203
creafing 2, 202-205,223
Compiler
GNU, 8
parallelizing, 2, 17-18
Compiling C programs using MPL, 102
Complex numbers
review of, 511-514
Component labeling problem, 92, 337
Computation/communication
averlap, 281
Computationally Oriented Display
Environmeat (CODE), 19
Concatenation. Sez All-gather
Communication; Gather
Communication
Conditionally executed loops in
OpenMP, 41§419
Conjugate gradient methed, 438444
paraliel, 310, 312-313
sequential, 309-310, 311
Connection
exchange, 35
Machine, 6
shufile, 35
Contemporary science
methodology of, 3
Context -
communicator, 203
Conway, John, 157
Cosmic Cube, 6

524

COTS. See Commodity, off-the-shelf -

Cray, 4.5,6,7

create_mikéd xfer_
arrays, 488

create uniform xfer
arrays, 489

Critical sections

OpeaMF, 413415

Crossword puzzle problem, 92,
371-374

Cyclic allocation, 98

D
Data clustering
algorithms for, 23
case study, 14-17
Data decomposition, 117
block, [18
Data dependence graph, 9
Data parallelism, 10 .
Data-patallel programming, 20
Deadlock, 14849, 507
Debugging, 507-510
Decision problem, 369
Decision tree
mapping strategy, 72
Decomposifion.
block vector, 118-121, 180, 181,310,
311-313,340-341, 363-366
checkerboard block, 155, 180, 181,
195202, 281-285,333-334
columnwise block-striped, 143, 180,
181, 189-199
columnwise interleaved striped,
254,303
domain, 65
functional, 66
replicated vector, 181,310, 311-313
rowwise block-striped, 143, 180,
181-189, 277-279, 310,
311-313, 324-327,332-333
rowwise interleaved striped, 294,
299-302
deep Blue, 396, 400
Jell Computer Corporation, 44, 405
Jenelcor, 6
epartment of Energy
United Seates, 8 17
epth-first seatch. See Backtrack.
. search
)eqlgn meth.odology

lm]ed balance: condltlén 258

Subjsct Index

Diameter
switch network, 29
Difference quotients, 321-322
Diffusion equation, 321
Digital Equipment Cotporation, 6
Direct topology, 29
Directed graph, 138 -
Directory-based cache coherence
protocol, 47-49
Discrete Fourier transform
inverse, 357
Distributed memory. multlple—CPU
computer, 45-54 -

Distributed thrmination detec{mn, R

377-380 ‘
Distnibuted tree search, 397-398
Divide-and:conquer algoﬁmms

370-371
Docnment classification pmblem, 27
Domain decomposition, 65
Dynamic load balancing, 71, 386
Dynamic programming:

Floyd’s algorithm, 139
optimal bigary search tree, 213
Dynamic schedule, 419

E
Edge length
desirability of constant, 29°
Edges per node '
switch network, 29
Effective branching factor, 395
Efficiency, 160 -
Einstin, Albert, 290
Embamassingly parallel
computition, 98
Encore, 7
ENIAC, 4,5
Eratosthenes, 115
Ethemet, 28, 54
Euclid, 238
Exchange connection, 35
Execution context, 409
Experimentally determined sena[
fraction, 167 S
Exponcatial d]smbuuon 1y
Extensions to sequential programming
language, 18
External sort, 339

O F
Fast Bthernet -
cost of, 54 -

Fast Fourier transform
parallel, 363-366
sequential, 360-363
FFT. See under Fast Fourier transform
File input, 143145
Finite diffecence method, 73-77,
318337
Finite element method, 335

_ firstprivate clavse, 412

Floating Point Systems, 7
Floyd’s algorithm

parallel algorithm design, 140-149
_ parallel program analysis, 151-154

parallel program implementation,

149-151

pseudocode, 139
Flynn’s taxonomy, 34-57
for pragina, 425-427
Fork/join parallelism, 406-407
FORTRAN, 17, 19, 95,96, 404
Foster's design methodology, 64-73

adding J/0 channels to, 86-87
Fourier analysis, 353
Fourier transform
discrete, 354, 355-360

Fox, Geoffrey, 6
Frequency, 354
Fujitsu, 405
Functional decomposition, 66
Functional parallelism, 10

G
Game trees
scarching, 388, 391-395

Gateway, Inb., 404
Gather communication, 83-86

" Gauss-Seidel method, 308

Gaussian elimination
column-orientcd parallel, 303
pipelined parallel, 304-306

- row-oriented parallel, 299-302
sequential algorithm, 296-298,
299,300

get_size, 487

Ghost points, 326-327

Gigaflop, 8

Globa! communicatior, 67

Global index versus local

index, 120

GNU compilers, 8

Goddard Space Flight Center, 8

Grain sizg, 413, 42

Grand challenge problems, 4 -

Graph
adjacency matrix
representation of, 138
all-pairs shortest path problem, 138
search problem, 370
transilive closure, 154
types of, 137-138
Guided self-scheduling, 420
Gustafson-Barsis’s Law, 164-167

H
Halving lemma, 360, 514
Harmonic progression, 136
Heat conduction problem, 73-77
Hence. See Heterogeneons Network
Compating Environment
Heterogeneous Network Computing
Envitonment (Hence), 19
Hewlett-Packard, 7, 131
High Performance Fortran, 20, 22
HITECH, 393
Hybrid MPL/OpenMP
advatages of, 436438
Hypercube network, 33-34
Hyperquicksort, 343-346
Hyperuee network, 31-32

1/0 channels in design methodology,
86-87
IBM, 6,7, 9, 396, 400, 405
Tce bath, 73
Increasing locality of algoritlm, 68
Increrental parallelization, 406
Independent task, 9
Index
local wersus global, 120
Indirect topology, 29
Intel, 5,6,7, 8,49, 95, 131,
274, 405
Interconpection network
2-D mesh, 29-30
binary tree, 30-3|
butterfly, 32-33
hypercube, 33-34
hypertree, 31-32
processof array, 40
shoffic-exchange, 35-36
" “Interleaved allocation, 98
Internal sort, 339

