
PERFORMANCEAN4L YSIS FORMULAS 

Amdahl's Law 

Let f be the fraction of operations in a computation that must be performed 
sequentially, where 0::: f ::: 1. The maximum speedup 1/1 achievable hy a parallel 
computer with p processors performing the computation is 

I . 
l{r<----­

- f + (1- fJI p 

Gustafson·Barsis's Law 

Given a parallel program solving a problem of size Il using p processors, let s 
denote the fraction of total execution time spent in serial code. The maximum 
speedup 1/1 achievable by this program is 

1/1 ::S iJ + (I - p)s 

Karp·Flatt Metric 

Given a parallel romputationexhibiting speedup 1/Ion p processors, where p > I, 
the experimentally determined serial fraction e is defined to be 

IN-lip 
e=--------

I-lip 

Isoefficiency Relation 

Suppose a parallel system exhibits efficiency <{n, p). where II denotes problem 
size and p denotes number of processors. Define C = E(n. p)1 (\ [(II, (J i). Let 
T(n, I) denote sequential execution time, and let 1;,(1l, p) denote p8rallcl over­
head (total amount of time spent by all processors performing communications 
and redundant computations). In order to maintain the same level of efficiency as 
the number of processors increases, problem size must be increased so that the 
following inequality is satisfied: 

1'(/1, I) ~ CTu(n, p) 
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PREFACE 

This book is a practical introduction 10 parallel programming in C using 
the MPI (Message Passing Interface) library and the OpenMP applica­
tion programming interface. It is targeted to upper-division undergradu: 

ate students, beginning graduate students, and computer professionals learuing 
this material on their own. It assumes the reader has a good bactground in C 
programming and has had an introductory class in the analysis of algorithms. 

Fortran programmers interested in parallel programming can also benefit 
from this text. While the examples in the book are in C, the underlying concept~ 
of parallel programming with MPI and OpenMP are essentially the same for both 
C and Fortran programmers. 

In the pa~t twenty years I have taught parallel programming [() hundreds 
of undergraduate and graduate sUldents. In the process r have learned a great 
deal about the sorts of problems people encounter when they begin "thinking in 
parallel" and writing parallel programs. Students benelilfrom seeing programs 
desjgned and implemented step by step. My philosophy is to introduce new func­
tionality ''just in time." As much as possible, every new wncept appears in the 
context Qf solving a design, implementation, or analysis problem. When you see 
the symbol 

in a page margin, you'll know I'm presenting a key concept. 
T; 1(: ilr-a two chapters explain when and why parallel computing began and 

gives a high-level overview of parallel architectures. Chapter 3 presents Foster's 
paralic I algorithm design methodology and shows how it is used through several 
case studies. Chapters 4,5, 6,8, and 9 demonstrate how to use the design method­
Ology to develop MPI programs that solve a series of progressively more difficult 
programming problems. The 27 MPI functions presented in these chapters are a 
robust enough subset to implement parallel programs for a wide variety of appli­
cations. These chapters also introduce functions that simplify maltix and vector 
I/O. The source code for this 1/0 library appears in Appendix B. 

The programs of Chapters 4, 5, 6, and 8 have been benchmarked onacommod­
ity cluster of microprocessors, and these results appear in the text. Because new 
generations ()f microprocessors appear much faster than books can be produced, 
readers will observe that the processors are several generations old. The point of 
presenting the results is not to amaze the reader with the speed of the computa­
tions. Rather, the purpose of the benchmarking is to demonstrate that knowledge 
of the bleacy and bandwidth of the interconnection network, combined with in­
formm: i.'l1 about the peri'onnance of a sequential program, are often sufficient to 
allow reasonably accurate predictions of the performance of a parallel program. 
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Chapter 7 focuses on four metrics for analyzing and prOOicting the perfor­
mance of parallel systems: Amdahl's Law, Gustafson-Barsis' Law, the Kaxp-F1att 
metric, and the isoefficiency metric. 

Chapters 10-16 provide additional examples of how to analyze a problem 
and design a good parallel algorithm to solve it. At this point the development of 
MPJ programs implementing tbeparallel algorithms is left to the reader. I present 
Monte Carlo methods and the challenges associated with parallel random numher 
generation. Later chapters present a variety of key algorithms: matrix multipli­
cation, Gaussian elimination, the conjugate gradient method, finite difference 
methods, sorting, the fast Fourier transform, backtrack search, branch-and-bound 
search, and alpha-beta search. 

Chapters 17 and 18 are an intnxi,-!ction to the new shared-memory program­
ming stallLbrd OpenMP. I present fue features of OpenMP as needed to convert 
sequential code segments into parallel ones. J use two case studies to demonstrate 
the process of transforming MPI programs into hybrid MPIIOpenMP programs 
that can exhibit higher performance on multiprocessor dusters than programs 
based solely on MPI. 

This book has more than enough material for a one-semester course in par­
allel programming. While parallel programming is more demanding than typical 
programming, it is also more rewarding. Even with a teacher's instruction and 
support, most students are unnerved at the prospect of harnessing multiple pro­
cessors to perfonn a single task. However, this fear is transformed into a feeling 
of genuine accomplishment when they see their debugged programs run much 
faster than "ordinary" C programs. For this reason, programming assignments 
should playa central role in the course. 

F011unately, parallel computers are more accessible than ever. If a commercial 
parallel computer is not available, it is a straightforward task to build a small 
cluster out of a few PCs, networking equipment, and free software. 

Figure P.1 illustrates the precedence relations among the chapters. A solid 
arrow from A to B indicates chapter B depends heavily upon material presented 
in chapter A A dashed arrow from A to B indicates a weak dependence. If 
you cover the chapters in numerical order, you wiU satisfy all of these prece­
dences. However, if you would like your students to start programming in C with 
MPJ as quickly as possible, you may wish to skip Chapter 2 or only cover one 
or two sections of it. If you wish to focus on numerical algorithms, you may 
wish to skip Chapter 5 and introduce students to the function MPI_Bcast in 
another way. If you would like to start by having your students programming 
Monte Carlo algorithms, you can jump to Chapter 10 immediately after Chapter 
4. [f you want to cover OpenMP before MPI, you can jump to Chapter 17 after 
Chapter 3. 

I thank everyone at McGraw-Hili who helped me create this book, espe­
cially Betsy Jones, Michelle Flomenhoft, and Kay Brimeyer. Thank you for your 
sponsorship, encouragement, and assistance. I also appreciate the help provided 
by Maggie Murphy and the rest of the compositors at Interactive Composition 
Corporation. 
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Figure P. 'f. Dependences among the chapters. A solid arrow 
indicates a strong dependence; a dashed arrow indicates a weak 
dependence. . 

. I am indebted to the. reviewers who carefully read the manuscript, correcting 
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to: A. P. W. Bohm, Colorado State University; Thomas Cormen, Dartmouth 
College; Narsingh Dea, University of Central Florida; Philip J. Hatcher, 
University of New Hampshire; Nickolas S. Jovanovic, University of Arkansas 
at Little Rock; Dinesh Mehta, Colorado School of Mines; Zina Ben Miled, 
Indiana University-Purdue University, Indianapolis; Paul E. Plassman, 
Pennsylvania State University; Quinn O. Snell, Brigham Young University; 
Ashok Srinivasan, Florida State University, Xian-He Sun, Illinois Institute of 
Technology; Virgil Wallentine, Kansa.~ State University; Bob Weems, Univer­
sity of Texas at Arlington; Kay Zemoudel, California State University-San 
Bernardino: and Jun Zhang, Univen;ity of Kentucky. 

Many people at Oregon State University also lent me a hand. Rubin Landau 
and Henri Jansen helped me understand Monte Carlo algorithms and the detailed 
balance condition, respectively. Students Charles Sauerbier and Bernd Michael 
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Michael J. Quinn 
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C HAP T E R 

Motivation and History 

Well done is quidly done. 
Caesar Augustus 

1.1 INTRODUCTION 
Are you one of those people for whom "fast" isn't fast enough? Today's work­
stations are about a hundred times faster than those made just a d!X:ade ago, but 
some computational scientists and engineers need even more speed. They make 
great simplifications to the problems they are solving and.still must wait hoUIS, 

days, or even weeks for their programs to finish running. 
Faster computers let you tadue larger computations. Suppose you can alToId 

to wait overnight for your program to produce a result. If your program suddenly 
ran 10 times faster, previously out-of-reach computations would now be within 
your grasp. You could produce in 15 hOUIS an answer that previously required 
nearly a week to generate. 

Of course. you could simply wait for CPUs to get faster. In about five years 
single CPUs will be 10 times faster than they are today (a consequence of Moore's 
Law). On the other hand, if you can afford to wait five year~, you must not belll that 
much of a hurry! Parallel computing is a proven way to get higher performance 
now. 

What's parallel computing? 

Parallel computing is the use of a parallel computer to reduce the time needed r-O 
to solve a single computational problem. Parallel computing is now considered a 
standard way for computational scientists and engineers to sol ve problems inareas 
as diverse as galactic evolution, climate modeling, aircraft design, and moleculru' 
dynamics. 
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What's a parallel compuUir? 

o---v A pardUel computer is a multiple-processor computer system suppmting 
parallel programming. Two important categories of parallel computers are multi­
computers and centralized multiprocessors. 

As its name implies,. a multicomputer is a parallel computer constructed 
out of multiple computers and all interconm:rtion network. The processors on 
different computers interact by passing messages to each other. 

In contrast, a centralized mUltiprocessor (also called a symmetrical multi­
processor or SMP) is a more highly integrated system in which all CPUs share 
access to a single global memory. This shared memory supports communication 
and synchronization among processors. 

We'll study centralized multiprocessors, multicomputers, and other paraUel 
computer architectures in Chapter 2. 

Whafs parallel programming? 

o---v Parallel programming is programming in a language that allows you to 
explicitly indicate how, different portions of thf' computation may be executed 
concurrently by different processors. We'll discuss various kinds of parallel pro­
gramming languages in more detail near the end of this chapter. 

Is parallel programming really nece,vsary? 

A lot of research has been invested in the development of compiler technology 
that would allow ordillary F0l1ran 77 or C programs to be translated illto codes 
that would execute with good eflidcllcy on parai1el computers with large numbers 
of processors. This is a very difficult prQ,hlem, and while many experimental 
parallelizingl compilers have been developed, at the present time commercial 
systems are still in their infancy. The alternative is for you to write your own 
parallel programs. 

Why should 1 program using MPI and OpenMP? 

MPI (Message Passing Interface) is a standard specification for message­
passing lihmries. Libraries meeting the standard are available on viltually every 
parallel computer system. Free libraries are also available in case you want to 
fitn MPI on a network of workstations or a parallel computer built out of com­
modity compollents (Pes and switches). If you develop programs Llsing MPL 
you will be able to reuse them when you get access to a newer, faster parallel 
computer. 

Increasingly, parallel computers are being cOllstruct.cd out of symmetrical 
multiprocessors. Within each S~P, the CPUs have a shared address space. While 
MPI is a perfectly satisfactory way for processors in different SMPs to cornrnulli­
cate with each other, OpenMP is a better way for processors within a single SMP 

i parnllelize verb: to make parallel. 
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to interact. In Chapter 18 you'll see an example of how a hybrid MPlfOpenMP 
program can outperform an MPI-only program on a practical application. 

By working thwugh this book, you 'II learn a little bit about parallel computer 
hardware and a lot about pardUel program development strategies. That includes 
parallel algorithm design and analysis, progmm implementation and debugging, 
and ways to benchmark and optimize your programs. 

1.2 MODERN SCIENTIFIC METHOD 
Classical science is ba<;ed on observation, theory, and physical experimentation. 
Ohservation of a phenomenon leads to a hypothesis. The scientist develops a 
theory to explain the phenomenon and designs an expellment to test that theory. 
Usually the results of the experiment require the scientist to refine the theory, if 
not completely reject it. Here, observation may again take r.enter stage, 

Classical science is characterized by physical experiments and models. For 
example, l1)any physics students have explored the relationship between mass, 
force. and ~cceleration using paper tape, pucks, and air tahles, Physical exper­
iments allow scientists to test theories, such as Newton's first law of motion, 
against reality, . 

In contrast, contemporary science is characterized by observation, theory, 
experimentation, and numerical simulation (Figure L I). Numerical simulation is 
an increasingly important tool for scientists, who often cannot use physical ex­
periments to test theories because they may be too expensive or time-consuming, 
because they may be unethical, or because they may be impossible to perform. 
The modem scientist compares the behavior of a numerical simulation, wh"ich 

Numerical 
simulation 

Nature 

""Observation 
/ 

/ 
/ 

Pby~ic31 
experim~tation 

\\ 

"""'-__ d 

Theory 

) 

Figure 1.1 The introduction of numerical simulation 
distinguishes the contemporary scientific method from 
Ihe classical scientific method. 

1 
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implements the theory, to data collected from nature. The differences cause the 
scientist to revise the theory and/or make more observations. 

Many important scientific problems are so complex that solving them via 
numerical simulation requires extraordinarily powerful computers. These com­
plex problems, often called grand challenges for science. faU into several 
categories (73]: 

1. Quantum chemistry, statistical mechanics, and relativistic physics 
2. Cosmology and astropbysics 

3. Computational fluid dynamics and turbulence 
4. Materials design and supercond.uctivity 

, ~"" 

5. Biology, pharmacology, genome sequencing, genetic engineering, protein 
folding, enzyme activity, and cell modeling 

6. Medicine, and modeling of human organs and bones 
7. Global weather and environmental modeling 

While grand challenge problems emerged in the late 1980s as a stimulus for. 
further developments in high·perfOlmance computing, you can view the entire 
history of electronic computing as the quest for higher performance. 

1.3 EVOLUTION OF SUPERCOMPUTING 

The United States government has played a key role in the development and use 
of high·performance computers. During World War II the U.S. Army paid for the 
construction of the ENIAC in order to speed the calculation of artillery tables. 
In the 30 years after World War II, the U.s. government used high-performance 
computers to design nuclear weapons, break codes, and perform other national 
security-related applications. 

Supercomputers are the most powerful computers that can be built [60J. 
(As computer speeds increase, the bar for "supercomputer" status llses, too.) The 
tenn supercomputer first carne into widespread use with the introduction of the 
Cray-l supercomputcr in 1976. The Cray-l was a pipelined vector processor, 
not a multiple-processor computer, but it was capable of more than 100 million 
floating point operations per second. 

Supercomputers have typically cost $10 million or more. The high cost of 
supercomputers once meant they were found almost exclusively in govermnent 
research facilities, such as Los Alamos National Laboratory. 

Over time, however, supercomputers began to appear outside of government 
facilities. In the late 1970s supercomputers showed up in capital-intensive indus­
tries. Petroleum companies harnessed supcrcomputers to help them look for oil, 
and automobile manufacturers started using these systems to improve [he fuel 
efficiency and safety of their products. 

Ten years later, hundreds of corporations around the globe were using snper­
computers to support their business enterprises. The reason is simple: for many 
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businesses, quicker computations lead to a competitive advantage. More rapid 
crash simulations can reduce the time an auto maker needs to design a new car. 
Faster drug design can increase the number of patents held by a pharmaceutical 
firm. High-speed computers have even been used to design product~ a, mundane 
as disposable diapers! 

Computing speeds have risen dramatically in the past5{) years. The ENIAC 
could perform about 350 mUltiplications per second. Today's supercomputers 
are more than a billion times fa<;ter, able to petfonn trillions of floating point 
operations per second. 

Single processors are about a million times faster than they were 50 years ago. 
Most of the speed increase is due to higher clock rates that enable a single operation 
to be performed more quickly. The remaining speed increase is due to greater 
system concurrency: allowing the sy:;tem to work simultaneously on multiple 
operations. The history of wmputing has been marked by rapid progress on both 
these fronts, as exemplified by wntemporary high-performance microprocessors. 
Intel's Pentium 4 CPU, for example, has clockspeeds well in excess of I GHz, two 
arithmetic-logic units (ALU s) clocked at twice the core processor clock speed, and 
extensive hflCdware support for out-of-order speculative execution of instructions. 

How can today's supercomputers be a billion times faster than the ENIAC, if 
individual processors are only about a million times faster? The answer is simple: 
the remaining thousand-fold speed increase is achieved by collecting thousand~ 
of processors into an integrated system capable of solving individual problems 
faster than a single CPU; i.e., a parallel computer. 

The meaning of the word supercomputer, then, has changed over time. In 1976 
supercomputer meant a Cray-l, a single-CPU computer with a high ·petformance 
pipelined Vector processor wnnected to a lIigh-performance memory system. 
Today, supercomput£r means a parallel computer with thousand~ of CPUs. 

'Ine invention of the microprocessor is a watershed event that led to the 
demise of traditional minicomputers and mainframes and spurred the develop­
ment oflow-cost parallel computers. Since the mid-l 980s, microprocessor manu· 
facturers have improved the performance of their top-end processors at an annual 
rate of 50 percent while keeping prices more or less constant [90], The rapid in­
crease in microprocessor speeds has completely changed the face of computing. 
Microprocessor-based servers now fill the role formerly played by minicomputers 
COllstmcted out of gale arrays or off-the-shelf-logic. Even mainframe computers 
are being constructed out of microprocessors. 

1.4 MODERN PARALLEL COMPUTERS 
Pamllel computers only became attractive to a wide range of customers with the ,--() 
advent of Very Large Scale lntegration (VLSI) in the late 1970s. Supercomputers 
such as the Cray-I were far too expensive for most organizations. Experimen· 
tal pm'allel computers were less expensive than supercomputers, blltthey were 
still relatively cosUy. They were unreliable, to bool VLSI technology allowed 
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computer architects to reduce the chip count to the point where it became possi­
ble to construct affordable, reliable parallel systems. 

1.4.1 The Cosmic Cube 

In 1981 a group at Caltech led by Charles Seitz and Geoffrey Fox began work on 
the Cosmic Cube, a parallel computer constructed out of 64 Intel 8086 micropro­
cessors [34]. They chose the Intel 8086 because it was the only microprocessor 
available at the time that had a floating-point coprocessor, the Intel 8087. The 
complete 64-node system became operational in October 1983, and it dramati­
cally illustrated the potential for microprocessor-based parallel computing. The 
Cosmic Cube executed its application programs at about 5 to ro million fioate 

ing point operations per second (5 to 10 megaflops). This 'made the Cosmic 
Cube 5 ro \0 times the speed of a Digital Equipment COIporation VAX 111780, 
the standard research minicomputer of the day, while the value of its parts was 
less than half the price of a VAX. In other words, the r~search group realized a 
price-performance jump of betwccn 10 and 20 times by running their programs 
on a. "home-made" parallel computer rather than a VAX. The Cosmic Cube was 
reliable, too; it experienced only two hard failures in its first year of operation. 

Intel Corporation had donated much of the hardware for the Cosmic Cube. 
When it sent employee John Palmer to Caltech to see what Seitz and Pox had 
done, Palmer was so impressed he left Illlel to start his own parallel computer 
company, nCUBE. Intel's second delegation, led by Justin Rattner, was equally 
impressed. Rattner became tbe technical leader of a new Intel parallel computer 
division called Intel Scienlific Supercomputing. 

1.4.2 Commercial Parallel_Computers 

Commercial parallel computers manufactured by Bolt, Beranek and Newman 
(BBN) and Denelcor were available before the Cosmic Cube was completed, but 
the Cosmic Cube stimulated a Ilurry of new activity. Table 1.1 is a list of just a 
few of the many organizations that jumped into the fray [116]. 

Companies from around the world began selling parallel computers. 
Intel's Supercomputer Systems Division and small start-up firms, such as Meiko, 
nCUBE, and Parsytec, led the way, while more established computer companies 
(IBM, NEC, and SUl! Microsystems) waited until the field had becoOle more ma­
lure. It is interesting to note that even Cray Research, Inc., famous for its eustom, 
very high-performance, pipelined CPUs, eventually introduced a microprocessor­
based parallel computer, the T3D, in L993. 

Other companies produced parallel computers wilh a single CPU and thou­
sands of arithmetic-logic lIuits (ALUs) implemented in VLSI. The most famous 
of these computers was the Connection Machine, built by Thinking Machines 
Corporation. This massively parallcl computer, Ilrst shipped in 1986, contained 
65,536 single-bit ALUs. 

By the mid-l990s most of the companies on our list had either gotten out 
of the parallel computer business, gone bankrupt, or been purchased by larger 
firms. Despite the industry shakeout, leading computer manufacturers such as 
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Table 1.1 Some of the organizations tr.atdBlivered commercia! parallel computers 
based OIl microprocessor CPUs in the lO-year period 1984-1993 and their current status. 

C94l~f~S"J; '",. ~c ••..... :'~~~~~~\',:ci·r#ir\~':i'~;\\:~~jtI~r 
Sequent U.S. 1984 Acquired by IBM 
Intel U.s. 1984 Out of the business' 
Meiko U.K. 1985 Bankrupt 
aeUBE U.S. 1985 OUI of the business 
Parsytec Germany 1985 Out of the business 
AlIianl U.S. 1985 Bankrupt 
Encore U.S_ 1986 Out of tbe business 
Floating Point Systems U.S. 1986 AcquirOOby Sun 
Myrias Canada 1987 Out Df the business 
Ametek U.S. 1987 Out of the business 
Silicon Graphics u.s. 1988 Attive 
C-DAC India 1991 Active 
Kendall Square Research U.S. 1992 Bankrupt 
IBM U.S. 1993 Active 
NEC U.S. 1993 Active 
Sun Microsystems U.S. 1993 Active 
Cray Researd\ U.S. • 1993 Active (as Clay Inc.) 

"'Out of the ~usilleSS-IlII~IO' the company is no longer selling gencral-pmjlOse parnl1d computer 
systems. 

Hewlett-Packard, IBM, Digital Equipment Corporation, Silicon Graphics, and Sun 
Microsystems all had parallel computers in their product lines by the mid-1m .. 

These commercial systems ranged in price from several hundred thousand 
dollars to several million dollars. Compared to a comm.odity PC, the price per CPU 
in a commercial parallel computer was high, because the.,e sylitems contained 
custom hardware to support either shared memory or low-latency, high-bandwidth 
interprocessOf communications. 

Some commercial parallel computers had support for higher-level parallel 
programming languages and debuggers, but the rapid evolution in the underly­
ing hardware of parallel systems, even those manufactured by the same vendor, 
meant their systems programmers were perpetually playing catch-up. For this 
reason systems programming tools for commercial parallel computers were usu­
ally primitive, with the consequence that researchers found themselves program­
ming these systems using the "least common denominator" approach 01' C or 
FORTRAN combined with a standard message-passing library, typically PVM or 
MP!. Vendors focused their efforts on penetrating the large commercial market, 
rather than serving the needs of the relatively puny scientific computing market 
Hence L1Jmputationai scientists seeking peak performance from commercial par­
allel systems often felt they received inadequate sufiport from venclors, and so 
they adopted a do-it-yourself attituae. 

1.4.3 Beowulf 

Meanwhile, driven by the popularity of personal computing for work and enter­
tainment, PCs became a commodity market, characterized by rapidly improving 
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performance and razor-thin profit margins. The dynamic PC marketplace set the 
stage for the next breakthrough in parallel computing. 

In the sununer of 1994, at NASA's Goddard Space Flight Center, Thomas 
Sterling and DOll Becker built a parallel computer entirely out of commodity 
hardware and freely available software. Their system, named Beowulf, contained 
16 Intel DX4 processors connected by multiple to Mbitfsec Ethernet links. The 
cluster ran the Linux operating system, used GNU compilers, and supported 
parallel programming with the MPI message-passing library-all freely available 
software. ' 

The high,perfgrmance computing research community rapidly embraced 
the Beowulf philosophy. At the Supercomputing '96 conference, both NASA 
and the Department of Energy demonstrated Beowulf clusters costing less than 
$50,000 that achieved greater than t billion floating point operations per.secorid 
(1 gigaflop) performance on actual applications. At the Supercomputing '97 con­
ference, Caltech demonstrated a 140-node cluster running an n-body simulation 
at greater than 10 gigaflops. 

Beowulf is all example of a system wnstlUcted out of commodity, off-the­
shelf (COTS) componenls. Unlike commercial systems, conunodity dusters typ­
ically are not balanced between compute speed and conununication speed: the 
communication network is usually quite slow compared to the speed of the pro, 
cessors. However, for many applications that are dominated by computations, 
clusters can achieve much better performance per dollar than commercial paral­
lel computers. Because the latest CPUs typically appear in PCs months before 
they are available in commercial parallel computers, it is possible to construct a 
conun,odity cluster with newer, higher-performance CPUs than those available in 
a commercial parallel system. Commodity.clusters have the additional, signifi­
cant advantage of a low entry cost, which has made them a popular platfonn for 
academic institutions. 

1.4.4 Advanced Strategic Computing Initiative 

Meanwhile, the United States government has createD an ambitious plan to build 
a series of five supercomputers costing up to $100 million each. This effort is 
motivated by the moratorium on underground nuclear testing signed by President 
Bush in 1992 and extended by President Clinton in 1993, as well as the decision 
by the United States to halt production of new nuclear weapons. As a result, 
the U.S. plans to maintain its stockpile of existing weapons well beyond their 
originally planned lifetimes. Sophisticated numerical simulations are required to 
guarantee the safety, reliability, and performance of the nuclear stockpile. The 
U.S. Department of Energy's Advanced Strategic Computing Initiative (ASCl) 
is developing a series of ever-faster supercomputers to execute these simulations. 

The first of these supercomputers, ASCI Red, was delivered to Sandia Na­
tional Laboratories in 1997. Withjust over 9,000 Intel Pentium II Xeon CPUs, it 
was the first supercomputer to sustain more than 1 trillion operations per second 
(1 teraop) on production codes. (Intel dropped out of the supercomputer busi­
ness after delivering this system.) La\\>Tence Livermore National Laboratory in 
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i=~g~-:e 1.2 The ASCI White supercomputer at Lawrence Livermore 
NaUonal Laboratory contains 8192 PowerPCCPUs and is capable of 
sustaining more than 10 trillion operations per second on production 
programs. It was the Jaslest computer in the world in the year 2000. 
{Photo i:ourtesy lawrence livermore National laboratory) 

California n;ceived delivery of the second supercomputer i~ the series. ASCI Blue 
Pacific, frodllBM in 1998. It consists 0[5,856 PowerPC CPUs and is capable of 
sustained performance in excess of 3 teraops. 

[n 2000 IBM delivered the third ASCI supercomputer, ASCl White, to the 
Lawrence Livermore National Laboratory (Figure \.2). ASCI White actllally is 
composed of three separate systems. The production system is an SMP-based 
multicomputer. It has 512 nodes; each node is an SMP with 16 PowerPC CPUs. 
The aggregate speed of the 8,192 CPUs has been benchmarked at more than 
10 teraops on a computation of inleresl 

. lfthe U.S. Department ofEnergy maintains this pace, tripling the performance 
of its ASCT supercomputers every two years, it will meet its goal of installing a 
100 teraops computer by 2004. 

1.5 SEEKING CONCURRENCY 
As we have seea, parallel computers are more available than ever, but in order 
to lakc advantage of multiple processors, programmers and/or compilers lUust be 
able to identify operations that may be performed in parallel (i.e., concurrently). 

1.5.1 Data Dependence Graphs 

A formal way to identify parallelism in an activity is to draw a data dependence 
graph. A data dependence graph is a directed graph in which each vertex rep­
resents a ta~k to be completed. An edge from vertex II to vertex v meanS that task 
u must be completed before task v begins. We say that "fask v is dependent on 
tl)sk u." [f there is no path from u to v, then the tasks arc independent and may 
be performed concurrently. 

As an analogy, consider the problem of performing an estate's weekly land­
scape maintenance. Allan is leader of an eight-person crew working for Speedy 
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. Landscape, Inc. (Figure I Ja). His goal is to complete the four principallasks­
mowing the lawns, edging the lawns, weeding the ganlens, and checking the 
sprinklers-as quickly as possible. Mowing must be completed before the sprin­
klers are checked. (TIlink of this as a dependence involving the four lawns as 
shared "variables." The lawns may take on the value "wet and cut" only after they 
have taken on the value "cut.") Similarly, edging and weeding must be completed 
before the sprinklers arc checked. However, mowing, edging, and weeding may 
be done concurrently. Someone must also tum off the security sy.stem before the 
crew enters the estate and tum the system back on when the'crew leaves. Allan 
represents these tasks using a dependence graph (Figure l.3b). 

Knowing the relative sizes of the respective jobs and the capabilities of his 
employees, Allan decides four crew members should mow the lawn while two 
crew members edge the lawn and two other crew members weed {he ·gardens 
(Figure I.3c). 

Three different task pattems appear in Figure I Jc. Figure 1.4 illustrates each 
of these pattems in isolation. The labels inside the circles represent the kinds 
of tasks being performed. Multiple circles with the same label represent tasks 
perfOimingthe same opemtion on different operands. 

1.5.2 Data Parallelism 

o--r A data dependence graph exhibits data parallelism when there are independent 
tasks applying the same operation to different elements of a data set (Figure l.4a). 

Here is an example of fine-grained data parallelism embedded in a sequential 
algorithm: 

for i *- 0 to 99 do 
aU] *- bV] + e[i] 

endfor 

The same operation-additiofr·~is being perfomled on the first 100 elements 
of arrays band c, with the resull~ being put in the first 100 elements of a. All 100 
iterations of the loop could be ex:ecuted simultaneously. 

1.5.3 Functional Parallelism 

o--r A data dependence graph exhibits functional parallelism when there are indepen­
dent tasks applying different operations to different data elements (Figure lAb). 

Here is an example of fine-grained functional parallelism embedded in a 
5cqucntial algorithm: 

a*-2 
17 *- 3 
m *- (a +b)/2 
s *- (a2 + 172)/2 
v*- s ~ m2 



Work crew: 
Allan 
Bernice 

Charlene 

Dominic 

Ed 
Francis 
Georgia 

Hale 

(a) 

T~m on ",cu[i~y 
system: Allan 

(c) 

(b) 

Figure 1.3 Most realistic problems have data parallelism, functional parallelism, 
and precedence constraints between !asks. (a) An eight-person work crew is 
responsible lor landscape maintenance at Medici ManOL (b) A data dependence 
graph shows which !asks must be completed before others begin. If there is no path 
from vertex u to vertex v, the tasks may proceed concurrently (functional 
parallelism). (c) The larger tasks have been divided into subtasks, in which several 
employees perform the same activity on different portions of the estate (data 
parallelism). 
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p[{)] 1'[11 p(2J pf)] 

n[()] a[ll a[2] a[3] 

Figure 1.6 A pipeline to compute 
partial sums. Each cifde represents a 
process. The leftmost stage inputs 
a[G]. outputs its value as piG]. and 
passes piG] to the next stage. All other 
stages i input a[i]. collect pli -1J from 
their predecessors, add the two values, 
and output the sum as pli]. 

this book, we'll be looking for sources of parallelism in problems requiring f1 
more computations. 

1.6 DATA CLUSTERING 

LeL's consider a practical example of a computationally intensive problem an 
try to find opponunitics for parallelism. 

Modem computer systems are capable of collecting and storing extraordinm 
amounts of data. For example, the World Wide Web contains hundreds of millior 
of pages. U.S. Census data constitute another very large dataset. Using a computt 
system to access salient facts or detect meaningful patterns is variously calle 
data mining or scientific data analysis. Data mining is a compute-intensivi 
"off-line" operation, in contrast to data retrieval, which is an I/O-intensive, "01 

line" operation. 
Multidimensional data clustering is an important tool for data mining. Dal 

clustering is the process of organizing a dataset into groups, or clusters, ( 
"similar" items. Clustering makes it easier to find additional items closely n 
lated to an item of interest. 

Suppose we have a collel1ion of N text documents. We will examine eae 
dOcumentto come up with an estimate of how well it covers each of D differel 
topics, and we will assign each documentto one of K different clusters, whereeae 
cluster contains "similar" documents. See Figure 1.7. A performance funetic 
indicates how well cluslered the documents are. Our goal is to optimize the vall 
of the performance function. 

Figure 1.8 contains a high-level description of a sequenlial algorithm to soh 
the data clustering problem. How conld parallelism be used to speed the executic 
of this algorithm? 
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Figure 1.7 An example of document 
clustering for which N 0= 20, D.= 2, and 
K = 3. There are 20 documents 
(represented by black dots). We measure 
each document's coverage of two topics 
(he nce each document is represented by a 
point in two-dimensional space). The 
documents are organized into three 
clusters (centered around the crosses). 
Can you find a better dustering? 

1. Il1plrt N documents 

2. For each of the N documenLI .generate a D-dirnensional vector indicating how well il cover~ the 
D difte.rcnt topics 

3. Choose the K initial cluster cenlers using II rnndom sample 

4. Rep.:at the to[Jowing srep" for I iteratiOlis or untillhe performance [unction converges. whichevet 
com,,,fir.;t; 

ia) f'Of earh of lhe N document>. find ille dOS",Si CCfltc( and compute its contribution 10 the 
performanee fUllction 

(b) Adjust the K duster l'elllel~ [j) trj to improve the value or th~ performance function 

5. OUlPU! K centers 

Figure 1.8 A sequential algorithm to find K centers Ihat optimally categorize 
N documents. 

Our first step in the analysis is to draw a data dependence graph. While we 
could draw one vertex for each step in the pseudocode algorithm, it is better 
to draw a verte.\ for each step of the algorithm for eac/l document or duster 
center, becanse it exposes more opportllnities for parallelism. The resulting data 
dependence graph appears in Figure 1.9. 

15 
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[nplltdocll~ IlljJut document 1 

Figure 1.9 Dependence diagram for the document clustering algorithm. The small, 
unlabeled vertex in the middle is a "null task" containing no operations. lis purpose is 
to reduce the number of directed edges and make the diagram easier to read. 

A good data dependence graph makes data and functional parallelism easy 
to find. That's certainly true in this ca'iC. 

First. let's list the opportunities for data parallelism: 

.. Each document may be input in parallel. 
" .. Each document vector may be generated in parallel. 

.. The original cluster centers may be generate{] in parallel. 

.. The closest cluster center to each document vector and that vector's 
contribution to the overall performance function may be compute{] in 
parallel. 
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Next, let's look for functional parallelism. The only independent sets of ver­
tices are those representing the document input and veclor generation tasks and 
those representing the center generation tasks. These two sets of lasks could be 
performed concurrently. 

After we have identified parallelism in a problem, our next step is to develop 
an algorithm implemented in a programming language. Let's take a look at the 
variety of ways in which parallel computers have been programmed. 

1.7 PROGRAMM1NG PARALLEL COMPUTERS 
Tn 1988 McGraw and Axelrod identified four distinct paths for the develupment 
of applications software for parallel computers (851: 

1. Extend an ex.isting compiler to translate sequential programs into parallel 
programs. 

2. Extend an existing language with new operations that allow users to express 
paralleli~m. 

3. Add a new parallel language layer on top of an existing sequential language. 
4. Define a totally new parallel language and compiler system. 

Let's examine the advantages and tlisadvantages of each of these alternatives. 

1.7.1 Extend a Compiler 

One approach to the problem of programming parallel compl!ters.is to develop 
parallelizing compilers that can detect and exploit the parallelism in existing 
programs written in a sequential language. 

Much research has been done inlo the parallel execution of functional or logic 
program~, which can contain a good deal ofintrinsic parallelism. However, rnostof 
the focus has been on the imperative programming language Fortran. Proponents 
of the development of parallelizing compilers for Fortran point out thai existing 
Fortran programs represent lhe investment of billions of dollars and millenia of 
programmer effort. While not all of these programs would benefit from execution 
on a parallel computer, some organizations (such as the national laboratories run 
by the U.S. Department of Energy) would like to speed the execution of many 
sophisticated Fortran codes. The lime and labor Ihat could be saved from the 
automatic parallelization of these programs makes this approach highly desirable. 
Tn addition, parallel programming is more difficult than programming in F011ran, 
leading to higher program development costs. For these reasons some believe 
it makes more sense for programmers to continue to lL~e simpler, sequential 
languages, leaving the parallelization up to a compiler. 

The development of parallelil.ing compilers has been an active area of re­
search for more than two decades, and many experimental systems have been 
developed. Companies such as Parallel Software Products have begull offering 
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compilers that translate Fortran 77 code into parallel programs targeted for either 
message-passing or shared-memory architectures. 

This approach does have its detractors. For example, Hatcher and Quinn 
point out that the use of a sequential imperative language "pits the programmer 
against the compiler in a game of hide and seek. The algorithm may have a certain 
amount of inherent parallelism. The programmer hides the parallelism in a sea 
of DO loops and other control structures, and then the compiler must seek it ouL 
Because the programmer may have to specify unneeded sequentializations when 
writing programs in a conventional imperative language, some parallelism may 
be irretrievably lost" {49]. 

One resronse tD these concerns is to allow the programmer to annotate the 
sequemial program with oompilerdirectives. These directives provide information 
to the compiler that may help it correctly parallelize program segments. 

1.7.2 Extend a Sequential Programming Language 

A much more conservative approach to developing a parallel programming en­
vironment is to extend a sequential programming language with functions that 
allow the programmer to create and terminate parallel processes,synchronize 
them, and enable them to communicate with each other. There must also be a way 
to distinguish between public data (shared among the processes) and private data 
(for which each process has a copy). 

Extending a sequential programming language is the easiest, quickest, least 
expensive, and (perhaps [or these reasons) the most Qopular approach to parallel 
programming, because it simply requires the development of a subroutine library. 
The existing language and hence its compiler can be used a~ is. The relative eWie_ 
with which libraries can be developed enables them to be constructed rapidly for 
new parallel computers. Por example, libraries meeting the MPI standard exist 
for virtually every kind of parallel computer. Hence programs written with MPI 
function calls are highly portable. 

Giving programmers access to low-level [unctions for manipulating parallel 
processors provides them with maximum flexibility with respect to program de­
velopment. Programmers can implement a wide variety of parallel designs using 
the same programming environment. 

However, becanse the compiler is not involved in the generation of pru'allel 
code, it cannot Bag errors. The lack of compiler support means that the program­
mer has no assistance in the development of pamllcl codes. It is surprisingly easy 
to write parallel programs that are difficult to debug. 

Consider these comments from parallel programming pioneers circa 1988: 
"Suddenly, even very simple tasks, programmed by experienced~rogram­

mers who were dedicated to the idea of making parallel programming a practical 
reality, seemed to lead inevitably to lIpsclling, unpredictable, and totally mysti­
fying bugs" (Robert B. l3abb IT) [6J. 

"The behavior of even quite short parallel programs can be astonishingly com­
plex. The fact that a program functions correctly once, or rven one hundred times, 
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with some particular set of inputs, is no guarantee that it will not fail lomorrow 
with the same inputs" (James R. McGraw and Timothy S. Axelrod) [85J. 

1.7.3 Add a Parallel Programming Layer 

You can think of a parallel program as having two layers. The lower layer contains 
the core of the computation, in which a process manipulates its portion of the 
data to produce its portion of the result An existing sequential pfDgramming 
language would be suitable for expressing this portion of the activity. The upper 
layer controlsthe creation and synchronization of processes and the partitioning 
of the data among the processes. These actions could be programmed using a 
parallel language (perhaps a visual programming language). A compiler would 
be responsible for translating Ihis two-layer parallel program into code suitable 
for execution on a parallel computer. 

Two examples of this approach are the Computationally Oriented Display 
Environment (CODE) and the Heterogeneous Network Computing Environment 
(Hence). These systems allow. the user to depict a parallel program as a directed 
graph, whf1e nodes represent sequential procedures and arcs represent data de­
pendences among procedures II 2]. 

This approach r['quires the progranuner 10 learn and use a new parallel 
programming system. which may be the reason it has not captured much at­
tention in the parallel programmer community. While research prototypes are 
being _distributed, the author knows of no commercial systems based on this 
philosophy. 

1.7.4 Create a Parallel Language 

The fourth approach is to give the programmer the ability to express parallel 
operations explicitly. 

One way to support explicit parallel programming is to develop 3 parallel 
language from scratch. The programming language occam is a famous example 
of this approach. With a syntax strikingly different from traditional imperative 
languages, it supports parallel as well as sequential execution of processes and 
automatic process communication and synchronization. 

Another way to support explicit parallelism is to add parallel constructs to an 
existing language. FOl1ran 90, High Performance Fortran, and C* arc examples 
of this approach. 

Fortran 90 is an ANSI and ISO standard programming language, the suc­
ee~s()r to Fortran 66 and F0l1ran 77. (Outside of the United States, Fortran 90 
replaced Fortran 77. Within the U.S., Fortran 90 is viewed as an additional stan­
dard.) It contains many features not incorporated in Fortran 77, including array 
operations. Fortran 90 allows entire, multidimensional arrays to be manipulated 
in expressions. For example, suppose 11, B, and c are arrays of real variables hav­
ing 10 rows and 20 columns, and we want to add A and 5, assigning the sum [0 

C. In rom.1n 77 we would need to write a doubly nested DO loop to accomplish 

19 
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I.l4 Suppose we arc going to speed the execution of the data clustering 
algorithm by using p processors to generate the D-dimensional vectors 
for each of the N documents. One approach would be to preallocate 
about Nip documents to each processor. Another appmach would be to 
put rhe documents on a list and lct processors remove documents as fast 
as they could process them. Discuss one adv~ntage of each approach. 

1.15 Consider the vector-generalion step of the data clustering algorithm 
described in this chapter. Assume the time reql)ired to perform this step is 
directly proportional to document sire. Suggest an approach for 
allocating documents to processors that may avoid the problems 
associated with either preallocating N / P documents to each processor or 
having processors retrieve unprocessed documents from a centrallisL 



C HAP T E R 

Parallel Architectures 

What king marr:hing to war against aflother killg woulJ not first sit down ami 
col1Sitier whether wilh tell thousand men he could~,tand up to the other who 
ildmllced against him with iwenty thousall4? 

Luke 14:31 

2.1 INTRODUCTION 
In the roughly three decades between the early 1960s £Iud the mid-\990s, 
scientists and engineers explored a widevarlety of parallel computer architectures. 
Development reached a zenith in the I 980s. Some companies took advantage of 
newly available VLSI fabrication facilities to develop custom processors for par­
allel computers, while others relied upon the same general-purpose CPUs used 
in workstations and personal computers. Experts passionately debated whether 
the dominant parallel computer systems would contain at most a few dozen high­
performance processors or thousands of less-powerf 01 processors. 

Today, many of the hotly debated questions have been resolved, Systems COll­

taining thousands of primitive processors are a rarity, The performance of cu,tom­
designed processors could not keep up with the rapid gains made by commodity 
processors, As a result, most contemporary parallel computers are constructed 
Ollt of commodity CPUs. 

This chapter is a brief overview of parallel computer architectures, We be­
gin by examining a variety of interconnection networks that can be used to link 
processors in a parallel system. We present processor arrays, mUltiprocessors,'" 
and multicomputers, the three most popular parallel computer architectures in 
the past two decades. We discuss ways to organize a commodity cluster (a 
particular kind of multicomputer), and we explain what makes a commodity 
cluster different from a network of workstations. We introduce Flynn's famous 
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taxonomy of serial and parallel computers and take a brief look at systolic arrays, 
a heavily pipelined an;hitecrure that has not been widely adopted. 

2.2 INTERCONNECTION NETWORKS 
All computers with multiple processors must provide a way for processors to 
interact. In some systems processors use the interconnection network to access a 
shared memory. 10 oIher systems processors use the interconnection network to 
send messages to each other. This section outlines the two principal types of in­
lerconnection media and presents several popular topologies for switch networks. 

2.2.1 Shared versus Switched Media 

Processors in a parallel computer may communicate over shared or switched 
interconnection media. A shared medium allows only one message at a time 
to be sent (Figure 2.1a). Processors broadcast their messages over the medium. 
Each processor "listens" to every message and receives the ones for which it is 

. the destination. Ethernet is a well-known example of a shared medium. 
Typically, arbitration for access to a shared medium is decentralized among 

the processors. Before sending a message, a processor "listens" un1ilthe medium 
is unused, then attempts to send its message. If two processors attempt to send 
messages simnltaneously, the messages are garbled and must be resent. The pro­
cessors wait a random amount of time and then attempt once again to send their 
messages. Message collisions can significantly degrade the performance of a 
heavily utilized shared medium. 

In contrast, swikhed interconnection media support point-to-point mes­
sages among pairs of processors (Figure 2.lb). Each proctS~or has its own com­
munication path to the switch. Switches have two important advantages over 

Shared medium Switched meclium 

Processor.; Pmcessors 

(al Ib) 

Figure 2.1 Contrasting shared versus switched media. (a) A shared 
medium allows only one message at a time to be sent. Each processor 
"listens" to every message and receives the ones for which it is the 
destination. (b) A switched medium supports the simulleci80us 
transmission of multiple messages among different pairs of processors. 
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shared media. They support the concurrent transmission of multiple messages 
among different pairs of processors, and they support the scaling of the intercon­
nection network to accommodate greater numbers of processors. 

2.2.2 Switch Network Topologies 

A switch network can be represented by a graph in which nodes represent pro­
ces.~ors and switches and edges represent communication paths. Each proceBsor 
is connected to one switch. Switches connect processors and/or other switches. 

In a di recttopology the ratio of switch nodes (0 processor nodes is I: 1. Every r-O 
switch node is connected to one processor node and one or more other switch 
nodes. In an indirect topology the ratre"of switch nodes to processor nodes is 
"realer than 1: I. Some of the switches simply connect other switches. b _ 

We can evaluate switch network topologies according to criteria that help us 
understand tueir effectiveness in implementing efficient parallel algorithms on 
real hardware. These criteria are: 

• Diameter: The diameter of a network is the largest distance between two 
switeh nodes. Low diameter is better, because the diameter puts a lower 
bound OR the complexity of parallel algorithms requiring communication 
between arbitrary pairs of nodes. 

III Bisection width: The bisection width of a switch network is the minimum 
number of edges between switch nodes that must be removed in order to 
divide the network into two halves (within one). High bisection width is 
better, because in algorIthms requIring large amounts of data movement, the 
size of the data set dIvided by the bisection width put> a lower boun9 on the 
complexity of the parallel algotithm. Proving the bisection width of a 
network is often more difficult than a cursory visual inspection might lead 
you to believe, 

• Edges per switch node: It is best if the number of edges per switch node is 
a constant independent of the network size, because then the processor 
organi7:ation scales more easily to systems with large numbers of nodes, 
Constant edge length: For scalability reasons it is best if the nodes and 
edges of the network can be laid out in three-dimensional space so that the 
maximnm edge length is a constant independent of the network size. 

Many switch network topologies have been analyzed. We focus on six of 
2-D mesh, binary tree, hypertree, butterfly, hypercube, and shufIle-cxchange. 
-D mesh, hypertree, butterfly. and hypercube have appeared in commercial 

computers; the binary tree and shuffle-exchange networks are presented 
~,~I~jnltef(;sti[lg points in the design space. 

2·D Mesh Network 

two-dimensional mesh network (shown in Figure 2.2) is a direct topology in 
the switches are arranged into a two-dimensional lattice. Communication 
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Cal (b) 

Figure 2.2 Variants of the 2-D m"esh network. Circles represent switches, 
while squares represent processors. (a) WHhout wraparound connections. 
(b) With wraparound connections. 

is allowed only between neighboring switches; hence interior switches cornmun 
cate with four other switches. Some variants of the mesh model allow wraparouu 
connections between switch~s on the edge of the mesh. 

Let's evaluate the 2-0 mesh network according to our four criteria. We assum 
that the mesh has II switch nodes and no wraparound connections. The mesh hI 
minimum -diameter and maximum bisection width when it is as square as pos,ibl, 
iii which case its diameter and bisection width are both 8(Jii). It has a COllSlaJ 

]1P ~lber of edges per s\\ ;tch, and it is possible to build an arbitrarily ):;;~~ 

w illl comtant edge length. 

2.2.4 Binary Tree Network 

III a binary tree network, communications among the 11 = 2d processor nodi 
are supported by a binary tree of 211 - I switches {Figure 2.3). Each proceSS( 
node is connected to a leaf of the binary tree. Hence the binary tree network 
all example of an indirect topology. The interior switch nodes have at most thrt 
links: two to children and one to a parent node. 

The binary tree switch network has low diameter: 210gn.l However ils b 
s('ction width is the minimum value possible, l. Assuming nodes occupy pbysic 
sgace, it is impossible to atTange the switch nodes of a binary tree network i 
lhree-dimensional space such that as the number of nodes increases, the lengl 
of the longest edge is always less than a specified constant. 

[In lhls book log II means I(]g~ 11. 
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figure 2;3 Binary tnie hetwor\(wltn eight 
processOfflodes and 15 switch nodes. 

(a) (b) 

Figl.!re 2.4 Hypsrtrce network of degree 4 and depttl 2. Circles represent switches, and 
squares represent processors. (a) Front view. (b) Side view. (c) Complete network. 

Hypertree Nehvork 

hypertree is an indirect ttlpology that shares the low diameter of a binary tree 
an improved bisection width. The easiest way to think of a hyper tree 

of degree k and uepth d is to consider the network from two different 
Figure 2.4). From (he front it looks like a complete k-ary tree of height d 
2Aa), From the &ilic" 1.[1<: Ii:imc network 10.,;[\, like an upside-down binary 

, :.1 (Figure 2/' , '1.' the front an("j~, .• ,,~'S yields the complete 
Figure 2Ac illustrates a hypertree network of degree 4 and height 2. 
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Figure 2.7 A hypercube network with 16 processor nodes and an equal 
number 01 switch nodes. Circles represent switchfls, and squares represent 
processors. Processor/switch pairs share addresses. 

nodes are labeled 0,·1, ... , i-I; two switch nodes arc adjacent if their binary 
labels differ in exactly onc bit position. A four-dimensional hypercube is shown 
in Figure 2.7. 

The diameter of a hypercube with n = 2d switch nodes is 10gIJ and its 
bisection width is /l}2. The hypercube organization has low diall1.ctcqmd high 
bisection width at the expense of the other two factors \"\,:: arc considering. The 
number of edges per switch node is log n (we're not counting the edge to the 
processor), and the length of the longest edge in a hypercube network increases 
as the number of nodes in the network increases. 

Let's explore how to route messages in a hypercube. Take another look at 
Figure 2.7, and note how edges always connect switch"s whose addres~es differ 
in exactly one bit position. For example, links connect switch 0101 with switches 
1101,0001,0111, and 0100. Knowing this, we can easily find a shortest path 
between the source and destination switches. 

Suppose we want to seod a message from switch OlOl to switch 001\ ill 
a four-dimensional hypercube. The addresses differ in two bit positions. That 
means the shortest path betwecn the two switches has length 2. Here is a shortest 
path: 

0101 ..... ~ OOOl·····~ 0011 

Can you think of another path from 0101 to 0011 that al,o has length n Changing 
the order in which we flip the bits that differ results in JifIcrcnt path: 

0101 --+ 0I11·····~ 0011 
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Figure 2.8 Derivation of the perfect shuffle permutation. (a) A sort€d deck of 
cards. (b) The cards are shuffled pertectly. (c) The result of the perfect shuffle. 

2.2,8 Shuffle·Exchange Network 

.The final network topology we are considering tS based on the idea of ape/feet 
-,f~ffle. Imagine taking a sorted deck of cards (Figure 2.8a), dividing it exactly in 

half, and siluffiiag (he two halwsjJafcctly (Figurc 2.8b). The rcsulting permuta­
. ,iiqn of the, original card ordering is called a perfect shuftle (Figure 2.8c J. If we 
~present the original position of each card as a binary number, its new position 

, . -can be calcuhl!C(~ 1'" perfonnbl left cyclic rotation of ,hi; binary number. In 
,btiler words, we shilt every bitlelt one position, but the lefmlOst bit wraps around 
_ to the I'ightmt'-. , ,;;ion. For c' c:ml5, original!) ;;t :ndex 5 (101), ends 
uJl at index 3 (O! 1) . 

• !. J\ shl]ffh~:' ~_j1ge netw(, !s it direct topology \'. i:i 11 = 2d processorl 
, ~witcb pairs. The pairs are numbered 0, I, ... , IJ - 1. The switches have two 
, ,kinds of cunr:ecii~,n5, called shull1e and exchange. Exchange connections link 

,Rates of swil£hes whose numbers differ in their least significant bit. Each shuffle 
./i-c~llllcction lin;,-~ >witch i with sWltch j, where j is the result of cycling the bits 
:'>:qfi left olle piJsitiou. For example, in an eight-node network, a shuffle connection 

;;Jm~-sswitch 5 (101) with switch 3 (011). Figure 2.9 illustrates a shuffle-exchange 
"::)letwork with 16 ,wdes. 

;:Every switdl ill a shuffle-exchange network has a constant number of edges: 
outgoing and two incoming (not counting the link to the processor). The 

/-,', ,'PT'tH" of the longest edge increases with the network size. The diameter of an 
"-<"'''''"''11 sllUttle-C:XCllange network is 210g n -\. The bisection width is ~njlog n. 

think ahout routing me,~ages through a shuffle-exchange network. A 
rna1.ir:]u:" knglh foUm"" ,\}gll exchange links and :01' n - I shuffle link'). 

',,-":!rio is wl';" :1 message from switr' to switch rr - 1 (or 
Suppo~e n = 16. KmHing a message from UOOO to 1111 requires 
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Figure 2.9 A shuffle-exchange network with 16 processor nodes and an 
equal number of switch nodes. Circles represent switches, and squares 
represent processors. Processor/switch pairs share addresses. The heavy 
black lines are the bidirectional exchange links, while the arrows represent 
unidirectional shuffle links. 

2 Jog 11 ~ I '" 7 ~teps (where E and S refer to following exchange and shuffle 
links, respectively): 

F. S ESE S E 

0000'0001 ~001O->0011"'{J1J(J"'0Il1-> IllO-> IIlI 

It's not hard to devise an algorithm that always generates paths following log n-I 
shuffle links, but skips exchange links in those cases where the low-order bit does 
not need to be flipped. For example, routing a message from 00 11 to 0 101 could 
be done by following three shuffle link., and two exchange links: 

E s 
0011 -> 0010 -> 0100 -> OWl -> 1010'" 0101 

A more sophisticated algorithm would lind even shOiter paths by looking for 
patterns between the source and destination addresses, reducing the number of 
shuffle steps. For example, it would be able to recognize that the final two shuffles 
in the previous routing are unnecessary. 

2.2,9 Summary 

Table 2.1 summarizes the characteristics of the six interconnection networks 
described in this section. No network can be optimal in every regard. The 2-D 
mesh is the only network that maintains a constant edge length as the number 
of nodes increases, but it is also the only network that does not have logarithmic 
diameter. The butterfly and hypercube networks have high bisection width, but 
the butterfly network has €-)(n log /1) switch nodes, and the hypercube network is 
the only network in which the numba or edges per node is not a constant. The 
shUffle-exchange network represents :: (~:'sign midpoint, with a fixed number of 
edges per node, low diameter, and good bisection width. The 4-ary hypertree is 
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Table 2.1 Attributes of SlX switching network topologies. The column labelBd "EdgesJnDt1eS' refers to the 
maxirr:~m number of switches to which a SWitching node is connected. 

'. PrOCessOr ·i 

~;1~~~; .F',d~;, 

~udeS' J)iath~e¥;< . ii~eS> 

2-D mesh 11 =0 d2 
11 2(.,in - 1) .,in -4 

Binary trer n =0 2d 2n·- I 210gn 1 3 
~-ary hypertree II = 4J 2n - Jll logn n/2 6 
Bunerlly n=~ lI(1og II + 1) logn n/2 4 
Hypercube II =2d 

11 logn nJ2 log II 
Shuffle-exchange n=2' n 2logn-l :=:::n/logn 2 

superior to the binary tree in nearly every respect, wilh fewer switch nodes, lower . 
diameter, and high biscr:tion width. 

2.3 PROCESSOR ARRAYS 
A vector rlomputer is a computer whose instruction set includes operations on 
vectms as well as scalars. Generally there are two ways of implementing a vec­
tor computer. A pipelinoo vector processor streams vec.tors from memory to 
the CPU, where pipdined arithmetic units manipulate them. The Ciay-l and 
Cyber-205, early supercomputers, are well-known examples of pipelined vector 
processors. We do not consider these architectures further. 

A processor 3f1"i!Y is a vector computer implemented as a sequential corn­
puter connected to a set of identical, ~ynchroni7ed processing elements capable of 
simultaneously performing the same operation on different data. Many pioneerin~ 
parallel computer development efforts resulted in tbe construction of processor 
arrays. One motivation for this design was the relatively high price of a control 
unit [52]. Another key motivation for the construction of processor arrays was 
the ob~ervation that a large fraction of scientific computations are data parallel 
[50]. That, of course, is exactly how a processor array achieves ils parallelism. 

2,3.1 Architecture and Data.parallel Operations 

Let's look at the architecture of ~ generic processor array. It is a collection of 
simple processing elements controlled by a front-end computer (Figure 2.10). 

The front-end computer is a standard uniprocessor. Its primary memory con­
tains the instructions being executed as well as data that arc manipulated se­
quentially by the fiunt end. The processor array is divided into many individual 
processor-memory p;!irs. Data that are manipulated in parallel are distributed 
among these memories. In order to perform a parallel operation, the front-end 
computer transmits the appropriate instruction to the processors in the processor 
array, which simultaneously execute the instruction on operands stored ill theii' 
local memories. A control path (indicated by a dashed line in Figure 2.l0) allmvs 
the front -end computer to broadcast instructions to the back-end processors. 

COU5Iarit· 
'~l~~b 
Yes 
No 
No 
No 
No 
No 
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~"+- lIO devices 

Parallel 110 devices 

Figure 2.10 Architecture of a generic processor array. The processor array 
contains niany primitive processors (shown by boxes labeled with a P). Each 
processor has ils own memory (shown by boxes labeled with an·M). 

For example, suppose the processor array contains 1024 processors, labeled 
Po, PI,' " PlOll· Imagine two 1024-element vectors A. and B are distributed 
among the processors such that ai and hi are in the memory of processor Pi, 
for all i in the range 0 S j S 102l The processor array can perform the vector 
addition A + B in a single instruction, because each processor Pi fetches its own 
pair of valnes ai and hi and performs the addition in parallel with all the other 
processors. 

Note that the time spent by this processor aJTay to add two lOO-element 
vectors, or any two vectors of length S 1024, is the same as the time needed 
to add two l024-element vectors. The time needed to perform any palticular 
im,truction on the processor array is independent of the number of processors 
actually active. 

What if the programmer wishes to manipulate a vector with more than 
1024 clement,,! When the size of the vector exceeds the number of processors in 
the processor array, some or all of the processors need to store and manipulate 
multiple vector elements. For example, a 10,OOO-element vector can be stored on 
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a 1024-processor system by giving 784 processors 10 element~ and 240 proces­
sors 9 elements: 784 x 10 + 240 x 9 = 10,000. Depending upon the particular 
architecture and operating system, this mapping of vector elements to pf(Jcessors 
mayor may not have to be managed by the programmer. For example, the operat­
ing system ofThinking Machines' Connection Machine supported the notion of 
virtual processors. The programmer could write programs manipulating vectors 
and matrices much larger than the size of the processor array. Microcoded in­
struction., sent from the front end to the processor array managed the complexiry 
of mapping virtual processors to physical processors. 

_ 2.3.2 Processor Array Performance 

Performance is a metric indicating the amount of work accomplished per time 
unit. We can measure processor array performance in terms of operations per 
second. The perfOlTIllll1ce of a processor array depends on fue utilization of its 
processors. The size of the data structure being manipulated directly affects per· 
forman(C. Processor array performance is highest when all processors are active 
and the size of the data structure is a mUltiple of tile number of processors. 

i 

.. ' S.uppose a processor array contains 1024 proce~sors. Each proussor is capable of adding 
a pair of Integers in 1 JLsecond. What is the perfonnance of this proccssor array adding 
two integer vectors of length 1024, a,suming each vector is allocated to the processors in 
abalanced fashion? 

i(' .<The number of integer operations perfonned is 1024. Each processor performs one integer 
i' 'addilloll, requiring I jLsernnd. 

~2" . 1024 operations 
Performance = = UI24 X J()9 operations/sccond 

\ I }Lsecood 
(:.:,'_v'-'· 

a processor array contains 512 processors. Each processor is capablc of adding 
- integers in I JL!>econd. What is the performance of this processor an'ay addi ng 

vectors of length 600, assuming each vector is allocated to the processors in 
fashion? 

of integeroperatiollS perfonned is 600. Since 600 > 512. liS processors must 
rs ofintegers. The other 424 proccssors add only a single pair ofintegcrs. ThPy 

while the other 88 processors add their sccond intcger pair. 

600 operations 
Perfonnancc = = 3 x lOx operations/second 

2 p.sccond 

39 

·g.wni" 

'Ji.v.q!J,· 
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2.3.3 Processor Interconnection Network 

Of course, the typical parallel computation is far more complicated than simply 
adding two vectors. Often the new value of a vector or matrix element is a function 
of other elements, a~ in the implementation of a finite difference method to solve 
a partial differential equation: 

ll, <- (ai- 1 + a'+i)/2 

To bring together operands stored in the memories of different processors, 
the processors can pa,s data through an interconnection networlc The most pop­
ular interconnection network for processor arrays is the two-dimensional mesh. 
Besides the advantages previously noted, the two-dimensional mesh has the ad­
vantage of a relatively straightforward implementation in VLSI, where a single 
chip may contain a large number of processors (see Figure 2.11). 

The interconnection network supports concurrent message passing. For ex:­
ample, in the two-dimensional mesh shown in Figure 2.11, each processing ele­
ment can simultaneously send a value to the processing clement to It$ ~north." 

2.3.4 Enabling and Disabling Processors 

The processor array exhibits synchronous execution-that is, all the individual 
processors work in lockstep. However, iUs possible for only a subset of the 

Figure 2.11 Illustration of how an 8 x 12 processor 
array with a two-dimensional mesh interconnection 
could be arranged to minimize wire lengths, A single 
VLSI chip contains 16 processing elements arranged 
in a 4 x 4 mesh, A 2 x 3 arrangement 01 chips 
produces the desired 96-processor array, This figu re 
shows the interconnection network; it does not 
illustrate the connections between the processors and 
the lront-end computer. 
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figure 2.12 Execution of an if-then-else statement. fa) Vector A. with nine 
elements, is distributed among the memories of nine processors, one 
element per processor. If the value is nonzero, then it will be changed to 1, 
else it will be changed to -1. (b) Shading indicates the processors that are 
masked out (inactive) because their element of A is O. The femaining 
processors set their values of A to 1. (c) The active and inactive processors 
switch roles. The active processors set their vaJues of A to -1. 

processors to perform an insttuction. Each processor has a ma~king bit that allows 
it to "opt out" of performing an instruction. Masking is useful if the number of 
data items being manipulated is not an exact multiple of the size oflhe processor 
array. 

Masking also enables the processor array to support conditionally executed 
parallel operations. For example, suppose integer vector A is distributed across the 
processor array, one element per processor, and we want to convert every nonzero 
V'dlue inside A to I and every 0 to -I (Figure 2.12). First, every processor tests 
to see if its element of A has the value O. If so, the processor sets its ma,k bit, 
indicating it is nnt executing the next instruction. The unmasked processors set 
their elements of A to 1. At this point the mask bits are flipped, so that previollsly 
active processors become inactive, and vice versa. Now the unmasked processors 
set their elements of A to -\. Finally, all the mask bits are era~ed. 

While the processor array is highly efficient when executing code in which 
every processor performs every operation, its efficiency can drop rapidly when 
the program enters conditionally executed code. First, there is the additional over­
head of performing the tests to set the mask bits. Second, there is the inefficiency 

, 'Qaused by having to work through different branches of control stl1lctures sequen­
tially. For example, consider the case of a parallel if-then-e\se statement, where 
the conditional expression contains a parallel variable. First the then clause is 

" executed by the processors for which the condition evaluated to true; the other 
jJrocessors are inactive. Next the active/inactive processors s\li1tch roles for the 
execution of the else clause. Overall, when the cost of evaluating the conditional 

,!~,expressioll is taken into account, the performance of the system performing an 
" "if-tben-else statement is less than half the performance of the system performing 

operations across the entire processor array. 
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2.3.5 Additional Architectural Features 

A data path allows thc front-end computer to access individual memory locations 
in the processor array. This capability is important, because it allows particular 
element~ of parallel variables to be used or defined in sequential code. In this 
way, the processor alTay can be viewed as an extension of the memory space of 
the front-end computeL 

A global result mechanism enables values from the processor array to be 
combined and returned to the front end. The ability to compute a global and 
is valuable. For example, some iterative progratns may continue until aU of the 
values in a matrix have converged. Suppose each element of the processor array 
contributes a J to the global result if its corresponding matrix element has con­
verged, and a 0 if it has not converged. A global and of the values returned by 
the processors will return 1 if and only if all of the matrix clements bave con­
verged, making it easy to determine if the program should continue for another 
iteration. 

2.3.6 Shortcomings of Proce~sor Arrays 

()--,r Processor arrays have several significant shortcomings that make them unattrac-
tive as general-purpose parallel computers. 

First, many problems do not map well into a strict data-parallel solution. 
These problems cannot run efficiently on a processor array architecture. 

Second, since the processor array can only execute a single ilLStruclion al a 
time, the efficiency of the computer drops when the progratn enters 
conditionally executed parallel code. Nested if-then-else statements or case 
statements arc particularly bad. 

Third, processor arrays are most natnrally single-user systems. They do not 
easily accommodate multiple llser5 who are simultaneously trying to 
execute multiple parallel programs. Dividing back-end processors into 
disjoint pools or dividing each processor's memory into multiple partitions 
requires sophisticated hardware and/or software enhancements to the 
computer. 

Fourth, processor arrays do not scale down well. In order for a processor 
allay with a large number of processors [0 exhibit high performance, the 
system necdsbigh-bandwidth communication netwo;ks between the front 
end and the processor array, among the processing elements, and between 
the processing clements and parallel YO devices. The cost of these 
networks may be only a small fraction of the cost of the system when the 
number of processing elements is high, but they may be a large fraction of 
the system cost when the number of processing elements is low. While the 
full-blown system may provide high performance per dollar, "intrOduclory" 
systems with fewer processors do not exhibit good price/performance 
compared with competing systems. 
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Fifth, because processor arrays are built using custom VLSI, companies 
constructing processor arrays cannot "ride the wave" of performance and 
cost improvements manifested by commodity CPUs. Over rime, it has 
proven to be increasingly difficult (or impossible) for companies producing 
cust{Jm processors to stay competitive with semiconductor manufacturers 
such as Intel, which can spend hundreds of millions Df dollars on a new 
chip design and amortize this expense over the sale of millions of units, 

Finally, oneof the original motivations for constructing.processor 
arrays-the relatively high cost of control units-is no longer valid. The 
amount of chip area dedicated to control circuitry is relatively small in 
!oday's CPUs, 

For all these reasons, processor arrays are no longer con~idered a viable 
option for general-purpose parallel computers, 

2.4 M",L TIPROCESSORS 
A multiprocessor is a multiple-CPU computer with a shared memory, 'The same 
address on two different CPUs refers 10 the same memory location, Multiproces- ,.--0 
sors avoid three of the problems associated wilh processor arrays. They can be 
built ou't of commodity CPUs, they naturally support multiple users, and they do 
not lose efficiency when encountering conditionally executed parallel code, 

We discuss two fundamental types of mUltiprocessors: centralized multipro· 
cessors, in which all the primary memory is in one place; and distributed multi· 
processors, in which the primary memo'ry is distributed among the processors, 

2.4.1 Centralized Multiprocessors 

A typical uniprocessor uses a bus to connect a CPU with primary memory and I/O 
processors. A cache memory helps keep the CPU busy by reducing the frequency 
at. which the CPU must wait while instructions or data are fetched from primary 

" memory. 
A centralized mUltiprocessor is a straightforward extension of the unipro, 

cessor. Additional CPUs are attached to the bus, and all the processors share the 
,same primary memory (Figure 2.13), This architecture is also called a uniform 
j:m~Jnory acc~s (UMA) multiprocessor or asymmetric multiprocessor (SMP), 

····~~~llseall the memory is in one place and has the same access time from cv­
'}w,processor. Cent'dlizw mUltiprocessors are practical because the presence of 

:large, efficient instruction and data caches reduces the load a single processor puts 
";~n the memory bus and memory, allowing these resources to be shared among 

, .""~nultiple processors. Still, memory bus bandwidth typically limits 10 a few dozen 
·.~~henumberof processors that can be profitably employed. 

• <·~t;~·. ," Private data are data items used only by a single processor, while shared 
are data values used by multiple processors. In a centralized multiprocessor, 
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Figure 2.13 AIchitecture of a generic 
centralized multiprocessor. 

processors communicate with each olher through shared data values. For exam­
ple, processors may be cooperating to perform all the tasks on a linked list. A 
shared pointt."r may contain the address ofihe next list item to be processed. Each 
processor accesses the shared poinler to determine its next task and advances the 
pointer before it is accessed by another processor. Designers of centralized multi­
processors must addrt."ss two problems associated with shared data: Ihe cache 
coherence problem and synchronization. 

Cache Coherence Problem Replicating data across multiple caches reduces 
contention among processors for shared data values: However, because each 
processor's view of memory is through its cache, designers of systems with mul­
tiple processors must find a way to ensure that different processors do not have 
different values for the same memory location. 

An example of how different processors can end up with different values 
appears in Figure 2.14. Two different CPUs, A and B, read the same memory 
location, and then CPU B writes a new value to thai location. At this point CPU 
A has an obsolete image of that location's value still stored in its cache. This is 
called the cache coherence problem. 

"Snooping" protocols are typically used to maintain cache coherence on 
centralized mulliprocessors. Each CPU's cache controllf'r monitors (snoops) the 
bus to identify which cache blocks are being requested by other CPUs. The most 
common solution to the cache coherence problem is to ensure that a processor 
has exclusive cache access to a data item before writing its value. Before the write 
occurs, all copies of the data item cached bJ'other processors are invalidated. At 
this point the processor performs the write, updating the value in its cache block 
and in the appropriate memory 10catiO[l. When any other CPU tries to read a 
memory location from that cache block, it wiII experience a cache miss, forcing 
it to retrieve the updated value from memory. This is called the write invalidate 
protocol. 
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Figure 2.14 Example of the cache coherence problem. (a) Memory location X contains 
value 7. (b) CPU A reads X. A copy of X is stored in CPU A's cache. (b) CPU Breads X. 
A copy of XIs stored in CPU 8's cache. (c) CPU B stores 2 into X. Memory location X 
lakes on the new value. The value is also updated in the cache of CPU B. However, 
CPU A still has !he old value of X in its cache . 

.If two processors simultaneously try to write to the same memory location, 
only one of them wins the "race." The cache block of the "losing" processor is 
invalidated. The "losing" processor must get a new copy of the data (with the 
updated value) before it can do its write. 

Processor Synchronization Various kinds of synchronization may be needed 
by processes cooperating to perform a computation. Mutual exclusion is "a 
situation in which at most one process can be engaged in a specified activity at 
any timl'" [l16J. Earlier we gave the example of mUltiple processes cooperating 
to complete tasks stored on a linked list. Retrieving the next task from thelist and 
updating the list pointer is an example of a situation demanding mutual exclusion. 

Barrier synchronization is another kind of synchronization often found in 
shared-memory programs. A barrier synchronization guarantees that no process 
will proceed beyond a designated point in the program, called the barrier, until 
every process has reached the barrier. You might find a barrier synchronization 
between the two phases of a program's execution. 

In most systems, software performing synchronization functions relies upon 
hardware.supported synchronization instructions. On systems with a small num­
ber of processors, the most common hardware synchronization mechanism is 
either an uninterruptible instruction or a sequence of instructions that atomically 
retrieve and change a value [90]. 

2.4.2 Distributed Multiprocessors 

The existence of a shared memory bus limits to a few dozen the number of CPUs 
in a centralized multiprocessor. The alternative is to distribute primary memory -r-O 

45 



46 CHAPTER 2 Paraile! Architectures 

R 
2;1 

memory 

Intercoonectk)llllelWOrk 

Figure 2.15 Architecture of a generic distributed-memory, 
multiple-CPU computer. If the computer has a single global address 
space, the computer is called a distributed multiprocessor. If the 
computer has disjoint local address spaces, it is called amulticomputElr. 

among the processors, creating asystemin which local memory accesses are much 
faster than llon!ocal memory accesses. Because executing programs exhibit spatia! 
and temporal locality, it is possible to distribute instructions and data among 
memory units so that most of the system '5 memory references are between a 
processor ami its local memory. HenLe distributed memory systems can have 
higher aggregate memory bandwidth and lower memory access lime, compared 
with centralized memory parallel computers. The net etTed is to allow a higher 
processor co'; "l, 

Distributing 110, too. can also impmve scalabi1irj'. The architecture of a 
generic distributed-memory, multip!e-thJ computer appears in Figure 2.15. 

If the distributed collr.ction of memories forms one logical address space, the 
parallel computer system is called a distributed multiproassar. In a distributed 
multiprocessor, the same address on different processors refers to the same mem­
ory location. This type of system is also called a nonuniform memory access 
(NUMA) multiprocessor, because ffit'mnry access time varies considerably, de­
pending upon whether the address bcillgJeferenced is in that processor's local 
memory or another processor's local n:cifiory. 

Support for Cache Coherence Some distributed multiprocessors, such as the 
Cray T3D, do not have cache coherence hardware. On such computers, only in­
structions and private data can be stored III a processor's cache. This performance 
disadvantage is exacerbated by the huge time difference between a local cache 
access and a nonlocal memory access. For example, a nonlocal memory access 
takes 150 cycles on the Cray T3D, verSlI, the two c)lcles needed for a cache 
reference. For these reasons, hardware .• ~lport for cache coherence is valuable. 
Unfortunatel~ the snooping metho[! 'r1bed for c :ndized multiprocessors 
do not scale well a, the number of proc"."ors grows, because a cache controller 
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cannot simply "snoop" on a shared memory bus. Instead, a more complicated 
protocol is needed. 

Implementing a directory·based protocol is a poplllar way to implement 
cache coherence on a distributed multiprocessor. Asingle directory contains shar­
ing information about every memory block that may be cached. 

For each cache block, the directory entry indicates whether it 15: 

I uncached-not currently in any processor's cache 

I shared--cached by one or more processors, and the copy in memory is 
correct 

I exclusive--cached by exactly one processor that has written the block, so 
that the copy in memory is nbsolete 

It is necessary to keep track of which processors have copies of any cache 
block, so thai these copies can be invalidated when one processor writes a value to 
that block. If the number of processors is 128 or less, it is reasonable to store 
information about which processors are sharing a data block as a bit vector. 

10 prevent accesses to the cache directory from becoming a perfonnance 
bottleneck, tne directory itself should be distributed among the computer's local 
memories. However, the contents are not replicated: the information about a 
particular memory block is in exactly one location. 

Directory·Ba5ed Protocol Example Let's look at an example that illustrates 
how a directory-based protocol works.,Consider the simple distributed memory 
multiprocessor shown in Figure 2.16a. The parallel computer has three CPUs. 
Assuciatedwith each processor is a cache, a memory, and a directory. Together, 
the memories oUhe individual processors form a single address space, and any 
CPU can reference any of these addresses. Integer variable X is stored in the 
memory controlled by processor 2. It currently has the value 7. Processor 2 has a 
directory entry corresponding to the cache block containing X. This entry shows 
that currenlly the block is uncached. 

Now suppose CPU 0 tries to rcad the value of X. 'Ibe cache block containing 
X is not in CPU O's cache. A "read miss" message is sent from processor 0 to 
processor 2. The status of the cache block containing X is changed to "~hared," 
the bit vector is updated to show that processor 0 has a copy of the cache block, 
and the block is sent to processor 0 (Figure 2.16b). 

Next CPU 2 tries to read the value of X. The cache block containing X is 
not in CPU 2's cache. As a result of the read mi~s, the bit vector is changed to 
show that processor 2 also has a copy of the cache block, and the block is sent to 
processor 2's cache (Figure 2.16c). 

Suppose CPU 0 now writes 6 to X. A "write miss" message is sent from 
.. -processor 0 to processor 2. The directOlY controller invalidates the copy of the 

cache block currently in CPU 2's cache, updates the bit vector to show Ihat CPU 2 
no longer has a copy of the block, and changes the state of the cache block to 
"exclusive." Figure 2.16d shows the new state of the system. Note that the value 
of X in primary memory is out of date. 
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Figure 2.16 Illustration of a directory-based protocol to implement cache coherence on a 
distributed multiprocessor. (a) Xhas value 7. Block containing Xis uncached. (b) State after 
CPU 0 reads X. (c) State after CPU 2 reads X. (d) State after CPU 0 writes value 6 to X. (e) State 
after CPU 1 reads X. (I) Slate after CPU 2 writes 5 to X. (g) State after CPU 0 writes 4 to X. 
(h) State after CPU 0 flushes cache block containing X. 

If CPU I now tries to read X, generating a read miss, the directory controller 
for processor 2 sends a "switch to shared" message to processor O. Processor 0 
sends a copy of (he cache block back to processor 2, so that an up-to-date copy is in 
primary memory. Then lhe up-Io-date block is sent to processor I (Figure 2.16c). 

Suppose the next action involving the cacbe block is CPU 2 writing 5 to X. 
Since the block is no longer in its cache, it generates a "write miss" message back 
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to the directory controller. The directory controller sends invalidate messages to 
processors 0 and I, which remove the blocks from their caches. Now a stattlS of 
the block is changed to "exclusive" with owner 2. A copy of the block is sent to 
CPU 2's cache, and CPU 2 updaICS the value of X (sec Figure 2.16f). 

Soon after. CPU 0 tries to write the value 4 to X. Since the appropriate block 
is not in it, cache, processor 0 generates a "write miss" message to proce.'sor 2'5 

directory. Proces.IOI.· 2 sends a "take away" message to CPU 2'5 cachccontmUer. 
The cache block is copied back to memory. The state of the block remains exclu­
sive, but the bit vector is updated to show the owner is now' processor O. A cupy 
of the block is scnt to CPU O's caclie, and the value of X is updated, as sllowll. in 
Figure 2.16g. 

Finally, suppose that processor 0 decides to flush the cache block containing 
X. Since it hlL~ exclusive access to the block, il must copy the contents of the 
block backto processor 2's memOJ},. The final state is illustrated in Figure L hllt 

2.5 MULTICOMPUTERS , 
A IIIulticomputer is another example of a distributed-memory, multiple-CPU r-O 
computer, as illustrated in Figure 2.15. However. unlike a NUMA multiprocessor, 
which has a single global addre.ssspace, a multicomputer has disjoint local address 
spaces. Each processor only has direct access to its own local memory. The same 
address on diifercl1i processors refers to two different physical memory locanons. 
Without a sh~lred address space, processors interact with each other by passing 
message8, and there are no cache coherence problems to solve. 

Coml1~'.': :: ulticomputers typically provide a custom switching net\"ork' 
to providl? Jow-latency, high-bandwidth access between processors. Commercial 
systems usuail y provide a good balance between the speed of the processor" and 
the speed of the communication network. In contrast, commodity clusters rely 
upon mass-produced computers, switches, and other equipment used to coostruct 
local area networks. This makes f{)f a less expensive system. albeit one in which 
the message latency is higher and communication bandwidth is lower. 

2,5~ 1 Asymmetrical Multicomputers 

Early multicomputers often had an asymmetrical design (Figure 2.17), which 
in certain respects resembles a processor array. A front-end computer interacts 
with users and I/O devices, while the processors in the back end are dedicated 
to "number crunching." l\vo examples of multicomputers with an asymmetrical 
design are the Intel iPSC and nCUBFJten. The Intel iPse (c. 198#) consisted of 
a Cube Manager (front cnd) controlling up to 128 processing nodes. The pro­
cC$sing nodes ran the NX operating system. The nCUBEften (c. 1985) consisted 
of an l11ld host processor (front end) running AXrS, a custom m!dtipfo-
granund system, controlling up to 1024 nodes running the extremely 
small (4 KhYl~) VERTEX operating system. 
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Figure 2.17 An asymmetrical multicomputer. Users log into the 
front-end computer, which executes a full, multiprogrammed 
operating system and provides all functions needed for program 
development. The computers in the back end are reserved lor 
executing parallel programs. These computers may execute a 
primitive operating system. In a variant of Itlis design, multiple 
computers may constitute the front end. 

In an asymmetrical multicomputer, back -end processors are used exclu­
sively for executing parallel programs. These processors may be running a prim­
itive operating system, such as VERTEX, that does not support virtual memory, 
I/O, or even multiprogmmming. With no other process.es occupying CPU cycles 
or sending messages across the network, it is ea,ier to understand, mooel, and tulle 
the performance of a parallel application. This is asignificant advantage. Another 
advantage,which was impol1ant in the early days of commercial multicomputers, 
is the case with which a manufacturer can develop the primitive operating system 
ne.eded for the back-end processors. 

Asymmetrical multicomputers have several significant disadvantages. First, 
there is a single point of failure. If the front-end computer is "down," the entire 
parallel computer is out of action. 

Second, scalability is limited by the performance capabilities of the front­
end computer. Users log into the front end and use it for program editing and 
compiling. The front end launches parallel programs nmning on 'the back end. 
l! is also responsible for any 110 0 perations. As the number of users increases, 
the front end may bewme overloaded. Meanwhile, a significant portion of the 
processors in the back end may be idle. 

Introducing multiple front-end computers provides additional computing re­
sources where they may be nceded, but results in additional complexities. For 
example, how do users know which front-end computer to log into? How will the 
workload be balanced between the front-end computers? Will back-end nodes be 
assigned statically or dynamically to particular front-end processors'] 



SECTION 2.5 Multicomputers 

Another solution to the front·end performance bottleneck. problem is to 

improve the performance of a single front-end computer, perhaps by replacing 
a single-CPU system with a centralized multiprocessor. Of course, the existence 
of an underutili7..ed multiprocessor front end could frustrate users who would like 
to use some of its computing capabilities in a parallel computation. 

A third disadvantage of asymmetrical multicomputers has to do with program 
debugging. Primitive operating systems in back-end processors may mak.e pro­
gram performance easier to understand. hut they also mak.e debuggmg programs 
much more difficult. Since they do not support I/O operations, it is impossible for 
a nodl~ program to print a message to the user. Instead, the node program must 
send a message to the frollt-end computer, which then can pass the message along 
to the user by printing it, contents. .. 

This leads us to a fourth disadvantage of asymmetrical multicomputers. Ev­
ery parallel application requires the development of two distinct programs: thc 
front-end program and the back.-end program. The front-end program is respon­
sible [or interacting with the user and the file system, transmitting data to the 
back-end processors, and forwarding results from the back.-end processors to the 
outside wo~ld. The back -end program is responsible for implementing the compu­
tationally intensive portion of the algorithm. Developing two programs for every 
application is tedious and error prone. 

The difficulty of debugging parallel programs is a strong incentive to provide 
fun-featured I/O facilities on back"end nodes. A straightforward way to do this 
is to run a multiprogrammed operating system on the back-end processors, too. 
At this point, the difference between the tiont end and the back end is down to 
which nodes users can log into. If the front-end computers have excessive loads 
and the back-end computers are nnderutilized, there is a strong incentive to open 
every computer up to program development. 

2,5.2 Symmetrical Multicomputers 

In a symmetrical multicomputer, every computer executes the same operating 
system and has identical functionality. Users may lug into any computer to edit 
and compile their programs. Any or all of the computers may be involved in the 
execution of a particular parallel program (Figure 2.\8l. 

Symmetrical multicomputers can solve many of the prOblems encountered 
in asymmetrical multicomputers. For example, they alleviate the performance 
bottleneck caused when a single computer serves as the site for program devel­
opment. If one computer has a heavy load, users can log into another. 

Support for debugging is better in symmetrical multicomputers. Since ev" 
ery computer runs a fun-fledged operating system, every processor can write J 

debugging meEsage back to the user. 
Symmetrical multicomputers also eliminate the "front-endfback-end" pro­

gramming problem. Every processor executes the same program. When only one 
processor should perfonll a particular operation, it is easily selected with an if 
statement. 
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Figure 2.t8 Asymmetrical multicomputer. Everymmputer 
.supports a full, mulliprogrammed operating system. Users may log 
into any of these computers. Arr-; or all of the computers may be 
called upon 10' execute a parallel prl)9ram. 

Symmetrical multicomputers have disadvantages, too. First. it is more diffi­
cult to maintain the illusion of a single "parallel computef" when a user can log 
into any node in the sysiem, each with its own name. 
. Second, there is no simple way to balance the program development workload 

among all the processors. Even if a user checks the loads on the computers before 
logging in, these loads change with time. Without software support. it is likely 
that the system's workload will be unbalanced. 

Third, it is more difficult to achieve high performance from parallel pro­
grams when processes must compete with other processes for CPU cycles, cache 
space, and memory bandwidth. Cache memory is processor-Oliented, not process­
oriented. A context switch from one process lO another often results in a large 
number of cache misses, loweling performance. 

2.5.3 Which Model Is Best for a Commodity Cluster? 

For ease of programming and debugging, it makes sense to put a full-fledged 
multi programmed operating system (such as Linux) on every computer and give 
every computer access to the file system. Symmetrical multicomputers have this 
characteristic. 

The performance of a CPU on a given application depends to a large degree on 
its cache hit rate. If the primary goal of the syslemis to maximize the performance 
of individual parallel programs, it is a good idea to pul only a single user process 
on each CPU. This is an argument for an asymmetrical arrangement in which 
most of the nodes are off-limits La program development. 

Parallel program performance can also be limited by the speed of the net­
work. For this reason it makes scnse to give only parallel processes access to the 
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Figure 2.19 The ParPar cluster mixes features from the 
asymmetrical and symmetrical models. 

interprocessbr connection network. Users should access the front-end computer 
by another rou te. 

In short, the best arrangement for a commodity cluster may well be a mixed 
model that has attributes of both the asymmetrical and symmetrical designs. Fig­
ure 2.19 illustrates the ParPar cluster at the Hebrew University of Jerusalem [24]. 
The front-end computer and 16 back-end computers are all connected to the lllter­
n~t via switched Ethernet However, the back-end computers also have e:<.clusive 
~ess to a high-speed dedicated data network. 

2.5.4 Differences between Clusters and Networks 
of Workstations 

'; A commodity cluster containscornponents found in local area networks­
commodity computers and switches. You can execute parallel programs on both 
clusters and local area networks. What sort of system ought to be called a cluster? 

A network of workstations is a dispersed collection of computers, typi­
-cally located on users' desks. Often the workstations arc connected via Ethernet 

Mbitlscc) or fast Ethernet (100 Mbitlsec). The principal role of a workstation 
10 serve the needs of the person using it; executing parallel jobs is simply a 

to consume leftovr.r CPU cycles. Individual workstations may have different 
~,,;;,'l:jooel:atllH! and executable programs. Users have the power to turn off their 

wo;rkslaticms. For this reason, there is a greater need to support checkpointing and 
restarting of jobs. 

In contrast, a commodity cluster is usually a co-located collection of mass­
computers and switches dedicated to mnning parallel jobs. There is a 

chance the computers are accessible only via the netwllrk; in other words, 
,coroputers typically do not have displays or keyboards. Some of the computers 

not allow users to log in. Alll1f the computers run the same version of the 
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Table 2.2 Companson ollhree options lor switched networks in commodity 
clusters (circa 2002), Cost per node includes the price of the ne~lVork 
interface card and one node's share of the switch price, 

Fast Ethernet 
Gigabit Ethernet 
Myrinel 

100 ~(se<: 
100 ~(sec 

71lsec 

!OO Mbit/sec 
1000 Mbit/sec 
1920 Mbitfsec 

<$100 
<$1,000 
<$2,000 

same operating system and have identical local disk images. The entire cluster is 
administered as an entity. 

Another key distinction between a commodity clusletllI\d anetwort of work­
stations is the speed of the lletwork. Given the speed of today's computers, 
Ethernet is simply too slow to be used as the network underlying a commod­
ity cluster. In addition. it is essential that the networking medium be switched, 
not shared. (Sw itches, not hubs, must be used as connection devices.) Three popu-

_ lar switched networki~g options available to designers of commodity clusters-are 
fast Ethernet, gigabit Ethernet. and Myrinet. Table 2.2 summarizes the differences 
between them. 

2.6 FLYNN'S TAXONOMY 
D--1r Flynn's taxonomy is the best-known classification scheme r or parallel computers. 

In this scheme, a tOmputer's category depen'ds upon the parallelism it exhibits in 
its instruction stream and its data stream. A process can be seen as executing a 
sequence of instructions (the instruction stream) Ihal manipula1t:s a sequence of 
operands (the data stream). The focus is onlhe mUltiplicity of hardware used to 
manipulate the instruction and data streams [28, 29. 30). 

A computer's hardware may support a single instruclion l>lream or multiple 
instruction streams manipulating a single data stream or multiple data streams. 
Hence Plynn's classification results in four categories (Figure 2.20). 

2.6.1 SISD 

The category SISD refers to computers with a single instruction stream and a sin­
gle data stream. Uniprocessors fall into this category. Even though it has only a 
single CPU executing a single instmction stream, a modern uniprocessor may still 
exhibit some concurreo(:y ofoexecution. For example. superscalar architectures 
~upport the dynamic identification and selection of multiple independent opem­
tions that may be executed simultaneously. Instruction prcfetching and pipelined 
execution of instructions are other examples of concurrency typically found in 
modem SISD computers, though according to Aynn these are examples of Con­
currency of processing, rather [han concurrency of execution /30]. 



SECTION 2.6 Rynn's Taxonomy 

Data stream 

Single Multiple 

SISD SIMD 
li 

'"' " E Ui 
~ 
~ 

~ 

Unipmct!.<8ors Processor arrays 
Pipelined vector processors 

" 0 
·c 
u 

~ li .5 .§" 
MISI) MIMI) 

:; 
~ 

Systolic arrays Multiprocess\l!5 

Multicomputers 

Figure 2.20 Flynn's taxonomy of computer architectures. 

2.6.2 SIMD 

The category SI MD refers to computers with a single instruction stream but 
multiple data streams. In this category are processor arrays and pipelined vector 
processors. As we have seen, a pro('C~sor array is a parallel computer wi th a single 
control unit execllting one iostruction stream, as well as multiple subordinate 
processors capable of simultaneously performing the same operation on different 
data elements. A pipclined vel10r processor relies upon a very fast clock and one· 
or more pipelined functional units 10 execute the same operation on the elements 
of a dataset. 

2.6.3 MISD 

The MISD category is for computers with multiple instmction streams, but only 
a single data stream. An MISD computer is "a pipeline of multiple independently 
executing functional uoits operatiog 00 a single stream of data, forwarding results 
from one functional unit to the next" [30]. 

A systolic array is an example of ao MISD computer. The name comes from 
the word systole, which refers to a contraction of the heart A systolic array is a 
network of primitive processing elemel1L~ that "pump" data. 

For example, consider the primitive sorting element of Figure 2.21. The sorter 
works in two phases. In the first phase (Figure 2.21 a) it inputs three data values, In 
the second phase (figure 2.2Ib) it outputs the minimum, median, and maximum 
values. 

We can create a hardware priority queue by connecting a linear array of 
these sorting demenL~ [70]. See Figure 2.22. The priority queue supports two 
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min (a,b.c) 1=:' 
med la, b,c) 

, max (II, b, c) 

(bj 

Figure 2.21 A systolic sorting element. (a) During the first cycle 
the element inputs keys a, b, and c. (b) During the second cycle the 
element outputs the minimum, median, and maximum of the three 

.keys along designated channels. 

operations: inserting a key and eXlracting the key with the minimum value. Each 
.operation lakes two cycles-that is, constant time. 

To insert key x, the host processor inserts x and -00 into the left end of the 
priority queue during the first cycle. In the sewnd cycle the queue outputs -co 
at its left end. The host discards this value. 

To extract the minimum key, the host insert, two copies of the 00 key during 
the lirst cycle and extrarts the minimum key during the second cycle. For all 
operations the key 00 is inserted into the right end Of the systolic array during 
the first clock cycle. In the second clock cycle, two copies of 00 should be output 
from the right end of the systolic array. If one of the keys is not 00, the priority 
queue has overflowed. 

In this ca~e all of the elements in the systolic array are identica1. However, 
a systolic aIiJy can contain a variety of elements performing different functions, 
which is why it is approplialely called a "multiple instruction" architeclUre. 

While a few commercial parallel systems based on MISD principles have 
been developed, they have been targeted to particular applications, such as digital 
signal processing. Flynn and Rudd suggest that the lack of a natural mapping frOID 
familiar programming constructs to the M1SD organization ha<> stifled interest in 
this architecture [30]. 

2.6.4 MIMD 

The MIMD category is for computers with multiple instruction streams and mul­
tiple data streams. Multiprocessors and multicomputers fit into this category. Both 
of these architectures are based on multipleCPUs. DifferentCPUs can simultane­
ously execute different instruction streams manipulating different data streams. 

Most contemporary parallel computers fall into flynn's MIMD category. 
Hence the MIMD designation is no! particnlarly helpful when describing modern 
parallel architectures. Forthe rest of the book we will rely upon the more specific 
term inology already developed in this chapter to describe the parallel architectures 
upon which our programs are executing. 
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Figure 2.22 Operation of a sys10li6 array implementing a priority queue in 
tj hardware, 
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2.7 SUMMARY 

Since the mid-1960s scientists and engineers have designed and built a wide 
variety of parallel computers. Commercial parallel computers containing eight 
or more processors first began appearing in the early 1980s. With hindsight, we 

. can appreciate why some architectures have been more successful than others as 
general-purpose computing platforms. 

The construction of processor arrays was stimulated by the relatively high 
cost of control units and the preponderance of data-parallel operations in scien­
tific computations. The first advantage of processor arrays, a single control unit, 
became insignificant when VLSI fabrication made possible CPUs on a chip. The 
second advantage, efficient execution of data-parallel operations, is diminished 
when these operations occur inside conditionally executed code. 

Meanwhile, the many disadvantages of processor an'ays became clear with 
time. Many problems are not amenable to a strict data-parallel solution. Processor 
arrays do not naturally support mUltiple users. They' do not scale down well, 
making it difficult for them to compete with other systems at the low end of the 
market. The most significant disadvantage of processor arrays is that they are built 
using custom VLSI and cannot leverage the performance and cost improvements 
exhibited by commodity CPUs. 

For these reasons processor arrays have receded into the shadows while 
multiple-CPU systems are getting the limelight. The vast majority of commercial 
parallel computers contain no more than a few dozen CPUs. These relatively 
small-scale systems are adequate for most high-performance computing needs 
because individual commodity CPUs are now quite powerful. 

Most small-scale parallel computers have a centralized multiprocessor archi­
tecture. Typically processors access. a common local memory through a shared 
bus. Architects of these systems must address the cache coherence problem and 
synchronization. Cache coherency is usually assured by implementing snoopy 
caches and using the write invalidation protocol to invalidate obsolete cache 
blocks whenever a write occurs. Software synchronization mechanisOls rely upon • 
one or more hardware instructions that have the net effect of atomically reading 
and updating a memory location. 

For parallel computers containing 100 or more CPUs, some form of dis­
tributed memory is needed in order to provide sufficient memory bandwidth to 
the CPU s. In a distributed-memory system, each CPU has a nearby local memory. 
When most memory references are to cache memory or the nearest local mem­
ory, the aggregate memory bandwidth can be high, scaling with the number 
processors in the computer. 

Distributed-memory parallel computers are divided into two categories, de­
pending upon whether they support a single global address space or have 
disjoint address spaces. In a distributed mUltiprocessor, the same address on 
different CPUs refers to the same memory location somewhere within thE' 
computer. Cache coherence is more difficult to implement in a distributed 
processor, because there is no shared bus for cache controllers to snoop. """w"",,, 
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the most common way to implement cache coherence is through a directory-based 
scheme that uses bit vectors to record which CPUs have copies of which cache 
blocks. 