Tnverse cumulative distribution function

transformation, 249-250
Tverting loops, 417418

Ising model
two-Jimensional, 237-259
150,19
Isocfficiency metric, 170-174
Tsoeffictency relation, 170-171
Tteration .
sequentially Jast, 412
Iierative deepening, 395
Tterative method, 306

J
Jacobi method, 306-309, 330,
434448
Jerome
Jerome Kiapka, 216
Jung, Carl Gustav, 353

K
Karp-Flatt metric, 167-169
Kasparov, Gary, 396 -
Kendall Square Research, 7
Key, 338

L

Lagged Fibonacci generator, 245
Lamb, Charles, 436
Laplace equation, 321
lastprivate clause, 412413
Lawrence Livermore National
Laboratory, -9

Lemma

cancellation, 514

halving, 514
Length

in switch network, 29
Life
game of, 157
Lirear congruential generator, 244-245
Lirear equation, 291
Linear second-order partial differential
equafion, 320
Linear system, 291
Linux operating system, 8
Load balancing, 67, 68, 70, 71-73
Local communication, 67
Local index versus global index, 120
Locality
increasing, 68
Logic programs
parallelism extracted from, 22
Loagfellow, Henry Wadsworth, 318

Subject Index

Loop inversion optimization, 417418 -

conditionally executed in OpenMF,
418419 :
scheduling in OpenM¥, 419-420
Los Alamos National Laboragory, 4
Lowell, James Russell, 404
Lower triangular matrix, 292
Loyd, Sam, 380,403
LU factorization. See under Gaussian
elimination :
Luke, Book of, 27

Macros

block decomposition, 120
Mainframe computers, 5
Manager process, 218
Manager/worker paradigm,

8219)
Mandelbrot set, 237-238
Manhattan distance, 381-382
Mapping, 70 .

Mapping design step, 70-73
Mapping strategy decision free, 72
Markov ehain, 258
Master thread, 406
Matrix .
adjacency, 138
- augmented, 298
Matrix multiplication -~ .
Cannon’s algorithm, 281-286
rowwise block-striped, 277-281
sequential, 274-277
Mairix types, 291-292
Matrix-vector multiplication ;
checkerboard block decomposition,
199-210
columnwise block-striped,
189-199,210
rowwise block-striped, 181-189, 210
sequential algorithm, 179-180
Maximum
finding, 77-82
Mean value theorem, 240, 242
Medium
shared, 28
switched interconnection, 28
Meiko, 6,7
Mergesort
paraliel, 351-352.
Mesh network, 26-30
Message Passing [nterface, See MPI

826 Subject Index

Message-passing programiming model,
94-95
Metropolis algorithm, 258
Miami Isopycnic Coordinate Ocean
Modet, 319 -
MIMD computer, 36
Minicomputers, 5 -
Minimax algorithm, 388, 390—392
MISD computets, 55-56, 57
Mode
finding the, 352
Model
shared-memory programming,
405-407
task/channel, 63-64
Monte Carlo method, 239
C/OpenMP program, 426
convergence of, 243 .
Moorte’s Law, 1, 23
MPI
listory of, 7-8, 95-96
rationale for using, 2- 3
MPL program ‘
circuit sausﬁablhty, 190101, lOi
compxhng and mianin g 102 -
conjogate gradient method,
439-441
document classification, 227230
matrix-vector multiplication, 188
197-198 ‘
MyMPI . c, 486-506
MyMPI.h, 485486
sieve of Eratosthenes; 124125
steady-state heat dlsmhullon 445
MP1-2, 96 ’
MPI_Abort, 220-221, 450 -
vPI_Address, 450
MPT_Allgather, 450
MPI_Allgatherv, 184-186, 451
MPT_Allreduce, 451
MPI_Alltoall,452
MEI_Alltoallv, 195-196,452
MPI_Attr_delete; 453
{PI_Attr_get,453
MPI_Attr_put,453"
MPI_Barfier, 108—109 453
MPI_Bcast, 122,453
MPI_Bsend, 454
MpI_Esendinit; 454
MPI_Buffer_attach,454 -
MPI_Buffer det ‘,h,1§§54' ‘ "

MPI Cart_coords, 207,455
MPI_Cart_create, 204-205, 455
MPI_Cart_get, 455
MPI_Cart_map, 456 -
MPI_Cart_ratik, 205-207, 456
MPI_Cart_shift,456
YPI_Cart_sub, 456
MPI_Comm_compars, 457
MPI_Comm_create, 457
MPI_Comm_dup, 457 -
MPI_Comm_free,457
MPI_Comm_group, 458
MPI_Cormin_rank, 458, 99-100
MPI_Comm_remote_group, 438
MPI_Comm_remgte_size,433
MBI_Comm_size, 99-100,458
MPI_Comm_split, 207-208, 458
MPI_Comm_test_inter,459
MPI_Dims_create, 203-204, 459
MPI_Errhandler_create, 459
MPI_Frrhandler free, 459
MPI_Errhandier get,459
MPI_Errhandler_set,460 -
MPI Error_class, 460
MPI_Error_string,460
MPI_Finalize, lOL460
MPI_Gather,460
MPI_flatherv, 193—I94 451
MPI_Get_count, 226, -161
MPT _ Get, elements 461 o
MP1 (‘et_pwcessor name, 462
MPI_Get_version, 462’)
MPI_Graph_create, 462
MPI_Graphdims_get,463
MPI_Graph_get,462
MPI_Graph_map, 463
MpI_Graph_neighbors, 463
MPI_Graph_neighbors_
count, 463
MPI_Group_compare,464.
MPI_Group_difference, 464
MPI_Group_excl, 464
MPI Group free, 464
MPI_Group_incl, 464

MPT Group_: 1nter<ectmn,465

MP I_Grol.p_i ange
MPI_Group_range i
MPI_Group_rank, 466
MPT Group blze,46()
MPI_Group_ translaLe
ranks, 466 o
MPI Group umon, 466

MPI_Init, 99,467
MPI_Initialized, 467
MPI_Init_thread, 467

MPI_ Intercomm_create,468
¥PT_Intercomm_merge, 468
MPI_Iprobe, 46%
MPI_Irecv,224, 469
MPI_Irserd, 469
MPI_TIsend, 225,469 .
MPI_Issend, 470
MPI_Xeyval create, 470
MPI_Cp_create, 470
MPI_Op_free, 47!