A mu/tiCDmputer is a distributed-memory parallel computer with multiple 
disjoint address spaces. The same address on two different CPUs refers to dif­
ferent memory locations. With no shared memory, there is no cache coherence 
problem to worry about. In order for processors to share data, they must send 
messages to each other. Whether or not a GOpy of a data item is up-to-date or 
not depends entirely upon the programmer. Commercial multicomputers typi­
cally have custom, high-performance interprocessor communication networks 
and message-passing software to ensure 100v~l~t~ncy, high-bandwidth communi­
cations between processors. 

A commodity cluster is a particular kind of mUlticomputer constructed out 
mass-produced computers and networking devices. Commodity clusters can 

,;ll~c,oirpOlrate the latest commercial technology and take advantage of the attrac­
price/performance ratios of these products. Because commodity clusters 

;" nltpn n~'vp. faster CPUs and slower networks than commercial parallel computers, 
typic:Hlyare not as well balanced and are suitable for a narrower range of 

Flynn's taxonomy is one of the best-known ways of categorizing parallel 
VlJ1>'U'''''~' Unt'0rtunately, most contemporary parallel computers fall into the 

category (MlMO), marginalizing the utility of this descriptor. 

interconnection networks 
(2-D mesh, binary tree, 
butterfly, hypercube, 
hypertree, 
shuffle-exchange) 

mUlticomputer 
(asymmetrical, 
symmetrical) 

multiprocessor (UMA, 
NUMA,SMP) 

mutual exclusion 
network attributes (biseclion 

width. diameter, 
edges/node, edge length) 

,IBLIOGRAPHIC NOTES 

network topology (direct, 
indirect) 

perfect shuffle 
performance 
private data 
ranks 
shared data 
sy stolic array 
vector computer (pipelined 

vector processor, 
processor array) 

of Patterson and Hennessy's Computer Architecture: A Quantitative 
is an excellent general introduction to multiprocessor architectures 
, Rzymianowicz survey high-speed networks used to construct 
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commodity clusters [88]. Feitelson et at hm'e written an overview of ParPar, 
"a general-purpose, multi-user, MPP-Iike-system, using only off-Ihe-shelf com­
ponents" [24]. 

If you want to assemble your own commodity cluster, Beowulf Cluster Com­
puting with linux by Sterling et aL is a practical guide to the construction, manage­
ment, and programming of commodity PC clusters running the Linux operating 
system [lOS}. 

2.10 EXERCISES 

2.1 Draw hypercube networks with two, four, and eight nodes. Make sure 
you label the nodes. Is a hypercube network with n nodes a subgraph of a 
hypercube network with 2n nodes? 

2.2 How many different ways can a d-dimensional hypercube be labeled? 
2.3 The distance between nodes u aud v in a graph is the length of the shortest 

path from uta v. Given ad-dimensional hypercube aud a designated 
source node s, how many nodes are distance i from s, where 0 .::: i ~ d? 

2.4 Prove that if node u is distance i from node u in a hypercube, then there 
are i 1 different paths of length i from u to v (though some hypercube 
edges may appear in more than one path). 

2.5 Prove that if node u is distance i from node v in a hypercube, then there 
are i paths of length i from u to v that share no edges. 

2.6 Prove that a hypercube has no cycles of odd length. 
2.7 Give an algorithm that routes a message 'from node u to node v in an 

n-node hypercube in no more than log n steps. 
2.8 Draw shuffle-exchange networks with two, four, and eight nodes. Make 

sure you label the nodes.ls a shuffle-exchange network with n nodes a 
subgrapb of a shuffle-excbange network with 211 nodes'! 

2.9 Given a shuffle-exchange network with Z' nodes, under what 
circumstances are nodes Ii and v exactly 2k - I link traversals apart'! 

2.10 Give an algorithm that routes a message frolll node u to node u in an 
Il-node shuffte-exchange network in no more than 210gn - I messages. 

2.11 An omega network is an indirect topology based upon the peri'ect 
shuffle interconnection pattern [66]. Figure 2.23 illustrates an omega 
network lor eight processors. Consider an omega network connecting 
n = Zk processors. 
<l. How many switching elements are in the network? 
b. What is the diameter of the network'! 
c. Wh"Jt is the bisection width of the network'! 
d. What is the maximum number of edges per switching node'! 
e. Does the network have constant edge length as the number of nodes 

increases? 
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ColO Coli Col 2 

Figure 2.23 An omega network 
connecting eight processors, represented 
by squares. 

2.12 Assume n = 2' processors are connected by an omega network 
(Figure 2.23). Design an algorithm to route a message from processor i 
to processor j. (Hint: Represent the destination address j as a binary 
number.) 

2.13 Why are processor arrays well suited for ex.ecuting data-parallel 
programs'! 

2.14 Given a processor array containing eight processing elements, each 
capable of performing 10 million integer operations per second, 
determine the performance in millions of operations per second of this 
processor array adding two integer vectors, for all vector sizes from 
I to 50. 

2.15 Estimate the efficiency of a processor array executing a case statement 
with k cases. Assume all the instructions inside the case statement are 
parallel instructions, and assume all instructions take the same amount of 
time to execute. 
a. What is the efficiency if each case contains the same number of 

instructions? 
b. What is the etficiency if case i has I, instructions and the probability 

of a processing clement being active inside case i is Pi? 

2.16 Why are large data and instruction caches desirable in multiprocessors? 
2.17 Why is the number of processors in a centralized mUltiprocessor limited 

to a few dozen? 
2.18 A directory-based protocol is a popular way to implement cache 

coherence on a distributed multiprocessor. 
a. Why should the directory be distributed among Ibe multiprocessor's 

local memories? 
b. Why are the contents of the directory not replicated? 
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2.19 Continue the illustration of a rlirectory-base(tcache coherence protocol 
begun in Figure 2.16. Assume the following five operations now occur in 
the order listed: CPU 2 reads X, CPU 2 write 5 to X, CPU I reads X, 
CPU 0 reads X, CPU I writes 9 to X. Show the states of the directories, 
caches, and memories after each of these operations. 

2.20 Do some research and find, for each category in Flynn's taxonomy, at 
least one commercial computer fitting thai category. (It is OK to name a 
computer that is no longer available, but you may not name a computer 
mentioned in this book.) 

2.21 Continue the example of the operation of a systolic priority queue begun 
,=",'<!c;\~;.f:~; ,~' "r:,,;., .. ,~:id"ig.u~,2.22 by illustrating the stales it-would pass through as it 

processed these five requests: Insert 4, Extract Minimum, Insert 11, 
Insert 9, Extract Minimum. 

2.22 Explain why contemporary supercomputers are invariably 
multicomputers. 



C HAP T E R 

Parallel Algorithm Design 

From the highest to the humblest tasks, 
(Ill are of equal wJ/wr; all have their part to play. 

Winston Churchill 

3.1 INTRODUCTION 
It's time to start designing parallel algorithms! Our methodology is based all the 
ta~k/channel model described by Ian Foster [31]. This model facilitates the devel-. 
opment of efficient parallel programs, particularly those running on distributed­
memory parallel aJmputers. 

The first two sections of this chapter describe the task/channel model and the 
timdamental steps of designing parallel algorithms based on this model. We tllen 
study a few simple problems. For each ofthese problems we design a taskJchannel 
parallel algorithm and derive an expression for its expected execution time. In the 
process our execution time model becomes increasingly sophisticated. 

3.2 THE TASK/CHANNEL MODEL 
The task/channel model represents a parallel computation as a set of tasks that 
may interact with each other by sending messages through channels (Figure 11). 
A task is a program, its local memory, and a collection of I/O ports. The local 
memory contains the program's instructions and its private data. A task can send 
local data values to other tasks via output ports. Conversely, a task can receive 
data values from other tasks via input ports. 
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(aJ (b) 

Figure 3. t The tasklchannel programming model. (a) A task consists of a 
program, local memory, and a collection of 1/0 ports.jb) A parallel computation can 
be viewed as a dIrected graph In which vertices represent tasks and dIrected edges 
represent commu{lication channels. 

A cbannel is a message queue that connects one task's output port w 
another task's input port. Data values appear at the input port in the same 0[( 

in which they were placed in the output port at the ollier eud Of the channeL 
Obviously, a task cannot receive a data value until the task at the other e 

of the channel has sent it. If a task tries to receive a value at an input POlt a 
no value is available, the task must wait until the value appears, and we say t 
receiving task has bl~ked, In contIas~ a process sending a me$sagenever blocl 
even if prcvious messages it has sent along the same channel have not yet bel 
received. Put another way, in the task!channel model receiving is asyndlroooi 
operdtion, while sending is an asynchronous operation. 

In the task !channel model local accesses of private data are easily diSh 
guished from nonlocal data accesses that ocetlr over channels. This is goo 
because we should think of local accesses as being much faster than nonloc 
data accesses. 

When we talk about the execution time of a parallel algorithm, we are refeni! 
to dIe period of time during which any task i~ active. The starling time is wilt 
aJJ tasks Simultaneously begin executing. The finishing time is when the last 1m 

has stopped executing. 

3.3 FGSTER'S DESIGN METHODOLOGY 
Ian Foster has proposed a four-step process for designing parallel algorithrr 
[31}. It encourages the develDpment of scalable parallel algorithms by delay in 
machine-dependent considerations to the latcr steps. We'lIllse Foster's desig 
methodology in this chapter and thnmghout the rest of the book to develop parall( 
algorithms for a wide variety of applications. 
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Figure 3.2 Foster's parallel algorithm design methodology. 

four design sIeps arc called-partitioning, communication, agglomeration, 
':<.,,' .. " ..... 10 (Figure 12). In this section we explain each of these steps and 

achecklistthatcan help you determine if you're producing a good design. 
explanations at this point are rather theoretical, we '\I spend the rest of 
grounding the theory by working through several practical examples. 

we hegin the design of a parallel algorithm, we typically try to discover as 
<p:lf,illle'llsm as possible. Partitioning is 1hc process of dividing the compu­

the data into pieces. A good pmtitioning splits both the computation 
into many small pieces. To do this, we can either take a data-centric 
a computation-centric approach. 
IJecompositioll is the parallel algorithm design approach in which 

the data into pieces and then determine how to associate complJ-
the data. Typically our focus is on the largest and/or most frequently 

stmcture in the program. 
the example illustrated in Figure 3.3. Here a three-dimensional 

hrge5t and most frequently accessed data structure. We could par-
matrix into a collection of two-dimensional slices, resulting in a one­

collection of primitive tasks. Altemati vely, we coutd partition the 
''',",UlIl'',II'JlI nfone-dimensiollal slices, resulting in a two-dimensional 

primitive tasks, Finally, we coold consider each matrix element in­
,q:m:xlu(:mg a three-dimensional collection of primitive tasks. At this 
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Data structure Primitive tasks 

Figure 3.3 Three domain decompositions of a three-dimensional matrix, resulting 
in markedly different collections of primitive tasks. 

point in the design process it is usually best to maximize the number of primitive 
tasks. Hence the three-dimensional partitioning is preferred. 

Functional decomposition is the complementary strategy in which we first 
divide the computation into pieces and then determine how to associate data 
items with the individual computations. Often functional decompositions yield 
collections of tasks that achieve concurrency through pipelining. 

For example, consider a high-performance system supporting interactive 
image-guided brain surgery (Figure 3.4) [37]. Before the surgery begins, the 
system inputs a set of CT scans of a patient's brain and registers these images, 
constructing a three-dimensional model. During surgery, the system tracks the 
position of the surgical instruments, converts them from physical coordinates to 
image coordinates, and displays on a monitor the position of the insti'uments 
amid the surrounding tissue. The system has inherent concurrency. While one 
task is converting an image from physical coordinates to image coordinates, a 
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Figure 3.4 Functional decomposition of a system 
supporting interactive image-guided surgery. 

second task can be displaying the previous image, and a third task can be tracking 
instrument positions for the next ~mage. 

Whicl:jever decomposition we choose, we call each of these pieces a primitive 
task. Our goal is to identify as many primitive tasks as possible, because the 
number of primitive tasks is an upper bound on the parallelism we can exploit. 

We can use the following checklist to evaluate the quality of _a partitioning. '1!'"1) 
The best designs satisfy all of these attributes (Foster [31]). 

II There are at least an order of magnitude more primitive tasks than 
processors in the target parallel computer. (If this condition is not satisfied, 
later design options may be too constrained.) 

II Redundant computations and redundant data structure storage are 
minimized. (If this condition is not satisfied, the design may not work well 
when the size of the problem increases.) 

II Primitive tasks are roughly the same size. (If not, it may be hard to balance 
work among the processors.) 

III TIle number of tasks is an increasing function of the problem size. (If not, it 
may be impossible to use more processors to solve larger problem 
instances.) 

3.3.2 Communication 

After we have identified the primitive tasks, the next step is to determine the com­
munication pattern between them. Parallel algorithms have two kinds of commu­
nication patterns: local and global. When a task needs values from a small number 
of other tasks in order to perform a computation, we create channels from the 
tasks supplying the data to the task consuming the data. This is an example of a 
local communication. 

In contrast, a global communication exists when a significant number of 
the primitive tasks must contribute data in order to perform a computation. An 
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example of a global communication is computing the sum of values held by the 
plimitive processes. While it is important to note when global communications 
are needed, it is generally not helpful to draw communication channels for them 
at this stage of the algorithm's design. o--r We call communication among tasks part of the overhead of a parallel al­
gorithm, because it is something the sequential algorithm does not need to do. 
Minimizing parallel overhead is an important goal of parallel algorithm design. 
Keeping this in mind, we can use Foster's checklist to help us evaluate the com­
"munication structure of our parallel algorithm. 

• The communication operations are balanced among the tasks. 

• Each task communicates with only a smalll}umber of neighbors. 

• "Tasks can perform their communications concurrently. 
• Tasks can perform their computations concurrently. 

3.3.3 Agglomeration 

During the first two steps of the parallel algorithm design process, our focus was 
on identifying as much parallelism as possible. At this point we most likely do 
not have a design that would execute efficiently on a real parallel computer. For 
example, if the number of tasks exceeds the number of processors by several 
orders of magnitude, simply creating these tasks would be a source of significant 
overhead. In the final two steps of the design process we have a target architecture 
in mind (e.g., centralized multiprocessor or multicomputer). We consider how to 
combine primitive tasks into larger tasks and map them onto physical processors 
to reduce the amount of parallel overhead. 

Agglomeration is the process of grouping tasks into larger tasks in order to 
improve performance or simplify programming. Sometimes we want the number 
of consolidated tasks to be greater than the number of processors on which our 
parallel algorithm will execute. Often, however, when developing MPI programs, 
we leave the agglomeration step with one task per processor. In this case, the 
mapping of tasks to processors is trivial. 

One of the goals of agglomeration is to lower communication overhead. 
If we agglomerate primitive tasks that communicate with each other, then the 
communication is completely eliminated, because the data values controlled by 
the primitive tasks are now in the memory of the consolidated task (Figure 3.5a). 
We call this increasing the locality of the parallel algorithm. If the 'tasks cannot 
perform their computations concurrently, because later tasks are waiting for data 
provided by earlier tasks, then it's usually a good idea to agglomerate the tasks. 

Another way to lower communication overhead is to combine groups of 
sending and receiving tasks, reducing the number of messages being sent (Fig­
ure 3.5b). Sending fewer, longer messages takes less time than sending more, 
shorter messages with the same total length because there is a message startup 
cost (called the message latency) incurred every time a message is sent, and this 
time is independent of the length of the message. 
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(a) 
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(b) 

Figure 3.5 Agglomerating tasks can 
eliminate communications or at least reduce 
their overhead. (a) Combining tasks thaI are 
connecte:l by a channel eliminates that 
communicatlon, increasing the locality of the 
parallel algorithm. (b) Combining sending 
and receiving tasks reduces the number {If 
message transmissions. 

A second goal of agglomeration is to maintain the scalability of the parallel 
, 'design. We want to ensure that we have not combined so many tasks that we will 
. inot be able to port our program at some point in the future to a computer with 

more processors. For e:,cn:ple. suppose we are developing a parallel progt:lm 
that manipulates a three-dimensional matrix of size 8 x 128 x 256. We plan to 

, i'execute our program on a centralized multIprocessor with four CPUs.1f we design 
.the parallel algorithm 50 'h; the second and third dimen',inns are agglomer3ted, 
we could certainly execnlr the resulting program on four CPUs. Each task would 
be responsible for a 2 x l_':' '< 256 submatrix. Without cllanging the design, we 

" , could even execute on a system with eight CPUs. Each task would be responsible 
'for a I x 128 x 256 SUbiLclLlix. However, we could not port the program to a 
parallel computer with more than eight CPUs without changing the design, which 

C C would probably result in m:lssive changes to the parallel code. Hence the decision 
.to agglomerate the second and third dimensions of the matrix could tum out to 

a shortsighted one. 
A third goal of agglomeration is to reduce software engineering costs. If we 
parallelizing a sequential program, one agglomeration may allow us to make 
aler use of the existi'1g sequential code, reducing the time and expense of 
eloping the parallel program. 
We can use Foster's checklist to evaluate the quality of an agglomeration: ,.......0 

" The agglomeration has increased the locality of the parallel algorithm. 

Replicated computations take less time than the communications they 
replace. 

The amount of repl: 
scale. 

j data is small enough to ali,''',' the algorithm tn 
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• Agglomerated tasks have similar computational and communications costs. 
• The nwnber of tasks is an increasing function of the problem size. 
• The number of tasks is as small as possible, yet at least as great a~ the 

number of processors in the likely target C{)mputers. 

• The trade-off between the chosen agglomeration and !he cost of 
modifications to existing s~uential code is reasonable. 

3.3.4 Mapping 

Mapping is the process of assigning tasks to processors. If we are executing 
our program on a centralized multiprocessor, the operating system automatically 
maps processes to processors. Hence our discussion assumes the target system is 
a distributed-memory parallel computer. 

The goals of mapping are to maximize processor utilization and minimize 
interprocessor communication_ Processor utilization is the average percentage 
of time the system's processors are actively executing tasks necessary for the 
solution of the problem. Processor utilization is maximized when the computation 
is balanced evenly, allowing all processors to begin and end execution at the same 
eime. (Conversely, processor utilization drops when one or more processors are 
idle while the remainder of (he processors are still busy.) 

Interprocessor communication increases when two tasks connected by a chan­
nel afe mapped to different processors. Interprocessor communication decreases 
when two tasks connected by a channcl are mapped to the same processor. 

For example, consider the mapping of Figure 3.6. Eight tasks are mapped 
onto three processors. The left and right processors are responsible for two tasks, 
while the middle processor is responsible for four tasks. If all processors have the 
same speed and every task requires the same amount of time to be performed, then 

(a) (b) 

Figure 3.6 The mapping process. (a) A task/channel 
graph. (b) Mapping of tasks to three processors. Some 
channels now represent intraprocessor communications, 
while others represent interprocessor communications. 
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the middle processor will spend twice as much lime executing tasks a~ the ()ther 
two processors. If every channel communicates the same amount of data, then !he 
middle pf{)cessor will also be responsible for twice as many interprocessor com­
munications as the other two processors. 

Increasing processor milization and minimizing interprocessor eommunica- ,..-{) 
tion are often c{lllfiicting goals. 

For example, suppose there are p processors available. Mapping every task to 
the same processor reduces interprocessor communication to zero, but reduces uti­
lization to 1/ p. Our goal, then, is to choose a mapping that represents a reasonable 
middle point between maximizing utilization and minimizing communication. 

Unfortunately, finding an optimal solution to the mapping problem is NP­
Mrd[38], meaning there are no known polynomial-time algorithms to map tasks 
to processors to minimi ze the execution time. Hence we must rely on heuristics 
that can do a reasonably good job of mapping. 

When a problem is partitioned using domain decomposition, the tasks re­
ro:aining ·after Ihe agglomeration .step often have very similar size, meaning the 
computational loads are balanced among the lash. If the communication pattern 

."'i·il111'11m: the ta$ks is regular, a good strategy is 10 creale p agglomerated tasks that 
minimize communication and map each of these tasks to its own processor. 

Sometimes the number of tasks is fixed and the communication pattern among 
is regular, but the time required to perform each task h~s significant vari­

;"(;ill},ilit" If nearby tasks tend 10 have similar computational requirements, then a 
(or interleaved) mapping of tasks to processors can result in a balanced 

.!'OlnplltallOnal load, at the expense of hi,gher communications costs. 
problems yield an unstructured communication pattern among the 

In this case it is in1portant to map tasKS to processors to mini mize the CODl­

;\i':,~mUllicatlOn overhead of the parallel program. A static load-balancing algorithm. 
~:;l~l~cuted before the program begins running, C'dn determine the mapping strategy. 

To this point, we have focused 011 designs utilizing a fixed number of tasks. 
load-balancing algorithms are needed when tasks are crcated and de­

at run-time or the communication or computational requirements of tasks 
widely. A dynamic load-balancing algorithm is invoked occasionally during 

execution of the parallel program. It analyzes the current tasks and produces 
new mapping of tasks to processors. 

Finally, some parallel designs rely upon the creation of short-lived tasks to 
rform particular functions. Tasks do not communicate with each other. Instead, 
. ask is given a subproblem to solve and returns with the solution [0 that 

roblem. Task-scheduling algorithms can be centralized or distributed. 
In a centralized task-scheduling algorithm, the pool of processors is divided 

" to one manager and many workers. The manager processor maintains a list of 
ks 10 be assigned. When a worker processor has nothing [0 do, it requests a task 

the manager. The manager replies with a task The worker completes the 
returns the solution, and requests another task. A potential problem with 

agcr/worker-style task scheduling is Ihat the manager can become a bottle­
,~k. To some extent this problem can be ameliorated by allocating multiple tasks 
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at a lime or allowing workers to prefetch tasks while they are working on earlier 
tasks. 

In a distributed task-scheduling algorithm, each processor maintains its owo 
list of available tasks_ A mechanism is needed to spread the available tasks among , 
the processors. Some algorithms rely on a "push" strategy. Processors with too 
many available tasks send some of them to neighboring processors. Other algI}­
rithms rely on a "pull" strategy. Processors with no work to do ask neighboring 
processors for work. A challenge with distributed task-scheduling algorithms is 
determining the tennination condition. The uncompleted tasks are spread among 
the processors, and it is difficult for any process to know when all of them have 
been completed. In contrast, the manager process in a managerfworker-·style 
algorithm always knows exactly how many uncompleted tasks remain. 

Other task.-scheduling algorithms represent a c..'ompromise between the 
tralized and decentralized algorithms we have described For example, a two-level 
hierarchical manager/worker strategy has two levels of managers. The higher­
level manager supervises a group of managers. Each lower-level manager ano' 
cates tasks to its own group of workers. Periodically the managers communicate 
with each other to balance the number of unassigned tasks held by each low-level 
manager. 

Figure 3.7 summarizes how different charac..1eristics oIthe parallel "'S"llllllllli! 

lead to different mapping strategies. Hecause the mapping slrategy depends 

Sialic number of tasks 

StnJclure<l 
communication 
pauem 

~ 

Unstructured 
J.:ommunication 
pauem 

Dynamic number of tasks 

Roughly constant Computation Frequefll Many short ·lived 
computation lime timeperlaSK commmatioRl tllsks. No intertalk 
per Task varies by region. between tasks communtcations 

t ~ t t 
Agglomerate tasks to Cyclically map tasks to Use asiatic Use a dynamic Use a run·time 
minimize communicalion. proce.'lsors to balance load balancing load balaneing task-scheduling 
Create one task per processor. computational load. algorithm. algorithm. algorithm. 

Figure 3.7 A decision tree to choose a mapping strategy. The best strategy depends on 
characteristics of the tasks produced as a result of the partitioning, communication, and 
agglomeration steps. 
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c\~;Iili'j;;lQll~ made earlier in the parallel algorithm design process, it is important 
an open mind during the design process. The following checklist (from 

can help you decide if you've done a good job of considering design 

based on one task per processor and multiple lasks per processor 
been considered. 

allocation of tasks to processors has been chosen, the manager 
allocator) is not a bottleneck to performance. 
~ tic allocation of tasks to processors ha~ been chosen, the ratio of 
to processors is at least 10: L 

BOUNDARY VALUE PROBLEM 

our parallel algorithm design methodology to a simple, yet realistic, 
See Figure 3.&. A thin rod made of uniform material is surrounded by a 
mSIUlalwn so that temperature changes along the length of the rod are a 

transfer at the ends of the rod and heat conduction along the length 
he rod has length I. Both ends of the rod are exposed to an ice bath 

O"C, while the initial temperature at distance x from the em;! 
's lOOsin(lTx}. 
'me, the rod gradually cools. A partial differential equation models 

at any point of the rod at any point in time. The finite difference 
way to solve a partial differential equation on a computer. Figure 3.9 
difference approximation to the rod-cooling problem Each curve 

the temperature distribution of the rod at some poillt in time. The 
as time increases. If you look carefully, you can see that each "curve" 

I'f)nnnflCf'n of 10 line segments. In reality, the temperature distributions 

3.8 A thin rod (dark gray) is suspended between 
baths. The ends of the rod are in contact with the 

The rod is surrounded by a thick blanket of 
We can use a partial differential equation to 

the temperature at any point on the rod as a function 
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Figure 3.9 The rod cools as time progresses. The finite difference method finds 
the temperature at a fixed number of points in the rod at certain time intervals. 
Decreasing the size of the steps in space and time can lead to more accurate 
solutions. 
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Figure 3.10 Data structure used in a finite 
difference approximation to the rod-cooling 
problem presented in Figure 3.B. Every paint 
ur,] represents a matrix element cootaining the 
temperature at position i on the rod at time j. 
At each end of the rod the temperature is 
always O. At time 0, the temperature at point x 
is 1 OOsin(7T x). 

should be smooth curves. The fillite difference method computes an approximate 
solution to the panial ditIcrential equation. 

The finite difference method solving this problem stores temperatures in a 
two-dimensional malrix (Figure 3.10). Each row contains the temperature dis­
tribution of the rod at some point in time. The rod is divided inlo n sections of 
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length h, so each row has n + 1 elements. Increasing /I reduces the error in the 
approximation. Time from 0 to T is divided into In discrete entities of length k, 
so the matrix: contains If! + 1 rows. The initial temperature distribution along the 
length of the rod is represented by the points in t he bottom row. These values 
are known. The temperatures at the ends of the rod are represented by the left 
3Ild right edges of the grid. These values, too, are known. Let ui.i represent the 
temperature of the rod at point i at time j. 

[n the finite difference method. the algorithm steps forward in time, using 
values from time j to compute the value for time j + I using the formula' . 

Ui,itl = rUi-l,j + (I - 2r)ui.j + rUitl,i 

first step is partitioning. In this case the data being manipulated are easy to 
there is one data item per grid point. To start, let's associate one primitive 

with ea(:h grid point. This yields a two-dimensional domain decomposition. 

Communication 

that we have identi6ed our tasks, we need to detennine the communication 
between the L'Isks. If task A needs a value from ta~k B to perform its 

we need to draw a channel from task B tD task A. Since the task 
ui,HI requires the value5 OfUi Lj, Ui.], and Uj ti.j, in general each task 

three incoming channels and three outgoing channels (see Figure 111 a). 
tasks on the edges have fewer channels. .' 

ill) 

(a) (e) 

Task/channel graphs for parallel solutions to the boundary value problem, (a) The first 
decomposition associates one task with each temperature to be computed. (b) Aftei the first 

step, a single task now represents lhe computalion of the temperature at element i for all 
eps. (e) After the second agglomeration step, a task is responsible for computing, over all time 
the temperatures for a contiguous group of rod locations. 

7S 



76 CHAPTER 3 Parallel Algorithm Design 

3.4.4 Agglomeration and Mapping 

Even if enough processors were available, it would be impossible to compute 
every task shown in Figure lila concurrently, because the tasks computing rod 
temperatures later in time depend upon the results produced by tasks comput­
ing rod temperatures earlier in time. This is made plain by the vertical paths of 
channels stretching from the bottom tasks to the top tasks. There is no point in 
maintaining the illusion of multiple tasb when they must be performed sequen­
tially. Let's agglomerate all the tasks associated with each point in the rod, that 
is, tasks in the same column in Figure 3.lla. 

The resulting task/channel graph, shown in Figure 3.1 lb, is much less com­
plicated. Now we have a linear array of tasks, each cmnmunicating solely with 
its neighbor(s). Each is responsible for computing the temperatnre at a particular 
grid point for all time steps. 

However, even this graph is likely to have far more tasks than we need to 
keep all of our processors fully occupied, since in a real problem the number of 
rod segments would be large. We can use the decision Iree of figure 17 to come 
up with a mapping strategy, The number of tasks is static (left branch), the com­
munication pattern among them is regular (left branch), and each task performs 
the same computations (left branch). Hence a good strategy is to create one task 
per processor, agglomerating primitive tasks so that computational workloads 
are balanced and communication is minimized. Associating a contiguous piece 
of the rod with each task (Figure 3.llc) preserves the simple nearest-neighbor 
communication between tasks and eliminates unnecessary communications for 
those data points within a single task. 

3.4.5 Analysis 

The rod has been divided into 11 pieces of size h. Let X represent the time needed 
to compute Uj,j i \, givenui_J,j,Uj,j, and [ti+l.j' Using a single processor to update 
the n - I interior values of the rod requires time (11 - I) X. Because the algorithm 
has m time steps, the total expected execution time of the sequential algorithm i~ 
m(n ... l)X. 

Now let's compute the expected execution time of the parallel algorithm. Let 
p denote the number of processors executing the algorithm. If each processor 
is responsible for an equal-sized portion of the rod's elements, the computa­
tion time for each iteration is X r (11- 1)/ P 1. However, the parallel algorithm 
involves communication that the sequential algorithm does not, and we must 
account for that time. [n general, each processor must send values to its two 
neighboring processors and receive two values from them. if ).. represents the 
time needed for a processor to send (receive) a value to (from) another proces­
sor, then the necessary communications increase the parallel execution time for 
each iteration n. In our tasklchal1nel model a task may only send Ol1e mes­
sage at a time, but it may receive a message at the SIJJTIR time it is sending [J 

message. Therefore, the task requires time 2)" to send data values to its two 
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neighbors but receives the two data values it needs from its neighbors at the same 
time. 

Combining computation time with communication time, we see the over­
all parallel execution time per iteration is X r (n - I) / p 1 + 2A, and our es­
timate of the parallel execution time for all m iterations of the algorithm is 
m(xf(n -O/pl +2),.). 

395 FINDING THE MAXIMUM 

3.5.1 Introduction 

lbe finite difference method we are using to compute the temperature distribution 
in the rod as a function of time only approximates the solution of the underlying 
partial differential equation. The reason we use finite difference or finite element 
methods to solve partial differential equations is thai the boundary value problems 
arising from real-world situations are too complicated to solve analytically. 

Howeve~, the heat conduction problem we examined in the previous section 
is simple enough to solvf7analytically. That means we can determine, for each 
Df the m points along the rod, the difference between the computed solution and 
the correct solution. -The error between the compute{\ solution x and the correct 
solution c is I (x -r)/ rl. Let's enhance our parallel algorithm to find the maximum . 

• ' error. 
Given a set of n values Qo, UI, U2, ••. , UII _) and an associative binary operator 

$, reduction is the process of computingufj ffia) EEl Uz EEl··· ffi Ull-i. Addition is 
an example of an associative binary operator. Hence finding the sum llo + ill + 
a2 + ... + G,,_I is an example of a reduction. 

YOll may not realize that minimum and maximum are associative binary op­
erators, because they do not appear as operators in most programming languages. 
However, these two associative operators are extremely usefuL For example, in 
the problem we are considering, we want to find the maximum value of a sct. 

Since reduction requires exactly n -I operations, it has 8(/1) time complexity 
on a sequential computer. How quickly can we perform a reduction on a parallel 
computer? Without loss of generality, let's make the following explanation easier 
to read by assuming the operator is addition. 

3.5.2 Partitioning 

Since the list has n values, let's divide it into n pieces; in other words, as finely 
a~ possible. If we associate one task per piece, we have n tasks, each with one 
value. Our goal is to find the sum of all n values. 

3.5.3 Communication 

A task cannot directly access a value stored in the memory of another task. In 
order to compute the sum, we must set up channels between the tasks. A channel 

17 
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from task A to task B allows task B to compute the sum of the values held by 
the two tasks. We want the communicating and summing to happen as quickly 
as possible. In one communication step each task may either send or receive one 
message. 

At the end of the computation we want one task to have the grand tolal. We'll 
call this the root task. Let's start with a brute force approach: each of the other 
tasks sends its value to the root task, which adds up all the values (Figure 3.12a). 

If it takes).. time for a task to communicate a value to another task and 
X time to perform an addition, then this first parallel algorithm requires time 

(aj (b) 

(c) 

Figure 3.12 Evolution of an ellicient parallel algorithm for 
reduction. (a) One task receives a list element from each of the 
other n --1 tasks and pertorms all the additions. (b) Two tasks 
work together. Each receives list elements from n/2 - 1 other 
tasks. After nj2 addition steps, one task sends its subtotal to the 
first task. Compared to the original version, the computation time 
is cut nearly in half. (c) Four tasks cooperate. Each receives list 
elements from nj4·, 1 othertasks. After nj4 concurrent addition 
steps, there are four subtotals. These can be combined in two 
more communication/computation steps. 
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(n - liO. + x).(The communication time is (n- l)A because the roottask must 
receive n - I messages.) This is actually slower than the sequential algorithm. 
We need to balance the communication and the computation better. 

What if two tasks cooperated to perform the reduction? Lcl'&-have two semi­
root tasks, each responsible for n /2 of the .elemcnts (Figure 3. \2b). Now two 
communications can happen simultaneously, and after each communication two 
additions can happen at once. In time (n/2 - I)(). + X) each semiroot task has 
a subtotal for irs half of the elements. Now one of the semiroot tasks can pass 
its subtotal to the other task. In one additional communication/computation step 
a single task ha~ the grand totaL The expected eXt''cution lime of this parallel 
algorithm is (n/2)(A + X). 

Why not continue the process? What if we had four semiroot tasks, each 
responsible for 11./4 of the list elements (Figure 3.Uc)? We have increased the 
communication and computation concurrency to four. After the four subtotals 
have been computed, two remaining communication/computation steps yield the 
grand totaL This algorithm is nearly four times as fa.,t as the original algorithm. 

Ifwe takc this notion to the limit; we haven /2 semirool tasks, each resp~msible 
for two list~lementS.ln the first step of the algorithm half the tasks send messages 
to the other halfofthe tasks. After Ibis step, the receiving tasks can simultaneously. 
add the values they received to the values they controlled, reducing the number 
of values to be added in half. 

A single message-passing step is sufficient to combine two values into one. 
Two message-passing steps are sufficient 10 combin.e four values i~to two. In 
general, it is possible to pelform a reduction of n values in log II message passing 
steps. See Figure 3. 13, which illustrates binomial tret's with one, two, four, and 
eight nodes. In a tree with n = 2' nodes, the maximum distance from any node 
to the root in the lower left corner is k = logn. The binomial tree is one of the r-o 
most common communication patterns in parallel algorithm design. 

Figure 3.14 demonstrates how 16 tasks can combine their values in four 
communication steps when the channels are in the form of a binomial tree. In the 
first step, half of the tasks send values, and half of the tasks receive values. At 
this point the tasks that sent values become inactive, and the algorithm recurses 
on the remaining tasks. Half of the remaining tasks send values, and half of the 
remaining tasks receive values, and so on, until only a single task remains. This 
task, called the root, has the result of the reduction. 

o 
Figure 3.13 Binomial trees with 1, 2, 4, and 8 nodes. 
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{a) (b) (c) 

(d) (e) 

Figure 3.14 Finding the global sum in logarithmic time. (a) A task/channel graph forming a binomial 
tree. There is one task for each integer value tn the list to be added. (b) Half of the tasks send values, 
and half of the tasks receive values and add. The sending tasks become inactive. (e) A quarter of the 
tasks send values, and a quarter of the tasks receive values and add. The sending tasks become 
inactive. (d) The process recurses with two sending tasks and two receiving/adding tasks. (e) In the 
final step, one task sends and one task receives and adds. The receiving/adding task has the grand 
total. 

What if the number of tasks is not a power of 27 In this case, we mod 
ify the first step of the algorithm. Suppose the number of tasks n = 2' + r 
where r < 2k. In the first step, r tasks send values, and r tasks receive values 
at which point r tasks become inactive. Once this step has been completed, thl 
number of tasks with values is t, and the previously described algorithm wil 
work. 

For example, consider a reduction among six tasks, as illustrated in Fig 
ure 3.15. In the first step two tasks send values to two other tasks. After this ste] 
four tasks have values, and the reduction can be done in log 4 = 2 steps. 

We see, then, that if the number of tasks n is a power of 2, reduction can b 
performed in log n communication steps. If n is not a powerof2, llognJ + lcom 
munication steps are required. Hence in general the number of communicatio 
steps required for n tasks to perform a reduction is flog n 1. 
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Step I Step 2 Step 3 

Figure 3.15 Example of reduction when the number of tasks is not a 
power of 2. 

i4 i2l3T5l 
--sum:::; 

'/ 

18111-4141 
-_._---j>-

sum 

(a) (b) 

10171-61-31 ---sum 

------- '\' 
121 3 16 1-11 
-~ ... ~----p.. 

sum 

. . 

81 

Figure 3.16 Example of agglomeration. (a) The original task/channel graph for the parallel reduction 
algorithm. (b) Sixteen tasks are mapped to four processors. Each processor has an equal number of 
tasks, and interprocessor communication is minimized. (c) The four tasks on each processor are 
agglomerated into a single task. Each task uses the sequential algorithm to find the local subtotal before 
communicating with the other tasks. 

3.5.4 Agglomeration and Mapping 

Figure 3.16a repeats the task/channel graph for a parallel reduction algorithm. 
Before implementing the algorithm as a parallel program, we need to perform a 
mapping of this /l-taskgraph onto a set of p processors. To simplify our discussion, 
let's assume p is also a power of 2, but p is much less than lI-

The number of tasks is static, computations per task are trivial, and the com­
munication pattern is regular. Using the mapping decision tree of Figure 3.7, we tJ 

conclude that we should agglomerate tasks to minimize communication. We can 
do this by assigning nip "leaf' tasks to each of the p processors, as shown in 
Figure 3.l6b. 

As we agglomerate primitive tasks, there is no value to maintaining the il­
lusion of separate tasks communicating with each other within a single physical 
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processor. The goal of this portion of the computation i5 simply to determine the 
sum of ni p values. Instead of ni p primitive tasks, each witb a single value, we 
have a single task with ni p values. The result is shown in Figure 3.l6c. The nice 
thing about this agglomeration is that it matches the one we have already chosen 
for the boundary value problem in the previous sec Lion. That means we can easily 
add this enllancement to OUf original parallel al.gorithm. 

3.5.5 Analysis 

At this point we can derive an expression for the expected running time of a 
parallel program to perf onn reduction. Let's define the following consL.1.nt~: 

X: time needed to perform the biliary operation 
f.: Lime needed Lo communicate an integer value from one task to another 
via a channel 

If the /1 integers are divided evenly among the p tasks, no task will be re­
sponsiblefor more than r nip 1 integers. Since all tasks perform concurrently, the 
time needed for all the tasks Lo compute their subtotals is 

(flli p 1- i)x 

We have already seen that a reduction of p values distributed among jJ tasks can 
be performed in rlog p 1 communication steps. The receiving processor must not 
only wait for the message Lo arrive, iL must also add the value it received to the 
value it already has. Hence each reduction step requires time 

Since there are flog p 1 communication steps, the overall execution time of the 
parallel program is 

(fl1ip1-l)x + pogpl(1+ X) 

3.6 THE n~BODY PROBLEM 

3.6.1 Introduction 

Some problems arising in physics can be solved by pelforming computations 
on all pairs of objecLs in a dataset. For example, in some molecular dynamics 
problems the forces .on the molecules may have a Coulombic or other long -range 
component. In a Newtonian n-body simulation, gravitational forces have infinite 
range. SlraighLforward sequential algorithms to solve these problems typically 
have lime complexity 8(n1

) per iteration, where 11 is the number of objects. 
While algorithms with significantly beLter time complexity have been developed 
for n-body problems, our focus here i5 on parallel algorithm development. For 
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o o 
Figure 3.17 In the n-body 
problem every particle exerts a 
gravitational pull on every other 
particle. In this Iwo-dimensional 
example, the white particle has a 
particular position and velocity 
vector (indicated by a black arrow). 
Its future position is influencea by 
the gravitational forces exerted by 
the other two particles. 

Ihis reason we consider the parallclization of a sequential algorithm in which 11 

computation is perfonned on every pair of objects. 
To ground our discussion, let's suppose we're solving an fl-body problem. 

We are simulating the motion of n particles of varying mass in two dimensions. 
During each iteration of the algorithm we need to compute the new position 
and velocity vector of each panicle, given the positions of all the other particles 
(Figure 117). 

3.6.2 Partitioning 

Our first step is to partition the dataset. To start with, let's a,sume we have one 
task per particle. In order for this task to compute the new location of the particle, 
it must know the locations of all the other particles. 

3.6.3 Communication 

A gather operation is a global communication that takes a dataset distributed 
among a group of tasks and collects the items on a single task (Figure 3.18a). 
Unlike reduction, which computes a single result from the data elements, a gather 
operation results in the concatenation of the data items_ An all-gather operation 
is similar to gather, except at the end of the communication every task has a copy 
of the entire dataset (Figure 118b). 

In this case we want to update the location of every particle, so an all-gather 
communication is called for. Ooe way to do this is to put a channel between every 
pair of tasks (Figure 119). During each communication step each task sends its 
vector element to one other task. After n I communication steps, each task has 
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(a) 

(b) 

~}) 

8 
€~.)) 

8 
Figure 3.18 (a) The gather communi.cation builds 
the concatenation of a set of data items on a single 
task. (b) The all-gather communication builds the 
concatenation of a set 01 data items on aU tasks_ 

Figure 3.19 One way to 
make all data values 
availalble to all tasks is to 
set up a channel between 
every pair of tasks. 

F'"JgUre 3.20 The 
all-gather data 
communication 
requires that each 
task have only log p 
outgoing channels and 
log p incoming 
channels. 
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the positions of allthe other particles, and it can perform the calculations needed 
to determine the new location and velocity vector for its particle. 

Is tbere a quicker way to get all values to all tasks'! Inspired by parallel 
rc;ductioll, we ought to be looking for a way to perform the data routing in a 
logarithmic number of communication steps. 

We can usually think about these algorithms from the top down or from the 
bottom up. We took a top-down approach to derive the reduction algorithm. For 
variety, let's try a bottom-up approach here. 

Suppose Ulere were only two partic1es_lf each task has a single particle, they 
can excbange copies of their values. Each task sends one value on one channel 
and receives a value on another channeL What if there are four particles? AfIer a 
single exch.mge step tasks 0 and I could both have particles lIo and Vb and tasks 2 
and 3 could have particles t'l and II]. If task 0 now exchanges it~ pail of particles 
with task 2, while task 1 exchanges its pair of particles with task 3, all tasks will 
have all four particles_ A task/channel graph for this improved algorithm appears 
in Figure 3.20. 

A logarithmic nu mber of exchange steps are necessary and suflicient 10 allow 
every proc~or to acquire the value originally held by every other processor. In 
the first exchange step the messages have length I. In the second exchange step the 
messages have length 2.1n the ith exchange step the messages have length 2' I. 

The task/channel graph shown in Figure 3.20 is an example of a hypercube 
network, which we first encountered in Chapter 2. Task/channel graphs in the form 
of hypercubes often occur in efficient algorithms implementing various all-to-all 
data exchanges. 

3.6.4 A~glomeration and Mapping 

In general. [bere are far more particles I! than processors p. Let's assume that 
n is a mUltiple of p. We associate one task per processor and agglomerate nJp 
particles ir:to e3ch task. Now the all-gather communication operation requires 
log p communialtion steps. In the first step the messages have length nJp, in the 
second slep the messages have length 211/ p, etc. 

3.S.5 A81alysis 

Now wecan derive an expression for [he expected execution time of this algorithm. 
In the previolls examples we assumed that it took). units oftime to send a message. 
However, in tbeseexamples the messages always had length L Now the messages 
can be mu~h longer. It is unrealistic to expect that the time needed to send or 
receive a message is independent of the message length, so we'll add a new term 
to our formula for message-passing time. From now on l (latency) will represent 
the time needed to initiate a message. Let fi (bandwidth) represent the number 
of data it~iTIg that can be sent down a channel in one unit of time. Sending a 
message "'1!aining n data items requires time A + nJ fi (Figure 3.2l). Note that 
as bandWidth increases, communication time decreases. 
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Time 

Message I~ngth 

Figure 3.21 The time needed 10 send a 
message of length n is modeled by the linear 
function A + nJ fl. The y intercept, A, is the 
message latency, while fl. the inverse 01 the 
slope, is the bandwidth of the communication 
~ystem. 

The communication time of the algorithm each iteration is 

rllg Jl
( 2;-1 11). n(p-I) L ).+-- =Alogp+ 

i~1 fJp . ~p 

Each la,K. is responsible for performing the gravitational force computalion 
for n/ p list elements. Suppose the lime neededfQf this computation is X. The 
computation time associated with the parallel algorithm each iteration is X (nj pl. 

Putting together the communication lime of the parallel convolution algo­
rithm with the compulation time, we derive an expected parallel execution time 
per iteration of 

Alogp + n(p - l}j(fJp) + X (njp) 

3.7 ADDING DATA INPUT 

3.1.1 Introduction 

Most programs input and output data, yet the task/channel model as defined does 
not address durn input/output. Let's consider how to add input and output to the 
nobody algorithm we have jllst developed. As we dlilSO, we'll also add I/O channels 
to the basic modeL 

Let's suppose ourparaUel program will inpul the original positions and veloc­
ity vectors for the n particles. Commercial parallel computers often have parallel 
I/O systems, but commodity clusters often rely upon external file servers sloring 
ordinary Unix files. For this reason, we set aside any notions of parallel I/O for 
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Figure 3.22 To show that task 0 is 
responsible for 1/0, we augment the 
task/channel graph. I/O devices appear 
as rounded rectangles. 

the time being and assume a single Lask is responsible for performing file 110 
operations . 

. We augment the lask/channel graph for the n-body problem, shown in Fig­
ure 3.20, by adding new channels for file 110. The resulting task/channel graph 
appears in figure 3.22. We'll give the task performing file I/O the rather obvious 
name of the 1/0 task. Note that we are not adding a new task to perform UO. 
Instead, we are assigning additional duties to task O. 

The 110 task begins hy opening the data file and reading thel'ositions and 
velocities of the n particles. Since we're doing a two-dimensional simulation, 
a pair of coordinates identiHes a particle's location, while its velocity can be 
represented by another pair of values. If Ajo + nj Pio models the time needed to 
input or output n data elements, then reading the positions and velocities of all 
n particles requires time Aia + 4nfho. 

3.1.2 Communication 

After the 110 task inputs the particles, we must figure out how to break up the 
input data into pieces so that each task has il~ assigned subsection containing 
nip elements. This global communication operation is called scatter. Can you 
see how a scatter operation is like a gather operation in reverse? 

One wuy to scatter the particles is for the JlO task to simply send the correct 
nip particles to each of the other lasks in turn. In other words, it sends p - I 
messages, each of length 4n I p. The time required for this is 

(p-I*+4n!(p~)) 

This is not an efficient algorithm, because the communication is not balanced 
among the processors. 

Using a process similar to what we have already done several times in this 
chapter, we can derive a scatter operation requiring log p communication steps. 
in the Hest step the I/O tusk sends half the list to another lusk. In the second step 
each task with a half list sends a quarter list to previously inactive tasks. Now 
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four tasks each have a quarter of the list In step 3 the four tai;k.s with quarter lists 
send eighth lists to four previously inactive tasks, and so on. The time required 
for this is 

IDgp 

L (1 + 4n/(i pf3)) = 1 log p + 4n(p -l)/(}3p) 
i=1 

Now we have seen two different designs for the scatter algorithm. In the first 
algorithm one task. sequentially sends p -l messages to the other tasks. It requires 
time (p -1) .. + 4n(p - l)/(fJp). 

The second algorithm works through about log p steps. (We fudge because p 
might not be an integer power of 2.) The total communication time is log(p)l + 
4n(p - l)/(fip).lt is superior to the first algorithm. 

Note that data transmission time (the term with the 13) is idenlical for both 
algorithms. In the first algOilthm each particle is passed diret.1ly to the task respon­
sible for it. In the .second algorithm particles are moved repeatedly. The typical 
particle is passed in about log p messages. Why, then, will a program based on 
the second algorithm spend no more time transmitting data than a program based 
on the first algorithm? Our lasklchwmel model supports the coru:urrent tralls­

mission of messages from ml,ltiple task!, as long as lhey use different channels, 
and no two active channels have the same source or destination task. This is a 
reasonable assumption on a commercial system. It is also a reasonable' assump­
tion on clusters in which each processor has a direct connection to a switch with 
sufficient backplane speed to support many concurrent messages between. pairs 
of processors. It is not a reasonable assumption on a network of workstations 
connected by a hUb or any shared communication medium that supports only a 
s.ingle message at a time. 

3.7.3 Analysis 

We can now derive an expression for the tout! expected execution time of the 
parallel n-body algorithm. The inpot and output of the positions and velocities of 
the n particles is a completely sequential operation requiring time 

2(1'0 + 4n I ~io) 

Scaltering the particles at the beginning of the algorithm and gathering the 
particles at the end of the computation require time 

2 ().. log P + 4n(p - l)/(~p)) 

Each iteration ofthe parallel algorithm requires an aU-gather communication 
of the particles' positions. An implementation of this algorithm has approxi~late 
execution time 

llog p + 2n(p -l)I(~p) 
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Finally, each processor performs its share of the computations; The expected 
execution time per iteration is 

xf(n/ p)j(n - I) 

Suppose the algorithm executes for m iterations. The expected overall exe~ 
cution time of the parallel computation is about 

2(AjQ t 4n / fit.) t 2(A log II t 411(p - I )/Cj3p)) 

tm(A log p + 2n(p -1)/({3p) t x fCnlp)l (n -I)) 

3.8 SUMMARY 
The task/channel model described in this chapter is a theoretical construct that 
represents ~ parallel computation a., aset of tasks that may interact with each other 
or 1/0 devices by sending messages through channels. This model is useful be­
cause it encourages parallel algorithm designs thai maximize local computations 
and minimize communications, and these designs are a better.fit for distributed­
memory parallG! computers. 

In the process of developing a parallel algorithm for the tasklchannel model, 
the algorithm desi gner typically partitions the computation, identi (les communi­
cations among primitive tasks, agglomerates primitive tasks into larger tasks, and 
decides how to map tasks t(}processors. The goals of this process are to maximize 
processor utilization by distributing the computational steps among the proces­
sors while minimizing interprocessor communications. Since neither goal can be 
reached without seriously compromising the other, good designs must strike a 
balance between them. 

Reduction is the application of an associate binary operator across a dataset 
Parallel algorithms often require reductions such a, finding the grand total of 
values distributed across all the ta~ks. We developed a logarithmic-time parallel 
algorithm to perform reduction operations. The task/channel graph for reduction 
is in the form of a binou'lial tree. 

We also developed an efficient parallel algorithm to form an all-gather op­
eration, which provides ever~ task with the concatenation of values collected 
from the entire set of tasks, Our algorithm requires only a logarithmic number 
of communication steps. It relies upon a task/channel graph in the form of a 
hypercube. " 

Finally, we considered the problem of scattering data on a single task among 
a set of ta,ks, a~ well as the inverse problem of gathering data distributed among 
a set of ta,ks back onto one task. The binomial tree is a suitable task/channel 
graph for scatter and gather operations when communication time is dominated 
by message latency. 
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3.9 KEY TERMS 
agglomeration 
all-gather 
asynchronous 
binomial tree 
blocked task 
channel 
domain decomposition 

functional decomposition 
gather 
global communication 
increasing locality 
local communication 
mapping 
partitioning 

3.10 BIBLIOGRAPHIC NOTES 

primitive task 
processor utilization 
reduction 
scatter 
synchronous 
task 

Part I of Foster's book, Designing atul Building ParalJel Programs: Concepts and 
Tools for Parallel Software Engineering, is devoted to developing a parallel al­
gorithm design methodology based on the task!channel model 131]. He provides 
a more detailed treatment of the four-step desiEn process (partitioning, wmmu­
nieation, agglomeration, and mapping) presented in this chapter. The book also 
contains a variety of case studies illustrating the methodology. 

Carriero and Gelemter present a mueh different view of parallel algorithm de­
sign. Their book, How to Write Parallel Programs: A First Course, describes three 
parallel algorithm design paradigms: result paraJl elism, specialist parallelism, and 
agenda pamllelism [15]. Seeing the field of parallel algorithms from another per­
spective is a good way to enhance your capacity for "thinking in parallel." 

Valiant has proposed the bulk: synchronous parallel (BSP) model as a way 
of "bridging" the gap between parallel software and hardware 1107]. The BSP 
mode! is designed to provide parallel algorithm designers the same benefits that 
the von Neumann model brings to the designers of seqUl'JItial algorithms. A BSP 
computation is a sequence of supersteps. Each superstep consists of a sequence 
of steps in which processors perform computations on local data, followed by a 
barrier sy nchrooization, when nonlocal data exchanges among the processors take 
place. For more information on BSP, check out the Web site for BSP Worldwide: 
www _ bsp·-wor Idwide. argo 

3.11 EXERCISES 
3.1 Give an example of how increasing processor utilization increases 

interprocessor communication. 

12 Calculate log 11, llog n J, and nog n 1 for thefollowing values of II: 
a. 3 

b. 13 
c. 32 

d. 123 
e. 321 



3.3 Draw binomial trees of the following sizes: 
a, 16 nodes 
b, 32nodes 

SECTION 3.11 t.xercises 

3.4 Draw hypercubes of the following sizes, labeling the nodes: 
a, 161lodes 

b. 32 nodes 

3.5 Given a four -dimensional hypercube, draw four different subgrdphs that 
are l6-vertex binomial trees. All four trees should be rooted at the same 
hypercube node. In each of these graphs, show the unused hypercube 
edges. 

3.6 Illustrate how to perform a reduction in pog n 1 communication steps for 
the following values of n: 7, 11,21. 

3.7 Using the communication pattern illustrated in Figure 3.15 as your guide, 
write a C program that describes the communications performed by a 
task participating in a reduction. Given the number of tasks n and a task's 
particular identificalion number i, where 0 :S i < n, the program should 
prin't a list of messages sent and/or received by task i. TheJnessage list 
should indicate the destination ta,k of all sent messages and the source 
task of all received messages. 

For example, for the case where II = 6 and i = 1, the output of the 
program should be 

Message received from task :) 
Message received from task 3 
Message sent to task 0 

3.8 Prove that performing an 11-element reduction on the task/channel model 
has time complexity Q(1ogn). 

3.9 Many parallel algorithms require a broadcast step in which one ta~k 
communicates a value it holds to all of the other tasks. ' 

a. Using the taskkhannel model described in this chapter, devise an 
efficient parallel algorithm implementing broadcast 

h. Prove that the algorithm you devised in part (a) has optimal time 
complexity. 

3.10 The all-gather algorithm we have developed routes n values to each of 
p tasks, while tile scatter algorithm we have developed routes only about 
flip values to each of p ta~ks, yet both algorithms have time complexity 
8(n + log pl. Explain. " 

3.11 Design a parallel algorithm to perfonn an all-to-allexchange. There are 
p processes where p is a power of 2. The processes are manipulating 
vectors of length p. Let Xi •j denote the jth element of a vector controlled 
by process i_Each process begins with vector A. Each process ends with 
vector B, where Bi.j = A j.i, in other words, the vector B held by process 
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i is the concatenation of the itll elements o[ all the A vectors. What is the 
complexity of your parallel algorithm? 

3.12 The bubblesort algorithm sorts an array of keys a [OJ, a[I], ... , aLn - I] 
by repeatedly wmparing adjacent keys. If aLi] > ali + 1], it exchanges 
the keys. The process continues until a[ol < a[IJ < ... aLII - I]. Using 
me tasklchannel model, design a parallel version of bubblesort Draw 
two task/channel diagrams for the parallel bubblesort. The first diagram 
should show primitive tasks. The second diagram should show 
agglomerated tasks. 

3.13 A binary image is stored as an n x n array o[Os and Is. The Is represent 
O,bjoots,:whi~ titi;,Osrepresent empty space between objects. The 
component labeling problem is to a~sociate a unique positive integer with 
every object At the end of the algorithm, every I-pixel will have a 
positive integer labeL A pair o[ I-pixels have the same label if and only if 
they are in the same component (object). The l-pixels are in me same 
component if they are linked by a path of I-pixels. Two I-pixelsare 
contiguous if they are adjacent to each other, either horizontally or 
vertically. Using the tasklchannel model, design a parallel algorithm 
solving the component labeling problem. Draw two task/channel 
diagrams for the parallel algorithm. The first diagram should show 
primitive ta,ks. The second 4iagram should show agglomerated tasks. 

3.14 Given a crossword puzzle and a dictionary, design a parallel algorithm to 
find all possible ways to fill in the crossword puzzle so that every 
horizontal and vertical word space contains a word from the dictionary. 

3.15 You are given an array o[ n records, each c(mtaining the.x and y 
coordinates of a house. You arc also given the x and y coordinates Qf a 
railroad station. Design a parallel algorithm to find me house closest to 
the railroad station (as the crow flies). Draw two taskkhanncl diagrams. 
The first should show primitive tash. The sewnd should show 
agglomeratlXi tash. 

3.16 The string matChing problem is to find all occurrences of a particular 
substring, called the patt~m. in another siring, called the text. Design a 
parallel algorithm to solve the string matching problem. 

3.17 Reconsider the string matching problem presented in the previous 
example. Suppose you were only interested in finding the first occurrence 
of the pattern in the text. How would that {;hange the design of your 
parallel algorithm'! 

3.18 Given a list of n keys, a [0], a[ IJ .... , u[ n - IJ, all with distinct values. 
design a parallcl algorithm to find the sewnd-largest key on the list. 

3.19 Given a list of n keys, a[O], al'lJ, .... urn - 1]. design a parallel 
algorithm to find the second-largest key on the list. Note: Keys do not 
necessarily have distinct values. 



C HAP T E R 

Message.Passing Programming 

The voice of Nature loudly cries 
rind many a message from the skies, 
Tilm something in us r!ever dies. 

Robert Burns, New Year's Day 

4.1 INTRODUCTION 
Dozens of parallel programming langu.ages have been introduced in the past 
40 years. Many of them are high-level languages that simplify various aspects 
of managing parallelism. However, no single high-level parallel language has 
gained widespread acceptance in the parallel programming community. Inslead, 
most parallel programming continues to be done in either Fortran or C aug­
mented with functions that perform message-passing between processes. The 
MPI (Message Passing Interface) standard is the most popular message-pas~ing 
specification supporting parallel programming. Virtually every commercial par­
allel computer supports MPI. and free libraries meeting the MPI standard are 
al'ailab Ie for "homemade" commodity clusters. 

In this chapter we begin a multiple-chapter introduction to parallel program· 
ming in C with MPI. Using the circuit satisfiability problem as an example, we 
design, write, enhance, and benchmark a simple parallel program. In doing so we 
intnxiuce the following functions: 

• MPC1nit, to initialize MPI 
• MP1_Com::n_rank, to determine a process's ID number 
• MP1_C01IUTI __ si ze, to find the number of processes 
• MP I_Reduce, to perform a reduction operation 

• MPI]inalize, to shut down MPl 
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• MPI_Ba~rier., to perfonn a barrier synchronization .~,.~,~". 

• H:!=' T _ W t. ime, to detemune the time 
• IVfPI_Wi; ick, to find tJl(: accuracy of the timer 

4.2 THE MESSAGE·PASSING MODEL 
The message-pa~sing programming model is similar to the task/channel model 
we described in Chapter 3. See Figure 4.1. The underlying hardware is assumed 
to be a collection of processors, each with its own local memory. A processor has 
direct access only to the instructions and data stored I~ ils localllteIl.lOr~. How:., 
ever, an inlercofmection networls~pport~M~S'i~g~~p1tssi~g bciw~n pr~~e~sors~' 
Processor A may send a message containing some of its local data values to 
processor B, giving processor B indirect access to these values. 

A task in the taskkhannel model becomes a process in the message-passing 
modeL The existence of the interconnection network means there is an implicit 
channel between every pair of processes; that is, every process can communicate 
with every other process. However, we will want to take advantage of the design 

Processor 

Processor Memory Processor 

.-----------~ y~ _,--orr-----, 

Processor Processor 
Interconnection 

network 
Memory Memory 

-=,~1~·"' 
Memory Processor Memory 

Memory 

Figure 4.1 The message-passing model assumes 
that the underlying hardware is a collection of 
processors, each wilh its own local memory, and an 
interconnection network supporting message-passing 
between processors: 
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strategies we have learned morder to keep communication overhead from llIining 
the efficiency of our parallel programs. 

The user specifies the number of concun-entprocesses when the program 
begins, and typically the number of active processes remains constant throughout 
the execution of the program_ Every process executes the same program, but be­
cause t'3ch one has a unique ID number, different processes may perform different 
operations as the program unfolds. A process alternately performs computations 
on its local variables and communicates with other processes or I/O devires. 

It is important to realize that in a message-passing model, processes pass mes- ,.....0 
sages both to communicate and to synchronize with each other. When a message 
containing data passes from one process to another, it obviously serves a com­
munication function. A message has a synchronization function, too_ Process B 
cannot receive a message from process A until after pwcess A sends it. Hence 
receiving the message tells process B something about the state of process A. For 
this reason, even a message with no content has meaning. 

Advocates of the message-passing model of parallel computation point to­
ward several advantages it has over other parallel programming models. First, 
message-pfJi)sing programs run well on a wide variety of MIMD architectures. 
They are a natural fit for multicomputers, which do not support a global address 
space. However, it is also possible to execute message-passing programs on multi­
processors by using shared variables as message buffers. In fact, the message-

-passing model's distinction between faster, directly accessible local memory and 
slower, indirectly accessible remote memory encourages designers to develop al­
gorithms that maximize lor.a1 computations while minimizing communications. 
The resulting programs tend to exhibit high cache hit rates when executing on 
multiprocessors, leading to good performance. Put another way, the message­
passing model provides the multiprocessor programmer with the tools needed to 

manage the memory hierarchy. 
Second, debugging message-passing programs is simpler than debugging 

shared-variable programs. Since each process controls its own memory, it is not 
possible for one process to accidentally overwrite a variablec{lntrolled by another 
process, a common bug in shared-variable programs. Nondeterministic execution 
(e.g., different processes accessing the same resource in different orders on several 
program executions) complicates debugging. In the IDt'ssage-passing model it is 
easier to construct a program that executes detenninistically. 

4.3 THE MESSAGE·PASSING INTERFACE 
In the late 1980s many companies began manufacturing and selling multicomput­
ers. Typically, the programming environment for one of these systems consisted 
of an ordinary sequential language (usually C or FORTRAN), augmented with 
a message-passing library enabling processes to communicate with each other. 
Each vendor had its own set of function calls, which meant that a program devel­
oped for an Intel iPSe, for example, could not be compiled and executed on an 
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nCUBEJlO. Programmers did not appreciate this lack of portability, and after a 
few years there was a great deal of support for the creation of a message-{ydSsing 
library standard for parallel computers. 

In the summer .of 1989 the tirst version of a message-passing library called 
PVM (Parallel Virtual Machine) was written at Oak Ridge National Laboral:ory. 
PVM facilitated the eXi,,'Cution {)f parallel programs across heterogeneous c{)llec­
tions of serial and parallel computers. While the original version was used within 
Oak Ridge National Laboratory, it was not released to the public. Team members 
rewrote the software twice and released version 3 of PVM to the public in March 
1993 [39]. PVM immediately became popular among parallel programmers. 

Meanwhile, the Center for Research on Parallel COI~puting sponsored th~ 
Workshop on Standards for Message Passing in a DistnlilltCd MemorY E~~iion­
ment in April 1992. This workshop attracted about 60 people [rom 40 organiza­
tions, primarily from the United States and Europe. Most major multicomputer 
vendors, along with researchers from universities, government laboratories, and 
industry, were represented. The group discussed basic features of a· standard 
message-passing interface and created a working group to continue the standard­
ization process. In November i992 the preliminary draft proposal wa.~ completed. 
The Message Passing Interface Fllrum met from November 1992 to April 1994 
to debate and refine the draft standard. Rather than simply adopt as a standard 
one of the many existing message-passing libraries, such a~ PVM or one of the 
commercial vendors' libraries, the MPI Forum attempted to pick and choose their 
best features. Version 1.0 of the standard, commonly referred to as MPI, appeared 
in May 1994. Since then, work has continued to evolve the standard, in particular 
to add parallel JlO and bindings to Fortran 90 and C+t. MPI-2 was adopted in 
April 1997. 

Today, MPI has be<;ome the most popular message-passing library standard 
for parallel programming. It is aV'.dilable on most commercial mUlticomputers. 
For those who are constructing their own multicomputers with commodity, off­
the-shelf parts, free versions of MPI libraries are readily available over the Web 
ii'om Argonne National Laboratory and other sites. 

Writing parallel programs using MPI allows you to port them to different 
parallel computers, though the performance of a particular program may vary 
widely from one machine to another. 

4.4 CIRCUIT SATISFIABILITY 

For our initiation to MPL we will implement a program that computes whether the 
circuit shown in Figure 4.2 is satisfiab!e. In other words, for whal combinations of 
input values (if any) will tile circuit output the value I? The circuit-satisfiability 
problem is important for the design and verification of logical devices. Unfortu­
nately, it is in the class NP-complete, which mean~ there is no known polynomial 
time algorithm to solve general instances of this problem [38]. 
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Figure 4.2 A circuit containing AND, OR, and NOT gates. The circuit satis/lability 
problem is to determine if some combination of inputs causes the output of the 
circuit to be 1. 

One way to solve the problem is 10 try every combination of inputs. Since 
this circuit has 16 inputs, labeled a-p, and every input can take on two values, 0 
and I, there are2 16 = 65,536 combinations of inputs. 

As we saw in Chapter 3, the first step in parallel algorithm development is 
partitioning. Where is the parallelism? In this case, the parallelism is easy to spot. 
We need to test each of the 65536 combinations of inputs on the circuit, to see 
if any of them result in the output value I. A functional decomposition is natural 
for this application. We associate one ta~k with each combination of inputs. If a 
task finds that it, combination of inputs causes the circuit to return the value I, it 
prinl~ its combination. Since all of these tasks are independent, the satisfiability 
checks may be performed in parallel. 
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figure 4.3 The task/channel 
graph for the circuit satisfiabilily 
problem. This is an ex.ample of an 
embarrassingly parallel problem, 
because there are no interactions 
among the tasks. 

The task/channel graph for the circuit satistlability problem appears in Fig­
ure 4.3. Since the tasks do not need to interact with each other, there arc no chan­
nels between task.~. (Some people call this an embarrassingly parallel problem.) 
However, since any of the tasks may produce output, there is a channel from each 
task to the output device. 

Our next step is to think about agglomeration and mapping. We have a fixed 
number of tasks. There are no communications between Jasks. The time needed 
for each task to complete is variable. Can you see why? Nearly all tasks represent 
bit combinations for wh'h the circuit is not satisfiable. With some bit pallems, 
we may quickly discover the circuit is not satisfiable. With others, it may take 
longer. Using the decision tree of Figure 3.7, we see that a good strategy is to map 
tasks to processors 'in a C y,:lic fashion in an effort to balance the computational 
load. Let's see how that srrategy plays out for this program. 

To minimize Pl'oceso ~reation time, we want to create one process per pro· 
cessor. So we have n pieces of work we want to allocate to p processes. A cyclic 
{or interleaved) allocatiun assigns each process every pth piece of work in a 
round-robin fashion. For example, suppose n = 20 and p = 6. Then process 0 
would be responsible for indices 0, 6, 12, ,md 18; process I would be responsible 
for indices I, 7, 13, and j 9; process 2 would be responsible for indices 2, 8, and 
14; process 3 would be responsible for indices 3, 9, and 15; process 4 would be 
responsible for indices 4, 10, and 16; and process 5 would be responsible for 
indices 5,11, and 17. 

Formally, if n pieces of work, labeled 0, I, . .. n - I are to be assigned in a 
cyclic mannerto p processes, labeled 0, l. ... , p - I, tben work unitk is assigned 
to process k modulo p. 

Before launching into C code, let's sllmmari7f~ the design of the program. We 
arc going to detcnnine whether the circuit shown in Figure 4.2 is satisfiable by 
considering all 65,536 combinations of the 16 boolean inputs. The combinations 
will be allocated in acyclic fashion to rhe fJ processes. Every process will examine 
each of its combination: tLim. If a pr()Cess finds a combination of inputs that 
satisfies the circuir, it will print that combination of inputs. 
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Nmv let's take a close look at the C code. (The entire program appears in 
Figure 4.4.) 

The program begins with preprocessor directives to include the header files 
for MPI and standard 1/0. 

#include <mpi.h> 
#include <stdio ,b> 

Next comes the header for function main, Note that we include the argc 
and argv parameters, which we will need to pass to the function that initializes 
MPI. 

main' ( nt arge,' c~:a!':" *argv[]) ( 

Function mal II has three scalar variables. Variable i is the loop index, id 
is the process In number, and is the number of active processes. Remember if 
there are p processes, then the ID numbers start at 0 and end at p - I. 

Each active MP! process executes its own copy of this program. That means ,--0 
each MPI process has its own wpy of all of the variables declared in the program, 
whctherthdy be external variables (declared ouL~ide of any junction) or automatic 
variables declared inside a function. 

We also include the prototype for function cbeek._c:tccui t., which will 
determine if the itb combination of inputs satisfies the circuit. 

4,4.1 Function MPI:"Init 

The first MPI function call made by every MPI process is the call to MPl_In:i t:, 
which allows the system to do any setup needed to handle further calls to 1he MPI 
library. The caU to MPI_Ini t does nol have 10 be the first executable statement 
of the program. In fact, it does nol even have to be located in function rna in. The 
only rCijuiremcnt is Ihat MPI_Ini t be called before any other MPI function. I 

Note that all MPI identifiers, including function identifiers, begin with the 
prefix HPI ._, followed hya capital letter and a series of lowercase letters and 
underscores. AU MPI constants arc strings of capital letters and underscores 
beginning with HPI., 

MPI._.Init (&arge I &:illgV); 

4.4.2 Functions MPI_CommJank and MPI_Comm._size 

When MPI has been initialized, every active process becomes a member of 
"a communicator called MPI_COI1l<1._WORLD. A communicator is an opaque 
object that provides the environment for message passing among processes. 
MPI __ COMM_viORLD is the default communicator that you get "for free." For 

I The e:(ccplill,'lO Ihi~ stalell\ent is rhal function MPI_Tnit ia liz<?d, which checks 10 see if MP[ has 
been initialized, may beealled berore MPJ _.Ini r.. 
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* ! 

Circuit Satisfiability, Version 1 

'll h1.8 .r.1PI program determines · .... hether a circuit. is 
satisfiable I that. :i.s, whether there is a cornbl nat j on of 
input.s that causes the oulpul. of t:h€ ·::-i rcui t LO be 1. 
The pilrtin:lar circuit being lesled is "wired' into the 
logic of functi0n ) check_circuii: I. All combinations of 
inputs lhat satisfy the circuit are printed. 

prograrnmed by Mic:jlael J. Qui nn 

Lasl modification: J September 2D02 

hnc1ude cmpLh> 
#include <st.dio~h> 

inc Lllain (int argc, char *argv[}) ~ 

int 1; 
int id; /* Process rank: 2/ 

.tnt. p; / * Number of processe::~ * j 
'.,loin check .. circuH (int, int): 

MPClrdt (&argc, &"rgv), 
MPI_CollU'Lrank (MPI_COMM_WORLD, &idl; 
MPI_Cornm_size lMPI_CDt1M_WORLO, &p); 

[or (1 = Wi i < &5536; i += pi 
check_circuit (id, iI; 

pr 1 nt, f (n Process !~d is donp.\rJ M lid) ; 

fflash (stdonl); 
MPI_finalize I); 

return 0; 

Figure 4.4 Version 1 of MPI program to solve the circuit satisfiability 
problem. 

most of our programs, it is sufficient. However, you can create your own commu­
nicators if you need to partition the processes into independent communication 
groups. You'll see how to do this in Chapter 8. 

Processes within a communicator are ordered. The rank of a process is its 
position in the overall order. In a communicator with p proc.esses, each process 
has a unique rank (10 number) between 0 and p - 1. A process may use its rank 
to determine which portion of a computation and/or a dataset il is responsi ble for. 

A process calls function MPI.CollUTI_rank to determine its rank within 
Ii communicator. It calls }lPI_CoE1l1'j:i ze to detcnnine the total number of 
processes in a communicator. 

Mpccomm]ank (MPCCo;>l~CWORLD, &id); 
NPCCornrn_sizG (NPI_Cm'L"'LWORLD, &p); 
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/* R~tlJYn 1 if 'i'lh bit of 'n l is I; a 0th-e::l.dse */ 
#define EXTRACT_tHT tIl, i! ({n&. (-l«i) I? 1: 0, 

'JOlcl check_c1 rcu':t (ini: ld, in~ z) { 
int v Ji6] ; I * Each ,=le~~~t, lr-, d bit-_ of ''Z r "+ / 

iIlt i; 

[or (i - u; i < -l6; i++) vii] ;:: E:XTPJ1Ct}H'T(z l ili 

if ([vjO] Ii v[l]) && (!vil] II ;'1[3]) &~ iVl2) II '113]1 

&& (lv[3] [i 'v[4]) && ('1[41 Ii !v['ill 
&& (v[5] i! Iv[6]! 1,& IviS] [I viGil 

&& {v[ti] II !vibll "I< (v[1) ! I !'r{B]) 

&&,! 1,v-17,j 1.1 !vjlJ]) && (v[9] ! i 
&& {"ira'] (J [-.,(91) && (!v[9} 1: 

,i< ('1[9] j i vIE] I && (v[ID] : 1 vlUII 
&& (vjl2] II vl13) i && ,'/[131 !! !"iJ.4!) 
&& ('l[HI ! I v[15J)) ( 

printi {"%d) %d~dlld%(1%d%d%d%d%f;%d%d%d~d%d%d%d\n'~ J id, 
v[Dj ,'![1] ,v!2] ,vi3 ,J[4) ,V['l] ,1'(6)'-;(71.v(31 ,v(9L 
v{lPJ ,v:]1 J ,vii2J ,"1(13J (v[14Lv[J~:) j 

iflllSh \st-dout); 

Figure 4.4 {cootd.) Version 1 of MPI program to solve the circuit 
salisfiability ~roblem. 

Now that the MPI process knows its rank and the total numl}cr of processes, 
it may check its share of the 65,536 possible inputs tQ Ihe circuit.-

for Ii = id; i < 65536; i t= p) 
check_circuit (id, i)i 

After the process has completed the loop, it has no more work to do, and it 
prints a message indicating that it is done. We puta call 10 f flu sh after every 
print f statement. This flushes the outptlt buffer and helps ensure the even­
tual appearance of the message on standard output, even if the parallel program 
crashes. 

printf ("Process %;d is dane\n", id); 
fflush (stdout); 

4.4.3 Function MPI]inalize 
~ 

After a process has completed all of its MPl library calls, it calls function 
toIPI.]inalize, allowing the system to free up resources (such as memory) 
that have been aUocated to MPI. 

MPIJinalize () ; 
return 0; 
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Function ehe{;k_ei reui t, passed the ID number of a process and an inte­
ger z, first extrlli.1s the values of the l6 inputs using the macro EXTRACT_ SITS. 

Element v [0 1 corresponds 10 input a, element v [1] cmresponds to input b, 
and so on. Calling function eheek_eireui t with values of z ranging from (] 
through 65,535 generates all 2'6 combinations of values. 

After function ehe e k_ ci reu i l has determined the values of the l ti inputs, 
it checks to see if they result in the circuit having the output I. If so, the proces.<; 
prints the values of a through p. 

4.4.4 Compiling MPI Programs 

After entering this program into file satl. e, we need to compile it. The com· 
mand to compile an MPI program varies from system to system. Here is a common 
command-line syntax: 

% mpiee -0 satl satl.e 

With this command the system compiles the MP! program stored in file 
satl. e and stores the executable in file satL 

4.4.5 Running MPI Programs 

The typical command for running an MPI program is mpirun. The -np flag 
indicates the number of processes to create. Let's examine the output when we 
execute the program using a s~ngle.process: 

% mpirun -np 1 s,lt1 
0) 1010111110011001 
0) 0110111110011001 
0) 1110111110011001 
0) 1010111111011001 
0) 0110111111011001 
0) 1110111111011001 
0) 1010111110111001 
0) 0110111110111001 
0) 1110111110111001 
?rOCE~ss 0 is done 

The. program identifies nine combinations of inputs that wi II satisfy the circuit 
(i.e .• cause it to have Olitputvalue I). For example, the first line of output indicates 
that the circuit is satislied when a, e, e, f, g, h, i, 1, m, and p are true (have 
the value I) and the other variables are false (have the value 0). Note that the 
output of the parallel program on a single process is identical to the output of a 
sequential program solving the same problem, since the lone process evaluates 
the combinations in the same order as a sequential program. 



SECTION 4.4 Circuit Salisfiabilily 

Now let's look at the output of the program when we execute it using two 
processes: 

% rnpirun -np 2 sat! 
0) 0110111110011001 
0) 0110111111011001 
QJ 0110111110111001 
J) 1010111110011001 
1) 1110111110011001 
1) 1010111111011001 
1) 1110111111011001 
U 1010111n011100~ 
1i 1110111110111001 
Process 0 is done 
Process 1 is done 

Together, the two processes identified all nine solutions, but process 0 found 
three of them, while process I found six. 

Here is the result of an execution with three processes: 

% IDpi run -np 3 satl 
0) 0110111110011001 
0) 1110111111011001 
2) 1010111110011001 
1) 1110111110011001 
1] 101011111101100} 
1) OllOl11110Q100l 
0) 10101111101.1100 
2) 0110111111011001 
2) 111.0111110111001 
Process 1 IS done 
Process 2 is done 
Process 0 is done 

Again, all nine solutions were found. It turns out that each process [{JUnd 
three of the solutions. Note th;i~ output of the processes is mixed up in a haphazard 
fashion. 

The order in which output appears on standard output only partially re/lect~ ,.-{) 
Ihe order in which the output events actuall y occlImd inside the parallel computer. 

process A prints two messages to standard output, then the lirsl message will 
be printed before the second message. However, if process A prints to standard 
output before process B prints to standard output, that docs not guarantee process xl 

A's output will appear before the output of process B. 
Assuming that the order in which messages appear is the same as the order 

in which the print [ stmcu::;nts executed can lead to false conclusions about 
the execution of the parali:; j,rO;1f<lm, making the search for bllgS much more 
difficult. Avoid this mentallrap! 
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4.5 INTRODUCING COLLECTIVE 
COMMUNICA1"ION 

We are off to a good start. We have our first MPI program up and running. However, 
it is not hard to find ways to improve it. For example, what if we want to know 
how many different ways a circuit can be satisfied? In our previous example, there 
were only nine solutions, and it was easy for us to count them by hand, but what 
if there had been 997 

For our next program, we want to add functionality that will enable the 
processes to compute the tot.al number of solutions. It is easy enough for a single 
process to maintain an integer variable accumulating the number of solutions it 
has found, but then the process6rsmust cooperate' to cOlTlpute the global sum of 
these val ues. 

A collective communication is a communication Qperation in which a group 
of processes works together to distribute or gather together a set of one or more 
values. Reduction is an example of an operation that requires collective commu­

,nication in a message-pa~sing environment. 
We will modify our first circuit satisfiability program to compute the total 

number of solutions to the circuit. The new version of function maln appears in 
Figure 4.5. 

Let's go through the changes we have made to function rnai,c. First, we 
introduce two new integer variables. Integer solutions keeps track of the 
number of solutions this process has found. Process 0 (and onl y processor 0) will 
use integer variable global_solut ions to store the grand total of the count 
values of all the MPI processes. It will be responsible for printing the count at the 
end of the program's execution. 

jnt solutions; 
jnt globaJ._solutions; 

We must modify [unction check~circu i t to return the value I if the 
particular combination satisfies the circuit It should relurn the value 0 if the 
combination does not satisfy the circuit. This modification to the function is 
trivial, and we will not discuss it further. 

int ched,_circuit (int, int); 

We modify the for loop to accumulate the number of valid solutions this 
process discovers. 

solutions := 0; 
for (i = id; j < 65536; i ~= pi 

solutions += check_circuit (id, i); 
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Circui t Satisfiabi liqt I Verslon 2 

rr'hi s enhanced version of the program also pri:1ts r.he 
total number of solutions 

>include 'mpi ,h" 
#include <stdia. h> 

int "ain (int'argc. char 'argvll) { 
int gl(lb~l,_solutions; i' Total mlD'b"I" of solutions '/ 
ir!t i; 
int ic; 
inL Pi 
int solut ions i 
i:1t check_circuit 

/ ~ Process rank *' I 
(~Number of pTocesses II! 

(* Solu~ icms found by thi 5 proc :0;.' 

(intr int i: 

111':_1ni t ("a,gc, &argv); 
MPI_Comm_rank (MPI_COMM_,IORl.D, &id); 

MPIJouUlLsize (MPI_CDMM_WORW, &p); 

SOluti6ns 0 0; 
for {i = :id; i c:: 655J6i i += p) 

so]ut.ioJ]s -1= check_circuli:. (id, i); 

H?I_keduce (&solutions r &glob().]_solutions. 1, r~PI_Im't MPI_Sm'L 0, 
14PCCOin4_WORLU) ; 

printf i'Process %d is done\n', 1d); 
fflush (stdout); 
MPI]inali ze (1; 
if. (id ~-, 0) prbtf I "l'here are %d different solutio!ls\n', 

global_solutions) ; 
return 0; 

Figure 4.5 Version 201 MPj program to solve circuit satisfiability problem, In this 
version the processes collectively determine the number of solutions to the problem, 

4.5.1 Function MPI_Reduce 

After a process has completed its share of the work, it is rcady to participate in 
the reduction operation. tunctionHPI_Reduce performs one or more reduction 
operations 011 values submitted by allthe processes ill a communicator. The header 
for function MPI Reduce is 

lnt HPI Reduce -

void * operand , /* addr of 1st reduct iOIl element 
void *result, /* addr of 1st reduction result 
int count, /* reductions to perform */ 
HPCDatatype type, / * type of elements */ 
MPI _Op operator, /* reduction operator */ 

int root, /* process getting result(s) */ 
MPI - Comrn comrn) /* corrrrmmicdtor */ 
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Let's consider eac.h of the function parameters, The third p~~eter, c o~n t ~ 
indicates how many reductions are bcing performed, Each process submits count 
values, and each of these values is a li,l clement for a different reduction.. 

Parameter op e rand is an input parameter. The calling process indicates the 
location of its element for the first reduction, If count is greater than I, then the 
list elements for all of the reductions occupy a contiguous block of memO!)', 

Parameter 4, type, is an input par1lIIIeter designating the type of theelements 
being reduced. A list of the MPI conslaots and their associated C types appears 
in Table 4,1. 

The fifth parameter, operator, indicates the kind of reduction to perform, 
A list of all built -in reduction operators appears in Table 4.2-

The sixth parameter, root, gives the rank of the process that will have 'the 
results of all the reductions. 

Parameter resu 1 t points to the location of the first reduction result. This 
parameter only has meaning for process root. 

The last parameter, conun, gives the'name of the communicator--iliat is, the 
.set of processes participating in the reduction, 

Table 4.1 MPI conslants lor C data types. 

MPT CHAR 
MPI_DOUBLE 
MPT_FLOAT 
NPI INT 
NPl_LONG 
MPCLO~iG_DOUBLE 
MPl_SHORT 
MPl __ lJNSIGNED_CHAR 

MPl _UNSIGNED _LOFIG 
MPl_ UNSIGNED_SHORT 

signed char 
double 
Aoat 
int 
long 
long double 
short 
unsigned char 
unsigned int 
unsigned long 
unsigned short 

Table 4.2 MPf's built-in reduction operators, 

MPI_'3At'iD 

MPI_BOR 
11?I_BXOR 
M?I_LAND 

M?CLOR 
~WI_LXOR 

I1Pl __ .l1AX 

MPl_,HAXLOC 
MPl_NlN 
MPI_NlNLOC 
MFl_PROD 
NFl SUM 

Bitwise and 
Bitwise or 
Bitwise exclusive or 
Logical and 
Logical or 
Logical exclusive or 
Maximum 
Maximum and location of maximum 
Minimum 
Minimum and location of minimum 
Product 
Sum 
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Our particular call to NPl _Reduce takes the fonn: 

MPI_Reduce (&:solutions, &global_sol utions, 1, MPI_lNT, MPI_SUM, 0, 
MPI_COMM_WORLD); 

After this function returns, pf(x~ess 0 has in its variable global_ 
sol uti ons the sUln of all of the processes' values of variable solutions. It 
prlnt~ the global sum after the call to MPI_F inali ze, so that it will appear at 
the end of the output of the program. . 

It is crucially important to remember that while only a single process (in -r-O 
this case process 0) gets the global result, every process must call function 
MPI_R.fduc e. There is no magic! Every proce.~s in the communicator must enter 
the reduction voluntarily-it cannot be "summoned" by process O. If you write 
a program in which not all the processes in a communicator call MPl_Reduce . 
or any other collective communication function, the program will Uhang" at the 
point that function is executed, unable to compktc it. 

So now we're back from MPCReduce. Note that we conditionalize exe­
cution of the printf function call so that only process 0 prints the value of 
gl obal_Eio 1 utions. We do this for two reasons. First, only process 0 has 
the actual global sum in its variable global_solutions. The value of this 
variable for the other processes is undefined. Second, even if every process had 
the correct sum in itHopy of globa I_solutions, how many times do you 
want to read the answer TIt is sufficient for one process to print the solution. 

if (id==O) printf ['There are %d different solutions\n', 
global_solutions); 

Here is an example of the program executing on' thre~ processes: 

% mpirun -np 3 sat2 
0) 0110111110011001 
0) 1110111111011001 
1) 1110111110011001 
II 1010111111011001 
2) 1010111110011001 
2) 0110111111011001 
2) 1110111110111001 
1) 0110111110111001 
0) 1010111110111001 
Process 1 is done 
Process 2 is done 
Process 0 is done 
There are 9 different solutions 

Compare this output with the output of the first program executing on three 
processes. Although each process finds the same solutions in the same order, the 
order in which the processes' output appears is different. 
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4.6 BENCHMARKING PARALLEL 
PERFORMANCE 

Now that we have a parallel program up and running, it is only natural to ask 
whether we are benefitting from parallel execution. In other words, are we getting 
the results any quicker? 

4.6.1 Functions MPI_Wtime and MPI Wtick 

One way to mea~ure tbe performance of a parallel application is to look at the 
wall clock time, measuring the number of seconds that elapse from the time we 
initiate execution until the program tenninates. In production environments, this 
may be the most useful metric. 

For our purposes, however, we would like to take a narrower fOCllS, Typi­
cally, we are going to ignore the time spent initiating MPI pl'Ocesses, estaliii-;hing 
communications sockets between them, and performing VO on sequential de­
vices, Instead, we will mea~ure _bow well our parallel programs stack up agaiust 
their sequential counterparts in the "middle area" between reading tbe dataset and 
writing the results. 

MPI provides a function called MP I_\~t lrne that retums the number of sec­
onds that have elapsed since some point oftime in the past Function MP I _ Wt i c k 
returns the precision of the result returned by MPI_Wt ime. Here are the headers 
of these two functions: 

daub] e MI'CWtime (void) 

doub] e MPCHtick (void) 

We can benchmark a section of code by putting a pair of calls tn :',Jilcrio!l 
MPI_Wt ime before and afterthe section. The difference between the two values 
returned by the function is the number of seconds elapsed. 

From a logical point of view, every MPI process begins execution at the same 
time, but this is not true in practice. MPI processes execllting on differem Ff{M:S­

sors may begin executing seconds apart. This can throw off timings significantly. 
For example, in the case of our second program for circuit sa!isfiability. th.; pm­
cesses call I1PI __ Reduce to find the total number of solutions. Since all processe:; 
must participate in this communication function, no process may complete the 
function until all processes have reached it. Processes that began execlltion early 
may wait around quite a while before the stragglers catch up. These processes 
will report significantly longer computation times than the latecomers. 

4.6.2 Function MPI_Barrier 

We address this problem by introducing a barrier synchronization befo! . iii:,t 
call to I1PIWtime. Recall that no process can proceed beyond a b:'~' li1"il 
all processes have reached it. Hence a barrier ensures that all processes ar~ going 
into the measured section of code at more or less the same time. 
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Here{s the prototype for the barrier function: 

int [.JI'I_Barrier (MPl_Corrml comm) 

The single argument to MPl _ Barri er indicate.~ the communicator partic­
ipating in the barrier. 

We can benchmark our circuit satisfiability program by adding a local variable 
to function llIiiin: 

double elapsed_time; 

We start the timer after initializing MPl: 

. MPI--,Ini t (&;argc>;~&argv); 

MPI_Barr1er (MPCCOMM_WORLD); 

elapsedltlme = - MPl_Wtime(); 

After the call to MPI_Heduce we stop the timer: 

}1PLReduce (&solutions, &global_solutions, 1, MPCltn', MPL_SUM, 0, 
MPl_COMM_WORLD) ; 

diipsed.Jirne += MPI_WLime () ; 

Since we de not want to munt IJO time, we also need to comment out the 
calls to pri!lti and ftl ush insidefunction check_circuit. 

Now we are ready to benchmark the program. The ~esults appear as the solid -
line in Figure 4.6. As we add processors, execution time decreases, because each 

20.0 

16.0 

0- 12.0 
~ 
E 
u 
E 

8.0 f::; 

4.0 

Prl)<:es.~ors 

F"lgure 4.6 Mean execution time 0\ second 
circuit satisfiability program on a commodity 
cluster with 450 MHz Pentium II CPUs 
COMected by fast Ethemet. The dashed line 
imflCates a ·perfect" speed improvement, in 
which p processors execute the program p 
limes as fast as one processor. 
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processor is responsible for checking a smaller numbewfcircuits. The dashed line 
in the figure shows wbatthe execution time would have been iflwo prOCessors bad 
executed the program in half the time, three processors had executed the program 
in one-third the time, etc. The reason that actual execution time is greater than 
this is because some time is spent perfonning the sum reduction at the end of the 
program. This communication time represents an overhead not incurred by the 
sequential program. As the number of processors grows, this overhead grows, too. 

4.7 SUMMARY 
Designing parallel algorithms using the taskrchanrrel model.leads naturally to 
their implementation Ilsing the message-passing programming paradigm. lbe 
message-passing paradigm allows programmers to control memory utilization and 
increase locality. Since keeping most memory references local is akey strategy for 
optimizing performance on both multicomputers and multiprocessors, message­
passing programs can run efficiently on a wide range of parallel systems. 

In the early years of commercial multicomputers, every manufacturer had its 
own message-passing library, but programmers caned for a standard to increase 
the portability of programs. The Message Passing Interface (MPI) standard is the 
result of a collaborative effort between companies and researchers. T()day, nearly 
every corrunercial computer supports MPI functions. MPllibraries arc also freely 
available to those constructing commodity clusters. 

We have developed and benchmarked a parallel program to solve an instance 
of the circuit satisfiability problem. In the process, we have used a small set of 
MPIlibrary [unctions. In future chapters we will add significantly to th~ number 
of MPI functions in our repertoire. . 

4.8 KEY TERMS 
collective communication 
communicator 

cyclic (or interleaved) 
allocation 

4.9 BIBLIOGRAPHIC NOTES 

embarrassingly parallel 
rank 

Computer scientists have been contemplating parallcl programming since the 
dawn of the computer age. In fac~ the lead article in the inaugural issue of the 
British Computer Society'S Computer Journal has the title "Parallel Program­
ming" [40J. The issue is dated April 1958. 

Contemporary introductions to programming using MPI include Pacheco's 
Parallel Programming with MPI [891 and Gropp et al.'s Using MPI: Portable 
Parallel Progmmming with the Message-Passillg lnleiface [45J. In addition, 
Foster has a chapter on MPI in his book on parallel algorithm design [31]. 
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In Chapter 5 of Practical Parallel Programming, Wilson summarizes the 
features and highlights the shortcomings of three different kinds of message­
passing models [1161. In the first model anonymous processes are COImected by 
channels. The programming language occam is based on Ibis model. In the SL"Cond 
model processes are organized inlO a regular IOpology and may commuuiealc only 
with their neighbors or a control process. In the third model processes have names, 
and any process rna y communicate with any other. MPI falls into this category. 

4.10 EXERCISES 

4.1 Suppose n pieces of work arc allocated in cyclic fashion to p processes. 
a. Which pieces of work are assigned to process k, where 

O:"Ok~p-l'? 

b. Which process is responsible for piece of work j, where 
O~j~II--I? 

c. What are !he most pieccs of work ,!ssigned to any process? 
d. Identify all processes haying the most pieces of work:. 

e. \\'hat are the fewest pieces of work assigned 10 any process? 
f. Identify all processes having the fewest pieces of work. 

4.2 Given a set of five unsigned, eight-bit integers with decimal values 13; 22, 
43,64, and 99, determine the decimal result of the following reductions:. 
a. add 
b. multiply 

c. maximum 

d. minimum 
e. bitwise or 

f. bitwise a nil 

g. logical or 

h. logical alld 

Assume the meaning of the and and or operators is the same as in the 
C programming language. 

4.3 Modify function check_circuit so that it returns the integcr 1 if the 
input argument represents a satisfiable circuit, and 0 jf the input argument 
does not represent a satisfiable circuit. 

4.4 iI. Benchmark the second circuit satisfiability program 011 your parallel 
compnter for 1,2, ... ,8 processors (with,printing disabled). [-<or 
each number of processors, detennine the mean execution time after 
five runs. 

b. Summatizc and interpret the fe.oults yOll observed. 

4.5 The circllit satisfiability progi';:111 rrc,cllted in this chapter has the circuit 
to be tested "hard wired" into function check_c i rcui t. Explain how 
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the circuit satisfiability program could be modified to check the 
sarisfiability of a circuit input from a rlata file. 
a. How w{Jllld YOIl represent a circllit with and, Dr, and riot gates in a 

plain text file that could be created and viewed with a text editor? 
b. How would your program parse this file'! 
c. Describe the data structure you would use to represent the circuit. 

4.6' Write a parallel varialrt of Kernighan and Ritchie's classic "hello. world" 
program 1611. Each process should print a message of the foem . 

hello, world, from process <1> 

where <i> is its rank. 

4.7 Write a parallel program that oomplltes the sum I + 2 + ... '+ p in the 
following manner: Each process i assign" the value i + I to an integer, 
and then the processes perform a sum reduction of these values. Process 0 
should print the result of the reductiolL As a way of double-checking the 
result, process 0 should also compute and print the vallie 1'(p + 0/2. 

4.8 A prime number is a positive integer evenly divisible by exactly two 
positive integers: itself and 1. TIle first five prime numbers are 2, 3, 5,7, 
and II. Sometimes two consecutive odd numbers are both prime. For 
example, the odd integers following 3, 5, and 11 are all prime nllmbers. 
However, tl]e odd integer following 7 is not a prime nllmber. Write a 
parallel program to determine, for all integers I ess than 1,000,000, the 
nllmber of times that two consecutive odd integers are both prime. 

4.9 The gap be/ween consecutive prime numbers 2 and 3 is only I, while the 
gap between consecutive primes 7 and 11 i~ 4. Write a parallel program 
to determine, for all integers less than i,ooo,ooo, the largest gap betw~n 
a pair of consecutive prime numbers. 

4.10 A small college wishes to assign unique identification numbers to all of 
its present and future students. The administration is thinking of using a 
six-digitidenlifier, but is not sure that there will be enough combinations, 
gi ven various constraints that have been placed on what is considered to 
be an "acceptable" identifier. Write a parallel program to count the 
number of different six-digit combinations of the numerals 0--9, given 
these constraints: 

(I The first digit may not be a O. 

• Two consecutive digits may not be the same. 
(I The sum of the digits may not be 7,11, or 13. 

4.11 The value of the definite integral 

t~dx 
.10 1 +x-

is Jr. We can use numerical integration to compute Jr by approximating 
the area under the curve. A simple way to do this is called the rectangle 
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Figure 4.7 The rectangle rule is 
a simple way to approximate the 
area under a curve. In this 

'example the function is 4/(1 + x2), 
and the area under the curve 
between 0 and 1 is][. 

rule (Figure 4.7). We divide the interval [0, IJ into k subintervals of 
equal size. We find the height of the curve at the midpoint of each of' 
these subintervals. With these heights we can construct k rectangles. The 
area of the rectangles approximates the area under the curve. As k 
increases, the accuracy ofthe estimate also increases. 

A C program that uses the rectangle rule to approximate ;r: appears in 
Figure 4.8. 
a. Write a parallel program to compute ;r: using the rectangle rule with 

1,000,000 intervals. 

b. Benchmark your program on various numbers of processors. 

12 Simpson's Rule is a better numerical integration algorithm than the 
rectallgle rule because it converges more quickly. Suppose we want to 
compute 1: [(x) dx. We divide the interval [a, bJ into n subintervals, 
where n is even. Let Xi denote the end of the i th interval, for I :S i s: Il, 

and let Xo denote the beginning of the first interval. According to 
Simpson's Rule: 

A C program that uses Simpson's Rule to compute;r: appears in 
Figure 4.9. 
a. Write a p;lrallel program to compute the value of;r: using Simpson's 

Rule: f(x) =: 4/(1 + Xl), a = 0, b = 1, and n =: 50. 
b. Benchmark your program on various numbers of processors, 
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1* This program computes pi using the rectangle rule. *1 

Mdine IllTF:RVA.LS 1000000 

int main (int arge l char *a!:g'I(1) 

double area; /' /lrea under curve '/ 
double ysum; '. Sum o~ rect.angle, heights' / 
double xi; /fr loiidpoint of interla} ~/ 

int i; 

ySUJ! ~ 0.0; 
for 0; i < INTERVi'.LS; ill) { 

xi. -_ (L Q/INTERVA:LS) , \ j .[1. S) ; 

ysum += 4_ Onl. O,xi 'xi); 

area = YSlJl1l • i L 0 / INTERVi'.LS); 
printf ("Area is %13.11f\n', area); 
r-eturn 0 j 

Figure 4.8 A C program to compute the value of IT using the 
rectangle rule. 

J* 'l'hi3 prograUl uses Simpson's ROle tv compute pi. */ 

#define n 50 

double flint iJ { 
double x; 
x = (double) i ! (double) n; 
return 4.0/ (1.0 t x • xl; 

int l1lilin lint argc, char 'aruv[ I) { 
double areu; 
int ir 
ayea = flO) - f(n); 
for Ii = 1; i c~ n)2; lH) 

area .= 4.0*EIZ'i-ll + 2*fI2"i); 
area 1= 13 0 • n); 
pr.inl..f ("AppY!)xil',at.ion of pi: %U.llt\n·, area); 
return 0 i 

Figure 4.9 A C program to compute the value of Ir using 
Simpson's Rule. 



CHAPTER 

The Sieve of Eratosthenes 

He was !lot merely a chip of the old block, but the old block itself. 
Edmund Burke 

5.1 INTRODUCTION 

The Sieve of Eratosthenes is a useful vehicle for advancing to the nex.t level of 
parallel programming with MPI. After an explanation of the sequential algoriilun, 
we will use the domain decomposition methodology to come up with a data­
parallel algorithm. During the task agglomeration slep we will weigh the pros 
and cons of several schemes to allocate contiguous blocks of array clements to 
tasks. The resulting algorithm requires a broadcast step, and we will learn the 
syntax of an MPI function to perform the broadcast. 

After coding and benchmarking an initial parallel program, we will consider 
thrcc way s to improve its performance, including using redundant computations to 
reduce process communication time and rearranging the orderof computations to 
increase the cache hit ratc. Benchmarking these program improvements highlights 
the importance of maximizing single-processor performance, even when multiple 
processors are available. 

This chapter introduces the following MPI function: 

HPI_13cast, to broadcast a message 10 aU processes in a communicator 

5.2 SEQUENTIAL ALGORITHM 

Our goal is to develop a parallel version of the prime sieve invented by the Greek 
mathematician Eratosthenes (276-194 BeE). You can find pseudocode for the 
Sieve of Eratosthenes in Figure 5.1. 

An example of the sieve appears in Figure 5.2. In order to find primes up 
to 60, integer multiples of the primes 2, 3, 5, and 7 are marked as compo~ite 
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1. Creatr a 1i.ltDf natutJl nmubcn;2, 3, 4,. ,n, nllne ofwbich is marlced. 

2, ScL k to 2, Ih,' fit.\! ulUnarked number on the IL,t. 

]. Repeat 

(a) Mark ~11 multiples of k between k' and I! 
(b) 1'lnd Ihe 'mltlll~<;l numbel gre.ter [/J;m k Ihal is unmarked. Setk 10 Ihis ncw value" 

Until k' > n 
4. The unrnarkcd numbers are prim"". 

Figure 5.1 The Sieve 01 Eratosthenes Ilnds primes between 2 and n. 

(a) 

(n) 

(e) 

(d) 

Figure 5.2 The Sieve of Eratosthenes. In this example we are finding 
aU primes less than or equal to 60. (a) Mark all multiples of 2 between 4 
and 60, inclusive, (b) The next unmarked value is 3. Mark all multiples 
013 between 9 and 50, inclusive. (c) The next unmarked value is 5. 
Mark all multiples of 5 between 25 and 60, inclusive. (d) The next 
unmarked value is 7. Mark all multiples 01 7 between 49 and 60. The 
next unmarked value is 11. Since the square of 11 is 121, and 121 is 
greater than 60, the algorithm terminates. All remaining unmarked cells 
represent prime numbers, 
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numbers. The next prime is 11. The square of irs value is 121, which is greater 
than 60, causing an end to the sieving loop. The unmarked integers that remain 
are primes. 

The Sieve of Eratosthenes is not praclica I for identifying large prime numbers 
with hundreds of digils, because the algorithm has complexity EJ(n In Inn), and 
11 is exponential in the number of digits. However. a modified form of the sieve 
is still an important tool in number theory research. 

When we implement this algorithm in the C programming language, we can 
use an array oin - 1 chars (with indices 0, 1, ... , n - 2) to represent the natu· 
ral numbers 2, 3, ... , n. The boolean value at index i indicates whether natural 
number i + 2 is marked. 

5.3 SOURCES OF PARALLELISM 
How should we partition this algorithm? Because the heart of the algorithm is 
marking ele(llents of the array representing integers, it makes sense to doadomain 
decomposition, breaking the array ioto n - 1 elements and associating a primitive 
task with each of these elements. 

The key parallel computation is step 3a, where those elements representing 
mulliples-of a particular primd are rr:tarked as composite. For the cell representing 
integer j, th is compu tation i~ straightforward: if j mod k = O. then j is a multiple 
of k and should be markt'd. 

If a primitive task represents each integer, then two communications are 
needed to perform step 3b each iteration of the repeat ••. until loop, A redl1ction 
is needed each iteration in order to determil~'~ the new valu~ 'of Ie; and then a 
broadcast is needed 1.0 inform all the tasks of the new value of k. 

Reflecting on this domain decomposition, [he good news is that there is plenty 
of data parallelism to exploit. The bad news is that there arc a lot of reduction and 
broadcast operations. 

The next step in our design is to think about how to agglomerate the primitive 
tasks into more substantial task,~ that still allow us to utilize a reasonable number 
of processo rs. [n the best case we will end up with a new version of the parallel 
algorithm that requires less computation and less communication than the original 
parallel algorithm. 

5.4 DATA DECOMPOSITION OPTIONS 
After we agglomerate the primitive tasks, a single task will be responsible for 
a group of array elements representing several integers. We often C<\l\ the fi­
nal grouping of data elements-the result or partitioning, agglomeration, and 
mapping-the data decomposition, or simpl:c' "(he decomposition." 
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5.4.1 Interleaved Data Decomposition 

firs~ let's consider an interleaved decomposition of array elements: 

• process 0 is responsible for the natural numbers 2, 2 + p, 2 + 2p, ... , 
• process I is responsible for the natural numbers 3, 3 + p, 3 + 2p, ... , 

and soon. 
An advantage of the interleaved decomposition is that given a particular 

array index i, it is easy to detemUlle which process controls that index (process 
i mod p). A disadvantage of an interleaved dccompositionfor this problem is that 
it can lead 10 significant load imbalances among the processes. For example, if 
tW.(J-pro<;esses are marking multiples of2, process o marks f(n - 1)/21 elements 
while process I marks none. A further disadvantage is that the implementation 
of step 3b (finding the next prime number) still requires some sort of reductionl 
broadcasL 

5.4.2 Block Data Decomposition 

An alternative is a block data decomposition. That means we divide the array 
into p contiguolls blocks of roughly equal size. If the number of array clemenl~ 
n is a multiple of the number of processes p, the division is straightforward. 

If n is not a multiple of p, then it 'is more complicated. Suppose 11 = 1024 
and p = 10. In that case 1024/ 10 =: 102.4. If we give every process 102 elements, 
there will be four left over. On the other hand, we cannot give every process 
103 elements, because the array is not that large. We cannot simply give the first 
p - I processes f n/ p 1 combinations and give the last process whatever is left 
over, because there may nol be any elements left (see Exercise 5.2). Allocating 
no clements to a process is undesirable for two rea~ons. First, il can complicate 
the logic of programs in which processes exchange values. Serond, it can lead to 
a less efficient utilization of the communication network. 

What we need instead is a block allocation scheme that balances the wOIkload 
by assigning 10 each process either fn/p1 or In/pj elements. (If /l is evenly 
divisible by p every process will be assigned 11/ p clements.) Let's ronsider two 
different ways of accomplishing this. 

The first method begins by computing r = n mod p. If f is 0, then fI is a 
multiple of p, and every process should get a block of size n/p. If r > O. then 
the first r processes should get a block of size r fI / p 1 and the remaining p - r 
processes should get a block of size In/ p J. 

for eXllmple, when n = 1024 and p = 10, the first four processes would get 
103 pieces of work, and the last six processes would get 102 pieces of worI.. 

There arc two questions we typically need to be able Ii) answer when de­
veloping algorithms based on a block allocation of data. What is the range of 
elements controlled by a particular process'! Which process controls a particular 
element'! 

Let's answer these questions for our first scheme. 
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Suppose n is the number of elements and p i~ the number of processes. The 
first element controlled by process i is 

iLn/ p J + min(i, r) 

Tbe last element controlled by process j is the clement immediately before the 
first element controlled by prncess i + I: 

(i + I)ln/ pj + min(i + I, r) - I 

Tbe process controlling a pimicul3I array element j is 

min(U/(ln/pj + l)j, l(j -r)/Ln/pjJ) 

All of tbese expressions are somewhat complicated. The expr~ssi~~s f()flli~fi;~t 
and last elements controlled by a particular process are not onerous, because each 
process could compute these values and store the result~ at the beginning of the 
algorithm. However, determining the controlling process from the element index 
would most likely be done on the By, so the complexity of this expIession is 
worrisome. 

The seoond block allocation scheme we arc considering does not concentrate 
all of the larger blocks among the ~1HaUer-numbercd processes. Supposen is the 
number of elements and p is the number of processes. TIle first element controlled 
by process i is 

Lin/ pj 

The last element controlled by process i is the element immediately before the 
first element controlled by process i + \; 

W+I)n/pj-1 

The process wntrolling a particular 3IT'dy element j is 

l(pU+ 1)-I)/nj 
Figure 5.3 contrasts these two block data decomposition methods. 
The second approach is superior because it requires fewer operations to per· 

form the thJee most common block management computations, especially since 
integer division in C automatically rounds down the resulL It is the block decom­
position method we will use for the remainder of the book. 

Task 0 Task 1 Task 2 Task 3 

Grouped U~ 

Di.llributed []I] OJ]] Lill I I I I 
Figure 5.3 Ari example of two block data decomposition schemes. In 
this case 14 elements are divided among four tasks. In the first scheme 
the larger blocks are held by the lowest-numbered tasks; in the second 
scheme the larger blocks are distributed among the tasks. 

I 
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5.4.3 Block Decomposition MacrOs 

0-,. Let's pause for a moment and define three C macros that can be used in any of 
our parallel programs where agroup of data items is distributed among a set of 
processors using a block decomposition. 

#define BLOCK_Lm~{id,p,n) ((id)*(n)/(p)) 
#-define BLOCK_HlGH(id,p,n) (BLOCK_LOl'Il (id)d,p,n) ~ 1) 
#define BLOCK_SIZE(id,p,n) (BLOCKJ,OW( (id) +1) ~BLOCK_LOW(id)) 
#define BLOCK_Ow1'lER(index,p,n) (( (p)*«index)+l) ··1) / (n)) 

Given process rank id, number of processes p, and number of elements n, 
macro BLOCK_LOW expatl,d$ to lin expression whlise value is the first, or lowest, 
index controlled by the process. . 

. Given the same arguments, macro BLOCK_HIGH expands to an expression 
whose value is the last, or highest, index controlled by the process. 

With the same three arguments, macro. BLOCK_SIZE evaluates to the num­
ber of elements controlled by process id 

Passed an array index, the number of processes, and the total number of Mr.1y 
elements, macro BLOCK~Ow'NER evaluates to the rank of the process controlling 
that element of the array. 

These four definitions are the start of a set of utility macros and functions we 
can reference when constructing our parallel programs. 

5.4.4 Local Index versus Global Index 

0-,. When we decompose an array into pieces distributed among a set of tasks, we 
must remember to distinguish between the local index of an array element and it') 
global index. 

For example, consider an array distributed among tasks as shown in Fig­
ure 5.4. Eleven array elements are distributed among three tasks. Each task is 
responsible for either three or four elements; hence the local indices range from 
o to either 2 or 3. However, each local array represents a portion of the larger, 
global array, whose indices range from 0 to 10. 

We must keep this distinction in mind when transforming sequential programs 
into parallel programs. Seqnential codes always use the global judices to !eference 
array elements. We must substitute the local indices when we write our parallel 
codes. 

Task 0 Taskl Task 2 

Global index 0 I 2 3 4 5 6 8 9 10 

[LIJ I I \ I I UTI] 
Local index 0 I 2 0 I 2 3 0 I 2 3 

Figure 5.4 When an array is distributed among tasks, 
you must distingnishbetween an array elements local 
index and its global index. Here an l1-element array is 
distributed blockwise among three tasks. 
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5,4.5 Ramifications of Block Decomposition 

How docs our block decomposition affect the implementation of the parallel 
algorithm? 

First, note that the largest prime used to sieve integers lip to n is Jii. If the 
first process is responsible for integers through .;n, then finding the next value of 
k requires no communications at all-it saves a reduction step. Is Ihis assumption 
reasonable? The first process has about Ilj p elements. If nj p > Jii, then it will 
control all ptimes through .;n. Since n is expected to be in the millions, Ibis is a 
reasonable assumption. 

A second advanlage of a block decomposition is that it can speed the marking 
of cells representing mUltiples of k. Ratherthan chee k each array elcmenttosce ifit 
represents an integer that is a multiple of k~--requiring Il! P modulo operations for 
each prime-the algorithm can find the first multiple of k and then mark that cell 
(call it j) as well as cells j +k, j + 2k, etc., through the end of the block, fora total 
of about (lIjp)jk assignment statements. In other words, it can use a loop similar to 
the one used in a sequential implementation of the algmithm. This is much faster. 

We ha~e seen, then, how in this case a block decomposition results in fewer 
compulatioilal steps and fewer cOlllmunications steps. 

5.5 DEVELOPING THE PARALLEL ALGORITHM 
Now thai we have detennined the data decomposition, we return to the sequential 
algorithm shown in Figure 5.1. and see how each step translates into equivalent 
sleps in the parallel algorithm. 

Step I is simple to translate. Instead of a single process creating an entire list 
of natural numbers, each process in the parallel program will create its portion of 
the list, containing either fn/pl or LnjpJ boolean values. 

Every process is going to need to know the value of k in order to mark the 
mUltiples of k in its region. For that reason, every process in the parallel pro­
gram executes step 2. This is an example of a parallel progmm replicating work. 
Fortunately, in this case the amount of replicated work is trivial. 

Step 3a is also easy to translate. Each process is responsible for marking all 
the multiples of k in its block between k2 and II. We may need to do a little bit of 
algebra to detem1ine the location of the first multiple of k in the block. but after 
that, all we need to do is mark every kth element in the block. 

As we have already determined, process 0 is exclusively responsible for 
determining the next value of k if p < .;n, which is true for all values of II for 
which we would reasonably want to execute the parallel algorithm. If process 0 
is responsible for finding the next pme in step 3b, which determines the new 
value of k, then all of the other processes must receive the new value of k so that 
they may compute the value of the termination expression in the repeat .•. until 
loop and possibly use it in the next iteration of the loop. 

In olher words, we want to copy the up-to-date value of k on process 0 to 
the local instances of k located on the other processes. This is an example of 
broadcasting, a global communication function. 

121 



122 eH AP TER 5 The Sieve of Eratosthenes 

5.5.1 Function MPI--':-Bcast . 

Let's look at the header of function HPI_Bcast, which enables a process to 
broadcast one or more data items of the same type to all other processes in a 
communicator: 

int MPI_Bcast 
void *buffer I /* Addr of 1st broadcast element * / 
int count. /* # elements to broadcast * / 
MPI_Datatype datatype, /* Type o[ elements to broadcast */ 
int root. /* 10 of process doing broadcast */ 
MPI_collL'Tl comm) ~* Communicator * / 

~/"'~!'~-:',-~>.~'":. ':', -' 

The second parameter, count, indicates how many elf'm.cnt~ are being broad­
cast. Every process calling this function needs to specify the same value for 
count. The first parameter, buffer, is the address of the first data item [0 be 
broadcast. The function assumes all of the data items are in contiguous memory 
locations. The third parameter, datatype, is an MPI constant indicating the 
type of the data items to be broadcast. Parameter four, root, is the rank of the 
process broadcasting the data item(s). Finally, the fifth pammeter, comm, indi­
cates the communicator, the group of processes participating in this collective 
communication function . 

. In the case of our parallel sieve algorithm, process 0 needs to broadcast a 
single integer, k, to all other processes. Hence thecal! takes this form: 

MPCBcast (&ok, 1, MPCINrl', 0, MPI_COMlCWORLD); 

After this function has executed, every process has an up-to-date value of k 
and is atJle to evaluate the termination condition in the repeat .•. uutilloop. 

At the conclusion of the repeat .. , numioop, all the primes between 2 and n 
have been discovered. They correspond to the unmarked elements of the boolean 
army. A more meaningful prognUTl would then make use of the primes. Since we 
are more interested in learning about parallel programming than number theory, 
let's take the easy way out and simply eount the number of primes in the range 2 
through I!. 

It is straightforward for each process to count the number of primes (number 
of array clements equal to 0) in its local array. At that point we neerlto perform a 
sum-reduction to accumulate these subtotals into a grand totaL As we saw in the 
previous chapter, this is implemented using the MPI function MPCReduce. 

The task/channel graph for ollr parallel algorithm appears in Figure 5.5. 

5.6 ANALYSIS OF PARALLEL 
SIEVE ALGORITHM 

Now that we have designed a pardllel algorithm, let's derive an expression that 
approximates its execution time. 
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3 

Figure 5.5 Tasklchannel graph for the 
parallel Sieve of Eralosthenes algorithm 
with four tasks. The dotted arrows 
represent channels used for 1/0. The 
curved arrows represent channels used 
for the broadcast step. The straight, 
solid arrows represent channels used 
forthe reduction step (as previously 
mustrated in Figure 3.12). 

Let 1. represent the time needed to Iilllrk a particular ce)1 as being the mulliple 
of a prime. This time includes not only the lime needed to a~sign I to an element 
of the array, but also time needed for incrementing the loop index and testing 
for termination. The sequential algorithm has time complexity 0(11 In Inn). We 
can determine X experimentally by running a sequcntial version of the algorithm. 
In other words, the' expected execution time of the selial algorithm is roughly 
xn In In II, 

Since only a single data value is broadcast each iteration, the ())st of each 
broadcast is closely approximated by ,\,pog {J 1, where'\' is message latency. 

How many times will this loop iterate? The number of primcs between 2 
and fI is aboul n/ Inn [Ill. Hence a good approximation to the number of loop 
iterations is Ji1 /In jil. 

Therefore, the expected execution time of the parallel algorithm is approxi­
mately 

x(nlnlnn)/p + (JiJjlnJii),\,llogpl 

5.7 DOCUMENTING THE PARALLEL PROGRAM 
The complete text of the parallel Sieve of Eratosthenes program appears in 
Figure 5.6. In this section we thoroughly document the program. 

We hegin with the standard include files. Header file M'yMPI . h contains 
macros and function prototypes for the utilities we are developing. From now 
on, we'll include this header file in our programs. We also define a macro that 
computes the minimum of lwo values. 
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j* 

sieve of Eratosthenes 
, I 

#includ," <mpi.h> 
~includc <math.h> 
#include <s~dio.h> 
End udp. " MyMP I. h" 
#define MIN (a,b) «aj«b1?ia) (bl I 

lnt mal" i Int. argo, char * argy [J I 

int count; !* LOI:al prlme count 
double elapsed_time; /.* Pctrallel eXE!cu.tion 

*/ 
time 

int tlrst; j' Index of first multiple 
lnt globa130uot; I' Global prime count *1 

*/ 
*1 

lnt high_value; /" Highest value on this proc 
int i; 
int id; 1* Procc:ss m number */ 
lnt index; 1* Index of current prime ./ 

'/ 

in::. low_value; /* Lowp.st value on this proc • J 
char 'marked; I' Portion of ..... '~T 

'-'". OJ L *! 
int n; 1* Slevinq from 2, , '0' 

.i.nt p; 1* Nuwber of bJrocesses *1 
int precO_size; I' Size of proc 01S suharray 
inL primer 1* Current prime "1 
lnt size; ./' Elellients 

!-IPI I'll t (&ctI:gC, &.argy); 

/* Start the tjm~;r * I 

MPI_Barrler(MPI_Cu~~_WORLD); 

elapsed_time = -MPc_Wtime(); 

in 

MPI_CoflID_rank (MPI_COMM_~ORLD, &ld\; 
MPI_Comm_si2c (MPI_COMM_WORLD. &p); 

if 'f'rgc 102) { 

'w.arked' 'r -

'( 

*; 

if (lId) prlntf ("Command 11n8: %s <m)\n", arqv~{)l); 

MPI]inalize i I ; 
exit (1), 

" = atoi (argv[l]); 

1* Figure out this process's share of :~le arraYr as 
well as the integer s represented by the first and 
IJst array el eorents 11! 

lO"J_yalue + RLOCK_LO,/{ld,p,n-l); 
high_value = 2 t ELOCK .. HWH(id,p,n-l); 
size BLOCK_SIZE(id,p, 11-1 I ; 

;> Flail out if all the primes used [or si"vinr; are 
ooL all held by proc8ss D *; 

Figure 5.6 MPI program ior Sieve of Eratosthenes. 
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procO ,size (n-li (p: 

if ((2 + proc-O .. size) < (illi.:; sqrt ((doublp.) n)) 

if [lid) printf ("'Too many prOCeSS€H\n"}i 

MPI .Finalize(); 
exi t 11); 

'* Allocate thL3 processfs ;:;hare of the array~ *; 

l1i3.rkecl ='Ichar *) malloe (size); 

jf (marked =~ NULL) ( 
printf (OlCannot allocate enough rnemor.y\a li

) i 

MPIji nalize () ; 
exit (Ii; 

for U ::: G; i < size; i++l markod[i] 0; 
if (!iCl) index iJi 
prime:::; 2; 
do ( 

l 
J if \prj.me prime> low_value) 

first ~ prirne "t- prime - 10'.H_valuei 
lds~ { 

if (! (low_value % prime)) first D; 
else fIrst prime (low~value % prime); 

for (i = first; i < size; 1 +:::: prIme) markedfl] 1; 
if (lid) l 

while (marked[Hindex]); 
prime = index + 2; 

MP[_Bcast (&prime, 1, MPI_INT. O. MPI_COMM_WORLD); 
while (prime * prime <= nl; 

count :;- Dr 
for (i = 0; i < size; i++) 

if {!raarkedIU) count++; 
MPI_Reduce f&cDunt, &global_cour.tl 1/ MPI_INT, Mpr~,_SOM, 

0, MFI_ COl~CWORLD) ; 

jff Stop the cimer *! 

(~ Print the resulLs */ 

if (! ic1) 
princE \ "%d primes are le-ss than or equo.l to %ci\n q

, 

global_couIl~, Hi; 

print.: ('''Total elalJ[.;ea time: %10.6f\n", elaps~(l~:..irou)i 

MFI]ihali z.e {I; 

rE'turn 0; 

Figure 5.6 (eontd.) MPr program far Sieve of Eratosthenes. 
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#define MIN(a,b) ((a)«b)?(a):(b)} 

The user is supposed to specify the upper range of the sieve as a command -line 
argument. If this value is missing, we terminate execution. In this case it is vital 
that each process calls MPCFinalize () before it exits. If the command-line 
argument exists, we convert the string into an integer. 

if (argc ! = 2) { 
if (!id) printf ("Command line: %8 <m>\n", argv[O}); 
MPIJinalize() ; 
exit (1); 

n atoi(argv[l]); 

The program will find all primes from 2 through n, meaning we are {;hecking 
the primality of a total of n - I integers: As we dis{;ussed earlier, we will give 
each process a contiguous block of the array that stores the marks. We determine 
the low and high values for which this process is responsible, as well as the total 
number of values it is sieving, using the macros we have devel?ped. 

low_value = 2 + BLOCK_LOW(id,p,n-1j; 
high_value = 2 + BLOCK_HIGH(id,p,n-1);" 
size = BLOCK_SIZE(id,p,n-1); 

Our algorithm works only if the square of the largest value in process O's 
array is- greater than the upper limit of the sieve. We add code that checks to 
ensure that this condition is true. If not, the program terminates. 

procO_size = (n-1)/p; 

if ((2 + procO_8ize) < (int) sqrt((double} n)) 
if (! id) printf ("Too many processes\n"); 
MPCFinalize () ; 
exit (1); 

Now we can allocate the process's share of the array. Because a single byte 
is the smallest unit of memory that can be indexed in C, we declare the array to 
be of type char. If the memory allocation fails, the program terminates. 

marked = (char *) malloc (size); 

'" if (marked == NULL) { 
printf ('Cannot allocate enough memory\n") ; 
MPCFinalize () ; 
exit (I); 
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The elements of the list are unmarked. 

for (i := 0; i < size; itt) marked[il := 0; 

Whew! We have completed Step 1 of the algorithm. Fortunately, the remain· 
ing steps can be implemented with much less coding. Step 2, for example, requires 
only two lines. We will begin by sieving multiples of 2. Integer prime is the 
value of the current prime being sieved. Integer index is its index in the ar· 
ray of process O. We conditionalize the initialization of index to process.O to 
emphasize that only process 0 uses this variable. -

if (!id) index:= 0; 
. prime:=; 2; 

Now we are at the heart of the program, corresponding to Step 3 in the original 
algorithm. We implement repeat ... until in C as a do .. , whi 1 e loop. 

Each process is responsible for marking in its portion of the list all multiples 
of prime between prime squared and n. To do this, we need to determine the 
index corresponding to the first integer needing marking. If prime squared is 
greater than; the smallest value stored in the array, then we take the difference 
between the two values to determine the index of the first element that needs to 
be marked. Otherwise, we find the remainder when we divide low_value by 
prime. If the remainder is 0, low_val ue is a multiple of prime, and that is 
where we should begin'marking. Otherwise, we must index into the array to be 
at the first element that is a multiple of pr ime. 

if (prime * prime> low_value) 
first == prime * prime - low_value;. 

else { . 
if (!(low_valu€ % prime)) first 0; 
else first := prime - (low_value % prime); 

The following for loop actually does the sieving. Each process marks the 
multiples of the current prime number from the first index through the end of the 
array. 

for (i == first; i < size; i t== prime) marked[i] = 1; 

Process 0 finds the next prime by locating the next unmarked location in the 
array. 

if (! id) 
while (marked! t+indexl ) ; 
prime := index + 2; 

Process 0 broadcasts the value of the next prime to the other processes. 

MPI_Bcast (&prime, 1, MPI_INT, 0, MPI_COMM_WORLD); 
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The processes continue to sieve as long as the square of the current prime is 
less than or equal 10 the upper limit. 

while (prime * prime <c.: nl; 

Each process counts the number of primes in its portion of the list. 

count = 0; 
for (i = 0; i < size; itt) 

if (!marked[i]) count+t; 

The processes compute the grand total, with the resull being stored in variable 
global_count on process O. 

}iPI_Reduce (&count, &global_count, I, MPCINT, t~PI_.SUN, 

0, MPCCOt.ftCWORLD); 

We stop the timer. At this point elapsed_time contains the number of 
seconds it took to execute tbe algorithm, excluding initi~1 MPI startup lime. 

elapsed_time += MPI_Wtime(); 

Process 0 prints the answer and the elapsed time. 

if (!id) { 
printf ("%d pri.mes are l(~ss than or equal to %d\n", 

global_count, n); 
printf ('''rotal elapsed time: %10. 6[\n" , elapsed_time); 

All that remains is a call to MPI Finalize to shut down MPI. 

5.8 BENCHMARKING 

Let's see how well our model compares with the actual perfonllance of the parallel 
program finding all primes up to 100 million. 

. We will execute our parallel program on a commodity cluster of 450 MHz 
Pentium II CPUs. Each CPU has a fast Ethernet connection to a Hewlett·Packard 
Procurve 41 08GL switch. 

First, we determine the value of X by running a sequential implementation of 
the program on a single processor of the cluster. The sequential program executes 
in 24.900 seconds. Hence 

24.900 see 
X = ..... == 85.47 nanoseconds 

100,000,000 In In 100.000,000 

We also need to delennine A. By performing a series of broadcasts on2, .. ,8 
processors, we detelmine A = 250 IIsec. 
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Figure 5.7 Comparison of the predicted 
({lotted line) and actual (solid line) execution 
times of the parallel Sieve of Eratosthenes 
program. 

Plugging these values into our formula for the expected execution time of Ih~ 
parallel algorithm, we find 

x(n In In n)/ p + (,[,i/ln ,[,iP..log p "" 24.9001 p + 0.2714 [log P 1 sec 

We benchmark our parallel program by executing it 40 times-five times 
for each number of processors between I and 8. For each number of processors 
we compute the mean execution time. Figure 5.7 compares our experimental 
results with the execution times predicted by our model. The average error of the 
pR'liictions for 2, ... , 8 processors is about 4 percent. 

5.9 IMPROVEMENTS 
While the parallel sieve algorithm we have developed does exhibit good perfor­
mance, there are a few modifications to the program that can improve performance 
significantly. In this sectioll we present three modifications to the parallel sieve 
algorithm. Each change builds on the previous ones. 

5.9.1 Delete Even Integers 

Since 2 is the only even prime, there is little sense in setting aside half of the 
boolean values in the array for even integers. Changing the sieve algorithm so 
that only odd integers are represented halves the amount of storage required and 
doubles the speed at which multiples of a particular prime are marked. With 
this change the estimated execution time of the sequential algorithm becomes 
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approximately 
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Figure 5.8 'ExectJtion lime of the original 
(solid line) and improved (dotted line) parallel 
programs performing the Sieve of 
Eratosthenes. 

x(nlnlnn)j2 

and the estimated execution lime of the parallel algorithm becomes approximately 

X (rzlnln n)j(2p) + (.;rij In .;rip. log p 

Figure 5.8 plot~ the results of benclunarking the original parallel sieve al­
gorithm and the improved algorithm sieving 100 million integers on 1,2, ... , & 
processors. As expected, the time required for the improved algorithm is about 
half the time required for the original algorithm, at least when the number of 
processors is small. 

In fact, while our improved sieve runs twice as fast as our original program on 
one processor, it executes ani y slightly faster on eight processors. The computation 
time of the improved program is significant! y lower tha~ that of the original 
program, but the communication requirements are identical. As the number of 
processors increases, the relative importance of the communication component to 
overall execution time grows, shrinking the difference between the two programs. 

5.9.2 Eliminate Broadcast 

Consider step 3b of the original algorithm, in which the new sieve value k is 
identified. We made this step parallel by letting one process identify the -new 
value of k and then broadcast it to the other processes. During the course of the 
program's execution this broadcast step is repeated about.;rij In ~ limes. 
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W~y not let every task identify the new value of k? In our original data 
decomposition sclleme this is impossible, because only task 0 controls the array 
elements a~sociated with the integers 2. 3 .•.. , ./ii. What if we chose to replicate 
these values'! 

Supposc in addition to each task's set of aboutn! p integers,;.each task also has 
a separate array containing integers 3,5, 7, .. " l filJ. Before finding the primes 
from 3 through n, each task will use the sequential algorithm to find the prime$ 
from 3 through l Ji1J. Once this has been done, each task now has its own private 
copy of an array containing all the primes between 3 and lJllj. Now the tasks 
tan sieve tlleir portions of the larger anay without any broadcas t step". 

if 
Eli minating the bro~dcast step improves the spee,d of the parallel algorithm 

(01/1n Jii)Aflog pl > X jilin In./ii 

=} (A nag p nlln JII > X In [n JII 
=> A > X In In Ji1 In Jii/flogpl 

The eXRccterl1ime complexity of the parallel algorithm is now approximately 
-

X ((n In [n n)/(2p) + JilIn In Jit) + Allog p 1 

(The final term represent~ tbe time needed to do the sum·reduction.) 

5.9.3 Reorganize Loops 

For much of the execution of the parallel sicve algorithm, each process is marking 
widcly dispersed elements of a velj large array, le'dding to a poor cat:he hit rate. 
Think of the heart of the algorithm dcveloped in the previous subsection as two 
large loops. The outer loop iterates over prime sieve values between 3 and L JIll, 
while the inner loop iterates o\'er the process's share of the integers between 3 
and II. Jf we exchange the inner and outer loops, wc can improve the cache hit 
rate. We can filllbe cache with a section of the larger subarray, then strike all the 
multiples of all the primes less than L Ji1J on that section bcfore bringing in the 
next section of the subalTay. (See Figure 5.9.) 

5.9.4 Benchmarking 

Figure 5.10 plots the execution limes of the original parallel Sieve of Eratos· 
tllenes program and all three improved vcrsions, when finding primes less than 
100 million on 1,2, ... ,8 proces.ws. The underlying hardware is a commOdity 
cluster consisting of 450>MHz Pentium n CPUs connected by fast Ethernet to a 
Hewlctt·Patkard ProcUfve 4 i08GL switch. 

The execution time of the original sequential program is the same as Sieve I 
on one processor. On eight processors, our parallel sic\·e program that incorporates 
cvery described optimization executes about 72.8 limes faster than the original 
sequential program. The larger share of the increase (a factor of9.8) results from 
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3-99: mulLiplcs of 3 

3-99: multiples of 5 -3-~99: mul~ples of 7 

~ 
(al 

3-17:multiplesof3 ~ 

19-33: multiples of3,5 ~ 

35-49: multiples 0[3,5, 7 ~ 

5J...{i5:rhul~pleso[3,5.7~ ~ 

67-81: mu)lipJcs 0[3, 5, 7 ~ 

83-97: multiples ofJ, 5,7 ~ 

99: multiples 0[3, 5, 7 @ 
(b) 

Figure 5.9 Changing the order in which composite integers· 
are marked can dramatically improve the cache hit rate. In this 
example we are finding primes between 3 and 99. Suppose the 
cache has four lines, and each line can hold lour bytes. One line 
contains bytes representing integers 3, 5, 7, and 9; the nexlline 
holds bytes representing 11, 13, 15, and 17; etc. (a) Sieving all 
multiples of one prime before considering next prime. Shaded 
circles represent cache misses. By Ihe lime the algorithm returns 
to the bytes representing smaller integers, they are no longer in 
the cache. (b) Sieving multiples 01 all primes for 8 bytes in two 
cache lines before considering the next group of 8 bytes. Fewer 
shaded circles indicates the cache hit rate has improved. 

eliminating the storage and manipulation of even integers and inverting the two 
principal loops to improve the cache hit rdLe. The smaller share of the increase 
(a factor of about 7.4) results from redundantly computing primes up to liz to 
eliminate broadcasts and using eight processors instead of one. Our greater gains, 
then, were the result of improvements to lhe sequential algorithm before paral­
lelism was applied. 
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Figure 5.10 Execution time of four paraDel 
implementations of the Sieve 01 EJatosthenes 
on a commodity cluster of 450 MHz Pentium I I 
processors connected by last Ethernet. 
The upper solid line is the original program. 
The dOlled line is the execution time of the 
program that does not store or strike even 
integers. The dashed line plots the execution 
time of the program that eliminates 
broadcasts. The lower sorrd line shows the 
execution time of the program that 
incorporates the add~iooal optimization of 
interch anging loops in order to improve the 
cache M rate. 

5.10 SUMMARY 

We began with a sequential algorithm for the Sieve of Eratoslhenes and used the 
domain decomposition methodology to identify parallelism. For this algorithm, 
a blockwise distribution of array values to processes is superior to an interleaved 
distribution. The data-parallel algorithm we designed requires that task 0 broad­
casts the current prime to the other tasks. The resulting parallel program uses the 
function MPI_Bcast to perfOffillhis bIOadcast operation. The program achieves 
good performance on a commodity cluster finding primes up to 100 million. 

We then examined three improvements to the original parallel version. The '" 
first improvement eliminated all manipulation of even integers, roughly eutting in 
half both storage requirements and overall execution time. The second improve­
ment eliminates the need for a broadca~t step by making redundant the portion of 
the computation that determines the next prime. The cost of this improvement is 
a requirement Ihat each process store all odd integers between 3 and In. 
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The third enhancement improved the cache hit rate by striking all composite 
values for a single cache-full of integen; before moving on to the next segment 

Note that our fourth program executes faster on one processor than our orig­
inal program does on eight processors. Comparing both programs on eight pro­
cessors, the fourth program executes more than II times faster than our original 
program. It is important to maximize single pmcessor perfomlance even when 
multiple processors are available. 

5.11 KEY TERMS 

block decomposition data dccomposition 

5.12 BIBLIOGRAPHIC NOTES 

Luo [761 presents a version ofthe Sieve ofEratosthenes in which neither multiples 
of 2 nor multiples of 3 appear in the array of integers to be marked. 

5.13 EXERCISES 

5.1 COI1~ider a simple block allocation of n data items to p processes in 
which the fir.st p - I processes get fnj p 1 items each and the last process 
gets what is leftover. 

a. Find values for nand p where the last process does not get any 
elements. 

b. Find values for nand p where lp/2J processes do 1I0t get any values. 
Assume p > L -

5.2 This chapter presents two block data decomposition strategies that assign 
n elements to p processes such that each process is assigned either L n / p J 
or fn/ p 1 elements. For each pair of values nand p, use a table or an 
illustration to show how these two schemes would assign array element.s 
Lo processes: 
a. 11 =:: 15 and p = 4 

b. n = 15 and p :::: 6 

c. n = 16 and p = 5 
d. n = 18 and p = 4 
e. n:=: 20 and p = 6 
f. n = 23 and p == 7 

5.3 Usc the analytical model developed in Section 5.6 to predict the 
execution time of the original parallel sieve program on 1.2, ... , 16 
processors. Assume n = lOB,), = 250 lisec, and X = 0.0&55 Jlsec. 

5.4 Use the analytical model developed in Section 5.9.[ to predict the -
execution time of the second version of the parallel sieve program (the 
one that does not store or mark even integers). Compare the execution 
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time predicted by the model to the actual execution lime reported in 
column 2 oflable 5.1. What is the average error of the predictions for 
2, .... ~ processors? 

Table 5.1 Mean execution times (in seconds) of four parallel 
implementations of the Sieve of Eratosthenes on a commodity cluster of 
450 MHz Pentium II processors connected by fast Ethernet. Sieve 1 is the 
original program. Sieve 2 does not store or strike even integers. Sieve 3 
incorporates the additional optimization of eliminating broadcasts by 
computing primes between 2 and .,(ri on each processor. Sieve 4 
incorporates the additional optimization of interchanging loops in order to 
improve the cache hit rate. 

~~~:'\;;~\:;~j~~~i~"~':~'£~!';;~;~t~'l','\:,;;(:::~~~~l\ ~iJ\~:~;!~~~S!f~~': 
J. 24.900 12.237 12.466 2.543 
2 12.721 6.609 6.378 l.33{) 
3 8.843 5.019 4.272 0.90\ 
4 6.768 4.072 3.201 0.679 
5 5.794 3.652 2.559 0.543 
6 4.964 3. 270 2.127 0.456 
7 4.371 3.m9 1.820 0.391 
8 3.927 2.856 1.5B5 0.342 

5.5 Use the analytical model developed in Section 5.9.2 as a starting point 
to predict the execution time of the third version of the parallel sieve 
program. Assume IJ = lOs, ), = 250 lisec, and X = 0.0855 fJ,sec. 
Compare the execulion time predicted by your model to the actual 
execution time reported in column Sieve 3 ofTable 5. I. What is the 
average error of the predictions for 2, ... , 8 processors? 

5.6 Modify the parallel Sieve of Eratosthenes program presented in the text to 
incorporate the firsl improvement described in Section 5.9: it should not 
set aside memory for even integers. Benchmark your program, comparing 
its performance with that of the original parallel sieve program. 

5.7 Modify the parallel Sieve of Eratosthenes program presented in the book 
to incorporale the first two improvements described in Section 5.9. Your 
program should nol set aside memory for even integers, and each process 
should use the sequential Sieve of Eralosthenes algorithm on a separate 
array to find all primes between 3 and l.JllJ. With this inforl11ation, the 
call to MPI _Beast can be eliminated. Benchmark your program, 
comparing its performance with thal of the original parallel sieve 
program. 

5.8 Modify the parallel Sieve of Eratosthenes program presented in the text 
to incorporate all three improvement~ described in Section 5.9. 
Benchmark your program, comparing il~ performance with that of the 
original panulel sieve program. 

5.9 All the paraUcl sieve algorithms developed in this chapter are the result 
of a domain decomposition of the original algorithm. Write a parallel 
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Sieve of Eratosthenes progciIDbas&fupon a fu[)ctiona! decomposition of 
the algorithm. Suppose there are p processes finding primes up w n. (The 
program gets these parameters from the command line.) In the first step 
each process independently identifies primes up to .;n. In step two each 
process sieves the list of integers with 11 pth of the primes between 2 and 
-/ii. During the third step the processes OR-reduce their arrays into a 
single array helt! by process O. Tn the last step process 0 counts the 
unmarked elements of the array and prints the prime number count. 

For example, suppose three processes are cooperating to find primes 
up to 1000. Each process allocates an array of 999 elements, representing 
the integers 2 through 1000. Each process identifies the primes less than 
or equal toJIOOO: 2;3,5,7,11, 13, 17, 19,23,29,31. Process 0 sieves 
its array with the primes 2, 7, 17, and 29; process I sieves its array with 
the primes 3, 11, 19, and 31: and process 2 sieves its array with the 
primes 5,13, and 21 

5.1 0 Identify three disadvantages of the parallel program design described in 
the previous exercise compared to. the origilIal parallel design described 
in this chapter. 

5.11 The simplest harmonic progression is 

Let S" = E7=1 Iii. 

I 1.1 
1'2' )"" 

a. Write a parallel program that computes these SIlffiS to arbitrary 
precision after the decimal poinL For example, Sl = 2.592857142857, 

. to 12 digits of precision after the decimal point. Process 0 should 
query the user for the two parameters, nand d, and broadcast these 
parameters to the other processes. Processes should work together to 
compute S. to d digits of precision after the decimal point. After s" 
has been computed, process 0 shou ld print its value. 

b. Benchmark the program computing Sl.llOO.000 to 100 digit~ of 
precision, using various numbers of processors. 



CHAPTER 

Floyd's Algorithm 

Not ollce or twice in our rough island story 
The path of duty was the path of glory. 

Alfred, I.ord Tennyson, Ode on the Death of the Duke of Wellington 

6.1 INTRODUCTION 
Travel maps often contain tables showi ng the driving distances between pairs of 
cities. At the intersection of the row representing city A and the column repre­
senting city B is a eel! containing the length of the shortest path of roads from.A 
to B. [n the case of longer trips, this route most likely passes through other cities 
represented in the table. Floyd's algorithm is a classic method for generating this 
kind of table. 

In this chapter we win design, analyze, program, and benchmark a parallel 
version of Boyd's algorithm. We will begin to develop a suite of functions that 
can read matrices from files and distribute them among MPI processes, as well 
as gather matrix elements fcom MPJ processes and print them. 

This chapter discusses the following MPI functions: 

• MPI_Send, which allows a process to send a message to another process 
• MPI_Recv, which allows a process to receive a message sent by another 

process 

6.2 THE ALL·PAIRS SHORTEST ·PATH 
PROBLEM 

A graph is a set oonsisting of V, a fi nite set of vertices, and E. a finite set of 
edges between pairs of vertices. Figure 6.lais a pictorial representation of agraph, 
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Figure 6.1 (al A weighted, directed graph. (bl Representation of the graph as'an-~djac~ncy matrix. 
Element (I, il represents the length of the edge from ito j. Nonexistent edges are considered to have infinite 
length. (cl Solution to the all-pairs shortest path problem. Element (i, j) represents the length of the shortest 
path from vertex i to vertex j. The infinity symbol represents nonexistent paths. 

in which veltices appear as labeled circles and edges appear as lines between 
pairs of circles. To be more precise, Figure 6.la is a picture of a weighted, 
directed graph. It is a weighted graph because a numerical value is associ­
ated with each edge. Weights on edges can have a variety of meanings. In 
the case of shortest path problems, edge weights correspond to distances. It 
is a directed graph because every edge has an orientation (represented by an 
arrowhead). 

Given a weighted, directed graph, the all-pairs shortest-path problem is 
to find the length of the sllOrtest path between every pair of vertices. The length 
of a path is strictly detennined by the weights of its edges, not the number of 
edges traversed. For example, the length of the shortest path between vertex 0 
and vertex 5 in Figure 6.1a is 9; it traverses four cdge,~ (0 -->' l, I -->' J,3 -->' 4, 
and 4 -->' 5). 

If we are going to solve this problem on a computer, we must find a con­
venient way to represent a weighted, directed graph. The adjacency matrix is 
the dak1 structure of choice for this application, because it allows conslant-time 
access to every edge and does not consume more memory than is required for 
storing the solution. An adjacency matrix is an n x n matrix representing a graph 
with n vertices. Tn the case of a weigilted graph, the value of matrix clement (i, j) 
is the weighl of the edge from vertex i to vertex j. Depending upon the appli­
cation, the way lilat nonexistent edges are represented varies. In the case of the 
single-source shortest-path problem, nonexistenf>edges are assigned extremely 
high values (such as the maximum integer representable by the underlying archi­
tecture), For convenience, we will use the symbol 00 to represent this extremely 
high value. Figure 6.1 b is an adjacency matrix representation of the same graph 
shown pictorially in Figure 6.1 a. 
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Floyd's Algorithm: 

Input: r. - number of vertices 
afO.], - LO . .I1-11-~adj"r.ency matrix 

OulplleTraostilnned a that contains tbe ,qlJonest path lengths 

fork +-OlOn - I 
fori 'C-IHoJl-l 

forj+-Otoll-i 
a[i,jI f-- min(ll[i, n, a[UI+ a[k.j)) 

endfol' 
endfor 

end for 

Figure 6.2 Floyd's algorfthm is an B(n3) time 
algorithm thai solves the all-pairs shortest-path 
problem, It transforms an adjacency matrix into a 
matrix containing the length oj ihe shortest path 
between every pair of vertices, 

When the algorithm terminates, the matrix contains the lengths of the shortest 
path between every pair of vertices. Figure 6.1c is the solution of the all-pairs 
shOitest-path problem for the graph represented in Figure 6.1 a. 

More tlmn 40 years ago Hoyd invented an 8(n3) time algorithm fOf solving 
the all-pairs shortest-path problem. Floyd's algorithm appears in Figure 6.2. For 
more infoonation on this algorithm, see Cormen et al. [18]. 

6.3 CREATING ARRAYS AT RUN TIME 
A program manipulating an array is more USer!l! if the size of the array can be 
specified at run-time. because it does not have to be recompiled when the size 
of1re array to be manipulated changes. Allocating a one-dimen.~ional array in 
C is easily done by declaring a scalar pointer and allocating memory from the 
heap with a malloc statement. For example, here is a way to allocate matrix A, a 
one-dimensional, Il-element array of integers: 

int *A; 

A (int oJ malloe (n * sizeof(int)); 

Allocating a two-dimensional atTay is more complicated, however, since C 
treats a two-dimensional array as an array of alTays, We want to ensure that the 
may elements occupy contiguous memory locations, so that we can send or 
receive the entire contents of the array ina single message. 

Here is one way to allocate a two-dimensional array (see Figure 6.3 ).First, we 
allocate the memory where the array values are 10 be stored. Second, we allocate 
the array of pointers, Third, we initialize the pointers. 

139 



140 CHAPTER 6 Floyd's Algorithm 

Bstorage B 

Figure.~.3 Allocating a 5 x 3 matrix is a 
three"step process. First, the memory for the 
15 matrix values is allocated fIom the heap. 
Variable Bstorage points to the start of this 
bloc\( of memory. Second, the memory for the 
five row pointers is allocated from the heap. 
Variable B paints to the start of this block of 
memory. Third, the values 01 the pOinters B ( 0 ) , 
B [1), ... , B[ 4] are initialized. 

For example, the following C code allocates B, a two-dimenskmal array 
integers. The array has m rows and n columns: . 

int **B, *Bstorage, i; 

Bstorage = (int *) malloe (m * n * sizeof(int)); 
B = lint **) mailoe (m * sizeof(int *)J; 

[or Ii = 0; i < m; i++) 
Bli] = &Bstorageli*n]; 

0-,. The elements of B may be initialized in various ways. If they are initializ 
through a series of a'isignment statements referencing B l 0 J [0 J , B [0] lll, et 
there is little room for error. However, ifLhe elements ofB are initialized en masi 
for example, through a function call thal reads the matrix elemenls from a Ii 
remember to use BstOlilgc, rather than B,. as the starting address. 

6.4 DESIGNING THE PARALLEL ALGORITHM 

6.4.1 Partitioning 

Our first step is to determine whether to choose a domain decomposition 
a functional decomposition. In this case, the choice is obvious. Looking at t 
pseudocode in Figure 6.2, we see that the algorithm executes the same assignnu 
statement n3 times, Unless we subdivide this statement, there is no functiOl 
parallelism. In contrast. it's easy to perform a domain decomposition, We c 
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Figwe 6.4 Partitioning and communication in Floyd's 
algorithm. (a) A primitive task is associated with each 
element of the distance matrix. (b) Updating 8[3, 4J when 
k = 1. The new value oi 8 [3, 4] depends upon its previous 
value and the values of a[3, 1] and a[l, 4]. (c) During 
iteration k every task in row k must broadcast its value to the 
other tasks in the same co lumn. In this drawing k = 1. 
(d) During iteration k every task in column k must broadcast 
its value to the other tasks in the same row. In this drawing 
k= 1. 

divide matrix A into it, n2 elements and associate a primitive task with each 
element (Figure 6.4a). 

6.4.2 Communication 

Each update of element If[i, j] rc{).uires access to clements ali, kJ and ark, j]. 
. For example, Figure 6.4b illustrates the clements needed to update a [3,4] when 

k = I. Notice that for any parlicular value of k, element {Ilk, m] is needed by 
every task associated with elements in column m. Similarly, for any particular 
value of k, elemenl aim, k] is needed by every task associated with elements in 
row m. What Ibis means is that during iteration k each elemenl in row k of a gets 
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broadcast to the tasks in the same column (Figure 6.4c). Likewise, each element 
in coltnnn k of a gets broadcast to the tasks in the same row (Figure 6.4d). 

It's important to question whether every element of a can be updated simul­
taneously. After all, if updating aU, jJ requires the values of ark. k] and ark, j}, 
shouldn't we have to compute those values first1 

lbe answer to this question is no. The reason is that the values of aU. k] 
and ark, jJ don't change during iteration k. That's because during iteration k the 
update to aU, kJ takes this f?rm: 

ali, k] +- min(a[i, k], a{i, k 1 + ark, j]) 

Since all values are positive, ali, k] can't decrease. Similarly, the update to ark, n 
takes this form: 

ark. j] +- min(a[k. j], ark, kJ + ark, j]) 

The value of ark, jj can't decrease. Hence there is no dependence between the 
update of ali, jj and the updates of aU, kj and ark, j]. In short, for eacti iteration 
k ofthe outer loop, we can perform the broadcasts and then update every element 
of a in parallcl. 

6.4.3 Agglomeration and Mapping 

We'll use the decision tree of Figure 3.7 to determine our agglomeration and 
mapping strategy. lbe number of tasks is static, the communication pattern among 
tasks is structured, and the computation time per task is cOllStanl. Hence we shoilld 
agglomerate tasks to minimize communication, creating one task perMPI process . 

. Our goal, then, is to agglomeratc/l2 primitive tasks into p tasks. How 
should we coliect them? Two natural agglomerations group tasks in the same 
row or column (Figure 6.5). Let's examine the I.:onsequences of both of these 
agglomerations. 

If we agglomerate tasks in the same row, the broadcast that occurs among 
primitive tasks in the same row (Figure 6.4d) is eliminated, because all of these 
data values are local to the same task. With this agglomeration, during every 
iteration of the outer loop one task will broadcast /l elements to all the other tasks. 
Each broadcast requires time pog pl (1 + nl [3). 

If we agglomerate ta~ks in the same column, then the broadcast that oc­
curs among primitive tasks in the same column (Figure 6.4c) is eliminated. This 
agglomeration, too, results in a message passing time of flog p 1 (1'+ III [3) per 
iteration. 

(The truth is that we haven't considered an even belfer agglomeration, which 
groups primitive tasks associated with (/I I JP) x (n I JP) blocks of elements of 
A. We'll develop a matrix-vector multiplication program based on this data de· 
composition in Chapter 8. when we have a lot more MPIfunctions under our belL) 

To decide between the rowwise and columnwise agglomerations, we need, 
to look outside the computational kernel of the algorithm. The parallel program 
must input the distance matrix from a file. Assume that the file contains the matrix 
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Figure 6.5 Two data decompositions for matrices. (a) In a 
rowwise block-striped decomposition, each process is responsible 
for a contiguous group of rows. Here 11 rows ace divided among 
three processes. (b) In a columnwlse block-striped ds(;omposition, 
eath process is responsible for a contiguous group of columns. 
Here 10 columns are divided among three processes. 

in row-major order. (The file begins with the lirst row, then the second row, etc.) 
In C, matrices are also stored in primary memory in row-major order. Hence 
distributing rows among processes is much easier if we choose a rowwise block­
striped decomposition. This distribution also makes it much simpler to output 
the result matrix in row-major order. For this reason we choose the rowwise . 
block-striped decomposition. -

SA.4 Matrix Input/Output 

We must now decide how we are going to support matrix input/output. 
First, let's focus on reading the distance matrix from a file. We could have 

each process open the file, seck to the proper location in the file, and read its 
portion of the adjacency matrix. However, we will let one process be responsible 
for file input. Before the computational loop, this process wiII read the matrix 
and distribute it to the other processes. Suppose we have p processes. If process 
p - I is responsible for reading and distributing the matrix elements. it is easy to 
implement the program so that no extra Spilce is allocated forlile input buffering. 

Here is the reason why. If process i is responsible for rows lin! p J through 
l(i + 1)11/ p J - 1, then process p - 1 is responsible for fli/ p 1 rows (see Exer­
cise 6.1). That means no process is responsible for more rows than !lI'ocess p - 1. 
Process p - I can use the memory that will eventually-store its I n/ p 1 rows to 
bulfer the rows it inputs for the other processes. 

Figure 6.6 shows how this method works. The Ia.~t process opens the file, reads 
the rows destined for process 0, and sends these rows to process O. It repeats these 
steps for the other processes. Finally, it reads the rows it is responsible for. 
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([OJ ) 
Ib 

l LCLOJ (CLD ) 
Figure 6.6 Example of a single process managing file input. Here 
tllere are four processes, labeled 0, 1, 2, and 3. Process 3 opens the 
file for reading. In step Oa it reads process D's share of the data; in step 
Ob it passes the data to process O. In steps 1 and 2 it does the same 
for processes 1 and 2, respectively. In step 3 it inputs its own data. 
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The complete function, called read~fow~'s t.'riPed_matr .ix, appears in 
Appendix ll. Given the name of the input file, the data type of the matrix elemenl<;, 
and a communicator, it returns (I) a pointer to an array of pointers, allo\~ing the 
matrixelements to be accessed via double-subscripting, (2) a pointer to the loca­
tion containing the actual matrix elements, and (3) the dimensions of the matrix, 

Our implementation of Floyd's algorithm will print the distance matrix twice: 
when it contains the original set of distances and after it has been lransfOimed 
illto the shortest-path matrix, 

Process 0 does an the printing to standard output, so we can be sure the values 
appear in the correct order. First it prints its own slIbmatrix, then it calls upon each 
of the other processes i[l tum to send their, submatrices. Process 0 will receive 
each sub matrix and print it. 

Little is required of processes J, 2, ' .. , p - 1. Each of these processes simply 
waits for a message from process 0, then sends process 0 its portion of the matrix, 

Using this protocol, we ensure that process 0 never receives more than one 
snbmatrix at a time. Why don't we just let every process fire it~ submatrix to 
process 07 After all, process 0 can distinguish between them by specifying the 

rank of the ~ending process in its call to MPCRecv. The reason we don't let 
processes send data to process 0 until requested is we don't want to overwhelm 
the processor on which process ° is executing. There is only a finite amount of 
bandwidth into any processor. If proc(,Bs 0 needs data from process 1 in order 
to proceed, we don't want the message from process 1 to be delayed because 

. messages are also being received from many other processes. 
The source code for function pr.int._row._striped __ matrix appears 

in Appendix B. 

6.5 POINT·TO·POINT COMMUNICATION 
In our function that reads the matrix from a file. process p - I reads a conl/gu­
ous group of matrix rows, then sends a message containing these rows directly 
to the process responsible for managing them. In our function that prints the 
matrix, each process (other than process 0) sends process 0 a message con­
taining ils group of matrix rows. Process 0 receives each of these messages 
and prints the rows to standard output. These are examples of point-la-point 
communications. 

A point-to-point communication invol ves a pair of processes. In contrast, 
the collective communication operations we have previously explored involve 
every process in a group. 

Figure 6.7 illustrates a point-to-point communication, In this example, pro­
cess h is [lot involvcd in a communication. It continues executing statement, 
manipulating its local variables. Process i performs local compntations, then 
sends a message to process j, After the message is sent, it continues on with its 
computation. Process j performs local computations, then blocks until it receives 
a message from process i. 
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Process h Process i PrOCellSj 
---

I~~I COIlljJIlte 

Compute 

B
"",·j ~ WID' 

c__ G!] 
figure 6.7 Point-to-point communications involve pairs of 
processes. 

if lid = iJ ( 

tk Send message to j * I 

ehl<~ if ~id =~ j) { 

/* .. P.eceivB message from 1 *";' 

Figure 6.8 MPI functions 
performing point-to"point 
communications otten occur inside 
conditionally e)(ecuted code. 

If every MPI process executes the same program, how can one process send 
a message while a second process receives a message and a third process does 
neither? 

()---r In order for execution of MP[ function calls to be limited to a subset of 
the processes, these calls must be inside conditionally executed code. Figure 6.8 
demonstrates one way that process j could send a message to process j, while 
the remaining processes skip the message-passing function calls. 

Now let's look at the headers of two MPI functions that we CaII usc to perform 
a point-to-point communication. 

6.5.1 Function MPI_Send 

The sending process calls function MPI_Send: 

int MPI Send 
void 
int 

*messag(e, 

count, 
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MPLDa~:atype datatype, 
int dest, 
int tag, 
MPI_C0W~ corom 

The first parameter, message, is the starting address of the data to be trans­
mitted. The second parameter, count, is the number of data items, while the 
third parameter, datatype, is the type of the data items. All of the data items 
must be of the same type. Parameter 4, dest, is the rank of the process to 
receive the data. The fifth parameter, tag, is an integer "label" for the mes­
sage, allowing messages serving different purposes to beitlentified. Finally, the 
sixth parameter, corom, indicates the communicator in which this message is 
being sent. -

Function MPI_Send blocks until the message buffer is once again avail- ,.....0 
able. Typically the run-time system copies the message into a system buffer, 
enabling MPI_Send to return control to the caller. However, it does not have to 
do this. 

6.5.2 FUnction MPI_Recv 

• The receiving process calls function MPI_Recv: 

int MPI Recv -
void *message, 
int count, 
MPI _Data type 'datatype, 
int source, 
int tag, 
MPI - CO](U11 cornm, 
!>IPI Status *status 

The first parameter, message, is the starting address where the received 
data is to be stored. Parameter 2, count, is the maximum number of data i!ems 
the receiving process is willing to receive, while parameter 3, dataLype, islhe 
type of the data items. The fourth parameter, source, is the rank of the process 
sending the message. The fifth parameter, tag, is the desired tag value for the 
message. Parameter 6, comm, identifies the communicator in which this message 
is being passed. 

Note the seventh parameter, status, which appears in MPCRecv, but not 
HPI_Send, Before calling l'1PT __ Recv, you need to allocate a record of type 
HPI_Status. Parametcr status is a pointerlo this record, which is the only 
user-accessible MPI data structure. 

Function MPI_Recv blocks until the message has been rcceived (or until y-{) 
an error condition causes the function to return). When function HPI_Recv 
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returns, the status record contains infOlmation about the just-completed function. 
Tn particular: 

• status- >NPI_source is the rank uf the process sending the message. 

• s tatus->HPI_Jag is the message's tag value. 

• status- >J.lPCERROR is the error condition. 

Why would you need to query about the rank of the process sending the 
message or the message's tag value, if these values are specified as arguments 
to function MPI_Recv? The reason is that you have the option of indicating 
that the receiving process should receive a message from any process by making 

. the constant NPI,--,il.NY _SOURCE the fourth argument to the function, instead of 
a process number. Similarly, you can indicate that the receiving process should 
re<:eivc a message with any tag value by making the constant MPI_MN _TAG 

the fifth argument to the function. In these circumstances, it may be necessary to 
look at the slatus rc<:ord to find out the identity of the sending process and/or the 
value of the message's tag. 

6.5.3 Deadlock 

o--r "A process is in a deadlock stale if it is blocked waiting for a condition that 
will never become true" {3]. It is not hard to write MPI programs with caIls to 
MP I_Send and HPI_Recv that calise processes to deadlock. 

float 
int 

For example, consider two processes with ranks 0 and 1: Each wants to 

compute the average of il and b. PTO(;ess 0 has an up-to-date value of a; process 
I has an up-to-date value of b. Process 0 must rea~ b from 1; while process 1 
must read a from O. Consider Ihis implementation: 

a, b, C; 

id; /* Process rank *1 

if (id == OJ ( 
NPLRecv (&b, 1, MPLF'LOAT, 1, 0, MPIJOmU'JORLD, &status); 
MPLSend (&a, 1, HPLFLOAT, 1, 0, MPLCOMM_WORLD); 
c = ia + b) ! 2.0; 

else if (id == 1} 
MPLRecv (&a, 1, MPLFLOAT, 0, 0, MPCCOIDCWORLD, &status); 
MPI Send l&b, 1, MPLF'L.oA7', 0, 0, MPI.COMM_vJORLD1; 
c ~ (::; + b) 1 2.0; 

Before calling MPCSend, process 0 blocks inside MPI ]ecv, waiting for 
the message from process I to arrive. In the same way. process 1 blocks inside 
I1PI_Recv, waiting for the message from process 0 to arrive. The processes are 
deadlocked. 
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Okay, that error was fairly obvious (lhou"uh you might be surprised at how 
often this kind of bug occurs in practice ). Let's consider a more subtle error that 
also leads to deadlock. 

We're solving the same problem. Processes 0 and I wish to exchange floating­
point values. Here is the code: 

float 
int 

a, b , c; 
id; / * Process rank ",I 

HPCStatils status; 

if (id == 0) ( 
MPI - Send {&a, I, MPI ]LOAT, l, L MPI~COM~t_WOELD) ; 
MPI. __ Roc, {&b, 1, MPI _FLOAT, L 1, HPCCOMl'U'fOELD, 
c " (a + b) I 2.0; 

else if (id -- l} ( 

MPI - Send (&:b, 1, HPCFLOAT, 0, 0, MPIJOMl<LWORLD) ; 
HPI - Recv (&a, 1, 11PIJLOAT, 0, 0, MPJ: _CQI'll'{J'JORLD , 
c ~ (q + b) I ?. 0; 

&status) ; 

&status) ; 

Now both processes send the data before trying to receive the data, but they 
still deadlock. Can you see the mistake? Process 0 sends a message with tag I 
and tries 10 receive a message with tag 1. Meanwhile, process 1 send, a mes­
sage with tag 0 and tries to receive a message with tag O. Both processes will 
block inside MPI_Recv, because neither process will receive a message with 
the proper tag. 

Another common error occurs when the sending process sends the message to -
the wrong destination process, or when the receiving process attempts to receive 
the message from the wrong source process. 

6.6 DOCUMENTING THE PARALLEL PROGRAM 
We ean now proceed with our parallel implementation of Floyd's algorithm. Our 
parallel program appears in Figure 6.9. 

We lise a typedef and a macro to indicate the type of matrix we are manipulat .. 
ing.If we decided to modify our program to find shortest paths in double-precision 
floating-point, rather than integer, matric~~, we would only have to change these 
two lines as shown here: 

typede£ double dtype; 
#defir.e ~iPCTYPE MPCDOUBLE 

Function main is responsible for reading and printing the original distance 
matrix, calling the shortest path function, and printing transformed distance ma­
trix. Note that it checks to ensure the matrix is square. If the number of rows 
does nOi equal the number of wlumns, the processes collectively call fUlIction 
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tcrminat e, which prints the appropriate error "message, shuts down MPI, and 
tenllinates program execution. The source code for function termina t '" appears 
in Appendix B. 

Now leI's look at the function that actually implements FIoyd's algorithm. 
Function cOElpute __ shortest-paths has four parameters: theproc~ss ranK, 
the number of processes, a pointer to the process's portion of the distance matrix, 
and the size of the matrix. 

Recail that during each itemtion k of the algorithm, row k must be made 
available to every process, in order to perform the computation 

a [i J fj J MIN (a [i 1 {j 1 ,a [ i 1 [k 1 + a [ k J [j J ) ; 

/, 
Floyd's all-pairs shortest-path algorithm 

*/ 

.include <stdio.h, 
ffinclude <mpi. 11> 
Hnclude 'XyXP r .b" 

typedef int dtype; 
~de[ine MPC'rYPE MPL_IL'IT 

,nt main (int argc, char * argvlJ 1 
dtype* 11 0; 
dtype* ~toragei 

lnt j., j, k; 
lnt: .id; 
In: rn; 
jnt n; 
int p; 

1* Doubly-subscripted array * I 
/'t LOCfll portion of arTay elements *1 

!1t Process rank "/ 
/ ... Rows in matrix ... / 
/" Columnr: in rraatrlx *1 
/* Number of processes */ 

void compute_shortestJJat.hii (int, int, lnt** J int); 

M?I_Init {&argc I l.i:arg-n; 
MPIJomm_rank (NPCCOMJoCWORLD, &id); 
MPIJomm_size (MPIJOMM_WORLfJ, &PI; 

read_row_sl:riped_ffid,l:rix (argv[J J, I vold *1 &a, 
(void *) &<:.tofage, MPI_rrYPE, &111, &n, HP[ __ COHM __ t"lORLD); 

if (In 1 n) terminate (io, "Matrix niw:;t he p,quare\n"); 

prlnt._row_"trlped_;natrix I (void H) a, HPCTYPE, m, n, 
MPCCOMl1J¥ORLDI; 

compllt8_shorLestJ)aths (id, p, (dtype **) a, n); 
print.Jow_stripecUnatrix I (void **l il, MPi_TYP£, iiI, 11, 

~lP T._COMM_WOR!.D 1 ; 
I1PL_FiI1dLize() ; 

Figure 6.9 MPI program implementing Floyd's algorithm. 
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void cOJr.pllte_}1h:Jrteat~~aths (int id r int p. dtype ""!rir u , int n) 

int if i, k; 
int oftset; 1* ~ocal index of broadcam: row "*-1 
int root; 1* Process cGntrolling row to be beast * I 
j nt'" tmp; / * Holds the broadcast row * I 

tmp idtype *) ma Uoe (n * sizeof (dtype) J; 
for I k 0; k < 11; k++) ( 

root llLOCK._OIVlffiR(k,p,n); 

if (root 0= id) ( 
o::set " k ' BLOCK_LOW (id,p,n) ; 

.tor (j = 0; j < n; j+t) 

tmpliJ 0 aloUseti Ii]; 

MPCBcdst (tmp, n, 14PI.,T¥PE, root, MPl_COHM_WORLD); 
for (i , 0; , ,~ BLOCK_snEjid,p,n); i++) 

for (i 0; j "' n; j++i 
ali) Ii) = ItIN(a\iJ Ii] ,ali] [kl+tmpij]); 

tree (tmp) j 

Figure 6.9 (contd,) MPJ program implementing Royd'salgolithm, 

Every process allocates an array of n integers, called tmp, that will be used 
to store row k. 

As in the sequential algorithm, the parallel algorithm has n iterations. During 
,- each iteration, the processes determine which process controls row k. This process 

is the root of the broadcast tree. After the call to MPI_Bcast, each process 
has a copy of row k in its array trop. Hence the assignment shown previollsly 
becomes 

ali] [j] " HIN(a[i] fjj ,aIi] [k] +tmp[j]); 

6. 7 ANALYSIS AND BENCHMARKING 
Il's easy to see that the sequential version ofAoyd's algorithm has time complexity 
E~(n'). Let's analyze Ihe complexity of our parallel version of Aoyd's algorithm, 

The innermost loop, the one that updates a single row of A, is identical to 
the innermost loop in the sequential algorithm and has time complexity 8(11), 
Given a rowwisc block "striped decomposition of matrix A, each process executes 

" at most r n/ 1"1 iterations of the middle loop, Hence the complexity of the inner 
two loops is (")(/12/ p), 

Immediately before the middle loop is the broadcast step, Passing a single 
message of length n from one processor to another has time complexity 8(n), 

Since broadcasting to p processors requires Dog P 1 message-passing steps, the 
overall time complexity of broadcasting each iteration is 8(n log p). 
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For every iteration of the outemlOst loop the paraltel algorithm musYcon'lpute 
the new root processor, which takes constant time. The root processor copies the 
cOllect row of A to array [fiP, which takes 8(n) lime, The outermost loop 
executes n times, 

Hence the overall time complexity of the parallel algorithm is 

8(n(l +n+nlogp+n2/p)) = 8(nJ/p+n2 10gp) 

Now let's ~ome up with a prediction for the execution time of our parallel 
program on a commodity cluster. The parallel program requires n broadcasts. 
Each broadcast has flog p 1 steps, Each step involves passing messages that are 
4n bytes long. Hence the expected communication time of the parallel program is 

nflog pH}. + 4n/~) 

If X is the average time needed to update a single cell, then the expected 
computation time of the paraJlel program is n2fn/ p lx. 

Adding computation time to broadcast time gi ves us a simple expression for 
the expected execution time of the parallel algorithm: 

n2fn/ plx + nflogp l(}. +4/!/~) 

However, this expression will overestimate the paralle I execution time, because it 
ignores the fact that there can be considerable overlap between computation and 
communication. 

See Figure 6.W, which illustrates the first four iterations of Floyd's algorithm 
executing on four processes, each on it~ own processor. Assumen :::: 16, so proc.ess 
o is the root process for the first four iterations. During each broadcast step, pro­
cess 0 sends messages to processes 2 and I. :A..fter it ha~ initiated these messages, 

Figure 6.10 During the execution of the parallel version of Floyd's algorithm, 
there is significant overlap between message transmission (indicated by 
arrows) and computation. 
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it may begin updating its share of the rows of the matrix. Communications and 
computations overlap. 

Examine process l. It may not begin updating its portion of the matrix until 
it receives row 0 from process O. During the first iteration, it must wait for (he 
message to show up. However. this delay offsets its computational time frame 
from that of process O. Process I completes its iteration I computation after 
process O. Since process 0 initiates its transmission of the second row of the 
matrix to process I while process I is still working with the first row, process 1 
will not have a~ long to wait for the second row. 

In the figure, computation time per iteration exceeds the time needed to pass 
mes.sages. For this reason, after the first iteration each process spends the same 
amount of time waiting for or setting up messages: flog p 1 A. 

U 1'logp14n/p < rn/plnx, the message transmission time after the first 
iteration is completely overlapped by the computation time and should not be 
counted toward the total execution lime. This is the case on our cluster when 
/l = 1000. Hence a better expression for the expected execution time ofllle parallel 
program is 

nlrn/ p lx + nf\og pll + flog p14n/ p 

Figure 6.11 plots the predicted and actual execution times of our paral­
lel program solving a problem of size 1000 on a commodity cluster, in which 

25.6 

22.1 

19.2 

_ t6.0 
" ~ 
';;" 12.8 
E 
j:: 9.6 

6.4 

11 

Processors 

Figure 6.11 Predicted (dotted line) and 
actual (solid line) execution times of parallel 
implementation of Floyd's algorithm on a 
commodity cluster, solving a pmblem of 
size 1,000. 
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x = 255 nsec, A = 250 1l.<;eC, and fi :::; 10'. The ~lVrragc error between ihc 
predicted and actual execution times on 2, ... , 7 processors is 3.8 percent. 

6.8 SUMMARY 

We have developed a parallel version of Floyd's algorithm in C with MPI. The 
program achieves good speedup on a commodity cluster for moderately sized 
matrices. Qur implementation uses point-ta-point mes,~ages among paits of pro­
cessors. We have introduced the local communication fUllctions MPI_Send and 
HPI_Recv that support point-to-point messages. 

We have also begun the developmcnt of a library offunctionsthal will even: 
tually support the input, output, and redistribution of mil/rices and vectors with a 
variety of data decompositions. The two inputfoutput functions referenced in this 
chapter are based on a rowwise block-striped decomposirion of a matrix. function 
read_row_ s t;ri ped_matrixreads a matrix from~ file and distributes its el­
ements to the processes in a group. Functionprint_row_st;riped_rnat;rix 
prints the elernent~ of a matrix distributed among a group of processes. 

6.9 KEY lERNS 
adjacency matrix 
all-pairs shortest-path 

problem 
directed graph 

graph 
poinl-to-point 

communication 
weighted graph 

6.10 BIBLIOGRAPHIC NOTES 

Floyd's algorithm originally appeared in the Comf11!mications of the ACM in 
1962 (27]. It is a generalization of Warshall 's transitive closure algorii hm, which 
appeared in theloumal of the ACM justa few month, e:ulierIl j 11. 

Foster compares two parallel versions of Floyd's algorithm [311. TI\0 first ag­
glomerates primitive tasks in the same row, reSulting in a rowwise block-striped 
data decomposition. Thr second agglomerates twa-dimensional blocks of primi­
tive tasks. In the next chapter we'll see this introduced as a "block checkerboard" 
decomposition. Foster shows that the second design is superior. 

Grama et a!. also dcscribe a parallel implementation of Floyd's algorithm 
based on a block checkerboard data decomposition (44;. 

6.11 EXERCISES 

6.1 Suppose we have chosen a block agglomeration of Il elemenr; (labeled 
0, I, ... ,n - 1) to p processes (labeled 0, 1, .... p - I) in w!Jjch 
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process i isresponsiblefor clemenl~ linl p J through l(i + 1)11/ p J - 1. 
Prove that the last process is responsible for f nip 1 clements. 

6.2 Reflect on d1e example of file input illustrated in Figure 6.6. What is the 
advantage of having process 3 input and pass along the data rather than 
process O? 

6.3 Outline the changes that would need to be made to the parallel 
implementation of Floyd's all-pairs shortest-path algorithm if we decided 
to use a columnwise block-striped data distribution. 

6.4 Outline the changes that would need to be made to the parallel 
implementation of Floyd's all-pairs shortest-path algorithm if we decided 
to use a rowwise interleaved striped decomposition (illustrated in 
Figure 12.3a). 

6.5 Consider another version of Floyd's algorithm based on a third data 
decomposition of the matrix. Suppose I' is a square number and fl is a 
mUltiple of ./P: In this data decomposition, each process 1S responsible 
for a square submatrix of A of size (nl./p) x (n! .[p). 
a. Describe tlle communications necessary for every iteration of the 

Ol;ter loop of the algorithm. 

b. Derive an expression for the communication time of the parallel 
algoritlun. as a function of n, p, A, and /3. 

c. Compare this communication time with the communication time of 
the parallel algorithm developed in this chapter. 

6.6 Suppose the cluster used for benchmarking the parallel program 
developed in this chapter had 16 CPUs. Estimate the execution time that 
would r~\li:[ from solving a problem of size 1000 on 16 processors. 

6.7' Assuming [he same parallel computer used for the benchmarking in this 
chapter, estimate the execution time that would result from solving 
problems pf size 500 and 2000 on I, 2, .... 8 processors. 

6.8 A~sume that the time needed to send an n-byte message is ;;. + nl fl. 
Write a pr')gram implementing the "ping pong" test to determine). 
(latency) and /3 (bandwidlh) on your parallel computer. Design the 
program w run on exactly two processes. Process 0 records the time and 
then sends a message to process 1. After process 1 receives the message, 
it immedialely sends it back to process O. Process 0 receives the message 
and records the time. The elapsed time divided by 2 is the average 
message-passing time. Try sending messages multiple times, and 
experiment with messages of different lengths, to generate enough data 
points that you can estimate A and /3. 

6.9 Write your own version of MP I_Reduce using functions MPI_Send 
and MPI_Recv. You may assume that 

datatypt'"' t1PCINT, 

operator == HPI_SUM, and 
comm = ~!PI_COMJ;"-~;ORLD 
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Figure 6.12 An in~ial state and three iterations of Conway's game 
of life. 

are updated simultaneously. Figure 6.12 illustrates three iterations of 
Life for a small grid of ceJls. 

Write a parallel program that rcads from a file an m x II matrix 
containing the initial ~tate of the game. it should play the game of Life 
for j iterations, printing the state of the gume once every k iterations, 
where j and k are command-line arguments. 



C HAP T E R 

Performance Analysis 

The highest and best form of efficiency is 
tre spontaneous cooperation of a free people. 

Woodrow Wilson 

7.1 INTRODUCTION 
Being able to accurately predict the performance of a parallel algorithm you have 
designed can help you decide whether to actually go to the trouble of coding and 
debugging it. Being able to analyz~ the execution time exhibited by a parallel 
program eim help you understand the barriers to higher performance and predict 
how much improvement can be realized by increasing the number of processors. 
This chapter will help you develop both of these skills. 

We begin by deriving a general formula for the speedup achievable by a 
parallel program. We then look at well-known performance prediction fonnulas: 
Amdahl's Law, Gustafson-Barsis's Law, the Karp-Flatt metric, and the isoeffi­
ciency metric. Amdahl's Law can help you decide whether a program merits 
parallelization_ Gustafson-Barsis's Law is a way to evaluate the performance of 
a parallel program. The Karp-Flatt metric can help you decide whether the prin­
cipal barrier to speedup is the amount of inherently sequential code or parallel 
overhead. The isoefficiency metric is a way to evaluate the scalability of a parallel 
algorithm executing ona parallel computer.lt can help you choose the design that 
will achieve higher performance when the number of processors increases. 

7.2 SPEEDUP AND EFFICIENCY 
We design and implement pamllel programs in the hope that they will run faster 
than their sequential counterparts. Speedup is the ratio between sequential 
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execution time and parallel execution time: 

Sequential execution time 
Speedup = ~~~---~ 

Parallel execution time 

In the ca5e studies we have worked through, we have discovered that the 
operations performed by parallel algorithm can be put into three categories: 

• Computations that must be performed sequentially 
• Computations that can be performed in parallel 
• Parallel overhead (communication operations and redundant computations) 

With the~e~~<+legories in mind, we can pmducea simple model of speedup. Let 
!/r(n, p) denote"thespeedup achieved solving a problem of size non p processors, 
0' (n) denote the inherently sequential (serial) portion of the computation, If!(n) 
denote the portion ofthe computation that can be executed in parallel, and K(n, p) 
denote the time required for parallel overhead. 

A sequential program, executing on a single processor, can only perform one 
computation at a time. Hence it requires time (T(n) + \9(11) to execute the-required 
computations. A sequential program re.quires no interprocessor communications, 
so the expression for sequential execution time does not have the K(/I, p) tenn. 

Now let's consider the best possible parallel execution time. The inherently 
sequential portion of the computation cannot benefit from IYdfallelization. It con­
tributes 0' (n) to the execution time oUhe parallel program, no mailer how many 
processors are available. Tn the best case the portion of the computation that can 
be executed in parallel divides up perfectly among the p processors. In this case the 
time needed to peIform these operations is \9(n)! p. Finally, we must add in time 
K (n,' p) for the interprocessor communication required for the parallel program. 

We have made the optimistic assumption that the parallel portion of the 
computation can be divided perfectly among the processors. If this is not the 
case, the parallel execution time will be large!:, and the speedup will be smaller. 
Hence actual speedup will be less than or equal to the ratio between sequential 
execution time and parallel execution time as we have just defined. Here, then, is 
our completed expression for speedup: 

O'(n)+ ip(n) 
!/r(n,p) <------­

- u(n)+cp(lli/p+K(n,p) 

Adding processors reduces the computation time (by dividing. the work 
among more processors) but increases the communication time. At some pointthe 
communication time increase is larger than the computation time decrea~e (see 
Figure 7.1). At this point the execution time begins to increase. Since speedup is 
inversely proportional to execution time, the speedup curve "elbows" and begi~q 
to decline. 

The efficiency of a parallel program is a measure of processor utilization. We 
define efficiency to be speedup divided by the number of processors used: 

Sequential execution time 
Efficiency = ------------­

Processors used x f"dfallel execution time 
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Figure 7.t Nontrivial parallel 
algoril.tlms have a computation 
component (black bars) that is a 
decreasing function 01 the number 01 
processors used and a COfllmunication 
component (gray bars) that is an 
increasing function ()f the number of 
processors. For any fixed problem size 
there is an ()ptimum number 01 
processors that minimLzes overall 
execution time. 

'More formally, let s(n, p) denote the efficiency of a parallel computation solv, 
ing a problem of size n on l' processors. Building on our earlier definition of 
speedup 

() 
O'{n) + tp(n) 

s n, p < -------''-------,-
- p(u(n)+lp(n)!p+K(f1, 

, a(n) +tp(n) 
=} 8(n, p) < --------

. - pCf(n) + \D(n) + pK(n, p) 

Since all terms are greater than or equal to zero, 0 :::; r,(n, p) :::; 1, 

7.3 AMDAHL'S LAW 
Consider the expression for speedup we have jllst derived. 

'(" u(n)+tp(n) 
l{I 11, pJ < " 

- 0"(/1) +ip(Il)/p +K(II, p) 

Since K(n, p) > 0, 

(
' 0'(/1)+ \D(Il) 0" (n)+ ip(n) 

1{r 11 l' J < < -----'---
, - O'(n)+<p(n)!p+lC(n,p) - u(n)+ip(n)/p 
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Let! denote the inherenllYWIuential portion of the computation. In mherwords, 
! =a(n)/(o-(11) + qJ(n)). Then . 

O'(n)t <pen) 
1{!(n, p) :: O'(n)tqJ(Ii)/p 

O'(n)/! '* wen. p) < ------'-=-=---
. - a(n) + 0" (II)(I/j -l)/p 

~",( ) < i/j 
• 'I' fl,p -I+(l/!-l)/p 

1 
-=>t(n,p)~ !+(r...c.f)/p 

Amdahl's Law is based on the assumption thatwe are trying to solve a problem 
of fixed size as quickly as possible. II provide.<; an upper bound on the speedup 
achievable by applying a cel1<1in number of processors to solve the problem in 
parallel. It can also be used to determine the asymptotic speedup achievable as 
the number of processors increases. . 

Suppose we are trying 10 determine whether it is worthwhile to develop a pMallel version 
of a program solving a particular problem. Benchmarking reveals that 90 percent of the 
execution time is spent inside ru nctions that we believe we can execute in parallel. The 
remaining 10 percent of the execution time is spent in functions that must be executed on 
a single processor. What]s the maximum speedup that we could expect from a parallel 
version of the program executing on eight processors') 

• Solution 
By Amdahl's Law 

l 
'f < "'" 4.7 

- 0.1 + (1·- 0.1)/8 

We should expect a speedup of 4.7 or less. 

If 25 percent of the operations in a parallel program must be performed sequentially, what 
is the maximum speedup achievable? 
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III Solution 
The maximum aehievable speedup is 

- I Inu- == 4 
1'->",0.25 + (1-- 0.25)( P 

Suppose we nave implemented a parallel version of a sequential program with time com­
plexity 12) (n2), where n is the size of the dataset Assume the time needed to input the 
dataset and output the result is 

(18000 + fi) }i.sec 

1bis constitutes the sequential portion of the program. The computational portion of the 
program can be eXITuted in parallel; it has execution time 

(n2 (100) IJSeC 

What is; the maximum specdu p achievable by Ihis parallel program on a problem of 
size 1O,OOO? 

.. Solution 
By AJlldahl's Law 

. < (28,000 + 1,000,(00) IJSCC 

'/f - (28,000+ 1,000,OOO(p) IJSeC 

The dashed line ill Figure 7.2 is the upper boundnn speedup derived from Amdahl's Law. 

Figure 7.2 Speedup predicted by 
Amdahl's Law (dashed line) is higher Ihan 
speedup prediction thai takes rommunica­
lion overhead into account (solid line). 
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7.3.1 Limitations of Amdahl's Law 

Amdahl's Law ignores overhead associated with the introduction of parallelism. 
Let's return to our previous example. Suppose the parallel version of the program 
has flog n 1 communication points. At each of these points, the communication 
time is 

IO,OOO[log p 1 + (nl 10) ,u~ec 

For a problem of size 10,000, the total communication time is 

14(1O.OOOfiog P 1 + 1,0(0) ILSec 

Now we have t~ken into account all of the factors included in o~;formula f{)[ 
speedup: (T (n), tp(n), and K(n, pl. OUi' prediction for the speedup achievable by 
the parallel program solving a problem of size 10,000 on p processors is 

0/ < (28,000+ 1,000,000) ILSeC 

- (42,000 + 1,000,000/ p + 1 40,000 [1og p 1) J1-sec 

The solid line in Figure 7.2 plots a new upper bound on speedup predicted by this 
more comprehensive fonnula Taking communication time into account gives us 
a more realistic prediction of the parallel program's performance. 

7.3.2 The Amdahl Effect 

Typically, K(n. p) has lower complexity than tp(n). That is the case with the 
hypothetical problem we have been considering: K(n, p) = 8(lIlogn +n log p), 
while tp (n) = 8 (n2).Jncreasing tile size ofthe problem increases the computation 
time faster than it increases the communication time. Hence for a fixed number of 
processors. speedup is usually an increasing function of the problem size. This is 
called the Amdahl effect [42]. Figure 7.3 illustrates the Amdahl effect by plotting 
expected speedup for our hypothetical problet1l As problem size n increases, so 
does the height of the speetlup curve. 

7.4 GUSTAFSON·BARSIS'$ LAW 
Amdahl's Law assumes that minimizing execution time is the focus of paral­
lel computing. It treaL~ the problem size as a constant and demonstrates how 
increasing processors can reduce time. 

Often, however, the goal of applying parallelism is to increase the accuracy 
of the solution that can be computed in a fixed amount of time. For example, 
an engineer studying airflow around the body of a hypersonic aircraft may want 
her computer to determine the solution to a problem in an hour (e.g" the length 
of a lunch break). If she has access to a computer with more processOI's, it is 
better for her to get a more detailed answer than to get the same results more 
quickly. 
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16 
-0- n ~ 30,()(}i) 

14 -0- n = 20,000 

12 .... n = 10,000 
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Figure 7.3 For any fi)(ed number of 
processors, speedup is usually an 
increasing fUnction of the problem size. 
This is called the Amdahl effect. 

What happens if we treat time as a constant and let the problem size increase 
with the number of processors? The inherently sequential fraction of a computa­
tion typically decreases as problem size increases (the Amdahl ellect). Increasing 
the number of processors enables us to increase the problem size, decreasing 
the inherently sequential fraction of a computation, and increasing the quotient 
between serial execution time and parallel execution time (speedup). 

Consider the expression for speedup we have derived. Sioce I( (n, p) :': 0, 

rr(n) + rp(n) 
!Jt(n,p)<---­

. - a(n)+rp(n)jp 

Let s denote the fraction of time spent in thc paraliel computation perfomling 
inherently sequential operations. The fraction of time spent in the parallel compu­
tation performing parallel operation~ is what rcmains, or (l-s). Mathematically, 

a(n) 
\'------
, - a(n)+rp(n)/p 

(1-s)=: rp(n)!p 
a(n)+ rp(fl)! p 

Hence 

a(n) == (a(n) +rp(n)/p)s 

rp(n) == (0'(11) + rp(n)jp)(1- s)p 
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Therefore 

a(n) +p(n) 
1/I(n, p) ~ a(n)+ f/J(n)!p 

(a(n)+ qJ(n)/ pHs + (I -- s)p) 
=} 1/I(n, p) ~ a(n)+~(n)lp 
.~ 1/1(11, p) ~ S + (I - s)p 

~ 1/1(11, p) :s p + (1 - p)s 

While Amdahl's Law detennines speedup by taking a serial computation and 
predicting how quickly that computation could execute on multiple processors, 
Gustafson-Barsis's Law does just the opposite. It begins with a -parallel compu­
tation and estimates how much faster the parallel computation is than the same 
computation executing on a single processor. 

In many ca~es, assuming a single processor is only p times slower than p pro­
cessors is overly optimistic. For example, imagine solving a problem on a parallel 
computer with 16 processors, each with one gigabyte of local memory. Suppose 
the dataset occupies 15 gigabytes, and the aggregate meID$lry of the paranel com­
puter is barely large enough to hold the dataset and multiple copies of the program. 
If we tried to solve the s ame problem on asingle processor, the entire dataset would 
not fit in primary memory. If the working set of the executing program exceeded 
one gigabyte, it would begin to thrash, taking much more than 16 times as long 
to execute the parallel portion of the program as the group of ! 6 processors. 

That is why we say that in Gustafson-Barsis's Law, speedup is the time 
required by a parallel computation divided into the time that would be required 
to solve the same problem on a single CPU, ifit had sufficient memory. We refer 
to the speedup predicted by Gustafson-Barsis's Law as scaled speedup, because 
by using the paraliel computation as the starting point, rather than the se{juentiai 
computation, it allows the problem size to be an increasing function of the number 
of processors. 

An application executing on 64 processors requires 220 seconds to run. Benchmarking· 
reveals that 5 percent of the time is spent executing serial portions of the computation on 
a single processor. What is the scaled speedup of the application? 
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.Solution 
Since s =: 0.05, tbe sC.1led speedup on 64 processors is 

1jJ = 64 + (I - 64)(0.05) =: 64 - 3.15 =: 60.85 

Vicki planslo justify her purchase of a $30 million CJadzooks supercomputer by demon­
strating its 16,384 processors can achieve a scalell speedup of 15,000 on a problem of 
great importance to her employer. \\'hal is the maximum fraction of the parallel cxe~utilJn 

i;ic':;'·firoe that can bedevoled to inherently sequential operations tfher application is to achieve 

this goal? 

.Solution 
Using Gilstafson-Ban;is's Law: 

15,000 ~ 16,384 - 16,383s 

=} = 1,3&4/16,383 

=} s =0.084 

7.5 THE KARP· FLATT METRIC 
Because Amdahl's Law and Gustafson-l3arsis's Law ignore K(n, p), the paral­
lel overhead term, they can overestimate speedup or scaled speedup. Karp and 
Flatt have proposed another metric, called the experimentally detennined serial 
fraction, which can provide valuable performance insights [59}. 

Recall that we have represented the execution lime of a parallel program 
executing on p processors as 

T(n, p) ::::: cr(n) + ~?(IJ)/ P + K(n, p) 

where a(n) is the inherenlly serial component of the computation, l{J(n) is the 
portion of the computation that may be executed in parallel, and K(n, p) is over­
head resulting from processor communication and synchronization, and redun­
dant computations. The serial program does not have any interprocessor commu­
nication or synchronization overhead"o its execution time is 

T(n,1) = cr(n) + Ip(n) 

We define the experimentally determined serial fraction e of the paralle I com­
putation to be 

e::::: (cr(n) + k(n, p))/T(Il, I) 

167 

MUMA"-



168 CHAPTER 7 PBrformilf1ce Analysis 

Hence 

a(nH /(n, p) = T(n, I)e 

We may now rewrite the parallel execution time as 

T(n, p) = T(n, l)e + T(n: 1)(1- e)lp 

Let's use t/r as a shorthand for t(n. p). Since speedup 'I'r = 1'(n, 1)1 T(n, p), we 
have T(n, 1) ~ 1'(n,p)1/!. Hence 

1'(n, p) = 1'(n, p)tfre + T(n, p}t/r(l - e)1 p 

=> =t/re+tfr(l-e)lp 

=> 1/1/1 

=> IN 
=> I/l/I 

=> e 

=e+(l-e)lp 

= e + IJp -elp 

=e(l-llp)+ lip 

IN -lip 

I-lip 

The experimentally determined serial fraction is a useful metric for two 
reasons. First, it rakes into account parallel overhead [the x(II, p) term] that 
Amdahl's Law and Gustafson-Barsis's Law ignore. Second, it CM help us detect 
other sources of overhead or inefficiency that are ignored in our simple model of 
parallel execution time. For example, we assume that p processors execute the 
paraUelizable portion of the computation p times as quickly as a single proces­
sor. That is why the tp(n) term in T (n, I) becomes the tp (11) I p term in T (n, p). 
This assumption ignores the fact that the amount of work to be done may not 
djvide evenly among the processors. For example, suppose we have 19 equal and 
undividable pieces of work, each of which takes one unit of time to complete. If 
six processors are available, one processor must takefour pieces while the other 
processMs take three. The parallel execution time is 4, not 19/6. 

For a problem of fixed size, the efficiency of a parallel computation typically 
decreases a~ the number of processors increases. By using the experimentally 
determined serial fmction, we can determine whether this efficiency decrease is 
due to (I) limited opportunities [or parallelism or (2) increases in algorithmic or 
architectural overhead. 
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-!iMP!'· _~_.-- _. _______ ~ _______ IIiiIiIIiIIIIii~ 

BeJlchmarking a parallel program on 1, 2, ... , g processors produces the following speed­
up results: 

What is the primary reason for the paralic I program achieving a speedup of only 4.7-1 OIi 
eight processors'! 

• Solution 
Using the formula We have developed, we can compute the experimentally detennined 
serial fraction e corresponding to each data point 

r--' ... 

2 3 4 5 6 7 8 p 

!fr 1.82 2.50 3.08 357 4.00 4.38 4.71 
r---' ... 

0.10 0.10 0.10 0.10 0.10 0.10 0.10 
'---. _, _. 1...--. ___ ._. __ .. 

Since the experimentally determined serial fraction is not increasing with the number 
of processors, the primary reason [or the poor speedup is the limited opportunity for 
parallclism-that is, the large fraction of the computation that is inherently sequential. 

Benchmarking a parallel program on I, 2 .... , 8 processors produces the following speed­
up result,: 

What L, the primary reason for thc parallel program achieving a speedup of only 4.7 I on 
eight processors'! 

.. Solution 
We begin by computing the experimentally dete.rmined serial fraction for each of these 
program runs: 

r-
2 3 4 5 6 7 8-p 

!fr 1.&7 2.61 3.23 3.73 4.14 4.46 4.71 

e 0.070 0.075 0.080 0.085 0.090 0.095 0.1 

Since the experimentally determined serial fraction is steadily increasing as the number of 
processors increa.ws, the principal reason for Ihe poor speedup is parallel overhr,ad. This 
could be time spent in process slaltup, communication, or synchronization, or it could be 
an architectural constraint. 
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7.6 'rHE ISOEFFICIENCY METRIC 

Let's refer to a parallel program executing on a parallel computer as a parallel 
system. The scalability of a parallel system is a measure of its ability to increase 
performance as the number of processors increases. 

As we have already seen, speedup (and hence efficiency) is typically an 
increasing function of the problem sire, btXause the communication complexity 
is usually lower than the computational complexity. We call this the Amdahl 
effect. In order to maintain the same level of efficiency when processors are 
added, we can increase the problem size. 

These ideas are fonnalized by the isoefficiency relation. To derive the iso­
efficiency relation. we return to our original definition of speedup: 

,/,( ) <' (T(n) + !pen) 
'f /l P , 

, - o(n)+ip(n)/p+K(n,p) 

=}1Jr(n, p) < p(o (n) + y?(I'I)) 
- pa(IlH </>(11)+ pK(n, p) 

p(o(n)+rp(Il»)_ 
=} t(n, p) < ----'-'--------'----'------'---

- o(n)+ </>(n)+ (p - I)o(n)+ pK(n, p) 

We define TaCn, p) to be thf< total amount of time spent by all processes doing 
work not done by the sequential algorithm. One component of this time is the 
time p - I processes spend executing inherently sequential code. The other 
component of this time is the time all p processes spend performing interprocessor 
communications and redundant computations. Hence 7~(n, p) =(p - 1)0 (n) + 
pK(n, p). Substituting To(n, p) into our previous equation, we get: . 

I() 
I'(o(n) + 91 (n») 

=> If! n, P::: , 
0(/1) + </>(n) + To(n, p) 

Since efficiency equals speedup divided by p: 

o(n)+rp(n) 
f(n, p) < -----'-----'----'---­

- 0(11)+ </>(n)+ To(n, p) 

1 
=> fen, p) ::: I II" p) 

+ IT rJ;il'~(") 

Recalling that T (n, I) represents sequential execution time: 

1 
=} eln, p) < 

- 1+ '[,,(n, p)/T(n, I) '" 

To(n, p) 1- fen, p) 
=}---< 

T(n, I) - £(11, p) 

fen, p) 
=} T(f1, 1) ~ To(n, p) 

1 - f(n, p) 
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If we wish to maintain a constant level of efficiency, the fraction 

£tn, p) 

1- f(n, p} 

is a constant, and the formula simplifies to 

T(n, I) ::: CTAn, p) 

We can use a parallel system's isoefficiency relation to determine the range 
of processors for which a particular level of efficiency can be maintained. Since 
parallel overhead im:reases when the number of processQrs increases, the way to 
maintain efficiency when increasing the number of processors is to increase the 
.~ize of the problem being solved. The algorithms we are designing assume that the 
data structures w~ manipulate fit in primary memory. The maximum problem size 
we can sol ve is limited by the amount of primary memory that is available. For this 
reason we need to treat space as the limiting factor when we perform this analysis. 

Suppose a parallel system has isoefficiency relation n .::: f (p). If M (n) de­
nDtes the amount of memory required to store a problem of size n, the relation 
M-1(n) ::: f(p) indicates how the amount of memory used must increase as a 
function of p in arder to maintain a constant level of efficiency. We can rewrite 
this relation as n .::: M(f(p)). The total amount of memory available is a linear 
function of the number of processors used. Hence the function M (f (p)) / p indi­
cates how the amount of memory used per processor must increase as a function 
of p in order to maintain the same level of efficiency. We call M(f(p»)/p the 
scalability function. 

The complexity of M (f (p» / p determines the range of processors for which 
a constant level of efficiency can be maintained, as illustrated in Figure 7.4. If 
M(f(p»/ p = to)(I), memory requirements per processor are constant, and the 
parallel system is perfectly scalable. If M(f(p»/ p = e(p), memory require­
ments per processor increase linearly with the number of processors p. While 
memory is available, it is possible to maintain the same level of efficiency by 
increasing the problem size. However, since the memory used per processor in­
crea,es linearly with p, at some point this value will reach the memory capacity 
of the system. Efficiency cannot be maintained when the number of processors 
increases beyond this point. 
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Cplogp 
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II a. 
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Figure 7.4 The way to maintain efficiency 
when increasing the number of processors is to 
increase the size of the problem being solved. 
The maximum problem size is limited IJy the 
amount of memory that is available, which is a 
linear function of the number of· processors. 
Starting with the isoefficiency relation, and 
taking into account memory requirements as 
a function of n, we can determine how the 
amount of memory used per processor must 
increase as a function of p to maintain 
effiCiency. The lower the complexity of this 
function, the more scalable the parallel system. 

Similar arguments hold for the cases where M(f(p))fp=8(logp) and 
M(f(p))j p:;;:;: 8(p log pl. Whileconstanl~ofproportionality mll~t be taken into 
aCCllunt, in general we say that the lower the complexity of M (j(p))j p, the 
higher the scalability ofthe parallel system. 

'j:f.jMn,+ Reduction 

In Chapter 3 we developed a parallel reduction algorithm. The computational complex­
ity of the sequential reduction algorithm is 8(11). The reduction step has time complexity 
8(log p). Every processor participates in this step, So T,,(n, p) = e(p log pl. Big-Dh mi­

tation ignores conslants, but we can assume they are folded into the efficiency cOnstant C. 
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Hence the isoefliciency relation for the reduction algorithm is 

n:::.CpJogp 

The sequential algorithm reduces n values, so M(n) =: I!. Ther{!fure, 

M(Cp logp)/p = Cp logp/p = Clogp 

We can mentally confirm that this result makes sense. Suppose we are sum-reducing 
/J values on p processors. Each processor adds about II/ p values, then participates in a 
reduction that hal flog PI steps. If we double the number of processors and double the 
value of n, each processor's share i, still about the same: n / p values. So the time each 
processor spends Illiding is the same._Hnw~ve[,the,number of steps.needed to perform 
the reduction has increa~ed slightly, from flog p 1 to flog(2p)l. Hence the efficiency has 
dropped a bit. In order to maintain the same level of efliciency, we musl more than double 
Ihe value of n when we double the number of processors. The scahlbilily function confirms 
this, when it shows that the problem Si7..e per processor must grow iIS_S(log pl. 
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Floyd's Algorithm M£fV.!ij". 
Le\'~ determine the isoefficiency function for the parallel implementation of Floyd's al­
gorithm we developed in Chapter 6. The sequential algorithm has time compleltily Sin)). 
Each of the p processors executing the parallel algorithm spends 8(n210g [I) time ~r­
fonnillg communications. Hence IlIe iSlJefficiency relation is 

11
3

::: C(pn"logp) =} II:::' Cplogp 

This looks like the same relation we b,!d in the previous example, bUl we have to be 
careful to consider the memory requirements associated with the problem size n. In the 
case of Floyd's algorithm the amount of storage needed to represent a problem of sil.e n 
is n2; that is, M(n) = n2 • The scalability runction for this system is; 

This parallel system has poor scalability compared to parallel reduction. 

~~ __ ~_~_~~ __ ~ ___ F_in_i_te_D_iff_e_re_n_c_e Method -!{WM!. 
Cunsider a parallel algorithm implementing a finite difference method to solve. a partial 
differential equation. (We'll consider these algorithms in more detail in Chapter 11) 

The problem is represented by a n x II grid. Each processor is respom;ible for a iiubgrid 
of size (nIJP) x (IJ/JP) (Figure 7.5). During each iteration of the algorithm every 
processor sends boundary valueg to its four neighbors; the time needed to peliorrn these 
communications is B(II/ JP) per iteration. 

The time compl~xity of the sequential algorithm solving this problem is 8(/12) per 
iteration. 

The isoenieiency relation for this parallel system is 

/1
2

::: Cp(ll/ JP) =} 12 ::: Cjp 
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(al (b) 

Figure 7.5 Partitioning for a parallel finite dIfference algorithm. 
(a) Each process is responsible for an (n x v'P) x (n x JP) block afthe 
n x n matrix. (b) During each iteration each process sends n/ sqrt p 
boundary values to each of its four neighboring processes. 

When we say a pmblem has size n, we mean the grid has ttl elements. Helice M VI) " 
n1 and 

M(C,fP)/p = (CJP)l)/p = CZp/p = C2 

The scalability function is El (l), meaning the parallel system is perfectly scalable" 

7.7 SUMMARY 

Our goal in pamliel computing is to use p processors to execute a progmm J 
times faster than it executes on a single processor. The ratio of the SlXIuentia 
execution time to parallel execution time is called speedup. 

SlXIuential execution time 
Speedup = ---''--:-:--__ --

Parallel execution time 
The efficiency of the parallel computation (also called processor utilization 

is the speedup divided by the number of processors: 

. Speedup 
EffiCiency = ---­

p 

To achieve a speedup of p, the parallel execution time must be lip thatofth, 
sequential program. Since there are only p processors, that means each processo 
must do an equal share of the work, all of the processors must be busy during tb 
entire parallel execution, and there can be no extra operations introduced' whel 
the algorithm is made paralleL In other words, speedup equals p if and only i 
utilization equals 100 percent In reality, this is rarely the case. 
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Why? First, there is usually some portion of the algorithm that cannot be 
performed on multiple processors. This is callerl serial code, and it prevents lIS 

from keeping all the processors busy all the time. 
Second, virtually all parallel programs require at least some intef'd.ctions 

among the processors. These communications operations do not exiNt in the se­
quential program. Hence they represent extra operations introduced when the 
algorithm is made parallel. 

We have developed a general formula for speerlup that takes into account the 
inherently sequential portion of tbe comput.ltion, the parallelizable portion of the 
computation, and parallel overhead (communication operations and redundant 
cOl!lputations). We have also discussed four different lenses for analyzing the 
performance of parallel programs. " 

The first lens, Amdahl's Law, is forward looking. It relies upon an evaluation 
of the sequential program to predict an upper limit to the speedup that can be 
achieved by using multiple processors to speed the ex~ution of the paraHelizable 
portion of the program. 

The second lens, Gustafson-Barsis's Law, is back~vard looking. It relics upon 
benchmarkjng of a parallel progrdm to predict bow long the program would take 
to run on a single processor, if that processor had enough memory. We say that­
Gustafson-Barsis's Law provides an estimate of scaled speedup, since the size of 
the problem is allowed to increase with the number of processors. 

The third lens, the Karp-Flatt metric, exaniines the speedup achieved by a 
parallel program solving a problem of fixed size. The experimentally determined 
selial fraction can be used to support hypotheses about the performance of lhe 
program on larger numbers of processors. 

The fourth and final lens, the isoefficiency metric, is used to determine the 
scalability of a parallel system. A parallel system is perfectly scalable if the 
same level of efficiency can be sustained as processors are added by increasing 
the size of the problem being solved. 'The scalability function, derived from the 
isoefficiency relation, identifies bow the problem size must grow as a function of 
Ihe number of processors in order to maintain lhe same level of efficiency_ 

7.8 KEY TERMS 
Amdahl effect 
Amdahl's Law 
efficiency 
experimentally delermined 

serial fractioll 

GustafsoJl-Barsis's Law 
isoeflicieIlcy relation 
Karp-Flat! metric 
parallel system 
sClllability 

7.9 BIBLIOGRAPHIC NOTES 

scalability function 
scaled speedup 
speedup 

The seminal paper of Gustafson, Montry, and Benner [47J not only introduces the 
notion of scaled speedup, but also is the lirst to report scaled speedups in excess 
of 1000. It provides a fascinating glimpse into strategies for extracting maximum 
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speedup from a massively parallel computer (in their case a 1024-CPU nCUBE 
multicomputer). The authors won the Gordon Bell Award and the Karp Prize for 
this work_ 

You can find a much more detailed introduction to the isoefficiency metric 
in Introduction to Parallel Computing by Grama et al. [44]- Note that I have 
not adopted their definition of problem size. Grama et al. define problem size 
to be "the number of basic computation steps in the best sequential algorithm 
to solve the problem on a single processing element." In other words, when 
they say "problem size" they mean "sequential time." I believe this definition is 
counterintuitive, which is why I do not use it in this book. 

7.10 EXERCISES 

7.1 Using the definition of speedup presented in Section 7.2, prove that there 
exists a Po such that p > Po =} tjJ(n, p) < 1jJ(n, Po). Assume 
K(n, p) = Clogp. 

7.2 Starting with the definition of efficiency presented in Section 7.2, prove 
that pi > p =} dn, pi) :s t:(n, pl. 

7.3 Estimate the speedup achievable by the parallel reduction algorithm 
developed in Section 3.5 on 1,2, ... , 16 processors. Assume 
n = 1,00,000, X = 10 nanoseconds and A =-100 fLsec. 

7.4 Benchmarking of a sequential program reveals that 95 percent of the 
execution time is spent inside functions that are amenable to 
parallelization. What is the maximum speedup we could expect from 
executing a parallel version of this program on 10 processors? 

7.5 For a problem size of interest, 6 percent of the operations of a parallel 
program are inside I/O functions that are executed on a single processor. 
What is the minimum number of processors needed in order for the 
parallel program to exhibit a speedup of 10? 

7.6 What is the maximum fraction of execution time that can be spent 
performing inherently sequential operations if a parallel application is to 
achieve a speedup of 50 over its sequential counterpart? 

7.7 Shauna's parallel program achieves a speedup of 9 on 10 processors. 
What is the maximum fraction of the computation that may consist of 
inherently sequential operations? 

7.S Brandon's parallel program executes in 242 seconds on 16 processors. 
Through benchmarking he determines that 9 seconds is spent performing 
initializations and cleanup on one processor. During the remaining 
233 seconds all 16 processors are active. What is the scaled speedup 
achieved by Brandon's program? 

7.9 Courtney benchmarks one of her parallel programs executing on 
40 processors. She discovers that it spends 99 percent of its time inside 
parallel code. What is the scaled speedup of her program? 
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7.10 The execution times of six parallel programs, labeled I-VI, have been 
benchrnarked on I, 2, ... , 8 processors. The following table presents the 
speedups achieved by these programs. 

~ 

'::;~~~i~1'; :; 

~S<lrS 
.. . ·~·····"iv.··· 'V n' 

I 1.00 1.00 1.00 1.00 1.00 l.00 
2 1.67 1.89 1.89 1.96 1.74 l.94 
3 2.14 2.63 2.68 2.88 2.30 2.82 
4 2.50 3.23 3.39 3.67 2.74 3.65 
5 2.78 3.68 4.03 4.46 3.09 4.42 
6 3.00 4.00 4.62 5.22 . 3.38 5.15 
7 3.18 4.22 5.15 5.93 3.62 5.84 
8 3.33 4.35 5.63 6.25 3.81 6.50 

For each of these programs, choose the statement that best describes its 
likely performance on 16 processors: 
A. The speedup achieved on 16 processors will probably be at least 

40; percent higher than the speedup achieved on eight processors. 
B. The speedup achieved on 16 processors will probably be less than 

40 percent higher than the speedup achieved on eight processors, due 
to the large serial component of the computation. 

C. The speedup achieved on 16 processors will probably be less than 
40 percent higher than the speedup achieved on eight processors, due 
to the increase in overhead as processors are added. 

7.11 Both Amdahl's Law and Gustafson-Barsis's Law are derived from the 
same general speedup formula. However, when increasing the number of 
processors p, the maximum speedup predicted by Amdahl's Law 
converges on Ilf, while the speedup predicted by Gustafson-Barsis's 
Law increases without bound. Explain why this is so. 

7.12 Given a problem to be solved and access to all the processors you care to 
use, can you always solve the problem within a specified time limit? 
Explain your answer. 

7.13 Let n 2': f{p) denote the isoefficiency relation of a parallel system and 
M{n) denote the amount of memory required to store a problem of size 
n. Use the scalability function to rank the parallel systems shown below 
from most scalable to least scalable. 
a. f{p):::: Cp and M{n) == n2 

b. f{p) == G../plog p and M{n) == n2 

c. f{p):::: G./fJ and M{n):::: n2 

d. f{p):::: Cplog p and M{n):::: n2 

e. f{p) == Cp and M{n) :::: n 

f. f{p):::: pC and M{n) :::: n. Assume I < C < 2. 
g. f{p) == pC and M{n) == n. Assume C > 2. 
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C HAP T E R 

Matrix-Vector Multiplication 

Anarchy, anarchy! Show me a greater evil! 
this is why cities tumble and the great houses rain down, 
This-is what scatters armies! 

Sophocles, Antigone 

8.1 INTRODUCTION 
Matrix-vector multiplication is embedded in algorithms solving a wide variety of 
problems. Par example, many iterative algorithms for solving systems of linear 
equations rely upon matrix -vector multiplication. The conjugate gradient method, 
which we will examine in Cltapler 12, is such an algorithm. 

Another practical use of matrix-vector mUltiplication is in lhe implementa­
tion of neural networks. Neural networks are used in such diverse applications 
as handwriting recognition. petroleum exploration, airline seating allocation, and 
credit card fraud detection 1114]. The most straightforward way to determine 
the output values of a k-Ievel neural network from its input values is to perform 
k _. I matrix-vector multiplications. Moreover, training neural networks is typ­
ically done using the backpropagation algorithm, which also has matrix-vector 
multiplication at its core 198). 

In this chapter we design, analyze, implement, and benchmark three MPI 
programs to multiply a dense square matrix by a vector. Each design is based 
upon a~ifferent distribution of the matrix and vector elements among the MPI 
processes. Altering the data decomposition changes the communication pattern 
among the processes, meaning different MP[ functions are needed to route the 
data elements. Hence each of the three programs is signifIcantly different from 
the other two. 
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In the course of developing these three progrdllls we introduce four powerful 
MPI communication functioru;: 

.. MPI_Allgatherv, an all-gather function in which different processes 
may contribute different numbers of elements 

• MPI_Scatterv, a scatter operation in which different processes may end 
up with different numhers of elements 

• HPI_Gatherv, a gather operation in which the number of elements 
collected from different processes may vary 

• MPI_Allt,oall, an all-to-all exchange of data elements among processes 

We also introduce five MPI functions that support grid-oriented 
communicators: 

• MPI __ Dims_create, which provides dimensions for a balanced 
Cartesian grid of processes 

• MPI __ CarL_create, which creates a communicator where the processes 
have a ,Cartesian topology 

• MPI_Cart_coords, which returns the coordinates of a specified process 
within a Cartesian grid 

• t'1PI_Cart_rank, which returns the rank of the process at specified 
coordinate,1 in a Cartesian grid 

• MPIJOIDffi_Spl it, which partitions the processes of an existing 
communicator into one or more subgroups 

8.2 SEQUENTIAL ALGORITHM 
The sequential algorithm for multiplying a matrix by a vector appears ill Fig­
ure 8,1. Matrix-vector mulLiplicatioll is simply a series of inner product (or dol 
product) computations, as illuslTated in Figure 8.2. Since computing an inner 

Malrix-VectOf Mldliplicatioo: 

Input u[O .. m - 1,0 .. 11 - 11-matrix with dimensions III x /I 
b[O.). 1]- vector with dimensions /I x 1 

Output: eIO .. m -- lJ - vector with dimensions 111 x 1 

fori <-Olom - J 
elil +- 0 
for j (- 0 to /I - I 

eli] ,- elil + aU, j\ x I,U] 
enJfor 

endfor 

Figure 8.1 Sequential matrix-vector multiplication 
algorithm. 
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(a) 

b 
.-

2 :J 4 () 

5 -! 2 -2 .\ 

31 

Figure 3.2 Matrix-vector 
multiplication can be viewed as a 
series 01 inner product (dot producl) 
operations. _ Fo[exam~;,.,,,,,,· 
1:1=5x3+(··1)x1+2x4+ 
(-2) x\)+4 x;'3 =34. 
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lFiuure B.3 Three ways to decompose a tw()·dimensicmJ matrix. In thr,e ?'~i:nlples 

a 10 x 10 matrix is decomposed among six processes. (a) Rowwise blocK'striped 
,jecomposition. (b) Columnwi'?,€ block-striped decomj}~silion. (cl Check!; block 
decomposition (processes are organized into a virtual 3 x 2 grid). 

product of two n-clement vectors requires n multiplicati \~1 and II - 1 additions, 
it has complexil y E1 (n). Matrix-vector multiplication pen onus m inner products; 
hence its complexity is 0) (mil). When the matrix is squ~r~, the algorithm's com­
plexity is E)(n~). 

8.3 DATA, DECOMPOSITION opr';~s 
We use thedorn1n decomposition stn!tcgy to develop Twallc[ algorithms. 
There are a variety of ways to partition, agglomerate" "",j map the matrix and 
vector element>. Each data decomposition results in a ditf"ellt parallel algorithm. 

There are three straightforward ways to decompose an m x n matrix A: 
rowwise block iping, columuwi3e bL,'k striping, anii:'i3ckerboard block 
decomposition ;:jgure 8.3}. We have' "tready seen trn"lse block-striped 
decompositioil; is how we liividcLl ~ht: matrix elemcL unong the processes 
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in our parallel implementation of Floyd's algorithm in Chapter 6. In this decom­
position each of the p processes is responsible for a i::ontiguous group of either 
tm; pJ or fm! p 1 rows of the matrix. 

A columllwise block-striped decomposition is analogous, eXi::ept that the 
matrix is divided into groups of columns. Each of the p processes is responsible 
for a contiguous group of either lnl pJ or fill P 1 columns of the matrix. 

In a checkerboard block decomposition the processes form a virtual grid, 
and the matrix is divided into two-dimensional blocks aligning with that grid. 
Assume the p processors form a grid with r rows and C i::olumns. Each process 
is responsible for a block of the matrix containing at most r m!r 1 rows and fnle 1 

There are two natura! ways to di.~tribute vectors b and c. The vector elements 
may be replicated, meaning all the vector elements are copied on all of the tasks, 
or the vector elements may be divided among some or all of the tasks. In a block 
decomposition of an n-element vector, each of the p processes is responsible 
for a contiguous group of either tn; pJ or f nl p 1 vector elements. 

WilY is it acceptable for a task to store vectors band c in their entirety, but not -r-O 
matrix A'i T:o simplify our argument, let's assume m = n. Vectors b and e contain 
only n elements, the same number of elements as in a single row or column of A. 
A task storing a row or column of A and single elements of band c is responsible 
for 8(n) elements. A task storing a row or cqlumn of A and all elements of band 
c is responsible for 8(n) elements. Hence whether the vectors are replicated or 
distributed in blocks among the tasks, the storage requirements are in the same 
complexity class. 

With three ways to decompose the matrix: and two ways to distribute the 
vector, six possible combinations result. In Ihis chapter we consider three of 
the six combinations: a rowwise block-striped decomposition of the matrix and 
replicated vectors; a columnwise block-striped decomposition of the matrix and 
block-decomposed vectors; and a checkerboard block decomposition of the 
matrix and vectors block decomposed among the processes in the first C{)lumn of 
the process grid. 

8.4 ROWWISE BLOCK·STRIPED 
DECOMPOSITION 

0.4.1 Design and Analysis 

In this section we develop a parallel matrix-vector multiplication algorithm based 
on a domain decomposition that associates a primitive task with each row of 
the matrix It Vectors band c are replicated among the primitive tasks. A high­
level view of the algorithm resulting froln this domain decomposition appears 
in Figure 8.4. To compute an inner product, a primitive task needs a row and a 
column vector. Task i has row i of A and a copy of b, so it has all the data it 
needs to perform the inner product. After the inner product computation, task i 

131 



182 CHAPTER 8 Matrix-Vector Mu~iplication 

(nner 1'Irxiuci computation 

\ Taski 

Figure 8.4 In our chosen domain 
decomposition, each primitive task 
has a row 01 the matrix and a copy 
of the vector. An inner product 
computation creates an element 01 
the result vector c. An all-gather 
communication is needed to 
replicate vector c. 

has element i of vector c. However, vectors are supposed to be replicated. An 
all-gather step communicates each task's element of c to all the other tasks, and 
the algorithm terminates. 

In dense matrix-vector multiplication the number of computational steps 
needed to perform each inner product is identical. Hence our mapping strategy 
decision tree suggests we agglomerate primitive tasks associated with contiguous 
groups of rows and assign each of these combined tasks to a single process, 
creating a rowwise block-striped partitioning (shown in Figure 8.3a). 
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As we saw in Figure 8.4, at tbe end of tbe inner product computation, each 
primitive task computes a sing! e elemenL of the result vector. If Lhe matrix decom­
position is row wise block striped, then each process (corresponding Lo a group of 
agglomerated tasks) will have a block of elements oftbe result vector. 

When m '" n, sequential matrix-vector multiplication has time complexity 
BCnz). Let's determine the complexity of the parallel algorithm. Each process 
multiplies its portion of matrix A by vector b. No process is responsible for 
more tban r n/ p 1 rows. Hence the complexity of the mUltiplication portion of the 
parallel algorithm is 0(112

/ P l. 
In Chapter 3 we showed that in an efficient all-gather communication each 

"' .. process sends flog p 1 messages; the total number of element, passed is 
~';;;{,;hff{j:f-= 'l)!p;when;'p;]~'~'power of 2. Hence the (;ommunication complexity 

of the parallel algorithm is 0) (log p + n). 
Combining the computational portion of the algorithm with the final all­

gather communication step, the overall complexity of our parallel matrix-vector 
multiplication algorithm is 0(/12

/ p + n + log p ) .. 
Now leI's determine the isoefficiency of our parallel algqrithm. The time 

complexity of the selJ.uential algorithm is 8(n2). The only overhead in the paral· 
lel algorithrnis performing the all-gather operation. When n is reasonably large, 
message transmission time in the all· gather operation is greater than the message 
latency. For this rea,on we simplify the communication complexity to 0(n). 
Hence the isoefficiency function for the parallel matrix-vector multiplication 
algorithm baseil on a rowwise block-striped decomposition of the matrix is 

n2 
::: CPH '* n ::: C1' 

When the problem size is /1, the matrix has /1
2 elements. Hence tbe memory 

utilization function M (n) = n2• Computing the scalabilit y function of our parallel 
algorithm: 

To maintain constant efficiency, memory utilization per processor must grow 
linearly with the number of processors. The algorithm is not highly scalable. 

8.4.2 Replicating a Block.Mapped Vector 

After each process performs its portion of the matrix-vector product, it has pro­
duced a block of result vector c. We must transform this block-mapped vector 
into a replicateil vector, as shown in Figure 8.5. 

Let's think"about what we must to do to accomplish the transformation. 
First.-each process needs to allocate memory to accommodate the entire vector, 
rather than just a piece of it. The amount of memory to be aliocaLed depends on 
the type of the elelllt'nts stored in the vector: characters, integers, floating-point 
numbers, or double-precision floating-point numbers, for example. Second, the 
processes must concatenate their pieces of the vector into a complete vector and 
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Process 0 Process 0 

( OJ::U::n:T-J ='> .Qiu ! I I I D 
Process I Process I 

(::rITIJ::u::j ='> G I I I I I I I D 
Process 2 Process 2 

Figure 8.5 Transforming a block-distributed vector into 
a replicated vector. The elements of a block-distributed 
vector are distributed among the processes. Each 
element is stored exactly once. In contrast, when a vector 
is replicated, every process has every element 

Before After 

1111tl1ElJfn] 
1l1!IJ1tEUB 
11!IRi1Ili 
IlllfraBRm 

Figure 8.6 Function MPI_Allgatherv enables 
every process in a communicator to construct a 
concatenation of data items gathered from all of the 
processes in the communicator. It the same number of 
items is gathered from each process, the simpler 
function MPI_Allgather may be used. 

share the results of the concatenation. Fortunately, a function that can perform 
the concatenation is in the MPI library. 

8.4.3 Function MPI_Allgatherv 

An all-gather communication concatenates blocks of a vector distributed among 
a group of processes and copies the resulting whole vector to all the processes. 
The correct MPI function is MPI_Allgatherv (illustrated in Figure 8.6). 
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,If the same number of items is gathered from every process, the simpler 
function MPI_Allgather is appropriate. However, in a block decomposition 
of a vector, the number of elements per process is a constant only if the number of 
elements is a multiple of the number of processes. Since we cannot be assured of 
that, we will stick with MPI_Allgatherv, 

Here is the function header: 

int MPI_Allgatherv (void* send_buffer, int send_cnt, 
MPI_Datatype send_type, void* receive_buffer, 
int* receive_cnt, int* receive_disp, 
MPI_Datatype receive_type, MPI_Comm communicator) 

' .. Everyparilrtleterexcept thefourthis a/dnpurparameter: 

send_buffer: the starting address of the data this process is contributing 
to the "all gather." 

send_cnt: the number of data items this process is contributing. 
send_type: the types of data item.s this process is contributing. 
rece~ ve_cnt: an array indicating the number of data items to be 
received from each process (including itself). 
recei ve_disp: an array indicating for each process the first index in the 
receive buffer where that proc<;ss's items should be put. 
rece i ve _ type: the type of the received elements, 

communicator: the communicator in which this collective 
communication is occurring. 

The fourth pammeter, receive_buffer, is the address of the beginning­
of the buffer used to store the gathered elements, 

Figure 8.7 illustrates function MPI_Allgatherv in action. Each pro­
cess sets the scalar send_cnt to the number of elements in its block. Army 
recei ve_cnt contains the number of elements contributed by each process; 
it always has the same values on each process, In this example every process 
is concatenating elements in the same process order, so the values in array 
recei ve_disp are identical. 

As we have seen, MPI_Allgatherv needs to be passed two arrays, each 
with one element per process. The first an'ay indicates how many elements each 
process is contributing, The second array indicates the starting positions of these 
elements in the final, concatenated array. 

We often encounter block mappings and in-order concatenation of array 
elements. We can write a function to build the two armys needed for this common 
situation. Ourfunction, called create_ffiixed]fer _arrays, appears in 
Appendix B. 

With these utilities in place, we can create a function to transform a block­
distributed vector into a replicated vector, the last step in the matrix-vector 
multiplication algorithm. Function replicate_block_ vector appears in 
Appendix B. 
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Process 0 Process 0 

send buffer 

receive_buffer 
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Process 2 Process 2 

send buffer 

send cnt = 4 receive buffer 
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Figure 8.7 Example of how processes initialize variables send_cnt, 
recei ve ent, and reeei ve_disp when performing a straightforward 
concatenation using function MPI_Allgatherv. 

8.4.4 Replicated Vector Input/Output 

We need a function to read a replicated vector from an input file. We are assuming 
the file was created wilh calls 10 fwr ite and should be read with calls to fr'2ad. 
The file begins with an integer /I representing the number ofelemenl~ in the vector, 
followed by the n veclor elemenL~. 

Process p - I tries to open the data file for reading. If it can open the file. it 
reads 11 and broadcasts it to the other processes. lfit cannot open the file, it broad­
casts a zero to the other processes. If that should happen, al Hhe processes terminate 
execution. Otherwise, every process allocates memory to store the vector. Process 
p - 1 reads the vector and broadcasts it to the other processes. The source code 
for function read_replica ted_vector appears ill Appendix B. 

From a parallel programming point of view, printing a replicated vector 
is simple. Typically we want a single process to do all the printing, to en~,ure 
that messages to standard output don't get scrambled. Since every process has 
a copy of the vector, all we have to do is ensure that only a single process 
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eXCA;utes the calls to print E, and we're set. The source code for function 
print_rep} icated_vector is in Appendix B. 

8.4.5 Documenting the Parallel Program 

With the support functions in place, we can now write a parallel program to 
perform matrix-vector multiplication. Take another look at Figure 8.4, which 
summarizes the principal steps of our implementation. The complete C program 
appears in Figure 8.8. 

We begin with the standard include files. We also include the header file 
MyMPI • h for the utility functions we have developed. 

We want to be able to change (he,!na!F~~,I)dyeClar types with~. minimum 
amount of program editing. In the body of the program we will use dtype 
in indicate the data type of the matrix and vector elements, and we wiiJ use 
mpi type as the type dcsignatornccded for MPI function calls_ At the beginning 
of the program we use a typedef and a macro definition to establish values for 
dtype and mpitype. . 

After ¥pI initializations, the processes read and print matrix A. (We devel­
oped these functions in Chapter 6_) We also read and print vector b. 

Each process allocates its portion of the result vector c and performs its share 
of the inner products. 

At this point every process has a block of c. We convert c to a replicated 
vector. print it, and end program execution. 

0.4.6 Benchmarking 

Now let's develop an expression for the expected execution time of the parallel 
program on a commodity cluster. Let X represent the time needed to compute a 
single iteration ofthe loop performing Ihe inner product. We can determine X by 
dividing the execution time of the sequential algorithm by n2

• The expected time 
for the computational portion of the pamllel program is X n r n/ p 1. 

The all-gather reduction requires each process 10 send flog P 1 messages. 
Each message has a latency A. The total number of vector elements transmitted 
dllllng Ihe aU-gather is n(21logpl - I)fZIl<Jgpl. Each vector element is a double­
precision iloaling-point number occupying 8 bytes. Hence the expected execution 
rime forthe all-gather step is Aflog P 1 + 8n(2[logpl - 1)/z[lnu1 ) 1.8. 

Benchmarking on a commodity cluster of 450 MHz Pentium II processors 
connected by fast Ethemet reveals tllat X := 63.4 nsec, A = 250 j.Lsec, and .8 == 
1 If byte! sec. 

Table 8.1 compares the actual and predicted execution times of our matrix­
vector mUltiplication program solving a problem of size 1,000 on 1, 2, .. ,8 and 
16 processors. The actual times reported in the table represent the average execu­
tion time over 100 runs of the parallel program. We determine the megaflops rate 
by dividing the total number of floating-point operations (2n2) by the execution 
time, and then dividing by a million. The speedup of this program is illustrated 
in Figure 8.20 at the end of the chapter. 
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! * 
Matrix-vector multiplication, Version 1 

*/ 

#include <stdio.h> 
#include <mpi. h> 
#include "MyMPLh" 

/* Change these two definitions when the matrix and vector 
element types change *1 

typedef double dtype; 
#define mpitype MPCDOUBLE 

int main ( int argc( char *argv(]) 
dtype **a; 1* First factor, a matrix *1 
dtype 'b; 1* Second factor, a vector *1 
dtype *c_block;' 1* Partial product vector *1 
dtype *c; I' Replicated product vector '1 
dtype *storage; 1* Matrix elements stored here 
int i, i; I' Loop indices * I 
int id; 1* Process ID number *1 
int Ill' /* Rows in matrix *1 
int n- /* Columns in matrix *1 
int nprime; /* "Elements in vector '1 
int p; /* Number of processes */ 

* I 

int rows; /* Number- of rows on this process 

IlPClnit (&argc, &argvJ; 
MPI_Co1llill_rank (MPI_COMM_WORLD, &id); 
MPI_Comrn_size (MPI_COMM_WORLD, &pl; 

read_row_striped_matrix (argv(l], (void *) &a, 

*1 

(void *) &storage, mpitype, &m, &n, MPI_COMM_WORLD); 
rows = BLOCK_SIZE(id,p,ml; 
print_row_striped_matrix ((void **1 a, mpitype, m, n, 

MPI_COMM_WORLD) ; 

read_replicated_vector (argv(2], (void *) &b, mpi type , 
&nprime, MPCCONM_WORLDJ; 

print_replicated_vector Ib, mpitype, nprime, 
MPI_COMM_WORLD) ; 

c_block = (dtype *) malloe (rows * sizeof(dtypel); 
c = (dtype *) malloc (n • sizeofldtype)); 

for Ii = 0; i < rows; i++1 
c_block[ij = 0.0; 
for (i = 0; i < n; i++1 

c_block[i] += a(ij[ij * b[ij; 

replicate_block_vector Ic_block, n, Ivoid *) c, mpitype, 
MPI_COMM_WORLDI ; 

print_replicated_vector Ic, mpiLype, n, MPI_COMM_WORLD); 
~jPIJinalize I I; 
return 0; 

Figure 8.8 Version 1 of parallel matrix-vector multiplication. 
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Table 8.1 Predicted versus actual performance of fOwwise striped matrix-vector 
multiplication program multiplying a 1,000 x 1,000 matrix by a i.000-element vector. 

if~h' " • • PrMiCted time <it~tUaI tUlie' -,:SpeedUp M~g3ftops. 
:..;:.... 

1 0.0634 0.0634 1.00 31.6 
2 0.0324 0.0327 1.94 61.2 
3 0.0223 0.0227 2.79 88.1 
-'I 0.0170 0.0178 3.56 112.4 
5 0,0141 0.0152 4.l6 131.6 
6 0.0120 0.0133 .4.76 150.4 
7 0.0105 0.0122 5.l9 163.9 
8 0.0094 o.om 5.70 180.2 

16 0.0057 0.0072 8.79 277.8 

The parallel computer is a commodity cluster of 450 MHz Pentium lis. Each processor has a fast 
Elhemet connection to a shared switch. 

8.5 COLUMNWISE BLOCK·STRIPED 
DE~OMPOSITION 

, 

8.5.1 Design and Analysis 

In this section we will design another parallel matrix-vector multiplication 
algorithm, assuming that each primitive task i has column i of A and element i 
of vectors band c. The structure of the resulting parallel algorithm is shown in 
Figure 8.9. 

The computation begins with each task i multiplying its column of A by 
bj, resulting in a vector of partial results. At the end of the computation task i 
needs only a single element of the result vector: Ci. What we need is an all-to-all 
communication: every partial result element j on task i must be transferred to 
task j. At this point every task i has the n partial results it needs to add in order 
to produce Cj. 

Because every primitive task has identical computation and communication 
requirements, agglomerating them into larger tasks with the same number of 
columns (plus or minus one) ensures we have balanced the workload. Hence we 
will agglomerate the primitive tasks into p metatasks and map one metatask to 
each process. 

In the previous section we assigned to each process a block of rows of A, 
which we called a rowwise block-striped decomposition. Now we will use a 
columnwise block-striped decomposition, agglomerating contiguous groups of 
columns of A, as shown in Figure 8.3b. 

Let's determine the complexity of this parallel algorithm, assuming m =!l. 

Each process multiplies its portion of matrix A by its block of vector h. No process 
is responsible for more than rll/ p 1 columns of A or elements of b. Hence the 
initial multiplication phase has time complexity 8(11(/1/ p)) = 8(n2 

/ pl. After 
the all-gather step, each processor sums the partial vectors collected from the other 
processors. There are p partial vectors, each of length at most r n / p 1. The time 
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Taski 

c IJ 

Figure 8.9 In this parallel matrix-vector multiplication 
algorithm each task has a column 01 the matrix and an 
element of the vector. An all-to-all communication moves the 
appropriate partial results to the tasks that will add them up_ 

complexity of this step is El(n)_ Therefore, the overall computational complexity 
of the parallel algorithm is G(n21 pl. 

An all-to-all exchange can be performed in rlog p 1 steps, uSillg a hypercube 
communication pattern. During each step every process sends nil values to its 
partner and receives n 12 values from its partner. The total number of elements 
sent and received in the all-to-all exchange is /I flog pl. Hence the cornmunicittion 
complexity of this implementation of all-gather is G(n log p). 

Another way to perform an all-to-all exchange is for each process to send a 
message to each of the other p - 1 processes. Every message contains just those 
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elements the destination process is supposed to reteive from tile source. In tllis 
implementation the total number of messages is p - I, but the total number of 
elements passed by each process is less than or equal to n. Thc communication 
complexity of this algorithm is (~(p + 11). 

When we combine the computational portion Df the algorithm with the final 
all-gather communication step. Ihe overall complexity of our parallel matrix­
vector multiplicalion algorithm is either 8(n21 p+ n log p) or 0(fJ2j p +11 + p), 
depending upon which way the all-to-all exchange is implemented. 

Now let's determine the isoefficiency of the parallel algorithm. The time 
complexity of the sequential algorithm is 0(n2

). The parallel overhead is limited 
to the all-to-all exchange operation. When n is reasonably large, the time for 
the all-to-aU exchange is dominated by message transmission time rather thali 
message latency. Using the second approach to implementing all-to-all exchange. 
we have 0(n) complexity for this step, which is performed by all processes_ 

Hence the isoefficiency function for the parallel matrix-vector multiplication 
algorithm based on a columnwise block-striped decomposition of the matrix is 

n2
::: Cpll =} n?:. Cp 

, 
This is the same isoefficiency function we derived for the parallel algorithm ba~ed 
on a row wise block-striped decomposition of the matrix. The parallel algorithm 
is not highly ~calable, because ip order to maintain a constant efficiency. memory 
used per processor must increase linearly with the number-of processors. 

8.5.2 Reading a Columnwise Block·Striped Matrix 

Let's develop a function to read from a file a matrix stored in row-major order 
and distribute it among the processes in columIlwise block-striped fashion. When 
a row-major matrix with multiple rows has a column wise block-striped decom­
position among multiple processes, the matrix element~ controlled by a process 
are not stored as a contiguous group in the file. In fact, each row of the matrix 
must be scattered among all of the processes. 

We will maintain our tradition of making a single proces~ responsible for 
I/O. See Figure 8.1 O.In the first step, one process reads a row of the matrix into a 
temporary buller. In step 2 that process scatters the elements of the buffer among 
all of lhe processes. The algorithm repealS these steps for the remaining rows of 
the matrix. The code for function read_col_stri ped,_matrix appears in 
Appendix B. 

Function read_col_striped_matrix makes use of MPI library rou­
tine M101 _ S ca t t er v to distribute rows among the processes. Let's take a closer 
look at this function. 

8.5.3 Function MPI_Scatterv 

The MPI function MPI_Scat terv (Figure 8.11) enables a single root process 
to distribute a contiguous group of elements to all of thc processes in a commu­
nicator, including itself. 



192 CHAPTER 8 Matrix-Vector Multiplication 

File C) 

Figure 8.10 In a columnwise block-striped decomposition, 
each row of the matrix is distributed among the processors . 

. One process inputs a row of the matrix (step 1) and then 
scatters its elements (step 2). 

Before After 

o 

i I [OJ] 
~ I Scatterv > 
£ 2 lUltUIIi ill 

fn. ill 
Figure 8.11 The collective communication 
function MPI_Scatterv allows a single MPI 
process to divide a contiguous group of data 
items and distribute unique portions to the rest 
of the processes in tbe communicator. If the 
same number of data items is distributed to 
every process, the simpler function 
MPI_Scatter is appropriate. 

Here is the header of function MPl_Scat terv: 

MPl_Scatterv (void *send_buffer, int* send_cnt, 
int* send_disp, MPl_Datatype send_type, 
void *recv_buffer, int recv_cnt, 
MPl_Datatype recv_type, int root, MPl_COMM communicator) 
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The function has nine parameters. All but the fitih are input parameters: 

send_buffer: pointer to the buffer containing the elements to be 
scattered. 

send_cnt: element i is the number of contiguous elements in 
send_buffer going to process i. 

send_disp: element i is the offset in send_buffer of the first element 
going to process i. 
send_type: the type of the elements in send_buffer. 

recv _buffer: pointer to the buffer containing this process's portion of 
the elements received. 

recv _cnt: the number of elements this process will receive. 

recv _type: the type of the elements in recv _buffer. 

root: the 10 of the process with the data to scatter. 

communicator: the communicator in which the scatter is occurring. 

" MPI_Scatterv is a collective communication' function-all of the pro-
~esses in a oommunicator participate in its execution. The function requires that 
each process has previously initialized two arrays: one thafindicates the number 
of elements the root process should send to each of the other processes, and one 
that indicates the displacement of this block of elements in the array being scat­
tered. In this case we want to scatter the blocks in process order: process 0 gets 
the first block, process 1 gets the second block, and so on. While we developed 
the function create_mixed_xfer _arrays in the context of a gather oper­
ation, we can use it in this context, too. The number of elements per process and 
the displacements 'are identical 

8.5.4 Printing a Columnwise Block·Striped Matrix 

Now it's time to design a function to print a columnwise block-striped matrix. To 
ensure that values are printed in the correct order, we want only a single process 
to print all the values. In order to print a single row, a single process must gather 
together the elements of that row from the entire set of processes. Hence the 
data flow for this function is opposite that of function read_col_striped_ 
matrix. The code for function print_col_striped_matrix appears in 
Appendix B. 

Function print_col_striped_matrix makes use of MPI function 
MPI_Gatherv to collect row elements onto process 0, which then prints the 
royt;. The following subsection documents function MPI_Gatherv. 

8.5.5 Function MPI_Gatherv 

The MPI collective communication function MPCGatherv (Figure 8.12) per­
forms this data-gatheling function. 
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Figure 8.13 Function MPI~Alltoallv allows everyMPI 
process to gather data items from all the processes in the 
communicator. The simpler function MPI_Allto"ll should be 
used in the case where all 01 the groups of data items being 
trans/elTed from one process to another have the same number 
of elements. . 

seed_type is the type of the clements in send __ butfer. 

recv _buf fer is the starting address of the buffer used to collect 
incoming clements (as well as the elemenl~ the prqcess is sending to itself). 
recv _count is an array; clement i is the number of elements to receive 
from process i. 

recv _ di splacement is an array; element i is the starting point in 
recv ~buf fer of the clements received from process i. 
recv._ type is-the type the elements should be converted to before they 
are put in recv _buffer. 
cOTIUnunicator indicates the set of processes participating in the 
all-to-all exchange. 

8.5.8 Documenting the Parallel Program 

We now have a firm foundation on which to build our second pamllcl matrix· vector 
multiplication program. The source for the program appears in Figure 8.14. 

Afterthe usual MPI initializations, we call function reao_col_striped __ 
ffiiltri x to input the contents of the data file containing a matrix and distribute 
it among the processes. We then print the matrix. 

Similarly, we read vector b and print it. 
Each process allocates memory to store c_part_ouL the "outgoing" par­

tial rosult vector. Most of these elements will end up on other processes. Each 
process also allocated memory for c -part _in, the "iucoming" pieces of the 
other processes' partial result vectors. 

Next is the actual computation. Each process multiplies its portion of the 
matrix (having dimensions n x local_els) by its portion of the vector(having 
length local_else), resulting in a partial result vector oflength n. 
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/' 
Matr1x~vector rr.ultiplicaci.un r 'lerslon 2 

'; 

tinclllde <st:di o. h> 
#- include ~mp'i ~ h> 
~ i ncl UdE "MyMPI. h' 

/* Change these t~<lO defi:11tions io.1nen the matrix and vEctor 
e 1 emerr:: c ypes chaJ"Jge 

typedef doubl e dt ype , 
#deEine m~ilYp" ~IP1_DOUB[,E 

*argvili inc wain (int :1rgC! char 
cltypt"!' **a; 
dtype *b; 
dtype 'c, 

/'" Tr:e fit'si. factor, a (natrix 1f;' 

I * The second it~ctor, a \i-ector * / 
f * ThE pI'!)dur:t I a vector '* I 

dtype *cJlart_out j 
dtypC? *c.part_i!l' 

/* Paltial ~urns, sg~L */ 
I ~ Pilrcia] sum;:;. recelited * I 

int. 
int 
inti 
IDt. 

int 
int 
int 

*cnt._out; 
*cnL._in; 
*disp_ OUt:; 

*disp_in; 

) '/< Element:..; sent. to each proc: "'I 
1* Elements received per Pl~OC ./ 

/' Indices of sent elements */ 

i, j, 
/* Indices !It ~eceive-d ~l(?[l.enss oft/ 
/* Loop indices /(/ 

int 

id; 

loca1~els; 

m; 

int ni 

int nprimGj 
int p; 

/* ProceSG nurab!2r If/ 

/ * Co15 of 'a' and elements 
held by this process '; 

i* Rows 1;1 the matrix • ! 

;* Colur.:.I~s in the matrix 
/* Size of LIl::! vector *1 
J* Hurtber oE p~o['esses +/ 

,/ 

of 'b' 

dtYP'2 *storage; '* Thi.:.; proceos' ~3" port Ion of f.J r ~ j 

MFl_Init (&argc, &arg'l); 

MPI_Lolillll_rank {MPIJ,{)l·\lc~m"J~D, &idj; 
HPI_COUL'll_sLlC (MPLCOMM_~JOPJ,D, !£p); 

read_col_striped_mar.rix iargvIl11 h-oid ~**) &a/ 
{vold ~*l &storag2, mpi\:ype, &n\, &n, MPI_COMf{J"JORLD) i 

print_coLstciped_matrix {(void "I d, mpitYPG, m, fI, 

flPI_Cm!l~Ui'OHLD) ; 
TeadJ)lZ)cK __ ver.Lor (argv[2j / (void *~j &b l mpitype, 

&nprime, MPCCOMN_WORLDI; 

print_block_vector {(void *1 b , rnpitype t aprime. 
r1PU:O~UvOI\W) ; 

i* Each proc;ess multiplies its COllilTlrl.3 of 'a' and vector 
'b', result.ing ill a partial sum of product' c', *; 

c....rarL_ou t, = (dtype *i lry_malloe (id, n 'size8f:(dtype)); 
locdLels = SWCK,}IZE(id,p,n); 

for {i 0; 1 < n; i++i 
c_put .. outlil = 0.0; 

Figure 8.14 Second parallel matrix·vBctormulliplication program. 
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fnr' (j ~ 0; j < lccal_',ls; j++i 

c_part_out [i: + c a! ill j 1 * b [j J ; 

create_lOixed_xfer_Cll'rays {i.d: p{ n, icr:t_out r &disp_OUT. \ ; 
::reate_uniform_xtec"arrays (io, PI 2, &:cnt_in. &disp_in) ~ 

c-part_in ~ . 
(rltype"'} my_malloe {id, p*local_"el&*siZeGf\d":":-lpe/) j 

MPI_All LJall" (c_pafL_ollL, ent_cut, disp __ O!lL, [:pityp~, 

C-IJd,t_in, cnt_in, disp_in, mpi'_'1pe, MFCC'Ol<1M_WOR~D); 

::; = (dtyue:t~ my~mal]oc UU. local_els 1" sizeof(dt~rpe)); 

for {i = 0; i < local_p.ls; i-1 J; { 
eli] ~ 0.0; 
for (j = D; j < p; j ++) 

clil +~ c __ put __ inri + j*local_p.lsl; 

priat_block_vector ({void"] C r mpiLype l n l M~l_COMM_WmU-lD); 

r!PI_Finalize !) ; 
reLurn 0; 

Figure 8.14 (conld.) Second parallel matrix-vector mUltiplication program. 

The outgoing pieces of c_part_out have different sizes. A call to 
create_mixed_xEer_arrays sets up tlle counts and displacements for 
these pieces. In C(mtrast, the incoming pieces of c _ part _i n all have lhe same 
size. Calling create_uniform _xfer __ arrays correctly initializes the 
counts and displacements for these pieces. The MPlfunction MPC AlltoalJ v 
performs the all-tn-all communication, routing each piece to its destination .. 

Now each process has n chunks of length local_e1s. Adding these to­
gether yields iL~ portion of the result vector c. 

8.5.9 Benchmarking 

Now let's develop an expression for the expected execution time of the parallel 
program on a commodity duster. As before, X is the time needed to compute a 
single iteration of the loop performing the inner product The expected time for 
the computational portion of the parallel program is xn[n/ p 1. 

The algorithm performs an all-ta-all exchange of pmtially computed portions 
of the vector c. There are two common ways to perform an all-to-all exchange. The 
first way is for each process to send rlog p 1 messages of length n/2. This requires 
that each process send [log p 1 messages and transmit a total of flog P 1 II /2 dam 
elements. " 

The second way is fOf each process Lo send directly to each of the other 
processes the elements destined for that process. This requires that each process 
send p - I messages and transmit a total of about n(p - 0/ p data elements. 

For a large II, the message transmission time dominates the message latency, 
and the second approach is superior. Assuming each message has latency A, the 
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Table 8.2 Comparisoo of predicted versus actual performance of [Jur second 
malR;(-vec!or multiplication program on a commodity cluster of 450 MHz PentiulTI Us. 