" ~MPI _pack; 471
. MPI_vack_size,471

MPI_Probe, 225-226,472
MPI_Recv, 147-148,472
MPI_Recv_init, 472

MPI. Reduce, 105-107, 473 .
MPI_Reduce_scatter, 413
MPI_Request free, 473
MPI_Rsend, 473)
MPI_Rsend_init,474
MPI_gcan, 474
MPI_Scatter, 474
MPI_Scatterv, 191-193, 475
MPI_Send, 146-147, 475
MPI_Send_init, 476
MPI_Sendrecv, 476
MPI_Sendrecv_replace, 477
MPI_Ssend, 477

MPI_Ssend -in it, 477
MPI_gtart,477
MPI_startall,478

MPI Test,478 -
MPI_Testall, 478
MPI_Testany,478
MPI_Testsome, 234-235, 479
MPI_%est_cancelled, 478
MPI_Topo_test,479
MPI_Type_commit, 479
MPI_Type_contiguous, 479
MPI_Type_count, 480
MPI_Type_extent, 480
MPI_Type_free, 480
MPI_Type hindexed, 480 -
MPI_Type hvectar, 480

MPI Type_indexed, 481
MPI_Type_1b, 481
MPI_Type_size, 481
MPI_Ty otruct 481
MBI TvPé ub, 482 '
MEI Type_

MPT_Unpack,482
MPI_Wait,225,482
MPI_Waitall, 483
MPI_Waitany, 483
MPT_Waitsome, 483
MPI_Wtick, 108,483
MPI_Wtime, 108,484
Multicomputer, 49-34, 56
asymmetncal, 49-51
symmetrical, 51-52 -
Multiple instruction stream
multiple data stream (MIMD), 55, 56
single dala steeam (MISI), 5556, 57
Multiplicative congmiential
generator, 244
Multiprocessor, 4349, 56 .
distnbuted, 4549
Nono-uniform memory access
(NUMA), 46
uniform memory access (LMA), 43
Muliisiage nerwork
butterfly, 32-33
omega, 6061 .)
shuffle-exchange, 35-36 .
Multithreading, 406-407, 436-437
Muthusamy, Yeshwant, 356 :
Mutual exclusion, 45
MyMPI. c, 486-506
MyMPI . h, 485-486
Miyrias, 7
Myrinet
cost of, 54
my_malloc, 487

N-body problem, 82-86
n-queeas problem, 402
NASA, 8
nCUBE Corporation, 6, 7, 49, 96, 400
NEC, 6,7
Network

2-D mesh, 29-30

binary treg, 30-31

butterfly, 32-33 .-

hypercube, 33-34

hypertree, 31-32

omega, 60-61

shuffle-exchange, 35-36
Network of workstations

commodity cluster versus, 5354
Neytron teansport problem, 253-255 -
Nonblocking communications,.

223726

Nonuniform memory access
multiprocessor (NUMA), 46
North Atlantic ocean circulation, 319
nowait clause, 427428
NP-complete problesm, 96
NP-hard problem, 71
Nuclear stockpile
United States, 8
NUMA. S¢e Nonuniform memory
aocess mulfiprocessor
Numerical simulation, 3

0
Oak Ridge Naticnal Laboratory,
96, 211)
Omega network, 60-61
omp_get_dynamic, 515
omp_get_max_threads, 515
omp_get_nested, 515
omp_get_num_procs, 410, 515
omp_get_num_threads, 425, 515
omp_get_thread_num, -
423425, 515 ‘
omp_in_parallel,516
amp_set_dynamic, 516
omp_set_nested,516
omp_set_num_threads,
410, 518
One-to-all broadcast. See Broadeast -
OpenMP
conditionally executed loops,
418-419
critical sections, 413415
detecting nurnber of available
~ processors, 410
detecting thread number, 423-425
functional paralielism, 428-430
general dala parallelism, 42 1-428
loop inversions, 417418
loop scheduling, 419-420
parallel for loops, 407420
private variables, 410413
rationale for using, 2-3
reductions, 415416
setting number of threads, 41{
Web site for, 432
OpenMP program ®
matrix-vector mulbiplication, 442
Monte Carlo method, 426
steady-state heat distribution, 447
Optimization problem, 369
OR tee, 370 o
Ordinary differential éqiialion. 318

Subject Index 527

Oregon Graduate Institute, 356
Othello, 398, 403 .
Output ordering in programs Using
MFL, 103
Overhead
communication, 396
search, 396
Overlap
communication/computation, 281

P

Palmer, John, 6
Paralle] aspiration search, 396
Paralle] computer, 2
Parallel compuling. 1
history of, 5-9, 22)
Parallel efficiency. Sze Efficiency
parallel for pragma,
408410
Paralle] languages
new, 19
parallel pragma, 422-423
Parallel program. See under MPT
program; GpenMP program
Parallel programning, 2
Parallel programming languages; 23
Parallel programming layer, 19
parallel sections pragma, 429
_Parallel Software Products, 17
Parallel sorting by regular samgpling,
346-349 B
Paralle] speedup. See Speedup
Parallel system, 170
Parallel Virtual Machine (PVM), 96
Parallelism
explicit, 2, 18-21
functioual in OpenMP, 428-430
implicit, 17-18
Parallelization
incremental, 406
Parallelize
definition of, 2
Parallelizing compilers, 2, 22
Parking garage problem, 262-264
ParPar closter, 33
Parsylec, 6,7
Partial differential equation
types of, 318321
Partial pivoting, 298
Partial sum, 13
Partitioning design step, 6367
PDE. Se¢ Partial differential cquation
Peg puzzle, 403 ’