~~~ .. ·'·~'~.~~lhitec;'r::'·.~.:~~·~0;.::~,~~:,·.···.M~~tiQ~S 
;...:..... 

I 0.0634 0.0638 LOO 31.4 
2 0.0324 0.0329 1.92 60.8 
3 0.0222 0.0226 2.80 88.5 
4 0.0172 o.om 3.62 114.3 
.5 0.0143 0.0145 437 137.9 
6 0.0125 0.0126 5.02 158.7 
7 0.0113 D.Om 5.65 178.6 
8 0.0104 O.OHXI 6.33 200.0 

16 0.008.'i DJJ076 8.33 263.2 

time needed to transmit a single byte is I! {3, and the time needed to perfonn an 
all-gather of double-precision /loating-point variables is (p - I)(A + 8n!(p{3)) . 

. Benchmarking on a commodity cluster of 450 MHz Pentium II processors 
connccted by fast Ethernet reveals that X = 63.4 osee, A = 250 JLsec, and ~ = 
106 byte/sec; 

Table 8.2 compares the actual and predicted execution times of our matrix­
vector multiplication program solving a problem of size 1,000 on 1,2, ... ,8 
and 16 processors. The actual times reJXlrted in the.table represent the average 
execution time over 100 runs of the parallel program. The speedup of this progranl 

. is illustrated in Figure 8.20 at the end of the chapter. 

8.6 CHECKERBOARD BLOCK 
DECOMPOSITION 

8.6.1 Design and Analysis 

In this domain decomposition we associate a primitive task with each element of 
the matrix. The task responsible for ai,j multiplies it by b j, yielding di.j- Each 
element Cj of the result vector is Lj:~ df,j' In other words, for each row i, we add 
all the di,j terms to produce element i of vectDr c, a~ shown in Figure 8.15. 

We agglomerate primitive tasks into rectangular blocks and associate a task 
with each block (as shown in Figure 8.3c). Since all the blocks have about the 
same size, the work required within each block is about the same, so we will set 
the block sizes so that we can map one task to each process. We can think of the 
processes as fonning a two-dimensional grid. Vector b is distribUled by blocks 
among the tasks in the first column ofthe task grid (Figure 8.16). 

Now we can layout the three principal steps of the parallel algorithm and the 
communications patterns necessary to accomplish these steps (see Figure 8.17). 
The task associated with matrix block Ai,} performs a matrix-vector multiplica­
tion of this block with subvector b j. Our first step, then, is 10 redistribute vector 
b so Ihat each task has the correct portion of b. (We'll figure out how 10 do this 
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Figure B.16 
After agglomeration, 
tasks form a two­
dimensional grid in 
which each task is 
responsible tor a 
block of matrix A 
This figure shows a 
3 x 2 task grid. 
Vector b is divided 
into blocks allocated 
to tasks in the first 
column of the task 
grid. 
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(
4 5 3) (~) =} _(4" I ~ 5 )( 2 + 3 x 3) =} (23) 
{)21 3 1I,,1+2)(2+I)(J 13 

Figure 8.15 Ou r third parallel malrix -vector 
multiplication algorithm associates a primitive 
task with each element of matrix A. Every task 
muHiplies its 8;, j term with bi , forming q, j' 
Rowwise reductions -of the q, j tenms yield the 
elements of the product vector c. 

c fJ : 
-- -- ------l ---_ - ___ _ 

u : 
---~-----t-------

, 

~iD~ 
------~-- ... -.. -- ---

RedisUloo\e/! 0 IJ 1 DIJ 

Reduce vectors 
aCrOSS lOWS 

( 

_______ - . ..1_--- ____ _ 

[l~iD~ 
Mattix-vector I 

nwlliply 

~ ~ , 
- - - --~- - -"'f-----~ ---

U ) u 
--u----rn----

Figure 8.17 Phases 01 the parallel matrix-vector 
multiplication algorithm based on a checkerboard block 
decomposition of the matrix elements. First, v9ctor b is 
distributed among the tasks. Second, each task performs 
matrix-vector multiplication on its block of matrix A and 
portion of vector b. Third, each row of tasks performs a 
sum-reduction of the result vectors, creating vector G. 

a little later.) In the second step, each task performs a matrix-vector multiplica­
tion with its portions of A and b. In slep 3, tasks in each row of the task grid 
perform a sum-reduction on their pottions of c. After the sum-reduclion:result 
vector c is distributed by b locks among the tasks in the first column of the task 
grid. 
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Now let's go back and figure out how to do the redistribution of vector b. 
Assume that tbe p tasks are divided into a k x ! grid. Initially vector b is divided 
among tbe k tasks in the fIrst column of the task grid. After tbe redistribution, a 
ropy of b is divided among the i tasks in each row of the task grid. 

If k == i, the redistribution is easier. See Fi£ure 8.18a. The lask at grid position 
(i,O) sends its portion of b to the task at grid position (0, i). After this transfer 
each process in the first row of t he task grid broadcasts its porb{Jn of b to the other 
tasks in the same column of the grid. 

Send/Rc.:;I' 
b!ocl;s of b 

Gather b 

Broadcast 
blocks of b 

Scatter b 

, -, , , , , , 

____ l ___ _ , . 
, 

----~- ---, , , 

(3) 

Broadcast 
blocks of b 

(bi 

, , 

§j§i~ . , ____ ~ ___ _1 ___ _ . , 

§1§1~ , , 
____ J ___ J ___ _ 

§\§j~ , , . 

, 

~i~ 
----+----

5J 
--- -~----

§] 

Figure 8.18 Redistributing vector b. (a) Algorithm is 
simper when process grid is square. Processes in the first 
column send their blocks of b to processes in the first row. 
Then each process in the first row broadcasts its block of b 
to the other pfPCBSSBS in its column. (b) An algorithm to 
handle the case when process grid is not square. First the 
processes in the first column gather vector b onto process 
at grid pOSition (0,0). Next the process at (0, 0) scatters b 
to the processes in the first (()w. Finally, each process in 
the first row broadcasts its block of b to the other 
processes in its column. 
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However, if k =I " the redistribution is mme wmplicated, because the sizes of 
the blocks of b change. Sec Figure 8.18b.ln this case, we firsl galher the clements 
of b onlo the task at grid position (0, O). Next we scalIer the elements of b among 
the tasks in the first row of the grid. finally, each process in the first row of the 
task grid broadcasts its portion of b to the other tasks in the same column of the 
grid. 

Let's analyze the complexity of the parallel algorithm, assuming m = n. 
We'll also assume that p is a square num~r and that the processes are arranged 
inlo a square grid. (Admittedly, this is tfie best-case assumption. but when the grid 
is size p x 1, the decomposition devolves into a row wise block-striped decom­
position. Analogously, when the grid is size I x p, the decomposition devolves 
into a columnwise block-slriped decomposition. We have already determined the 
complexity of parallel algorithms based on th€se two decompositions.) 

Each process is responsible for a matrix block of size at most rill JjJ 1 x 
r n I JP 1. Hence the time complexity of the matrix-vector mUltiplication step is 

8(n 2Ip)· 
When p is a square number, the redistribution of b is done in two steps. First 

each process in the first column sends its portion of b to the process in the flISt row. 
The time required for this message-passing step is 8(n/ JP). Next each process 
in the first row broadcasts its portion of h to the other processes in the same column. 
This broadcast has time complexity 8(logJP(nl JP)) = 8(n logp/ JP). 

After the matrix-vector mUltiplication step, processes in each row sum­
reduce their portions of b. The time needed for this communication operation 
is EJ(log JP(n/ JP)) = 8(11 log p/ JP)-

Combining these terms, the overall time complexity of rhe parallel matrix­
vector multiplication -algorirhm ba~ed on a checkerboard block decomposition of 
the maLrix is 8(111

/ p + n log p/ JP). 
Now let's determine the isoefficiency of this parallel algorithm. The sequen­

tial algorithm has time complexity 8(n2
)_ The parallel overhead is p times the 

communications complexity, or np log p/ JP = nJPlog p. Hence the isoeffi­
ciency function is 

nl?: CnJPlogp =}n?: CJPlogp 

Since M(n) = 11", we get the following scalability function: 

lH(CJjJlogp)/p = C2plogl pip = C2 10g2 p 

This parallel algorithm is more scalable than the other two implementations of 
matrix-vector multiplication. 

8.6.2 Creating a Communicator 

Recall that a communicator is an opaque object that provides the environment for 
message"passing among processes. In theMPI programs we have implemented so 
far, the collective communications involved all ofthe processes, and we could re­
ply upon the default communicator, MPI_CmIM_WORLD.ln our implementation 
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of matrix-vector multiplicatIon based upon a checkerboard block decomposition 
Df the matrix, there are four collective communication operations involving sub­
sets of the processes: 

• The processes in the first column of the virtual process grid paI1icipate in 
the communication thai gathers vector b when p is not square. 

I The processes in the first row of the virtual process grid participate in the 
communication that scatters vector b when p is not square. 

I &lch first-row process broadcasts its block of b to other processes in the 
same column of the virtual process grid. 

• F.ach row of processes in the grid performs an independent sum-reduction, 
yielding vector c in the first column of processes. 

In order to involve only a subset of the original process group in a collective 
communication operation, we need to create a new communicator. 

A communicator consists of a process group, a context, and other properties 
called attributes. The topology of the processes is one of the most impHI1ant 

. attributes oh communicator. A topology allows you to associate an addressing 
scheme other than the rank with the processes. Topologies are virtual in the sense 
that they are not tied to the actual organization of the processors upon which 
the processes are executing. MPl supports two kinds of topologies: a Carteswn 
(or grid) topology and a graph topology. Our application requires the creation 
of a communicator with a Cartesian topology, a two-dimensional viI1ual grid of 
processes. 

8.6.3 Function MPI_Dims create 

We want to create a virtoal mesh of processes that is as close to square as possi­
ble, which results in an aJ gorithm having maximum scalability. Passed the total 
number of nodes desired for a Cartesian grid and the number of grid dimensions, 
function MPI_Dims_create retums an array of integers specifying the num­
ber of nodes in each dimension of the grid, so that the sizes of the dimensions are 
as balanced as possible. The function has this header: 

int MPCoims_create tint nodes, illt dims, illt *sizej 

The functi on has three parameters: 

nodes: an input parameter, the number of processes in the grid. 

dims: an input parameter, the number of dimensions in the desired grid. '" 
size: an inpot/output parameter, the size of each grid dimension. The 
elements of si.ze (si ze [01, .. _, si ze [dims-l J ) must be initialized 
before calling the function. If si ze [i J = 0, the function is free to 
detemline the size of that grid dimension. If s i z e [ i 1 > 0, the size of that 
dimension has been determined by the user. 
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For example, suppose we want to find the dimensions of a balanced two-' 
dimensional grid containing p processes. The following code segment accom­
plishes this. 

int p; 
int siz€[2]; 

size[O] = size!l] 0; 
MPCDims_creat€ (p, 2, size); 

After function MPI_Dims_create has returned, size [0] contains the 
number of rows in the grid, and size [1] contains the number of columns in 
the grid. 

8.6.4 Function MPI_Cart create 

After determining the size of each dimension of the virtual grid of processes, 
we want to create a communicator with this topology. Collective function MP I_ 
Cart _cr'eate does this for us. It has this header: 

int MP I __ Cart_create \ 
MPI_Comm old_cOIIUn, int dims, int *size, int *periodic, 
int reorder, MPI_Comm *cart_comm) 

The function has five inpul parameters: 

old_cO/run: the old communicator. All processes in the old communicator 
mustcollectivcly call the function. 

dims: the number of grid dimensions. 

* size: an array of size dims. Element si z e f j] is the number of 
processes in dimension j. 

*periodic: an array of size dims. Element periodic [j J should be I 
if dimension j is periodic (communications wrap around the edges of the 
grid) and 0 otherwise. 

reorder: a flag indicating if process ranks can be reordered, If reorder 
is 0, the rank of each process in the new communicator is the same as its 
rank in old_comn. 

Function MP 1 __ Cart_create has one output parameter. Through cart_ 
comm it returns the address of the newly created Cartesian communicator. 

Let's see how we would use this function in ollr application. The old commu­
nicator is MPI ... COJc.lI"CWORLD. The grid has two dimensions_ Function MP C 
Dims_create initialized array size containing the size of each dimension. 
There are 110 wraparound communications, and we do not care if the ranks of the 
processes have lhe same order in the new communicator. These decisions lead to 



the following code segment: 

MPLComm cart_cormn; 
int Pi 
int periodic[2]; 
int size[2J; 

size[O] =: s;ze[l] 

SECTION 8.6 Glceckerboard Block Decomposition 

/* Cartesia.n topology comlllunicacor */ 
I * Processes * / 
I * Message wraparound flags * / 
1* Size of each grid dimension "I 

D; 
MPI~Dims_creatf~ (P, 2, size); 
periodic[O] = periodic[l] =: 0; 
MPI_Cart_create (MP.CCOI1M_WORLD, 2, size, periodic, 

) I &.can~collli~t; ... 

8.6.5 Reading a Checkerboard Matrix 

We will maintain our tradition of having a single process responsible for opening 
the data file containing tbe matrix, reading its contenl~, and distriooling them to 
the approprialq processes. The distribution pattern is similar to the pattern we saw 
when we decomposed the matrix using columnwise striping. The difference is 
that instead of scattering each matrix row among all the processes, here we must 
scattcr each row among a subset of the processes-those in the same row of the 
virtual process grid. See Figure 8.19. Process 0 is responsible for matrix input. 
Each lime itrcads in a row of the matrix, it sends the matrix row to the first process 
in the appropriate row of the process grid. After the receiving process reads the 
matrix. row, it scatters it among the processes in its row of the process grid. 

In order to accomplish all this, we need to add a trio ofMPI f~nctions to our 
repertoire. 

8.6.6 Function MPI_Cart rank 

In order to send a matrix row to the first process in the appropriate row of the 
process grid, process 0 needs to know it'> rank. Function MPI_.Cdrt_rank, 
when passed the coordinates of a process in the grid, returns its rank. It ha~ this 
header: 

The first parameter, carom, is an input parameter whose value is the Cartesian 
communicator in which the communication is occurring. The second parameter, 
coords, is another input parameter: an integer array containing the coordinates 
of a process in the virtual grid. The function returns through the third parameter, 
rank, the rank of the process in carom with the specified coordinates. 

For example, suppose the virtual process grid has r rows. The malrix being 
read has m row.). Row i ofthe input matrix is mapped to the row oftbe process grid 
specified by BLOCK_OI'mER (i, r, Ill). The following code segment illustrates 
how process 0 could find the rank of the process lhat should receive the input row. 
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each,of these new subgroups. It has this header: 

int MPCCOIllffi_Split (MIP _CoJmu old_comm, int partition, 
int new_rank, MPI_.Comm 'new_collufl) 

The first three v2riables are input (yMaI11eters: 

old __ COIl'Jl\: the existing communicator to which these processes belong. 
This is a collective function: every process in the old communicator must 
call it 
partition: the partitionuumber. 
new _.rank: rank order of process within new communicator. 

The function returns through neW_COIDm a pointer to the new communicator to 
whicb this process belongs. 

We've already seen how to use function I1PI_Cart_create to create a 
Cartesian communicator that organizes the processes into a virtual two-. 
dimensional grid, gr id_corrun. We've ~Iso seen how each process can call func­
tion HPI_Cart_coords to determine its coordinates in the grid, stored in the 
two-element array ofintegers gridJoords. Element grid coords I 0] is 
the row number, and element grid_coords [1] is the column number. 

At this.point we can use function MPI_ CormTUlp lit to partition the process 
grid into rows. Because we want to group together processes in the same row, 
we llSe the value of grid_coords [OJ as the partitioning number. We rank 
processes according to their column (ndices by using grid_coords [I] as the 
determinant of the ranking order. 

COlliITI grid_cormn; 1* 2-D process grid */ 
Corom grid_coords r 2] ; /* Location of process in qrid */ 
Corroll row __ corr:m ; Ii Processes in same row '*/ 

MPI_Co~~_split (grid_coma, grid_coords[O] r 

grid_coords[l], &row_comm); 

We will also use this function to divide the Cartesian communicator into 
separate communicators for every column in the process grid. 

With the original grid communicator and these two addi tional communicators 
we can perform all the communications needed to redistribute the elements of b 
and perf(lrm the final sum-reduction resulting in c. 

8.6.9 Benchmarking 

We have written an MPI program implementing matrix-vector multiplication 
ba~ed on a checkerboard block decomposition of the matrix. Writing the key 
functi(lns of this program is left as a series of exercises at the end of the'chapter. 

Let's develop an analytical model for the performance of this program on the 
same target cluster we u oed for the previous two programs. We will only consider 
the case where p is a square number. 
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Again, we let X denote the time needed to perform a single iteration of the 
loop computing the inner product. Each process is responsible for a block of A 
baving size at most r n I JP 1 x f/ll JP 1. Hence the estimated computation time 
of the parallel program is X r nl JPl x [nl JPl 

In the firS!: step of the redistribution of b, the processes in IDe first column of 
me grid pass their blocks of b to processes in the first row of the grid. A process is 
responsible fOI at most f /II JP 1 elements of b. Hence the time needed to send or 
receive a message containing these elements is J.. + 8fnl JP1/~. In the second 
step of the redistribution, each process in the first row of the grid broadcasts its 
bl.ock of b to the other processes in the same colunm. The time required for this 
step is log JP(J.. + 8f nl JPl/fJ)· 

Aftereach process has performed its share of the malfix·vectormuitipiication. 
the processes in each row of the grid cooperate to reduce their portions of c. 
We ignore the time needed to perform the additions, which is swamped by the 
communications time. The communications time is the same as that nceded to 
perform the columnwise broadcast: log JP(J.. + 8[nl JP1/f3l. 

. Benchmarking on a commodity cluster of 450 MHz, Pentium II processors 
connected ~y fast Ethernet reveals that X = 63.4 nanoseconds, J.. = 250 j1sec, 
and fJ ::: 106 b yte/sec. 

Table 8.3 compares the actual and predicted execution times of a checkerboard 
matrix·vector multipiicruion program ~olving a problem of size 1,000 on 1,4,9, 
and 16 proce.~sors. The actual times reported in the table represent the average 
execution lime over tOO runs of the parallel program. The speedup of this program 
is compared with the speedups of our other two implementations of matrix-vee tor 
multiplication in Figure 8.20. 

The number of messages sent by this program is virtually identical to the 
number of messages sent by the othertwo programs implementing matrix-vectof 
multiplication. The principal difference between this algorithm and its predeces­
sors is that the number of element~ of band c transmitted per process is 8(nl JP ), 
whereas the other two algorithms transmitted e (n) elements. For this reason, we 
should expect the checkerboard algorithm to perform better than either the row­
wise striped or the column wise striped algorithms, once the numberof processors 
gets large enough. Our experimental data be~r this out. While the program based 
on the checkerboard decomposition docs not outperform the other two programs 
on 1,4, and 9 CPUs, it comes out on top when we increase the number of CPUs 
to 16. 

Table 8.3 Predicted versus actual performance of checkerboard matrix.vcctor 
multiplication program multiplying a 1,000 x 1,000 matrix tly a 1,OOO·element vector. 

crMceSsors Predicted tiDie AdlulltbneSpcedllJl MegaflOps 

I 
4 
9 

J6 

0.0634 
0.0178 
0.0097 
0.0062 

0.0634 
0.0174 
0.0097 
0.0062 

1.00 
3.64 
6.53 

10.21 

31.6 
114.9 
206.2 
322.6 

Tbe parallel computer is a commodity cluster of 450 MHz Pentium lis. Each processorJla.1 a fast 
Ethemet connection [0 a shared switch. 
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Figure 8.20 Speedup of three MPI 
programs multiplying a 1,000 x 1,{)00 
matrix by a 1 ,OOO-element vector on a 
commodity cluster. The speedup of the 
program based on a rOVvVlise block-striped 
decomposition of the matrix is indicated 
wilh a dotted line, the speedup of the 
columnwise block-striped implementation is 
shown with a dashed line, and the speedup 
of the checkerboard block implementation 
is drawn with a solid line. 

8.7 SUMMARY 
In thi, chapter we have designed, analyzed, and bcnchmarked three MPI pro­
gram, to perform matrix-vector mUltiplication. The first design is based upon 
a rowwise block-striped decomposition of the matrix among the processes, the 
second springs from a column wise block-striped decomposition, and the third 
ari,es from a checkerboard block decomposition of the matrix. 

We have determined the isoefficiency of each of these algorithms. The 
checkerboard-decomposed algorithm has the best isoefficiency function, meaning 
it is more suitable for scaling to large numbers of processors than the algorithms 
based on the other two decompositions. Benchmarking reveals the superiority of 
the checkerboard-decomposed algorithm as the number of processors increases 
lFigurc 8.20). 

Because each algorithm is based on different matrix and vector decomposi­
tions, the resulting programs have much different communication patterns. As a 
result, we have encoulltered many powerful MPI communications functions for 
scattering and gathering data. We have also learned how to create communicators 
with a grid topology and how to partition the processes of a communicator into 
subgroups, each wiLh its own communicator. 
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Compared 10 a C progGlm perfonning matrix-vector multiplication, our par­
allel pmgrams and their supporting functions are many times longer. The actual 
amount of code spent performing the computations is about the same, but read­
ing and diSlributing matrices and vectors is mucbmoreromplicated in a parallel 
setting. Developing and debugging these functions is a tedious process. That is 
why it makes sense to mllke them as general as possible, put them in a library, 
and reuse them. It also makes sense to usc freely available libraries. The ScaLA­
PACK project resulted in the creation of a large suite of MPI-compatible functions 
supporting computational science and engineering. See the Bibliographic Notes 
section for more infonnation on ScaLA PACK. 

8.8 KEY TERMS 
all· gather eommunication 
atl·t(l-~U communicalioll 
attributes 
block;'lec\JrnposW VeI-'tOf 

checkerboru-d block 
decomposition 

(;()lumnwise block-striped 
dccomposititln 

communicator 
context 
diSlribui.ed vector 
proress group 

8.9 BIBLIOGRAPHIC NOTES 

replicated vector 
topology 

Olher introductions to parallel matrix-vector multipli(ation algorithms include 
Pacheco {89J (row wise striped), Bel1Sekas and Tsitsiklis [9] (rowwise Slriped 
and columnwise striped), fox et aI. [331 (checkeroollJd), and Grama et al. \441 
(rowwise striped and checkerboard). 

In the rnid-1990s several U.S. government ageocies provided funding to the 
ScaLAPACK project, a collaborative effort between Oak Ridge National Labo­
ratory, Rice University, Ihe University of C.alifornia, Berkeley, the University of 
California, Los Angeles, the University of Tllinois, and the University of Ten­
nessee, Knoxville. These institutions developed many MPI-<:ompatible libraries 
of numerical fllnctions. These freely available libraries serve a wide variety of 
functions, including perfOlming basic operations on matrices and vectors, solving 
linear systems of equations, computing eigenvalues and eigenvectors, and precon­
ditioning matrices for iterative solvers. See\~w-w. netlib. org I scalapilckl 
for more information about rhese libraries. 

The Mar(h 1994 issue of Commu.nications of lhe ACM focuses on artificial 
intelligence. It contains three survey articles on neural networks. 

8.10 EXERCISES 
8.1 Benchmark the paralic I malrix-vector multiplication program~ developed 

in this chapter on your parallel computer, this time iocluding time spent 
reading the matrix and Ihe vector from files. Wbi(h program exhibits 
higherpenormance? Why? 
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8.2 Using the performance model developed in Section 8.4 of this chapter, 
estimate the execution time, speedup, and megaflops mte of the first 
matrix-vector multiplication program on 9, 10, ... , 15 processors, 
assuming n == 1,000. 

8.3 Write a matrix-vector multiplication program in which matrices are 
distributed among the processes in block-row fa~hion and vectors are 
distributed among tlle processes as blocks. You may assume both the 
matrix and the vector ~re input from a data file, using the same format as 
described for the e'xample programs in this chapter. At the end of the 
program's execution, the result vector c should be distributed among the 
processes as blocks. 

8.4 Implement another version of function read_col_st :iped_ 
matrix. A, in the functinn described in the chapter, a single process 
should be responsible for opening and reading the contents of the file. 
l! nlike the function described in the chapler, the matrix distribution 
should be accomplished with p - I simple send-receive messages. For 
each row of the matrix, the process reading the file should call 
l1PI __ Send p -1 times; each of the other proc~sses should call 
l1PI_Recv once. No process, including the process reading the file, 
should allocate memory for more than n I n/ p 1 matrix elements. 

8.5 Implement another version of function read_col_striped_ 
matrix that requires no calls to MPI functions. Each process opens the 
data file and reads its portion of the matrix. 

8.6 Write a matrix-vector multiplication program in which matrices are 
d,isrributed among the processes in block-colunm fashion and vectors are 
replicated. You may a~sume both the matrix an.d the vector arc input from 
a data file, using the same format as described for the example programs 
in this chapter. At the end of the program's execution, vector c should be 
replicated. 

8.7 Assume grid_cOlmn is a communicator with a Cartesian topology that 
organizes processes into a two-dimensional grid. Write a code segment 
that pattitions the process grid into columns. At the end of the code 
segment, each process's value of col_corrun should be a communicator 
containing the calling process and all other processes in the same column 
of the process grid, but no others. 

8.8 Suppose gri d __ conun is a communicator with a Cartesian topology that 
organizes processes into a virtualtwo-dimensional grid. Write a code 
segment iIlusll'dting how function read __ block_vector can be used 
to open a file containing a vector and distribute it among the first column 
of processes in grid COITm. The name of the file is "Vector," and it 
contains double-precision floating-point values. 

8.9 As part of a program thai implements matrix-vector multiplication 'based 
on a checkemoard decomposition of the matrix, write a function that 
redistributes vector b. Assume the vector ha~ II elements and the 
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processes arc organized into a grid with dimensions r x c.lnitially 
vector b is distributed by blocks among the processes ill the first column 
of the grid. The process at grid location (i, 0) is responsible for BLOCK 
SIZE Ii, r, n) elements of b, beginning with the element having inde~­
BLOCK_LOW ( i, r, n I . After the redistribution, every process in 
column j of the grid is Il.'sponsiblefor BLOCK_SIZE (j, c, n) 
elements of b, beginning with the element having index 
BLOCK_LOW c,n). 

a. Assume p is a square number; i.e., r = c. 
b. Assume p is not a square numocr; i.e., r #- c. 

c. Make no assumptions about the value of p. 

Write a program that implements matrix -vector multiplication based on a 
checkerboard block decomposition of the matrix. TIle program should 
read the matrix and the vector from an input file and print the answer to 
standard output. The names of the files containing the matrix and the 
vector should be specified as ~ommand.line argument~. 

8.11 Wri(e a function to transpose an n x n matrix A. Assume that before the 
function call, A is rowwise block decomposed among the-p processes. 
After the function returns. A should be columnwise block decomposed 
among the p processes .• 

8.12 A binary search tree is a way of organizing n keys from a linearly 
ordered set to ensure their retrieval in B{log n) time. If we know the 
prohability of each key being accessed, we can create an optimal binary 
search tree that minimizes the average search time (Figure 8.21). 

brown 0.16 

dog I 0.13 

fox I 0.06 
:-----'--

jumped 0.08 

lazy 0.07 
- ------

over 0.17 

quick OJ)5 

the 0.28 

~he 

o 
Figure B.21 Given a set of keys and the probability of each key being 
accessed, an optimal binary search tree minimizes the average time needed to 
retrieve a key. '" 

Figure 8.22 is a C program implemellling a dynamic programming 
algorithm to find an optimal binary search tree, given a set of n 
probabilities. The program is adapted from pseudocode in Baase and Van 
Gelder [5]; consult their textbook for more details on the algorithm. 
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/* 

Given piG), I'll], .. ., p[N-l1,the probability of each key 
in an ordered list of (,ej{r:> bping th i) targut of a seal"ch, 
this program useS dynamic progrillIDni·ng t.o comput~ t.he 
optimal binary search rree th()J~ mi8.imiv?s the average 
numbex of comparisons needed to find a key. 

Last :roditication: 12 Se.ptp.lr.i)er 2002 
*/ 

Hinclude <stdio~h> 
#incl\)de <val ues .h> 

ma.in (int a-rgc, chit,. 
floaT: bestcost; 

*argv[) I ( 
/i: CC'o/est cost suhtree ~ound 5.:] 

int best root i /" RoaL ot low~st cost subtree 
int high; /* Highest key lTI subtree */ 
int i, i; 
int low; /. LO~'est key in Sl.lbt.!::'~~0 it' ; 

int ni j' Number of key,; */ 
int r; 1* Possi~ole, subtree ro(,t * / 
floar. rCOf.'lti /. Cost of subtr~e rooted by 
int :.Ii trooti I' Best subtree roots 

* " Eloat * ''''C03t ~ ! • £lesL subtn,e cases * / 
flOdt "'Pi /' Probilbility of each ke'j */ 

1.'01 d alJ oC_lTldtrix {v@id "'**, int r int r inU; 
void print _.root I j nt ** ~ int, int l ; 

/' Input the number ot keys and prohabi li t"ies * / 

scnn( ('%d', &nl; 
p 0 (float k) malloe Ill' k sizeof (float)) ; 
for- (:'.. :=. 0; i < n; itt) 

sCj~J;E {,r%E·, I:tp[il!: 

/~ Pind optiIT.al binary seLlrch Lre2 7,/ 

r 

La! * / 

'/ 

'! 

alloc"J!Htrix ((void "*) 'cost, ;]+1, n+1, sizeoE(tloatl)I 
alloc_mat;:-ix ((void ~.*) &rouL n+1. nt1 r sizeot (int) 1; 
for (]ow n; low>=. Oi low--j 

,:oscflowlilowi = 0.0; 
root(low][low] = lUl<; 
for (hig), = low+·[; high 

be.stcost e MAXFCOAT; 

n; tigh-H-) 

for (r e low; r < high; rTf \ r. 

:cos!: = costflowJlrl I eost[nlifhlqh]; 
tor (j = low; j < high; j++l rcost += p[:i]; 
ii (reost < bestcos~) 

best:ost = rcost: 
bestroot :: Li 

Figure B.22 C program implementing dynamic programming algorithm 
to find an optimal binary search tree. 



cost [10'''] ihigh] = bl'stcost; 
root [low] [high] bestrOQi'; 

SECTtOH 8.10 Exercises 

/. Pt1Ilt struCf.ure of binary sea.rch tree */ 

/ * Print t.hf": FJot of the subtree spanning k-eys 
'low' r.!1rough 'high' * I 

void f-r,int_roq~. (~nt "'*r{Jot' r int .. 10wl int. high~ { 
printf ["Root of tree spam}i,nq %d-%d is %[1'\.0", 

low, high, root [10',1] [high+l1); 
j[ (low" n)ot[low) lhiClli+1l-1) 

print_l'Dot ircot" 1.aw, root Ilow) [high+l]-J); 
it iroot[lowl [highfl] < high-I) 

print_root (root, r;oot[low]lhiqh+lj+l, high); 

/* l\tlocdte: a t"Jo-dimensional array w)th Iml rows and 
In' cc)lumns , where each eIltlY occupjes Isi:;e' (rItes */ 

vo)d alloc._matrix (void 't**a l int In; int n. int size) 

int. i i 
VOl d *storng2j 
s;:orage ::: (void "') malloL' (m .. n * size) i 
*a = (,~id •• ) malloe 1m' aizeof0/0id .)); 
for (i ;: 0; i < m; i ++ ~ ( 

{'IIa}{il st{Jrage +) * II * .SiZ~i 

Figure 8.22 (conld,) C program implementing dynamic programming 
algorijhm 10 find an optimal binary search Iree. 

Use the partilioning-communicalion-agglomeration-mapping design 
methodology to implement a parallel version of this program. (Hillt: You 
need to find an agglomeration that will allow multiple processes to be 
computing cOllcurrently.) 
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C HAP T E R 

Document Classification 

It is impossible to enjoy idling thoroughly unless Olle has plenty of work to do. 
Jerome Klapka Jerome, Idk Tlwughts of an Idle Fellow 

9.1 INTRODUCTION 

The World Wide Web contains millions of text documents. Many questions can 
be answered by retrieving the right documents, but automated search engines 
are needed to find the documents most likely to contain relevant information. 
To simplify the comparison of documents with queric~ or against each other, 
practitioners often use a vector to represent the contents of a document. Each 
dimension of the vector represents the "fit" between the document and a concept, 
which may take the fonn of a word or phrase. 

In this chapter we develop an application that reads a dictionary of key words, 
locates a set of text documents, reads the documents, generates a vector for each 
document, and writes the document vectors. In contrast to most of the problems 
we have examined in previous chapters, this problem is amenable to a function~l 
decomposition. We develop a manager/worker-style parallel program to solve thIS 
problem. In the course of developing the program and discussing enhancements 
to it, we add the following MPI functions to our repertoire: . 

• MPl_Irecv, to initiate a nonblocking receive 

• NPl .. l send, to initiate a nonblocking send 
• HPI.Jllai t, to wait for a nonblocking communication to complete 

• NFI_Probe, to check for an incoming message 
• rv;Pl.J~et_count, to find the length of a message 
• f·jPI_Test.some, to return information on all completed nonblocking 

communications 
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Figure 9.1 The document 
classification problem consists of five 
general tasks. 

9.2 PARALLEL ALGORITHM DESIGN 
Our objective is aprogram that reads a dictionary and searches adireclory structure 
for plain text files (such as • hLml, . tex, and . txt files). For each of these 
files, the program opcns the file,reads its contents, and generates a profile vector 
that indicates how many ti~es the tex.t document contains each word appearing 
in the dictionary. The program writes a file containing the profile vectors fQr each 
(If the plain text files it has examillcd. A data dependence diagram for the five 
steps appears in Figure 9.1. 

9.2.1 Partitioning and Communication 

While reading the dictionary and identifying the documents may be pel10rmed 
concurrently, we need to break the tasks into finer pieces if we are going to exploit 
parallelism more fully. Let's assume fhat reading documents and generating the 
profile vectors consume the vast majority of execution time. It makes sense, then. 
to generate two tasks for each document: one to read the document file and another 
to generate the vector. The resulting data dependence graph appears in Figure 9.2. 

This algorithm is a natural candidate lor a functional decomposition. Each 
operation is a primitive task. A data element (i.e., a document) is associated with 
each task. 

9.2.2 Agglomeration and Mapping 

The number of tasks is [lot known at compile time. Tasks do not communicate 
with each other. The time needed to perform each task (process each document) 

217 



218 CHAPTER 9 Document Classification 

Figure 9.2 The reading and profiling 01 each document may 
occur in parallel. • 

Figure 9.3 In a managerlworker-sty1e parallel 
algorithm, a manager process assigns tasks to and 
receives results from a set of worker processes. 

may vary widely, because the documents may have radically different sizes, and 
some document~ (such as . html files) may be more difficult to process than 
others (such as . txt files). Given these characteristics, our mapping decision 
tree (Figure 3.7) suggests we sbould map tasks to processes at run-time. 

9.2.3 Manager/Worker Paradigm 

To support the run-time allocation of tasks to processes, we will construct a 
manager/worker-style parallel prGgram. One process, called the manager, is 
responsible for keeping track of assigned and unassigned data. It assigns tasks 
to the other processes, called workers, and retrieves results back from them 
(Figure 9.3). 

The advantage of allocating only a single task at a time to each worker is 
that it balances worldoads. A worker is done when it completes a task and the 
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manager has no more tasks to assign. At this point, no worker h~s more than one 
task left to complete. 

The disadvantage of al/ocating a single task at a time to each worker is 
that it introduces additional communication overhead into the pamllel algorithm, 
increasing execution time and lowering speedup. 

To date, all of the parallel programs we have written are in the SPMD (Single r-O 
Program Multiple Data, sometimes pronounced "spim-dee") style. In SPMD pro-
grams every process executes the same functions (though a designated process 
may be responsible for tile or user I/O). The manager/worker model is a clear 
break from the SPMD style of progmmming. The manager process has different 
responsibilities from the worker processes. In a parallel program implementing 
a manager/worker algorithm, there is typically a control flow split early in the 
program's execution that sends the manager process off executing one function 
and the worker processes off executing another function. 

Keeping workloads balanced is essential for high efficiency. and we choose 
the manager/worker paradigm as the basis for our parallel algorithm design. Our 
first step is to decide which tasks should be done by the manager and which should 
be done by the workef5.Identifying the documents is clearly a job for the manager, 
since it is the manager that will be assigning file names to the workers. Reading the 
dictionary should be done by the workers, sillce they are the processes that will be 
constructing the profile "tectors. Given a document file name, a worker will read 
the Jile and produce the document profile vector. Finally, we'll give the manager 
responsibility for gathering the document vectors and writing the results file. 

In the rask!channel graph of Figure 9.3, you can see there is an interaction 
cycle betwet',n the manager and each worker. The manager provides the worker 
with a task. Some time later the worker returns the completed task to the managl<r 
(or simply reports that the task is done). At this point the manager may give the 
worker another task. 

The cycle may brgin with either a message from the manager to the worker or 
vice versa. Which should come first? In our design, we choose to have the worker 
initiate the dance by sending a message to the manager indicating it iR ready to 
receive a task. We do this because we cannot be certain when the NIPI processes 
on dilTerent processors begin execution. This way, the manager only sends iasks 
to workers it knows are active. 

9.2.4 Manager Process 

Pseudocode for the manager process appears in Figure 9.4. The manager begins 
by identifying the n plain text documents in the directory specified by the user. It 
receives from worker 0 the value of k, the number of elements in each document 
vector, so that it can allocate n x k matrix s for storing the vectors it receives from 
the workers. It initializes variables d and t showing that no documents have been 
assigned and no workers have been terminated, respectively. 

The manager enters a loop that it repeats until it has terminated all workers. In 
this loop it receives amessage from a worker. If the message contains a document's 
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Manager 
Local variables 

a - array showing OOcument assigned to each pr~s 
d - dlh."1Imenls assign~.d 
j -··ID of wolker requesting do<,nment 
k --document vector length 
11 - number of documents 
p - tolal number of processes (I' - I are w()(kees) 
J - storage array containing document vectors 
I - li'.rminated workers 
II -- individual document vecLor 

tdemify n documents in user-specified directory 
Reeeivedktionary size k from worker 0 
Allocate s wid! dimension n x k to store d,lcument veClors 
d <--0 
t ,- 0 
repeal 

Reeeive message from womer j 
jf message contains document vector II 

sla[jJ]-<- v 
el~e 

{Message is first request for worl-·do nouling} 
e .. lif 
itd < n then 

Send name of document d to worker .i 
alj] +-- d 
d +--d+l 

else 
Send temlinaLion message Lo worker j 
J <-I + 1 

.endif 
until t = P -- I 
Write s looutpul file 

Figure 9.4 Pseudocode for the document 
classification manager process. 

profile vector, it stores the vector in the appropriate place in s. Otherwise, the 
worker is simply indicating it is ready for a document. (fhis only happens once 
per worker.) If there are any documents left, the manager sends the tile name to 
the worker, records in array a which document it assigned, and increments d, 
the number of documents assigned. If there are no documents left, ttie manager 
sends a termination message to the worker and increments the termination count. 
It repeats the loop until it has terminated all of the workers. 

Exiting the loop, the manager process writes to a Iile the document profile 
vectors stored in s. 

9.2.5 Function NFl_Abort 

Recall that after the manager idenlifies the 11 plain text documents in the directory 
and receives k, the document vc(tor size, from proce!is 0, it must allocate an n x k 
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matrix for storing the vectors. This is an operation that only the manager process 
pcrfofIDs-the worker processes arc off doing other things at this point. 

If the memory allocation fails, we need a simple way to tenninate the execu­
tion of the MPI progrdm. Function MPr._Abort gives us this power. It has this 
header: 

int [olPCAbort (MPCComm comm, jnt error_code) 

Function NPly.bort. makes a "best effort" attempt to abort all processes 
in the communicator passed as COllllll. It returns to the calling environment the 
value of error code. 

9.2.6 Worker Process 

Now let's thinkaboutJhe worker processes. Every worker needs a copy of the dic­
tionary. One solution ii; for every worker to open the dictionary file and read its con­
tents. Another llption is for one WiJrker to open lhe dictionary file, read its contents, 
and then broadcast the dictionary to the other wor~ers. I f the broadcast bandwidth 
inside the parallel co mputer is greater than the bandwidth between thc file server 
and the parallel computer, the second strategy is bencl. It is the one wc adopt 

The pseudocode for the worker process is in Figure 9.5. As soon as a worker 
becomes active, it notifies the manager it is ready for work. (Technically, this 

Worker 
Local variabl~ 
f --fi\ellamc 
k-- dictiOlIlll)' SilC 

I' - document vector 

Send firm: request for work to manager 
if worker 0 then 

Read didioruuy from file 
endif 
Broadcast dictionary amol\~ workers 
Build hash table from dictionary 
if worker 0 then" 

Send dictionary size k 10 manager 
endif 
rCp<"-'ll 

Receive file name f from manager 
if f indicates t'~rmiflJtion 

exitloop 
else 

Read document from file f 
Genemte docllment vector v 
Send" to manager 

clldif 
forever 

Figure 9.5 Pseudocode lor the 
document classification worker 
process. 
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is not true, because the worker has not yet acquired the dictionary. However, 
making the request early al.lows the time spent sending the message and receiving 
the first document's file name from the manager to be overlapped with dictionary 
setup time.) Worker 0 reads the dictionary. All workers (but not the manager) 
participate in the collective communication operation to broadcast the dictio­
nary. Each worker constructs a hash table from dictionary elements. This will 
enable cDnstanHime access (in the average ca.~e) to dictionary entries, speeding 
the profiling of ~he documents. Worker 0 also sends the dictionary size to the 
manager. 

The worker process enters a repeat •.. forever loop. It receives a message 
from the manager. If the message is the name of a file containing a d~umellt, the 
worker reads the file, generates the document vector, sends the dQcument vector 
to the manager, and iterates. If the worker receives a termination message from 
the manager, there are no more documents 10 process, and the worker ceases 
execution. 

We can create a task/channel graph for this manager/.worker design. It is 
illustrated in Figure 9.6 for the case when there are five processes (one manager 
and four workers). 

We need to decide which process will be the manageLIt makes no particular 
difference, but for the sake of simplicity, let's assign management responsibil­
ities to the process with rank 0 in MPI.COMM_WORLD; processes with ranks 
1,2, .. , p - 1 will be the workers. 

Figure 9.6 Task/channel graph for the parallel document classification algorithm. 
Dashed arrows represent channels used to broadcast the dictionary. Heavy gray 
arrows represent channels that carry document names to workers. Heavy black 
arrows represent channels that carry document vectors to the manager. 
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Note tbat our design assumes at least two processes will execute the 
program-----{)ne manager aoo at \east one worker. Our implementation needs to 
check to ensure at least two MPI pmcesses are active. 