	mpiquinn_页面_001_图像_0001 - 副本.tif
	mpiquinn_页面_001_图像_0001.tif
	mpiquinn_页面_002_图像_0001 - 副本.tif
	mpiquinn_页面_002_图像_0001.tif
	mpiquinn_页面_003_图像_0001 - 副本.tif
	mpiquinn_页面_003_图像_0001.tif
	mpiquinn_页面_004_图像_0001 - 副本.tif
	mpiquinn_页面_004_图像_0001.tif
	mpiquinn_页面_005_图像_0001 - 副本.tif
	mpiquinn_页面_005_图像_0001.tif
	mpiquinn_页面_006_图像_0001 - 副本.tif
	mpiquinn_页面_006_图像_0001.tif
	mpiquinn_页面_007_图像_0001 - 副本.tif
	mpiquinn_页面_007_图像_0001.tif
	mpiquinn_页面_008_图像_0001 - 副本.tif
	mpiquinn_页面_008_图像_0001.tif
	mpiquinn_页面_009_图像_0001 - 副本.tif
	mpiquinn_页面_009_图像_0001.tif
	mpiquinn_页面_010_图像_0001 - 副本.tif
	mpiquinn_页面_010_图像_0001.tif
	mpiquinn_页面_011_图像_0001 - 副本.tif
	mpiquinn_页面_011_图像_0001.tif
	mpiquinn_页面_012_图像_0001 - 副本.tif
	mpiquinn_页面_012_图像_0001.tif
	mpiquinn_页面_013_图像_0001 - 副本.tif
	mpiquinn_页面_013_图像_0001.tif
	mpiquinn_页面_014_图像_0001 - 副本.tif
	mpiquinn_页面_014_图像_0001.tif
	mpiquinn_页面_015_图像_0001 - 副本.tif
	mpiquinn_页面_015_图像_0001.tif
	mpiquinn_页面_016_图像_0001 - 副本.tif
	mpiquinn_页面_016_图像_0001.tif
	mpiquinn_页面_017_图像_0001 - 副本.tif
	mpiquinn_页面_017_图像_0001.tif
	mpiquinn_页面_018_图像_0001 - 副本.tif
	mpiquinn_页面_018_图像_0001.tif
	mpiquinn_页面_019_图像_0001 - 副本.tif
	mpiquinn_页面_019_图像_0001.tif
	mpiquinn_页面_020_图像_0001 - 副本.tif
	mpiquinn_页面_020_图像_0001.tif
	mpiquinn_页面_021_图像_0001 - 副本.tif
	mpiquinn_页面_021_图像_0001.tif
	mpiquinn_页面_022_图像_0001 - 副本.tif
	mpiquinn_页面_022_图像_0001.tif
	mpiquinn_页面_023_图像_0001 - 副本.tif
	mpiquinn_页面_023_图像_0001.tif
	mpiquinn_页面_024_图像_0001 - 副本.tif
	mpiquinn_页面_024_图像_0001.tif
	mpiquinn_页面_025_图像_0001 - 副本.tif
	mpiquinn_页面_025_图像_0001.tif
	mpiquinn_页面_026_图像_0001 - 副本.tif
	mpiquinn_页面_026_图像_0001.tif
	mpiquinn_页面_027_图像_0001 - 副本.tif
	mpiquinn_页面_027_图像_0001.tif
	mpiquinn_页面_028_图像_0001 - 副本.tif
	mpiquinn_页面_028_图像_0001.tif
	mpiquinn_页面_029_图像_0001 - 副本.tif
	mpiquinn_页面_029_图像_0001.tif
	mpiquinn_页面_030_图像_0001 - 副本.tif
	mpiquinn_页面_030_图像_0001.tif
	mpiquinn_页面_031_图像_0001 - 副本.tif
	mpiquinn_页面_031_图像_0001.tif
	mpiquinn_页面_032_图像_0001 - 副本.tif
	mpiquinn_页面_032_图像_0001.tif
	mpiquinn_页面_033_图像_0001 - 副本.tif
	mpiquinn_页面_033_图像_0001.tif
	mpiquinn_页面_034_图像_0001 - 副本.tif
	mpiquinn_页面_034_图像_0001.tif
	mpiquinn_页面_035_图像_0001 - 副本.tif
	mpiquinn_页面_035_图像_0001.tif
	mpiquinn_页面_036_图像_0001 - 副本.tif
	mpiquinn_页面_036_图像_0001.tif
	mpiquinn_页面_037_图像_0001 - 副本.tif
	mpiquinn_页面_037_图像_0001.tif
	mpiquinn_页面_038_图像_0001 - 副本.tif
	mpiquinn_页面_038_图像_0001.tif
	mpiquinn_页面_039_图像_0001 - 副本.tif
	mpiquinn_页面_039_图像_0001.tif
	mpiquinn_页面_040_图像_0001 - 副本.tif
	mpiquinn_页面_040_图像_0001.tif
	mpiquinn_页面_041_图像_0001 - 副本.tif
	mpiquinn_页面_041_图像_0001.tif
	mpiquinn_页面_042_图像_0001 - 副本.tif
	mpiquinn_页面_042_图像_0001.tif
	mpiquinn_页面_043_图像_0001 - 副本.tif
	mpiquinn_页面_043_图像_0001.tif
	mpiquinn_页面_044_图像_0001 - 副本.tif
	mpiquinn_页面_044_图像_0001.tif
	mpiquinn_页面_045_图像_0001 - 副本.tif
	mpiquinn_页面_045_图像_0001.tif
	mpiquinn_页面_046_图像_0001 - 副本.tif
	mpiquinn_页面_046_图像_0001.tif
	mpiquinn_页面_047_图像_0001 - 副本.tif
	mpiquinn_页面_047_图像_0001.tif
	mpiquinn_页面_048_图像_0001 - 副本.tif
	mpiquinn_页面_048_图像_0001.tif
	mpiquinn_页面_049_图像_0001 - 副本.tif
	mpiquinn_页面_049_图像_0001.tif
	mpiquinn_页面_050_图像_0001 - 副本.tif
	mpiquinn_页面_050_图像_0001.tif
	mpiquinn_页面_051_图像_0001 - 副本.tif
	mpiquinn_页面_051_图像_0001.tif
	mpiquinn_页面_052_图像_0001 - 副本.tif
	mpiquinn_页面_052_图像_0001.tif
	mpiquinn_页面_053_图像_0001 - 副本.tif
	mpiquinn_页面_053_图像_0001.tif
	mpiquinn_页面_054_图像_0001 - 副本.tif
	mpiquinn_页面_054_图像_0001.tif
	mpiquinn_页面_055_图像_0001 - 副本.tif
	mpiquinn_页面_055_图像_0001.tif
	mpiquinn_页面_056_图像_0001 - 副本.tif
	mpiquinn_页面_056_图像_0001.tif
	mpiquinn_页面_057_图像_0001 - 副本.tif
	mpiquinn_页面_057_图像_0001.tif
	mpiquinn_页面_058_图像_0001 - 副本.tif
	mpiquinn_页面_058_图像_0001.tif
	mpiquinn_页面_059_图像_0001 - 副本.tif
	mpiquinn_页面_059_图像_0001.tif
	mpiquinn_页面_060_图像_0001 - 副本.tif
	mpiquinn_页面_060_图像_0001.tif
	mpiquinn_页面_061_图像_0001 - 副本.tif
	mpiquinn_页面_061_图像_0001.tif
	mpiquinn_页面_062_图像_0001 - 副本.tif
	mpiquinn_页面_062_图像_0001.tif
	mpiquinn_页面_063_图像_0001 - 副本.tif
	mpiquinn_页面_063_图像_0001.tif
	mpiquinn_页面_064_图像_0001 - 副本.tif
	mpiquinn_页面_064_图像_0001.tif
	mpiquinn_页面_065_图像_0001 - 副本.tif
	mpiquinn_页面_065_图像_0001.tif
	mpiquinn_页面_066_图像_0001 - 副本.tif
	mpiquinn_页面_066_图像_0001.tif
	mpiquinn_页面_067_图像_0001 - 副本.tif
	mpiquinn_页面_067_图像_0001.tif
	mpiquinn_页面_068_图像_0001 - 副本.tif
	mpiquinn_页面_068_图像_0001.tif
	mpiquinn_页面_069_图像_0001 - 副本.tif
	mpiquinn_页面_069_图像_0001.tif
	mpiquinn_页面_070_图像_0001 - 副本.tif
	mpiquinn_页面_070_图像_0001.tif
	mpiquinn_页面_071_图像_0001 - 副本.tif
	mpiquinn_页面_071_图像_0001.tif
	mpiquinn_页面_072_图像_0001 - 副本.tif
	mpiquinn_页面_072_图像_0001.tif
	mpiquinn_页面_073_图像_0001 - 副本.tif
	mpiquinn_页面_073_图像_0001.tif
	mpiquinn_页面_074_图像_0001 - 副本.tif
	mpiquinn_页面_074_图像_0001.tif
	mpiquinn_页面_075_图像_0001 - 副本.tif
	mpiquinn_页面_075_图像_0001.tif
	mpiquinn_页面_076_图像_0001 - 副本.tif
	mpiquinn_页面_076_图像_0001.tif
	mpiquinn_页面_077_图像_0001 - 副本.tif
	mpiquinn_页面_077_图像_0001.tif
	mpiquinn_页面_078_图像_0001 - 副本.tif
	mpiquinn_页面_078_图像_0001.tif
	mpiquinn_页面_079_图像_0001 - 副本.tif
	mpiquinn_页面_079_图像_0001.tif
	mpiquinn_页面_080_图像_0001 - 副本.tif
	mpiquinn_页面_080_图像_0001.tif
	mpiquinn_页面_081_图像_0001 - 副本.tif
	mpiquinn_页面_081_图像_0001.tif
	mpiquinn_页面_082_图像_0001 - 副本.tif
	mpiquinn_页面_082_图像_0001.tif
	mpiquinn_页面_083_图像_0001 - 副本.tif
	mpiquinn_页面_083_图像_0001.tif
	mpiquinn_页面_084_图像_0001 - 副本.tif
	mpiquinn_页面_084_图像_0001.tif
	mpiquinn_页面_085_图像_0001 - 副本.tif
	mpiquinn_页面_085_图像_0001.tif
	mpiquinn_页面_086_图像_0001 - 副本.tif
	mpiquinn_页面_086_图像_0001.tif
	mpiquinn_页面_087_图像_0001 - 副本.tif
	mpiquinn_页面_087_图像_0001.tif
	mpiquinn_页面_088_图像_0001 - 副本.tif
	mpiquinn_页面_088_图像_0001.tif
	mpiquinn_页面_089_图像_0001 - 副本.tif
	mpiquinn_页面_089_图像_0001.tif
	mpiquinn_页面_090_图像_0001 - 副本.tif
	mpiquinn_页面_090_图像_0001.tif
	mpiquinn_页面_091_图像_0001 - 副本.tif
	mpiquinn_页面_091_图像_0001.tif
	mpiquinn_页面_092_图像_0001 - 副本.tif
	mpiquinn_页面_092_图像_0001.tif
	mpiquinn_页面_093_图像_0001 - 副本.tif
	mpiquinn_页面_093_图像_0001.tif
	mpiquinn_页面_094_图像_0001 - 副本.tif
	mpiquinn_页面_094_图像_0001.tif
	mpiquinn_页面_095_图像_0001 - 副本.tif
	mpiquinn_页面_095_图像_0001.tif
	mpiquinn_页面_096_图像_0001 - 副本.tif
	mpiquinn_页面_096_图像_0001.tif
	mpiquinn_页面_097_图像_0001 - 副本.tif
	mpiquinn_页面_097_图像_0001.tif
	mpiquinn_页面_098_图像_0001 - 副本.tif
	mpiquinn_页面_098_图像_0001.tif
	mpiquinn_页面_099_图像_0001 - 副本.tif
	mpiquinn_页面_099_图像_0001.tif
	mpiquinn_页面_100_图像_0001 - 副本.tif
	mpiquinn_页面_100_图像_0001.tif
	mpiquinn_页面_101_图像_0001 - 副本.tif
	mpiquinn_页面_101_图像_0001.tif
	mpiquinn_页面_102_图像_0001 - 副本.tif
	mpiquinn_页面_102_图像_0001.tif
	mpiquinn_页面_103_图像_0001 - 副本.tif
	mpiquinn_页面_103_图像_0001.tif