9.2.7 Creating a Workers·Only Communicator 

In the parallel algorithm we have desi gned, the dictionary is broadcast among the 
workers while the manager is searching the dire<:tory structure for plain text files. 
Function MPl_ Bca s t is a colle<:tive communication operation, meaning it must 
be performed by every process ill a communicator. 

To support a worker-only broadcast, we must create a new communicator 
that includes all the workers but excludes the manager . .In Chapter 8 we saw 
how to usc MPI_comrn_split to split a communicator into one or more new 
communicators. 

In this ca~e, however, we do not want the manager process to be a member 
of a new communicator. We can exclude the manager process by having it pass 
the constant MPI _UNDEnNED as the value of spl it_key. The return value 
ofnew_comm will be MPCCOMM_NULL. 

We can' create a new, workers-only communicator with this eode: 

int id; 
MPl_Comm worker ___ coTIlm; 

if (lid) I' Manager *f 
MPI_ComITI_spli t (MPCCOMM_.WORLD, MPI_UNDEFINED, id, 

&worker_comrnl; 

else 1* Worker *1 
l'1PCComm_split (MPCCOMl'CWORLD, 0, id, &workeccomm); 

9.3 NONBlOCKING COMMUNICATIONS 

The work of the manager process has three phases. In the first phase the manager 
finds the plain text files in the directory structure specified by the user, re<:eives 
the dictionary size from worker n, and allocates the two·dimensional array Lhat 
is used Lo store the document profile vectors. In phase 2, the manager allocates 
documents to workers and collects profile veClors. It writes the complete set of 
profile vectors to a file in phase 3. 

Let's focus on phase L The manager mllst search a directory structure and 
receive a message from worker 0, Is there a way to overlap these two activities'? 

To date, we have used MPI_Send and ~IPT _Pcecv for point-to-point 
message-pa.-sing. These are blocking opemtions. FUllljion [\iP I _Send does not 
return until eithenhe mes.';age has been copied into a system buffer or the message 
has been sent. In either ca~e, you can overwrite the message buffer as soon as 
the function returns. Function HPI_Recv does not return until the message has 
been received into [he buffer specified by the user; you may access the message 
values as soon as the function returns. 
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Blocking sends and receives may limit the performance of a parallel program. 
With NPl_Send, there may be rome reason why the system does not copy the 
message into a system buffer. In this case the function blocks until the message 
has been sent, even if you have no intention of overwriting the buffer right away. 

Posting a receive before a message arrives can save time, because the system 
can save a copy operation hy transferring the contents of the incoming message 
directly into the destination buffer rather than a temporary system buffer. It is 
difficult to do this with MPl_Recv. If the function is called too soon, the calling 
process blocks until the message arrives. If the function is called too late, the 
incoming message has already been copied into a system buffer and must be 
copied again. 

Fortunately, the MPI library provides nonblocking send and receive func· 
tions. Calls to MPI_lsend and MPI_lrecv simply post, or initiate, Ihe ~p. 
propriate communication operation. (Think of the "1" as standing for initiate.) 
The message buffer may not be accessed by the user process until it explicitly 
completes the communication with a call to NPCWa i t. 

Posting a message, performing other computations Dr I/O operations, and then 
completing the message, may save time in two different ways. First, it may allow 
the system to eliminate message-copying by the sending and/or the receiving 
processes. Second, it allows dedicated communication coprocessors, if they exist 
on the pardUel computer, to perform communication-related activities while the 
CPU assigned to the-computation manipulates local data. 

9.3.1 Manager's Communication 

Getting back to our manager process, it knows at the beginning of its execution 
that it need~ to receive the dictionary size from a worker, even though it does 
not actually use this value until after it has identified the document files to be 
processed. (Of course, the value of a nonblocking read is higher when the length 
of the message to be received is greater.) Let's look at the two MPI functions 
needed to perform a nonblocking reccivc. 

9.3.2 Function MPI_Irecv 

Function MPI_Irecv has this header: 

int l-lPClrecv (void *buffer, int cnL, MPCDa:atype dtype, 
int src, inL tag, MFl_Cornm comrn, MPI_,Request ~handle) 

The first six parameters are identical to those of MPC Recv. However, 
since MPI_lrecv only initiates the receive, you cannot access buffer un­
til a matching call to MP I_Wai t has returned. The function returns, tluough the 
last parameter, a handlc(pointer) to ao MPl_Reques t object that identifies the 
communication operation that has been initiated. 

Note that the function does not return a pointer to an MPl_Status object, 
since the receive has not yet been completed. 
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9.3.3 Function MPI Wait 

Here is the header for function MPI_\A/ai t: 

int Mpcwait (MPI_Request *handle, MPCStatus '"sta~us) 

Function MPIJ~ait blocks until the operation associated with pointer 
handle completes. In the case of a send operation, the buffer may then be 
assigned new values. In the case of a receive operation, the buffer may be refer­
enced, and status point~ to the MPI_Status object containing infonnation 
about the received message. 

9.3.4 Workers' Communications 

Now let's examine the needs of the worker processes for new MPl functionality. 
Before being assigned its first document, each worker must notify the manager 
process thai it is active. It can initiate this send to the manager, then proceed 
imme<1iately to the broadcasting of the dictionary and the construction of the 
hash table. 

The worker also must receive file names (actually, complete path names) 
from the manager. There is no way of knowing in advance how long these names 
may be, since directory structures may be deeply nested. For this reason it would 
be convenient if the worker could check on an incoming message and determine 
its length before actually reading it 

Here are the three MPl functions that meet these needs of the workers. 

9.3.5 Function NPI_lsend . 

int MPCIsend (void *buffer, int cnt, MPI_Datatype dtype, 
int dest, inL tag, MPI_COULrn comm, MPI_Request "handle) 

Function MPI_IseIld posts a nonblocking send operation. Tile first six 
parameters have the same meaning as in MPI _Send. The last parameter is an 
output parameter -a handle to an opaque MPI_RequesL object created by the 
run-time syst.em. It identifies this communication request. The message buffer 
may not be reused until the matching call to MPI_\A/ait has returnctl. 

9.3.6 Function NPl.Probe 

int MPI_Probe (iIlt src, int tag, MPI_Co~~ COffiffi, 

MPI_Status *status) 

Passed src, the rank. of the message source; tag, the incoming message's 
lag; comm, the communicator; and status, a pointer to an MPI_Status ob­
ject, function MPI_Probe blocks until a message matching the source and tag 
specifications is available to be received. It retlll1ls through the s i:.atus pointer 
information about the source, tag, and length of the message, hut it does not 
actually receive the message. 
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By passing MPI_ANY_ SOURCE as-the sre argument, you can probe for a 
message from any oilier process. Passing MPI_AlIT_TAG as the tag argument 
allows you to probe forallY message from the process you spe<:ifled in src. Using 
both NPlj\NY_SOURCE and MPCANY_TAG will allow the probe to match 
any sent message. 

In general, it is best to keep the source and tag specifications as narrow 
as possible, to minimize mismatch bugs that occur when messages arrive in an 
unexpected order. In this case, the worker knows both the source and the tag of 
the message il is expecting [rom the manager, and there is no need for it 10 use 
these constants. 

9.3.7 Function MPI_Get count 

int MPI_Get_count (MPI_status *status, MPCDatatype dtype, 
int tent) 

Passedstatus,a pointer toauMPI_Statu" object; dtype, the data type 
of the message' element<;; and cnt, a pointer to an integer, function MFl_Get 
count returns tbroug!I cnt the number of elements in the message. 

9.4 DOCUMENTING THE PARALLEL PROGRAtw 
With these new MPI functions in hand, we may now construct a parallel program 
t a perform the document classification task. We do not include the entire program 
in this section; we omit the directory-searching and profile-writing functions 
called by the manager process and the hash-table-building and profile-generating 
functions called by the worker processes. Our focus is on the general structure of 
a manager/worker MPI program and how the new MPf functions introduced in 
this chapter fit into the overall design. 

The program appears in Figure 9.7. 
We define four constants to be used as tags for the four types of messages the 

processes are sending and receiving. 
Using message tags helps document the code, It also allows a process to 

receive messages fram another process in a different order than they were sent. 
For example. workerO--Jike all workers-sends an initial request for work 

to the manager. After it has read, broadcast, and processed the dictionary, worker 
o sends the dictionary size to the manager. The manageI~ on the other hand, needs 
to construct the document vector profile storage area before it begins handling 
requests for work from processes. For this rea~on if wants to receive the dictionary 
siz.e message from worker 0 before it receives worker O's initial request for work. 
We give these two messages different tags, enabling their out-of-order reception. 
We lise DIC'l'_SIZE_MSG as the tag for the message from worker 0 to the 
manager that contains the number of words in the dictionary file. It and all other 
workers inform the manager that they are active by sending the manager an empty 
message with the tag EMPTY_MSG. 
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;* 
DocumeriL classification P:rograrn 

• J 

#ir:clude -<!lipi.h> 
~:include <stdio~h) 

#:n-:lude <string.n> 
~incl1..:de <Sys/sLat~h> 

#include <£t;-:.h> 

#define DlCT .. SIZE_MSG 
~de[ine FItE - Nll1!E_MSG 

I} 

1 
/'-j Hsg has dlcti onarj size * / 
It' Msg is file name It/ 

~defl oe VECTOR_MoG 

#6" [i rre E!JP"1'¥ MSG -

~de£ille DlR ARG -
#define DTC'l'_ARG 
~define RES.}.RG 

I' Msg is profile ,; 
/* Msg is empty */ 

(t Dlrecc:rry llrgumon= */ 
/* D1cLlonury argument * / 
/ * He5Ul ts argtLlIent *! 

typedef unsigned char uchar; 

int main (lnt argc, char *a!"gvll I 

inc id r 1* Process rank -,;. j 

int p; /* Number of processes • J 

MPI Comm W'orkel'_comm; 1* ~ior ke rs-onl y commllnica'Cor 

void ID110ager (inti char 1\-i lint); 
void wOLker HntE d'\ax **, MPI_CO\f1,ID) i 

MPJ_Init {&drgc, &~rgvJ; 

MPI_Com.crank (MPIJON~CWORW, &id); 
MP~_.Comm_size (MPI_COMM _WORLD, &p I; 

if (arge J.= 4) f 
if 1:id) ( 

printf ("'Program oQeds three .argumenLs: \n N) ; 

printf (P~s <diy> <diet> <res1Jlts>\.:1-, argv[O]); 

<:?lse if (p < 2) 
prince ("Program needs at Ie".'>t tc;o proces5es\n'); 

el ~;e ( 
j f i! id) { 

MPI_Comm_,·;plit (!!f'I_COlofl'UYOf{LD, MPCUNDErINElJ, 

id, &worker_co:nl1); 
manager (argc, argv, p); 

else [ 

1</ 

MPCCoITIm __ spli L iNPCCOMM_ltORLD, 0, id, &.·orker comm); 

\'"{or-kcr {ar-qc r argv, '"forker_coraln); 

) 

~PI_Fi;-;alizG() ; 

return G i 

Figure 9.7 Document classification program. 
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void :nanager (int urgc 1 c!":ar *arQ'1 [1. int pI { 

inL ~lssig{'Lcnti /t. Docs aSGigned so taL • j 

lnt tassJgnedj i i Documen~: ass 19wnc:nt.s * I 
llch;tr '*bu~f€r; /* Store ~H'O ~il€ v[Jet.ors here .... / 

int diet _siz.e; /. :Jicr.ionary 0Ltries */ 
int fi Je_cnt; /* ?lain text fi ~.es found */ 
ehal .i+file_rla.mei (' Stores Ii 1e (patlll names * / 
int i· 
M?I_Rl?quest pending; / . Handle tor reC",[ request '*) 

inr. Brc; /' M9ssage .source process ,/ 

HPI ... Starus stuLuSi / .... Messa.y;:! status . / 
inl: r.ag; /* ~fessage tag . / 
int terminatedj /. Count of ::ermini'lted procs 
ljCnar' "''''vect.orj /' Profile veclor 

void build_2CLarri:ly (int, in.t, uchar -"<**); 
void 'dct __ names {:har * 1 char *)1:* int. ~ I; 

repoBitory 

,/ 
, J 

void write~profi10s (char;:, int'J int, chilr **, :Jchar * .... ); 

/* Put: in re~luest t.o receive dicti:mary SlZB */ 
HPClr!"cv (&di ct'_"i ze, 1, HPCIN'l', lli'I_lItfCSotJRCE, 

DICT:...SIZE_HSG, HPCCOMM_WORLD, "pending!; 

/* Colle,:,t the names ot the document.s to be profiled * / 
gN_lla",es (atgv[DIR_ARG], &(ile_""me, .file_cut); 

/~ Wait. for dicr~ionur:~ size t.o be received * j 

MPCWait (&pending, &s:at1J3); 

/ * Set. aside"~bldfer t a catch profi 1 es from workers 1</ 
buffer 0 (uchiir .) 

mallcl(: (dicc_si?e·' sl'.eor iMPI..UNSIGNEDJH&,{)); 

/* Sp.r, aside 2-D •• nay to ho;d all profiles, 
Call MFl_.Abore it the allocaLion ("i\s. */ 

buil;.:L2ctJlrray (filc_,:nt, dicl .. sizi:::, &vectorj i 

/* P.l2spond to requests by workers. if 
terminat.ed ::: OJ' 
assign_cnt 0 0; 
assigned (int *) malloe (p ~ sizeof{intll i 

do 
/* Get pl·of~l::; fro:n T.oJarker 1i/ 
NPI_Rec'" (buffer r dicL_s i?e J HP ~~".UNSIGNED_CHAR, 

MPI .. AllY .. SOURCE, HPLflNY_TAG, HPI_CQMI-UiOHW, 
&statlJs; ; 

erc c sl:ar:us.PiPCSOLJRCll; 

tag sca.£us.MPI_TP.G; 
if (tag 00 VECTOR .. MSCl { 

for rio 0; 
vectorlassigned[src] 1 til 0 buffedi]; 

Figure 9.7 (conld.) Documenlclassificalion program. 
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/* Ass'ign'more work tell worker to SLOp. "'/ 

if iassigrl_cnt < file_crrt.; { 
~PI .. _Sen-d (tile_nl:l.melassign __ cnt), 

strle.n (fil.f2_name iassign_·:n~) j -rl r 

MPI_CliAR, src, FlLS_Ni\ME_MSG, MF:_COMl-U>lORLD); 
assigDf~dl_srcj --: aSGign._cnti 
assign .. cntH; 

els<:: { 

MPl_SeEd :NtTLL! 0, MPl_CHAR, S!.'C! FILE_NAME_}1SG, 
MPl_COmUiOEi,')) ; 

~"ennil1ated++ i 

while (t?-rrninatC'd 0( (p-l,); 

w,.-ite .. profiles nl.rg'\TiRES_~.RG!, fi le .. cnt, di-ct_si ze, 
f] l::~_name, vec:t or) ; 

char *buffer; /'" Wor-ds in diet. i Cnary .' 
hash...el **dict j /. Hash t.abJe of words .. / 
inc diet _size; /* Profile vector size */ 
lor:g file _:enj 1* Chars in dictionu!y *1 
int . , 
char 'Knap,',e; . rJaP-8 or plain text~ rile 

in" na::ne __ .':sfl i 1* Char,:~ in fil e name *1 
MPI _Request pendingi .. !* Handle for MPI_Isend *1 
uchar *profile; I' Document profile veer,or 
MPI _Sta:u3 st~j]I~IlS r i* Info about message 'It/ 
int worker_jd; f' Rank in wo( ke r_.conun * J 

*/ 

*1 

void build_hash~_"t:j]ble (char *. inc, hash_el ~ .. ,* I int *fi 
void :iOake_profile (char -t I hash_e: inL UC:1ar >:); 

void read_di,:,t.ionary {char *; char cr*, long *~; 

jlt Work.uI" get.s its wor"kcr ID number -tj 

jt Work.er makes initia~ requ(:;st for work * I 

MPI ISEUd [NULL, 0, HPCUNSIGNED_C/li\R, 0, E!
'
f"FCMSG, 

~I?CCOMH .. 'IORLD, -';;>'lIld':lq i ; 

I t. Read unci broadcast. diet ionarJ file *,' 

if (!workccr_idl 
rea~l_dic:ionarI' {argvlj)1CT __ A~{Gj I &buffcr. &file._leni; 

f1PI __ Bcasl (£tflle_Jen. 1_ HPI_LO~G, \liorker_r::omm); 

it [worker.Jd) buffe" 0 Icha'( *) manae (file_len); 
MPJ~_Bcas;:. tbIlEfe:c , file __ leTI t MPI_CHAR, Q. '.wrker_comrn); 

Figure 9.7 (eonld.) Document classification program. 
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/t' Dui1d hash table */ 

/'" WDrk{:;r v ..sends msg t.o manaq:er re: size 0= dici:.lonary *1 

if l!wor:ker._.id) l~PI_Send (.'tdiet_size: L MPI_INT, 0 1 

DICT .. ,IZe .. I1SG, HPCCOM/'LWOHLDj; 

tor (;;) { 

I~: find out len~r;:h of fiJe name ~;' 

Ml'LProbE' :0, FILr;_W\HE.HSG, i1PI_('CJ!·llU-iORLD, &status!; 
MPT_Gct _count (&:stat~!5, MPI._CHAH, &::u.ame_len); 

t* Drop out if :::\0 mOr'2 \liork i! 

mune ~ (char""') mal10c (name_len) i 

MPI_Recv (name I namc. __ 18n, HPI_CHAR I 0, FlirE __ ~Nlu'iE;_M.SG. 

HP1_CO'*LWORLD, &sLatus!; 

Ir.G?keJ)l·ofile (name, diet, rliCi:_3izc 1 profile); 
free (name); 

MPI_Send (pIoCile, diet .size, MPCUNSIGNED_CHAR, 0, 
I'EC'l'OR.MSG, MPL.cOMM30RW); 

Figure 9.7 (conld.) Document classification program. 

When the manager assigns a document 10 a worker, it uses message tag 
FILE_NAME._MSG. When a worker responds with the profile vector for that 
documen~ it uses message tag VECTOR_MSG. 

We also define constants to refer to the three command· line arguments. The 
first argument, indexed by DIR_ARG, is the name of the directory that 5crves as 
the root of the direclory structure to be searched for plain text files. The second, 
DICT .. ARG, is the name ofthe file containing the dictionary. The third argument, 
indexed by HES_ARG, is the name of the output file that contains the set of 
document profile vectors upon successful completion of the program. 

Function main contains code that all processes execute before the manager 
goes one way and the workers go another. Execution begins with the tradititmal 
calls to initialize MPI and relrieve the process rank and thc process- group size. 

The function checks to ensure that the user supplied the correct number of 
arguments on the command line. If nol, execution will not continue. The fimction 
also checks to ensure Ihat there are at lcasllwo processes. Without at least one 
worker, no documents will be processed. If these conditions are satisfied, all 
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processes cooperate to create a new, workers-{)nly communicator. After this has 
been done, the roles of the manager and the workers diverge. Process 0 (the 
manager) calls mana g-e r and the other processes call worker. 

Only a single process executes function manager. Refer back to the pseudo­
code of Figure 9.4 for a refresher on how it is structured. The manager begins 
by posting a receive for the message containing the size of the dictionary. It then 
calls get_names to construct fi Ie.name, an array of strings. These strings 
are the names of the plain text files in the directory tree specified by the user on 
the command line. Afterthe function returns, file_ent IS [he number offiIes 

· that need to be processed. 
At this point the manager needs to allocate the memory that will be used to 

hold the document profile vectors. The number of vectors is equal to the number 
of documems (fileJnt). The length of the vectors depends on the number 
of dictionary entries. So the manager must wait until the receive it posted has 
been completed. After the message containing the dictionary size has arrived, the 
manager constructs- the two-dimensional array holding the vectors. 

Before the principal loop of Ine function, the manager initializes the number of 
.. terminated processes and the number of assigned documents to O. It also allocates 
the array that will be used to keep track. of the document currently assigned to 
each process. 

Inside the lo()p, the manager receives the next message from a wQrker. If the 
message tag indicates the message contains a document profile vector, the manager 
· stores it. If una~£igned documents remain, the manager sends the name of the 

. next unassigned document to the worker and increments the number of a%igned 
· document~. Otherwise, it sends an empty file name to the worker, indicating to the 
worker that it should cease, and increments the number of terminated workers. 
The loop continues until all of the workers have been terminated. 

The manager exits the loop only after it has received all of the document 
from the workers. It writes the vectors to the file the user specified 

on the command line. 
Now let's look at function worker-If you need to refresh your memory of 

what the worker does, refer to the pseudocode in Figure 9.5. Each worker begins by 
finding it~ rank in the worker-only communicator. If the workers did not interact, 
this would not be necessary, but in this algorithm, worker 0 is responsible for 
reading the dictionary file and broadca~ting it to the other workers. Hence the 
workers need to know their ranks. 

After calling MPI_Comm_rank, each worker makes its initial request for 
The message tag EMPTY_MSG indicates to the manager that this is the 

worker's initial request for work, not a message containing a document profile 

Next, worker 0 reads the dictionary and broadcasts it to the other workers. 
that before broadcasting the dictiollary worker 0 broadcasts an integer COll­

the size ofthe dictionary. That way, the other workers can allocate enough 
to hold the dictionary's contents. The workers extract the words from the 

hash table. This will speed the document classification 
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task by enabling the process to determine in constant time (on average) if a wore 
in the document appears in the dictionary. 

After extracting words from the dictionary, the workers know how large th( 
document profile vectors will be. In this implementation the document profih 
vector contains an unsigned character for each dictional), entry, enabling !Ilf 
correlation between the document and that entry to be expressed as an integel 
between 0 and 255. Each worker allocates room for a profile vector. Worker ( 
se.nds the dictionary-size message to the manager. 

Now the wolker enters its principal loop. It probes for a message from the 
manager containing the name of a plain text document file. It allocates enougt 
room to receive the file name. then calls HPI_Recy to actually get the name 
Given the file name and the hash table, function.makeJlrofile builds the 
document profile vector. The worker sends this vector back to the manager. WheT 
the worker receives a zero-length file name from the manager, that means then 
are no more documents to process, and the worker returns from the [unction. 

9.5 ENHANCEMENTS 

In this section we consider ways to improve the execution time of our paralle 
document classification program. 

9.5.1 Assigning Groups of Documents 

In some applications a preallocation of data to processes can result in an im 
balanced workload. Imbalanced workloads lead to idle processors, which lowen 
speedup. Allocating data to processes at run-time balances the workloads. Or 
the other hand, it introduces additional interprocessor communication overhead 
which lowers speedup. Sometimes, the best design chooses a middle point be 
tween the two extremes. For example, we might construct a manager/woIkel 
algorithm in which the manager assigns k tasks at a time to workers. 

9.5.2 Pipe lining 

Let's reconsider the task graph of Figure 9.2. If one process can retrieve th! 
dictionary file from the file server as quickly as k tasks, then there is not much W( 

can do with that task. We're already allowing processes to build their hash table: 
concurrently. We will consider this task no further. ' 

On the other hand, we can make improvements to the document identificatiOl 
and results writing tasks. When we began our design, we assumed that nearly al 
of the time would be spent reading document files and generating the associate( 
proJile vectors. We left the tasks of identifying the plain text files and writinl 
the results file as sequential tasks. No document liles arc processed until thi 
manager has identified all of them. If the time needed to perform these lasks i 
not negligible, then our design will not scale well to larger numbers of processe 
(Amdahl's Law). 
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Figure 9.8 By dividing th-e task of identifying 
documents into its elemental tasks, we can 
expose the opportunity for plpefining the 
processing of the documents. We can be 
constructing the profile veclor for documem 0 
while we are reading document 1 while we are 
identifying document 2. 

Let's reconsider the task graph of Figure 9.2, ignoring the dictionary con­
struction task. What happens when we divide the document identification task 
into smaller unil~? We end up with the new task graph shown in Figure 9.8. If we 
"dangle" the graph by the "Identify Document 0" node, we can see that while we 
are identifying document 1, we could begin reading document O. While we are 
in one phase of processing document i, we can be in later phases of processing 
documents i-I, i - 2, etc. This is an exllmple of pipelining. 

Pipelining can dramatically reduce the execution time of a parallel algo­
rithm exhibiting functional parallelism. For example, Figure 9.9 illustrates how 
a pipelined program with one read process, two worker processes, and one write 
process could outperform a nonpipc1ined program with one manager and three 
workers. 
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Manager 
r-"---'---'-c--'--"c~ 

Worker 0 

WDrker I 

Worker 2 

(a) 

Worker 0 

Write process 

(h) 

figure 9.9 Pipelining tasks can reduce the execution time of programs with 
functional parallelism. In this figure Ii refers 10 the task of identifying text file i, RGi 
refers to the lask of reading file i and generating document profile vector i, and Wi 
refers to the task of writing document profile vector j to a file. The dark gray bars 
represent time spent communicating. (al A manager process identifies all text files 
before assigning them to workers. It collects all document vectors before writing 
them. This is the approach taken lor the program developed in this chapter. (b) A 
pipeUned solution. One process identifies text files, two more processes read lext 
files and generate profite vectors, and a fourth task writes the profile vectors to a file. 

The downside of implementing a manager/worker program incorporating 
pipelining is that it can be much more complicated. In the previous implementation 
the manager identified all the document file names before responding to any 
worker requests. Suppose we want to implement a manager that gets workers 
busy as soon as possible. In other words, as soon as the manager has identified at 
least one document and has received at least one request for work from a process, 
it starts sending document names to processes. That means the manager must 
mUltiplex its time between identifying documents and responding to the requests 
of the workers. 

Here is one way we might implement the document identification/task as· 
signment logic. Let j be the number of unassigned tasks and w be the number 
of workers waiting for something to do. If j > 0 and w > 0, then. the manager 
can assign min(j, w) tasks to workers. If j > 0, the manager should check to see 
if any messages from workers have arrived. If so, the manager can receive these 
messages. Then we're back in the situation where j > 0 and w > O. Otherwise, 
the manager should find more tasks. 

9.5.3 Function MPI .. Testsome 

To implement this functionality, we need a way to check, without blocking, 
whether one or more expected messages have arrived. The MPI library provides 
four functions to do this: MPCTest, MIn_Testal1, MPI_Testany, and 
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HPCTestsome. All of these functions require that you pass them handles to 
HPCRequest objects that result from calls to nonblocking receive functions. 
We'll describe how to use MPI_Testsome, which is the best function to use 
for the purpose we have described. 

The manager posts a nonblocking receive to each of the worker processes. 
It builds an array of handles to the MPl.Request objects returned from these 
function calls. In order to determine if messages have arrived from any or an 
of the workers, the manager calls MPI_Testsome, which returns infonnation 
about how many of the messages bave arrived. 

Function MPl ~TBS tsome has this header. 

int MPl_Testsome (int in_cnt. MPCRequest*handleartay. 
int ~out_cnt, int *index_array, 
MPCStatus • status_array) 

Passed in_cnt, the number of nonblocking receives to check, and 
handlearray, an array containing MPI_Request handles, function MPI_ 
Test some returns out~Cllt, the number of completed communications. The 
first out_cnt entries of index_array contain the indices in handlearray 
of the completed communications. The first out .. cnt entries of status_ 
array contain the status records for the completed communications. 

9.6 SUMMARY 
The manager/worker paradigm is an effective way to think of parallel computa­
tions where it is difficnltto preallocate work to processes and guarantee balanced 
workloads. III this chapter we considered the problem of classifying a set of plain 

. text documents according to a user-supplied dictionary. Since document sizes can 
vary widely, and since some documents may be easier to process than others, the 
manager/worker design is appropriate. 

In the process of developing this application, we introduced some additional 
MPI capabilities. We IIsed function MPI ~ C orTlIU_ S P Ii t to creale anew, workers­
only communicator that facilitated the broadcast of the dictionary among the 

.. workers. We discovered several places where communications could be over­
lapped with either computations or other I/O operations. We introduced the non· 
blocking communications functions ~lPI_Isend and MPClrecv and their 
companion completion function, MPl~wai t. We also saw how it could be ben­
eficial for the worker processes to check the length of the pathnames sent by the 

• manager before actually reading them, Functions MP l,}robe and MPCGet_ 
coun t allow this to be done. 

We examined two ways to enhance the performance of the paraliel program. 
The first enhancement is to consider a "middle ground" between preallocating aU 

- docnments to tasks (which can lead to 3n imbalanced workload) and allocating 
documents one at a time to tasks (which can lead to excessive interprocessor 
communication). In some applications the best performance may be obtained by 
allocating small groups of tasks to workers. 
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Figure 9.10 The Mandelbrot set is an . 
example of a fractal. In this figure the lower 
left corner of the box represents the complex 
number -1.5 - ;. The upper right corner of 
the box represents the complex number 
0.5 + i. Black points are in the set. 

The magnitude of z is its distance from the origin; i.e., the length of 
the vector formed by its real and imaginary parts. If Z = a + bi, the 
magnitude aT z is· .J a2 + b2• If the magnitude of z ever btecomes greater 
than or equal to 2, its subsequent values will grow without bound, and we 
know that c is not a point in the Mandelbrotset.lf we iterate n times and 
find that the magnitude of ZII is still less than 2, we can conclude c is in 
the Mandelbrot set. 

Your program should compute a Mandelbrot set for 600 x 600 evenly 
spaced points in a square region of the complex plane bounded by 
-1.5 - i and I + i. Let n = 1,000. If Z\OOO < 2, you should display 
point c as a member of the Mandelbrot set. 

9.10 A perfect number is a positive integer whose value is equal to the sum 
of all its positive factors, excluding itself. The first two perfect numbers 
are 6 and 28: 

6=1+2+3 

28 = 1 + 2 + 4 + 7 + 14 

The Greek mathematician Euclid (c. 300 BeE) showed that if 211 - 1 is 
prime, then (211 - 1)2,,-1 is a perfect number. For example, 22 - 1 ~ 3 is 
prime, so (z2 -1)21 = 6 is a perfect number. Write a parallel program to 
find the first eight perfect numbers. 



C HAP T E R 

Monte Carlo Methods 

O! many a shaft at random sent 
Finds mark the archer little meant! 
And many a word, at random spoken, 
May soothe or wound a heart t!wt's broken! 

Sir Walter Scott, The Lord of the Isles 

10.1 INTRODUCTION 
A Monte Carlo method is an algorithm thill solves a problem through the use of 
statistical sampling. The name is derived from the resort city in Monaco, famous 
for its games of chance. While early work in this field began in the nineteenth 
century, the first important use of Monte Carlo methods was fDr the developmel1t 
of the atomic bomb during World War II. 

The Monte Carlo method is the only practical way to evaluate integrals of 
arbitrary functions in six or more dimensions. It has many other uses, including 
predicting the future level of the Dow JOl1es Il1dustrial Average, solvil1g partial 
differential equations, sharpening satellite images, modeling cell populations, and 
finding approximate solutions to NP-hard problems in polynomial time. 

To illustrate the MOl1te Carlo method, let's begin with a physical analogy. 
Suppose we want to compute the value of 1[. We kl10W that the area of a circle 
with diameter D is 1[ D2/4. We also know that the area of a square having sides 
of length D is D2. Imagine slipping a round cake pan with diameter D inside a 
D x D cake pan and putting the pans out in the rain. After a few hours, we retrieve 
the pans and measure the amount of water in each. The ratio of the amount of 
water collected in the round pan to the total amount of water collected in both 
pans should be about 1[/4: 

239 



240 CHAPTER 10 Monte Carlo Methods 

+ + 
+ + 

(0,0)'----------' (1,0) 

F"tgure 10.1 Using the Monte . 
Carlo method to estimate the value 
of J[. The area inside the quarter 
circle is pi /4. In this illustration, 12 
of 15 points randomly chosen from 
the unit square are inside the circle, 
resulling in an estimate of 0.8 for 
n/4 or 3.2 four. 

We can use random numbers to perfonn a similar estimation. (This example 
shows the methodology, but keep in mind numerical integration is abetter strategy 
when the number of dimensions is small.) Figure 10.1 illustrates a quarter circle 
with radius I embedded in a unit square. A complete circle with radius I has area 
rr; hence the area of the quarter circle is rr 14. We will generate a. series of pairs 
(x, y), where both x and yare taken from a unifonn random distribution betweelJ 
o and I. Each pair represent~ a point inside the unit square. We keep track of the 
fraction f of points falling inside the quarter circle; that is, the points for which 
Xl + y2 .:s I. Since f ~ rr /4, we know 4f ~ Jf. 

We have implemented a C program to compute rr using this methodology 
(Figure 10.2). Table 10.1 shows how the absolute error betwecn the computed 
value of ;r and the actual value slowly decreases as the sample size n increases. 
(Given estimated value e and correct value a, the absolute error is Ie -all a.l The 
[unction II (2JIi) closely approximates the absolute error of this Monte Carlo 
method. 

10.1.1 Why Monte Carlo Works 

The mean value theorem stales that 

1" 1= f(x)dx = (b-a)j 

" 
where f represents the mean (average) value of f(x) in the interval [a, bj. (Sec 
Figure 10J.) . 

The Monte Carlo method estimates the value of I by evaluating f (x;) at 
11 points selected from a uniform random distrihution ovcr [a, b 1. The expected 
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Table 10.1 As the sample size increases, so does the accuracy of the estimated 
solution, 

I() 

100 
1,000 
10,000 

I(){),OOO 
1,000,000 
10,000,000 
100,000,000 

1,000,000,000 

/* 

2.40000 
136boo 
3.14400 
3.13920 
114132 
114006 
3.14136 
3.14154 
3.14155 

0.23606 
0.06952 
0.00077 
0.000i6 
0.00009 
0.00049 
0,(111007 
0.00002 
0.00001 

Ti1~s C prog~aIT'. uses the Monte Carlo method to 
comput-e tIle valUe of pL 

*/ 

~includc <stdio*h:. 
#incl udo (stdl iu. h:> 

i.nL main lint argo, char *argvt]) 

count; /* Pojnts inside c:ircle */ 

/* Number of samples */ 
double pi; ;' Estimate ot pi *! 
unsigned short xiI3]; /* Random number seed */ 

I * Poin~. I s coordinates If; 

1 t {argc 1· 5) 
pri [jt t ('Correct CO!lUUano:! 1 ine; "), 

0.15811 
0.05000 
0.01581 
0.00500 
0.00158 
0.00050 
0.00016 
0.00005 
0.00002 

print.f (.0%8 <~ samp1cs> <seedO> <seedl> <se(~d2>\nll, 
argvIO]) ; 

retUll1 -1; 

n = atoi(argv[lj I 
for (i Oi < 3; it+l 

xi Ii] ., ato; (aIgv[i+2]); 

count -:. 0; 
fnr {i ::: 0; < ni i++) t 

x ;:: erantJ,18 (xi) i 

y = ~rilnd18 (xi); 
if (X'*X-iYoity (=- l.0) C01...iTIt-';t{ 

!Ji 4.0 it (do'JbJe) COllnt I (double) rlj 

fJriutf (OJSar..;.,les: %d RSL1mate at [11: %7 .5f\n j
" n, pi.); 

Figure 10.2 A C program computing TI using the Monte Carlo method. 
The precision of the answer is related to Ihe number of samples and the 
quality of the pseudo-random number generator. 
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x 

a 

Figure 10.3 By the mean value theorem we know 
that the area under curve f (x) is identical to the area 
underf, where r is the mean value 01 f(x) in the 
interval fa, bJ. 

x 

(a) (b) 

Figure 10A By the mean value theorem we know the volumes 
beneath both these surfaces are identical. (a) Within the square 
bounded by 0 ~ x, y ~ 1, the height of the surface is 1 where 
x2 + y2 ~ 1 and 0 otherwise. (b) Within the square bounded by 
o ~ x,Y:'O 1, the height of the surtace is.1l,/4. 

value of ~ ~;':~ f(xj) is j. Hence 

i
ll 1,,-1 

J = f(x)dx =: (b-a)J-;,; (b-a)- [f(xi) 
a n i=IJ 

y 

Let's se~ how this applies to the rr estimation algorithm we've already de­
scribed. We know that the ratio in area between a quarter circle of radius 1 
and a square having sides of length 1 is rr/4. Consider the surface illustrated in 
Figure lO.4a. This surface has height I if x~ + y2 S I and 0 otherwise. If we set 
an accumulator toO, randomly generate pairs of points x, y from the unit Square, 
add 1 to the accumulator if x2 + y2 < 1 and add nothing to the accumulator if 
x2 + i > 1, we are sampling from this surface. 
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If, after n samples, we divide the contents of the accumulator by n, we 
produce a mean. The expected value of the calculated mean is Jrj4, as illustrated 
in Figure IOAb. Hence multiplying the calculated mean by 4 yields a Monte Carlo 
estimate of Jr. 

Importantly, the error in the Monte Carlo estimate of I decrea~es by a factor 
of l/../ii. The rate of convergence is illdependellt of the dimeruwn of the inte- T"""'O 
grmuJ. This is in sharp contrast to deterministic numerical integration methods, 
such as Simpson's rule, which have a rate of convergence that decreases as the 
dimension increases. It explains why Monte Carlo techniques are superior to 
detenninistic numerical integration methods when the integrand has more than 

six dimensions. 

10.1.2 Monte Carlo and Parallel Computing 

Monte Carlo algorithms often migrate easily onto parallel systems. Many parallel 
Monte Carlo programs have a negligible amount of interproccssor communica­
tions. When this is the case, p processors can be used either to find an estimate 
about p times faster or to reduce the error of the estimate by a factor of :[ft. 
Another way of expressing the second point is to say that p processes can reduce 
the variance of the answer by a factor of p. 

Of course, these levels of improvement are based on the assumption that the 
random numbers are statistically independent. A principal challenge in the de· 
velopment of parallel Monte Carlo methods has been the development of good 
parallel random number generators. It is widely claimed that half of all super­
computer cycles are dedicated to Monte Carlo calculations. For that rea~on it's 
important to understand what makes a Rood parallel random number generator. 
We will start with a quick overview-of sequential random number generators. 

10.2 SEQUENTIAL RANDOM NUMBER 
GENERATORS 

Technically, the random llumber generators you'll find on today's computers are 
pseudo-randl)m number generators, because their operation is deterministic, 
and hence the sequences they produce are predictable. In the best case these 
sequenccs are a reasonable approximation of a truly random sequence. However, 
since "pseudo-random number generator" is a mouthful, we'll stick with the 
simpler phrase. In the remainder of this chapter, when you see the phrase "random 
number generator," understand we're talking abouL a pseudo-random number 
generator. 

Coddington {l7J haS'identified ten properties of the sequence of numbers 
produced by an ideal random number generator: 

• It is uniformly distributed, meaning each possible number is equally 
probable. 

• The numbcrs are uncorrelated. 
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• It never cycles; that is, the numbers do not repeat themselves. 

• It satisfies any statistical test for randomness. 

• It is reproducible. 
• It is machine·independent; that is, the generator produces the same 

sequence of numbers on any computer. 

• It can be changed by modifying an initial "seed" value. 
• It is easily split into many independent subsequences. 
.It can be generated rapidly. 

• It requires limited computer memory for the generator. 

There are no random number generators that meet all of tllese requirements. 
For example, compnters rely upon tinite precision arithmetic. Hence the random 
number generator may take on only a finite number" of slates. Eventually it must 
enter a state it has been in previously, at which point it has completed a cycle and 
the numbers it produces will begin to repeat themselves. The period of a random 
number generator is the length of this cycle. 

Similarly, since we demand that the sequence of numbers be reproducible, 
the numbers cannot be completely uncorrelated. The best we can hope for is that 
the correlations be so small that [hey have no appreciable impact on the resuits 
of the computation. 

There is often a trade-off between the speed of a random number generator 
and the quality of the numbers it produces. Since the time needed to generate 
a random number is typically a small part of the overall computation time of a 
program, speed is much less important than quality. 

In the following sectiol)s we consider two important classes of random num­
ber generators: linear congruential and lagged Fibonacci. 

10.2.1 Linear Congruential 

The linear congruential method is more than 50 years old, and it is still the most 
popular. Linear congruential generators produce a sequence X, of random 
integers using this formula: 

Xi = (a .x Xi-! + c) mod M 

where a is called the multiplier, c is called the additive constant, and M is called the 
modulus. In some implementations c = O. When c: = 0, it is called a multiplica­
tive congruential generator. All three values must be carefully chosen in order to 
ensure that the sequence has a long period and good randomness properties. The 
maximum period is M. For 32-bit integers the maximum period is 232 , or about 
4 billion. This is too small a period for modern computers that execute billions 
of instructions per second. A quality generator ha~ 48 bits of precision or more. 

The particular sequence of integer values produced by the generator depends 
on the initial value Xc, which is called the seed. Typically the user provides the 
seed value. 
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Linear congruential methods may also lie used to generate floating-point 
numbers. Since the generator produces integers between 0 and M - 1, dividing 
Xi by M produces a tloating-point number Xi in the interval [0, I). 

The defects of linear congruential generators are well documented. The least 
significant bit, of the numbers produced are correlated. (This is particularly true 
when the modulus M is a power of 2.) If you produce a scatter plol of ordered 
tuples (Xi, Xitl, ... , Xi+k-d in ak--dimensional unit hypercube, you'l1 sec a lattice 
structure [79J. Since this problem becomes more pronounced as the number of 
dimensions increases, it Clm affect the quality of high-dimensional simulations 
relying on a linear congruential random number generator. 

. Despite these flaws, linear congruential generators with 48 or more bits of 
.prccisionai}(fcarertirif~hd:~~n parameters "work very well for all known appli­
cations, at least on sequential computers" [17]. 

10.2.2 Lagged Fibonacci 

The popularity of lagged Fibonacci generators is rising, because they are capable 
of producing random number sequences with astoni:,hingIy long periods, while 
also being fast The method produces a sequence of X, s. Each element is defined 
as follows: 

Xi = Xi- p * Xi- q 

wher~ p and q are the lags, p > q, and * is any binary arithmetic operalion. Ex­
amples of suitable * operations are addition modulo M, subtraction modulo M, 
multiplication modulo lvI, and bitwise exclusive OLin tbe case of additionandsub­
traction, !he XiS may be either integers or floating-point numbers. If the sequence 
contains floating-point numbers, M = 1. H * is multiplication, the sequence mllst 
consist solely of odd integers. 

Note tbat unlike linear congmential generators, wbich require only a single 
seed value, lagged Fibonacci generators require p seed values Xo, X I, " ., Xp- l ' 

Careful selection of p, q, and M, as well as Xo, ... , Xp- l results in sequences 
with very long periods and good randomness. If ihe Xi shave b bits, the maximum 
periods attainable are 2P - I for exclusive or, (2P - 1 )2 IJ - 1 for addition and sub­
traction, and (21' - I)2H for multiplication. Notice that increasing the maximum 
lag p increases the st~rage requirements but also increases the maximum period. 

Function random, callable from C, is an additive lagged Fibonacci generator 
with a default lag of 31. Coddington reports this lag is much too small. He 
recommends setting (p, q) to at least (1279,1063), 

10.3 PARALLEL RANDOM NUMBER 
GENERATORS 

Parallel Monte Carlo methods depend upon our ability to generate a large number 
of high-quality random number sequences.. Inaddition to the properties mentioned 
in the previous section for sequential random number generators, an ideal parallel 

245 



246 CHAPTER 1-0 Monte Carlo Methods 

random number generator would have these properties: 

• No correl.ations among the numbers in different sequences. 
• Scalability; that is, it should be possible to accommodate a large number of 

processes, each with its own stream(s). 

• Locality; that is, a process should be able to spawn a new sequence of 
random numbers without interprocess communication. 

In this section we discuss four different techniques for transforming a sequential 
random number generator into a parallel random number generator. 

10.3.1 Manager-Worker Method 

Gropp et al. [45J have described a manager· worker approach to parallel random 
number generation. A "manager" process has the task of generating random 
numbers and distributing them to "worker" processes that consume them. Here 
are two disadvantages of the manager-worker approach. 

Some random number generators produce sequences with long-range cor­
relations. Because each process is sampling from the same sequence, there is 
a possibility that long-range correlations in the original sequence may become 
short -range correlations in the parallel sequences. 

The manager-worker method is not scalable to an arbitrary number of pro­
cesses. It may be difficult to balance the spee.d of the random number producer 
with the iipeed of the consumers of these numbers. Il clearly does not exhibit 
locality. On the contrary, it is communication-intensive. 

These disadvantages are signijican~ and this method is no longer popular. 
Let's consider methods in which each process generates its own random number 
sequence. 

10.3.2 Leapfrog Method 

The leapfrog method is analogous to a cyclic allocation of data to tasks. Suppose 
our parallel Monte Carlo method is executing 011 p processes. AU processes use 
the same sequential random number generator. The process with rank r takes 
every pth element of the sequence, beginning with X" 

Figure 10.5 illustrates the elements used by the process with rank 2 in 'a seven­
process parallel execution in which each process generates its own random number 
sequence. 

Figure 10.5 Process 2 (of 7) generates random numbers using the leapfrog 
technique. 
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It is easy to modify a linear congruential generator to incorporate leapfrog­
ging. A jump of p elements is accomplished by replacing a with ail mod M 
and c with c{a P -I)/(a - I) mod M. Makino has demonstrated how to modify 
lagged-Fibonacci generators to use leapfrogging [77]. 

Monte Carlo algorithms often require the generation of multidimensional ran­
dom values. For instance, in the n estimation example we gave in Section 10.1, 
we generated coordinate pairs. If we want the parallel program to generate the 
same pairs as the sequential algorithm, the leapfrog method must be modified: 
wc need io generate {X2r , X2,+b X2r+2p, X2rHp+b" .), not {XI'> X,+", X,+2p, 
Xr+3p, ... ). This is a straightforward modification of the leapfrog method 
(Figure 10.6). 

A disadvantage of the leapfrog methodiS tha~even ifth~ e'lements of the origc 

inal random I!umber sequence [rave low correlation. the elements of the leapfrog 
subsequence may be correlated for certain values of p. This is especially likely 
to happen if p is a power of 2. a linear congruentiaJ generator is being used, and 
the modulus M is a power of 2. Even if this is not the.case, leapfrogging can tum 
long-range correlations in the original sequence into short-range cOlTelations in 
the parallel sequences. 

Another disadvantage of the leapfrog method is that it does not support the 
dynamic creation of new random number streams. 

10~3.3 Sequence Splitting 

Sequence splitting is analogous to a block allocation of dat.a to tasks. Suppose 
a random number generator ha~ period P. The first P numbers emitted by the 
generator is divided into equal-sized pieces. one per process (Figur~ 10.1). 

This method lias the disadvantage of forcing each process to move ahead to 
its starting point in the sequence. This may take a long time. On the other halld, 
this only needs to be done at the initialization of the algorithm. After that, eacll 
process generates the element, in order. 

Linear congruential generators with a power of 2 modulus have long-range 
correlations. Since th.e sequences produced by different processes represent el­
ements far apart in the cycle, there may be co/relations between the sequences 
produced by difference processes. 

Figure 10.6 Process 2 (of 6) generates random number pairs in a modified leapfrog 
scheme. 

Figure 10.7 In sequence splitting, each process is allocated a contiguous group of 
random numbers. 
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~ GJ [n] GJ I~ R··· 
@9@@G@ .. · 

0BElBBIYiJ .. · 
Figure 10.8 By using dilferen! 
parameters to initialize a sequential 
randooi number generator, it is otten 
possible for each process to produce tls 
own sequenoe, .' _ ' 

Sequence splitting could be modified to support the dynamic creation of new 
sequences. For example, a process creating a new stream could give up half of its 
section to the new stream. 

10.3.4 Parameterization 

A fourth way to implement a parallel random number generator is to run asequen­
[ial random number generator on each process, but to ensure that each generator, 
produces a different random number sequence by initializing it with different 
parameters (Figure 10.8). 

Linear congruential generators with different additive constants produce dif­
ferent streams. Perc us and Kalos have published a methodology for choosing the 
additive constant that works well for up to 100 streams (91]. 

Lagged Fibonacci generators are especially well suited for this approach. 
Providing each process with a different initial table of lag values allows each 
process to generate a different random number sequence. Ohviously, correlations 
within lag tables or between lag tables would be fatal. One way to initialize the 
tables is to use a different lagged Fibonacci generator to generate the needed seed 
values. The processes could usc the leapfrog technique or sequence spliuing to 
ensure that they fined their tables with different values. 

The number of distinct streams a lagged Fibonacci generator can produce 
is tmly awesome (82]. For example, the default multiplicative lagged Fibonacci 
generator provided by the SPRNG library has around 2100S distinct streams, al­
lowing plenty of opportunities for creating new streams during the execution of 
the parallel program [83]. 

10.4 OTHER RANDOM NUMBER 
DISTRIBUTIONS 

Our discussion 10 this point has focused on the problem of generating random 
numbers from a uniform probability density function. Sometimes we need to 
generate random numbers from other distributions. 
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Figure 10.9 Given a probability density function f {xl, its 
cumulative distribuoon function F( x), and u, a sample from a 
uniform distribution, then F-1 (u) is a sample from I (X). 

10.4.1 Inverse Cumulative Distribution 
Function Transformation 

Let u represen! a sample from the uniform distribution rO, I). 
Suppose we want to produce random variables from a probability density 

function f (x). If we can determine the cumulative distribution function F (x) and 
invert it, then F-t(u) is a ralldom variable fwm tht: probability density function 
f(x) (see Figure 10.9). 

As an example of this transformation; we will derive a formula that yields a 
sample from the exponential distribution. 

Exponential Distribution The decay of radioactive atoms, the distance a neu­
tron travels in a solid before interacting with an atom, and the time before the 
next customer arrives at a service center are examples of random vatiables that 
are often modeled by an exponential probability density function. 

The exponential probability density tunction wilh expected value In is the 
function f (x)= (1/ m)e-x/m• We can integrate f (x) to find the cumulative dis­
tribution function F(x) = I - e-1H

• Inverting F(x), we find the inverse function 
to be F'I(U) = -m In(l- u). Since u is uniformly distributed between 0 and I, 
there is nD difference betweeull and 1-- Li. Hence the function F-1 (II) == -111 In II 
is exponentially distributed with mean m. 

Pmouce four samples from an exponential distribution with mean 3. 

• Solution 
We start with four samples from a unifonn distribution: 

0.540 0.619 0.462 0.095 
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Taking the natural logarithm of each value and multiplying by -3: 

-3In(0.540) -3In(0.619) -3In(0.462) -31n(0.D95) 

yields four samples from an exponential distribution with mean 3: 

1.850 1.440 2.317 7.072 

A simulation advances in time steps of I second.·The probability of a particular event 
occurring is from an exponential distribution with mean 5 seconds. What is the probability 
of the e~ent occurring in the nellt time step? How do· wedetennine if !he event happens 
in the next time step? 

• Solution 
The probability of an evcnt occurring in the next time step i, 1/5. To detclTIline If the event 
happens in the ne.XI time step, we generate a random number from the unifonn distribufion 
between o and L If the random number is less than or equal to 1/5, the event has occurred. 

10.4.2 Box-Muller Transformation 

We cannot invert the cumulative distribution functioo to come up with a formula 
yielding random numbers fTom the normal (gaussian) distribution 

f(x) = ~_e-·r'f2 
.f2rr 

Fortunatdy, tbe Box-Muller transformation allows us to produce a pair of standard 
deviates g, and g2 from a pair of uniform deviates u, and U2 [65]: 

repeat 

VI f- 2uI - 1 
V2 f- 2u2-1 
rf-vT+vi 

ulltil r > 0 and r < I 

f f- .J u 21n r I r 
gJ f- fVJ 

g2 f- fV2 

Produce four samples from a normal distribution with mean 0 and standard deviation 1. 

f 
"-----

III "2 VI v~ r 81 82 
0.234 0.784 -0.532 0.568 0.605 1.290 -0.686 0.732 
0.824 0.039 0.648 -0.921 1.269 
0.430 0.176 -0.140 -0.648 0.439 1.935 -0.271 -1.254 

'------" ~" ~" 
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ISo1ution 
From the Ilniform random samples 0.234 and 0.784 we derive the two normal samples 
-0.686 a~d 0.732. The nex-t pair of unifonn random samples 0.824 and 0.039 results in a 
value of r > I, so we must discard these samples and generate another pair. The uniform 
samples 0.430 and 0.176 result in the normal samples -0.271 and -1.254. 
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Produce four samples from a normal diltriiJUtion wilh mean 8 and standard deviation 2. 

ISolution 
We modify the Ball-Muller transformation by replacing the assignment 

with 

We do a similar replacement for the assignment to g2. 

141. U2 VI Vl r f gl g? 
0.017 0.262 -0.965 -0.475 1.158 -
0.832 0.743 (1.663 0.486 0.676 1.075 9.426 9.045 
0.670 0.439 0.339 -0.122 iUJO 5.602 11.800 6.630 

The value of r resulting from the unilQnn samples 0.017 and 0.262 is 100 large, and 
we must rejecllhese samples. However, the uniform samples 0.832 and 0.743 produce 
the nonnal samples 9.426 and 9.G45. The unifol'm samples 0.670 and 0.439 produce the 
normal samples 11.800 and 6.630. 

You can use the Box. -Muller transformation to create a function that returns a v--O 
single standard deviate. On the first, third, fifth, etc. invocations of this function, it 
performs the Box-Muller transformation, stores g2, and returns gl. On the second, 
fourth, six.th, etc. invocations of this function, the function returns the value of g2 
produced in the previous invocation. 

10.4.3 The Rejection Method 

Tile rejection method, firs! proposed by John von Neumann, allows us to pro­
duce samples from a probability density function f (x) that we cannot integrate 
and/or invert analytically. Suppose we can generate samples for anotber proba­
bility density function hex), and we can find a constant 8 such that f (x) 2 oh (x) 
for alb (Figure 10.10). We produce samples from f in the followillg way: We 
generate a sample Xi from h and another sample Ui from the uniform distribution. 
If uioh(Xi) 2 f(Xi) we accept X; as a samplefrom f(x) and return it. Otherwise, 
we repeat the test with another Xi and another u. 
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Figure 10.10 The rejection method allows us !()generatesamples from 
a probab~iIy density function f(x). We produce Xj trom probability density 
/unetion hi xl and Uj trom the uniform probability density function over 
{D, 1). In this figure Uj == 0.6, UIOh(Xl) > ({Xj), amj we reject sample Xj. 

On the oiherhand, LJ;z == 0.15, LJ;z8h(~l < f(X2), and we acceptsampleX;? 

The points (Xj, ItjOMti)) uniformly sample the area under the curve Jh(x). 
Since we only accept those points under the curve f(x), the resulting sequence 
of x,s reflects the probability density function f{x). 

The rejection method works best when th~re is a relatively small aJl!ount of 
error between f(x) and Jh(x). The larger this area, thc greater the frequency 
at which candidate random numbers will be rejected, slowing the process. The 
efficiency of the rejection method can decrease sharply as the number of dimen­
sions increa'ics. For example. suppose that 75 percent of the random numbers 
are accepted for a one-dimensional integral. If the same efficiency holds true a, 
th~ number of dimensions increases, the efficieucy for a six -dimensional integral 
would be (O.7W, or about 18 percent. 

.gjf:l4!. ______ ~ _____________ ~ ___ ~_ 
A random variable has the probability density function 

{

Sinx, ifO:,:x:':Jr/4; 

f(x) =. (-. 4x + J/" +8)/(SJ2), ifzr/4 < x :': 2+ 11 /4; 

0, olherwise 

This probability density function is illustrated in Figure 10.11. 

• Solution 
We can llse the r~ection method togenerate random variables trom this distribution. We 
need to find 6" and h(x) such that f (x) .:::: 8h(xl forallx. We note that the probability density 
function is greater than 0 for the values of x lJetween 0 and 2 + 11 14, and it has a mllXimum 
value of .fi12. We choose to use a uniform prolJability density function as our h(x): 

hlx) = {1/(2+ JfI4), ifO::S:~ :,:2+Jf/4; 
'0, otherwise 
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"/2~ 

n/4 2+.,,-/4 

rtgure 10.11 Using a uniform random variable and the 
rejection method to produce variables from a two-part 
probability density tunction_ 

If we mUltiply h(.!) by a = (2 + .1l"/4)(h/2), then Jh(x) 2: I(x) for all x. Simplifying 
the terms. we liCe that 

ohix) _-= {.fi/2, if 0 ::: x <o2+1l/4; 
. 0, otherwise 

We generate~ rnndom number from Ihe uniform distribution between gaud I and mul­
tiply it by 2 + Jl /4, giving us a random variable Xi from the uniform distribution between 
o and 2 + Jl/4. Next we generate a random number Ui from the uniform distribution 
between 0 and I. If !!joh(Xi) :s I(x;), then we accept Xi as a sample from I(x) and 
relUrn il. Otherwise we generate another pair (Xi, Iii) and repeat the lest. 

! 
Xi IIi Uif~ I(x!) 

O"k~'1 0.860 0.975 0.689 -0.681 Reject 
1518 0.357 0.252 0-448 Accept 
0,357 0920 - 0.650 0,349 Reject 
1..ID6 0.272 0.192 0.523 Accept I 

10.5 CASE STUDIES 

The five case studies in this section provide a glimpse into a few of the many 
domains in which Monte Carlo methods arc useful. 

10.5.1 Neutron Transport 

We consider ~ simplified model of neutron transport in two dimensions (see 
I'igure 10.12). A source emits neutrons against a homogeneous plate having 
thickness lJ ami infinite beigbt. A neutron may be reflected by the plate, absorbed 
by the plate, or it may pass through the plate. We wish to compute the frequency 
at which each of these events occurs as a function of plate tbickness H. 

Two constants that describe the interaction of tbe neutrons in the plate are 
the cross section of the capture Cc and the cross section of the scattering c,. The 
total cross section C == C, + C,. 
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Figure 10.12 A neutron encountering a 
homogeneous medium may be (a) reflected, 
(b) absorbed, or (c) transmitted. 

The distance L a neutron travels in the plate before interacting with an atom 
is modeled by an exponential distribution with mean l/C. As we saw in the 
previous section, if u is a random number from the unifonn dis1ribution [0, I), 
the formula 

I 
L = --·lnu 

C 
is a random number from the appropriate exponential probability density function. 

When a neutron interacts with an atom in the plate, thcprobability of bouncing 
off the atom is C.I C, while the probability of being absorbed by the atom is Cel C. 
We may use a random number from the uniform distribution [.0, I) to determine 
the outcome of a neutron-atom interaction. 

If a neutron scatters, it has an equal probability of moving in any direction. 
Hence its new direction D (measured in radians) can be modeled by a random 
variable uniformly distributed between 0 and 1r. (Since the plate h~s infinite 
height, we do not need to distinguish between bouncing upward and bouncing 
downward.) Given direction D, the actual distance in lhe x direction the neutron 
travels in the plate between collisions is L cos D. 

The simulation of a neutron continues until one of the following events occurs: 

1. The neutron is absorbed by an atom. 
2. The x position of the neutron is less than 0, meaning the neutron has been 

reflected by the plate. 
3. Tbe x position of the neutron is grealer than fl, meaning the neutron has 

been transmiued through the plate. 
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NtIltroll 'l'rinsport Simliialion: 
C - Mean distmce between neutron/alom interactions is 1/ C 
C, - Scattering component of C 
C< - Absorbing component of C 
H - Thickness of plate 
L - Distance neutron travels before collision 
d - Direction of neulron (measured in radians between 0 and JT) 
J! - Unifonn random numller 
~ - Position of panide ;n pMc (0 :s r < H) 

n -- Number of samples 
II - True while particle still bouncing 
T, b, I-OJunts of re!leeted, absorbe<l, transmItted ne,IUTOns 

bt.;;in 
r,b.1 +- 0 
rori +- 110 /I do 

d .;-0 
x <--0 
II .-;-trll.e. 

whileado 
L ,- -{l/G) )( In!1 

x +- x 'I- L x cos(d) 
if X < 0 then { Reflccterl } -

r+-r'l-I 
,I ,.- {alse 

else if x ::: If then ( Ttansmiltcd 1 
I '",It I 
a ,- false 

else if II < C,IC then {Absorbed 1 
b , .. b+ I 
a <'- {aise 

else 
d i-'" X Jr 

endif 
endwhile 

enMor 
print r /11, {j!", I I 1/ 

e,nd 

Figure 10.13 Pseudocode for aneuiron transport 
simulation using the Monte Carlo method. 

Pseudocode for the neutron transport simulation appears in Figure lO.1l 
Note that time does not advance by the same amolJnt in each iteration of the while 
loop. Instead, the simulation advances from one event (one interaction) to the 
nex.t This pseudo-time progression is called Monte Carlo time. 

10.5.2 Temperature at a Point Inside a 2·D Plate" 

Imagine a very thin plate of homogeneous material. We wish to compute the 
steady-state temperature at a particular point in the plate. The top and the bottom 
of the plate are insulated, and the temperature at any point is solely determined 
by the temperatures surrounding it, except for the temperatures at the edges of 
the plate, which are fixed. 
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The interior temperature distribution is described by Laplace's equation, 
'1/2 T = 0, which means the temperature at a point is the average of the tem­
peratures around it. 

One approach to solving Laplace's equation numerically is to make the prob­
lem discrete by overlaying the plate with a two-dimensional mesh of points. In 
this case the temperature at a !Xlint is the average of the temperatures of the points 
above it, below it, to its right. and to its left (which we can think of as "north," 
"south;' "east," and "west"). 

We can use a Monte Carlo technique to find the temperature at a particular 
point S. We compute the temperature of S by randomly choosing one of the four 
neighbors and adding ilS temperature to an accumulator. After we have sampled 
a random neighbor's temperature n times, we divide the sum by n to yield the 
temperature of S. This average has an expected value of (1;, + 1'., + 'L + T,,) /4. 

Of course, we do not know the temperatures of the neighboring points, but 
we could usc the same technique to find their temperatures, too. Applying this 
idea recursively, we end up doing a random walk on the plate. The recursion 
and the random walk do terminate, because the temperatures 011 the edges of the 
plate are known. 

Foliowillg are the MOllte Carlo algorithm reslIlt, (see Figure 10.14). We 
start at intersection S and rand~mly choose which direction to move (north, 

-,-- ~~~~~-r~~ r-

-
~- I--

,--- 1(0 
I\:/ 

r- -

-

-----.l L-

Figure 10.14 Use of a random walk to 
estimate the temperature of point Son a 
thin plate. The boundary temperatures 
are fixed. Edge points contacting the 
U-shaped while bar have temperature O. 
Edge points contacting the gray bar have 
temperature 100. This random walk from 
~ illustrated by heavy lines, results in the 
temperature 0 being added to the sample. 
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south; ['.ast, or west). We continue to move in a random fashion until we hit 
one of the edges of the plate. At this point we add the temperature at the edge 
to our accumulator and repeat. At each iteration we can also determine 
the average edge temperature encountered over all random walks we have 
taken so far. We terminate the alg0l1thm when the average temperature value 
converges. 

10.5.3 Two· Dimensional Ising Model 

The two-dimensional Ising model may be used to simulate the behavior of simple 
, magnets as well as other phenomena (see Figure 10.15). The problem domain is 

~ square lattice. Each intersection is called a site. Every site (it has an associated 
'. spin. Each spin can be in onE of two stales: up or dowlL We associate the yalue 1/2 

with up and the value -1/2 with down. The energy (Jf the system is determined 

t~~t~oj..j..j.t.j.~t.j.t.j.t.j.ftf 

fttfttttt ttttttttttf 
fj.fftft.j..j.t.j.f.j.f.j..j.j..j..j.t 
t~t.j.ttftt.j. t.j.t.j..j.t.j.t.j..j. 
.j.~t.ttttft t.j.t~tttt.j..j. 

t.j..j.t.j.f.j..j.tf.j..j.ftftf.j.t.j. 
.j.~tttf.j.tt.j..j.t.j.ttfttt.j. 

~ ~ t f t .j. f ~ f f .j. .j. .j. .j.·t .j. .j. .j. .j. t 
tft·.j..j.t.j.t.j..j.t.j.tf.j. .j.ttt 
tj.t.j.tttt.j.ttttftttt.j..j. 
.j..j.ft.j..j.t.j.t.j..j.f.f.j.f.j.ftf 
.j.ttttfttt t.j.tttt.j.tttt 
~.j..j..j.tt.j..j.~t.j..j..j.ftft.j..j.+ 

t.j.t.j..j.tftt.j.tttf.j.tft.j..j. 
ttt.j.tttt.j.tttt.j.tttt.j.t 
tf.j.t.j..j.t.j.t tff.j.ttft.j.tt 
.j.tttt~tttt.j.tttt tttt 
.j. .j. oj. .j. t .j. .j. .j. .j. .j. .j. .j. t .j. t .j. .j. f .j. t 
t,t.j..j.t.j.t.j..j. +~t.j..j.t.j.t.j..j. 

.j.t+~fttt.j.t ttt~tttt~t 

Figure 10.15 A20 x 20 Ising model. Each of the 400 sites 
has an associated spin, either up or down. The energy of the 
system is a function of the spins. The model may take on any 
of 2400 diHerent slates. The probability of entering each of 
these states is influenced by both the current state of the 
system and its temperature. 
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by the functioo 

E(IJ)::: - LJajO"j - B La; 
i,j 

where the first sum is over nearest neighbors, J is a constant indicating the 
strength of the spin-spin interaction, and R is another constant having to do with 
tbe external magnetic field. 

Our goal is to estimate the specific heat per particle, a pmblem analogous to 
performing integration over the possible configurations of the system. Given the 
temperature T and Boltzmann's constant k, the probability density function over 
all possible configurations is 

e-E'(a)(U 

J.L(a) = Z(T) 

where Z(T) is a weighted sum over all states. 
Unfortunately, it is difficult to sample from distribution J.L. Here, a random 

sample Xj represents a configur.ation of spins. Note that the number of configu­
rations is exceedingly large, even for small lattices. For example, our example 
20 x 20 lattice ha~ 400 sites. Each site has two possible values, meaning the num· 
ber of configurations is 2400

• Becal1,e the probability density function is an inverse 
exponential function, the probabi1ities associated with most states are extremely 
small. If we try to take a uniform sample of the configurations, it is unlikely 
we will "hit" on enough of the higher·probability configurations to yield a good 
estimate of the integraL Instead, we need to find a sampling of the configurations 
that is biased toward those that have higher probability. The Metropolis algorithm 

. generates such a sampling. 
The Metropolis algorithm uses the Cllffent configuration Xj {current random 

sample) to generate the next configuration Xit I (next random sample). Given 
Xi, the algorithm generates a neighboring configuration Xl. If E(x l

) < E(x,), 
thenxi+l =x'. If E(x') > E(xiJ, then X,+i = x' with probability e·IE{x')-E(xd1Jl:T; 

olherwise Xi+! =Xi. The series of random samples. called a Markov chain, 
represents a random walk through the possible configurations. When applied 
to the Ising model, the Metropolis algorithm takes the form shown in 
Figure 10.16. 

While short series of random samples produced hy the Metropolis algorithm 
are highly cOiTciated, if the algorilhm is allowed to produce enough saQ1ples. it 
can provide good coverage of an entire probability density function. 

How can we be sure that the Markov chain of configuratioIlS visited by the 
Metropolis algorithm corresponds to the nnderlying probability density function? 
One way to be sure is to satisfy the detailed balance condition. Let P(xd repre­
sent the probability of being in configurations Xi, and let P(Xj I Xi) represent the 
probability of the random walk moving to configuration Xj from configuration 
Xi. The detailed balance condition holds if 



Metropolis AlgorillmJ: 
k - Boltzmann's constant 
T - Tem{er:UuHl 

E - Energy function 
'" -Chllllge in energy 
p - Probability of changing to stllex' 
U - Uniform random \'lIriable 

begin 
.ro .... Initial stille of mudel 
i~O 

repeal 
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IJ ;- randDmly selected site (from ImifoI1ll distribulionl 
x' +- [dent,,,1 to 1:) execpt spin:rt rr is rc~ersed 
i\ +- E {xi) - E(x,) . 

if '" <Olhen 
p+-l 

else 
p +- e-~/iT 

endii 
ifu < p then 

XfP ~X' 

eLle 
Xi+l <i- Xi 

endif 
i .. ·i+l 

f(,[eVer 

end 

Figure 10.16 The Metropolis algorithm applied 
to the Ising model. 

Suppose E(x') > E(Xi). The Metropolis algorithm satisfies the detailed bal­
ance condition if 

P(x,lP(x'l Xi) = P(x')P(x; I x') 

e-E(X,l/kT e-E(x'jjkT 
:::} x e-1E!.r')-E(x;1IIkT = -' --- x I 

Z(1) Z(T) 
e-E['!jji:T 

Z(T) Z(T) 

The equality also holds if E(x') :s: E(x;). Hence the Metropolis algorithm 
. satisfies the detailed balance condition. 

10.5.4 Room Assignment Problem 

Given n, an even number of college freshmen, our goal is to assign them to n /2 
rooms in a residence hall so that interpersonal conflicts are minimized. Every 
studenl has completed a survey, and a computer program has produced a table 
of "dislikes"-in other words, the value of entry (i, j) of the table indicates the 

, extenttowhich students i and j are likely to get on each other's nerves. (The value 
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of entry {i, j] equals the value of entry U. iJ.l We will solve this problem using 
a technique called simulated annealing. 

Physical annealing is the process of heating a solid until it melts, then cooling 
it slowly. 'Ibe purpose of physical annealing is to produce a strong, defect-free 
crystal witha regular structure. When the material is hot, the atoms are in a higher­
energy state and more easily rearrange themselves. As the temperature dr0llS, the 
atomic energies decrease, and the atoms do not rearrange themselves as asily. 
Slow cooling allows the material to reach a state of minimum energy, which is its 
crystalline form 

Simulated annealing makes an analogy between physical annealing and 
solving a combillatorial optimization problem. A solution to the optimization 
problem corresponds to a state of the material, the value of the objective function 
for a particular solution corresponds to the energy associated with a particular 
state, and the optimal solution to the problem corresponds to the minimum energy 
state. 

Simulated annealing is an iterative algorithm. During each iteration the CUf­

rent solution is randomly changed to create au alternate solution in the neighbor· 
hood of the current solution. If the value of the objective fUllction for the new 
solution is less than the value of tIle objective function for the current solution, 
then the new solution becomes the current solution. If the value of the objective 
fvnction for the new solution is greater than the value of the objeclive function 
for the current solution, then the new solution becomes the currenl solution with 
probability r!1/T, whcre /!,. is [he difference bctween the values of the objective 
function and T is the current "temperature." 

Why would we want to move to a solution that is inferior to one we have 
already found? The rcason is [hat solution spaces usually have local minima. 
We do not want the algorithm to 5ettie too quickly into a local minimum. When 
the temperature is higher, the algorithm can easily "climb out of' local minima 
(Figure 1O.17a). When the temperature decreases, the probability of doing so is 
reduced (Figure IO.l7b). 

Note that simulated annealing and the Metropolis algorithm are closely re­
lated. Both use the same probability function to detennine if a jump should be 
made to a higher-energy state. The difference is that in simulated annealing we 
are searching for the minimum value of the function, ralher than computing an 
integral. 

Tn order to solve a problem using simulatL'<i annealing, we must: 

• decide how to represent solutions 

• define the cost function 
• define how to generate a new, nei'ghboting solution from an existing solution 

• design a cooling function 

Let's go through each of these steps for the room assignment problem, We 
start with an incompatibility matrix D; entry d,.i is a Hoating-point value between 
o and 10 that indicates how much students i and j are going to dislike each other. 
Note that di.} = dj.i-
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(a) (b) 

Figure 10.17 Simulated annealing always allows the search to move to 
a newly generated solution 01 lower cost. The probability of moving 10 a 
newly generated solution of higher cost shrinks as the temperature drops. 
(a) When the temperature is high, moving to a solution of higher cost is 
more probable. (b) When the temperature is low, moving to a solufion of 
higher cost is less probable. 

A solution is an assignment of tue II students to 11 /2 rooms. We create array 
. a to keep track of tuese assignments. Each entry (Ii is an integer between 0 and 
n/2 - I, representing the roonl person i is assigned to. Ea~h value j in the range 
o through 11/2 - I appears exactly twice in array a. 

The cost function is simply the sums of the incompatibilities of the students 
in the rooms. Let r; represent the roommate of student i. Then the cost function 
is defined lo be 

,,-1 

Ldi,r, 
i~O 

We can generate a new solUlion near the current solution by choosing two 
students at random and switching their room assignments. 

Finally. we need to choose the temperature function. The choice of tcmpera­
ture function can have a great effect on the performance of the algorithm. A poor 
function may cause a simulated annealing algorithm to find a poor solution, take 
too long to execute, or both. 

For this problem we choose a simple geomelric temperature function: 

To = I 

1j,! = 0.999'1; 

.. Figure 10.18 illustrates the convergence of the simulateD annealing algorithm 
solving the room a<;signment problem using a geometric temperature function. 
·Both algorithms find the same solution, but the algorithm starting with To = )0 

twice as long as the algorithm starting with To = I. 
Pseudocode for a simulated annealing solutioo to the room assignment prob­

lem appears in Figure 10.19. 
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To = 10 

10 ~ I 

Figure 10.18 Convergence of simulated annealing 
algorithms solving the room assignment problem. In both 
cases the geometric temperature function 1i~ 1 '" O.9991i is 
used. Both algorithms wnverge on the optimal solution. 
However, when the initial temperature is higher, the 
convergence is slower. 

Simulated annealin~ is not guaranteed to find an optimal solution. In fac~ 
the same algorithm using different streams of random numbers may converge on 
ditIerent solutions. Hence it ma};es sense to execule the same algorithm multiple 
times with different random number seeds. This is an obvious opportunity to LIse 
a parallel computer to speed overall execution time. 

10.5.5 Parking Garage 

A parking garage has S stalls. The length of lime between successive arrivals oj 
cars at the entrance to the garage is a random variable from a Poisson distributiofi 
with Illean A minutes. If a car arrives at the gm:age and a stall is available, il 
occupies one of the stalls. The length of time a car stays in the garage is a rand on: 
variable from a normal distribution with mean M minutes and standard lievialio{ 
M /4 minutes. If a em" arrives at the en Lrance and no Slalls are available, the car il 
turned away. We wish to determine the steady-state characteristics of the parkin! 
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Room ,\,o;signmmt Problan: 

,,[O,.n - lJ -, ,,-element array comaining room assignments 
ct, c2 - two jli'fSO!IS involved in possible room swap 
d[O.JI - (,0 .. " - 11- It x JI rna1rii cllntaining roommate incompatibilities 
SUm - slim [of dislikes of best wlulioo found so far 
new,_sum - sum of dislilre, of newly generated solmion 
t '- temperarure 

begin 
Randomly a.~sign studenls to rooms 
sum ... 0 
fori ~Oton-'Ido 

for j ,- 0 /0 /I - I do 
if alii = alii dien 

SJlIn <-- SID1l + d[iJ[jJ 
endf{lr 

elldior 
t <--I 

i~O 

whilei < 100000 {Slop if 00 changedor 1000 iterations} 
repeat 

cI ~ lu xIIi 
c2"luxnJ 

until ale 11 i- Illdj 
Compure new _-,urn aSQIming d and c2 swap rooms 
if /lew_sum < sum or u 5 e(Jll1Jf-!1(I.t _"IiI~)rr then 

Swap room assignments for c I and c2 
,(um -r-- fleW _,fUl7I .. 

i .... O 
elsei <--j + I 
end.f 
I+- 0.99<) X I 

endwhile 
print a lind SlU!l 

end 

Figure 10.19 Solving tlle room assignment problem using 
simulated annealing. 

garage: the average number of stalls occupied by cars and the probability of a car 
being turned away because the garage is full. 

We model time in minutes as a real variable t. When the simulation begins, 
t == 0. 

We model the parking garage stalls as an array G with S elements, Element 
Gi contains the time that stall i is available. At the beginning of the simulation 
IJ) = 0, for all i, 0 s: i < S. 

We begin the simulation with the arrival of the first car; that is, it arrives at 
time 0. 

Since car arrivals are characterized by a Poisson distribution, the time between 
car arrivals is an exponential distribution with mean A, As we saw in the previous 
section, we can use the expression - A In u to determine the next car arrival time, 
where u is a random number uniformly distributel\ in [0, 1). 
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We increment t by this amount and look for an available stall; that is, a stall 
i such that Gj :: t. 

When we assign a car 10 a stall i, we must reset G, to reflect the time the 
car leaves the parking garage. Since this is a normal distribution, we can use the 
Box-Muller transformation described in Section 10.4. 

10.5.6 Traffic Circle 

A traffic circle (als{l called a rotuy or a roundabout) is a way of handling traffic 
at an intersection without using signal lights. Often seen in Europe and the north­
eastern United States, traffic circles support the concurrent Tllovement of multiple 
cars in the same direction. -

Figure 10.20 illustrates a simple traffic circle. Traffic feeds into the circle 
from four roads, labeled N, W, S, and E. Every vehicle moves around the circle 
in a countcrclockwL~e direclion. 

Figure 10.20 A model 01 a traffic circle. Cars within the traffic circle 
travel in a counterclockwise direction and take priority over cars trying ro 
enter the circle. 
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f D N W S E 

N~ 
N 0.1 0.2 0.5 0.2 

W 3 W 0.2 0.1 OJ 0.4 

S 4 S 0.5 0.1 0.1 0.3 

E 2 E OJ 0.4 0.2 0.1 

Figure 10.21 Probabilities 
associated wilh the traffic 
cirds problem. Array element 
~ is the mean time between 
vehicle arrivals at entrance i. 
Matrix element d,.1 is the 
probability that a car entering 
the circle at i will ex'rt at j. 

In our simulation of the circle we divide the circle into 16 sections. During a 
single time stcp an vehicles inside the circle move to the next section in the coun~ 
terclockwise direction (or leave the circle at one of the four exits). Vehicles within 
the traffic circle take priority over vehicles trying to enter the circle. Hence vehi­
cles inside the circle ~re never prevented from moving forward during a time step. 

A vehicle wishing to enter the circle may do so if there is no vehicle already 
in the circle attempting to enter the same lone. In Figure 10.20, {or example, the 
vehicles waiting at Nand S may enter the circle at the next time step, since there 
are no vehicles in the potential conflict lones Sc and Nc. The vehicle waiting at W 
may also enter the circle, because the car at We is leaving the circle. However. 
the vehicle waiting at E may not enter the circle, because the car at E, is slaying 
in the circle and has precedence. 

To complete our model of the traffic cirde, we mllst know the frequency at 
which cars arrive at the four access points. We must also know the frequency 
at which ears entering at a certain point exit at each of the four points. See 
Figure !U.2l. The probability of a car arriving at an entmnce during a palticular 
time step is a random variable from an exponential distribution with mean m. 
Array f provides the mean time between arrivals at each of the four entrances. 
Element di.j of matrix D is the probability that a car entering ali will exit at j. 
For example, the probability that a car entering at E will exit at S is 0.20. 

Qur goal is to construct a simulation of the traffic circle in order to answer 
two questions: 

1. For each of the four traffic circle entrances, what is tll)! probability that a car 
will have to wait before entering the circle'! 

2. For each ofthe four traffic circle entrances, what is the average length of the 
queue of vehicles waiting to enter the traffic circle? 

Eight principal arrays are sufficient to perform the simulation and store the 
information needed to answer these two questions. See Figure 10.22. The traffic 
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f~~ iteration 
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Rgure 10.22 Data structures supporting the traffic circle 
simulation. 

circle itself is representw by circle, a circular buffer implemented as an array of 
16 integers. Array offset indicates the index in circle associated with each of the 
four entrances and exits. Index 0 represents the northern entrance/exit, index 4 is 
the location of the western entrance/exit, and so on. Each element of array circle 
represents acircle segment that is either empty or holds one car. If circlefiJ = -I, 
the segment is empty. Otherwise, circle[iJ contains an integer that represents the 
car's exit (0, 4, 8, or 12). 

When cars arrive at one of the entrances to the traffic circle, the appropriate . 
element of array arrival is set to I at that time step. Array arrivaCcnt contains 
the total number of arrivals at each entrance, and array waiCcnt is a count of 
the number of cars that could not enter the traffic circle immediately. Array 
queue keeps track of how many cars are waiting to enter the traffic circle at each 
entrance, and array queue_accum is a total, over all time steps of the simulation, 
of the values in queue. 

Pseudocode for the traffic circle simulation appears in Figure 10.23. Each 
time step of the simulation is divided into three phases. First, new,cars arrive 
at the traffic circle. Second, cars already inside the traffic circle move forward. 
(Array new_circle, not shown in Figure 10.22, facilitates this phase.) Cars that 
reach their destination exit are removed from the circle. Note that there is no need 
to simulate the lanes leading away from the circle. Third, cars enter the circle if 
there is room. 

When a car does enter the traffic circle, the simulation must determine the 
desired exit of that car by generating a uniform random variable and referring 
to matrix D. In the pseudocode this step is represented by a call to function 
ChooseExit. We illustrate this process with an example. Suppose a car is entering 
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Traffic Circle Simulation: 

Data Structures Representing the Traffic Orcle 
eirele{O .. ] 5] - Current state of traffic circle 
new _eirele{O .• J5] - Next state of traffic circle 

Data Structures Representing the Four Entrances 
ojJsel[O .. 3] - Each entrance's location (index) in traffic circle 
anival!O .. 3] -I if a car arrived this time step 
wait _ cnl!O . .3] - Number of eMS that bave had 10 wail 
arrival Jnt{O.3}- Total number of cars ilial have arrived 
queue{O . .3] - Number of cars wailing to enter circle 
queue _ accl1m{O . .3] - Accumulaled queue size over all lime steps 

begin 
fori +- Oto 15 do 

eircle{ i] +- - I 
endfor 
for i +- 0 to 3 do 

arrival_ent/i], woitJ/lt!i], queue!i], queue_aceum!;] +- 0 
endfor 
for iteralion +- {) to requested_iterations 

[ New cars arrive al entrances I 
fori +-0103do 

if u ::: 1/ f[i]lhen { u is a uniform random number J 
arrival!i] +- I 
arrival_ ent[i] +- arrivaC fIll{i] + I 

else arrival{i] +- 0 
endif 

endfor 
I Cars inside circle advance simultaneously J 
for i +- 0 to 15 do 

j +-(i+l)mod16 
if eircle[i] '" -lor circle{i] = j ilien new _circleJj] +--J 
else new _ circleDl +- eircle{i] 
endif 

endfor 
circle +- /leW Jircle 
( Cars enter circle) 
fori +-Ot03do 

if circie{offsel{ill = -I then 
[There is space for car 10 enler) 
if queue[i] > {) thel] 

(Car waiting in queue enters circle) 
queue[i] +- queue{i] -I 
cire/e{offsel!i]] +- Cboose_Exit(i) 

else if arrival!i] > 0 
{Newly arrived car enters circle) 
arrival{i] +- 0 
circ/e!offi-er!i]] +- Choose_Exit(i) 

endif 
endif 

Figure 10.23 Pseudocode for traffic circle simulation. 
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if arrivalr; j > 0 then 
{Newly arrived car queues up} 
wait_DII{i] +-waiUntrij +1 
quelJ£[iJ <-- queue{iJ +1 

endif 
endfor 
fori +- 0 to 15 do 

queue _ accum{i j +- queue _ accumri J + queue{i] 
endfor 

endfor {iteration} 
end 

Figure 10.23 (coutd.) Pseudocode for traffic circle 
simulation. 

from the west, and we generate the random variable 0.55. We work through row 
W of matlix D until the total of the probabilities exceeds 0.55. The first entry is 
0.2, .which is not greater than 0.55. That means the destination is not the north 
exit. The second entry is 0.1. Adding this value to the first gives us 0.3. Since 
OJ is not greater than 0.55, the destination is not the west exit Adding the third 
entry, OJ, to the total gives us 0.6. Since 0.6 is greater than 0.55, the south exit is 
the destination. The car is' entering at the west entrance (offset 4) and leaving at 
the south exit (offse~ 8). Hence we perform the assignment circle[4] +- 8. 

When the traffic circle simulation begins, there are no cars inside the traffic 
circle, and delays are at a minimum. As the simulation progresses, traffic jams 

. develop and then dissipate. The simulation should continue until the answers to 
the two questions have converged. 

10.6 SUMMARY 
Monte Carlo methods use statistical sampling to find approximate solutions to a 
wide variety of problems. Two important applications of Monte Carlo methods 
are numerical integration and simulation. Monte Carlo methods are superior to 
detemlinistic numerical algorithms for finding integrals when the number of di­
mensions is larger than about six. It is difficult to derive analytical answers to 
many questions arising from systems with stochastic behavior. Monte Carlo sim­
ulations of these systems can be good tools for generating approximate answer~ 
to these questions. 

In order to produce reliable results, a Monte Carlo method must have access 
to a good stream of random numbers. The maximum period of a random number 
generator returning 32-bit integers is 232 , or about four billion. This is too small 
a period for modem computers. Make sure you use a generator that has at least 
48 bits of precision. 

Sometimes a random number generator that is good in general may not work 
well for a particular application. If you have a critical application, it is a good 
idea to run it twice using two different random number generators to see if both 
runs produce similar results. 
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A variety of methods have been proposed for generating random numbers 
on a parallel computer, including the leapfrog method, sequence splitting, and 
maintaining independent sequences. 

The most popular random number generators produce a pseudo-random se­
quence of values from a uniform distribution. Often a Monte Carlo method re­
quires a random munber from another distribution. Straightforward algorithms 
exist to transform samples from a uniform distribution into samples from an ex­
ponential distribution or a normal (gaussian) distribution. The rejection method 
allows us to produce numbers from other distributions. 

We have considered six applications of the Monte Carlo method that demon­
strated a variety of solution techniques. In the process of solving these problems 
we introduced tWo important algorithms. The Metropolis algorithm is a particu­
larly good way to produce a sample from a high-dimensional space. Simulated 
annealing is an algorithm for finding approximate solutions to combinatorial op­
timization problems. 

10.7 KEY lERMS 

detailed balance condition 
linear congnlential generator 
Markov chain 
Metropolis algorithm 
Monte Carlo method 
Monte Carlo time 

multiplicative congruential 
generator 

period 
pseudo-random number 

generator 
random walk 

10.8 BIBLIOGRAPHIC NOTES 

seed 
simulated annealing 
site 
uniform distribution 

Easy-to-understand introductions to the Monte Carlo method and the Metropolis 
algorithm appear in Computational Physics: Problem Solving with Computers 
by R. Landau alld Paez [65]. In contrast, A Guide to Monte Carlo Simulations 
in Statistical Physics by D. Landau and Binder provides a more rigorous pre­
sentation of the design and implementation of Monte Carlo simulations and 
the analysis of their results 164]. I first saw the "raindrops in cake pans" anal­
ogy in another illtroductory book, Monte Carlo Methods, written by Kalos and 
Whitlock [58]. 

Lehmer published the linear congruential method in 1951 [69]. For a time 
it was called "Lehmer's algorithm." Work on linear congruential generators with 
much longer periods continues. Wu gives a multiplkative congruential generator 
with the large prime-modulus 261 - 1 and four forms of multipliers [118]. How­
evel~ L'Ecuyer and Simard warn that this generator fails a test of independence 
between the number of Is in the binary representations of consecutive random 
numbers [68]. 
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A variety of algorithms have been proposed for generating random variables 
from important nonuniform distributions. Wallace describes a fast way to generate 
normal and exponential random variables without relying Oil a source of uniform 
random variables [110j. Leva presents a fasl algorithm for generating normal 
random variables that requires on average ollly 0.012 logarithm evaluations per 
stalldard deviate In]. Marsaglia and Tsang describe a fast method for generating 
Ilormal, exponential, and oilier random variables [80]. 

Mascagni surveys methods for generating parallel streams of raodom num­
bers via parameterization rather than sequence splitting [&4J. His article contains 
a useful bibliography of earlier work. 

The Scalable Parallel Random Number Generators (SPRNG) library, briefly 
documented by Mascagni and Srinivasan in ACM Transactions on Mathematical 
Software [831, is freely available from Florida State University. The URL is 
http:// spmg . cs. fsu. edu. 

The traffic circle problem is based on an example from Manno's Introduction 
to the Monte-Carlo Method {78J. 

10.9 EXERCISES 
10.1 Suppose you are using the Monte Carlo method to compute an integraL 

The methodology is similar to the IT-finding example in Section 10.1, 
except that the function to be integrated has 10 dimensions rather than 
2. What sort of problem should you look out for if you are using a linear 
congruential random numbe..r generator? 

10.2 An approach to pamllel raodom number generation not discussed in the 
book is to assign each process ibe same linear congruential generator 
(with identical values for the multiplier, additive constanl, aod 
modulus). However. each process starts with a different seed value Xo. 
What is the principal risk associated with this approach? 

1003 Write a C function that uses the Box.-Muller transformation to return a 
double-precision floating-point number representing a random value 
from the normal distribution. 

10.4 A cylindrical hole with diameter d is drilled completely through a cube 
with edge length s so thai the ccnter of the cylindrical hole intersects 
IWO opposite comers of the cube. (See Figure 10.24.) Write a program 
to determine, with five digits of precision, the volume of the portion of 
the cube that remaifls when s ~ 2 and d = 0.3. Hint: The distance 
between the poinp(x\, ,vI, ztl and the line x = y = z is 
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(a) (b) 

rlgute 10.24 Two views oftne object described in 
E)(ercise 10.4. (a) Looking down on one corner of the cube, 
we see that the hole goes completely through to the 
opposite corner. (b) Looking from the side of the cube, we 
see that all material within distance d/2 01 the line 
x = Y= z is removed. 

10.5 Write a program to evaluate the definite integral 

.1~ /~ l:Q 4x
3 
+x/ + 5y + yz +6zdz dy dx 

to five digits of precision. 

HI.6 Write a program to evaluate the definite integral 

t 13 1x
+)' L~o Y=O z-c.{l 4x

J + xi + 5y + yz + 6~ dz dy dx . 

10 five digits of precision. 
10.7 A radioactive atom ha~ a mean lifetime of m time units. 'The probability 

that a radioactive atom will decay in any given time unit is (1/ m)e-1jlll
• 

Given an initial pool of 100,000 radioactive atoms, compute how many 
atoms decay at each time step in the first 1,000 rime units, when 
m = 250. 

m.s rmplement a parallel program solving the neutron trdIlsport problem 
described in Section 10.5.1. Let Cr = OJ and Cs:=: 0.7. Detemline 
the probability of absorption, reflection, and transmission for H = 1,2, 
3, " ., 10. Base your results on J 0 million lests (neutrons) for each 
value of H. 

10.9 Implement a parallel program solving the steady-state temperature 
problem described in Section 10.5.2. Assume the square plate has been 
discretized into a 20 x 20 grid of smaller squares. Assume the 
temperature on three sides of the plate is 0" and the temperature on the 
fourth side is 100'. Compute the temperature at the middle of the plate 
to three digits of precision. 
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10.10 Write a parallel programimpierneoling the Ising model described in 
Section 10.5.3. The objective is to find Ihe energy level of a 100 x 100 
system after 1,000,000 iterations. Let J = 1, B :::: 0, and kT :::: L Give 
the system a "cold slarf' by initializing every site fT. to "up" in state Xu. 
Evaluate .Li,j J a;(/j for every pair of sites Ihal are horizontally or 
vertically adjacent. Repeat the experiment I ,000 times. 

10.11 Implement a parallel program solving the room as.~ignmenl problem 
posed in Section 10.5.4. Assume n :::: 20 and T == l. Use a random 
number generator to construct matrix D. Each entry should be a 
uniform random variable between 0 and 10. Each process should solve 

,_.,,,," "., .:.,p·~,:;t.-;t:. ';;"1. -:'':{; the problem for tue same matrix D, but with different seeds for the 
random number generator. 

10.12 Implement a paraUe! program solving the parking garage problem 
posed in Section 10.5.5. Assume S = 80, A :::: 3, and M = 240. 
Detennine the average number of stalls occupied by cars, and the 
probability of a car being turned away because the garage is fulL as 
t -> 00, that is, in the steady state. 

10.13 Implement a parallel program solving the traffic circle problem posed ill 
Section 10.5.6. Use the program to answer these two questions: 
a. For each of the fom traffic circle entrances, what is the steady stale 

probability that a car will have to wait before entering the circle? 
b. For each of lhe four traffic circle entrances, what is the avemge 

length of the queue of vehicles waiting to enter the traffic circle, ill 
the steady state? 



C HAP T E R 

Matrix "Multiplication 

We go on multiplying our conveniences only to mll/Jiply our cares. We increase 
OI!r possessions only to the enlargement of our anxieJies. 

Auna C. Brackett, The Techllique of Rest 

11.1 .INTRODUCTION 
Considering how often the matrix multiplication algorithm is presented ill com­
pllter science classes, it's ironic that few scientific and engineering problems 
require the multiplication of large matrices. Here are two domains in which ma­
trix multiplication is used. Computational chemists represent some problems in 
terms of states of a chemical system. Each index corresponds to a different basis 
srate, and the matrix approximates the Hamiltonian of the system. A change of 
ba~js is accomplished through matrix multiplication. As another example, some 
transforms Ilsed in signal processing rely on the multiplication of large matrices. 

This chapter presents two sequential matrix multiplication algorithms and 
then explores two different approaches to parallel matrix multiplication. In Section 
11.2 we review the standard sequerlliaimatrix multiplication algorithm. Charting 
the algorithm's performance as matrix shes increase, we see how performance 
drops dramatically once the second [actor matrix no longer /its inside cache 
memory. We then snow bow a recursive implementation of matrix multiplicatimt 
that multiplies blocks of the original matrices can maintain a hig11 cache hit rate. 

In Section 11.3 we design a parallel algorithm based upou a fowwise block­
stliped decomposition of the matrices. We derive an expression for the expected 
computation time of this algorithm, and we analyze its isoefficiency. In Sec­
tion 11.4 we go througb the same design and analysis methodology for a parallel 
algorithm based on a checkerboard block decomposition of the matrices. 
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11.2 SEQUENTIAL MATRIX MULTIPLICATION 

11.2.1 Iterative, Row-Oriented Algorithm 

The product of an I x m matrix A and an m x n matrix B is an I x n matrix C 
whose elements are defined by 

m-I 

ci,j = I>i,kbk,j 
t=O 

AsequI;D~:a,lgorithm implementing matrix multiplicalioo appears in Figure 11. L 
The algorithm reiJuires lmn additions and the same Ifumber of multiplications. 
Hence the time complexity of multiplying two 11 x n mauices using this sequen­
tial algorithm is El(n3). Sequential matrix multiplication algorilhms with a lower 
time complexity have been developed, such as Strassen's algorithm, but every 
algorithm developed in this chapter is a paralleIization of the straighttmward 
algorithm, 

It's easy to implement this algorithm. We've bcnchmarked a C implementa­
tion of this matrix multiplication algorithm on anodeofaBeowu [fcluster: a Linnx 
computer with a 933 MHz Pentium III CPU with a 233 Kilobyte level 2 cache. 
The result~ of the benchmarking appear in Figure 11.2. For smaller matrices the 
execution speed is about 220 megatlops, but for larger matrices the execution 
speed is about 80 megaflops. What accounts for this drop in performance! 

Consider Figure 11.1 During each itemtioll of the outer i loop, every element 
of matrix B is read. If matrix 8 is too large for the cache, th~n later e1emcnt~ 
read into cache displace earlie~ elements read into cache, meaning that in the next 

Matrix MUltiptication (row-<Jriented): 

Input: 
a[O . .r - t, O .. J11 - lJ 
b[O .. ", - l, 0 .. 11 - l] 

Output: 
r[O .. 1 l, O .. n - I] 

fori - 0 10 I - J 
lor j -Oton-l 

eli, jJ <- 0 
fork .... Otom-! 

eli, jJ - ('Ii, n + arl, k] x b[k. j] 
endfar 

endlor 
cndfor 

Figure 11.1 Iterative, row­
oriented matrix multipficafion 
algorithm. 
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SECTION 11.2 Sequential Matrix MultIplication 

Row-oriented 

100 
Matrix size 

Figure 11.2 Pertormance of row-oriented matrix 
multiplication algorithm on a computer with a 933 MHz 
Pentium III CPU_ When matrix B no longer fils in the 
cache, the performance of the row-oriented matrix 
miJltiplication algorithm drops sharply. 