	mpiquinn_页面_104_图像_0001 - 副本.tif
	mpiquinn_页面_104_图像_0001.tif
	mpiquinn_页面_105_图像_0001 - 副本.tif
	mpiquinn_页面_105_图像_0001.tif
	mpiquinn_页面_106_图像_0001 - 副本.tif
	mpiquinn_页面_106_图像_0001.tif
	mpiquinn_页面_107_图像_0001 - 副本.tif
	mpiquinn_页面_107_图像_0001.tif
	mpiquinn_页面_108_图像_0001 - 副本.tif
	mpiquinn_页面_108_图像_0001.tif
	mpiquinn_页面_109_图像_0001 - 副本.tif
	mpiquinn_页面_109_图像_0001.tif
	mpiquinn_页面_110_图像_0001 - 副本.tif
	mpiquinn_页面_110_图像_0001.tif
	mpiquinn_页面_111_图像_0001 - 副本.tif
	mpiquinn_页面_111_图像_0001.tif
	mpiquinn_页面_112_图像_0001 - 副本.tif
	mpiquinn_页面_112_图像_0001.tif
	mpiquinn_页面_113_图像_0001 - 副本.tif
	mpiquinn_页面_113_图像_0001.tif
	mpiquinn_页面_114_图像_0001 - 副本.tif
	mpiquinn_页面_114_图像_0001.tif
	mpiquinn_页面_115_图像_0001 - 副本.tif
	mpiquinn_页面_115_图像_0001.tif
	mpiquinn_页面_116_图像_0001 - 副本.tif
	mpiquinn_页面_116_图像_0001.tif
	mpiquinn_页面_117_图像_0001 - 副本.tif
	mpiquinn_页面_117_图像_0001.tif
	mpiquinn_页面_118_图像_0001 - 副本.tif
	mpiquinn_页面_118_图像_0001.tif
	mpiquinn_页面_119_图像_0001 - 副本.tif
	mpiquinn_页面_119_图像_0001.tif
	mpiquinn_页面_120_图像_0001 - 副本.tif
	mpiquinn_页面_120_图像_0001.tif
	mpiquinn_页面_121_图像_0001 - 副本.tif
	mpiquinn_页面_121_图像_0001.tif
	mpiquinn_页面_122_图像_0001 - 副本.tif
	mpiquinn_页面_122_图像_0001.tif
	mpiquinn_页面_123_图像_0001 - 副本.tif
	mpiquinn_页面_123_图像_0001.tif
	mpiquinn_页面_124_图像_0001 - 副本.tif
	mpiquinn_页面_124_图像_0001.tif
	mpiquinn_页面_125_图像_0001 - 副本.tif
	mpiquinn_页面_125_图像_0001.tif
	mpiquinn_页面_126_图像_0001 - 副本.tif
	mpiquinn_页面_126_图像_0001.tif
	mpiquinn_页面_127_图像_0001 - 副本.tif
	mpiquinn_页面_127_图像_0001.tif
	mpiquinn_页面_128_图像_0001 - 副本.tif
	mpiquinn_页面_128_图像_0001.tif
	mpiquinn_页面_129_图像_0001 - 副本.tif
	mpiquinn_页面_129_图像_0001.tif
	mpiquinn_页面_130_图像_0001 - 副本.tif
	mpiquinn_页面_130_图像_0001.tif
	mpiquinn_页面_131_图像_0001 - 副本.tif
	mpiquinn_页面_131_图像_0001.tif
	mpiquinn_页面_132_图像_0001 - 副本.tif
	mpiquinn_页面_132_图像_0001.tif
	mpiquinn_页面_133_图像_0001 - 副本.tif
	mpiquinn_页面_133_图像_0001.tif
	mpiquinn_页面_134_图像_0001 - 副本.tif
	mpiquinn_页面_134_图像_0001.tif
	mpiquinn_页面_135_图像_0001 - 副本.tif
	mpiquinn_页面_135_图像_0001.tif
	mpiquinn_页面_136_图像_0001 - 副本.tif
	mpiquinn_页面_136_图像_0001.tif
	mpiquinn_页面_137_图像_0001 - 副本.tif
	mpiquinn_页面_137_图像_0001.tif
	mpiquinn_页面_138_图像_0001 - 副本.tif
	mpiquinn_页面_138_图像_0001.tif
	mpiquinn_页面_139_图像_0001 - 副本.tif
	mpiquinn_页面_139_图像_0001.tif
	mpiquinn_页面_140_图像_0001 - 副本.tif
	mpiquinn_页面_140_图像_0001.tif
	mpiquinn_页面_141_图像_0001 - 副本.tif
	mpiquinn_页面_141_图像_0001.tif
	mpiquinn_页面_142_图像_0001 - 副本.tif
	mpiquinn_页面_142_图像_0001.tif
	mpiquinn_页面_143_图像_0001 - 副本.tif
	mpiquinn_页面_143_图像_0001.tif
	mpiquinn_页面_144_图像_0001 - 副本.tif
	mpiquinn_页面_144_图像_0001.tif
	mpiquinn_页面_145_图像_0001 - 副本.tif
	mpiquinn_页面_145_图像_0001.tif
	mpiquinn_页面_146_图像_0001 - 副本.tif
	mpiquinn_页面_146_图像_0001.tif
	mpiquinn_页面_147_图像_0001 - 副本.tif
	mpiquinn_页面_147_图像_0001.tif
	mpiquinn_页面_148_图像_0001 - 副本.tif
	mpiquinn_页面_148_图像_0001.tif
	mpiquinn_页面_149_图像_0001 - 副本.tif
	mpiquinn_页面_149_图像_0001.tif
	mpiquinn_页面_150_图像_0001 - 副本.tif
	mpiquinn_页面_150_图像_0001.tif
	mpiquinn_页面_151_图像_0001 - 副本.tif
	mpiquinn_页面_151_图像_0001.tif
	mpiquinn_页面_152_图像_0001 - 副本.tif
	mpiquinn_页面_152_图像_0001.tif
	mpiquinn_页面_153_图像_0001 - 副本.tif
	mpiquinn_页面_153_图像_0001.tif
	mpiquinn_页面_154_图像_0001 - 副本.tif
	mpiquinn_页面_154_图像_0001.tif
	mpiquinn_页面_155_图像_0001 - 副本.tif
	mpiquinn_页面_155_图像_0001.tif