A B c 

Figure 11.3 In a single iteration ofthe loop indexed 
by i, row i of matrix A and all of matrix 8 are read, 
while row i of C is written. 

iteration of the loop indexed hy i, all of the elements of B will need 10 be re<ld 
into cache again. Hence once the matrices reach a certain size, the cache hit rate 
falls dramatically, lowering rhe performance of the CPU. 

The CPU we used for benchmarking has a 256 Kilobyte cache. We are mul­
tiplying double-precisiou fioating-point numbers, meaning each matrix element 
fills eight bytes. Hence the cache can hold at most 32,768 malrix elements. The 
square root of 32,76& is about 1 & L The performance of the algorithm reflects that 
when Il :s 150, the cache hit rate is much higher than when n ?: 200. 

'" 

11.2.2 Recursive, Block-Oriented Algorithm 

In order to perfoffil the matrix multiplication AB, the number of columns of A 
must be equal to the number of rows of B. 
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double a.(Nlllll, biN] iN), c[NJ iN); 

vo).d miTI ~ l:nt crow. int CGol. I~ Corner of C block .. 
int araw, int: acol. /1< Corner of l\. bh)(;k "* 
in\: brmll'r int b..;ol, /. Corner af B bJ ock .., 
int 1, /* Block A is 1 K rn 'Ill 
int ffi, /* Block B is Wi )( n *i 

int n} it Block cis 1 xn */ 

tnt J.halfDl J mh::llf[3] I nhdlfl3~; 1* Quadrant sizes */ 
int i, j I k; doublE i·aptr, irbptL *eptri 

if (m * n > THRESHOLD) 

Ihalf [OJ ~ 1)- lhalf[l J = 1/2; 
Ditaif[OI ~ 0; mhalf[l) = m/2; 
IlhaUIO] = 0; nhalf[:] = Il/2; 
for (i = 0; i ( 2; i+4) 

for (j = D; j < 2; j+') 
for Ik = 0; k < 2; k++) 

lhalf [2] ~ 

mal[ [2] = 
nhal ~ [2\ = 

mm (crowtlhCllf[i], c"oltmhaltliJ, 
arowtlhalf[ij, oco1+mhalffkJ, 
browtTI1halflkL bcol+nhalflji. 

1 - liz; 
m - m/2; 
II - n/2 ; 

Ihalf[ i.1 L ".l-jalf I K+l], nelalf lj +111; 

for (j = Q; i < J; i ++! 
for (j = Q; j < n; jot) 

cptr = &c [crow+ II [ccol+j] ; 
aptr = &aiarowti] lacol]; 
bptr = &b[brow][bcolt j l: 
for ik = 0; k < ~; kttl 

*cptr += *laptr++} * *bptri bptr +~ N; 

Figure 11.4 C function implementing recursive, block-oriented matrix 
multiplication. The initial call to this luncijon is nun 10, (], 0, 0, 0, 0, 
N, N, Ni. 

Let's suppose A has I rows and m columns, while B has m rows and n 
columns. If we divide A into four smaller matrices 

A = C: 1~:) 
and divide B into four smaller matrices 

B = .(800 B01) 
BIO Bil 
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.4 B c 

Figure 1 t.5 A recursive matrix mUltiplication 
algorithm breaks the matrices into smaller and smaller 
blocKs untillhey can iii in cache. Here the algOlithm 
has recursed twice before the blocks are small enough. 
Each block of C is the sum of the results of two block­
malrix multiplications. 

such that the number of columns in Aoo and AlO is equal to the number of rows 
in Boo and BO!, then the matrix product 

C _ (AooBoo + AOI B w Am BOI + Am BlI) 
AIOBoo + AIiBIO AIOBlJ + AII B1l 

where each A;kBk} represents multiplication of the block matrices and each + 
represents matrix addition. 

QUI goal is to compute the matrix product C = AB. If matrix B is too large 
to fit into cache, we can divide it into four pieces and use the idea ofbloclc matrix 
multiplication to compute C. Ifbloclc Bij is too large to fit into cache, we can apply 
this idea recursively until we have blocks thaI do fit in cache. A C impiementation 
of the resulting recursive algorithm appears in Figure 11A 

Figure I 1.5 illustrates how the recursive matrix multiplication algorithm 
works. In this example, matrix B is loa large for cache, so it is divided into 
four pieces. Each of the four pieces is still too large, so the algorithm recurses a 
second time. 

We've benchmarked a C implementation of lhis recursive matrix multipli­
cation algorithm on the same computer we used to measure the speed of the 
straightforward algorithm. The results of both benchmarking experiments appear 
io Figure 11.6. The recursive algorithm maintains high performance, even as the 
sizes or the matrices grow well beyond the cache capacity. 

11.3 ROWWISE BLOCK·STRIPED 
PARALLEL ALGORITHM 

In this section we develop a parallel matrix multiplication algorithm based upon 
a rowwise block-striped dewmposition of the matrices. 

11.3.1 Identifying Primitive Tasks 

Each element of the product matrix C is a function of elements in A and B. Since 
A and B are not modified during the algorithm, it is possible to compute every 
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Figure f 1.6 Performance of both sequential matrix 
multiplication algorithms on a computer with a 933 MHz 
Pentium III CPU. The block-oriented matrix multiplication 
algorithm keeps the cache hit rate high and achieves 
better performance than the row-oriented algorithm. 

element of C simultaneously. As a first step in our parallel design, then, we can 
associate one primitive task with every clement of C. 

Precisely which elements does each of these tasks need? ComplJting element 
ci,) of the product matrix involves finding the inner product (dot product) of row 
i of A and column j of B. 

11.3.2 Agglomeration 

We can use this data dependence information to agglomerate tasks. It is natural to 
agglomerate tasks associated with either a row of C or a column of C, since they 
share a need for either a row of A or acolumn of B, respectively, Algorithms based 
on either of these design choices are quite similar. Let's choose to agglomerate 
tasks associated with a row of C. 

It's simpler if we use the same agglomeration for all matrices, That way. 
the result of one matrix multiplication can be used as either factor matrix in 
another matrix multiplication. We assume, then, that each task is responsible for 
corresponding rows of .4" B, and C. 

Let's think about what task i can do with row i of A, row i of B,'and row i 
of C. Recall that 

,.-1 
Cu = L (/i,kbk.] 

k~il 

With row i of matrices A and B, the task can compute (li.ibj,O, which is one of the 
terms of Ci.O' It can also compute ai))i.l, which is one of the terms of Ci.l, and so 
on. In other words, the task can perlorm n multiplications that represent partial 
sums for the n elements of row i of C. 
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Then what? We've already noted in an earlier section that row i of C is the 
of row i of A and matrix 8. So to complete its work each task must -

. eventually access each row of B. 

11.3.3 Communication and Further Agglomeration 

If we organize the tasks as a ring, and each task passes its row of B to the next 
.task in the ring, after a series of m iterations every task will have had possession 
of every row of B. 

Figure 11.7 illustrates this process assuming there are four rows in C. 
The number of processes on which we execute our parallel algorithm is 

probably much less than the number of rows in the product matrix, so we need 
to think {If further agglomeI'll!ion. Given the communication pattern we 'have 
developed, it makes sense to us.e a rowwise block-striped decomposition scheme. 

11.3.4 Analysis 

To simplify our analysis, we assume that ,4, B, and C are all n x n matrices. We 
also assume thatn is a multiple of p, the number of active processes. Each process 
controls the samenl p rows of A and C throughout the algorithm. The contiguous 
groups of nip rows of B are passed from process to process as illustrated in 
Figure 11.7. 

When the algorithm begins, each process initializes its VI I p) x n portion of C 
toO. During each iteration every process mUltiplies an (nl p) x nip block of A by 
the (nl p) x n portion of Bit currently possesses. It adds the reslllting (/11 p) x n 
matrix to its portion of C. If X is the time needed for one of the add-multiply 
steps inside an inner product, the computational ti~e of each itemtion is 

X (nl p)(nl p)n == XnJ I p2 

During every iteration, each process must also communicate its portion of B 
to the next process on the ring. If the communication is done after the computation, 
the time needed to send these elements would add A + (nl p )nl f3 to the execution 
time of each iteration. Receiving the next section of B from the predecessor ring 
process would occur at the &arne time. 

The algorithm has p iterations. The total computation and communication 
time, then. is 

Let's dOUble-check on this expression. The sequential algorithm would have 
execution time Xn3. Since the computations are divided perfectly among: the 
processes, it makes sense that the computational portion of the parallel algorithm 
lias execution time Xn3 I p. 

Every process sends p messages, so the pl term also makes sense. Finally. 
every process handles all of B 3JId sends all of it (one piece at a time) to its 
successor process, so the n 2 I f3 term fits. 
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U tj 
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Figure 11.7 Communication of B in 
row-oriented parallel matrix multiplication 
algorithm_ Each task is responsible for a row of 
A a row of B, and a row of C. If B has m rows, 
then after m-l communication steps each task 
has had access to every row of B. 

Let's determine the isoefficiency of the rowwisc block-striped matrix multi­
plication algorithm. The sequential algorithm has time complexity S(nJ)_ The 
communication complexity of the parallel algorithm is 8(n2

). We multiply tbe 
community complexity by the number of processors p to get the overhead term:' 
1;, (/I, p) = 8(pIl2). Hence the isoefficiency relation for the rowwise block-striped 
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matrix multipl ication al gorithm is 

11
3

::: CPll2 :::} II ~ Cp 

We note that the memory utilization function M(n) = II'. Let'~ detennine how 
memory utilization per processor must increase in order to maintain a constant 
level of efficiency: 

M(Cp)/p =c2l/p = C2p 

This algorithm is not highly scalable. 
Finally, tbis algorithm presents a good opportunity for overlapping commu­

nicatiorts with computation. Assuming there is enough memory to receive a new 
of B while performing computations on the current section, each pro­

cess could initiate its send/rcceive of B sections before it performed the matrix 
multiplication step. Since the communication complexity is 8(n2) and the com­
putational complexity is 8(113), the communication step can be almost completely 
overlapped with computations when the matrix sizes are large enough. (The time 
to initiate the communication cannot be overlapped with a computation.) When 
this happens, 5pI"..edup can be very high. 

Can we do better'! 
Let's consider the computation/communication ratio of the parallel row­

ori~nted algorithm. Whcn multiplying two n x n matrices on p processes, where 
II is a multiple of p, each proce.% iterates through p iterations of a loop in which 
it multiplicsan (n/ p) x (n/ p) submatrix of A with an (nip) x 11 submatrix of B. 
Since the matrix multiplication steps are interleaved with communiC'dtion steps 
in which elements of B are being passed from process to process. the ratio of 
computations per element of B is 

21131l 2n 
11 2/p p 

The ratio is relatively low, because the submatrices of B have p times as many 
columns as rows. 

In the next section we will develop an algorithm that improves the 
computation-to-communication ratio. 

11.4 CANNON'S ALGORITHM 
In this section we develop a paraUel algorithm based upon a checkerboard block 
decomposition of the matrices. The algorithm is often referred to as Cannon's 
algorithm {14J. 

11.4.1 Agglomeration 

The row-oriented parallel algorithm has a low ratio of computations per element 
of B because the blocks of B being manipulated are short and fat-having p 
times as many columns as rows. 
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A B c 

(a) 

A B c 

(b) 

Figure 11.8 Comparison of number of elements' of A 
and B needed to compute a process's portion of C in -
the two parallel matrix multiplication algorithms. (a) In 
the row·oriented algorithm, each process is 
responsible for computing n/ p rows of C. It needs to 
reference n/ p rows of A and every element of B. (b) In 
Cannon's algorithm, each process is responsible for 
computing an (n/ JP) x (n/.ffJ) block of C. It needs to 
reference 0/ JP rows of A and n/.ffJ columns of B. 

The task responsible for computing element c'.j of the product matrix require~ 
access to every element of row j of A and every element of column j of B. 
With a row-oriented agglomeration, every process is responsible for computinE 
elements of entire rows of C, meaning it requires access to every element of B 
(See Figure 11.8a.) 

If, in contrast, we agglomerate tasks responsible for a square (or nearly square 
block of C, the number of elements of B any process needs to access is dramati 
cally reduced. 

Let's figure out how much better this scheme is. To simplify the math, let'! 
assume that matrices A, B, and C have dimensions 11 x n, that p is a squan 
number, and that n is a mUltiple of JP. Each process is responsible for computinf 
an (n / JP) x (n / JP) block of matrix C. To compute these elements, the proces: 
needs to referencen/ JP rows of A and n/ JP columns of B (See Fwure 11.8b. 

Each process still performs an equal share of the computations-2113 / p. Thl 
number of elements each process needs access to is 211(n/ JP). The computation 
to-communication ratio is 
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Let's determine when the computation-to-communication ratio for Cannon's 
algorithm is superior to the ratio for the "rowwise" algorithm: 

n 2n 
->-=}jp>2=}p>4 
JP p 

Cannon's algorithm seems to hold more promise when the number of processes 
is greater than four. 

11.4.2 Communication 

Now that we've established the potential for an algorithm based on a checker­
board block decomposition, let's see if we can unlock that potential. First, let's 
take a look at how A and B are distributed among the processes in a checker­
board block decomposition (Figure 1\.9a). Process Pj,j contains blocks A i.j and 
Bi,j and is responsible for computing block C,j' Except for the processes on 
the main .diagonal, processes hold blocks of A and B that do not need to be 
multiplied. 