	mpiquinn_页面_156_图像_0001 - 副本.tif
	mpiquinn_页面_156_图像_0001.tif
	mpiquinn_页面_157_图像_0001 - 副本.tif
	mpiquinn_页面_157_图像_0001.tif
	mpiquinn_页面_158_图像_0001 - 副本.tif
	mpiquinn_页面_158_图像_0001.tif
	mpiquinn_页面_159_图像_0001 - 副本.tif
	mpiquinn_页面_159_图像_0001.tif
	mpiquinn_页面_160_图像_0001 - 副本.tif
	mpiquinn_页面_160_图像_0001.tif
	mpiquinn_页面_161_图像_0001 - 副本.tif
	mpiquinn_页面_161_图像_0001.tif
	mpiquinn_页面_162_图像_0001 - 副本.tif
	mpiquinn_页面_162_图像_0001.tif
	mpiquinn_页面_163_图像_0001 - 副本.tif
	mpiquinn_页面_163_图像_0001.tif
	mpiquinn_页面_164_图像_0001 - 副本.tif
	mpiquinn_页面_164_图像_0001.tif
	mpiquinn_页面_165_图像_0001 - 副本.tif
	mpiquinn_页面_165_图像_0001.tif
	mpiquinn_页面_166_图像_0001 - 副本.tif
	mpiquinn_页面_166_图像_0001.tif
	mpiquinn_页面_167_图像_0001 - 副本.tif
	mpiquinn_页面_167_图像_0001.tif
	mpiquinn_页面_168_图像_0001 - 副本.tif
	mpiquinn_页面_168_图像_0001.tif
	mpiquinn_页面_169_图像_0001 - 副本.tif
	mpiquinn_页面_169_图像_0001.tif
	mpiquinn_页面_170_图像_0001 - 副本.tif
	mpiquinn_页面_170_图像_0001.tif
	mpiquinn_页面_171_图像_0001 - 副本.tif
	mpiquinn_页面_171_图像_0001.tif
	mpiquinn_页面_172_图像_0001 - 副本.tif
	mpiquinn_页面_172_图像_0001.tif
	mpiquinn_页面_173_图像_0001 - 副本.tif
	mpiquinn_页面_173_图像_0001.tif
	mpiquinn_页面_174_图像_0001 - 副本.tif
	mpiquinn_页面_174_图像_0001.tif
	mpiquinn_页面_175_图像_0001 - 副本.tif
	mpiquinn_页面_175_图像_0001.tif
	mpiquinn_页面_176_图像_0001 - 副本.tif
	mpiquinn_页面_176_图像_0001.tif
	mpiquinn_页面_177_图像_0001 - 副本.tif
	mpiquinn_页面_177_图像_0001.tif
	mpiquinn_页面_178_图像_0001 - 副本.tif
	mpiquinn_页面_178_图像_0001.tif
	mpiquinn_页面_179_图像_0001 - 副本.tif
	mpiquinn_页面_179_图像_0001.tif
	mpiquinn_页面_180_图像_0001 - 副本.tif
	mpiquinn_页面_180_图像_0001.tif
	mpiquinn_页面_181_图像_0001 - 副本.tif
	mpiquinn_页面_181_图像_0001.tif
	mpiquinn_页面_182_图像_0001 - 副本.tif
	mpiquinn_页面_182_图像_0001.tif
	mpiquinn_页面_183_图像_0001 - 副本.tif
	mpiquinn_页面_183_图像_0001.tif
	mpiquinn_页面_184_图像_0001 - 副本.tif
	mpiquinn_页面_184_图像_0001.tif
	mpiquinn_页面_185_图像_0001 - 副本.tif
	mpiquinn_页面_185_图像_0001.tif
	mpiquinn_页面_186_图像_0001 - 副本.tif
	mpiquinn_页面_186_图像_0001.tif
	mpiquinn_页面_187_图像_0001 - 副本.tif
	mpiquinn_页面_187_图像_0001.tif
	mpiquinn_页面_188_图像_0001 - 副本.tif
	mpiquinn_页面_188_图像_0001.tif
	mpiquinn_页面_189_图像_0001 - 副本.tif
	mpiquinn_页面_189_图像_0001.tif
	mpiquinn_页面_190_图像_0001 - 副本.tif
	mpiquinn_页面_190_图像_0001.tif
	mpiquinn_页面_191_图像_0001 - 副本.tif
	mpiquinn_页面_191_图像_0001.tif
	mpiquinn_页面_192_图像_0001 - 副本.tif
	mpiquinn_页面_192_图像_0001.tif
	mpiquinn_页面_193_图像_0001 - 副本.tif
	mpiquinn_页面_193_图像_0001.tif
	mpiquinn_页面_194_图像_0001 - 副本.tif
	mpiquinn_页面_194_图像_0001.tif
	mpiquinn_页面_195_图像_0001 - 副本.tif
	mpiquinn_页面_195_图像_0001.tif
	mpiquinn_页面_196_图像_0001 - 副本.tif
	mpiquinn_页面_196_图像_0001.tif
	mpiquinn_页面_197_图像_0001 - 副本.tif
	mpiquinn_页面_197_图像_0001.tif
	mpiquinn_页面_198_图像_0001 - 副本.tif
	mpiquinn_页面_198_图像_0001.tif
	mpiquinn_页面_199_图像_0001 - 副本.tif
	mpiquinn_页面_199_图像_0001.tif
	mpiquinn_页面_200_图像_0001 - 副本.tif
	mpiquinn_页面_200_图像_0001.tif
	mpiquinn_页面_201_图像_0001 - 副本.tif
	mpiquinn_页面_201_图像_0001.tif
	mpiquinn_页面_202_图像_0001 - 副本.tif
	mpiquinn_页面_202_图像_0001.tif
	mpiquinn_页面_203_图像_0001 - 副本.tif
	mpiquinn_页面_203_图像_0001.tif
	mpiquinn_页面_204_图像_0001 - 副本.tif
	mpiquinn_页面_204_图像_0001.tif
	mpiquinn_页面_205_图像_0001 - 副本.tif
	mpiquinn_页面_205_图像_0001.tif
	mpiquinn_页面_206_图像_0001 - 副本.tif
	mpiquinn_页面_206_图像_0001.tif
	mpiquinn_页面_207_图像_0001 - 副本.tif
	mpiquinn_页面_207_图像_0001.tif
	mpiquinn_页面_208_图像_0001 - 副本.tif
	mpiquinn_页面_208_图像_0001.tif
	mpiquinn_页面_209_图像_0001 - 副本.tif
	mpiquinn_页面_209_图像_0001.tif
	mpiquinn_页面_210_图像_0001 - 副本.tif
	mpiquinn_页面_210_图像_0001.tif
	mpiquinn_页面_211_图像_0001 - 副本.tif
	mpiquinn_页面_211_图像_0001.tif
	mpiquinn_页面_212_图像_0001 - 副本.tif
	mpiquinn_页面_212_图像_0001.tif
	mpiquinn_页面_213_图像_0001 - 副本.tif
	mpiquinn_页面_213_图像_0001.tif
	mpiquinn_页面_214_图像_0001 - 副本.tif
	mpiquinn_页面_214_图像_0001.tif
	mpiquinn_页面_215_图像_0001 - 副本.tif
	mpiquinn_页面_215_图像_0001.tif
	mpiquinn_页面_216_图像_0001 - 副本.tif
	mpiquinn_页面_216_图像_0001.tif
	mpiquinn_页面_217_图像_0001 - 副本.tif
	mpiquinn_页面_217_图像_0001.tif
	mpiquinn_页面_218_图像_0001 - 副本.tif
	mpiquinn_页面_218_图像_0001.tif
	mpiquinn_页面_219_图像_0001 - 副本.tif
	mpiquinn_页面_219_图像_0001.tif
	mpiquinn_页面_220_图像_0001 - 副本.tif
	mpiquinn_页面_220_图像_0001.tif
	mpiquinn_页面_221_图像_0001 - 副本.tif
	mpiquinn_页面_221_图像_0001.tif
	mpiquinn_页面_222_图像_0001 - 副本.tif
	mpiquinn_页面_222_图像_0001.tif
	mpiquinn_页面_223_图像_0001 - 副本.tif
	mpiquinn_页面_223_图像_0001.tif
	mpiquinn_页面_224_图像_0001 - 副本.tif
	mpiquinn_页面_224_图像_0001.tif
	mpiquinn_页面_225_图像_0001 - 副本.tif
	mpiquinn_页面_225_图像_0001.tif
	mpiquinn_页面_226_图像_0001 - 副本.tif
	mpiquinn_页面_226_图像_0001.tif
	mpiquinn_页面_227_图像_0001 - 副本.tif
	mpiquinn_页面_227_图像_0001.tif
	mpiquinn_页面_228_图像_0001 - 副本.tif
	mpiquinn_页面_228_图像_0001.tif
	mpiquinn_页面_229_图像_0001 - 副本.tif
	mpiquinn_页面_229_图像_0001.tif
	mpiquinn_页面_230_图像_0001 - 副本.tif
	mpiquinn_页面_230_图像_0001.tif
	mpiquinn_页面_231_图像_0001 - 副本.tif
	mpiquinn_页面_231_图像_0001.tif
	mpiquinn_页面_232_图像_0001 - 副本.tif
	mpiquinn_页面_232_图像_0001.tif
	mpiquinn_页面_233_图像_0001 - 副本.tif
	mpiquinn_页面_233_图像_0001.tif
	mpiquinn_页面_234_图像_0001 - 副本.tif
	mpiquinn_页面_234_图像_0001.tif
	mpiquinn_页面_235_图像_0001 - 副本.tif
	mpiquinn_页面_235_图像_0001.tif
	mpiquinn_页面_236_图像_0001 - 副本.tif
	mpiquinn_页面_236_图像_0001.tif
	mpiquinn_页面_237_图像_0001 - 副本.tif
	mpiquinn_页面_237_图像_0001.tif
	mpiquinn_页面_238_图像_0001 - 副本.tif
	mpiquinn_页面_238_图像_0001.tif
	mpiquinn_页面_239_图像_0001 - 副本.tif
	mpiquinn_页面_239_图像_0001.tif
	mpiquinn_页面_240_图像_0001 - 副本.tif
	mpiquinn_页面_240_图像_0001.tif
	mpiquinn_页面_241_图像_0001 - 副本.tif
	mpiquinn_页面_241_图像_0001.tif
	mpiquinn_页面_242_图像_0001 - 副本.tif
	mpiquinn_页面_242_图像_0001.tif
	mpiquinn_页面_243_图像_0001 - 副本.tif
	mpiquinn_页面_243_图像_0001.tif
	mpiquinn_页面_244_图像_0001 - 副本.tif
	mpiquinn_页面_244_图像_0001.tif
	mpiquinn_页面_245_图像_0001 - 副本.tif
	mpiquinn_页面_245_图像_0001.tif
	mpiquinn_页面_246_图像_0001 - 副本.tif
	mpiquinn_页面_246_图像_0001.tif
	mpiquinn_页面_247_图像_0001 - 副本.tif
	mpiquinn_页面_247_图像_0001.tif
	mpiquinn_页面_248_图像_0001 - 副本.tif
	mpiquinn_页面_248_图像_0001.tif
	mpiquinn_页面_249_图像_0001 - 副本.tif
	mpiquinn_页面_249_图像_0001.tif
	mpiquinn_页面_250_图像_0001 - 副本.tif
	mpiquinn_页面_250_图像_0001.tif
	mpiquinn_页面_251_图像_0001 - 副本.tif
	mpiquinn_页面_251_图像_0001.tif
	mpiquinn_页面_252_图像_0001 - 副本.tif
	mpiquinn_页面_252_图像_0001.tif
	mpiquinn_页面_253_图像_0001 - 副本.tif
	mpiquinn_页面_253_图像_0001.tif
	mpiquinn_页面_254_图像_0001 - 副本.tif
	mpiquinn_页面_254_图像_0001.tif
	mpiquinn_页面_255_图像_0001 - 副本.tif
	mpiquinn_页面_255_图像_0001.tif
	mpiquinn_页面_256_图像_0001 - 副本.tif
	mpiquinn_页面_256_图像_0001.tif
	mpiquinn_页面_257_图像_0001 - 副本.tif
	mpiquinn_页面_257_图像_0001.tif
	mpiquinn_页面_258_图像_0001 - 副本.tif
	mpiquinn_页面_258_图像_0001.tif