We need to move the blocks around so that every process Pj,j has a pair of 
blocks whose multiplication will contribute to the calculation of C,j' One way to 
do this is illustrated in Figure 11.9b. Each process in row i of the process mesh 
cycles its block of A to t1je process i places to its left. Each process in column j 
of the process mesh cycles its block of B to the process j places above it. Now 

~~~~ 
~~llIo.J~ 

(a) 

~'O ~O.l ~.2 ~O'J 
B B B, B '0 1.1 ~_ JJ 

(b) 

Figure 11.9 Alignment of blocks for matrix multiplication. (a) Initial 
distribution of blocks among processes. Process p;, i contains 
blocks A,j and Bi,!. The block matrix multiplication algorithm 
multiplies all pairs Ai,k&,j' Note that in the original distribution only 
the processes on the main diagonal (Po,D, f\.1, P2,2, and Pd have 
such pairs. (b) The parallel algorithm cycles each row i of A to the 
left by i column positions. It cycles each column i of matrix B 
upward by i TOW positions. Now every processor A,j has a pair of 
blocks to multiply. 
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we've satisfied our condition: each process can multiply the blocks of A and B it 
controls to produce a partial result for its block of C. 

Recall the size of the process mesh is JP x JP. After the initial step to 
rearrange the blocks of A and B, the parallel checkerboard matrix: multiplication 
algorithm has JP steps. Each process multiplies the blocks of A and B it controls, 
adding the result to its partial sum of C. It cycles its block of A to the process to 
its left, and it receives a new block of A from the process Oil its right It cycles 
its block of B to the process above it, and it receives a new block of B from 
the process below it. Figure 11.10 illustrates this block-cycling activity from the 
point of view of process P 1,2 in a 4 x 4 process mesh. 

11.4.3 Analysis 

In this subsection we'll derive an ex.presslon for the expected execution time of 
Cannon's algorithm. To simplify our analysis, we assume that A, B, and Care 
all n x n matrices. We also assume ~at p is a square number and that 11 is a 
mUltiple of JP, the number of active processes. Each process is responsible for 
computing an (n I JP ) X (II J JP) portion of C. 

First let's consider the computation time. When the algorithm begins, each 
process initializes its portion of C to O. During each iteration, every process 
multiplies an (n/JP) x (rtl JP) block of A by an (nl JP) x (nl JP) block of 
B and adds the result to its partial result for C. If X is the time needed for one 
of the add-multiply steps inside an inner product, the compullltional time of each 
iteration is 

The algorithm has JP iterations. Hence the total computation time is (as we 
should expect) 

JPxn) I p3i2 = xn3 j p 

Now let's look at the communication requirements. Before the first iteration, 
each process must send its blocks of A and B to the appropriate destination 
processes and receive the blocks of A and B it needs for the first iteration. Our 
model assumes that messages may he sent and received concurrently, bUl it allows 
only a single message at a time to be sent or received. Let I I ~ be the time 
needed to transmit a single malri x. element. The time needed for the initial block 
distribution is 

2(A + /1
l

) 
p~ 

During each of the JP iterations, every process must pass along its A and B blocks 
and receive new blocks to multiply. The total time required for these steps is 
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Figure 11.10 Cannon's matrix multiplication algorithm from the point of 
view of process ~,2' Note that processes are organized into a 2·0 mesh, 
and each process has already senT its blocks of A and B to the process 
that needs them for the iirst iteration. (a) First block multiplication step. 
After each block multiplication process P,,2 sends its block of A to the 
process on its left and receives a new block of A from the process on ils 
right. Similarly, it sends ils block of B to the process above it and receives 
a new block oi B trom the process below it. (b) Second block matrix 
multiplication step. (c) Third block matrix muttiplication step. (d) Rnal block 
matrix muniplication step. Summing the results of all block matrix 
muttipllcations yields C,,? " 
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Adding these three terms, our e"pression for the expected overall execution 
time of Cannon's algorithm is 

XnJ/p + 2(.jP + I) (A + ;~) 
What is the isoefficiency of Cannon's algorithm? The sequential algorithm 

ha<; time complexity 8(n 3). The communication complexity of the pardlle[ algo­
rithm is 8(n2

/ /P). We multiply the community complexity by the number of 
processors p to get the overhead teun: To(n, p):=:: 8 (/pn2

). Hence the isoeffi­
ciency relation for the rowwise block-striped matrix multiplication algorithm is 

n3 ~ CJPn2 
=} n ~ C.fP 

Recall M(Il) = n2
• Hence the scalability function is: -

M(Cjp)/p= C2pjp =C2 

Because constant memory utilization per processor is sufficient to maintain ef­
ficiency as processors are added, we conclude Cannon's algorithm is highly 
scalable. 

As in the ca~e of the row-oriented algorithm, Cannon's algorithm presents 
a good opponunity for overlapping communications with computation. If th~re 
is enough memory to buffer new A and B blocks while working on the current 
blocks, each process can initiate its ~nds and receives of A and B blocks before 
starting the matrix multiplication for that iteration. After the matrix multiplication 
step, the process can check for the completion of the message receives before 
starting the next iteration. Since the communication complexity is B(n2

) and 
the computational complexity is 8(n3), the communication step can be almost 
completely overlapped with computations when the matrix sizes are large enough. 

11.5 SUMMARY 

In this chapter we have developed two pa["dlle1 algorithms for matrix multiplica­
tion. The first algorithm is based on a rowwise block-striped matrix decompo­
sition, while the second (Cannon's algorithm) is based on a checkerboard block 
matrix decomposition. Both algorithms divide the computations evenly among 
the processes. Cannon's algorithm, however, requires less c.ommunication among 
processes. Isoefficiency analysis reveals that Cannon's algorithm is highly scal­
able, while the first is not. If sufficient memory is available, both algorithms can 
benefit from communication/computation overlapping. 

We also explored performance issues related to sequential matrix multiplica­
tion. The straightforward algorithm has a memory reference pattern that results 
in a poor cache hit rate once the second factor matrix no longer fits in cache. We 
presented a recursive matrix multiplication algorithm that divides matrices into 
blocks when the matrices are too large to fit in cache. We showed how a program 
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based on this algorithm maintains high CPU performance, even as the matrix 
sizes grow beyond the cache limits. 

In order to ilChieve best performance, parallel programs performing matrix 
multiplication should rely U!KlU a high-speed sequential matrix multiplication 
function, such as the recursi ve function presented in this chapter, when multiplying 
submatrices. 

11.6 KEY TERMS 

Cannon's algorithm 

11.7 BIBLIOGRAPHIC NOTES 

In this chapter we showed how a recursive matrix multiplication algorithm led 
. to an improved cache hit rate. Recursion is often an effective variable blocking 

technique for dense linear algebra algorithms, a, pointed Qut by Gustavson {48]., 

11.8 EXERCISES 

r -3) f' -3 -2 ~ 

11.1 Suppose .4 = 4 I -I _;) md B ~ l 2 
-I 

3 2 1 --4 
a. Compute C = AB. 
b. Consider the submatrices 

Aoo = (I 2) Am = (-3 -2) 

.410= G ~) ( -I All == I -~) 
and 

('-2) (-3) Boo = 3 BOI = 2 

'4) . (--1) B:o = ( I BII = -4 

C C (AooBoo t AOiBIO ,t\1I0BOI t AOI Bll) 
.ompute = AlOBootAIlBIO ,t\lIJBII t AIIBII . 

Show the result of each block matrix multiplication. 
11.2 In the parallel matrix multiplication algorithm based upon a rowwise 

block-striped matrix decomposition, each process ends up multiplying 
its portion of A by the entire matrix B. If we replicated B across all 
processes, it wou Id greatly simplify the algorithm. What is the 
fundamental problem with this approach? 
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11-1 Both the rowwise algorithm and Cannon's algorithm can call the 
recursive sequential matrix multiplication algorithm as a subroutine 
when multiplying their portions of A and B. 

a. Why is Cannon's algorithm a better match for the recursive sequential 
ma1rix multiplication algorithm than the algorithm ba~ed on a 
rowwise striped decomposition? 

b. Design a modification to the recursive sequential matrix multi· 
plication algorithm that addresses the problem raised in part (a). 

11.4 Consider the optimization of overlapping communication steps with 
computation steps in the two parallel matrix multiplication algorithms 
discussed in this chapter. Suppose p = 16, ~ = 1.5 x \06/sec, 
A = 250 11 sec, and X = 10 nanosec. 
a. For what values of n em we expect the communication time per 

iteration of the rowwise algorithm to be less than the computation 
lime? 

b. For what values of fI can we expect the communication time per 
iteration of Cannon's algorithm to be less than the computation time? 

11.5 Write a program implementing the parallel matrix multiplication 
algorithm described in Section 11.3. The program should read the factor 
matrices from files and write the product matrix to a file; the names of the 
files should be specified on the command line. Assume the matrices 
contain double-precision ftoating·point values. They should be stored in 
the files according to the protocoll1rst described in Chapter 6: two 
integers In and n, indicating the number of matrix rows and columns, 
respectively, followed by mn double-precision fioating-point values. 
a. Benchmark your program on 1, 2, 3,4, ... , P processors for square 

matrices of size 100, 200, 400, 3I\d 300, ignoring file I/O time. Plot 
the four speedup curves on a graph. 

b. Benchmark yom program on 1,2, ... , p processors for square 
matrices of size 100, 200.400, 3I\d 800, taking into account file I/O 
time. Plot the four speedup curve" on a graph. 

11.6 Write a program implementing Cannon's algorithm described in 
Section 11.4, assuming that the number of processes executing the 
program is a square number. The program should rcad the factor matrices 
from files and write the product matrix to a file; the names of the files 
should be specified on the command line. Assume the matrices contain 
double-precision floating-point values. They should be stored in the files 
according to the protocol first described in Chapter 6: two integers 111 

and n, indicating the number of matrix rows and columns, respectively, 
followed by mil double-precision floating-point values. 

a.B enchmark your program on 1, 4, 9,. ., p processors for square 
matrices of size 100, 200, 400, and 800, ignoring file I/O time. Plot 
the four 5peedup eurves on a graph. 
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b. Benchmark your program on 1, 4, 9, ... , p processors for square 
matrices of size 100, 200, 400, and 800, taking into account file I/O 
time. Plot the four speedup curves on a graph. 

11.7 Design a version of Cannon's algorithm that works when the number of 
;" processes is not a square number. 

11.8 Write a parallel program based on Cannon's algorithm that takes 
advantage of all processes available, even when the number of processes 
is not.a square number. The program should read the factor matric.e.~ from 
files and write the product matrix to a file; the names of the files should 
be specified on the command line. Assume the matrices contain 
double-precision floating-point values. They should be stored in the files 
according to the protocol first described in Chapter 6: two integers m and 
n, indicating the number of matrix rows and columns, respectively, 
followed by mn double-precision floating-point values. 
a. Benchmark your program on 1,2,3,4, ... , p processors for square 

matrices of size 100, 200, 400, and 800, ignoring file I/O time. Plot 
the four speedup curves on a graph. 

b. Benchmark your program on 1,2,3,4,. " p processors for square 
matrices of size 100, 200, 400, and 800, taking in to account file 110 
time. Plot the four speedup curves on a graph. 
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CHAPTER 

Solving Linear Systems 

Concern for man himself alld his fate must always form th~ chief interest 
of all technical endeavors, cOllcern for the great umolved problems of the 
organiEltion of labor and the distribution of goods-in order thauhe creations 
of our mind shall be a blessillg and /lot a curse to mankind. Never forget this in 
the midst ofyour diagrams and equatiolls. 

Albert Einstein, Address at the California Institute of Technology, 1931 

12.1 INTROPUCTION 
Many scientific and engineering problems can take the form of a system of lin­
ear equations. Here is a sampling of the domains from which these problems 
arISe: 

• structural analysis (civil engineering) 
• heat transport (mechanical engineering) 
• analysis of power grids (electrical engineering) 

• production planning (economics) 
• regression analysis (statistics) 

Because linear systems derived from realistic problems are often quite large, there 
is good reason to learn how to solve them efficiemly on parallel computers. 

In Section 12.2 we define the terminology to be used in the rest of the chapter. 
InSections,,12.3 and 12.4 we consider direct methods for solving dense systems of 
linear equations. We begin with an examination of upper triangular systems, which 
can be solved using the back suhstitution algorithm. We then consider how to solve 
dense systems o fIi near equations. The Gaussian elimination algorithm transforms 
a dense system into an upper triangular system, which can then be solved using 
back substilution. In the course of developing a parallel Gaussian elimination 
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algorithm, we 11 introduce a new kind of reduction, called a tournament, and 
explain how to implement it in MflI. 

The discretization of partial differential equations often results in the creation 
of sparse systems of linear equations. Iterative methods are more appropriate for 
these systems than Gaussian elimination. They solve a system oflinearequations 
by generating a series of increasingly better approximations to the solution vector. 
We introduce the Jacobi method and the Gauss-Seidel method in Set:tion 12.5. 
Tnese methods slowly converge on the solution. In contrast, the conjugate gra­
dient method, presented in Section 12.6, converges on the solution inuch more 
rapidly. 

For three of these sequential algorithms-back substitution, Gaussian elim~ 
ination, and the conjugate gradient method-we develop a pair of parallel algo­
rithms based Oli different data decompositions. In all three cases we see that there 
are conditions under which each of the decompositions is preferable:' 

12.2 TERMINOLOGY 

A linear equation in the II variables x~, Xt, •.. , XII -1 is an equation that can be 
expressed as 

where ao, aj, .. _, a,,-l and b are constants. 
A finite set of linear equations in the variables xo, xl, .. " Xn-l is called a 

system of linear equations or a linear system. A set of numbers So, S I, .•. , S,,-l 

is a solution to a sY5tem of linear equations if and onl y if making the substitutions 
Xo = So, XI = Sj, . ,. ,X,,-t :=; Sn-l satisfies every equation in the linear system. 

A system of n linear equations in n variables 

an,OXo +an.1XI + ... +aO.n-lx,,-1 bo 
al,OXO +al,lxl + ... +al. ll -IXIl -1 bl 

an-LoXa +all-l,lxl + ... +1111-1.,,_IX,,_1 b,,_1 

is usually expressed as Ax = b, where A is an n x n matrix containing the ai.jS, 

and x and b are n-element vectors storing XiS and biS, respectively. 
An n x It matrix A is symmetrically banded with semibandwidth \II if 

i - j > \II ~ a/,j = 0 and j - i > \II =} aj.j = 0 

In other words, all of the nonzero elements of A are on the main diagonal, one 
of the \II adjacent diagonals above the main diagonal, or one of the w adjacent 
diagonals below the main diagonal. 

An n x )1 matrix A is upper triangular if 
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An n x It matrix A is lower triangular if 

i < j '* Gi,j = 0 

A matrix is strictly diagonally dominant if 

laid > L iUijl, {) ::: i < n 
f:rfC 

An n x n matrix A is symmetric if aj,} == Gj,i for 0::: i, j ::: n - I. 
An n x n matrix A is positive definite if for every nonzero vector x and its 

transpose x T, the product x TAx> O . 
.\',"" -':"-'.' ""-;o"~'_'o'.,;~.~' -,",,~:~4';;ot:,:,-t"';'~'""'~' ii',f':'.' -";'I:;~~i:'~~';~«":'-~ 

12.3 BACK SUBSTITUTION 
Back substitution is an algorithm that solves the linear system Ax == b, where 
A is upper triangular. [0 !bis section we'll look al the sequential back substitution 
algorithm and evaluate different ways to execute it on multiple processors. 

12.3.1 Sequential Algorithm 

Let's start by looking at an example of the back substitution algorithm in action. 
Suppose we want to solve the system 

Ixo +lx l -lx2 +4X3 = 8 

-2."(1 -312 +lx1 5 

2X2 ·~3X3 0 

2X3 4 

We can solve the last equation directly, since it has only a single unknown. After 
we have determined that x] = 2, we can simplify the other equations by removing 
lheir Xl tenns and adjusting their values of b: 

Ixo +lx l -lx2 - 0 

-2xl -3X2 == 3 

2X2 6 

2X3 4 

Now the third equation has only a single unknown, and a simple division yield~ 
X2 =; 3. Again, We use this informalion to simplify th~two equations above it: 

lxo +lx, = 3 

-21, 12 

2x1 6 

2t3 4. 
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Sack SI1bstitution: 

alO . .ll - I, O •. n - I) - ,oefficienl m.l!i.t 
b[a ..• - IJ - constant vector 
x[O .. n - 1]- sulution vector 

fori .. ·n-\ down to I do 
.ttil .. b[il/a[i, i] 
for j f-Ol0i -\ do 

bUl ... bIj) - xli) x aU)j 
ali, iJ .. ·0 lThis line is optionall 

endfor 
endfor 

Figure 12.1 The back 
substitution algorithm solves 
Ax == blor x where A is an upper 
triangular matrix. 

We have simplified lhe serond equation to contain only a single unknown, and 
dividing bi hy OJ;t yields Xl = -6. After subtracting Xl x /lo,l frum bo we have 

lxo = 9 
-2xI 12 

2x" 6 
2X3 4 

and it is easy lo see thal Xo = 9. 
Pseudocode for the sequential back substitution algorithm appears in 

Figure 12. L The time complexity of this algorithm is (.,(n2
). 

Now let's look for ways to execute this algorithm in parallel. We begin by 
drawing a data dependcnce diagram that has one vertex for each of the original 
matrix and vector elements, plu,~ an additional vertex for each time an element of 
vector b is assigned a new value. As always, an arc from vertex u to vertex v means 
that the value of II is used to compute the new value of v. The datauependence 
diagram appears in Figure 12.2. We use heavy lines to illustrate a cliticai path 
through the graph. It is evident from the critical path that the elements of X must 
be computed one at a time. In other words, we cannot execute the outer for loop 
in paralleL 

However, we can execute the inner for loop in paralleL Eacb new value of b j 
depends only on its previou~ value, the value of Xi, and the value of a j,i, 

12.3.2 Row-Oriented Parallel Algorithm 

Suppose we associate a primitive task with each row of A and the corresponding 
elements of X and b. During itcration j the task associated with row j must 
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Figure 12.2 Data dependence diagram forthe back 
substitution algorithm. As the algorithm progresses, 
the values of elements of bget changed. Overlapping 
circles indicate that the previous value contributes to 
the new value. 
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Figure 12.3 Two more ways to decompose a two-dimensional 
matrix. (The first three ways appeared in Figure 8.3.) (a) Rowwise 
interleaved striped decomposition. Here eight rows are decomposed 
among three processes. (b) Columnwise interleaved striped 
decomposition. Here ten columns are decomposed among IoU! 
processes. 

compute the new value of hi' meaning it needs access to the current values of Xi 

and a jJ. Since it controls row j of A, it has direct access to a J.i' However, it does 
not have access to Xi unless i == j. Hence task j must first compute Xi and then 
broadcast its value to all of the other tasks. 

Let's determine the time complexity of this parallel implementation of back 
substitution. assuming we agglomerate primitive tasks into p larger tasks (one 
per process) ~o that process k controls all rows i where i mod p = k. We call this 
a rowwise interleaved striped decompQSition. It is illustrated in Figure 12.3a. 
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Over the course of the algorithm the average number of iterations or loop j 
p<:rformoo by any process is about n/(2p). Since the algorithm has n - I itera­
tions, the computational complexity of the parallel algorithm is 8{n2 j p). 

During each iteration the process controlling row i broadcasts Xi to the other 
processes. Since the algorithm ha~ n - 1 iterations, the overall message latency is 
8(/llogp). Because all messages contain a single element, the overall message 
transmission time is also B(n log pl. 

Deriving the isoefficiency relation and scalability function for this algorithm 
is left as an exen;ise at the ena of the chapter. 

12.3.3 Column·Oriented Parallel Algorithm 

An alternative design associates one primitive task per column of A. We'll a~sume 
thattask j, where 0 S j < n, isresponsible for column j of A and x j. At the 
beginning of the algorithm task n - I is also responsible for vector h. 

We agglomerate tasks in an intcrleaved fashion) creating a colulllDwise in­
terleaved striped decomposition of the matrix (Figure 12.3b). We can determine 
the comple~ity (If the parallel algorithm based on this decomposition: 

During itera.tion i proccss i is responsible forcornputing Xi and updating 
vector b. In the first iteration (when i = n _. I), process n - I mod p already has 
column n - , of A and vector b, so it may computc X,,_I and upda~e b without 
any communications. However, communications are needed at this point In the 
second iteration, process n - 2 mod p has column II - 2 of A, but it doesn't have 
a copy of b {unless p == I). The process that updated b in the first iteralion must 
pass n - I e[ement~ of it to the succcssor process. 

For each iteration of the ?uterJoop, one process is responsible for computing 
Xi and updating b. There is no computational concurrency, and hence the com­
putational complexity of the parallel algorithm is identical to the computational 
complexity of the sequential algorithm: 8(n2

). Between iterations, clements of b 
must be sent from one process to another. The average number of elements passed 
is about n (2. Since there are It - , [terations, the overall communication late.ncy 
is 8(/1) and the Ilverallmessage transmission time is 8(112). 

12.3.4 Comparison 

The row-oriented parallcl back substitution algorithm has computational time 
complexity 8 (/l2! p) and mcssage transmission timc 8(nlog pl. In contrast, thc 
column-oriented algodthm has computational time complexity 8("2) and meso 
sage transmission time B{n\ For any fixed valuc ot p. the row-oriented algorithm 
must eventually prove to have better execution time lIS n increases without bound. 

The row·orkn~d algotithm has overall message latency of 8{n log p), while 
the column-oriented algotithm has overallmcssagc latency of 8(n). Hence [or 
any fixed value of n, the column·orientedalgorithm must eventually prove to have 
better execution time as p increascs without bound. 

We can draw a graph that illustrates the values of n and p for which each 
algorithm is superior. The result is Figure 12.4. The row-oriented algorithm 
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2 

Column-<Jriented 
algoriilllIl superior 

Row-oriented 
algorithm superior 

n 

Figure 12.4 A compatison of the 
row-oriented and column-oriented 
designs for a parallel back substitution 
algorithm reveals that each 
implementation would be superior to 
the other for certain combinations of 
nand p. 

divides the computational load among the processes, but it requires n broad­
cast steps. Hence it is superior when n is relatively large and p is relatively small. 
In contrast, the column-oriented algorithm has no parallelism in the computation, 
but it requires .only n point-ta-point messages, making it the preferred algorithm 
when n is relatively small and p is relatively large. 

12.4 GAUSSIA.N ELIMINATION 

12.4.1 Sequential Algorithm 

Gaussian elimination is a well-known algorithm for solving the linear system 
Ax = b when the matrix A has nonzero elements in arbitrary locations. Gaussian 
elimination reduces Ax = b to an upper triangular system Tx =- c, at which 
point back substitution can be performed to solve for x. 

We may perform three operations on a system of linear equations without 
changing the value of the solution l4}: 

• Multiply every term of an equation by a nonzero constant 

• Interchange two equations 
• Add a multiple of one equation to another equation 

Hence we can replace any row of a linear system by the sum of that row and 
a nonzero multiple of any roW of the system. 
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Let's look at an example. Here is a dense system of linear equations that we 
want to get into upper triangular form: 

4x~ +6x, +2X2 -2X3 = 8 
2xo +5XI -2X3 4 

-4xo -3x] -5X2 +4xJ l 

8xo +J8xj -2X2 +3X3 40 

Coefficient.a!,o = 2 and ao,O = 4. Dividing 2 by 4 yields 0.5. If we replace 
row I by the sum of row 1 and -0.5 times row 0, the first term of row I becomes O. 
Similarly, if we replace row 2 by the sum of row 2 and I times row 0, the first 

• term of row 2 beco!llesU.Replacing row 3 by the sum of row 3 and -2 limes 
row 0 causes the first term of row 3 to become 0: 

4xo +6X1 +2X2 -2x} 8 

- 3X1 +4X2 -Ix3 0 

+3x, -3X2 +2X3 9 

+6X1 -6X2 +7X3 24 

Now that we've driven to 0 all coefficients below 120,0, let's focus on coefficient 
inthe column below au. We replace row 2 by the sum of row 2 and I times row L 
We replace row 3 by the sum of row 3 and 2 times row L Here is the resulting 
system: 

4xo +6x[ +2x1 - 2x3 = 8 

-3xj +4X2 _.!X) 0 

+lX2 +Ix) == 9 

+2xz +5x) = 24 

Finally, we need to drive to 0 the coefficient below a2,2. We replace row 3 by 
the sum of row 3 and -2 times row 2: 

4xo +6x, +2xz -2x3 8 

-3Xl +4X2 -Ix} 0 

+lxz +1x3 9 

+3X3 6 

This completes our transformation of the dense linear system into an upper 
triangular system. At this point we can use back substitution to transform th e 
system into diagonal form, allowing us to detennine the solution vector. 

Figure 12.5 illustrates one iteration of the algorithm. All nonzero elements 
below the diagonal and to the left of column i have already been eliminafed. In 
step i the nonzero elements below the diagonal in column i are eliminated by 
replacing each row j, wherei + 1::: j < n, with the sum of row j and-aj,ijau 
times row i. After n - 1 such iterations, the linear system is upper triangular. 

Tn the straightforward Gaussian elimination algorilhm just described, during 
iteration i row i is the pivot row, that is, the row used to drive to zero all nonzero 
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Elemenll alleady 
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Figure 12.5 itera1ion i of the Gaussian elimination 
algorithm drives to 0 all elements of column i below row i. 
For each row j below row i, it subtracts a multiple of row j 
from row j. The multiple is chosen so that after the 
subtraction the element is column i is O. 

elements below the diaJ;onal in column i. However, if the pivot elemclIl au is close 
to zero, dividing by it can result in significant roundoff errors. Hence this approach 
does not in general exhibit good numerical stability on digital computers. 

Fortunately, a simple variant, called Gaussian elimination with partial 
pivoting, does produce reliable results. In step i of Gaussian elimination with 
partial pivoting of rows, rows i through n - I are searched for the row whose 
column i element has the largest absoluie value. This row is swapped (pivoted) 
with row i. Once this has been done, the algorithm uses multiples of the pivot 
row, now stored as row i, to reduce to zero all nonzero elements of column i in 
rows i + I through n - L See Figure 12.6. 

A sequential algorithm to perform Gaussian elimination with partial pivoting 
of rows followed by back substitution appears in Figure 12.7. The algorithm has 
two notable features. Firs~ note that there is no separate anllY to hold vector b. 
Since the manipulations of the elements of b are identical to the manipulations of 
the elements of A, we adjoin b to A, creating an augmented matrix with n rows 
and n + I columns. Hence in this algorithm array II represents the augmented 
matrix. 

Second, note that rather than actually swapping the pivot row and row i 
in each iteration, the algorithm makes use of indirection. Array element loc[i 1 
contains the index of the pivot row of iteration i. 

12.4.2 Parallel Algorithms 

Let's determine how well-suiten Gaussian elimination is to parallelization. The 
sequential algorithm requires about2n3/3 floating-point operations [95]. Most of 
these operations occur inside the innermost for loop. A study of the algorithm's 
data dependences reveals that both the innermost for loop indexed by k and the 
middle for loop indexed by j can be executed in parallel. [n other words, once 
the pivot row has been fouod, the modifications 10 all unmarked rows may OCCllr 
simultaneously. Within each row, once the multiplier a [loc[j], ill a[loc[i J, i J has 
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Figure 12.6 Comparing simple 
GaussianeliminatiQlland ~aussian 
efiminatiOn~th partialpiv6ting. ta) Simple 
Gaussian elimination transforms 
coefficient matrix A into an upper 
triangular matrix. (b) Gaussian elimination 
with partial pivoting traf]sforms coefficient 
matrix A into an upper triangular matrix 
with permuted rows. Array element foc{ij 
indicates where to find row j of the 
triangular matrix. For example, array 
element fac{OJ = 2 means the Oth row of 
the triangular matrix is stored in row 2. 

been computed, modifications to elements i + I through n - I of each row may 
occur simultaneollsly. Hence the algorithm is well suited to parallelization. 

We will consider two paraIlel implementations, basw on two different data 
decompositions. 

12.4.3 Row·Oriented Algorithm 

Let's associate a primitive task with each row of A and the corresponding elements 
of band x. If we examine the data dependences for iteration i, we see that 
determining the pivot row picked requires a kind of reduction of the values in 
column i, which are distributed among the tasks. 

We call the interaction to determine the pivot row a tournament, because we 
are interested in the identity ofthc pivot row (the winner) more than the magnitude 
of the value stored at column i in the pivot row (the score). 

How can we implement a toumament in MPI? One way to do it would be to 
perform two all-reductions. In the first ali-reduction, every task from an unmarked 
row would contribute the absolute value of the column i element of its row of 
A. (If a task's row had already been used as a pivot row, it would contribute the 
value 0, to ensure the row isn't chosen again.) After the first all-reduce step, every 
task would know the maximum value contributed by any task. Now it's time for 
the second reduclion step. Each task compares its value with this "winning" valuc_ 
1f its value matches the winning value, it contributes its ID number; otherwise, it 
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Gaussian E6minauOII (Row Piloting): 
for i +- () to n -. I 

{oc[i] +-i 
endfor 

f<lei ,·-Oton-I 

{fInd pivot [(1W picked} 
magnitude +- 0 
forj+··iton-! 

if ja[loc[jJ, ill> magnitude 
magnitude ,·la[locU!.iJI 
picked +- j 

endif 
endfor 
tlJlP +-loc[iJ 
Ioc[i J +- tJx[pjckedJ 
ioc[p",kedJ +- Imp 

(Drive to 0 coluron j clement> in umllllo::ed rows) 
for j +- i ..;.1 to ".- , 

t +- a[ilJclj}; iJla(locli]. i] 
fork +-itltontl 

a[locU!. kJ +- a[lor[jJ, kJ - a[loc[jJ. kJ x r 
endfor 

endfor 
end for 

{!lack substit~tioll) 
fori +- /l .- I down to 0 

x[iJ +- a[lvefiJ, nJla[loc[iJ. if 
farj +-Oloi -Ido 

a[lnc[jj, nJ +- a[loc{j/. nJ - xfiJ x a[locfj]. i] 
endfor 

endfor 

Figure 12.7 Sequential Gaussian 
elimination algorithm with partial pivoting, 
followed by back substitution. 

contributes -1. After another all-reduce step with the max:imum operator, every 
(ask knows the ID number of a task with the largest value. (We say a task rather 
than the task, because more than one task may tie for having the largest value in 
column i.) 

While this works, it seems wasteful to perform two all-reductions, one right 
after the other. Fortunately. MP! provides a way to implement a tournament in 
a single all-reduction. The operator MPI_MAXLOC, applied to a seqLlence of 
p pairs (va, io), (VI, i]), ... , (up_I> ip-d, finds the max:imum value Uk among 
Uo, VI, ••• , lip _] and returns the pair (Vb h). 

In order to lise MPI_HAXLOC (or its analog MPI_MINLOC) in a reduce 
operation, you must provide a datatype that represents a (value, index) pair. MPI 
provides six predefmed (value, index) datatypes. They are shown in Table 12.1. 
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Table 12.1 MPI datatypes representing (value, index) pairs. Note that the 
Index must always be a varlab1e of type lOt. 

NFl_2INT 
MPI_DOUBLE_INT 
MPIJWilT_INT 
MPl_LaNG_INT 
}IPl_LONG_DOU13LE_lNT 
MPI_SIlORl'_IN'l' 

Two ints 
A double followed by an int 
A float followed by an inl 
A long followed by an iul 
A long double followed by an int 
A short followw by an iut 

We need to create a C structure to conti un the (value, index) pair. We pass 
the structure to the reduce function. Here is how we could use this feature in a 
parallel implementation of Gaussian elimination: 

struct { 
double value; 
int index; 

local. global; 

local.value fabs(a[jj [il); 
local.index = J; 

MPI_Allreduce (&local. &global, J, MPCOOUBLE_INT. 

MPI_MAX_LOC, MPCCOMM_WORLD) i 

EvelY process in the communicator passes its (value, index) pair to MPT_ 

Mlreduce through stIuet locaL When the function returns, the maximum 
value and the index associated with that value are in struct global. 

Determining the pivot row during iteration i happens in two steps. First, each 
process finds, among the unmarked rows it is responsible for, the row having the 
largest magnitude value in column 1. This has time complexity (0(nj pl. Second, 
the processes participate in a tournament 10 find the pivot row. 'Ine tournament 
has time complexity (0 (log p). 

That is the first communication step needed per iteration, but there is another. 
See Figure l2.8. In order to compute the new value of a[j, k), a task needs access 
to the values of a[j, i], a[picked, i], and a[picked, kJ, We've assigned each task 
a row of A, so the task controlling (IV, kJ also controls a[j, i), but the values of 
a{picked, i] and a{picked, k] are held by another task. Hence a broadcast step is 
also needed. 

1l!c task controlling row picked could broadcast a[picked, kJ to the other 
tasks for each iteration ofthe for loop indexed by k, but this would result in 0 (n) 
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Figure 12.8 In order to update «ilikj, a task 
needs to have the values of ~ ilil. a[pickedJ[i), 
and a[picked][kJ. 

broadcast steps per iteration. It makes more sense for the broadcast to take place 
before this for loop. In other words, elements i through n of row picked should 
be broadcast at once to the other tasks. The average number of eielpents being 
broadcast is about n12. Hence the message latency of the broadcast is e(Iog p), 
and the message transmission time of the-broadcast is e(n log p). 

Combining both communication steps, we see.thaHhe row·oriented paral­
lel Gaussian elimination algorithm has overall message latency e (II log p) and 
overall message transmission time 8(n21og pl. 

We still need to decide how to agglomerate the primitive tasks into larger 
tasks that can be associated with MPI processes. Using a rowwise block-striped 
decomposition isa sound strategy. The use of partial pivoting means that (in the 
absence of other information) one unmarked row has as great a chance as any 
other of being chosen as the pivot row for a particular iteration. As the algo­
rithm progresses, the expected number of unmarked rows per process wil.l remain 
balanced, and the computational complexity of the parallel algorithm is (")(n3

/ p)-
Let's determine the isoefficiency of this panlllel Gaussian elimination algo­

rithm. The tolal communication overhead across p processes is B(n2plogp), 
Hence 

11
3 

:::: Cn2 p log p i:,~ Il :::: Cp log p 

Let's find the scalability functiun of this parallel system. Since M(n) = 11
2

, we 
have 

M(Cp log p)1 p = C1 p210g2 pip = (.'2 P log1 P 

This algorithm has poor scalability. 



SECTION 12.4 Gaussian Elimination 

12.4.4 Column-Oriented A~gOlithm 

Let's look at an alternative design for a parallel Gaussian elimination algorithm. 
We associate one primitive task with each wlumn of A and another primitive task 
with vector b. 

During iteration i of the algorithm, the task controlling column i of A is 
responsible for finding the candidate element with the largest magnitude. rt must 
only consider rows that have not yet been used as pivot rows. Hence every task, 
needs a copy of array loc. 

In a single iteration, the wlumn-oriented algorithm spends 8(fl) time iden­
tifying the pivot row. 

After the task re~'Ponsible for column i has identified the pivot row, it must 
broadcast the identity of the pivot row and the column i elements of the unmarked 
rows to the other tasks, which need this information in order to do their share 
of the updates of A and b. This step has message latency 8 (log P 1 and message 
transmission time 8(n log p). Over the course of the entire algorithm, the over­
all message latency is 8(nlog p) aud the overall message transmission lime is 

- t-)(nz log pl . 
. If we agglomerate the primitive tasks in an interleaved fashion, we end up 

with a columnwise interleaved striped decomposition of A. This decomposition 
ensures that the workload remains balanced as the algorithm progresses. 

Each processor performs n-early an equal share of the computations each 
iteration. Hence the computational complexity of the parallel algorithm is 
8(n3 

/ pl. 
The isoefficiency of the column-oriented algorithm is the same as the row­

oriented algorithm. The algorithm is not highly scalable. 

12.4.5 Comparison 

Both the row-oriented and the column-oriented parallel Gaussian elimination 
algorithms evenly divide the computational work inside the doubly nested for 
loops indexed by j and k. The row-oriented algorithm requires that the process 
responsible for the pivot row broadcast it to the other processes. The column· 
oriented algorithm requires that the process responsible for column i broadcast 
it to the other processes during iteration i.ln these two respects, therefore, the 
el(pected execution time of both parallel algorithms should be about the same. 

The most significant difference between the two algorithms, therefore, is in 
the identification of the pivot row. The row-oriented algorithm divides the work 
to find the pivot row among the processes at the cost of an all-reduce step. The 
column-oriented algorithm performs this step sequentially; no communication is 
required. Hence the low-oriented algorithm should be superiorwhenn is relatively 
larger and p is relatively smaller, while !he column-oriented algorithm should be 
superior when p is relatively larger and n is relatively smallet: Note that this is the 
same conclusion we reached when we discussed the row-oriented and column­
oriented back substitution algorithms. 
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Neilher of these algorithms, however, exhibits good scalability. We need to 
find a. way to reduce die communication overhead. 

12.4.6 Pipelined, Row-Oriented Algorithm 

The row-oriented and column-oriented algorithms we have just considered are 
synchronous in the sense that they neatly divide the parallel program's execu­
tion into communication and computation phases. Consider the row-oriented 
algorithm. First tile processes participate in a tournament to determine the pivot 
row. Then the process controlling the pivot rows broadcasts it to the other pro­
cesses. After the broadcast step, allof the processes use the pivot row to reduce the 
portions of the submattices they control. Once this has been done, the processes 
again participate in a tournament to determine the next pivot row. 

The disadvantage of the synchronous approach is that processes are not 
performing computations during the broadcast steps, .and the cumulative time 
complexity of the broadcasts, 8(n2/p), is large enough to ensure the parallel 
algorithm has poor scalability. 

We need t\l find a way to overlap communication time with computation time. 
We could do this if we knew in advance the pivot row for iteration i. Recall that 
we introduced partial pivoting of rows in order to ensure numerical stability, but 
by doing this we make it impossible to predict the row that will ~rve as the pivot 
row for iteration i. What if instead of applying the partial pivoting principle to 
the rows of the matrix, we applied partial pivoting to its columns? In iteration 
i we will examine row i to find the element with the largest magnitude. We let 
this serve as the pivot element. We then reduce rows i + I through n - I of 
the coefficient matrix, zeroing out their elements in the column containing the 
pivot element. Pseudocode for Gaussian elimination based on partial pivoting of 
columns appears in Figure 12.9. 

Let's design a parallel algorithm from the sequential algorithm based on 
pivoting of columns. We choose a rowwise interleaved striped decomposition of 
the augmented matrix, and we organize the processes as a logical ring. 

When the algorithm begins execution, process 0 searches row 0 to determine 
the column containing the element with the largest magnitude. As soon as it 
finishes the search, it sends 3 message to task 1 contai ning row 0 and the index of 
the pivot element. While this message is being transmitted, process 0 can reduce 
the rest of its share of the augmented matrix. 

Process I waits until it has rc.ceived row 0 from process O. After receiving 
row 0, it immediately passes it a.long to process 2. Then it uses row 0 and infor­
mation about the pivot element to reduce it~ share of the matrix. At this point it 
can determine the pivot element for row L It does so and then initiates a send 
of row L to process 2. While these messages are being passed, process 1 can use 
row 1 to reduce its share of the rows of the matrix. 

Row 0 is sent from process 0 to process 1, from process I to process 2, and 
so on until it reaches process p - L Row 1 is sent from process 1 to process 2, 
from process 2 to process 3, and continues around the logical ring of processes 
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Gaussian Elinunalion (Column Pivoting): 
fori <-- 010 n 

loe{if <-- i 
rndfor 

fori +-O/oJ,-1 

[Find pivO! column picked] 
magnilllde+- 0 
forj +-iton-I 

if la/i,1ocUJ/ I > nUl8J!ilUde 
mGgJJjrude <-- la[L Ioc/jlll 
pjckPd +- j 

~ntlif 

endlor 
Imp +- Ioc[i} 
loe[iJ ,- foc[pirked[ 
Ioc[pick~d} +- Imp 

IOrive to 0 Clliumn 10c[;j elements in rows j + I thmugh n - IJ 
[Of j +-i + 110 n - I 

t <-- aU,lo/;[iJl I ali. loc[i]] 
for k +- i to n + I 

aU. hx[klJ +- af}, loc[kll- aU, loc[klJ xr 
endfor 

endfor 
endfor 

IBack ~ubslitutionl 
for i +- n - I down to 0 

x[/oc[iJ] +- u[i, II} I a!i.loc[jJl 
forj <-:010; -1 do 

-af}. II} +-a[j, II} - x[loc[ij} x aU. locIi}} 
endfor 

endfor 

Figure 12.9 Sequential Gaussian elimination 
algorithm with pivoting of columns. followed by back 
substitution. 

until it reaches process O. Each row sellt by a process works its way around the 
ring lIntil it reaches the process's predecessor. 

Our previous two parallel implementations of Gaussian elimination rely on 
broadcasts. This implementation replaces the broadcast step with a series of point­
to-point messages being sent around a ring of processes. \\lhy is this approach 
superior? By pipelining the flow of messages, the parallel algorithm has two ,-() 
decide~advantages. First, it facilitates asynchronous execution: processes can 
reduce their portions of the augmented matrix as soon as the pivot rows arc 
available. Second, it allows processes to effectively overlap communication time 
with computation time. 

[ IZ is sufficiently large, it is reasonable to assume thatthe time spent trans­
mitting row elements overlaps the time spent reducing mauix elements, because 
the total reduction time is 8(113

/ p), while the total message transmission time 
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is 8(n2). Message start-up time cannot be overlapped with computation. Since a 
process must send IT - I messages, the total communication time of this algorithm 
is 8(n). 

Let's determine the isoefficiency oIthis parallel system. The sequential time 
is 8(//3). Parallel overhead is 8(np). Hence 

nJ ?: Clip => n ?: /cp 

Since M{ll) =: n2, our scalability function is: 

M(.jCp)lp = Cplp = C 

Assuming IT is large enough to enSUre that message transmission timees~cntially 
overlaps with computation.time, this parallel system is perfectly scalable. 

12.5 ITERATIVE METHODS 
Gaussian elimination followed by back substitution is an example of a direct 
method for solving a system of linear equations. The algorithm works through 
a prescribed number of steps, and at the end of the algorithm the value of the 
solution vector is known. 

Gaussian elimination works well when the system of linear equations is 
dense. However, if we apply Gaussian elimination to a sparse system of linear 
equations (one that has relatively few nonzero elements), the coefficient matrix 
gradually fills in with nonzero elements. Figure 12.10 illustrates this phenomenon 
wjth a small, 9 x 9 system. (The fill becomes more dramatic when the matrix. 
size increases and the distance between the diagonal stripes of non7.ero elements 
grows.) Element fill is undesirable, because it in~reases storage requirements and 
the total operation count. 

An iterative method i~ an algorithm that comes up with a series of approx­
imations to the value of the solution. Typically, iterative methods require less 
storage than direct methods. By avoiding operations on zero elements, they can 
also save a lot of computations. Often, they are amenable to parailelization.ln this 
section we consider two simple iterative methods for solving a system of linear 
equations. 

Assume we want to solve the linear system of equations Ax = b, where 
the diagonal elements of A are nonzero; that is, aii =f. 0 for 0 <: i < n. The 
Jacobi method begins with an initial approximation XO to the solution vector. It 
repeatedly computes a new approximation XH1 from the current approximation 
xk using the formula 

The Jacobi method in pseudocode appears in Figure 12.11. 



SECTION 12.5 Iterative Met~ods 

0 1 

•• 0.00000 •• 0.00000 •• 0-00000 
••• 0.0000 U •••• OOOO O •••• OOOU 
0 •• 00.000 0 •• 00.000 00 •••• 000 
.00 •• 0.00 O.O •• O.IJIJ OO ••• IJ.OO 
0.0 ••• 0.0 O.O ••• O.U 00 •••• 0.0 
00.0 •• 00. 00.0 •• 00. 00.0 •• 00. 
000.00 •• 0 000.00 •• 0 000.00 •• 0 
OIJIJO.O ••• 0000.0 ••• 0000.0 ••• 
00000.0 •• [10000.0 •• 00000.0 •• 

3 4 5 

•• 0.00000 •• 0.00000 •• 0.00000 
0 •••• 0000 0 •••• 0000 0 •••• 0000 
00 •••• 000 00 •••• 000 00 •••• 000 
000 •••• 00 000 •••• 00 000 •••• 00 
OIJIJ ••• O.O [I[IO[I •••• IJ [IOOIJ •••• O 
000 ••• 00. 0000 ••• 0. OOO[JD •••• 
000.00 •• 0 0000 •••• 0 00000 ••• 0 
0000.0 ••• 0000.0 ••• OOOUO •••• 
00000.0 •• 00000.0 •• 00000.0 •• 

6 7 8 

•• 0.00000 •• 0.00000 •• 0.00000 
O •••• OODfl O •••• OOOIJ 0 •••• 0000 
00 •••• 000 00 •••• 000 00 •••• 000 
000 •••• 0['] OOU •••• OO 000 •••• 00 
0000 •••• 0 0000 •••• 0 OOOU •••• O 
00000 •••• 00000 •••• OODlJD •••• 
OIJIJIJ[IO ••• OO[IOOIJ ••• OOOOIJIJ ••• 
000000 ••• 0000000 •• OOOOOOU •• 
000000 ••• 0000000 •• 00000000. -
Figure 12.10 Application of Gaussian eliminalion to a sparse 
system of nine linear equations. The matrix labeled 0 is the stale of 
the system at the beginning allhe algorithm. Black squares 
represent nonzero coefficients; white squares represent zeroes. The 
matrices labeled 1 through 8 show the coefficients after each 01 the 
8 iterations of the algorithm. 

Figure 12.12 illustrates the successive values of a two·dimensional vec­
tor as the Jacobi method solves a system of two linear equations with two 
unknowns. 

Note that in the Jacobi method computing Xk+l from xk is a perfectly par­
allel operation: each new element of x'+ J is computed using tbe values of Xk. 

Convergence is quicker if we always use tbe latest value flf Xi tbat is avail­
able. We can accomplish this in our pseudocode- algorithm by replacing the 
line 

newLil +- (l/alj, j]) x (bin _. sum) 

307 



308 CHAPTER 12 Solving Linear Systems 

with 

Jacobi Metbod: 

a{O .. 11 - I. O .. n - 1] - coeffidenl malriK 
b(O • .Jl •. -1/ - constmlvector 
IteW[O .. 1I - l] -' new value of resuit vector 
sUJII- accumulates [WIiai ",sulls 
x[O .. n - 1]- result ,'e<;tor 

fori ~OtOI1 -I do 
xlii ~O 

endf(J1 
repeal 

furj ~Oton-·loo 
sum ~O 
f.lIk ~Oton-ldo 
in fjtheu 

s!tln f-SUn,+ a[j,kj x Jelk} 
endif 

endfor 
nelVfjJ ~ (II aOj}) .x (oU) - 'rim) 

eodfor 
for j .,..Oton-I do 

xU] ,- new{jJ 
endfor 

until values in x COffiIerge 

Figure t 2.11 The Jacobi method 
is an iteralive algorithm for solving 
Ax = b where lhe elements 01 A on 
the main diagonal are nonzero. 

x[j] +- (i/a[j, j]) x (b[j] - sum) 

and deleting the for loop that copies the elements of vector new into vector x. 
The algorithm that results from this change is called the Gauss-Seidel 
method. 

Recan Ibat a matrix is strictly diagonally dominant if 

la;'1 > "'la-I 0 < i < n .1 L....; IJ' "-

iii 

If the coefficient matrix A is strictly diagonally dominant, both the Jacobi 
method and the Gauss-Seidel metbod converge on the unique solution to Ax =: b 
for any initial vector xo. 

Even when the Jacobi method and the Gauss-Seidel method are guaranteed 
to converge on a solution, the rate of convergence is often too slow to make 
them practicaL For this reason, we are not going to develop parallel versions of 
either algorithm. In Section 12.6 we present an iterative method with much better 
convergence properties. 
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F"tgure 12.12 Plat of vectors Xl, X2, x3, X4 

generated by the Jacobi method as it solves the pair 
of equations 2x + y = 7 and x + 3y= 11, given 
XO = (0, 0). The successive values of x converge on 
the solution vector (2, 3). 

12.6 THE CONJUGATE GRADIENT METHOD 
Recall that n x n matrix A is positive definite if for every nonzero vector x and 
its transpose xl', the product x TAx> O. If A is symmetric and positive delini te, 
then the function 

I T r q (x) = .' x Ax - x b + c 
2 

has a unique minimizer that is the solution to Ax = b [41]. The conjugate 
gradient method is one of many itelative algorithms 'that solve Ax = b by 
minimizing q(x). If rounding mor is ignored, the conjugate gradient method is 
guaranteed to converge on a solution in n orfewer iterations [9,411. 

12.6. f Sequential Algorithm 

An iteration of the conjugate gradient method is of the form 

xU) = xV - I) -\- s(t)d(t) 

The new value of vector x is a function of the old value of vector x, a scalar step 
size s, and a direction vector d. 
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Before iteration I, vallles of x (0), d(O), and g(O) must be set In our imple­
mentation of the algorithm x (0) and d({)) are botb initialized to the zero vector 
and g(O) is initializ.ed to -b. Every iteration t -calculatesx(t) in four steps. 
Step 1: Compllle the gradient 

g(t) +- Ax(t -- I) - b 

Step 2: Compute the direLiion vector 

d(t) +- -get) + g(t)T get) d(t - I) 
get - IV g(t - 1) 

where g(l)T get) represents the inner proouct of the transpose of vector get) and 
vector get). 
Step 3: CompUle the step size 

Step 4: Compule the new approximation of x: 

x(t) +- x(t - I) + s(t)d(t) 

A pseudocode implementation of the conjugate gradient methoo appears in 
Figure 12.13. 

Figure 12.14 shows how the conjugate gradient method, given the same 
system of two linear equations as the Jacobi method (Figure 12.12), finds the 
solution in two iterations. 

Suppose matrix A is symmetrically banded with semibandwidth w. (fig­
ure 12.15a).ln this case, finding the inner product of a row of A and a vector has 
time complexity 8(w). Hence the matrix-vector multiplication steps have time 
complexity EJ(nw). The other vector operations, including the inner product (dot 
product) operation, have time complexity 8(n). 

12.6.2 Parallel Implementation 

We have discussed parallel algorithms to perform matrix-vector multiplication in 
Chapter 8. Here we must modify the algorithm to take advantage of the fact that 
matrix A is banded. In particular, processors only store the portions of the rows of 
A that contain nonzero elements (Figure 12.15b). This saves memory and makes 
the algorithm execute faster, but it means that various indices in the matrix-vector 
mUltiplication algorithm must be modified. 

Suppose we choose a rowwise block-striped decomposition of A and repli­
cate all vectors. In this ca~e the multiplication of A and a vector may be per­
formed without any communications, but an all-gather communication is needed 
to replicate the result vector. The overall time complexity ofthe parallel algorithm 
is 8(Ij1w!p+nlogp). 
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Coojugate Gradient 

fori <-Ololl-I do 
d[i) <-0 
xli] <-0 
g[i] ,- -·b[l] 

endfor 
for j <- 1 to 11 do 

.11 <- InnerJ'roouct(g,)j) 
g .... Matrix_ Vector-Product (A, x) 
fori .... 01011"--100 

g{i]..-- g[i]- bIll 
~ndfor 

!Ii <-lnner .. ProduCi (g, g) 
if n 1 < f break enda 
fori ..-- Olon I . 

dlil ( .. -g[il + (nIJdl) x dlil 
endfor 
112 <-lmJer_PNJduc~d, g) 
r <- Matrix 3ectoU'roducl (A, d) 
d2 ,- Inner_Produ~d, I) 

J' <- -n2(d2 
fori *-Olon-\ 

xli] (- ,Iii] + J x d[iJ 
endfor 

e"Mor 

Figure 12.13 Sequential 
conjugate gradient algorithm. 

Xl 

F'l9ure 12.14 The conjugate gradient method requires 
two iterations to solve the pair of equations 2x + y = 7 
and x+ 3y= 11. The solution vector is (2, 3). 
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.0.000000000 
[1.00.0000000 
00 •• 0.00[1000 
.00 •• 0.[10000 
0.0 •• 0.000[10 
000 •••••• 000 
OOIJ.OO.OO.OO 
00000 •••• 0.0 
000000 ••• 0.0 
000000000 ••• 
OOOOIJOO.OO.O 
00000000.00. 

(a) 

.00.00·.1 0 •••• 0. 
0 ••• 0.0 

000 ••• 
.00.0 
.00. 

{b) 

figure 12.15 Rowwise block-slriped 
decompOSition of a symmetrically banded matrix. 
(a) A symmetrically banded matrix with 
semibandwidth 3. All nonzero elements 
(represented by black squares) are on the main 
diagonal or one of the three diagonals 
immediately above or below the main diagonal. 
(b) Storing the matrix on four processors. Since 
the matrix has semibandwidth 3, each row is 
represented by 7 = 2 x 3 + 1 elements. Note thaI 
the fOllrth (I.e., the middle) entry of each row 
contains one·of the elements on the main 
diagonal ot the matrix. _ 

lt~ on the other hand, we choose a block decomposition of vectors, an all­
gather communication is needed before the matrix.-vector multiplication takes 
place, but no communication is needed to replicate the blocks ofthe result vector. 
The overall time complexity of this approach is the same as the first method: 
B(n1w / p + II log p). 

Let's ~ee how the two different data distributions for the vectors affect the 
complexity of the rest of the algorithm. First let's consider the ca~e where vectors 
are replicated. Since every process has a complete copy of every vector, it mllsl 
execute every iteration of every loop updating a vector. Hence the parallel time 
complexity of the loops modifying values of vectorsg,x, andd is 8(n). Likewise, 
the time required to pertorm the inner product of two n-element vectors is also 
8(n). 

Now let's consider the c£!;e where vectors are decomposed by blocks among 
the processes. In this case the time needed to initialize a vector to 0 or subtract one 
vector from another is (>9(11/ p). On the other hand, performing an inner product 
requires that each process find the inner product of its subveclOr, followed by a 
Slim-reduction step. The complex.ity of the inner product operation. then, would 
be 8(Il/ p + log p). 
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Block-decomposed 
vectors 

Jl 

Figure 12.16 Comparis011 01 two 
approaches 10 perfonning inner 
product (dot product), As n -+ 00, 

distributing the vector elements 
among processes, performing partial 
inner products, and then performing a 
sum-reduction operation is laster than 
replicating vectors and having each 
process perform the sequential 
algorithm. However, for small values 
of n the time required to perform the 
reduction is greater than the time 
saved by distributing the computation, 
and repKcalion is the preferred 
alternative. 

If we fix p and increase n, eventually the computational time becomes the 
dominant factor. In this case the algorithm that decomposes the vectors by bloc1cs 
among the processors is superior. U we fix II and increase p, eventually the 
communication time becomes the dominant factor. In this case the algorithm 
that replicates the vectors and avoids all communications is superior. When n 
dominates p, Figure 11.16 illustrates the regions for which each data distribution 
scheme is superior. 

12.7 SUMMARY 
In this chapter we have examined both direct and indired methods for solving 
systems of linear equations. We have considered parallel versions of back sub­
stitution, Gaussian elimination, and the conjugate gradient method. In each case 
we have explored two distinct implementations, based on ditTerent data decom­
positions. In each L:ase we have discovered that neither implementation is clearly 
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superior to the other. Instead, which parallel algorithm is faster depends upon 
the size'of the problem, the number of available processors, the speed of the 
processors, and the speed of the communi,,;ation network, 

12.8 KEY TERMS 

augmented matrix-
back substitution 
banded matrix 
coluninwise and row wise 

Interleaved striped 
decompositions 

conjugate gradient method 
direct method 
Gaussian elimination 

Gauss-Seidel method. 
iterative method 
Jacobi method 
linear equation 
linear system 
lower triangular 
partial pivoting 
positive definite matrix 
pivot row 

12.9 BIBLIOGRAPHIC NOTES 

solution 
sparse matril 
strictly diagonally domiffilnt 
symmetric 
symmetrically banded 
system of linear equations 
toumament 
upper triangular 

The textbook by Bertsekas and Tsitsiklis [91 is the 'primary source forthis chapter, 
They discuss algorithms to solve systems oflincar equations, nonlinear problems, 
shortest-path problems, and network flow problems, among many others. Consult 
Golub and Ortega [41J for a thorough, mathematical explanation of how the 
conjugate gt'adient method works, 

Other books describing parallel numerical algorithms include Dongarra et aL 
[22] and Fox et at r33]. 

Gallivan et ai, [36] have surveyed parallel algorithms for dense linear algebra 
computations, 

12.10 EXERCISES 

12.1 Use back substitution to solve the upper triangular system produced in 
Section 12AJ, 

12.2 a, Derive the isoefficiency relation and the scalability function for the 
row-oriented parallel back substitution algorithm described in 
Section 12.3.2. 

b, Design a parallel back substitution algorithm that uses pipeliniIlg to 
overlap communications with computations, Analyze the time 
complexity of your algorithm, and determine its isoefficiency 
relation and scalability fUllction, 
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123 Forwllrd substitution is an analog to the back substitution algorithm. It 
is used to solve \{)wer triangular systems. Write a sequential forward 
substitution algorithm in pseudocode. 

12.4 Implement a C program to solve a system of linear equations Ax = b 
using Gaussian elimination with row pivoting followed by back 
substitution. Your program should input the system of equalions (rom a 
file. The file contains a matrix of doubles in the same format used to 
store matrices in Chapters 6 and S. The first two elements of the file are 
two integers. lbe first has the value n; the second has the value n + J. 
The remainder of the file contains n(n + I) doubles, corresponding to 
the elements of A and b stored in this order: 

ao,o, 00,[' ... , aO,1I-1, bo, 
al.O,aI,[' .•. ,aLn-l,b1, •.• , 

an-I,n, {lll·-I,h ... , a,,-l.n-l, bll- I 

12.5 Using a C program as your starting point, implement three parallel 
programs sol vi ng a system of I il)ear equations Ax = b using row 
pivoting. The programs should read the system of equati{)ns from a file. 
The fOIDlat of the data file is the same as in Exercise 12.4. The 
programs should print the result vector x to standard output. 
a. Use a rowwise block-striped decomposition of the augmented 

matrixAb. 
b. Use a column wise interleaved striped decomposition of the 

augmented matrix Ab. The program should rely on broadcasting to 
transfer columns. 

c. Use a columnwise interleaved striped decomposition of the 
augmented matrix Ab. The program should use pipelining to overlap 
communications with computations. 

12.6 a. Derive an expected execution time for the row-oriented Gaussian 
elimination program designed in Section 12.4. 

b. Derive an expected execution time for the column-oriented Gaussian 
elimination program designed in Section 12.4. 

c. Using parameters from your parallel computer, draw a graph similar 
to the one of Figure 12.4 that illustrates the ranges of values of n and 
p for which programs based on each of the two designs is expected 
to be superior. 

12.7 Implement a C program to solve a system of linear equations Ax = b 
lIsing Gaussian elimination with column pivoting followed by back 
substitution. Your program should input the system of equations from a 
file. The file contains a matrix of doubles in the same format lIsed to 
store matrices in Chapters 6 and 8. The first two elements of the file are 
two integers. The first has the value n; the second has the value n + I. 
The remainder of the file contains 11(11 + I) doubles, corresponding to 
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the elements of A and b stored in this order: 

ao.a, £lo.t, .• , no.n-J, bo, 
au, au,· .. , aLII-I, bt .···, 

a,,-I.O,an-l.I, .. ,all-I.n-\' bn- 1 

12.8 Write a parallel program that implements a pipelined version of 
Gaussian elimination with column pivoting to solve a system of linear 
equations Ax = b. The augmented matrix Ab should be divided among 

- the processes using a rowwise interleaved striped decomposition. The 
program should read the system of equations from a file. The fonnat of 
the data file is the same as in exercise 12.7. The program should at the 
result vector x to standard output. 

12.9 Design a parallel Gaussian elimination algorithm based on a 
checkerboard block decomposition of the augmented matrix Ab. 
Determine the isoefficiency of this algorithm and its scalability function. 

12.10 Implement a parallel program solving a system of linear equations 
Ax == b, using a checkerboard block decomposition of the augmented 
matrix Ab. Your program should input the system of equations from a 
file. The file contains a matrix of doubles in the same format used to 
store matrices in Chapters 6 and 8. The program should print the 
solution vector x to standard output. 

12.11 Implement a C program to solve a system of linear equations A.x = b 
using the conjugate gradient method. You can be assured that A is a 
symmetric, posi tive definite matrix. 

Your program should input the system of equations from.a file. The 
file contains a matrix of doubles in the same fonnat used to store 
matrices in Chapters 6 and ·S. The first two elements of the file are two 
integers. The first has the value n; the second has the value n + L The 
remainder of the file contains lI(n + 1) doubles, corresponding to the 
elements of A and b stored in this order 

ao.O. Go,,, .... ll(ln-l, boo 
al,O, a 1.1 , '" , al.J1 -I, bb ... , 
all-l.O, ar.-I.I,··' ,an-l,n-l, bn,-I 

Your program should print the result vector x to standard output. 
12.12 The file format we first used in Chapter 6 assumes the matrix is dense. 

The purpose of this exercise is to develop and exploit a new file format 
designed for syrmnetrically banded matrices. 
a. Design a file format to store symmetrically banded matrices. The 

size of a file should be proportional to the number of rows in the 
matrix limes its semi bandwidth. 

b. Implement a C program to solve a sparse system of linear equations 
Ax = b using [he conjugate gradient method. You can be assured 
iliat A is a symmetrie, positive definite matrix. Your program should 
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input matrix A from a file, using the file format you have designed. It 
should input vector Ii from another file. Your program should print 
the reSlllt vector to standard output. 

c. Using tbe C program as a starting point, implement a parallel 
program for the conjugate gradient method that assllmes vectors are 
replicated among processors. Benchmark your program on your 
parallel computer for various numbers of processors and different 
problem sizes. 

d. Using the C program as a starting point, implement a parallel 
program for the conjugate gtddient method that assumes a block 
dccomposition of vectors among processors. Benchmark your 
program on your parallel computer for various numbers of 
processors and different problem sizes. 
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C HAP T E R 

Finite Difference Methods 

Big words do not smite like war-clubs, 
Boas~f'ul breath is not a bow-string, 
Taunts are not so sharp as arrows, 
Deeds are better things than words are, 
Actions mightier than boastiregs. 

Henry Wadsworth Longfellow, The Song of Hiawatha 

13.1 INTRODUCTION 
An ordinary differential equatioo is an equation containing derivatives ofa func­
tion of one variabl e. A partial differential equation (PDE) is an equation contain­
ing derivatives of a function of two or more variables. Many phenomena studied 
by scientists and engineers can be modeled by PDEs. Here are a few examples: 

• Airflow over an aircraft wing 
• Blood circulation in the human body 
• Water circulation in an ocean (see Figure 13.l) 

• Deformations of a bridge as it carries traffic 

• Evolution of a thunderstorm 
• Oscillations of a skyscraper as it is hit by an eanhquake 

• Strength of a toy 
• Temperature distribution of a CPU's heat sink 

• Vibrations of a subwoofer 

It is possible to derive analytical solutions to simple PDEs in simple geometric 
regions. In generaL however, analytical solutions are not possible, and we must 
seek an approximate result to the equation through numerical (computational) 



SECTIOH 13.1 Introduction 

Figure 13.1 Sea surface temperature from a high-reSOlution 
(1/12', approximately 6 kilometer grid spacing on the average) 
North Atlantic finite difference numerical calculation with the 
Miami Isopycnic Coordinate Ocean Model (MICOM). (Courtesy 
MlCOM group at the Rosenstiel School of Marine and 
Atmospheric Science, University of MiamL) 

methods. These numerical methods often consume a large number of CPU cycles. 
That's why it's worthwhile to explore parallel methods for solving rDEs. 

The two most common ways to solve PDEs numerically are the finite ele­
ment method and the finite difference method. This chapter focuses on the finite 
difference method. 

The finite difference method converts a PDE into a matrix equation. As we 
ubserved in the previous chapter, the matrices produced by the finite difference 
methud are sparse. (Typically there are unly a few nonzero elements per row.) Im­
plementatiuns ufthe finite difference me thud fall intuone oflwo broad categories. 
depending upon how they represent the sparse matrix. Matrix-based implemen­
tatiuns represent the matrix explicitly, using data suuctnres that support efficient 
access of the nonzero clement'). In the last chapter we demonstrated how iterative 
methuds can beused to solve these linear equations. Matrix-free implementations 
represent the matrix values implicitly. In this chapter we focus on matrix-free im­
plementatiuns of the finite difference method. 
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We begin by defining linear second·order POEs. Linear s~ond-order POEs 
can be put into three categories, and each has different solution methods. We also 
show how difference quotient~ approximate the first and second derivatives of a 
continuous function at a point. 

Two case studies-the vibrating string and the steady-~tate heat distribution 
problem--illustrate techniques for parallelizing programs. 

13.2 PARTIAL DIFFERENTIAL EQUATIONS 

As we have already noted, a POE is an equation containing derivatives of a 
function of two or more variables. For example, assume u is a function of x and 
y: u = J (x, y). We denote the partial derivative ofu with respect to x as u" 
similarly, we denote the partial derivative of u with res~t to y as UY' Because 
only a single partial derivative is taken, these partial derivatives have order one. If 
k partial derivatives are taken, we say they have order k.Here are the three partial 
derivatives of Ii with order two: Um U'Y' and !lyy. 

A sec()nd-onler partial differential equation contains no partial derivatives 
of order more than two. S~ond-order POEs are the POEs most frequently used 
to solve problems in the physical sciences and engineering. . 

Linear second-onler partial differential equations are of the foml 

Auu + 2Bu'J + CU yy + Eux + Fuy + GIl = H (13.1) 

where A, B, C, D, E, F, G, and H are functions of x and y only. 
Here are examples of linear second-order POEs: 

4uxx + 6xyu,y = 0 

rru,y + x2uYJ' = sin(xy) 

Here are examples of equations that are not linear second-order POEs: 

U;x+Uyy=O 

lill,). + sin(xy)uvJ' = x + y 

The first is not a linear s~ond-order POE because the Un term is squared; the 
second is not a linear second-order PDE because the UXY term is multiplied by u. 

Basedon the values of A, H, and C in equation (13:1), we can classify linear 
second-order POEs into three categories: 

• Elliptic PDEs are those for which 82 
- AC < O. 

• Parabolic PDEs are those for which 82 - AC = O. 
• HyperboUc PDEs are those for which B2 - AC > O. 

Each of these categories has a wen-known representative equation. 
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The Poisson equation, u.u + u)'J' := I(x, y), is an example of an elliptic 
PDE. It arises from the study of potential problems in electricity, magnetism, and 
gravitating matter, steady-state distribution of heat or electricity in homo geneous 
conductors, and certain fluid flow and torsion problems. When lex, y) = 0, the 
poisson equation is called the Laplace equation. 

'The heat equation, ku-u == Ur, is an example of a parabolic POE. The heat 
equation arises from the study of heat conduction in solids. The study of diffusion 
of liquids and gases results in the same equation as the heat equation, but in this 
context it is called the diffusion equatiun. 

The wave equation, c2un == IIlh is an example of a hyperbolic PDE. The 
wave equation arises from modeling wave propagation and the vibration of strings _ 
and membranes. 

13.2.2 Difference Quotients 

While different algorithms are used to solve elliptic, parabolic, and hyperbolic 
PDEs, all finite difference methods approximate the solution to a PDE by 
dividing the variables (often time and space) into discrete intervaL~. To illustrate 
this process, let's consider how to approximate the first and second derivatives of 
a function. 

Consider function f in Figure 13.2. (We're assuming I is a continuous 
function that has a derivative at each poinL) We want to compute the first and 
second derivatives of I at a particular point x. A reasonable approximation to 
J'(x) is: 

, I(x + hl2l - I(x -hll) 
f (x);,;; h 

x x+hl2 ~\'+h 

Figure 13.2 Approximating the derivative 01 
function f at x. 
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By reducing h we can reduce the error in the approximation. We can use this same 
formula to ~stimate f"(x) = f'(J'(x)): 

f" (x) "" ~---"--------:----"---~ 
h 

"" f(x + h) - f(x) - ((f(x) - f(x - h)) 

- h) 

13.3 VIBRATING STRING 
As our first case study in the [tnite difference method, we consider an example of 
a hyperbolic partial differential equation. This section presenl~ only the briefest 
sketch of the algorithm's development; see Plybon 192] for more details. 

13.3.1 Deriving Equations 

Examine Figure 13.3. Our goal is to model the behavior of a vibrating string (such 
as a guitar string). In particu lar, we want to be ab Ie to detennine the posi tion of 
the string at some future time, ba~ed upon its initial position. 

The endpoints of the string are fixed. We Jet variable x represent points along 
the imaginary line between one endpoint and the other. The len endpoint is where 
x = 0; the right efIdpoint is where x = l. Hence 0 S x :S l. 

We let variable t represent time. The initial position of the string is it~ position 
at time O. Hence t :::: O. 

Function u(x, t) describes the displacement of the string at point .I at time t. 

L5,---~--

t ~ Q.O and 1.0 

! ~ 0.5 

Figure 13.3 Motion of a vibrating string over time. 
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This particular probl.em is modelet1 by a set of equations. The first equation, 
a linear second-order PDE, expresses how the displacement changes with respect 
to time: 

0< x < I, 0 < r 

The second equation expresses the fact that the string is lixed at both ends: 

u(O, t) = u\l, t) = 0 where t > 0 

The third and [Qurth equations describe the initial position and velocity of the 
string at time 0, respectively: 

u(.r,O) = sin(:Jtx), 1l/(x,O) = 0 where 0 .:: x.:: I 

Our problem is a specific example of the wave equatiQu, wbicb has this 
general form: 

Os x.:: a, t 2: D 

u(x,O)=F{x) and u/(x,O)=GCr) on [O,a] 

u(O, t) = u(a, t) = 0 

[n general, we want to find a solution to the problem for values of.1: between 
o and a, for all times from 0 to T. We divide space into n intervals and time into 
m intervals, and we define h == a jll and k = T / m. In other words, k is the time 
step and h is the "space step." If the time step k is too large, our discretization will 
be too crude, and the algorithm will not be stable (i.e., the difference between our 
approximate solution and the actual solution will grow rapidly with every time 
step). This is the case when the fraction ke/ h > l. On the other hand, if the time 
slep is 100 small, round-off errors can accumulate, which also reduces the accuracy 
of the estimate. This is the case when the fraction kc / h < I. Hence the best 
accuracy is obtained when ke/ I! = I. 

After we have checked to ensure ke/ h S 1, we can push ahead. We define 

Xj = ih 

tj = jk 

i = 0, l. ... ,II 

j = 0, I, ... , m 

Now we can define ft,,) = U(Xi. t) to be the displacement of the string at 
position Xi and time t j (see Figure 13.4). 

13.3.2 Deriving the Sequential Program 

Using the fomlUla we derive.d in Section 14.2, we can come up with an approxi­
mation to the second partial derivative U xx: 

U(Xi + n, tj) - 2U(Xi, tj) + U(Xi - h, t)) 
!lxAXi, tj) '" h2 

~~ Uitl.j - 2uI,j + U,-Lj 
~~ . h

2 
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Figure 13.4 Dividing space and time into discrete intervals creates 
a rectangular lattice. The boundary conditions are along the bottom 
and sides of the rectangle. Each intersection uf,i represents an 
approximation of u for Xi and tj";-in other words, the displacement of 
one point of the siring al some point in time. 

Similarly, we can approximate the second partial derivative Utt.: 

, u(x" 
UII(Xi, tj.l ~ -----'-----,-'--------'--

.~ Uj.J+1 - 2u;,j + Lli,j-I 
~ 12 

These approximatiol1~ can be substituted back into the wave equation. After 
a series of further approximations and refinements (sec Plybon (92] for more 
details), the C program appearing in Figure 13.5 resuils. Note: In the process of 
translating the lattice of FigUfC 13.4 into the matrix u of rigure 13.5, the subscripts 
arc reversed: 

13.3.3 Parallel Program Design 

As usual, we begin hy choosing primitive tasks, identifying data communication 
patterns among them, and looking for ways to agglomerate tasks. Th(,':<:lfinest­
grained tasks are those that compUle the value of an element of matrix u, Exam­
ining the C code in Figure 13.5, we find that the value of u [j + 1] [i J depends 
upon the values of u I j 1 [i -1], u [j ] [i], 11 [j 1 [i il], and u [j -1 J Ii j . 
For a particular value of 11 [j + 1 J I i J , the graph appears in Figure 13.6. If we 
drew the complete task!channel graph, it would look similar (though not identical) 
to Figure 3.11a. 
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/~ "Sequential solution t.O strlng vicration problem */ 

¥inr,lude <stdio.h> 
#include <math .h> 
IideEine 'Fix) sin(3.HI59'lx)) 
#clefinc GI)() \1.0 

~define a 1.0 
#defiICe c 1..0 
#define m 20 
idAfine n 
#define T 1.0 

(k Ir.itial string posid.on */ 
/1. Initial st,::-ing \,T~locity ... i 
;* Lengt.h af sLring ,; 
/* String··-r-elated constant */ 
I ~ Dj screte tiIn~ in~.8rviils * / 
/* Discl'RLe space intecv.als */ 
1* End tilDe of sirr,1I1ation */ 

int. main (:,nt. argc, char *argv[J) 

.~' .couble 

ir.t if j; 
dO'lb1e ic; 
double 1,; 

double u[m.ll [n,l]; 

h = a i n; 
k .::. 'r I m; 
L = (k*clhl' Ik*c/hl; 

/* Space interval length *1 

/* Tim~ ip-terval length "*/ 
/* Computed coefficjent- "'j 
/It String displacements ;+/ 

for (j = Q; j <= rr.; j++-) u[j] [01 0 u[j] [n] 0; 

for ii = 1; i < n; ihl ulO] [il = F'(i'h); 
ro, 11 c 1; i < n; i,+) 

u[lj[il c (L/2:0)'(uIO] riel] ,u[O] [i-lJ\ , 
(1.Q- L) * u[OJ [iJ + k • Gli'h); 

. for (j -.:: 1; j < rni j+·I) 

for ti :::: 1; i < nj i I t j 

u[j+ll [i) ~ 2.0'il.O·L)·u[i]li] + 
L*lu[jllitlj + u[jill-ll) - 'l{j-l][i); 

for ij 0 0; i <~ m; j++) { 

for (i~(); i<~n; i,+) print.f ("%6.3f·, u{jj[i]); 
pu tc'har (' \n ') ; 

-returr~ C; 

Figure 1~.5 C program implementing a finite difference method to solve 
the string vibration problem (adapted from pseudocode of Plybon 192]). 

Computing the displacement at a particular point for different times is inher­
ently sCtjucntial: the value of u [j + 1 J [i 1 depends upon 11 [j 1 til and 11 [j -
1) [i]. Por this reason we should agglomerate all tasks associated with each 
value of Xi- At this point all the communications arc between adjacent tasks. If 
we agglomerate tasks associated with contiguous regions of the string, commu­
nication among tasks will be minimized. 

Suppose then + 1 elements ofthe string are divided among p processes, Let's 
consider the communications that need to happen when computing row j + 1 of the 
matrix. See Figure 13.7 a. Process q is responsible forwmputing u I j + 1) [i 1 for 
four different V'dlues of L [( can compute the values of the gray cells without any 
communications. However, it cannot compute the vatues of the black cells until it 

325 



326 CHAPTER 13 Finite O;fference Methods 

Process q 

(al 

u[j+llF] 

u{j-Illij 

Figure 13.6 The value of ~ [j + 1] [i J 

depends upon the values of u [j J [i-1], 
u [j 1 [i i, u [j J (i -1-1], and u [j -1 J [i 1 . 

Process q-l Process q 

(b) 

1- I (--, 
I I ! I 
I"'~ --1 
I I I I 
~_+- I _~ 
Ii! I 
1 1 t I 
'--Mr·~ --, 
f j I I 
J I 1 j r --., 
J 1 I I 

~-+- ~+- -+-~ 
I I I I 

(el 

Process q+ 1 

t--I 
I I 
~--f--j--f--I--I 
f I_ ~ 
~--~ r-1·~------1 
I I 

~ - -fl--t--t--t--t 
I I 

~--i--+-+-+-. 
I I 

~ - -::--+---1--
I t .. __ l __ l- ____ _ __ 

Figure 13.7 Ghost points simplify parallel finite difference programs. (a) When 
computing row j + 1, process q has the data values it needs to fill in the gray cells, bul 
it needs values from neighboring processes to fill in the black cells. (b) Every process 
sends its edge values to its neighbors. Every process receives incoming values into 
ghost points. Ghost pOints, then, contain copies of data values. (c) Programming is 
easier when the ghost pOints are treated as extra columns or rows in the data array. 
After the values are received, a single for loop can update every element in row j + 1. 

gets values from neighboring processes. In Figure 13.7b we show how process 
q must exchange values with processes q - I and q + I. After these values are 
received, the blark cells may be assigned values. 

The parallel program is much easier to code if the same loop that updates the 
values of the cells on the edge also updates the values of the cells in the interior. 
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This can be done by allocating two extra columns for process q. These columns 
will receive the values received from the neighboring processes (one column 
element per iteration). Gllllst points are memory locations used to store redundant 
copies of data held by neighboring processes. Figure 13.7c illustrates how to set 
up the ghost point~ when n = 16 and p = 4, assuming no communications wrap 
around from one side to the othel. 

During the iteration that computes row j + 1, each process sends each of it, 
neighbOrs the appropriate border value from row j and receives the neighbor's 
row j border value in return. After the values havE' been received into the ghost 
points, a single f or loop allows the process to compute all of il~ row j + 1 values. 

13.3~4Isoefficiency·AnaIYsis 

The computation time per element is constant, so the sequential time complexity 
of the algorithm is 0(n) per iteration. If each of the p processes has an equal 
share of the clements, the complexity of the parallel algorithm is 8.(n/ p) per 
iteration. 

During each iteration a typical process must send messages to its two neigh­
bors, each message of length I,i\nd receive messages from these neighboring 
processes. The communication time required for these sends and reeei ves is 8 (l). 
Hence the overall communication overhead of the pardllel algorithm is (-)(p). 

The isoefficiency relarion for this algorithm is 

11 2: Cp 

While we have described a solution that uses about nm elements to store the 
position of the string at every point in time, it ~ poiisible to implement a solution 
that uses only about 3n memory locations to store values of u as the simulation 
progresses. Hence M(n) = n. The scalability function is 

M(Cp)/p = Cplp = C 

The algorithm we have described is perfectly scalable. 

13.3.5 Replicating Computations 

What can we do to reduce communication overhead? Since processes are sending 
messages containing only a single data value, communication time is dominated 
by the message latency component. We can send two values in vinually the same 
amount oftime it takes to send one value. Let's explore the implications of sending 
the multiple data values. 

Take a look at Figure 13.8. Part (a) illustrates what happens in the algorithm 
as originally designed. The white SGUares represent the cells an interior process 
is responsible for. The dashed white squares are the ghost points. When values 
are receiverl into the ghost points, the process can compute the values in the gmy 
squares-the values of its section of cells at the next time step. 

Part (b) illustrates what we can do if we increase the number of ghost points 
to two cells on each side. Each process now sends two values to each of its 
neighboring proce.sses. When it has received a pair of values from each of its 
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Step I Ij ·I···!· l' , .. I· ·1 
Exchange ~ I 

data U __ l L_ / I I I I /,JJ]TI 
(3) 

Step 2 W·1J ··11.1 
Step I Lllkd>11:>I.l::: 

E~"!:ln~,111 q;~~JJN', 
(b) 

Figure 13.8 Communication time can be reduced by replicating computations. 
{a) Passing a single edge element allows the algorithm to proceed only a single time 
step for each communication. (b) If two edge elements are passed, the algorithm 
can proceed two time steps for each communication, at the cost of two extra 
computations. 

neighbors, it can advance the simulation two time steps. In the first time step it 
generates values for all the cells it is responsible for, plus values for the ghost 
points on either side (the gray boxes edged by dashed lines). These are redundant 
computations, because the value' of each of these ghost points is being computed 
by a neighboring process that is officially responsible for that location. With the 
redundant values in hand, the process can compute values for the second time 
step without further message passing. 

Increasing the number of ghost points has three effects: increasing message 
length, reducing message frequency, and adding redundant computations. We 
want to determine parallel overhead per iteration as a function of the number of 
ghost points. If there are k ghost points on each side, then messages of length k 
are sent and received to and from neighboring processes every k iterations. The 
number of redundant computations added is 

k-J 

Ii = k(k -0/2 
;=1 

The parallel overhead per process per iteration, then, is 

2()" + k/ /3)+ Xk(k - 1)/2 2)" 2 X (k-I) 
k =k+~+-2-

The message latency term is inversely proportional to k, while computation 
time increases quadratically with k. Hence the function typically has the shape 
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Ghost points 
. -,;:-:"","- '", ;'"~:"~:;':"':?~~\~.'"';-'T-"".'":7.:";;:'>' 

Figure 13.9 Increasing the number of ghost points can 
reduce parallel ovet11ead up to a point, after which the 
expense of the redundant computations outweighs the 
benefits of reducing the number of sends and receives. 

illustrated in Figure 13.9. The value of k that minimizes the function depends 
upon the values of Ie and X. 

13.4 STEADY·STATE HEAT DISTRIBUTION 
As our second case study, we consider the paraIlelization of a program that finds 
the steady-state heat distribution over a thin square plate. (The presentation in 
this section follows the notation of Plybon [92].) 

13.4.1 Deriving Equations 

The underlying PDE is the Poisson equation 

!Ix> + Uyy ::: f(x, y), 0 S x sa, 0 S Y S b 

We complete the boundary value problem by adding boundary conditions 

u(x,O)::: G,(x) _and u(x, b)::: G2(x) 0 S X sa 

u(O, y) == GJ{y) and u(a, y) = Gb) 0 s y S b 

Since the region is rectangular, this is called the DiIichlet problem. If functions 
G" Gz, GJ, and G 4 are continuous onthe boundaries and function f is continuous 
inside the rectangle, then the problem has a unique solution. 

As in the previous case study, we will create a two-dimensional grid. However, 
the interpretation of the grid is different in this case study. In the vibrating string 
problem, each grid point (Xi, tj) represented the displacement of the string at 
point Xi at time tj. In this case study, each grid point (Xi, y j) represents the value 
of the steady-state solution at a particular (x, y) location in the rectangle. In the 
last case study, we only computed the value at each grid point once. In this case 
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SUldy, we will repeatedly update the values of every interior grid point until the 
values converge. 

13.4.2 Deriving the Sequential Program 

We divide spatial dimension x into II pieces and spatial dimension y intom pieces. 
We define h = _lin and k = ylm. 

Using the approx.imation to the second derivative developed in Section 14.2, 
we detennine that 

( ) 
~, U(Xi + h, Yj) - 2U(Xi, Yj) + u(x; - 11, Yj) 

Un Xi> Yj ~, h2 

~ Uiti,j - 2Uj,j + Ui-I.j 
,~ h2 

Similarly, 

Iii '+1 - 2Ui ' + Uj ;-\ 
U (x. yL) ~,j ,} " 

YY " I k2 

If M'e insert these approximations into the Poisson equation, we get 

II1H,] - 2Ui,] + IIi-I,] Ilj,j+1 - lu i•j + Uj. j _\ '. 

h2 + k2 =i(.x"Yj) 

Assume A = k I h. After a series of further approximations (detailed in Plybon 
1921), we come up with a new formula for the value of the solution at each grid 
point 

)..2(Witl.i + WH.j) + Wi,j+1 + Wi,]_1 - k2 ii'} 
W .-----~----~~~~--~----~ 

I,j - 2(1 + )..2) 

Now let's look at the particUlar problem we want to solve. A thin steel plate is 
surrounded on three sides by a condensing steam bath (temperature 100 degrees 
Celsius). The fourth side touches an ice bath (temperature 0 degrees Celsius). An 
insulating blanket covers the top and the bottom of the plate. Our goal is to find 
the steady -state temperature distribution at evenly spaced points within the plate. 

Since the points are evenly spaced, h = k and l = I. Since the plate is 
insulated, no heat is being introduced inside the plate--only on the edges. That 
means i;,J = 0, Hence our finite difference approximation to the solution of the 
linear second-order PDE reduces to 

Wj+ 1,1' + Wi-I,] + Wj,]+1 + Wi,H 
Wi,] = ,.. 4 

Starting with initial estimates for all the W;,j values, we can iteratively com­
pute new estimates from previous estimates until the values converge. Relying on 
the estimates from iteration i to calculate new estimates for iteration i + I is called 
the Jacobi method [56]. (Note that this is the same algorithm we first encoun­
tered in Chapter 12,) A C program implementing a solution to the steady-state 
heat problem appears in Figure 13.10. 
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i' SequBnti a I Sol ut ion to SteadySU,L e Heat Problem * i 

~ iI'd ude <ffia th . h> 
#defin2 H ~ 00 

#define EPSr::ON 0.01 

int main nnt argc, char *arg'rLl) 

double diff; 
int i, j; 
double "mean; 

doubl" urN) INJ; 
double wiN] iN]; 

/* Chang-G in value */ 

I"*- Aver.-age boundary value'" / 
/* Old values *1 
/* New values .... / 

jil Set boundary values and compute bOtlndcuy 'value "it'/ 
mean' 0_0; 

for (1 = 0"; 1 < N; 1+>/ 
ulil [0] ~ uiillN-i] . ufO] [il = 100.0; 

u [N-i] [if ~ 0.0; 

mp.an +. ull] [OJ + u;i] tN-I] * uiO] [i] t uiN·I] [i]; 

mean (doO * N); 

r'" Initial ize interio:t values "/<! 
for (1 , 1; 1 < N-I; i++) 

for I j = 1; j < N -1; j ++ I u [iJ [j] ~ mea n; 

,rk Compute steaay-'sla~e solution */ 
for (;;) [ 

diff .~ 0.0; 
[or {i ==- 1j i < N~l; iT"] 

for (j -=.- Ii j < N'--1; j++) 
w(i] [i] ~ (u[i-l] [ii * u[i+l] [jl + 

u[i[ [j-lj- t uri] [j+l]J!1.0; 
if /fRbs/wiil U] ~ u[i][7]) > diff) 

diff = fabsiw[i][j] - Il[i] Ii]); 

if 1diff <~ EPSILON) brenk; 
for (i ~ 1 i i < N-1; i ++) 

fo:( U = 1; j < N -1; j t,) u [ i ) [j J ~ w [ i I [j ); 

/* Print solution */ 

for (i Oi i < 1\-; i++} 

for (j ~ 0; j < N; jt+) 

printf {'!~6.2f :'/ uliJLj]); 

putchar (l\n'j; 

Figure 13.10 C program solving the steady"state heat distribution 
problem using the Jacobi method. 
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--

u{i+ II III 

-~ 

utt1[rl] wlil [jj u 

u[i-l][j] 

--

Figure 13.11 The value of w [ i) [j] 

depends upon 1t1e values of uri -1) [j 1 , 
!,[il [j+l), u[iil) ~j].and 

Uli] [j-lj. 

13.4.3 Parallel Program Design 

We can associate a primitive task with the computation of each w [i, j 1. In the 
Jacobi method the updating step is peifectly parallel. To compute w [i, j 1 each 
task requires the u values from its neighbors to the north, south, east., and west 
(Figure 13.11). 

We want to agglomerate tasks and assign one agglomerated task to each 
parallel process. Wbat is tbe best way to do the agglomeration1 If each process 
is responsible for.a rectangular region, then computing elements of w on the 
interior of the rectangle can be performed using locally available values of u. 
Computing elements of w on the edge of the rectangle requires val ues held by 
other processes. 

We can introduce ghost point~ around each block of values held by a pro­
cess. After values received from other processes have been stored in the ghost 
points, then a single doubly nested loop will allow all of the values of w to be 
computed. 

One choice is a rowwise block-striped decomposition (Figure 13.12a). With 
this decomposition each interior process exchanges messages with two other 
processes. An obvious alternative is a checkerboard block decomposition. In this 
case each interior process exchanges messages with four other processes. 

13.4.4 Iso efficiency Analysis 

SUiJpose we are working with an n x n mesh. Since the computation time per 
mesh point is constant, the computational complexity of the sequential algorithm 
is 8(n') per iteration. 

Let's consider the rowwise blOCk-striped decomposition. Each of the p pro­
cesses manages a submesh of size approximately (nip) X n. During each it­
eration, every interior process must send n values to each of its neighbors ane 
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(oj (b) 

Figure 13.12 Possible da1a decompositions for solving the 
two-dimensional steady-state temperature distfibution problem. 
(a) Illustration of a 16 x 16 mesh mapped onto four processes using 
a rowwise block-striped decomposition. Each process manages an 
(nl p) x n region. Ghost points appear as cells edged by dashed 
lines. (h) Illustration 01 a 16 x 16 mesh mapped onto 16 processes 
in a checkerboard block decomposition. Each process manages a 
region 01 size -(nl ,,'PI x (nl.IfJ). Ghost points are the cells edged by 
dashed lines. 

receive n values from eacb of them, leading to a communication complexity 
of El (n). The communication overhead of eachiferation of the parallel algorithm 
is El(np). 

The isoefficicncy function for the algorithm based on a rowwise block-striped 
decomposition is 

n2 
::: CliP => IJ ?: Cp 

Since M(n) == nl, the scalability function is 

M(Cp)lp == C2p21p == C2p 

The parallel system is nol highly scalable. 
Now let's look at the checkerboard block-striped decomposition. Each of 

the II processes manages a submesh of size approximately (nl JP) x (nl JP). 
During each iteration every interior process must send n I../P values to each of 
its neighbors and receive nl../p values from them, leading to a communication 
complexity of 8(nl../pl. llle communication overhead of each iteration of the 
parallel algorithm is 8(n"/p). 

The isocfficiency function for the algorithm based on a checkerboard block 
decomposition is 
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Computing the scalability function: 

M(C/P)/p = C2
p/p = C2 

The parallel system is highly scalable. 

13.4.5 Implementation Details 

Putting ghost points around two·dimensional blocks means message·passing op­
erations require extra copying steps. In C, two-dimensional arrays are stored in 
row-major order. The ghost points for the top and bottom rows are in contiguous 
memory locations, but the ghost points for the left and right columns are uot. 
Since the elements are not in contiguous memory locations, yon can't receive a 
message directly into a set of ghost points. Instead, you need to receive messages 
into a temporary buffer and then copy the values into the gbostpoints. Similarly, a 
temporary buffer must be used when assembling values to be sentto a neighboring 
process's column-oriented ghost points. 

13.5 SUMMARY 

A partial differential equation is an equation containing derivatives of a function 
oftwo or more variables .. Scientists and engineers use partial differenrial equations 
to model the behavior of a wide variety of physical systems. Realistic problems 
yield partial differential equations that are too complicated to solve analytically. 
Instead, scientists and engineers use computers to find approximate solutions to 
partial differential equations. 

The two most cornmon numerical techniques for solving partial differen­
tial equations are the finite element method and the finite difference method. 
Matrix-based implementations of the finite difference method represent the mao 
trix explicitly, using data structures thaI support efficient access of the nonzero 
elements. Matrix-free implementations rf.'present the matrix values implicitly. In 
this chapter we have designed and analyzed parallel programs based on matrix· 
free implementations of the finite difference melhod. 

Linear second-order partial differential equations can be classified as elliptic, 
parabolic, and hyperbolic. Different algorithms are used to solve each of these 

. types of PDE, but they do have some similarities. As our case studies, we looked 
at the Solulion of the wave equation (an example of a parabolic POE) and the 
solution of the heat equation (an example of an elliptical PDE). Hyperbolic PDEs 
are typically solved by methods not as amenable to paraIlelization. For each 
case study, we used our standard parallel algorithm design methodology. We 
started by identifying primitive tasks and the communicatioii'pattern among them. 
We then chose an agglomeration that represented the best compromise between 
minimizing communication and maximizing utilization. 

In both case studies we used ghost points to store values received from other 
processes. Once values have been received into the ghost points, all cells can be 
updated in the same section of code. 
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We also explored how we could increase the number of ghost points and 
send extra data values, thereby reducing the frequency of communications at the 
expense of adding redundant computations. The optimal number of gbost points 
depends upon latency, bandwidth, and the time needed to compute the value 
ofacell. 

13.6 KEY TERMS 

Dirichlet problem 
diffusion equal ion 
/illite difference melhod 
finite elemeDl method 
ghOSI points 

Jacobi method 
heat equation 
l;Jplace equation 
linear second-oroer partial 

differentia! equation 

13.7 BIB~IOGRAPHIC NOTES 

ordinary differential equation 
partial differential equalion 
Poisson equation 
wave equation 

Numerical Solution of Partial Differential Equations: Finite Difference Methods, 
by G. D. Smith, is II detailed examination of finite difference methods [104], 
Plybon's book, An Introduction to Applied Numuical Analysis, has a chapler on 
solving partialoifferential equations using finite difference methods f92J. For a 
quick introduction to the field, you may find it easier to understand than Smiih's 
monograph. 

A comprehensive look at finite clement methods is M. 1. Fagan's F'inite 
Element Analysis: Theory and Practice [23]. 

Most finite element models and some finite difference models make use of 
irregular meshes. Much research has been devoted to the problem of decomposing 
irregular meshes in order to minimize communications and balance computations. 
Unstructured Scientific Computation on Scalable MultiproceJsors is an introduc­
tion to methods for solving irregular problems on parallel computers [86]. 

A group centered at Purdue has developed PELLPACK, a problem-solving 
environment for modeling objects described by partial differential equations. 
Behind PELLPACK's interactive graphical user interface is more than one million 
lines of code. For a description of this problem-solving environment, see Houstis 
el al. [53]. 

13.8 EXERCISES 

lJ.l Let /,/ = f(x, y) be a function of two variables. Function u has two 
unique partial derivatives with order I, u, and /,/y. Explain why u has only 
three unique partial derivatives with order 2, rather than four (2 x 2). 

13.2 Write a parallel version of the sequential program that solves the wave 
equation. Benchmark your program for various values of nand p. 
Produte a 3-D graph that shows speedup as a function of nand p. 
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u 

Figure 13.13 A process solving the heat 
equation is responsible lor a 4 x 4 block of 
the grid. We declare matrices u and w to 
have 6 rows and 6 columns. the inner 
white squares contain the values in the 
process's portion of the grid. The extra 
rows and columns provide rooms tor u's 
ghost PQints (gray). The charcoal gray 
corner elements of matrix u are not used. 
The inner white squares of w hold its newly 
computed values; the charcoal gray 
squares are unused. 

13.3 This exercise assumes you are solving the heat equation by assigning a 
(n/ JP) x (n/ JP) region to each process. Suppose k = n/ y'p. The 
matrices 1I and won each process have dimensions (k + 2) x (k + 2) (see 
Figure 13.13). The extra rows and 90lumns in u provide room for both 
elements and ghost points. Making w the same size as u allows us to use 
the same indices in both matrices to represent the same point in the finite 
difference mesh. 

Write a C code segment that performs the communications needed 
for processes to update the ghost points of their neighbors. 

13.4 Write a pamllel version of the sequential program that solves the heat 
equation. Assume a block-row decomposition of matrices to processes. 
Benchmark your program for various V'dlues of nand p. Produce a 3-D 
graph that shows speedup as a function of nand p. 

13.5 Write a parallel version of the sequential progl"J.m that solves the heat 
equation. Assume a two-dimensional block decomposition of matrices 10 

processes. Benchmark your program for various values of nand p. 
Produce a 3-D graph that shows speedup as a function of nand p. 

13.6 Analyze the effectiveness of replicating computations to reduce 
communications in a parallel program solving the heat equation. Assume 
each process is responsible for a (n/ JP) x (11//P) block of the mesh. 
a. Assume n is an integer multiple of /p. Determine the average 

"communication cost" per iteration, where communication cost 
includes the time spent performing redundant computations. Your 
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answer should express average communication cost per iteration as a 
function of guard wrapper width k, A, fJ, and X. 

b. Assume n == 5000, P == 16, X == 10 nanosec, A = 100 /tsec, and 
fJ == 5 x 1 (j6 elements/sec. Plot commlUlication cost as a function of 
ghost wrapper width k, where 1 :.:: k s 10. 

13.7 Write a progralll to solve the component labeling problem. A binary 
image is stored as an n x n array of Os and Is. The Is represent objects. 
while the{)s represent empty space between objects. The comptment 
labeling problem is to associate a unique positive integer with every 
objcLi. When the progralll completes, every I-pixel will have a positive 
jnteger labeL A pair of I-pixels have the same label if and only if they are 
in the same component (object). The I-pixels are in the same component 
if they are linked by a path of I-pixels. Two I-pixels are contiguous if 
they are adjacent to each other, either horizontally or vertically. 
For example. given this image: 

1 0 0 0 0 0 0 0 
0 1 0 1 0 0 \1 0 
0 1 ± 1 0 0 0 0 
0 1 1 0 1 1 1 1 
0 0 0 0 1 0 0 1 
1 1 1 0 1. 1 0 1 
1 1 1 1. 0 1 1 1 
0 0 0 0 0 0 1 1 

one (hut certainly not the o_nly) yalid output would be: 

1 0 0 0 0 0 0 0 
0 10 0 10 0 0 0 0 
0 10 10 10 0 0 0 0 
0 10 10 0 29 29 29 ~9 

0 0 0 0 29 0 0 29 
41 41 41 0 29 29 0 29 
41 41 41 41 0 29 29 29 
0 0 0 0 0 0 29 29 

Note that a 0 in a particular position of the input image results in a 0 in 
the same position in the output image. If two positions in the output 
image have the same integer value. it means there is a path of I s between 
the two positions in the input image. 

'" 
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C HAP T E R 

Sorting 

Had I been pre~'ef(t at the creation, I would have given same useful hints for the 
better arriering of the universe. 

Reaction of Alfonso X to a description 
of the intricacies of the Ptolemaic system 

14.1 INTRODUCTION 
Given a sequence of n numbers lao, ai, al, ... , On-I), the sorting problem is to 
find a permutation {a;) , a;, a;, ... ! a~_ll such that a~ .::: aj .::: ~ ::: ... ::: a~_l' 
Sorting is one of the most common activities performed on serial compu ters. Many 
algorithms incorporate a sort so that information may be accessed efficiently later 

Usually the numbers being sorted are pari of data collections called records. 
Within each record, the value being sorted is called the key. The rest of the record 
contains satellite data. The information being accessed later is typically in the 
satellite data, so while it is the keys that are being compared, it is the complete 
records that must actually be permuted. If there are relatively little salellite data, 
entire records may be shuffled as tbe sort progresses. If there are large amounts of 
satellite data, the sort may actually permute an array of pointers to the records. For 
the purposes of this chapter, however, we will focus exclusively on the problem 
of sorting a sequence of numbers, leaving the issues associated with the satellite 
data as an implemcntiltion detail. 

Researchers have developed IDany parallel sorting algorithms. Unfortunately, 
most of them are designed for theoretical models of paraUel computation or 
special-purpose hardware, making them useless for those trying to implement an 
etticienJ sort on a general-purpose parallel computer. 

Our focus in this chapter will be on metbods suitable for mUltiple-CPU 
computers. We'll narrow our coverage in two additional ways. First, we'll be 
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considering internal'sorls-algorithms that sort sequences small enough to fit 
entirely in primary memory. (In contrast, an external sort orders a list of values 
100 large to tit at one time in primary memory.) Second, the algorithms we consider 
here sort by comparing pairs of numbers. (Radix sort is all e:<.amp Ie of a sort that 
does not compare pairs of numbers.) 

In this chapter we briefly summarhe how quicksort works and then develop 
three parallel quicksort algorithms, assuming our target machine is a modem 
mUlticomputer that has equal latency and bandwidth between arbitrary pairs of 
processors. 

14~2 QU ICKSORT 
Since you're probably familiar with the sequential quicksort algorithm, we'll 
only present a short refresher here. If you need a more in-depth review, ennsult 
Cormen et aL [IS!, Baase and Van Gelder [5}, or anoilierintToductory analysis of 
algorithms textbook. 

Quicksort, invented by C. A. R. Hoare about forty years ago (5l}, is a recursive 
algorithm that relies upon key comparisons to sort an unordered list. When passed 
a list of numbers, the algorithm selects one of these numbers to be the pivot. II 
partitions the list into two sublists: a "low list" containing numbers less than or 
equal to the pivot, and a "high list" containing those values greater than the pivot. 
It calls itself recursively to sort the two sublists. (If a sublist has no numbers. the 
cali may be omiued.) The function ends by returning the concatenation of the low 
list, the pivol, and the high list. 

For example, Figure 14. I illustrates the operation of quicksort as it sorts 
the list of integers {79, 17, 14,65,89,4,9.5,22,63, II}. Let's assume the algo­
rithm always chooses the first list element to be the pivot value. With 79 as 
the pivot value, lhe low list contains 117,14,65,4,22, 63,ll) and the high 
list contains {89, 95}. The function calls itself recursively for each of these 
sllblists. 

The recursive ex.ecution of quicksort on the sublist containing {17, 14,65,4, 
22, 63, II} begins by removing 17 as the pivot value. The fu nction creates a low 
list containing {14, 4, II} and a high list containing {12, 63, 6S}. Again, it calls 
itself recursively for both of these sublists. 

The recursion eventually terminates because the removal of the pivot element 
guarantees the lengths ofthe lists continue lodecrease. If asublisthas no elements, 
there is no need to sort it. If quicksort is called with a single element, that element 
becomes the piv()~ and the algorithm simply returns that element as the sorted 
list. ~ 

EaGh function invocation results in the function returning the concatenation 
of the two sorted sublists and the pivol element. For example, look at the node 
Q(17,I4,65,4,22,63,1l). The call to Q(14,4,II) returns (4, J 1,14). Thepivotele­
ment is 17. The call to Q(65,22,63) returns {22, 63, 65}. Concatenating these lists, 
thefunction retUlTIS (4, II, 14, 17, 22,63,65). 
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[4,11,14,17,22,63,65.79,89,951 ( I 
( 

Q{79,J7,14,65,89,4,95.22,6J, II) '\ 

{4,11,14,17,22,6J,65} A )!89,95] 

(

Q(17,14,65.4.22,6J,ll)\ Q(89,95J\ 

(4,11,141 A /22,fjl651\ 1951 

(QI14,4,Il) (Q(65'22'63) Q(95) 

14,11\ I [22,631 I 
Q(4\~1I1 Q~\~63 

Q(11) Q(63) 

Figure 14.1 Sorting a 1 O-element ~st using quicksort. Each Q 
represents a call to quicksort. The algorithm removes the first 
element from !he lis~ using it as a piw;!t to divide the list into two 
parts. It calls itself recursively to sort the two sublists. (The call is 
omittecllor empty sub lists. ) It returns the concatenation of the 
sorted "low list," the plvot, and the sorted "high list." 

14.3 A PARALLEL QUICKSORT ALGORITHM 

Oo--T Quicksort is a good starting point for a parallel sorting algorithm for two rea­
sons. First, it is generally recognized as the fastesc sorting algorithm based on 
comparison of keys, in the average case. We always prefer to ba~e our parallel 
algorithms on the fastest sequential algorithms. Second, quicksort has some nat­
ural concurrency. When quicksort calls il~c1f recursively, the two calls may be 
executed independently. 

14.3.1 Definition of Sorted 

We want an algorithm suitable for implementation on commodity clusters and 
multicomputers. Defore we go any further, we must determine what it means for 
a multicomputer to sort an unordered list. We could say that at the beginning of 
the algorithm a single processor contains the unsorted list in its primary memory, 
and at the end of the algorithm the same processor would contain the sorted list 
in its primary memory. The problem with this definition is that it does not allow 
the maximum problem size to increase with the number of processors. 

Instead, we'll adopt a different definition of what we mean by parallel sort­
ing on a multicomputer. We assume that the list of unordered values is initially 
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distributed evenly among the primary memories of the processors. At the com­
pletion of the algorithm, (I) tbe list stored in every process'or's memory is sorted, 
and (2) the value of the la~t element on Pi'S list is less than or equal to the value 
of the first element on Pi+I'S lisl:, for 0 :s i s p - 2. Note that the sorted values 
do not need to be distributed evenly among the processors. 

14.3.2 Algorithm Development 

-Let's imagine how a parnllel quicksort algorithm could work. Because the quick­
sort function calls itself twice, the number of "leaves" inlhe call graph is a power 
of 2 (ignoring omitted calis due to empty sublists). For this rea~on we're going 
to a%umethat the number of active.processes isalsoa'power of2. 

Take a look at Figure 14.2. The unsorted values are distributed among the 
memories of the processes. We choose a pivot value from one of the processes 
and broadcast it (Figure 14.2a). Each process divides its unsorted numbers into 
lWO lists: those less than or equal to the pivot, and those greater than the pivot. 
Each process in the upper half of the process list sends its "low list" to a partner 
process in the lower half of the process list and receives a "high list" in return 
(Figure 14.2b). Now the processes in the upper half of the process list have values 
greater than the pivot, and the processes in the lower half of the process list have 
values less than or equal to the pivot (Figure 14.2c). 

At this point the processes divide themselves into two groups and the algo­
rithm recurses. In each process group a pivot value is broadcast (Figure 14.2c). 
Processes divide their lisl~ and swap values with partner processes (Figure 14.2d). 

After log p recursions, every process has an unsorted list of values completely 
disjoint from the values held by the other processes. In other. words, the largest 
value held by process i is smaller than the smallest value held by process i + 1. 
Each process can sort the list it controls using (what else?) sequential quicksort, 
and the parallel algorithm temlinates. 

14.3,3 Analysis 

If we were to implement this algorithm, how well would it perform'? The execution 
lime of the algorithm begins when the first process starts execution and ends when 
the la,t process finishes execution. That is why it is important to make sure all 
processes have about the same amount of work, so that they will all tenninate 
at about the same time. In this algorithm, the amount of work is related to 1he 
number of elements controlled by the process. 

Unfortunately, this algorithm is likely to do a poor job of balancing list sizes. 
For example, take another look at the example of sequential quicksort illustrated 
in Figure 14.1. The original list-splitting step produces one list of size 7 and an­
other list of size 2. If the pivot value were equal to the median value, we could 
divide the list into equal parts, but in order to find the median we must go a long 
way toward sorting the lisl:, which is what we're trying to do in the first place. So 
it's not practical to insist that the pivot value be the median value. 

However, it is clear thai we conld do a better job balancing the list sizes 
among the processes if instead of choosing an arbitrary list element to be the 
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Figure 14.2 High-level view of a parallel quicksort algorithm. (a) 
Initially the unsorted values are distributed among the memories of 
all the processes. A single value is chosen as the pivot. The pivot is 
broadcast to the other processes. (b) Processes use the pivot to 
divide their numbers into those in the "lower half" and those in the 
"upper half." Each process in the upper half swaps values with a 
partner in the lower half. (c) The algorithm recurses. A single value 
from each "half' is chosen as the pivot for that "half" and broadcast to 
the other process responsible for that "hall.' (d) As in step (b), 
processes use the pivot to divide their numbers. Upper processes 
swap with lower processes, swapping smaller values for larger values. 
(e) At this point the largest value held by process i is less than the 
smallest value held by process i + 1. (f) Each process uses quicksort 
to sort the elements it controls. The list is now sorted. 
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pivot value, we chose a value more likely to be close to the true median of the 
sorted list This insight is the motivation for tile nex.t parallel algorithm we will 
cOllSider. hyperqukksort. 

14.4 HYPERQUICKSORT 

14.4.1 Algorithm Description 

Hyperquicksort, invented by Wagar nOS}, begins where our first parallel quick­
sort algorithm ends, with each proCt;SS usingquickSo(t to sort it~ portion of tile 
list. At this point condition I (if the parallel sllrtednessrequirement bas been mel:· 
but not condition 2. 

To meet the second condition, values still need to he moved from process 
to process. As in the first parallel quicksort algorithm, we wiII use a pivot value 
to divide the numbers into two groups: the lower "half" and the upper "half." 
I3ecause the list of elements on each process is sorted, the proce S5 responsible for ..--0 
supplying the pivot C(JJl use the median of its list a..i the pivot value. This value is 
far more likely to be close to the true median of the entire unsorted list than the 
value of an arbitrarily chosen list element. 

The. next three steps of hyperquicksort are the same as the parallel quicksort 
algorithm we already developed. The process choosing the pivot broadcasts it to 
the other processes. Each process uses the pivot to divide its elements into a "low 
list" of values less than or equal to the pivot and a "high list" of values greater 
than the pivot. Every process in the upper half swaps its low list for a high list 
provided by a partner process in the lower half. 

Now we add an additional step to hyperquicksort. After the swap, each process 
has a sorted sublist it retained and a sorted subJist it received from a partner. It 
merges the two lists it is responsible for so that the elements it controls are sorted. 
It is important that processes end this phase with sorted lists, because when the 
algorithm recurses, two processes will need to choose the median elements of 
their lists as pivots. 

After log p such split-and-merge steps, the original hypercube of p processes 
has been divided into log p single-process hypercubes, and condition 2 is satisfied. 
Since the processes repeatedly merged lists to keep their local values sorted 
throughout the divide-and-swap steps, there is 110 need for them to call quicksOit 
at the end of the algorithm. Figure 14.3 gives an example of hyperquicksort in 
action. 

Hyperquicksort assumes the number of processes is a power of 2. If we 
arrange the processes as a hypercube, we can set up the communication pattern 
of the hyperquicksort algorithm so that all communications are between pairs 
of adjacent processes (see Figure 14.4). For this reason hyperquicksort was a 
particularly good fit for first-generation mUlticomputers, such as the Intel iPSe 
and the nCUBE/terl, that organized processors as a hypercube. 
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Figure f 4.3 Illustration of the hyperquicksort algorithm. In this example 
32 elements are being sorted on four processes logically organized as a 
two-dimensional hypercube. (a) Initially, each process has eight numbers. 
(b) Each process sorts its own rtst using quicksort. Process (') broadcasts its 
median value, 48, to the other processes. (cl Processes in the lower half of the 
hypercube send values greater than 48 to processes in the upper half. The 
processes in the upper half send down values I~ss than or equal to 48. (d) Each 
process merges the numbers it kept with the numbers it received. Process 0 
broadcasts its median value to process 1, and process 2 broadcasts its median 
value to process 3. (e) Processes swap values across another hypercube 
dimension. (f) Each process merges the numbers it kepi with the numbers it 
received. At this point the list is sorted. 
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Figure 14.4 Communication pattern 01 hyperquicksort algorithm. In this 
example there are eight processes, 50 the algorithm goes through log p = 3 
swap-and-merge steps. 

14.4.2 Isoefficiency Analysis 

Let's determine the isoefficiency of hyperquicksort. We assume p processors are 
sorting n elements, where Il » p. At the start of the algorithm each process has 
no more than rill p 1 values. The expected time complexity of the initial quicksort 
step is 8[(nj p) log(nl p)J. Assuming lhat each process keeps nl2p values and 
transmits nl2p values in every split-and-merge step, the expected number of 
comparisons needed to merge the two lists into a single ordered list is nip. 
Shice the split-and-merge operation ·is executed for hypercubes of dimension 
log p, (log p) I, ... , 1, Ihe expected number of comparisons -petformed over 
the split-and-merge phase of the algorithm is S(nl p) log p, and the expected 
number of comparisons performed during the entire algorithm is Bf (n I p)(log n + 
log p)j. 

If processes are logically organized as a d-dimensional hypercube, broad­
casting the splitter requires communication time B(d). However, since n » p, 
the broadcast time will be dwatfed by the time processes spend exchanging list 
c1emenl~. Assuming each process passes half its values each iteration, the time 
needed to send and receive nl2p sorted values to and from the partner process is 
H(nl]l). There are log p iterations. Hence the expected communication time for 
the split-and-merge phase is E-)(l1log pi p). Since the original quicksort phase re­
quires no interproccss communication, this value is the expected communication 
complexity of the entire hyperquicksort algorithm. 

The sequential time complexity of quicksort is n log n. The communica­
tion overhead of hyperquicksorl is p times the communication complex.ity, or 
8(n log p). Hence the isoefficiency function for hyperquicksort is 

n log n > en log p =} log n 2: Clog p :::} n :::: l 
Memory requirements for this problem are linear; that is, l\1[(n) = n. So the 
scalability function for hyperquicksort is pC .. '. The value of C determines the 
scalability of the parallel system. If C > 2, scalability is low. 

There is another factor that, when considered, makes the scalability of hyper­
quicksort even worse. Our analysis has assumed that the median element chosen 
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by a single process is always tne true median, and that every process always 
sends n / (2 p ) clements to its partner and receives n / (2 p) elements in return each 
iteration. In reality, the median elements are not the true medians, and the work­
load among Ibe processes becomes unbalanced. Processes with more elements 
spend more time communicating and merging. The imbalance tends to increase as 
the number of processors increases. TIlat's because each process's portion of the 
complete list is smaller. With a smaller sample, it is less likely that the process's 
median value will be close to the true median value. 

In short, hyperquieksort has two weaknesses that limit its usefulness. First, the 
expected number of times a key is passed from one process to anomer is (log p) /2. 
This communication overhead limits the scalability of the parallel algorithm. We 
could reduce this overhead if we could find a way tli"route keys directly to their 
final destinations. Second, the way in wnieh the splitter values are chosen can 
lead to workload imbalances among the processes. If we could get samples from 
a1l of the processes, we would have a better chance of dividing the list elements 
evenly among Jhem. These two ideas are incorporated into our third and final 
algorithm: parallel sorting by regular sampling. 

14.5 PARALLEL SORTING BY 
REGULAR SAMPLING 

Parallel sorting by regular sampling (PSRS), developed by Li et aL [74}, has 
three advantages over hyperquicksort. It keeps list sizes more balanced among the 
processes, it avoids repeated communications of the keys, and it does not rlXjuire 
that the number of processes be a power of 2. 

14.5.1 Algorithm Description 

The PSRS algorithm has four pha,es (Figure 14.5). Suppose we're sorting n keys 
on p processes. In phase I, each process uses the sequeutial quicksort algorithm 
to sort its share of the elements (no more than r n/ p 1 elements per process). Each 
process selects data items at local indices 0, n/ /' 2n/p2, ... , (p -I)(n/ p2) as 
a regular sample of its locally sorted block. 

In the second phase of the algorilbm, one process gathers and sorts the local 
regular samples. It selects p-l pivot values from the sorted list of regular samples. 
The pivot values are at indices p + lp/2J - I, 2p+ lp/2J -I, ... , (p - I)p + 
lp /2 J in the sorted list of regular samples. At this point each process partitions its 
sorted sublist into p disjoint pieces, lIsing the pivot values as separators between 
the pieces. 

In the third phase of the algorithm each process i keeps its ith partition and 
sends the ith partition to process i, for all j =f. i. 

During the fourth phase of the algorithm each process merges its p partitions 
into a single list. The values on this list are disjoint from the values on the lists of 
the other processes. At the end of Ibis phase the elements are sorted. 
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Figure-14.5 This example illustrates how three processes would sO.rt 27 elements using the PSRS 
algorithm. (a) Original unsorted list of 27 elements is divided among three processes. (b) Each process sorts 
tis share of the list using sequential quicksort. (c) Each process selects regular samples from its sorted 
sublist. A single process gathers these samples, sorts them, and broadcasts pivot elements lrom the sorted 
list of samples to !he other processes. (d) Processes use pivot elements computed in step (C) to divide their 
sorted sublists into ihree parts. (e) Processes perform an all-to-all communication to migrate the sorted 
sublist parts to the correct processes. (0 Each process merges its sorted sublists. 

Li et a1. [74] have proven that the largest number of elements any process 
may have to merge in phase 4 of the PSRS algorithm is Jess than 2n/ p; that is, 
twice its share of the elemenK In actuality, experiment~ have shown that if the 
elements are selected from a uniform random distribution, the largest partition 
size is usualiy no more than a few percent larger than n/ p, the average partition 
size. 

14.5.2 Isoefficiency Analysis 

Let's determil\C the isoefficiency of the PSRS algorithm, assuming [! processors 
are sorting 11 elements, where 11 » p. 

Tn phase J, each process perfOims quicksort on n/ p elements. The time 
complexity of this step is El[(n/ p) log(n/ pJ]. At the end of phase I, a single 
process gli'thers p regular samples from each of the other p .- I processes. Since 
relative] y few values are being passed, message latency is likely to be the dominant 
term of this step. Hence the communication complexity of the gather is ~)(log p). 

In phase 2 of the PSRS algorithm one process sorts the (i clements of Y. 
This sort has time complexity 8(p2[og (2) = (~(llog p). The sOJ1ing process 
broadca,ts p - I pivots to the other processes. Since only p - I values are 
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being communicated, message latency is most likely the domi~ant ~:rm, and the 
communication complexity is G(log p). 

In pha~e 3 of the algorithm, each process uses the pivot~ to divide its portion 
of the list into p se\,1iolls. The processes then perform an aU-to-all comlDuni­
cation. In the aU-to-all communication each process sends and receives p - I 
messages. Assumi ng the list sizes are balanced, the total number of elements sent 
per process is about (p - I)n/ p2, which is approximately n/ p. Sincen » p, the 
messages are long, and th~ time needed to pass a message is dominated by the 
time needed to transmit its elements, rather than its latency. Hence it makes sense 
to structure the all-to-all communication so that each process sends and recei ves 
p - 1 messages. That way, every list elemept is passe;} only onc~ir~ctly.tp, 
the process that needs it. We assume that the processor interconnection network. . 
supports p simultaneous mes~ge transmissions. In other word.~, the capacity of 
the interconnection network increases with the number of processors. (As we saw 
in Chapter 2, the 4-ary hypellree is an example of an interconnectiOIl network for 
which the bisection width increases linearly with Ihe number of processors.) With 
this assumption, the overall communication complexity of this step is G(n/ p). 

In the fourth phase of the algorithm each process merges p sorted sublists. 
Assuming the list sizes are balanced (which experiments show to be a reasonable 
assumption), the time required for the merge is Elf(n/ p) logp]. 

The ovemll computational romplexity of the PSRS algorithm is 

G[(n/ p) log(n/ pH p210g P + (n/ p) log pJ 

Since n » p, the lime neroed to sOl1 the regular samples is negligible. The 
const~nt of proportionality for the merge step in phase 4 is higher than for the 
quicksort in phase I. Hence we need to include the.G[(n/ p) log p] term forth is 
pha~e. Hence the overall computational CDmplexity is 

G[(n/ p)(1og /I + log p)] 

Assuming the communication capacity of the paraliel system increases linearly 
with p, the overall communication complexity is 

G(log p t nip) 

Again, since n » p, the communication time is dominated by the time the pro­
cesses spend sending sublists to each otheJ; so we can simplify the communication 
complexity to 

8(n/ p) 

The parallel overhead of this system is p times the communication complexity, 
or B(n), plus p limes the complexity ufthe parallel merge step, or 8(n log p). 

The isoefficiency function forthe PSRS algorithm is 

II log II ~ en log p =} log II ~ Clog P =} n ~ l 
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Since M(n) = n, the scalability function is 

This is the same scalability function we saw for hyperquicksort. However, the 
PSRS algorithm is likely to achieve higher speedup than byperquicksort because 
it keeps the number of keys per processor weI! baIanwl. 

14.6 SUMMARY 
Sorting is an important utility on both serial and parallel computers. In this chaptcr 
we have looked at three quicksort· based parallel algorithms suitable for imple­
mentation on both multicomputers and multiprocessors. 

Our first algorithm introduces the idea of repeatedly halving the lists and 
exchanging values between pairs of processes until tbe processes control non­
overlapping sublists. Unfortunately, it docs not do a goo~ job balancing values 
among processes. 

Hyperquicksort retains the idea of recursively splitting aM ex.changing sub­
lists. Howcver, by moving the quicksort step from the end of the algorithm to 
the beginning, it allows a better choice of the pivot value. The design of hypcr­
quicksort was inspired by the architecture of many 19805 multicomputers having 
a hypercube prucessor organization. In these systems the time required to send a 
message was directly proportional to the number of "hops" between the sending 
and the recei ving processors. Hyperquicksort can be implemented so that all mes­
sage,~ are between adjacent processors. Hence it optimizes communication. time 
on hypercubes. Because hyperqnicksorl relies upon a single process to choose 
the pivot value for the entire cube (or subcube), as the number of processors 
grows, the quality of the pivot value degrddes. As the pivot value strays from the 
true median, fhe workloads among the processes become imbalanced, lowering 
efficiency. 

Paralle.l sorting by regular sampling (PSRS) addresses the load imbalance 
problem of hyperquicksort by choosing pivot elements from a regular sample of 
elements held by all the processes. It has the additional advantage that its single 
alJ-to-all communication can be implemented so that each element is moved only 
once (rather than log p times). This is a good fit for contemporary switch-based 
clusters, in which the time needed to send a message is about the same for any 
pair of processors. 

14.7 KEY TERMS 
external sort 
hyperquickmrt 
iruemalsort 

key 
parallel sorting by regular 

sampling 

record 
saIellile dala 
sorting problem 
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14.8 BIBLIOGRAPHIC NOTES 

Parallel sorting algorithms have been the objcct of much study. In fact. an entire 
book hal been devoted to the topic: Parallel Sorting Algorithms by Akl {I]. 

In 1968 Batcher introducen a parallel sorting <llgorithm called bitonic merge 
t8J. A network of nl2 comparator elements can sort a list of n values in time 
e (log2 /I). However, algorithms based on bitonic merge have poor scalability on 
mUltiprocessors and multicomputers [44]. For this reason, we have not discussed 
parallel implementations of bitonic mergesort in this chapter. 

Various authors have proposed multiprocessor sorting algorithms that have 
two phases: a phase in which each process quicksorts its own subset of the data, 
followed by a phase in which processes cooperate to merge their sorted sub~ 
sets. References to such algorithms in the literature include work by Francis .iiid 
Mathieson [3~J, Quinn [94], and Wheat and Evans [L 13]. 

Quinn [941 discusses a parallel shell sort on UMA multiprocessors. Fox et al. 
[33] and Grarna et al. [44] also describe a parallel "shell sort" algorithm that is 
not a strict parallelization of the sequential algorithm but has the same flavor. 

14.9 EXERCISES 

IiI.l A stable sorting algorithm preserves the original order of keys with the 
same value. Is quicksort a stable sorting algorithm? 

14.2 Assume we are sorting four-byte keys on a multicomputer with 16 
processors. Assume it takes 70 nanoseconds to compare two keys, 
message latency is 200 psec, and message band\Yidth is 107 byteJsec. 

a. Perform a computational experiment to determine the expected 
maximum list size held by any process after the log p list-splitting 
steps of the first parallel quicksort algorithm, for I :::: p :::: 16. In 
each case compare the expected maximum list size to f n I pl. 

b. Predict the speedup achievable by this parallel computer using the 
first parallel quicksort algorithm to sort 100 million keys on 
I, 2, ... , 16 processors. 

14.3 Assume we are sorting four-byte keys on a multicomputer with 16 
processors. Assume it takes 70 nanoseconds to compare two keys, 
message latency is 200 p.sec, and message bandwidth is 107 byte/sec. 

a. Perform a computational experiment to determine the ex~tc:d 
maximum list size held by any process after the log p list-splitting 
steps of the hyperquicksort algorithm, for I :'S p S 16. In each case 
compare the expected maximum list size to f nl P 1. 

b. Predict the speedup achievable by this parallel computer using the 
hyperquicksort algorithm to sort 100 million keys on I, 2 .•. , , 16 
processors. 
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t4.4 In the average case about 1.386 Illogn - 2.846 n comparisons are 
performed by sequential quicksort-sortingn keys [5]. Assume we are 
sorting four-byte keys on a multicomputer. Assume it takes 
70 nanoseconds to compare two keys, message latency is 200 /Lscc, and 
message bandwidth is 107 byte/sec. The PSRS algorithm typically 
divides the keys nearly evenly, so that at the final step no process is 
responsible for merging more than about f 1.03 11/ P 1 keys. Predict the 
speedup achievable by this parallel computer using the PSRS algorithm 
to sort 100 million keys on I. 2, ... , 16 processors. 

14.5 Our analyses of hyperquicksort and the PSRS algorithm assume that the 
initial ordering of the Il keys is a random permutation of their sorted 

. order; that is, each of the n! possible permutations is equally likely. 
Suppose the initial list ofkeys is already sorted; thai is, Ilo :s:: al S ... 
S ali'!' Which.ofthe two algorithms is less disrupted by this 
permutation? Why? 

14.6 In the last step of the PSRS algorithm, each process must merge p 
sorted sublists, each of size about n / p2. (The total number of elements 
to be merged is typically about 11/ p and guaranteed 10 be less than 
2n/ p.) Describe the algorithm(s) and data struclure(s) that can 
accomplish the merge in time S[(1l / p) log pl. 

14.7 a. Write a parallel program implementing the hyperquicksort 
algorithm. 

b. Using your system's values for X, A, alld {3, predict the speedup your 
program will achieve for various numbers of processors p and 
various problem sizes n. 

c. B~nchmark the program for the same combinations of p and n. 
d. What is the error between the prediction and the experimental 

results? Identify the largest source of error in your speedup 
fonnula. 

14.8 a. Write a paralleL program implementing the PSRS algorithm. 
h. Using your system's values for X, A, and f3, predict the speedup your 

program will achieve for various numbers of processors p and 
various problem sizes n. 

t:. Benchmark the program for various combinations of p and 11. 

d. What is the error between the prediction and the experimental 
results? [demify the largest source of error ill your spee.dup formula. 

14.9 This chapter ha~ focused on parallel implementations of quicksort, a 
8(n log Il) sorting algorithm. Another well-known, recursive, 
8(1J logn) sorting algorithm is mcrgesort. Here is pseudocode for 
mergesort. It relics on function Merge, which merges two sorted 
lists. 
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14.10 

14.11 

14.12 

Mergesort (list): 
iflength(list) = I then 

relufIl list 
else -

part I +- Mergesort (first half of list) 
part2 +- Mergesort (remainder of list) 
return Merge (part!, part2) 

endif 

If you need a more detailed explanation of mergesort, consult Cormen 
et 31. [18], Baase and Van Gelder {5], or another introductory analysis of 
algorithms textbook. 
a. Design a parallel version of mergesort for a multicomputer. Make 

these three assumptions. At the beginning of the algorithm's 
execution all unsorted values are in the memory of one processor. At 
the end of the algorithm's execution the sorted list is in the memory 
of one processor:The number of processors p is a power of 2. 

b. What is the complexity of this algorithm'] 
c. What is the isoefficiency of your parallel mergesort algorithm? 
d. Write a prograf{l implementing your parallel algorithm. Benchmark 

the program for various combinations of p and n. -

Suppose the values of n keys are unifonnly distributed in the interval 
[0, k). Bucket sort divides the interval [0, k) into j equal-sized 
subintervals called buckets. Each key is placed in one of the buckets, 
based upon its value. After all the keys have been placed in buckets, the 
keys in each bucket ace sorted. Once the keys in each bucket are sorted, 
the sequence is sorted. 
a. Design a parallel version of bucket sort. Initially the II keys are 

distributed among the p processes. The interval [0, k) should be 
divided into p buckets. In step I, every process divides its nj p keys 
into p groups, one per bucket. In step 2, each process assumes 
responsibility for one of the buckets. An all-to-aU communication 
routes groups of key s to the correct processes. In step], each process 
sorts the keys in its bucket. 

b. What is the complexity of this algorithm'! 
c. What is the isoefficiency of your parallel bucket sort algorithm'? 
d. Write a program implementing parallel bucket sort. Benchmark the 

program for vmious combinations of p and n. 
WJite a parallel program to find the kth largest element in an unsorted 
list of n elements initially distributed among p processors. 
A file contains n signed integers, each four bytes long. Write a parallel 
program to detemune which integer value occurs most frequently in 
the file. 



C HAP T E R 

The Fast Fourier Transform. -

The meeting of two personalities is like the contact of two chemical 
substances; if there ix any reaction, both are trallSformed. 

Carl Gustav Jung, Modern Man in Search of a Soul 

15.1 INTRODUCTION 

The discrete Fourier transform has many applications in science and engineering. 
For example, it is often used in digital signal processing applications such as 
voice recognition and image processing. A straightforward illJplcmentation of the 
disl:rete Fourier transform has time complexity <3 (n"). The fast Fourier transform 
is a 0{n log n) algorithm to perform the discrete Fourier transfonn, and it can be 
paraUelized easily. 

In this chapte[we illuminate how the discrete Fourier transform works by 
using an example from speech recognition. We fonnally present the discrete 
Fourier transform and the inverse discrete Fourier transform. We move on to 
present the fast Fourier transform algorithm and describe how to implemcnt it on 
a multicomputer. 

15.2 FOURIER ANALYSIS 

f'ourier analysis studies the representation of continuous functions by a po­
tcntially infinite series of sinusoidal (sine and cosine) functions. We can view 
the discrete Fourier transform a~ a function that maps a sequence over time 
(f(k)} to another sequence over frequency (F(j)}. The sequence If(k)} repre­
sents a sampling of a signal's distribution as a function of time. The sequence 
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Figure 15.1 Example 01 the discrete Fourier transform. (a) A set of 16 data points 
representing samples of signal strength in the time interval 0 10 (but not through) 2rr. 

(b) The discrete Fourier transform yields the amplitudes and frequencies of the 
constituent sine and cosine functions. (c) A plot of the four coostituent functions and 
their sum, a continuous function. (d) A plot 01 the continuous function and the original 
16 samples. 

r F (j)} represents a distribution of Fourier coefficients as a function of frequency. 
We can use (F (j) I to compute the sinusoidal components of the sampled signal. 

Figure 15.1 illustrates this process. We begin. in Figure 15.la, with a plot of 
[f(k)}, 16 samples of signal strength between timeO and time 2Jr. Figure 15.1 b 
is the plot of I F(j)), a sequence of 16 complex numbers representing the fre· 
quency distribution. From the nol1zero elements of l F{j)l we can determine the 
frequency of the terms genenlting the signal, where frequency means the number 
of complete cycles the wave completes between time 0 and time 2Jr. Nonzero 
real component.~ correspond to cosine functions; nonzero imaginary components 
correspond to sine functions. From Figure 15.!b we see that there are nonzero· 
real components wilh frequency 2 and 5 and nonzero imaginary c()mponenl~ with 
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fre<juency I and 2. Hence the function generating the ~ignal is of the form 

.i\ sinx t czcos(2x) t S2 sin(2x) + C5 cos(5x) 

For each frequency, we divide the amplitude sho\vn in the left half of Figure 15.1 b 
by 8 (half of 16, the number of sample points) to determine thec()efficienl~ of the 
variou!i sinusoidal components. The frequency 1 component is 16i. Dividing 16 
by 8 yield~ a coefficient of2 for the function sinx. The frequency 2 component is 
-8 - 16i. Dividing -8 by 8 yields a coefficient of -1 for the function cos(2x), 
just as the coefficient for the function sin(2x) is - 2. We use the same method 
to calculate that 0.5 is the coefficient of Ibe fUllction cos(5x). The four terms 
generating ,the signal are ·;:tJ,.(',$.}.wI ; .. ' "',.:::';;::~1(:;;':; 

. 2sinx - cos(2x) - 2sin(2x) to.5cos(5x) 

In Figure lj.lc we plotthe four sinusoidal components and their sum, a continuous 
function, and in Figure 15.ld we plot the continuous function against the !iampled 
data points. 

Let's look at how Fourier analysis is used in speech recognition. Most speech 
analysis has be~n done by studying the spectral parameters of the speech signal. 

D~comp()Sing complex speech signals into periodically recurrent sinusoidal compo­
nents is the central activity of signal processing work, and is justified by (1) sinusoids 
being "natural signals" of linear physical (eleetfOliie) systems; (2) resonances being 
prominent cues 10 articulation configurations; (3) voice sounds being composed out of 
harmonics of the voice fundamental frequency; and (4) the ear appearing to do SOOle 

form of spectral analysis. Also, sinusoids (and some other expon~n(ia1 signals) can be 
added ("superimposed") in linear systems without interfering with each other; tbus 
the sinusoidal parts that we decompose tbe signal input into for frequency analysis 
act a~ independent, "orthogonal signals" {67]. 

The discrete Fourier transform can be used to convert digitized samples of 
human speech into two-dimensional plots (see Figure 15,2), The graph shows 
detected frequencies as a function of time. Each Ilarrow vertical strip shows the 
amplitudes of the detcLied frequencies as shades of gray. As the person talks, the 
speech signal changes, and so do the frequencies that make up the signaL Plots 
Slich as this can be used as inputs to speech recognition systems. which try to 
identify spoken phonemes through pattern recognition. 

15.3 THE DISCRETE FOURIER TRANSFORM 
Given an Ii element vector x, the discrete Fouriertransfonn (DFT) is the matrix­
vector product F;,x, where fi,j = (v:! for 0 ::: i, j < Il and (0" is the primitive 11th 
root of unity. (For a review of complex numbers, refer to Appendix D,) 

For example, to compute the discrete Fourier transform of the vector (2, 3), 
we need to know ~, the primitive square root of unity. The primitive square root 

355 



356 CHAPTER 15 The Fast Fourier Trans/arm 

Figure 15.2 Discrete Fouriertransform of the waveform corresponding to "Angora 
cats are furrier. .. ." The upper portion of the chart plots the strength of the input 
signal as a function of time. The lower portion plots frequency and amplilude as a 
function of time. Each narrow vertical strip represents the discrete Fourier transform 
of the wavelormusing a moving 10 ms window within a 3 ms increment. The darker 
the plot at some vertical position, the higher the amplituCle althat frequency. (Figure 
courtesy Ron Cole and Yeshwant Muthusamy of the Oregon Graduate Institute.) 

of unity is -I .. The DH of (2, 3), then, is 

Now let's compute the DH of the vector (J, 2, 4, 3). We will need to usc the 
primitive fourth root of unity, which is i. 

Let's put the DH to use by returning to the example presented in the previous 
section. We have a vector of 16 complex numbers representing signal strength in 
the time interval 0 to 2IT. To simplify the presentation we show each number to 
only three digits of accuracy: 

(-0.500, -1.55, -0.939, 1.60,3.00,3.51,3.77,1.66, 
-1.50, -2.70, -3.06, - 3.02, -1.00,0.736,0.232, -0.250) 
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The OFT of this vector is 

(0, 161, -8 - 16i, 0, 0,4, Q, 0, 0, 0, 0, 4, D, 0, -8 + 16i, -16i) 

To determine the coefficients of the sine and cosine functions making up 
tills signal, we examine the nonzero element$ in the first half of the transfomled 
sequence. (The temlS at positions 9 through 15 are a reflection of the terms in 
positions I through 7, with the signs of the imaginary parts reversed.) If we 
begin counting at 0, the real portion of term k is 8 times the coefficient of the 
function cos(kx), and the imaginary portion of teM k is g limes the coefficient 
of the function sin(kx), {Eight is half the number of sample point'>,) Thus the 
combination of sine and cosine functions making up the curve is 

, " ' ". - ,,-.>"~-:} • ;.-,-.:~~""-Z: 

2sin(x) - COS(2.1) - 2sin(2t) +0.5 cos(5x) 

15.3.1 Inverse Discrete Fourier Transform 

Given an n element vector x, the illl'erse discrete Fourier transform (inverse 
DFr) is l/nth the malrix-vecror product f"lx, where f-lCij) = (/{ij for 0 ::: 
i, j < II and (.vI! is the primitive n root of unity. 

For example, the inverse OFT of the vector (10, -3 - i, 0, -3 + i) is 

(",0 (V~ 

~ (V~ -I w4 

4 w~ 
-? 

W -
4 

WO -3 
4 W4 

15.3.2 Sample Application: Polynomial Multiplication 

We can use the OFT and inverse DFT to mUltiply polynomials, First, we need to 
understand what the OFT and inverse DFT do, The OFT evaluates a polynomial at 
the /I complex 11th roots of unity, Let's see why this is true, If f(x) = a"_jx"- J + 
GIl_2XII-1 + ... + GjX + (Ill is a polynomial of degree /I - 1, and (J! is the primitive 
nth root of unity, then 

( ji:~~ ) = F ( :~ ) 

f(w"- I ) all __ ] 

because f(u/) = ao + GIWi + alw2i +". + all_jw(Il-I); for 0::: i < n. 
The inverse OFT takes the values of a polynomial at the n complex nth roots 

of unity and produces the polynomial's coetJicients. 
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Now, suppose we waotto mUltiply two polynomials 

n-l n-l 

p(x) = La;:() and q(x) == Lbixi 

i--O 

The product of these two polynomials of degree n - I is the (2n - 2) degree 
polynomial 

2.-2 j 

p(x)q(x) = L l>jbi-jX' 
i=O j=O 

We can compute ~e coefficients of the resulting polynomial p(x)q (x) by convo­
luting the coefficient vectors of the original polynomials. 

For example, to mUltiply the two polynomials 

yielding 

p(x) = 2Xl --4x2 +5x-1 

q(x) -= Xl +2x2 +3x + 2 

we convolute the coefficient vectors: 

resu lting in 

i26=2xl=2 

as = 2 x 2 + (-4) x l= 0 

i24 = 2 x 3 + (-4) x 2 + 5 x I = 3 

aJ = 2 x 2 + (-4) x 3+ 5 x 2 + (-1) x 1 = I 

Jl2~ (-4) x2+5x3+(-I) x2=5 

at=5x2+(-l)x3=7 

ao=(-l)x2=-2 

Another way to multiply two polynomials of degree 11 -- I is to evaluate them 
at the n complex nth roots of unity, perform an element-wise mUltiplication of the 
pol ynomials' values at these points. and then interpolate the results to produce the 
coetlicients of the product polynomial. Let's apply this method to the previous 
example. 

First we perform the DF!' 00 the coefficients of p(x). We list the coefficients in 
order from low to high. Since the polynomial has degree 3,thelast four coefficients 
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are O. To simplifY the figure, we only show two digits past the decimal point. 

1 2 
WI WI w3 w4 wi w6 fJ} 5 1.t2 + .95i 
(f} w4 (J} w(J J 4 lJ)u ~-4 3 + 3i w- w 
{j} w6 WI w~ w 1 w2 0; 2 -3.12 + 8.95i 
w4 lJ)~ w4 (til 0 -12 
w5 , 

w7 w4 wi w6 w3 0 -3.12 - K95i W" 

(J}6 (j)4 w2 ri' 4 w w2 0 3 - 3i 
(f} {Ji wI w4 wJ (Ji WI 0 Ll2- .95i 

Next we perform the DFf on the coefficienl~ of q(x). Again, we.are only 
showing two digits beyond the decimal point. 

I 2 
WI & {J)J w4 w5 w6 w1 3 
IJi w4 (Ji WO w2 w4 w6 2 
(j} {j} {J}I {J}4 {J} {J}2 {J}I 1 
{J}4 Wi w4 Wi OJI w4- 0 
w5 w2 w7 w~ wi w6 w3 .-0 
w6 w4 lJ)2 w6 w4 w2 0 
{J/ w6 wi w4 w3 w2 wi 0 

8 
3.41 +4.83i 

.59 + .83i 
o 

.59 - .83i 
-2i 

3.41-4.83i 

Now we perform an element-wise multiplication of the two polynomials at 
these eight points. 

2 
Ll2+ .95i 

3 +3i 
-3.12 + 8.95i 

-12 
·-3.12 - 8.95i 

3 - 3i 
1.12 - .95i 

8 
3.41 + 4.83i 

2i 
.59 + .831 

o 
.59 - .831 

-2i 
141 -4.83i 

16 
-.76 + 8:66i . 
. -6+6i 

-9.25 + 2.66i 
o 

-~9.25 - 2.66i 
-6- 6i 

-.76 -8.66; 

In the final step we perform the inverse DFf on the product vector. Note thaI 
we have replaced the negative powers of w with equivalent values expressed as 
positive powers. For example, when w is the primitive 8th fOot of unity, w- I = w7 

and iIJ-2 = w6• Here is the inverse DFT: 

I 

8 

1 I 
w7 ~ wi 
w6 w4 w2 

(J ui u/ 
(04 iIJ4 

(J)3 {j} WI 

(f/ w4 w6 

Wi ai w3 

I 
w4 uI w1 wI 

w6 wl w2 

w4 wi w6 wJ 

w4 w4 

w4 w7 w" w5 

w2 w4 w6 

w4 wi (06 w1 

16 
-.76+ 8.66i 

",6 + 6i 
-9.25 + 2.66i 

o 
-9.25 - 2.66; 

-6-6i 
-.76 8.66i 

-2 
7 
5 
I 
3 
o 
2 
o 
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The vector produced by the inverse DFf contains the coeffienls of the product 
polynomial in order from low to high. In other words, 

rex) =0 2x6 + 3x' + x3 + 5x l + 7x - 2 

15.4 THE FAST FOURIER TRANSFORM 
At the end of Section 15.3 we demonstrated how we can use the DFl' and inverse 
DFf to multiply two polynomials. Why would we use this complicated algo­
rithm to perform convolutions or multiply polynomials, when these can be done 
directly in time e(n2)? The reason is that we do not have ({J perform the DF]' 
and inverse DFf using matrix-vcdor multiplication. Anilgorithm with complex­
ity 8(1'1 log 11) exist~, and (luckily for us) it is amenable to parallelization. The 
improved algorithm is called the fast Fourier transform (FFT). 

The FFT uses a divide-and-conquer strategy to evaluate a polynomial of 
degree n at the n complex nth roots of unity. To evaluate j (x), a polynomial of 
degree 1'1 where 1'1 is a power of 2, the algorithm defines two new polynomials 
of degree n/2. Function j[Ol(x) contains the elements of j (x )associated with the 
even powers of x, while function jlll(x) contains the elements associated with 
the odd powers of x: 

. j101::= ao +02X +a4x2 + ... +a,,_2x,,/2-1 

fill = al +a3x +05X2 + "'+a"_lx"J21 

Note that j(x) = f[OI(x2) +xj[IJ(x2), so Ilre problem of evaluating j(x) 
at the points UJ~,(d!, ... ,UJ~-1 reduces ro.evaluating jfOl and jfll at (W~)2, 
(W~,)2, ... , (w~12 1)2, and then computing j(x) = jJOl(x2) + xj!ll(x2). 

Halving Lemma If n is an eveD positive number, then the squares of the /I con" 
plex nth roots of units are identical to the n/2 complex (11/2)th roots of unity. 

Proof See Appendix D. 

By the halving lemma, we know that the sel of points (W~)2, {W~)2, ... , 
«(1);;-1)2 consists of only 1'1/2 unique values. In other words, to evaluate the 
polynomial f(x) at the n complex nth roots of unity we need only evaluate 
the polynomials jlOJ(x) and fJll(x) at the 11/2 complex (n/2)th roots of unity. 
Hence our divide-and-conquer strategy will save us computations. 

The most natural WaY to express the I<TI algorithm resulting from the divide­
and-conquer strategy is to use recursion. Pseudocode for a recursive implemen­
tation of FFf appears in Figure 15.3. The time complexity of this algorithm is 
easy to determine. Let T(Il) denotr the time needed to perform the FFf on a 
polynomial of degree II, where n is a power of 2. 

T(n) = 2T(1I/2) + 8(n) 
= e(n logn) 
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Paramerer n N umber of elemcnlS in" 
alO ... (II - 1) J Coetlicien1.l 

Local -lOll 

Ct! 
of 01 

ar'l 

y 

1°1 

lJ 

if II = 1 then retunt iJ 

else 
(01'1 +- e2~/" 

(I).f-l 

Primitive 11th root of unity 
Evaluate poly!lOlllial allhis point 
Eve/l~numbered ClJefficient~ 

Odd-numbered coefficieAts 
Result or Ifaflsfonn 
Re,wlt of FrT of alOI 

RcsultofFFfofall1 

dol <- {a[O] , a[2], •.. ,a[n- 2Jl 
u[11 +- (a[I],«PI .... ,a[n-ill 
),101 +- Recursive_FIT (alGI, n12) 
y(t[ +- Recursive_FIT (alii. n/2) 
fork +-Otoll(2-1 do 

ylk[ <- ylOI[kl + w X yPI[l] 
Y[k + n12] +- /DI [kl - <0 x yll! [t] 
ILl +-(V x WI! 

end for 
return y 

cndif 

Figure 15.3 Recursive sequentiallmplementation 
of the fast Fourier transform algorithm (adapted 
from Cormen et al. [18]). 

While the recursive fonnulation of the FFT algorithm is (relatively) easy to 
understand, we have two reasons for developing an iteru!ive l'Ff algorithm. First, 
a well-wlitten iterative version of the FFT algorithm can perform fewer index 
computations and eliminate the second evaluation of (V!yfIJ [kJ every iteration of 
the for lOOp. Second, it is easier to derive a parallel .FFT algorithm when the 
sequential algorithm is in iterative fonn. 

Figure 15.4 illustrates the derivation of an irerative algorithm from the recur­
sive algorithm. In Figure 15.4a we see how the recursive algorithm transfonns 
a vector of four elements. Each rounded rectangle represents a call to function 
f ft. The vector to be transfonned is inside the parentheses. The function keeps 
dividing the vector in half and calling itself recursively on each half until the 
vector size is L The DFT of a single value is that value. (Remember the FIT 
is simply a fast way of perfonning the DFf.) The heavy curved arrows show 
the values returned from each invocation of the function. The function combines 
the values received in two vectors of length i and returns a vector of length 
2i. Perfonning the FFT on input vector (I, 2,4, 3) produces the result vector 
(to, -3 - i, 0, -3 + i). 
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(5+1(5) -3+j(-!}5=1~~) ~3-GJ 

(a) (b) 

2 4 3 

(e) 

Figure 15A Evolution of the ~erative algorithm from the recursive algorithm. 
(a) Recursive implementation of FFT. (b) Determining which computations are 
performed for each function invocation. (e) Tracking the flow of data values. 

In Figure 15.4b we look inside the functions and determine exactly which 
operations are performed for each invocation. The expressions offonn a + b(c) 
and a - b(c) cOITespond to the pseudocode statements 

y[k] +- ylllllk) + w x yllllkJ 

y[k + n/2) +- y[OJlk) - w x ylI][k] 

Figure 15.4c tracks the movement of the data values. At the beginning of the 
algorithm the vector elements are permuted. The element at index i of the input 
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i'aJ<uneler" Number of elemen!.1 in a 

a [0 ... (II - 1)] Coefficillnis 
Local "'d 

y 

Primitive dth roo! of unity 
Evaluate polynomial a/ this point 
Result of tnmsfoon 

)' +- Bit_Reverse_Permutation(a) 
forj <-Ilologn 

d +- 2' 
{jJJ +- C'l:rri/d 

w+-I 
lor k +- 010d/2 - 1 

[or m +- ktn n - h1ep d 
I+- W x y[m tll/2] 
x <- y[kJ 
y[k] +- J +1 
y{k +d/2J +- x-I 

endlor 
endfor 
ftJ i- itJ X (::1." 

erulf"r 
return y 

Figure 15.5 Iterative, sequential implementation 
of 1Ile fast Fourier transform algorithm {adapted 
from Carmen et aL (18]l. 

vector is moved to index rev(i), where rev(i) represents the bits of i in reverse 
order. Value·2, initially at index 01, is moved to index 10. Value 4, initially at 
index 10, is moved to index 01. Values 0 (at index (0) and 3 (at index 11) stay 
pul In the first stage the algorithm is finding the D.H of individual values, and it 
simply passes the values along. In each of tile remaining stages the computation 
of a new value depends upon two values from the prt"vious stage. The data Aow 
arrows form butterfly patterns. 

We can derive the iterative algorithm directly from Figure 15.4. After an initial 
permutation step, the algorithm will iterate log n times. Each iteration corresponds 
to a horizontal layer in Figure 15.4c. Within an iteration the algorithm updates 
values for each of the n indices. The algorithm, illustrated in Figure 15.5, has the 
same time complexity as the recursive algorithm: 8{nlog n). The use of tempo­
rary variable t cuts the number of complex number multiplications nearly in half. 

15.5 PARALLEL PROGRAM DESIGN 

15.5.1 Partitioning and Communication 

The efficient iterative algorithm is our starting point for designing a parallel fiH 
function suitable for implementation on a multicomputer. We'll use a domain 
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a[O] y[O] 

Figure f 5.6 Task/channel graph for the FFT algorithm when n = 8. Tasks are 
represented by long. rounded rectangles so that the channels needed at each 
stage of the algorithm can be distinguished. 

decomposition, associating a primitive task with each element of the input vector a 
and the corresponding clement of the output vector y (Figure 15.6). 

The first step of the algorithm is (0 perform the permutation of vector a. Each 
clement ali] is copied to yfj], where j is the index found hy reversing the bits 
of i. For example, when n = 8, we have 

'" 

001-.100 
010 -.010 
011 -. 110 

110 -. OJI 
III -. III 

We draw channels for this initial communication. 
The main loop of the function has logn iterations. During each iteration, 

each ta~k computes its new value of y[k] from the previous values of y[k] and 
either y{k + m/21 or y(k - m/2]. The taskfchannel graph illustrates the butterfly 
communication pattern. 
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f 5.5.2 Agglomeration and Mapping 

Agglomerating primitive task.~ associated with contiguous elements of the vector 
eliminates some of the communication steps. For example, lfn = 16 and p = 4, 
process 0 has coefficients with subscripts 0, 1,2, and 3; process 1 has{;oefficicnl~ 
with subscripts 4, 5, 6, and 7; and so on. 

We can draw another task/channel diagram that indicates the oommuni­
cation pattern between the processcs. In this new diagram (Figure 15.7), each 
agglomerated task (process) is represented by a gray rectangle. Every process 
controls two arrays of complex values. The first array, n, contains a contiguous 
group of input coefficients. The second array, y, holds intermediate values. At 

" theeIid oflneeorilputation, array y contains a contiguous group of transfornled 
values. 

The parallel algorithm has three phases. In the first phase the processes per­
mute the a's. This is an example of an all-to-all communication. In the sec­
ond phase the processes perform the first log n - log p iterations of the FFr 
by performing the required multiplications, additions. and subtractions on com­
plex numbers. No message passing is required. In the third phase the processes' 
perform the final log p iterations of the FH by swapping y's and perform­
ing the requisite mu ItiplicatiollS, additions, and subtractions. Think of the pro­
cesses as being organized as a logical hypercube. During each of the final log p 
iterations: pairs of processes swap "alues across a different dimension of the 
hypercube. 

f 5.5.3 lsoefficiency Analysis 

Each process performs an equal share of the computations. Since the computa­
tional complexity of the sequential algorithm is El{n log n), the computational 
complexity of the parallel algorithm is 8(n log nl p). 

Each process controls at most r nl p l elements of ll. We assume the pro­
cesses are organized as a logical hypercube. The all·to-all communication step 
is implemented as a series of swaps across each hypercube dimension; it has 
time complexity ("[(111 fJ) log p]. There are log p iterations in which each pro­
cess swaps about nip values with a partner process along one of the hypercube 
dimensions. The totaitime complexity of these swaps is El[(nl p) log pI. With 
these a~sumptions, the overall communication complexity of the algorithm is 
8Hnl p) logpJ. 

Let's determine the isoefficiency of the parallel program. The sequential 
algorithm ba.<; time complexity 8(n logn). The parallel overhead is p times the 
communication complexity. Hence the isoefticiency function is 

nlogn::: Cnlogp =} logn 0:: Clogp =} /l::: pC 

The scalability of the FFr algorithm is similar to the scalabmty of the hyper­
quicksort and PSRS algorithms. 
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15.3 For each of Ihe following vectors, show the result of applying the DPI' 
to it. 
a. (7, 11) 
b. (\3, 17,19,23) 
c. (2, J, 3, 7,.5,4,0,6) 

15.4 For each of the following vectors, show the result of applying the inverse 
DFftoit. 
a. (3, -2) 

b. (10, -2 + 2i, -2, -2 - 2i) 

""",r·"~·-#':§jr;"i<t~.~'!i?f.',;j.,·; c. (14, -3 - 4i, 1- i, -1 + 3i, 0, -1 - 3i; 1+ i, -3+ 4i) 
15.5 Implem~nt a parallel PFf program based on the design developed in this 

chapter. Benchmark your program for various values ofn and p. 

15.6 Implement a serial program implementing the inverse FFf algorithm. 
15.7 Implement a parallel program implementing the inverse FFT' algorithm. 

Benchmark your program for various problem sizes on various numbers 
of processors. 

15.8 Excluding the initial all-to-all communication, the body of the fast 
Fourier transform algorithm exhibits a butterfly communication pattern. 
Name a parallel algorithm described in an earlier chapter that also has a 
butterfly communication pattern. 

15.9 The scalability oftheFFT algorithm is similar to the scalability of the 
hyperquicksort algorithm. Explain the similarities between the two 
algorithms. 



C HAP T E R 

Combinatorial. Search 

Attempt the end, and never stand to doubt; 
Nothing's so hard but sean:}, will find it Ollt. 

Robert Herrick, "Seek and Find," Hesperides 

16.1 INTRODUCTION 

Combinatorial algorithms perform computations on discrete, finite mathemati­
cal structures [97J. Combinatorial search is the process of finding "onem more 
optimal or suboptimal solutions in a defined problem space" [109J and has oeen 
used for such diverse problems as: 

• laying out circuits in VLSI to minimize the area dedicated to wires 
• planning the motion of robot arms to minimize total distance traveled 
• assigning crews to airline flights 

• proving theorems 
• playing games 

There are two kinds of combinatorial search problems. An al gorithm to sol ve 
a decision problem attempts to find a solution that satisfies all the constraints. 
The answer to adecisiOIl problem is either yes, meaning a solution exists, or no, 
meaning a solu1ioll does not exist. Here is an example of a decision problem: "Is 
there a way to route the robot arm so that it visils every drill site and moves 110 

more than 15 metersT' An dgorithm that sol ves an optimization problem must 
find a solutiOlllhat minimize.~ (or maximizes) the value of an objective function. 
Here is an example of an optimil.ation problem: "Find the shortest route for the 
robot arm that visiL~ every drill sile." 

This chapter discusses four kinds of combinatorial search algorithms usW 
to solve decision and optimization problems. These algorithms are divide and 
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(aJ (b) Ie) 

.,.fig~~ 1~.t A search pmble,m caube represented by a tree. (a) An AND tree. (b) All OR tree. 
~~" , , ;;~cr'A'n'1\~D10Fl'tre'il~:" "-,-,,,::;;::,,,"';";:. 

conquer, backtrack, branch and bound, and alpha-beta search. Different algo­
rithms explore different kinds of search trees. In all cases the root of the search 
tree represents the initial problem to be solved, but the nonterminal nodes vary 
according to the kind of search tree. An AND node represents a problem or sub­
problem that is solved only when aU ils children have been solved; an OR node 
represents a problem or subproblem that is solved when any of its children has 
been .~olved. Every nonterminal node in an AND tree is an AND node (Fig­
ure.16.la). The search tree corresponding to a divide-and-conquer algorithm is 
an AND tree, since the solution to a problem is found by combining the solutions 
to all its subproblems, Every nonterrninal node in an OR tree is an OR node 
(Figure [6.lb). Backtrack search and branch-and-bound algorithms explore OR 
trees. An AND/OR tree is characterized by the presence of both AND nontermi­
nal nodes and OR nonterminal'nodes (Figure l6.1c). Game trees are examples of 
AND/OR trees. 

16.2 DIVIDE AND CONQUER 

Divide and c.onquer is a problem-solving methodology that invol ves partitioning 
a problem inlo subproblems, solving the subproblems. and then combining those 
solutions into a solution for the original problem. The methodology is recursive: 
that is, the subproblems themselves may be solved by the divide-and-conquer 
technique. The quicksort algorithm of Chapter 14 is an example of the divide­
and-conquer technique. 

The divide-and-conquer problem solution can be represented by an AND 
tree, since the solution to any problem represented by an interior node requires 
the solution of all its subproblems, represented by the children of that node. In 
other words, every node in the tree must be examined. 

Divide-and-conquer algorithms are more easily implemented on centralized 
multiprocessors than on multicomputers. In a centralized multiprocessor the list 
of unsolved subproblems can be kept in a single stack manipulated by all the 
processors. Processors needing work can aceess the slack to retrieve an unsolved 
subproblem. Processors with extra subproblems can put them back in the stack for 
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other processors to retricve. The central stack is an effective workload-balancing 
mechanism, though it eventually becomes a bottleneck as the number of prllCes­
sors increases. 

In a multicomputer, the lack of a shared memory means subproblems must be 
distributed among the memoric.~ of the individual processors. Two fundamentally 
different designs emerge. Iu the first design the original pmblem and the final 
solution are stored in the memory of a single process_ The parallel search of an 
AND tree can be divided into three phases. In the first phase, problems are divided 
and propagated througbout the parallel computer. For most of the first phase there 
are fewcr tasks than processors, and processors are idle until they are given a 
problem to divide and propagate. In the second phase all the processors stay busy 
computing. !n the third phase there are again' fi!lNer~tbM;~~'r6'e!@jfS'; :fnasome"····!::~ 
processors combine results while other processors are idle. Hence the maximum 
speedup achievable is limited by the propagation and combining overhead. 

In the second multicomputer design, both the original problem and the 
final s.olution are distributed among the memories of the processors. This de­
sign eliminates the starting up and winding down phases in which only some 
of the processors are active. It also allows the problem size to increase with the 
number of processors. We used this approach when developing parallcl quick­
sort algorithms in Chapter 14. As we saw in our discussion of parallel sorting 
algorithms, it can be difficult to balance the workloads of the processors when 
subproblems are distributed among their memories. . 

16.3 BACKTRACK SEARCH 
Backtrack is a method for solving combinatorial optimization problems that 
relies upon depth-first search to consider alternatives. Given the original problem 
(the root of the state space tree), backtrack generates its children and chooses 
one of them as the place to continue the search. It recursively applies the same 
methodology at the selected node. If the search reaches a node that cannot be 
expanded (i.e., a "dead end"), or if all of its children's subtrees have already been 
explorcd, then control backtracks to the previous nodc. 

16.3.1 Example 

Considcr the problem of generating a crossword puzzle. Given a blank crossword 
puzzLe (rigurc 16.2a) and a dictionary of words and phrases, our goal is to assign 
Ictters to blank spaces so that every horizontal row and vertical column of two or 
more letters contains a word or phrase from the dictionary (Figure 16.2b). This is 
an example of a decision problem: we arc answering the question, "Is there a way 
to fill in this particular crossword puzzle pattern with words from this particular 
dictionary?" 

Each number in the blank crossword puzzle corresponds to the beginning of 
a horizontal word, the beginning of a vertical word, or both. We'll use the phrase 
"incomplete word" to refer to a word that has not yet been completely determined; 
that is, a word with at least one unassigned character in it. 
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(aJ (b) 

Figure 16.2 The crossword puzzle problem is to create a crossword puzzle 
solution from a dictionary of words and phrases ancl a blank puzzle template. 
(a) The blank puzzle template. (b) A crossword puzzle solution. This solution 
was generated by Crossword Weaver (www.CrosswordWeaver.com). 

To fill in the puzzle, we use the following search strategy: We identify the 
.longest incomplete word in the puzzle and look for a word or phrdSe in the 
dictionary of that length. If there "is more than one word or phrase that fits, we 
choose one of them arbitrarily. At each subsequent step we locate the longest 
incomplete word that has at least one letter assigned and find a dictionary word of 
the correct length that matches the characters already a~signed. Again, if there is 
more than word or phrase that would work, we select one arbitrarily. We continue 
in this fashion until no incomplete words remain. 

With these criteria we can define the order in which we will try to fill in the 
incomplete words. Here is one word ordering that fulfills our criteria: 3 DOWN, 
9 ACROSS, 4 DOWN, \2 ACROSS, 1 DOWN, 2 DOWN, 5 DOWN, 6 DOWN, 
10 DOWN, 12 DOWN, 13 DOWN, 14 DOWN, 15 DOWN. 

The different choices for the various word assignments can be represented 
by a state space tree. At the root of the tree is the empty crossword puzzle. The 
children of the root represent all the seven-letter words that can be used to fill the 
incomplete word 3 DOWN. Each node in the tree represents a possible dictionary 
clement assignment to an incomplete word, given all the a'5ignmellls that have 
been made so far. The tree has depth d if d assignments must be made to fill all 
the blank squares. Since any tree leaf at depth d represents a valid solution to the 
crossword puzzle problem, a state space tree is an example of an OR tree. 

We can look for solutions to the crossword pU12;!e problem by performing a 
backtrack search of the state space tree. It has this name because if at any point 
il1 the search our choices lead us lO a "dead end," we backtrack to the previous 
level and consider an alternate choice. 

Let's see how this search would work for the blank crossword puzzle of 
Figure 16.2. Figure 16.3 accompanies the description that follows. 
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Figure 16.3 Start of a backtrack search of the state 
space tree for an instance of the crossword puzzle 
problem. 
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.r:-4.~ .-.. _--

Our tirst step is to lind a seven-letter w{lrd foC3 DOWN. Looking in the 
dictionary for a seven-letter word, we find TROLLEY. 

Next we consider 9 ACROSS. Looting in tbe dictionary for a seven-letter 
word whose third leiter is 0, we find CLOSETS. 

At the third level in the state space tree we consider 4 DOWN. We need a 
seven-letter word whose third letter is E. Suppose we can't find such a word in 
our dirnonary. In this case, we must backtrack, and we look for another choice 
for 9 ACROSS. Another seven-letter word whose third letter is 0 is CROQUET. 

Having liIled in 9 ACROSS, we return to 4 DOWN, looking for a seven­
letter word whose third letter is U. The dictionary woro TRUMPED meets these 
criteria. 

.-,-~~ . ,,~: 

The search continues llIltilndlncbnipl~u:'words remain Of all possible alter-
natives have been exhausted {or each word. 

16.3.2 Time and Space Complexity 

If the average branching factor in the state space tree is ~, then searching a tree 
"of depth k requires examining . 

bkt I -b . 
I +b +b2 + ... +l/ = --+ 1= 8(bk

) 
b-J 

nodes in the w{lrsl case. In other words, backtrack search of a state space tree 
takes exponential time in Ihe worst case. 

However, the amount of memory required by backtrack is linear in the depth 
of the search, or 6(k), since only the cun-ently chosen alternative at each level 
of the state space tree needs to be maintained in memory. Hence the size of the 
problem that can be solved by backtrack search is limited by the speed of the 
computer, not its primary memory capacity. 

16.4 PARALLEL BACKTRACK SEARCH 
Since we are dealing with an algorithm requiring exponential time in the worst 
case, there ought to be ample opportunities for pamllelism. How can we pcIiorm 
backtrack search in parallel'! 

An obvious strategy is to divide the search of subtrees among the processes. 
See Figure 16.4. Suppose the tree has branching factor Ii and the number of 
processes p == b~. Each process searches the state space tree to level k, and then 
explores only one of the subtrees rooted by a node at level k. If the depth of the 
search d is greater than 2k, the time required for each process to traverse the first 
k leve~s of the state space tree is relatively small, and speedup can be high. 

If there is no k such that p = bk, the sequential search can go to level rn in 
the state space tree, and each process can explore its share of the subtrees rooted 
by nodes at level rrr. 

For ex.ample, suppose the branching factor of a state space tree is 3, and we 
are searching 10 levels deep. Suppose further we want to perform the search with 
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Figure 16.4 If p = bk, then every process can search the state space tree to 
level k and then explore only one of the subtrees fOoled by a node at level k. 
This is a good strategy il all the subtrees have the same number of nodes; it is a 
poor strategy if there are significant differences in the sizes of the subtrees. 

five processes. If the parallel search starts at level 0 (the root) of the state space 
tree, there is only one node to search, and only one process has work to do. The 
resulting speedup of the search is L 

If the parallel search starts at level I of the state space tree, there are three 
nodes to search, and three processes can be occupied. The time needed to expand 
the root node is negligible, and the resulting speedup is very close to 3. 

If the parallel search slarts at level 2 of the tree, there are nine nodes to 
search. Four processes examine two subtrees each,.and one process examines the 
remaining subtree. The resulting speedup is very nearly 9/2 = 4.5. 

There is no value of k such that 3k is a multiple of 5. However, as we go 
deeper into the tree, we generate a greater number of nodes, which means we 
can divide them up more evenly among the processes, improving speedup. On 
the other hand, going deeper into the tree means each process is spending more 
time generating the top levels. This is a redundant computation that increases the 
sequential portion ofthc overall computation. Figure 16.5 plots best-case speedup 
against the depth in the state space trce at which the parallel search begins. As you 
can see, the best-case speedup stay s reasonably high throughout a broad range of 
depths. 

Unfortunately, in most cases the state space tree is not balanced. Some sub­
trees have many more nodes than others. For example, in the case of the cross word 
puzzle problem, you can imagine that some early word choices would lead to dead 
ends and backtracking much sooner than other choices. Hence we need an algo­
rithm that work) reasonably well even when the tree is imbalanced. 

One approach i~ to make the sequential search go deep enough in the state 
space tree that each parallel process is responsible for examining a large number 
of subtrees. This strategy is based upon a probabilistic .aIgurnent: If each process 
handles a large number of subtrees, then the differences in the total time spent per 
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6 

2 4 6 
Depth 

10 

Figure 16.5 Maximum speedup 
achievable by five processes performing 
backtrack search of a state space tree with 
branching factor 3 and depth 10, as a 
function of the tree level at which the nodes 
are divided among the processes. 

Figure 16.6 Parallel search of an unbalanced state space tree. Allocating a 
large number of subtrees 10 each process increases the probabirrty that each 
process wlll search about the same number of nodes. In this example subtrees 
are allocated in an interleaved fashion to four processes. The nodes and subtrees 
explored by process 0 are black. 

process are more likely to be smaller than if each process handles only a small 
number of subtrees. " 

Figure 16.6 illustrates how this strategy could be used to divide the search of 
an unbalanced state space tree among four processes. Process Pi searches the state 
space tree to lcYd 3. It numbers the nodes at leyel3 and continues the search only 
from those nOOcs whose nurnben; are equal to Pi modulo 4. The figure highlighL~ 
in black the nodes and subtrees explored by process O. 
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> Global Variables: 
curolLroulIl- Count Qf node~ at cutoff depth 
cum!!. dept" - Depth at whkh subtrees are divided among processes 
depth - Depth to which stale space tree is sear~hed 
rowes - .. Rc<:ords position in search tree (i.e., moves made so far) 
ill - Process rank 
p - NunilA:r of processes 

ParaUeI_Backtratk (board, level): 
if level = depth tben 
if board repre.lenls a solution to the problem then 

Print);olution (lll<W<'s) 
endif 

else 
if level = cUIoJfjepth then 

c!<fa/LcoulII ... c!<IofLcaunl + I 
if cwof!JoU1lr mod p of. idthen 

rerum 
endie 

endif 
possihle _nwve., ... Count_Moves(board) 
for i +- I to possible _ nw,'es do 

Make_Move (boord, i) 
n!vve.'/leveIJ ... i 
P-JraUcUlacktrnck(bvord, kvel+J) 
~nmake_Moye (board, i) 

~ndfor 

endif 
return 

Figure 16.7 Parallel backtrack search algOrithm that 
divides subtrees among processes. This algorithm prints 
every solution. 

Figllre 16.7 giYcs pselldocodefora paralic I backlracksearchalgorithm based 
on this approach. Every MPI process initialil,cs variable board to represent the 
unsolved problem. It sets level to 0, because the search begins at the root of 
the state space tree, which is at level O. II also assigns 0 to cutofLcount, the 
count of nodes the process has encountered at levell:utofLdepth in the state 
space tree. Every process then calls function Parallel_Backtrack with actual 
parameters board and level. Processes search the entire tree to level cUlOffdepth. 
fi.llch process perfOlIDs a bllcklrack search on its portion of the sublrees rooted at 
level cutojj'-depth. 

16.5 DISTRIBUTED TERMINATION 
DETECTION 

Note that each process el(ecuting the parallel backtrack algorithm of Figure 16.7 
only terminates after it has searched its portion of the entire state space tree to 
the specified depth. In other words, this algorithm finds every soilltion. When 
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using backtrack to solve an optimization problem, the processes must find every 
solution and then select tne optimum solution. 

However, at oilier times we only Wdllt a single solution. In these circum­
stances we would like all of tne processes to nalt as quickly as possible after 
one process has found a solution. How do the processes know when to stop 
searching? If we want processes to halt before they have completely searched 
their portions of the state space tree, a process that finds a solution must send a 
message---either directly or indirectly-to the other processes, and all processes 
must periodically check for messages. One way to add a periodic message check 
is to have each process look for a message every time the search reaches a par­
ticular level, such as cUlojLdepth. Fu~ction MPI _lprobe is a good choice to. 
implement this message check, becal}se it allows a process to determine, without 
blocking, if a message has arrived. It is easy enough to add thi~ check to function 
Parallel_Backtrack. 

A simple (but incorrect) approach to terminating the program is to have a 
process that finds a solution send a message to all of the other processes. A 
process halts after anyone of the following events has occurred: 

• It has found a solution and has sent a message to all of the other processes. 
• It has received a message from another process. 
• It has completely searched its portion of the state space tree. 

o---r Unfortunately, if a process calls MPI_Finali ze before another, active 
process tries to send it a message, we get a run-time error. The approach we have 
suggested is subject to this error. How could this happen? 

Here is one scenario that could lead to this particular run-time error. Sup­
pose process A find, a solution, sends messages to the other processes, and calls 
MPI_Finalize. Meanwhile, process B finds another solution and sends mes­
sages to the other processes before it receives the message from process A. 
If process B tries to send a message to process A after process A has called 
MPI_F ina] ize, we will get a run-time error. 

We must ensure that all processes are inactive and no messages are en route 
before we allow the processes to call MPI __ Finalize. This is called the dis­
tributed termination detection problem. About 20 years ago Dijkstra, Seijen. 
and Gasteren invented an algorithm to solve this problem f2lJ. 

Figure 16.8 illustrates their algorithm. The processes arc organized into a 
logical ring (Figure 16.8a). One process (in this example process 0) probes the 
state of tne system by passing a token to iL~ successor in the ring. When the token 
returns to process 0, it wi11 be able to determine if it is safe for all the processes 
to terminate. 

Each process has a color and a message count. When a process begins exe· 
cution, it is white and its message count is zero. A process turns hlack when it 
sends or receives a message. When a process sends a message it increments its 
message count, and when a process receives a message it decrements its message 
count. 
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Figure 16.8 Dijkstra et al:s algorithm to solve the distributed termination 
problem. (a) A token (square) is passed around a logical ring of processes 
(circles). (b) Process 0 initiates a probe. (c) An intermediate process 
modilies the token and passes it along. (d) The token returns to process O. 

The idea behind Dijkstra et aL's algorithm is that if all processes are white ,.-{) 
and the sum of all JlIessage counts is zero, then we know there are no messages 
pending in the system, and we can terminate the processes. 

The token being passed also has a color and a count. When process 0 initiates 
the probe, the token is white, and its count is 0 (Figure 16.8b). 

Now let's look at what happens when an intemlediate process handles the 
token (Figure 16.&). %en a process receives the token, it adds its message 
count to the count of the token. If the process is actively processing, il holds 
the token until it is inactive. At this point if the process is black, it changes the 
token to black. Otherwise, it does not change the color of the token. The pro­
cess changes its own color to white and sends the updated token to its successor 
process. 
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Figure 16.9 
Goal state of the 
8-puzzle, a 
simplified version of 
the 15-puzzle 
invented by Sam 
loyd in 1878. 
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Eventually the token returns to process o (Figure 16_8d). If the token is white, 
the process is white, and the sum of the token's cOllnt and process O's message 
count is 0, then the system is quiescent, and it is safe to terminate the processes. 
(This can be done by having process 0 send a message to the other processes, 
telling them to exit.) Otherwise, process 0 must probe the ring of processes again_ 

For our parallel backtrack algorithm, we can implement distributed tenni­
nation detection in the following way: All processes begin searching with their 
message count~ set to Zero. When a process finds a solution, it sends a "solution 
found" message to process 0 and sets its -m~sage count to I. When process 0 re­
ceives a "solution found" message, it decrements its message count. After finding 
a solution or receiving a "solution found" message from another process, process 
o initiates a distributed termination detection probe by initializing the token and 
passing it to its successor process in the ring. -

If a process is actively searching, it stops searching as soon as it receives a 
token, because receipt of a token means another process has found a solution. 
Hence we do not have to worry about a process hanging on to a token until 
it is inactive. Intennediate processes simply change the color of the token, if 
appropriate, modify the count associated with the token, and pass it on. Note that 
processes do not decrement or increment their message counl~ when receiving or 
sending a token. 

When process 0 receives a token and determines the system is quiescent, 
it sends a "termination" message to the other processes and then calls NPl_ 
Finaii ze and exit. The other processes can call HPl]inalize and exit 
as soon as they receive a "termination" message. 

16.6 BRANCH AND BOUND 
The branch-and-bound method ist! variant of backtrack that takes advantage of 
infonnation about the optimality of partial solutions to avoid considering solutions 
that cannot be optima\. 

16.6.1 Example 

As an example of the branch-and-bound technique, consider the 8-puzzte (Fig­
ure J 6.9), a simplified version of the well-known 15-pu7,zle invented by Sam Loyd 
in 1878. The 8-puzzle consists of eight tiles, numbered I through 8, arranged on 
a 3 x 3 hoard. Eight locations contain exactly one tile; the ninth location is empty. 
The object of the puzzle is to repeatedly fill the bole with a tile adjacent to it in the 
horizontal or vertical direction until the tiles are in row-major order. Unlike the kid 
at summer camp who is happy to slide tiles about until they are correctly ordered, 
our goal is to solve the puzzle in the least number of moves-an optimization 
problem. 

We can use a state space tree to represent the board positions tbat can be 
reached from the initial position (Figure 16.10). One way to solve the puzzle is 
to pursue a breadth-first search of this state space tree until the sorted state is 
discovered. However, the goal is to examine as few alternative moves as possible. 
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Figure t 6.1 0 A portion of the state space tree corresponcling to the search for a 
solution to a particular arrangement of the 8-puzzle. 

We can achieve that goal and examine far fewer tree nodes if we a%octatc with 
each state an estimate of the minimum number of tile moves needed to solve the 
puzzle, given the moves made so far. 

One such function adds the number of tile moves made so far to the Manhauan 
distance between each out-of-place tile and its cOITed location (Figure 16.11). 
Given such a function, we can COfl{;entrate our search on the portions of the ~1ate 
space tree that contain the most promising moves. We always continue our search 
from the node having the smallest function value. If two or more nodes have tbe 
same value, we examine the node farthest from the root of the state space lree. 
If there are two or more nodes the same distance from the root with the same 
func.tion value, we just pick one arbitrarily. 

The branch-and-bound searcb of an example 8-puzzle appears in Figure 16.12. 
Let's look at how we assign to each node in the state space tree a lower bound on 
the cost of a solution going tbrough tbat node. The first node we 'n examine is the 
root of the tree. Looking at tbe state of the puzzle at the root, we see that tiles 2, 
3,5, and 6 are out of place by 1,2, I, and 1 positions, respectively (calculating 
the Manbattan distances). The sum I + 2 + I + I = S. Since 0 moves have beell 
made so far, a lower bound on the cost of any solution is five moves. In olher 
words, there is no way to solve the puzzle in fewer tban five moves. (Since 5 is a 
lower bound, not an exact bound, it may take more tban five moves to solve fue 
puzzle.) '" 

Now let's consider the left chi Id of the root !lode. Tiles 2. 3, and 5 are out of 
place by one, two, and one positions, respectively. The sum I + 2 + I = 4. Since 
one move has been made so far (the node is one level deep in the state space tree), 
a lower bound on the cost of any solution using this first move is 5. 

Finally, let's consider the jeft child of tbe left child of the root node. Tiles 5, 
2, 3, and 8 are out of place by a total of five positions. Since two moves have been 
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F"lgure 16.11 The Manhattan 
distance between a pair of points is 
!he shortest path between those 
points when all movement must be 
in either the horizontal or vertical 
direction. This figure iUustrates the 
Manhattan distance from the 
central intersection.· (I maglne 

• traveUng from one intersection to 
another along a rectangular grid of 
streets.) formally, the distance 
between points with coordinates 
(xj, Yl) and ("2,.y<) is 
jx, - X2[ + [Yl - .Y<1· 

made so far, 7 is a lower bound on the cost of any solution using the two moves 
leading to this puzzle position. 

The best-first search focuses on nodes with the smallesllower bounds. The 
search finds a solution to this particular puzzle in five moves. At thiS point there 
is no need to look for a better solution. We know from the lower bounds that 
all other solutions require at least seven moves. Note that the branch-and-bound 
search finds a solution with far fewer node examinations than would have been 
required if we had used a breadth-first search. 

16.6.2 Sequential Algorithm 

Now that we have seen a concrete example, let's develop a more general for­
mulation of the branch-and-bound technique. Given an initial problem and some 
objective function f to be minimized, a branch-and-bound algorithm decomposes 
the problem into a set of two or more subproblems of smaller size. Every sub­
problem is characterized by the inclusioll of one or more constraints. We repeat 
the decomposition process until each unexamined subproblem is decomposed, 
solved, or shown not be leading to an optimal solution to the original problem. 
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Figure 16.12 The best-first branch-and-bound search for a solution to an arrange­
ment of the a-puzzle. The nodes actually searched form a highly unbalanced tree. 

In the 8-puzzle example, the problem is to put the pieces in order. The objec­
tive function f is the numher of moves needed to order the pieces. If the pieces 
are in row-major order, the problem is solved. Otherwise, branch-and-bound 
decomposes the problem by generating a number of subproblems, one per legal 
move. Moving a tile represents the addition of a constraint 

As we have seen in the case of the 8-puzzle, we can represent the decompo­
sition process applied to the original problem as a state space tree. The nodes 
of this tree correspond to the decomposed problems, and the arcs of the tree cor­
respond to the decompOSition process. The original problem is the root of the 
tree. The leaves of the tree are those partial problems that are solved or discarded 
without flllther decomposition. 

Recall that the goal of the branch-and-bound technique is to solve the problem 
by examining a small number of elements in this tree. Assume that a minimum 
cost solution r is desired We calculate a lower bounding function g for each 
decomposed subproblem as we create it. This lower bound represents the smallest 
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16.7.1 Storing and Sharing Unexamined Subproblems 

The sequential algorithm keeps all unexamined subproblems in a priority queue. 
Maintaining a single priority queue on a tiistributed memory computer is imprac­
tical; the communication time required to send another processor an unexamined 
state space tree node and receive in return either a solution or the children of the 
node may well be greater than the time needed to do the computation locally. 
Giving a single processor respon~ibility for performing all priority queue manip­
ulations also creates a performance bottleneck. limiting the maximum number 
of processors that can be applied to solving the problem. Finally, maintaining a 
single priority queue on one processor does not allow us to scale the problem size 

_c~sthenumber of processors increases.. 
For these reasons, we make the design decision that each process must main­

tain its own priority queue of unexamined subproblems. In each of its iterations 
every process with a nonempty priority queue removes the unexamined subprob­
lem with the smallest lower. bound. If the subproblem is not a solution node, it 
divides it into" subproblems. (Note: Although each process iterates through a 
sequence of operations, there is no synchionization among processes.) If a pro· 
cess divides a problem into b subproblems, it put~ the new subproblems into it, 
priority queue. 

Occa,ionally a process sends an unexamined subproblem to another process 
(Figure 16.15a). At the beginning of the program's execution, process 0 contailis 
the original problem in it, priority queue, The priority queues of the other pro· 
cesses are cmpty, and'they have nothing to do. After process 0 distributes an 
unexamined subproblem, two processes may be active. After another distribu­
tion §tep, four processes may have subproblems to examine. If the distribution 
of unexamined subproblems is organized properly, flog p l distribution steps arc 
sufficient to give all processes an unexamined subproblem. 

) 

(a) (b) (e) 

Figure 16.15 The parallel branch-and-bound algorithm uses Ihree types of 
messages. (a) Processes send UnexilminedSubproblem messages to other 
processes. Each message contains an unexamined subproblem Ihat the sending 
process deleled from its priority queue. The receiving process inserts the 
unexamined subproblem into its priority quelle. (b) Processes form a logical ring 
10 pass Ihe token used for distribuled termination detection. (c) Process 0 sends a 
termination message 10 all other processes when it is safe lor them to exit. 
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16.7.2 Efficiency 

III order for a solution to be found and guaranteed optimal, two wnditions must 
be met. First, at least one of the solution nodes (and hence all its ancestors in the 
state space tree) must be examined. Second, processes must examine all nodes 
in the state space tree whose lower bounds are less than the co~t of the optimal 
solution. The execution time of the algorithm is determined by whichever event 
occurs last. The event occurring last is determined by the number of processes 
and the shape of the state space tree. 

The sequential best-first branch-and-bound algorithm, relying upon a single 
priority queue, examines the minimum number of nodes possible, given a partic­
ular bounding function g. h always examines thenotle·.withthe·srnallest-lower 
bound. Hence it can cea~e execution as soon as it encounters a s~lution node, 
because by definition no nodes with smaller lower bounds exist. 

In contrast, the parallel best-first branch-and-bound algorithm may examine 
unnecessary nodes. That is because each process is examining the node that is 
only locally best--1he node with the smallest lower bound in its local priority 
qu~ue_ While. one process is guaranteed to be examining a node that is globally 
best, the rest of the processes may not. If a process examines a node whose 
lower bound is greater than the cost of the besl solution, then examining that 
node is wasted work, and the overall efficiency of the parallel computation drops. 
The reason.processes send out unexplored subproblems throughout the execution 
of the parallel algorithm is because it promotes the distribution of subproblems 
with good lower bounds among all the processes, reducing the amount of wasted 
work. On the other hand, passing arotmd unexplored subproblems increases the 
communication overhead of the parall~l algorithm. 

16.7.3 Halting Conditions 

Distributed termination detection for branch-and-bound algorithms is more com­
plicated than for backtrack search. In the case of backtrack search we were simply 
looking for any solution. Now we are looking for an optimum solution. The first 
solution found by a process may not be the optimum solution. Hence we can only 
terminate when we have both (I) found a solution and (2) verified that no better 
solutions exist Assume we are solving a minimization problem; that is, trying to 
find a solution of minimum cost. The two conditions are met when the cost of the 
best solution found so far is less than or equal to the lower bound on the cost of 
any solution from an unexamined subproblem. 

We can solve this problem by modifying Dijkstra et a1.'s distributed termi­
nation detection algorithm. A process turns black if it receives a message or 
manipulates an unexamined subproblem with a lower bound less than the cost 
of the best solution found so far. How does a process kn.ow the cost of the best 
solution found so far? We add additional information to the termination token 
passed around the logical ring o[ processes (Figure l6.l5b). 

Recall that in the originallilgorithm the termination token had a count and 
a color. Now we add two additional fields: the cost of the best solution found so 
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far and the solution itself(l:e:, tne moves made to reach the solution). When a 
process receives the token, it updates the color and count Iields. It also checks to 
see if the best solution it has found has a lower cost than the solution carried by 
the token. If so, it updates the token so that it now carries a better solution with 
its cost Finally, the process compares the cost of the best sollJtion found so far 
with the lower bound associated with the unexamined subproblem at the head of 
the priority queue. If this unexamined subproblem's lower bound is greater than 
or equal to the cost of the best solution found so far, there is no point in exploring 
it or any of the other nodes in the priority queue, since they cannot lead to a 
solution better than the best solution found so far. In this case, the process should 
re-initialize (i.e., empty) its priority queye ..... . 

Wltti these niodilications, p,'ocess· 0 still uses the same check to identify 
when the parallel algorithm has terminated. If it is white when it receives a white 
token, and if the sum of the token's count and process O's message count i~ 

zero, then all work on the computation has ceased. Process 0 sends a temlination 
message to all other processes (Figure 16.15c), and all processes cancall functions 
MPI_Finalizeand exit. . 

In effect, the token being passed around the ring serves two purposes. rntially 
its purpose is to keep the processes ~breast of [fie value of the best solution found 
so far. Eventually, every process empties its priority queue when it discovers it 
cannot possibly lind a solution better than the best solution already discovered. At 
this point the "token'S purpose is distributed termination detection: ensuring that 
all processes are inactive and all messages containing unexamined subproblems 
have been delivered. 

The pseudocode for our parallel best-first brnnch-and-bound algorithm ap-
pears in Figure 16.16. . 

16.8 SEARCHING GAME TREES 
()-,r The most success luI computer programs to play two-person zero-sum games 

of perfect information, such as chess, checkers, and go, have been based on 
exhaustive search algorithms. These algorithms consider series of possible moves 
and countermoves, evaluate the desirability of the resulting board positions, then 
work their way back up the tree of moves to determine the best initial move. 

16.8.1 Minimax Algorithm 

Given a trivial game, the minimax algorithm can be used to determine the best 
strategy. Figure 16.17 a represents the game tree of a hypothetical game, with rules 
left unstated, played for money. Dotted edges repi'esellt moves made by the Iirst 
player; solid lines represent moves made by the second player. The root of the tree 
is the initial condition of the game. The leaves of this game tree represent outcomes 
of the game. Interior nodes represent intermediate conditions. The outcomes are 
always put in terms of advantage to the first player. Thus positive numbers indicate 
the amount of money in dollars won by the first player, while negative numbers 
indicate the amount of money lost by the first player. The algorithm assumes that 
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ConstanlS: 
Cmnm Jnlerval - TIme between cOlJIIlIunication SlepS 

Termin.uuJIl-· TagslernlillatiOlt messagr.s 
Token - Tags tOKrJ) message 
Unexamined_Subproblem - Tags message eontaining unexamined subproblem 

FUIICIiom;: 
CUlTetlt_Time() - Wall clocll time 
Delete _Min() - Delete subproblem with least lower bound from priority queue 
FiIsI_Element() - RelllIns first element from priority queue without deleting it 
Initialize{) - Set priority queue size 10 0 
InsertO-- Insert subproblem into priority queue 
Is _EmptyO - ReUlms true ifpriority queue is empty 
Lower_BoundO - Returns lowerbouud lISSll!.iatcd with unexplored subproblem 

Vari.hles: 
£olor- Process color (for tenninaIion dC1£>:Iion) 
glDbal J - (ost of globally best solution fOllnd so far 
id -Process rank 
initial-Initial problem 
IllSl Jomlll - Time of la.~t communication 
JocaJ_, -'. Cost {Ifbest solution found so far by this praces> 
loml.} -Ilest solution found so far by this process 
MIg_count - ~klsages sent minus me&>ages received 
q - Priority queue 
loken - Token passed around ring for termination detection 
u _ .. S1ale space tree node 
v - New node with additional constraint 

Parallelllest·FIrslllnmch and Bound (minilnizalioll): 
Initialize (q) 
iUd;= 0 tben 

Insert (q, initial) 
roke"." ..... 00 

loimcoI"r +- WHITE 
token.count +-- 0 
Send loken to successor proces$ 

endif 
IUClIIJ t- 00 

best -,MIn +-- 00 

ia,IiJ,)mm +- CUITent_.TimcO 
1/1J8JO/Ult +- 0 
color ..... WHITE 
rcpeat 

ifls_Empty(q) or (CIllTent_Timc{)-lilstJOIllni > COIllIll_1nrefml) then 
BlindB _ Communlcatiun() 
Jasl_comm <- CUlTent_TimeO 

else ifuot Is_Empty(q) then 
u +- Delete _ Min( I{) 
iflower_Bound(u) < besU' then 

color +- BLACK 
if u is a solution then 
ifLower_Boun~(u) < gwbal_c then 

/io:aCs +- II 

iocalJ ..... Lower_Bound(locaCs) 
en~if 

Figure 16.16 Parallel branch-and-bound algorithm. 
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else 
fori <- 110 Pos.o;ihle,.ConSlr'dints{u} do 

Add constrain! ito u, cr~atlng " 
if Lower _ Bouod(") < gJobal_ cthm 

lnsen(q, u) 
cndif 

endfor 
endif 

eodif 
endif 

forever 

BandBCommunicatiooO: 
if there is a pending message wilh a Tennination tag then Halt endif 
if there is a pendlnKmessage withacTokenlag tIIen 

Receive mes,age containing taker. 
if local J < token.c then 

loke •. c <- Jocal_c 
wlwl.S <-local_, 

endiC 
if token.c:5 Lowe.cBound{FirotElement(q)) then Initialize(q)endif 
gwbaJ _c <-lOken,c 
if iii "" Olllcn 

if (color = WHITIJ) and (token,calm == WillIE) and 
(token.caullt + ms~JOfmt = 0) tlten 

Send messages wiJh a 'len1lina/ioll lag to all otllCr processes 
Halt 

else 
token,color { WHITE 
Wke,kcount (- 0 

endif 
else 

if C"[OI = BL4.CK then tokirLwior <- BLACK 
loke'lCOUll/ (. IIJkencou/lt + msgJounJ 

endlf 
Send token to SUc~ssor 
color .... WHITE 

endi!, 
while there are pending m~'>Sages with lag UnexllInined_Subprobhm do 

Re<:eive message with une<amined ,ubproblem 14 

msg_count .... msg_coUIII-] 
color .... BLACK 
if Lower_Bound(u) < globaI..c then In>efl (q, u) 

endwhile 
if thete is more than one unexamined subproblem in q then 

Send uncxamined subproblem to another PL1JCCSS 

msgJOllnl .... mSiLCOIJJJ/ + 1 
color ... BLACK 

end if 
return 

FigUre 16.16 (eonld,) Parallel braneh-and-bound alQOrithm, 
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Figure 16.17 (a) A game Iree. Dashed edges represent the moves available to 
the first player; solid edges represent moves aVailable to the second player. (b) The 
same tree with the values of the interior nodes filled in. By taking the lirst 
alternative, the first player is guaranteed a result of at 1east 2. 

the second player tries to minimizc the gain of the fIrst player, while the fIrst 
player tries to maximize his or her own gain, hcnce the name of the algorithm. 
Figure 16.17b is the same tree with the values of the interior nodes filled in. The 
value of this game to the first player is 2. If the ftrst player plays the minimax 
strategy, he or she is guaranteed to win at least two doHan;. 

A gallic tree is an example of an AND/OR tree. The player moving first is the 
one evaluating the tree. The AND nodes represent positions where il is the second 
player's tunll to move. in order to protect herself, the first player must consider 
every move an opponent llIight make. The OR nodes represent positions where it 
is the first player's turn to move. The first player does not need to consider every 
possible move, if she has already found a good one. 

Nontrivial games such as chess have game trees that are far too complicated to 
be evaluated exactly. For example, de Groot has estimatw that there may be 3884 
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positions ina chess game tree [19J. Thus current chess-playing progr.uns examine 
moves and countermoves only to a certain depth, then, at that point, estimate the 
value of the board position to the first player. Of course, evaluation functions are 
imperfect If a perfect evaluation function existed, the need for searching would 
be eliminated. 

As we have seen, all possible moves from a position to some predetermined 
look-ahead horizon can be represented by a game tree. We can find the minimax 
value of a game tree by applying the evaluation function to the leaves of the 
tree (the terminal nodes), then working backward up the tree. If it is the second 
player's move at a particular nonterminal node in the game tree, the value we 
assign is the minimum over all its children nodes. If it is the first player's move, 
we assign the value that is the maximum over all it~ children nodes. Given a game. 
tree in which every position has b legal moves, it's easy to see that a minimax 
search of the game tree to depth d requires an examination of bd leaves. 

16.8.2 Alpha-Beta Pruning 

o--v As a rule, the deeper the search, the better the quality of play. That is why alpha­
beta pruning is valuable. Alpha-beta pruning, a form of branch-and-bound algo­
rithm, avoids searching subtrees whose evaluation cannot influence the outcome 
of the search, that is, cannot change the choice of best move. Hence it allows a 
deeper search in the same amount of time. 

The alpha-beta algorithm, displayed in Figure 16.18, is called with fourargu­
ment~: pas, the current condition of the game; a and p, the range of values over 
which the search is to be made; and depth, the depth of the search that is to he 
made .. The ·function returns the minimax value of the position pas. The original 
game position is a MAX-NODE. Every child of a MAX-NODE is a MIN-NODE. 
Every child of a MIN-NODE is a MAX-NODE. 

To illustrate the workings of the alpha-beta algorithm, consider the game tree 
in Figure 16.\ 9. This treerepresent~ the same game as that in Figure 16.17, except 
that nodes nol examined by the alpha-beta algorithm are not included. When the 
algorithm begins execution, a = -00 and ~ = 00. The algorithm traverses the 
nodes of the game tree in preorder (i.e., depth first); the values of a and fJ converge 
as the search progresses. 

The nodes drawn in heavy lines in Figure 16.19 represent places where 
pruning (elimination of the search of a subtree) occurs. To explore the con­
ditions under which pruning happens, let's consider an arbitmry interior node in 
the search tree. When the search reaches this node, we know that some sequences 
of moves already considered leads to a value of at least a for the player moving 
first. We also know that correct play on the prot of the opponent will ensure that 
the first playt'f cannot get a value more than p. Hence a and fJ define a window 
fOf the search. 

If the interior node pas is a MA.X-NODE, then it is the first player's move. 
If val, the value of the game tree searcheo from pas, is greater than a, then a is 
changed to val, meaning a better line of play has been found for player l. 
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Constant: 
/lULU .. _- Maximum possible number of moves 

Parame!eIS: 
po. - Positiou 
a ~ Lower cutoff value 
fJ -Uppercutoffvalue 
deplh -.- Searr.n depth 

Variables: 
cf LrnilLC! - Children of pos in game tree 
cUfoff - -Set tu TRUE when okay 10 prune 
i .. -lterJtes through legal move, 
val-- Value returned from search 
widJh -- Number of legal moves 

begin 
if depth :s 0 then 

return (Evaluak(po.)) {Evaluate terminal node} 
end if 
wUith <--GellCrate_Mllvel(pos) 
if width = 0 tlt~n 

return (E\:alllate(pm)} {No legal moves} 
enruf 
CJATOff <- fALSE 
i+--l 
while (i :s widlll) and (cw1! = FALSE) do 

wi <- Alpha_Bela(c[i], a, {J,deplh-I) 
if Mal_Node(po,,) and vol> a then 

" <- val 
elseifMin __ Node(po,,) and "al < fJ then 

fJ +-- val 
endif 
if a ;>.tJ then 

cu/(}f! ~- TRUE 
eodiC 
i +--i+1 

endwhile 
if Max_Node(pos) then return (l 

else cetum fJ 
endif 

end 

Figure 16.18 Sequential alpha-beta 
pruning algorithm. 

Analogously, if the interior node pas is a MIN-NODE, thell it is~he second 
player's move. If val, the value of the game tree searched horn node pas is less 
thall~, then fJ is changed to val; a better line of play has been [oulld for player 2. 

However, if at any time the value of 0' exceeds the value of ft, there is no 
need to search further, be£ause it is in the best interest<. of one of the players to 
block the line of play leading to the position (node) being consiuered. 
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Figure 16.19 An illustration of alpha-beta pruning. The number 
inside each node is the value 01 the position. In the case 01 leal 
nodes, an evaluation funclion computes the value 01 the position. In 
the case 01 interior nodes, the value is computed lrom the values 01 its 
children. Highlighted circles represent nodes al which pruning occurs. 
Note how many lewer nodes are examined than in minimax search 
(Figure 16.17). 

Figure 16.20 Alpha-beta pruning of a perfectly ordered game tree. The 
number inside each node indicates its classilication as either type 1, type 2, or 
type 3. The root 01 the tree is a type 1 node. The first child of a type 1 node is a 
type 1 node. All other children of a type 1 node are type 2 nodes. The first child 
01 a type 2 node is a type 3 node; all other children 01 a type 2 node may be 
pruned. All children of a type 3 node are type 2 nodes. 

For example, cnnsider the nnMlabeled A in Figure 16.19. The value returned 
from the search of the first child of A is 3, which is greater than 2, the value of fi. 
It is not in the second player's interest to allow play to reach this position, since 
there is another line of play gUar'dllteeing a value nn higber than 2. Hence there 
is no point in continuing the search fmm this game pnsitinn. 

To what extent can alpha-beta pruning reduce the number of leaf nodes that 
must be examined? The algorithm does the most pruning on a perfectly ordered . 
game trce, that is, a game tree in which the best move from each position is always 
examined first (see Figure 16.20). Assuming a perfectly ordered game tree with 
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a search depth {If d and uniform branching factor b, Slagle and Dixon {lO3] have 
shown that the number of leaf nodes examined by the alpha-beta algorithm is 

Opt(b,d) = b[d/2] + bld/2J - 1 

In other W{lrds, in the best case it is possible for the alpha-beta algorithm 
to examine no more than approximately twice the square root of the number of 
nodes searched by the minimax algorithm. 

The effective branching factor of an algOlithm searching a game tree of 
depth d is the dth root of the number of leaf nodes evaluated by the algorithm. 
An alpha-beta search reduces the effective branching factor from b to Jb when 
searching a perfectly ordered game tree. In ol\.ler words,in the best case alpha-beta 

'pruning allows the game tree search to gQ twice as deep in the game tree as the 
minimax algorithm in the same amount o[ time. Experimental evidence indicates 
that s~uential alpha-beta algorithms of len search no more than 50 percent more 
nodes !ban would be searched if the tree were perfectly ordered. Hence in practice 
the alpha-beta search algorithm exhibits much higher performance than minimax. 

16.8.3 Enhancements to Alpha·Seta Pruning 

Two common enhancements to alpha-beta pruning are aspiration search and it­
erative deepening. Aspiration search makes an estimate of the value v of the 
board position at the root of the game tree, figures the probable error e of that 
estimate, then calls the alpha-beta algorithm with the initial window (v-e, He). 
If the value of the game tree does indecd fall within this window of values, then 
the search will end sooner than if the algvrithm has been called with the initial 
window (-00,00), If the value ofthe game tree is l~ss than v -e, the search will 
return the value v - e, and the algorithm must be called again with another win­
dow, such as (-00, v - e). Similarly, if the value of the game tree is greater than 
v + e, the search returns the value v + e, and another search will have to be done 
with a modified initial window, such as (v + e, (0). 

Another vadant on the standard alpha-beta algorithm is called iterative 
deepening. Each level of a game tree is called a ply and corresponds to the 
moves o[ one of the players. Iterative deepening is the use of a (d -I )-ply search 
to prepare for a d·ply search. This technique has three advantages. First, it allows 
the time spent in a search to be contr{llied. The search can be qmtinued deeper 
and deeper into the game tree until the allotted time has expired. Second, results 
of the (d - I)-ply search can be used to improve the ordering of the nodes during 
the d -play search, making the node ordering similar to the perfect ordering, and 
increasing the amount of pruning. Finally, the value returned from a (d - I)-ply 
search can be used as the center of the window for a d-ply aspiration search. 

16.9 PARALLEL ALPHA-BETA SEARCH 
Alpha-beta search has a number of opportunities for parallel execution. One 
approadJ. is to paralleli7.e move generation and position evaluation. The custom 
chess machine HITECH™, with 64 processors organized as an 8 x 8 array, is an 
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example of this approach. However, the speedup that can be achieved with this 
approach is limited by the parallelism inherent in these activities. 

Further sJleedup improvements lie in panlllelizing the search. This is the ap­
proach taken by the ream that programmed IBM's Deep Blue, a 32-node RSf6000 
multicomputer augmented. with 192 VLSI chess processors. Capable of search­
ing more than 100 million positions per second, Deep Blue defeated world chess 
champion Gary Kasparov in a six-game match in 1997 by the score of 3 1/2 
to 21/2. 

16.9.1 Parallel Aspiration Search 

A straightforward parallelization of the alpha-beta algorithm is done by perform­
ing an aspiration search in paralleL If three processors are available, then each 
processor can be assigned one of the windows (-00, 11 - e), (11 - e, v + e), 
and (11 + e, 00). Ideally the processor searching (1) - e, lJ + e) will succeed, 
but all three processors will finish no later than a single processor searching the 
window (-00, (0). We can accommOdate additional processors by creating nar­
rower windows. 

Experiments with parallel aspiration search for the game of chess has led to 
two conclusiolls. First, the maximum expected speedup is typically five or six., 
regardless of the number of avrulable processors. This is because ()pt(b, d) is a 
lower bound on the cost of alpha-beta search, even when both a and fJ are initially 
set to the'value eventually returned from the search. Second, par.dle} aspiration 
search can sometimes lead to superlinear speedup when two or three processors 
are being used. 

16.9.2 Parallel Subtree Evaluation 

Another approach is to allow processors to examine independent subtrees in 
paralleL When taking this approach, we must consider two overheads. Search 
overhead refers to the increase in the number of nodes that are examined owing 
to the introduction of parallelism. Communication overhead refers to the time 
spent coordinating the processes performing the search. Search overhead can be 
reduced at the expense of communication overhead by keeping every processor 
aware of the current search window (cr, fJ). Communication overhead can be 
reduced at the expense of search overhead by allowing processors to work with 
outdated search windows. 

For example, consider this simple method of performing alpha-beta search 
in parallel. Split the game tree at the root, and give every processor an equal share 
of the subtrees. Let every processor perform an alpha-beta search on its subtrees. 
Each processor begins with the search window (-00, 00), and no processor ever 
notifies other processors of the changes in its search window. Clearly this algo­
rithm minimizes communication overhead. What is the speedup achievable by 
this method? 
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Slagle and Dixon showed that In a perfectly ordered unifonn game tree of 
depth d and branching factor b, the number of node examinations performed by 
alpha-beta search is Opr(b, d). We can usc the Same formula to determine that 
the number of node examinations in the first branch of a perfect! y ordered game 
tree is Opr(b, d - 0-

What this means is that the examination of the first branch of a perfectly 
ordered game tree takes a disproportionate share of the computation time. For 
example, consider a lO-ply search of a perfectly or4ered tree that has a branching 
factor of 38 (such as a chess game tree). The minimum number of node exami­
nations is 158,470,335. The minimum number of node examinations in the first 
branch is 81,320,303. By Amdahl's Law it is clear that if only one processor is 
responsible for searching' the first move's subtree, speedup will be less than 2. 

In addition, because every processor's search must begin with -co and 00 as 
the values of a and ~, respectively, the parallel algorithm will not prune as many 
subtrees as the sequential algorithm. A complete elimination of communication 
overhead create., significant search overhead. 

Let's look at the other extreme. What must be done to eliminate search 
overhead completely? We will make the assumption that the game tree is perfcctly 
ordered. Look at Figure 16.20. If we want 10 eliminate search overhead, we 
must ensure that the parallel algorithm prunes the same nodes as the sequential 
algorithm. First consider se.arcbing the subtree of a type I node. The first child is 

- a type I node; the remaining children are type 2 nodes. Searching subtrees rooted 
by type 2 nodes requires up-to-date values of (l and ~ in order to prune alt but 
the first children of the type 2 nodes. To get up-to-date values, the search of the 
subtrees rooted by type 2 nodes cannot begin until the search of the subtree rooted 
by the type 1 node has finished, returning a and~. However, once the values of a 
and ~ are known, all type 2 nodes may be searched in parallel without processor 
intemction_ 

In practice, search trees are not perfectly ordered, but this study has demon­
strated that a parallel alpha-beta algorithm can significantly reduce search over­
head by delaying the search of some subtrees until more accurate bounds 
infonnation is available. That is the basis for our next algorithm. 

16.9.3 Distributed Tree Search 

Ferguson and Korf [26] have developed a parallel tree searching algorithm called 
Distributed Tree Search (DTS), which, when evaluating game trees, has achieved 
good speedups. Although the DTS algorithm is suitable for solving a variety 
of tree search problems, we will describe its use as a tool to perform paraUcl 
alpha-beta search. 

The DTS algoritlun executes by assigning processes to nodes of the search 
tree. Each process controls one or more physical processors. When the algorithm 
begins execution, a single process, called the root process, is assigned to the root 
node of the search tree. It controls the emire set of physical processors perfonning 
the search, 
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When a process is assigned to a nonterminal node, it generates the children 
of that node by evaluating the legal moves. The process assigns processors to 
the children nodes based upon the processor allocation strategy. The bound-and· 
branch 5trategy corresponds closely to the algorithm described at the end of 
the previous subsection. When the search reaches a type I node, all processors 
are alloc<l.tro to the leftmost child. After the search returns with clltoff bounds 
from the subtree footed by the leftmost child, the processors are assigned to the 
remaining children in a breadth-first manner. When the sea!ch reaches a node 
having type 2 {lr 3, cutoff bounds already exist, and the processors are a.~signed 
to children nodes in a breadth-first fashion. At this point a new process is created 
for each child node that is allocated at least one processor. The parent process 
sllspends operation until it receives a message from another process (either one 
of its children or its parent). 

When a process is assigned to a terminal node, it returns the value of that 
node and its set of allocated processors to the parent, then terminates. 

The first chi ld process to comp lete the search of its subtree sends a message 
with its values of a and fJ to the parent. It returns a set of processors to the parent 
and terminates. The parent process wakes up when it receives the message from 
its child. It reallocates the freed processors to one or more of its active child 
processes. It may also send one or more of its child processes new values of CI 

and fJ. The reallocation of processors from quicker processes to slower processes 
produces efficient load balancing. Notice that in this scheme a child process may 
be awakened by its parent, which is (YJssing along additional processors. After 
reallocating processors, parent pmcesses suspend operation until they rereive 
another message. When all child processes have terminated, the parent process 
returns a, /3. and the set of processers ta its parent and terminates. When the root 
process terminates, the algorithm has been completed. 

Three implementation details improve the performance of the DTS al gorithm. 
First, every blocked process should share a physical processor with one of its child 
processes. In Ihis way all processors stay busy. Second, when a blocked parent 
process is awakened, it should have a higher priority for execution than processes 
corresponding to nodes deepr.r in the search tree. Third, when the search reaches 
a point where there is only a single processor allocated to a node, the process 
controlling the processor should execute the standard sequential alpha-beta search 
algorithm. 

Given a uniform game tree with branching factor b, lfthe alpha-beta algorithm 
searches the tree wilh effective branching factor b' (where 0.5 ~ x ~ I), then 
DTS With P processors and breadth-first allocation will achieve a speedup of 
O(pX). 

To test the DTS algorithm, Ferguson and Korf /26J have implemented the 
game of Othello. Their node-ordering function results in an effective branch­
ing factor of about ,,0.66. The program implements parallel alpha-beta search 
using the DTS algorithm. Executing the program on 40 midgame positions 011 

a first-generation multicomputer, they reported a speedup of about 12 on 32 
processors. 
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16.10 SUMMARY 

Combinatorial search is used to find solutions to a variety of decision and opti­
mization problems on discrete, fillite mathematical structures. One way to differ­
entiate between combinatorial search problems is to categorize them by the kind 
of state space tree they traverse. Divide-and-conquer algorithms traverse AND 
trees; the solution to a problem or subproblem is found only when the solution 
to all its children is found. Backtrack and branch-and-bound algorithms traverse 
OR trees; the solution to a problem or subproblem can be found without explor­
ing every subproblem. Two-person games can be represented by AND/OR trees 
combining both kinds of nodes. 

One way to think of parallel divide~and-conqller is to imagine that a single 
process is respOnsible for the computation that divides a problem (or subprob­
lem) into pieces and combines the solutions !O the subproblems. The speedup 
that can be achieved this way is limited by the propagation and combining over­
head. [n ~ontrast, if the original problem and the final solution are decomposed 
among processors, then the efficiency of a parallel divide-and-conqu~r algorithm 
can be much higher. However, balancing workloads among processors can be a 
significant challenge. 

Backtrack is depth-first search methodology for exploring state space trees. It 
can be used to find asingle solution to a problem or every possible solution. It does 
not take advantage of knowledge ~bout the problem to avoid exploring subtrees 
thal cannot possibly lead to a S{)lution.1t has the advantage of only requiring space 
linear in the depth of the search. Since state space trees are often unbalanced, 
the principal challenge in parallel backtrack is providing every process with the 
same amount of work. We discussed the strategy of assigning many subtrees 
to each process, which increases the probability that the total number of nodes 
searched by each process will be roughly equivalent. 

Ensuring that parallel backtrack terminates without a run-time error requires 
that the processes perform ,iistributed termination detection. Dijkstra et aL's al­
gorithm allows the processes to detect quiescence in (:<) (1') time. 

Sequential branch-and-bound algorithms find solutiDns to combinatOJ;al op­
timization problems milch faSTer than exhaustive search algorithms such a, depth­
first search or breadth-first search, because they can bypass the examination of 
subtrees that cannot possibly lead to a solution. However, the fact that the state 
space trees actually explored by branch-and-bound algorithms have irregular 
shapes makes it dimcult to assign proces~ors to subtrees so that their workloads 
are balanced. The fundamental problem faced by designers of parallel branch­
and-bound algorithms is keeping the efficiency of the processors high by focusing 
the search on the nodes the sequential algorithm examines. 

A Ipha-beta pruning is the preferrf'd method for evaluating game trees. 10 the 
best case it allows the computer to look ahead twice as many moves as it would 
have time to explore lIsing the brute-force minimax algorithm. Its performance can 
be further improved through the use of a~piration search and iterative deepening. 
We examined several methods to parallelize alpha-beta search: parallel move 
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16.8 If a perfect evaluation function existed, the need for searching a game 
tree would be eliminated. Explain. 

16.9 Use the minimax algorithm to evaluate the game tree of Hgure 16.21. 

Figure 16.21 A game tree. 

16.10 Explain why alpha-beta algorithm prunes the game tree of Figure 16.19 
at the node labeled B. 

16.11 Use the alpha·beta algorithm to evaluate the game tree of Hgure 16.21. 

16.12 Extend the penectly ordered game tree of Figure 16.20 by one level 
to illustrate how nodes are pruned at level 4. Assume a branching 
factor of2. 

16.13 Explain why alpha-bela search is simply a special case of DIS. 
16.14 How does improving the pruning effectiveness of the underlying 

alpha-beta algorithm affect the speedup achieved by the distributed tree 
search (DIS) algorithm on a particular application? 

16.15 Tbe N queens problem is to place N queens on an N x N chessboard 
so that no 'lueen may attack another. Figure 16.22 illustrates a solution 
to the four queens' problem. Write a parallel program that counts the 
number of solutiom to the N queens problem fOf a particular value of 
N input from the command line. Benchmark your program for various 

Figure 16.22 A solution to 
the four queens problem. 
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values of Nand p. Plot the speedup achieved by your program as a 
function of N and p. 

16.16 Write a parallel program that finds a single solution to the N queens 
problem fora particular value of N input from the command lille. 
After printing the solution, the program should tenllinate. Benchmark 
your program for variolls values of Nand p. Plot the speedup achieved 
by your program as a function of Nand p. 

16.17 Figure l6.23)lltlstrates a puzzle. The puzzle has 21 holes in it. [nitially 
every hole is filled with a peg, except for the center hole (shown in 
black). Pegs are moved and removed by doing checkers-style hopping. 
You are aliowe4 to move a peg In a strnight line from its hole ov.er an 
occupied hole to an empty hole all the other side and remove the peg 
that wm just bopped. You may hop pegs in a horizontal, vertical, or 
diagonal direction. 

The object of the puzzle is to remove pegs until only one peg 
remains, and that peg is in the center hole. A sequence of 19 moves 
(hops) is necessary to reduce the original 20 pegs to a single peg. 

Write a parallel program t.o find a solution to the puzzle. 
Benchmark the execution time of your program for various values of p. 
Plot the speedup achieved by your program as a function of p. 

00. 0·0 
00000 

Figure 16.23 A peg puzzle. 

IUS The IS-puzzle, invented by Sam Loyd, is a larger version of the 
8-puzzle presented in this chapter. Fifteen tiles, numbered 1 through 15, 
and a hole occupy a 4 x 4 grid. Write a parallel program that takes as 
input a scrambled version of the 15-puzzle and finds the shortest 
sequence of moves needed to put the tiles back in order. Benchmark 
your program on at least five puzz] es, each of which requirE'S at least six 
moves to solve. Plot the speedup achieved by your program on each 
puzzle, as a function of p. 

16.19 Write a parallel program that plays the game of Othello (also called 
Reversi) against a human opponent. 
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C HAP T E R 

Shared.Memory Programming 

Not Whl.ll we give, bllt what we share-­
For the gift wIthout the giver is bare; 
Who gives himself with his alms feeds Jhiee­
Himself, his hungering neighbor, and me. 

James Rus.~ell Lowell, The VIsion of Sir LAunfal 

17.1 INTRODUCTION 

In the 19805 commercial mUltiprocessors with a modest number of CPUs cost 
hundreds of thousands of dollars. Today, multiprocessors with dozens of proces­
sors are 'still quite ex.pensive, but small systems are readily available for a low 
price. Dell, Gateway, and othe,· companies sell dual-CPU multiprocessors for less 
than $5.000, and YOll can purchase a quad-processor system for less than $W,OOO. 

It is possible to write parallel programs for multiprocessors using MPI, but 
you can often achieve better performance by using a programming language 
tailored for a shared-memory environment. Recently, OpenMP has emerged as 
a shared-memory standard. OpenMP is an application programming interface 
(API) for parallel programming on multiprocessors. It consists of a ~et of compiier 
directives and a library of support funL1ions. OpenMP works in conjunction with 
standard Fortran, C, or C++. 

This chapter introduces shared-memory parallel programming using OpenMP. 
You can use it in twQilifferent ways. Perhaps the only parallel computer you have 
access to is a multiprocessor. In that case, you may prefer 10 write programs using 
OpenMP rather than MPl. 

On the other hand, you may have access 10 a multicomputer consisting 
of many nodes, each of which is a mUltiprocessor. This is a popular way to 
build large multicomputers with hundreds or thousands of processors. Consider 
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these exampl es (circa 2(02): 

II IBM's RS/6000 SP system contains up to 512 nodes. Each node can have 
up to 16 CPUs in it. 

I Fujitsu's AP3000 Series supercomputer contains up to 1024uodes, and 
each node consists of one or two UltraSPARC proces.~ors. 

I Dell's High Perfonnance Computing Cluster has up to 64 nodes. Each node 
is a multiprocessor with two Pentium Jll CPUs. 

In this chapter you'll see how the shared-memory programming model is 
different from the message-passing model, and you'll learn enough Opcnt.1P 
compiler directives and functioru; to be able to parallelize a wide variety ofC code. 
segments. 

This chapter introduces a powerful set of OpenMP compiler directives: 

I para.llel, which precedes a block of code to be executed in parallel by 
mUltiple threads 

I for, which precedes a for loop with independent iteratiOlls that may be 
divided among threads executing in parallel 

I parallel for, a combination of the paralle 1 and [or directives 

I sect iOTIs, whi~h precedes a series of blocks that may be executed in 
parallel 

I parallel secti ons, a combination of the parallel and 
sect.1 OTIS directives 

I critical, which precedes a critical section 

Ising 1 e, which precedes a code block LO be eXt<cuted by a single thread 

You'll also encounter four important OpenMP functions: 

I omp_get_m.:m_procs, which returns the number ofCPUs in the 
multiprocessor on which this thread is executing 

• omp_get_TIum_threads, which returns the number of threads active in 
the current parallel region 

I omp_get _t hread_BuIlL which returns the thread identification number 

I omp_set. JlUITl_throads, which allows you to fiX the number of 
threads executing the parallel sections of code 

17.2 'rHE SHARED·MEMORY MODEL 

The shared-memory model (Figure 17.1) is an abstraction of the generic central­
ized multiprocessor described in Section 2.4. The underlying hardware is assumed 
to be a collection of processors, each with access to the same sbared memory. 
Because they have access 10 the same memory locations, processors can interact 
and synchronize with each other through shared variables. 
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Figure 17.1 The shared'memory model 01 parallel 
computatiof]. Processors synchronize and 
communicate with each other through shared variables. 

T1i~??t;intl3fd:Vtbwcbrpa;:~ff6Iitftl ini .sIlITt~rri~inory program is fork/join 
parallelism. When the program begins executi(Jn, only a single thread, called the 
master thread, is active (Figure 17.2). The master thread executes the sequential 
portions of the algorithm. At those points where parallel operations arc required, 
the master thread forks (creates or awakens) additional threads. The rna,ter thread 
and the created threads work conclJlTently through the pal'qUel section, At the end 
of the parallel code the created threads die or are suspended, and the flow of 
control returns to the single rnasterthread. This is called a joirL 

A key difference, then, between the shared-memory model and the message­
passing model is that in the message-passing model all processes typically remain 
active througbolltlhe execution of the program, whereas in the shared-memory 
model the number of active threads is one at the program's start and finish and 
may change dynallllcaJly throughout Ihe execution of the program. 

You can view,l sequential progrdm as a special case of a shared-memory par­
allel program: it is simply one with no fork/joins in il. Paralkl shared-memory 
programs range from those with only a single fork/join around a single loop 
to those in which most of the code segments are executed in parallel. Hence 
the shared-memory model supports incremental paI1lllelization, the process 
of transforming a sequential program into a parallel program one block of code at 
a lime. 

The ability of the shared-memory model to support incremental paralleliza­
tion is one of its greatest advantages over the message-passing model. It allows you 
to profile the execution of a sequential program, sort the program blocks accord­
ing 10 how much time they consume, consider each block ill turn beginning with 
the most time-consuming, paraJlelize each block amenable to parallel execution. 
and stop when the effOli required to achieve fUlther performance improvements 
is not warranted. 

Consider, in contrast, message-passing programs. They have no shared mem­
ory [0 hold variables, and the parallel processes are active throllghoot the execution 
of the program. Transforming a sequential program into a parallel program is not 
incremental at aJl-the chasm mllst be crossed with one giant leap, rather than 
many small steps. 

In this chapter you'll encounter increasingly complicated blocks of sequential 
code and learn how to transform them into parallel code sections_ 
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Master thread 

-[-j-]-]-]J Fock 

- - - - - Join 

Figure 17.2 The 
shared-memory model is 

. characterized by fork10in 
parallelism, in which 
paralleHsm comes and 
goes. At the beginning of 
execution only a single 
thread, called the master 
thread, is active. The 
master thread executes 
the serial portions 01 the 
program. 11 lorks additional 
threads to help it execute 
parallel portions of the 
program. These threads 
are deactivated when 
serial execution resumes. 

11.3 PARALLEL for lOOPS 
Inherently parallel operations are of Len expressed in C programs as ~or loops. 
OpenMP makes it easy to indicate when the iterations of a ior loop may be 
executed in paralle\. For example, consider the following loop, which accounts 
for a large proportion of the execution time in our MPI implementation of the 
Sieve of Eratosthenes: 

Lor (i.~. first; i <. size; i i·:' prime) marJi.ed;ij = Ii 

Clearly there is no dependence between one iteration of the loop and another. 
How do we convert it into a parallel loop? In OpenMP we simply indicate 10 
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the compiler that the iterations of a for loop may be execuled in parallcl; the 
compiler takes care of generating the code that forks/joins threads and schedules 
the iterations, that is, allocates iterations to threads. 

17.3.1 parallel for Pragma 

A compiler directive in C or c++ is callw a pragma. The word pragma is short 
for "pragmatic information." A pragma is a way to communicate information 
to the compiler. The information is nonessential in the sense that the c{)mpiler 
may ignore the information and still produce a correct object program. How­
ever, the information provided by the pragma can help the compiler optimize the 
program. ;, .... 

Like other lines that provide information to the preprocessor, a pragma begins 
with the # character. A pragma in C or C++ has this syntax: 

#pragma omp <resto!pragf1UJ> 

The first pragma we are going to consider is the parallel for pragma. 
The simplest form ufthe parallel for pragma is: 

#prilgma amp parallel for 

Putting this line immediately before the for loop instructs the c{)mpiler to try to 
parallelize the loop: 

#pragma amp parallel for 
for (i " first; i < size; i += prime) marked[iJ " 1; 

In order for the compiler to successfully transform the sequential loop into 
a paralielloop, it must be able to verify that the run-time system will have the 
information it needs to determine the number of loop iterations when it evaluates 
the control clause. For this reason the control clause of the [or loop must have 
canonical shape, as illustrated in Figure 17.3. In addition, the for loop must not 
contain statements that allow the loop to be exited prematurely. Examples include 
the break statement, return statement, exit statement, and go to statement~ 

f·x (index = star;:; index {:=} end; 
>-
" 

index+·r 
+1 inJ;.-;x 
index ~­
--index 
irlde:x '1::: inc 
index -,::: inc 
index = index i inc: 
index :-- inc t- index 
inde>t "index inc 

Figure 17.3 In order to be made parallel, the control clause of a fDr 

loop must have canonical shape, This figure shows the legal variants. 
The identifiers start, end, and inc may be expressions. 
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to labels olltside the loop. The con t i:cue statement is allowed, however, because 
its execution does not affect the number of loop iterdtions. 

Our example for loop 

for (i ~ first; i size; i += prime) marked[il = 1; 

meets these criteria: the control clause has canonicai shape, and there are no 
premature exits in the body of the loop. Hence the compiler can generate code 
that allows its ilerations 10 execute in paralleL 

During parallel executionofthe f or loop, the masler thread creates additional 
threads, and all threads work together to cover the iterations of the loop. Every 
thread has its own execution context: an address space containing all of the 
variables the thread may access. The execution context includes static variables, 
dynamically allocated data structures in the heap, and variables on the run-Lime 
stack. 

The execution context includes its own additional fUn-time stack, where the 
frames for functions it invokes are kept. Other variables may either be shared 
or private. A shared-variable has the same address in the execution context of 
every thread. AU threads have access to shared variables. A private variable has 
a different address in the execution context of every thread. A thread can access 
its own private vmiables, but cannot access the private variable of another thread. 

In Ihctase (lfthe parallel for pragma, variables are by default shared, 
with the exception that Ihe I (lOP index variable is private. 

Figure 17.4 illustrates shared and private variables: In this example the iter­
ations of the [or loop are being divided among two threads. The loop index i is 
a private variable--each thre-ad has its own copy. The remaining variables band 
ptr, as well as data allocated onlhe fieap: are shared. 

How does the run-time system know how many threads to create? The value of 
an environment variable called OMP _NUl·l_ THREADS provides a default number 
of threads for parallel sections of code. In Unix you can use the printenv 
command to inspect the value of this variable and the setenv command 10 

modify its valLie. 

int main (int argc, ehar* argvL]) 
{ 

in:bD]; 
chur* cptr ; 
in!". i; 

cpt!.- ~ :nalloc (U j 

#pragmil amp parallel for 
for (1=[}j i~); iff,) 'Cl 

b(ii=i; 
MasTer thread Thread I 

Crtl!.>.adO) 

Figure 17.4 Ouring parallel e)(ecution of the for loop, index i is a private 
variable, while b, cpt!, and heap data are shared. 
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Another strategy is to set the number of threads equal to the number of rnulti- -
proccssorCPUs. Let's explore the OpenMP functions that enable us to do this. 

Function omp_get __ ilum_procs returns the number of physical processors 
available for use by the parallel program. Here is the function header: 

int omp_get_num_procs {void). . 

The integer returned by this function may be less than the total number of 
physical processors in the multiprocessor, depending on how the run-time system 
gives processes access to processors. 

17.3.3 Function onlP_set_num_threads 

Function omp _ set _num _ threads uses the parameter value 10 set the number 
of threads to be active in parallel sections of code. It has this function header: 

void omp_sct_iluI1Lthreads {int t) 

Since this function may be called at multiple points in a program, you have 
the ability to tailor the level of parallelism to the grain size or other characteristics 
of the code block. 

Setting the number of threads equal to the number of available CPUs is 
straightforward: 

int t; 

t omp_get_ilu~procs(l i 
omp_set_nlli~_threads(t)i 

17.4 DECLARING PRIVATE VARIABLES 

For our second example, let's look at slightly more complicated loop structure. 
Here is the computational heart of our MPI implementation of Floyd's algorithm: 

for (i D; i < BLOCK_SIZE (id,p,n) ; i++) 

lor (j "' 0; j < n; j++) 
a[ilf:il = l1IN(a[i][jL ali [k] + tmp[jJ); 

Tn our earlier analysis of [his algorithm, we detennined that either loop could 
be executed in paralleL Which one ~hould we choose? If we parallelize the inner 
loop, then the program will fork and join threads for every iteration of the outer 
loop. The fork/join overhead may very well be greater than the time saved by 
dividing the execution of the n iterations of the inner loop among multiple threads. 
On the other hand, if we parallelize the outer loop, the program only incurs the 
fork/join overhead once. 
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Grain ~ize is thenumbcrof computations performed between communication "I!""'O 
or synchronization steps. In general, increasing grain size improves Ihe perfor-
mance of a parallel program. Making the outer loop parallel results in larger grain 
size. Jt is the option we choose. 

It's easy enough to direct the compiler to execute the iterations of the loop 
indexed by i in paralleL However, we need to pay attention to the variables 
accessed by the threads. By default, all variables are shared except loop index i. 
ThaI makes it easy for threads to communicate with each other, but it can also 
cause problems. 

Consider what happens when multiple threads try to execute different itera­
. tions pf the i loop ill paralleL We want every thread to work through n values 
.of j fcir each iteration of the i loop. However, all of the threads try 10 initialize 
and increment the same shared variable j-meaning that there is a good chance 
threads will not execute all n iterations. 

The solution is clear-we need to make j a private variable, too. 

17.4.1 private Clause 

A clause is ao optional, additional component to a pragma. The pr i vaLe clause 
directs the compiler to make one or more variables private. It has this syntax: 

pIi vate «variable list» 

The directive tells the compiler to allocate a private copy of the variable for each 
thread executing the block of code the pragma precedes, In our case, we are 
making a f or loop parallel. The private copies of variable :i will be accessible 
only inside the i or loop. The values are undefined on loop entry and exit. 

Using the pri \late clause, a correct OpenMP implementation of the doubly 
nested loops is 

#pragma amp parallel for private(j) 
for (5 '" 0; i < BLOCK_SIZE(id,p,I1); i++J 

for (j '" 0; j < n; j++) 
a[i] [j] := NIN(a[i] Ul, ali] [ki + 1:m:plJJ i; 

Even if j had a previously assigned value before entering the parallel Ear 
loop, none of the tbr~ads can access that value. Similarly, whatever values the 
threads assign to j during execution of the parallel [or loop, the value of 
the shared j will not be affected. Put another way. by default the value of a " 
private variable is undefined when the parallel construct is entered, and fhe val LIe 
is also undefined when the construct is exited. 

The default condition of private variables (undefined at loop enlly and exit) 
reduces execution time by eliminating unnecessary copying between shared vari­
ables and their private variable counterparts. 
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17.4.2· f irstpri vate Clause 

Sometimes we want a private variable to inherit the value of the shared variable. 
Consider, for example. the following code segment: 

x[O] = complex_function!); 
for (i = OJ i < n; it-'-) { 

for (j = 1 i j < 4; jt-'-l 
x[j] = 9 Ii, x[j-l]); 

ohswer[ij = xIll - x[3]; 

Assuming function 9 has no side effects, we may execute every iteration of the 
outer loop in parallel, as long as we make x a private variable. However, x [0 J 

is initialized before the outer for loop and referenced in the first iteration of 
the inner loop. It is impractical to move the initialization of x [0 J inside the 
outer for loop, because it is too time-consuming. Instead, we want each thread's 
private copy of array element x [ 0 1 to inherit the value the shared variable was 
assigned in the master thread. 

The f irstpri vate clause, with syntax 

firstpri vate l <variablelist» 

does just that. It directs the compiler to create private variables having initial 
values identical to the value of the variable controlled by the master thread as the 
loop is entered. 

Here is the correct way to code the parallel loop: 

x[D] = complex_function!); 
~pragmo omp parallel for privateU) firstprivate(x) 
for (i = 0 i i < n i i ++) ( 

for (j .:: 1 ; j < 4; j++) 

xlj! = g(i, xU-I]); 
answer[i] = x[l] - x[3] i 

()--,r Note thatthe values of the variables inrhe firstpr i Wlt(, list are initialized 
once per thread. not once per iteration. If a thread executes mUltiple iterations of 
the parallel loop and modifies the value of one of these variables in an iteration, 
then subsequent iterations referencing the variable will get the modified value, 
not the original value. 

17.4.3 lastprivate Clause 

The sequentially last iteration of a loop is the iteration that occurs last when the 
loop is executed sequentially. The lastpr j vate clause direcl~ the compiler to 
generate code at the end of the parallel f or loop tbat copies back to the master 
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tlrread"Scopy ()f a varia[}le the private copy of the variable from the threau tbat 
executed the sequentially last iteration of the loop. 

For example, suppose we were parallelizing the following piece of code: 

for (i = 0; i < n; itt) { 
x[O] = 1.0; 

} 

for (j " 1 ; j < 4 i j ++) 

x[j] ~ xU-1] * (i+1); 
_SUl!l_oCpowers[~] = xiD] + x[ll + x[2] + x[3] i 

n_cubed 7. x[3]; 

In thesequentiat1yIast iteration of theloop, x [3] ge,ts as,igned the value n3. 

In order toliave tbi, value accessible ouL~ide the parallel for loop, we must 
declare x to be a lastpri vate variable. Here is the correct parallel version 
of the loop: 

#pragma O[(lP parallel for private(j) lastprivate(x) 
for (i = 0; i < n; itt) { 

} 

x[O] = 1.0; 
for (j := 1 ; j < 4; j++) 

xU] = ;.;[j-1] * (i+1); 
SUfn_oCpoviers[i "x[O] + x(l] + x[2] + x[3]; 

n_cubed = x [3] ; 

A paraBel for pragma may contain both firstprivau! and 
lastpri vate c1auses.lflhe samepragma has both of these clauses. the clauses 
may have none, some, or all of tbe variables in common. 

17.5 CRITICAL SECTIONS 
Let's consider part of a C program that estimates the value of n using a form of 
numerical integration called the rectangle rule: 

double area, ,Xi 

inc i, n; 

area =: 0.0; 
for (i := 0; i < Il; i ++ ) ( 

X :- (i+O. ')) in; 
area +~ 4.0/11.0 + x*x); 

pi = aIed I 11; 
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Unlike the for loops we have already considered, the iterations of this loop 
are not independent of each other. Each iteration of the loop reads and updates 
the value of area. If we simply parallelize the loop: 

double area, pi, x-, 
int i, n; 

area ~ O. (); 
#pragma omp parallel for private(xi 

fer Ii = 0; i < n; iH) ( 

x -: (i+0.5)/n; 
area +~ 4.0/(1.0 t x*x); 1* Race condition! */ 

pi = area / ni 

we may not end up with the correct answer. because the execution of the as­
signment statement is not an atomic (indivisible) operdtion. luis sets up a race 
condition, in which the computation exhibits 'nondeterministic behavior when 
performed by multiple tbreads accessing a shared variable. 

See Figure 17.5. Suppose thread A and thread B are concurrently executing 
different iterations of the loop. Thread A reads the current value of area and 
computes the sum 

area + 1.0/{1.0 f x·x) 

Before it can write the value of the sum back to area, thread B reads the 
current val~e of area. Thread A updates the value of area with the sum. 
ThreaJn computes its sum and writes back the value. Now the value of area is 
incorrect. 

Value of mea Thread A ThreadB 

+3.765 
11.667 --------t---------'I'-I 

15.432 -+----------j +3.563 

15.230 -<---------f------------1 

Figure 17.5 Example 01 a race condition. Each thread is adding a 
value to a rea. However, Thread B retrieves the original value of 
area before Thread A can write the new value. Hence the final value 
of "l eil is incorrect. If Thread B had read the value of a rea after 
Thread A had updated it, then the final value of area would have 
been correct. In short, the absence of a crifical section can lead to 
nondeterminislic execution. 
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The assignment statement that reads and Ilpdates ar ea must be put in a 
critical section-a portion of code that only one thread at a time may execute. 

17.5.1 critical Pragma 

We can denote a critical section in OpenMP by putting the pragma 

#pragma amp critical 

in front of a block of C code. (A single statement is a trivial example of a code 
block.) This pragma directs the compiler to enforce mutual exclusion among the 
threads trying to execute the block of code. 

After adding the critical pragma, OUf c~de looks like this: 

double area, pL x; 
int L n; 

area = 0.0; 
#pragma omp parallel for private(x) 

for (i -, a i i < n; i H) { 

X " {i+O.5) Inj 
#pragma omp crlt~cal 

area t= 4.0 (1.0· + ,x*x) i 

pi = area I ni 

At this point our C!OpenMP code .segment will produce the correct result. 
The iterations of the fo rloop are divided among the threads, and only one thread 
at a time may execute the assignment statement that updates the value of area. 
However, this code segment will exhibit poor speedup. Since it admits only one 
thread at a time, the critical section is a piece of sequential code inside the for 
l(Jop. The time to execute this statement is .. nonlrivia1. Hence by Amrlahl's Law 
we lenow the critical section will put a low ceiling on the speedup achievable by 
parallelizing the for loop. 

Of course, what we are really trying to do is perform a sum-reduction of n 
values. In the next section we'll learn an efficient way to code a reduction. 

17.6 REDUCTIONS 

Reductions are so common that OpenMP allows us to add a reduction clause to our 
parallel for pragmu. All we have to do is specify the reduction operation 
and the reduction variable, and OpenMP will take care of the delails, slIch as 
storing partial sums in private variables and then adding the partial sums to the 
s~ared variable after the loop. 
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The reduction clause has this syntax: 

redOlction «op>: <variable» 

where <01' > is one oftbe reduction operators shown in Table 17.1 and <varillbl e> 

is the name of the shared variable that will end up with the result of the reduction. 
Here is an implementation of !lIe n--finding code with the reduction clause 

replacing the critical section: 

double area} pir K; 
int i, n; 

~rca = 0.0; 
#pragma amp parallel for private(x) reciuction(+:area) 

for (i = 0; i < n;. i++) { 
x co (i+O.5) In; 
area += 4.0/(1.0 + x'x); 

pi = area I n; 

Table 17.2 compares our two implementations of the rectangle mle to com­
pute j[. We set n = 100,000 and execute the programs on a Sun Enterprise 
Server 4000. The implementation that uses the reduction clause is clearly 
superior to the one using the c r it ical pragma.. It is faster when only a single. 
thread is active, and the execution time improves when additional threads are 
added, 

Table 17.1 OpenMP reduction operators for C and C++, 

Operator Meamng AUowable types Initial value 

Sum floal, inl 0 
Product ftoa~inl 

I< Bitwise and int all bits 1 
I Bilwi~eor int 0 

BitwLIC exclu~ive or inl 0 
&& Logical and inl I 
Ii Logical or inl 0 

Table 17.2 Execution times on a Sun Enterprise Server 4(]OO of two prograrns ttlat 
computE: 1I using the rectangie rule, 

Thread~ 

1 
2 
3 
4 

Execution time of ~rogram (sec) 

Using cd tical-progm!l 

0.0780 
0.1510 
0.3400 
0.3608 
0.4710 

Using reduction c13use 

00273 
0.0146 
0,0105 
0.0086 
OJ)076 
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17.7 PERFORMANCE IMPROVEMENTS 
Sometimes transfonning a sequential for loop into a parallel for loop can 
actually increase a program's execution time. In this section we'll look at three 
ways of improving the performance of parallel loops. 

17.7.1 Inverting loops 

Consider the following code segment: 

for {i '" 1; i < m; itt) 

for (j = 0; j <n; j++) 

ali] [j1 = 2 * a[i-l] lj]; 

We can draw a data dependence diagram to help us understand the data 
dependences in this code. The diagram appears in Figure l7.(i. We see that 
two rows may not be update~ simultaneously, because there are data depen­
dences between rows. However, the columns may be updated simultaneously. 
This means the loop indexe~ by j may be executed in parallel, but not the loop 
indexed by r. 

If we insert a [Jarallel for pragma before the inner loop, the resulting 
parallel program will'ex.ecute correctly, but it may not exhibit good performance, 
because it will require m- 1 fork/joinsteps, one per iteration of the outer loop. 

However, if we invert the loops: 

#pragrr:a parallel for private (i) 

for (j '" 0; j < n; j++) 

( 

for (i = 1; i < m; i++) 
a[i][j] ,,2 * a{i-Jl[j]; 

Figure 17.6 Data 
dependence diagram for a 
particular pair 01 nested 
loops shows that while 
columns may be updated 
simultaneously, rows 
cannot. 
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only a single' fork/join step is required (surrounding the outer loop). The data 
dependences have not changed; the iterations of the loop indexed by j are 
still independent of each other. In this respect we have definitely improved the 
code. 

However, we must always be cognizant of how code lransformations affect 
the cache hit rate. In this case, each thread is now working through columns of a, 
rather than rows. Since C matrices are stored in row-major order, inverting loops 
may lower the cache hit rate, depending upon m, TI, the number of active threads, 
and the architecture of the underlying system. 

17.7.2 Conditional~iEJ(ecuting Loops 

If a loop does not have enough iterations, the time spent forking and joining 
threads may exceed the time saved by dividing the loop iterations among multiple 
threads. Consider, for example, the parallel implementation of the rectangle mle 
we ex.amined earlier:' 

area = O.Oj 
#pragma omp para::'lel for private (x) reduction (+ :area) 

for (i = 0; i < 11; itt) ( 

x = (i + 0_5lin; 
area += 4.0 ; (1.0 1 x * xl; 

pi ::: area ; n; 

. Table 17.3 reveals the average execution time of this program seEment on 
a Sun Enterprise Server 4000, for various values of n and various numbers of 
threads. As you can see, when n is 100, the sequential execution time is so small 
that adding threads only increases overall ex.ecution time. When n is 100,000, the 
parallel program executing on four threads achieves a speedup of 3.16 over the 
sequential program. 

The if clause gives us the ahility to direct the compiler to insert code 
that determines at run-time whether the loop should be executed in parallel or 

Table 17.3 Execution lime OIl a Sun Enterprise Server 4000 of 
a parallel C program that computes lC using tile rectangle rule, 
as a func\ion of number of rectangles and number of threads . 

1 
2 
3 
4 

0.964 
1.436 
1.732 
I.99D 

. Ex~cutiol\;time (msl~c) 

n::::JOo,iIjJo 

27.288 
J4.598 
10.506 
8.648 
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sequentially. The clause has this syntax: 

if «scalar expression> ) 

If the scalar eK.pression evaluates to true, the loop will be executed in parallel. 
Otherwise, it will be executed serially. 

For example, here is how we could add an.i f clause to theparallel for 
pragma in the parallel program computing IT using the rectangle rule; 

ilplagma amp parallel for privace{x) reduction(1;area) if(n > JOOO) 
for (i " 0; .i < lli i++) ( 

In this case loop iterations will be divided among multiple threads only if 
n> 5,000. 

17.7.3 Scheduling. Loops 

In some-loops the time needed to execute different loop iterations varies consid­
erably. For GXample, considerthe following doubly nested loop,that iniJializes an 
upper triangular matrix: 

for (i = 0; i < n; i++1 
for Ij = ii j < n; j++1 

a[illjj = alpha_omega(i,j); 

Assuming there are no data dependences among itcrations, we would prefer 
to execute the outelmosl h)()p In parallel in order to minimize fork/join o\'erhead. 
If every call to function alpha_omega takes the same amount of time, then 
the first iteration of the nutermostloop (when i equals 0) requires n times more 
work than the last iteration (when i equals n-I). Inverting the two loops will not 
remedy the imbalance. 

Suppose these II iterations are being executed 01\ r threads. If each thread is 
assigned(a contiguou$ block of either fnjtl or lnjlJ threads, the panlllelloop 
c:\ecution will have poor efficiency, because some threads will complete their 
share of the iterations much faster than others. 

Theschedulc clause allows us to specify how the iterations ofaJoopshould 
be scheduled, thai is, allocated to threads. In a static schedule, all iterations 
are allocated to threads before they execute any loop iterations. In a dynamic 
schedule, only some of the iterations arc allocated 10 threads at the beginning of 
the loop '$ execution. Threads that complete their iterations are then eligible to get 
additional woIt. The allocation process continues until all of the iterations have 
been distributed to threads. Static schedules have low overhead but may exhibit 
high load imbalance. Dynamic schedules have higher overhead but can reduce 
load imbalance. 

In both slatic and dynamic schedules, contiguous ranges of iterations called 
chunks are assigned to threads. lncreasing the chunk size can reduce overhead 
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and increase the cache hit rate. Reducing the chunk size can allow finer balancing 
of workloads. 

The schedule clause has this syntax: 

s c h edu2-e ( <lype > L <chunk>]) 

In other words, the schedule type is required. but the chunk size is optional. With 
these two paranleters it's easy to describe a wide variety of schedules: 

• schedule (static): A static allocation of about nit contiguous 
iterations to each thread. 

• schedu] e (static, C); An interleaved .. allocation of chunks to tasks. 
Each chunk contains C contiguous iterations. 

• schedule (dynami c) ; Iterations are dynamically allocated,one at a 
time, to threads. 

• schedule (dynamic, C): A dynamic allocation of C iteratioru at a time 
to the tasks. 

• schedule (guided, C): A dynamic allocation of iterations to tasks 
using the guided self-scheduling heuristic. Guided self-scheduling begins 
by allocating a large chunk size to each task and responds to further 
requests for chunks by aJlocating chunks of decreasing size. The size of the 
chunks decreases exponentially to a minimum chunk size of C. 

• sch€dule (guided): Guided self-scheduling with a minimum chunk 
size of \. 

• schedule (runtime) : The schedule type is chosen at run-time based on 
the value of the environment variable OMP _SCHEDULE. For example, the 
Unix command 

setenv OMP_SCHEDULE "static,l" 

would set the run-time schedule to be an interleaved aJlocation. 

When the sc h edu 1 e clause is not included in the par a 11 e 1 fo r pragma, 
most run-time systems default to a simple static scheduling of consecutive loop 
iterations to tasks. 

Going back to our original example, the run-time of aQY particular iteration of 
the outermost fo r loop is predictable. An interleaved allocation of loop iterations 
balances the workload of the threads: 

#pragma omp parallel for private (j) schedule (static, 1) 
for (i = 0; i < n; i++) 

for Ij = i; j < n; j++) 

ali] Ii] = alpha_o;llega(i,j); 

Increasiog the chunk size from I could improve the cache hit rate at the 
expense of increasing the load imbalance. The best value for the chunk size is 
system-dependent 
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17.8 MORE GENERAL DATA PARALLELISM 
To this point we have focused on the parallelization of simple for loops. They are 
perhaps the most common opportunity for parallelism, particularly in programs 
that have already been written in MPL However .. we should nor ignore other 
opportunities for concurrency. In this section we look at two examples of data 
parallelism out,ide simple for loops. 

First let's c'Onsider an algorithm to process a Enked list of tasks. We considered 
a similar algorithm when we designed a solution to the document classification 
problem in Chapter 9. In that design, we assumed a message-pa5sing model. 
Because that model has no shared memory, we gave a single process, which we 
called tbe manager, responsibility for maintaining the entire list of ta,ks. Worker 
tasks sent messages to the manager when they were ready to process another ta.~k. 

In contrast, the shared-memory model aiiows every thread to access the same r-O 
"to·do" list, so there is no need for a separate manager thread. 

The following code segmcnts are part of a program that processes work stored 
in a singly linked to·do list (see Figure 17.7): 

int IT.ain (int argc, ehar argv [J ) 

{ 

} 

struct jOb_struct job_ptr; 
struct task:"st rucl ~ask.plr; 

l:askptr co get_next.Jask (&job_pt.r); 
v;hile (task_ptr != NULL) { 

complete_task f task_ pl:r) ; 
lasK_plr = get._Ilext_task (&job_plr); 

} 

char get_next_tas~'<lstr\lCl: job.sleuet job_pte) { 
struct task_struct answer; 

} 

if (j ob_pt r :0= "nJfJL) ans\,er = HULL; 
else ( 

} 

answer = (job.ptr)->task; 
job _ptr = (job_ptr)->next; 

return answer; 

How would we like this algorithm to execute in parallel? We want every thread 
to do the same thing: repeatedI y take the next task from the list and complete it, 
until there are 00 more tasks to do. We need to ensure that no two threads take 
the same taSK from the list. In other words, it is imponant to execute function 
get_next_task atomically. 
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Figure 17.7 Two threads work their way through a singly 
lin~ed "to do" list. Variable Job_ptr must be shared, while 
task_ptr must be a private variable. 

17.8.1 parallel Pragma 

The parallel pragma precedes a block of code that should be exec.uted.by all of 
the threads. It has this syntax: 

#pra9ma amp paralle.l 

if the code we want executed in parallel is not a simple statement (such as 
an assignment statement, if statemeni: or for loop) we can use curly braces to 
create a block of code from a statement group. 

Note that unlike the parallel [or pragma, which divided the iterations 
of the for loop among the active threads, the execution ofthecode block after the 
parallel program is replicated among the lhreads. Our section of function main 
now looks like this: 

int main (int argc, char argv [l ) 
{ 

struct job.sLruct job_ptr; 
struct task_SLruct task_ptr; 

#pragma amp parallel private (task_ptr) 
{ 

task_ptr = get_next_task (&job_ptrj; 
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while (task_ptr !" 1'1JLL) { 
comp]ete .. task Itask_pLrj; 
task_ptr ~ get_next_task (&job_ptr); 

Now we need to ensure function get_next_task executes atomically. 
Otherwise, allowing two threads to execute function gct_next_task simul· 
taneously may result in more than one thread returning from the function with 
the same value oftask_pt r. 

We use the critical pragma to ensure mutually exclusive exclmtioo'uf'''-i,+'''';,';""",:;;c!fi',: 
this critical section of code. Here is the rewritlen function 9ct_n2xt_task: 

char gpt_next._tilsklstruct job_struct job_ptr) { 
struct task_st.ruct answer; 

#pragma omp critical 
{ 

if (job_ptr -- NULL) answer = NULLi 

else { 
answer' = (j ob_ptr) ->taski 
job .. ptr = (job_pl;r) ->next; 

n:turn answer; 

17.8.2 Function omp_get_thread_Dum 

Earlier in this chapter we computed if using the rectangle rule. In Chapter lOwe 
computed Ir using the Monte Carlo method, The idea, illustrated in Figure 17.8, is 
to generate pairs of points in the unit square (where each coordinate varies between 
o and 1). We count the fraction of point~ inside the circle (those points for which 
x2 + y" ::5 I). The expected vallie of this fraction is IT (4; hence multiplying the 
fraction by 4 gives an estimate of IT, • 

Here is the C code implementing the algorithm: 

int count; /* Points inside unit circle 
unsigned short xi [3] ; /* Random number' seed */ 
int 1; 

int samples j /* Po int s to generate *( 
double x, Yi 1* Coordinates of point */ , 
sarnples '" aeoi (argv[l]); 
xi [0] awi (argv l2]) ; 
xi [1] co awi (argv [3]) ; 

*/ 
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Figure 17.B Example of a Monte 
Carlo algorithm to compute Jr. In this 
e)(ample we have generated 1,000 
pairs from a unifol'!ll distribution 
between 0 anel1. Since 773 pairs are 
inside the unit circle, our estimate of 
Jr is 4(773/1000), or 3.092. 

xi[2] = atoi (a.rgv{4]); 

count = 0; 
for (i = 0; i < samples; i++) ( 

'x = erand48(xil; 
y = erand48(xil; 
if (x*Xty*y <oo 1.0) counttt; 

prinCE ("Estimate o[ pi: %7.Sf\n", 4.0*count/samples); 

If we want to speed the execution of the program by using multiple threads, we 
must ensure that each thread is generating a different stream of random numbers. 
Otherwise, each thread would generate the same sequence of (x, y) pairs, and 
there would be no increase in the precision of the answer through the use of 
parallelism. Hence xi must be a private variable, and must find some way for 
each thread to initialize array x i with unique values. That means we need to have 
some way of distinguiShing threads. 

In OpenMP every thread on a multiprocessor has a unique identification num­
ber. We can retrieve this number using thefunction omp3et_thread_num, 
which has this header; 

ff there are t active threads, the thread identification numbers are integers ranging 
from 0 through t - L The master thread always has identification number O. 
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Assigning the Ihread identification number to xi [21 ensures each thread has a 
different random nllmber seed. 

17.8.3 Func1ion omp_get __ num_threads 

In order to divide the iterations among the Ihreads, we must know the number of 
active threads. Function amp _get_nllffi_ threads, with Ihis header 

int omp_get_numJhreads(voidj 

returns the number of threads active in the current parallel region. We can use this 
information, a~ well as the thread identification number, to divide the iterations 
among the threads. ,. , . . 

Each thread wiH accumulate it~ count of points inside the circle in a private 
variable. When each thread completes the [or loop, it will add its subtotal to 
coun t inside a critical section. 

The OpenMP implementation of the Monte Carlo x-finding algorithm ap­
pears in Figure 17.9. 

17.8.4 for Pragma 

The paralle} pragma can also come in handy when paraUelizing for loops. 
Con~ider this doubly nested loop: 

for (i ~ Vi i <: mi i++) { 

low .c 0[i] i 
high = b[iJ; 
if (low> high) { . 

printf ('Exiting during iteration %d\n", i); 

for {j = low; ] < 
cU] " (c[j] 

high; j ++) 

a[il) Ib[i]; 

We cannot execute the iterations of the outer loop in parallel, because it 
contains a break statement. If we put a parallel for pragma before the 
loop indexed by j, there will be a fork/join step for every iteration of the outer 
loop. We would like to avoid this overhead. Previously, we showed how inverting 
f or loops could solve this problem, but that approach doesn't work here because 
of the <lata dependences. 

If we put the par a 11 e 1 pragma immediately in front of the loop index:ed 
by i, then we'll only have a single fork/join. The default behavior is that every 
thread executes all ofthe code inside the block. Of murse, we want the threads to 
divide up the itemtions of the inner loop. The [or pragma directs the compiler 
to do just that: 

ilpragma omp for 
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'. I 

* Op€nMP iraplemern:ation of Mont:e Carlo pi-finding algorithm 
i / 

iinclude <stdio.h> 
int main (';nt arge, char *argv[j) ( 

int C01JIlt; f' Poinl:s inside unit eifel" 
int i; 
int locaL_count; ;' 'rtis thread J .s suDcot.dl 
int 
ll:1signed 
int 

samples; 
st\ort xi [31 i 
t; 

Lid;: 

I"~ Points 
/-1.- Random 

I' tiulllber 
/' Thread 

to generate * i 
nwuber sec:d . / 
of lhrea(L~ " / 
id /r l int 

double x, y; F* Cooydi~ates ()f point 

(-Ie Number of points and nLlIDbcr 0 L threads JiB 

COlTUH3.nd··line al"~J.!l1ents ,i. ( 

SE4'I1pJ es ~ atai (argv [lJ ) ; 
OIl:p_~et_rlum_threads {ut.o} fargvf2]}; 

count ~ 0; 

* f 

#pragrr.;;. amp parallel priva!:e(xi;t, i,x,y, locat_count) 

xi (0] 
xi [1] 

xi [2; 

acoi (argv [3] i ; 
acoi(Hgv!4]); 
tid ~ omp_geCthrea;:Umlll(); 

for (i :;: Lia; i < saIDPles; i +::: t~ 

X erand'lB(xi Ii 
y ~ erand4B{xi); 
if (x'Xty"1' <~ 1.0) l:)calJounltt; 

#pragma O:f1P crlt 1 cdl 

count t= locat<.couTIL. i 

tel 

printt ,-Estimate of pi: ·'t7.St\n"/ 4.0*collnt/~:;amples'; 

ill' ,I 

Figure 17.9 This CIOpenMP program uses the Monte Carlo method to 
compute1L 

With these pragmas ad.ded, our code segment looks like this: 

itpragma omp parallel privateli, j) 
for (j = 0; i < m; i++) { 

low = a[i]; 
high = b[il; 
if (low> high) 

printf ('Ex.i ting during iteration %d\n", i); 
break; 
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Jfpragma omp for 
for (j = low; j < high; j ++) 

c!jj = (c[j] - ali] l/bIi] i 

Ollr work is not yet complete, however. 

17.8.5 single Pragma 

We have parallelized the execution of the loop indexed by j. What about the other 
code inside the outer loop? We certainly don't want to see the error message more 
than once. 

The si ngle pragma tells the compiler thar only a single thread should 
execute the block of code the pragma precedes. Its syntax is: 

#pragma amp singJe 

Adding the sing 1 e pmgma to the code block, we now have: 

#prawrra amp parallel private(i,j) 
for" [i = 0; i < m; ]H) { 

low", aiil; 
high =: bIi]';. 
if (low> high) 

#pragma amp single 
printf ("Exiting during iteration %d\n" , i); 

break; 

#pragma amp for 
for (j =: low; j < high; j-H) 

c[j] =: (c[j] - ali] )/bfij; 

The code block now executes correcdy, but we can improve its perfonnance. 

17.8.6 nowait Clause 

The compiler puts a barrier synchronization at the end of every parallel for 
statement. In the example we have been considering, this barrier is necessary, 
because we need to ensure that every thread has completed one iteration of the 
loop indexed by i before any thread begins the next iteration. Otherwise, a thread 
might change the value of 10\>! or high, altering the number of iterations of the 
j loop performed by another thread. 

On the other hand, if we make low and high private variables, there is no 
need for the barrier at the end of the loop indexed by j. The nOHa i t clause, 
added to a parallel for pragma, tells the compiler to omit the barrier syn­
chronization at the end of the parallel for loop. 
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After making low and high private and adding the nowai t clause, our 
final version of our example «lde segment is: 

lipragma omp parallel private(Lj,low,high) 
for (i = 0; i < m; i ++) { 

low:: a[i]; 
high = b[ij; 
if (low> high) 

#pragma omp single 
printf ("Exlting during iteration %d\nU, i); 

break; 

#pragma omp for nowait 
for (j :: low; j < high; j+t) 

c[j] :: (c[j] - a[i]}/b[i]; 

17.9 FUNCTIONAL PARALLELISM 
To this point we have focused entirely on exploiting data parallelism. Another 
source of concurrency is functional parallelism. OpenMP allowS us to assign 
different threads to different portions of code. 

Consider, for example, the following code segment 

v :: alpha{J; 
w :: beta (); 
x ~ gamma (v, \or); 

y :: deltal); 
printf ("%6.2f\n", epsilon(x,y)); 

If all of the functions are side-effect free, we can represent the data dependences 
as shown in Figure 17.10. Clearly functions al pha, beta, and del t a may be 
executed in paralleL If we execute these functions concurrently, there is no more 

Figure 17.10 Data dependence diagram 
for code segment of Section 17.9. 
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functional paralleli5ffi to exploit, because function garn,nd must be called after 
function.s alpha and beta and before function epsilon. 

17.9.1 parallel sections Pragma 

The para] le1 sect ions pragma precedes a bloctofk blocks of code that 
may be executed concurrently by k threads. It ha.s !his syntax: 

#pragma amp parallel sections 

17.9.2 section Pragma 

The section pragma precedes each block of code within the encompassing 
blockprecedcdhythe paraHel sections pragrna. (The sect ion pragma 
may be omitted fj)f the first parallel section after the para llel sect i~.ms 
pragma.) 

In the example we considered. the' calls to functions alpha, bela, and 
. del t a could be evaluated concurrently. In our pardllelilatiOR of this code seg­
ment. we use curly braces 10 create a block of code contlining these three assign­
ment statements. (Recall that an assignment statement is a trivial example of a 
code block. Hence a block containing three a~signment statements is a block of 
three blocks of code.) 

#pragma omp parallel sE;cbons 
{ 

#pragma amp section 
v " alpha() i 

#pragma omp section 
w·~ beta(); 

#pragma omp section 
y =c delta (); 

X := gamma (v, w); 

! * 'rhis pragma opt ional * I 

prlntf '"%6.2f\n", epsilon(x,Y)); 

Note that we reordered the assignment statements to bring together the three 
that could be executed in parallel. 

17.9.3 sections Pragma 

Let's take another look at the data dependence diagram of Figure 17.10. There is 
a secoM way to exploit functional parallelism in this code segment. As we noted 
earlier, if we execute functions alpha, beta, and delta in parallel, there are 
no further opporlllnitics for functional parallelism. However, if we execute only 
functions alpha and beta in parallel, then after they return we, may execute 
functions gamma aDd de 1. t a in paralleL 

In this design we have two different parallel sections, one following the other. 
We can reduce fork/join costs by putting all four assignment statements in a single 
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block preceded by the par allel pragma, then using the sect ions pragma 
to identify the first and sccolld pairs of functions that may execute in paralle L 

The sections pragma with syntax 

#pragma omp sections 

appears inside a para 11el block of code. It has exactly the same meaning as 
the paralle 1 sect ions pragma we have already described. 

Here is another way to express functional parallelism in the code segmem 
we have been considering, using the sect ions pragma: 

#pragma amp parallel 
{ 

#pragma amp sections 
{ 

#pragma omp section 
v = alpha(); 

#pragma omp section 
w = beta ()J 

itpragma omp sections 
{ 

#pragma omp section 
x = gamma (v, w); 

#pragma omp section 
y = delta(); 

/* This pragma optional */ 

/* This pragma optional '; 

print[ {"%6.2f\n·, epsilon (x,y)); 

In one respect this solution is better than the first one we presenteLi, because 
it has two parallel sections of code, each requiring two threads. Our first solution 
has only a single parallel section of code that required three threads. If o'nly 
two processors are available, the second section of code could result in higher 
efficiency. Whether or not that is the case depends upon the execution times of 
the individual functions. 

17.10 SUMMARY 
OpenMP is an API for shared-memory parallel programming. The shared-memory 
model relies upon forkljoin parallelism. You can envision the execution of 1I 

shared-memory program as periods of sequential execution alternating with pe­
riods of parallel execution. A master thread executes all of the sequenti al code. 
When it reaches a parallel code segment, it forks other threads. Thl! threads com­
municate with each other via shared variables. At the end of the parallel code 
segment, these threads synchronize, rejoining the master thread. 
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This chapter has introduced OpenMP pragma~ and clauses that can be used to 
transform asequential C program into one lhatruns in pandlelon amultiprocessor. 
First we considered the parallelization of for loops. ]n C programs data paral­
lelism is often expressed in theform of for loops. We use the parallel for 
pragma to indicate to the compiler those loops whose iterations may be performed 
in parallel. There are certain restrictions on for loops that may be executed in 
parallel. The control clause must be simple. so lhat the run-time system can deter­
mine, before the loop executes, how many iterations it will have. The loop cannot 
have a break statement, gOla statement, or anothcr statement that allows early 
loop termination. 

We also discussed how 10 take advantage of functiGnal parallelism through 
the use of the par aBel sect ions pragma. This pragma precedes a block 
of blocks of code, where each of the inner blocks, or sections, represents an 
independent task that may be performed in parallel with the other sections. 

The parallel pragma precedes a block of code that should be executed 
in parallel by all threads. When all threads execute the same code, the re~ult i~ 
SPMD-style parallel execution similar to that exhibited by many of our programs 
using MPI. A for pragma or a sec t ions pragma may appear inside the block 
ofcooe marked with a para llel pragma, allowing the conipilertoexploit data 
or functional parallelism. 

We also use praginas t{J point out areas within parallel sections that must be 
executed sequentially. The ~ri ti cal pragma indicates a block. of code forming 
a critical section where mutual exclusion must be enforced The sing 1 e pragma 
indicates a block of code that should only be executed by one of the threads. 

We can convey additional information to the compiler by aoding clauses 10 

pragmas. The pri vate clause gives each thread its own copy of the listed vari­
ables. Values can be copies between the original variable and private variables 
llsing the firstpri vate and/or the lastpri vate clauses. The reduc­
t ion clause allows the compiler to generate efficient codefor reduction opera­
lions happening inside a parallel loop. The schedule clause lets you specify 
the way loop iterations are allocated to tasks. The it clause allows the system to 
determine at llllHime if a constmct should be executed sequentially or by mul­
tiple threads. The nowait clause eliminates the barrier synchronization at the 
end of the parallel construct. 

- While we have introduced clauses in the context of particular pragmas, most 
clauses can be applied to most pragmas_ Table 17.41isls which of the clauses we 
have introduced in this chapter may be attached to which pmgmas. 

We have examined various ways in which the performance of parallel for 
loops can be enhanced. The strategies are inverting loops, conditionally paral­
leliling loops, and changing the way in which loop iterations aft scheduled. 

Table 17.5 compares OpeuMP with MPI. Bolh programming environments 
can be use<:l to program multiprocessors. MP[ is suitable for programming multi· 
computers. Since Opetill-tP has shared variables, OpenMP is IIOt appropriate for 
generic mUlticomputers in which there is no shared memol)'_ MPI also makes 
it easier for the programmer to take control of the memory hierarchy. 011 the 
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Table 17.4 This table summarizes which clauses may be attached to which pragrnas, 

l'&g~if;;,:)~~( ,(,/ :" ';;";';:e~:3\fuw:ea,' . 1";";: 

cri tical None 
for firstprivate, lastpri vat ,'C', nowait, 

private, reductio[1~ schedule 

parallel 

parallel for 

parallel sections 

firstprivute, if, lastprivate, 
pri vate, red11ction 

firscpri vate, if, lastpri vdte, 
pri vate, reduction, scheduL' 

firstprivate, if, lascpri'Jate, 
private,reduction 

sections tirstpri vate, lastpri vate, nmiait, 
priVate, n:ductiol1 

single firstpri vate, Ilol>'ait, pd vate 

Note: OpenMP has addifional claus",\ not introdure:l in this chapter. 

Table 17.5 Comparison of OpenMP and MPL 
.. ,',' q",nMP c', . ""'IPI 

Suitable for mUltiprocessors 
Sl!itable for multicomputers 
SUppOrtli incremental paralIelizatiDn 
Minimal extra code 
Explicit conlrol of memory hierarchy 

Yes 
No 
Yes 
Ye-I 
No 

Yes 
Yes 
No 
Nu 
Yes 

other hand, OpenMP has the significant advantage of allowing programs to be 
incrementally parallelized. In addition, unlike programs using MP!, which often 
are much longer trum their sequential counterparts, programs using OpenMP are 
usually not much longer than the sequential codes they displace. 

17.11 KEY TERMS 

C3llonical shape 
chunk 
clause 
critical section 
dynamic schedule 
execution context 
fork/join parallelism 

grain size 
guided self-scheduling 
incremental pllrallelization 
master thread 
prngma 
pri vate clause 
private variable 

17.12 BIBUOGRAPHIC NOTES 

racc condition 
reduction variable 
scbedule 
sequentially last itcration 
shared variable 
static schedule 

The URL for the official OpenMP Web site is www _ OpenMP . argo You can 
download the official OpenMP specifications for the CJC ++ and Fortran versions 
of OpenMP from this site. 
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Parallel Programming in OpenMP by Chandra et al. is an excellent introduc­
tion to this shared-memory application programming interface {l6}. It provides 
broader and deeper coverage of the features ofOpenMP. lJ also discusses perfor­
mance tuning of OpenMP codes. 

17.13 EXERCISES 

17.1 Of the four OpenMP functions presented in this chapter, which two 
have the closest analogs to MPI functions? Name the MPI function each 
of these functions is similar to. 

17.2 For each of thefollowing c04e segments, use OpcnMP pragmas to 
make the loop parallel, or explain why the code segment is not suitable 
for parallel eXIXution. 
L for (i = 0; i < (int) sqrt(x); i++) I 

a[i]·= 2.3 * i; 
if (i < 10) b[iJ ~ a[iJ; 

~ flag 0; 
for: (i = 0; (i < n) & (!flag); itt) 

a[iJ ce· 2 .. 3 * i; 
if (a [iJ < b!iJ) flag = 1; 

~ for (i - 0; i < n; itt) 
ali] = fooli}; 

d. for (i ~ 0; i < n; itt) ( 

a[iJ '" fool]); 
if (a[iJ < brill ali] =c b[iJ; 

e. for (i = 0; i < n; i ++) {. 

afi: = foo(i); 
if (a[i] < b[i]) break; 

[ doLp = 0; 
for (i = 0; i < n; itt) 

dotp += ali] * b[iJ; 

~ for (i = k; i < 2*k; itt) 
ali] = u[i] + a[i-kJ; 
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h. for [i ~ k; i < 0i Itt) 
ali] == b * a[i-kJ; 

17.3 Suppose OpenMP did not have the reduct ion clause. Show how to 
implement an efficient parallel reduction by adding a private variable 
and using the critical pragma. Illustrate your methodology using 
the Jr -estimation program segment from Section 17 j. 

17.4 Section 17.7.3 discusses an interleaved scheduling of tasks to balance 
workloads among threads initializing an upper triangular matrix. 
Explain why increasing the chunk size from J could improve the cache 
hit rate. 

17.5 Give an example of a simple parallel for loop that would probably 
execute faster with an interleaved static scheduling than by giving each 
task a single contiguous chunk of iterations. Your example should not 
have nested loops. 

17.6 Give an original example of a parallel for loop that would probably 
execute in less time if it were. dynamically scheduled rather than 
statically scheduled. . 

17.7 In Section 17.8 we develop a parallel code segment allowing multiple 
threads to work through a single "to-do" list. Explai.n how two threads 
could end up processing the same task iffunction get_next_task 
is not executed atomically. 

17.8 Figure 17.9 illustrates a CIOpenMP program that uses the Monte Carlo 
algorithm to compute Jr. Note that the iterations of the tor loop are 
divided among the threads explicitly. Implement another version of this 
program that uses the Eo r pragma to delegate the allocation of loop 
iterations to the run-time system. Benchmark your program for various 
values of n (number of samples) and t (number of threads). 

17.9 Use OpenMP directives to express as much parallelism as possible in 
the following code segment from Winograd's matrix mUltiplication 
algorithm (adapted from Baase and Van Gelder [51). 

for (i = 0; i < m; iH) { 
rowterm[i] = 0.0; 
for (j = 0; j < p; j++) 

rowterm[iJ += ali] [2*jj k a[iJ [2*j+l]; 

for (i = 0; i < q; itt) { 
coltermlil = 0.0; 
for (j = 0; j < p; j++) 

colterm[iJ += b[2*j]U1 * b(2*j+1] [i1; 
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17.10 Use OpenMP directives to implement a parallel program for the Sieve 
of Eratosthenes. Benchmark your program for various values of II and I 
(number of threads), 

17.11 Use OpenMP directives to implement a pardllel program for floyd's 
algoritlun (Figure 6.2). Benchmark your program for different values of 
nand t (number of threads). 

17.12 Use OpenMP directives to implement a parallel version of 
matrix-vector multiplication (Fig~relU). Benchmark your program for 
different values of nand t {number of threads). 

17.13 Use OpenMP directives to implement a parallel program that solves a 
dense system of linear equations using Gaussian elimination with row 
pivoting, followed by back substitution (Figure 12.7). Benchmark your 
program for different values of /I and t (number of threads). 

17.14 Use OpenMP directives to implement a parallel version of the conjugate 
gradient method (Figure 12.13), as!iUming the coefficient matrix A is 
symmetrically banded Benchmark your program for different values of 
nand t (number of threads). 

17.15 Use OpenMP directives to implement a parallel version of Parallel 
Sorting by Regular Sampling (Figure 14.5). Benchmark your program 
for different values of II and t (number of threads). 

17.16 Use OpenMP directives to implement a parallel program that solves the 
IS-puzzle (Chapter 17). For a variety of scrambled puzzles, benchmark 
your program for different values of t (number of threads), 
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C HAP T E R 

. Combining MPI and OpenMP 

The good things in life are TIOI to be fwd singl}~ but come to us with a mixture. 
Charles Lamb, That You Must Love Me and Lore My Dog 

18.1 'INTRODUCTION 

Most commercial multicomputers with hundreds or thousands of CPUs are ac­
tually collections of centralized multiprocessors, and many commodity clusters 
are made up or dual~processor or even quad-processor nodes. For these reason~ 
it is good to know how to transform a program using MPl into a program us­
ing both MPI and OpenMP, suitable for execution on a multicomputer duster of 
multiprocessors. 

It is true that you can execute an MPI,only C program on a multiprocessor 
cluster by creating one MPI process for each CPU on the system (Figure 18.1a). 
In this case someMPl processes will happen to beon the same multiprocessor, but 
all process interactions will happen via message-passing. Sometimes, however, 
it is better to construct a hybrid parallel program (Figure l8.1b). In this case one 
MPI process executes on each multiprocessor. Inside parallel sections of code the 
MPI processes rork threads to occupy the multiprocessor CPUs, and these threads 
can interact via shared variables. 

In many cases hybrid programs using both MPI and OpenMP execute faster 
than programs using only MPL 

Sometimes hybrid programs execute faster because they have lower com­
munication overhead. Suppose we are execUting our program on a cluster of In 

multiprocessors, where each multiprocessor has k CPUs. In order til utilize every 
CPU, a program relying on MPI must create mk processes. During communica­
tion steps, mk processes are active. On the other hand, a hybrid program need only 
create m processes. In parallel sections of code, the work] oad is divided among 
k threads on each mUltiprocessor. Hence every CPU is utilized. However, during 
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(aJ (bJ 

Figure 18.1 Two ways to execute parallel programs 011 

multiprocessor clusters. {a) Create an MPI process (P) for 
every CPU. (b) Create an MPI process (P) for every 
multiprocessor and create threads {t) to occupy the CPUs. 

communication steps, only m processes are active. This may well give the hybrid 
program lower communication overhead than a "pure" MPI program, resulting 
in higher speedup. 

Another way a hybrid program can achieve higher speedup is if it is practical 
to parallelize some portions of t~e computation via lighter-weight threads, but 
not via heavier-weight processes. Consider the following example. 

Suppose we. are parallelizing a serial program that executes in 100 seconds. 
The program s~nds five seconds (5 percent of the execution time) performing 
inherently sequential operations. It spends 90 seconds (90 percent of the execution. 
time) pelforming operations that are perfectly parallelizable. We translati this 
portion of the program into parallel code that achieves linear speedup. 

The last five seconds (5 percent) are spent doing operations that could be 
performed in parallel, but require substantial communication overhead. The time 
required for the MPI function calls is so great that it is not worth making these op­
erations parallel. Instead, we will replicate these operations on the MPI processes. 

However, suppose thal in a shared-memory environment it is practical to 
execute these operations in parallel. Suppose further that if these operations are 
pelfonned on two processors, the parallel overhead is negligible. 

Let's compute the speedup our program will achieve, assuming we are ex­
ecuting it on a cluster of eight dual-processor systems. With 16 MPI processes, 
the maximum speedup achievable (by Amdahl's Law) is 

I -64 
(0.10+ 0.90/16) - . 

Alternately, we can execute the program on eight MP[ processes and allow 
double-threaded execution within each process. For the 90 percent of the code 
that is perfectly parallelizable, the 16 threads execute these operations 16 times 
faster. For the 5 percent of the code that is replicated across the nodes, two threads 
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will execute it twice as fast. The 5 percent of the code that is inherently sequential 
remains. The maximum speedup achievable is 

1 
=7.6 

0.05 + 0.05/2 + 0.90/16 

In this case the hybrid program is 19 percent faster than the program using 
only MPL 

A third situation in which hybrid parallelism can be useful is when sume MPI . 
processes are idle while others are busy. Suppose an application is executing on a 
multiprocessor cluster. On one of the multiprocessors three of the MPI processes 
are waiting,f~r.1W~'\~S' while the fourth process is active. If the active process 
could exploit the idle CPUs to execute some parallel operations faster, then it 
would be worthwhile to fork some threads. 

In this chapter we'll illustrate the transformation of programs using MPI 
imo programs using both MPI and OpenMP through two case studies. The first 
case study is an implementation of the conjugate gradient algorithm described in 
Chapter 12. The second case study is an implementation of the Jacobi method. 
described in Chapter 13. In both cases relatively small changes to the MPI-only 
C program are sufficient to translate it into an MPliOpenMP C program that 
achieves significantly higher speedup. 

18.2 CONJUGATE GRADIENT METHOD 

18.2.1 MPI Program 

The program presented in Figure 18.2 implements the conjugate gradient method 
to solve a system of linear equations Ax = b, where the coefficient matrix A is 
positive definite. The program design is based upon a block-row decomposition 
of matrix A among the processes. It assumes vector b and all other vectors are 
replicated. 

Function main invokes the usual sequence of MPI start·up functions, then 
uses two of the utility functions developed in earlier chapters to read matrix A 
and vector b from files. If matrix A is not square. or if the number of columns in 
A does not match the number of rows in b, the algorithm terminates. Assuming 
tbe matrix is n x 11 and the vector has 11 elements, function main allocates space 
for the solution vector x, calls timction cg to solve Ax = b for x, and prints the 
solution. 

Function cg is a straightforward implementation of the conjugate gradient 
method as described in Chapter 12. Code to initialize, add, and subtract vectors 
appears in line, but dot (inner) products and matrix-vector multiplications are 
accomplis bed through function calls. Theconjugate gradient method is an iterative 
algorithm that generates successively better approximations to the solution vector. 
The function terminates either when it hascollverged on the solution or when it has 
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/'*, ronjugatE.; Gradient M·ethod in HPI *! 

~inC'lude <st.dlib.h> 
#include <stdio. h> 
#includ(3 "mpi .h 'l 

#incl:.Jd.-; "MyMPl.h~ 

main (inc a.rgc r cha.;::· *argv[j) 

daub 1(:: '* 11:~; 
doable *astOtdgei 
dcuble *b; 
double *Xi 

int. p; 
irtt ':'d; 
inL rn; 
Lilt n; 
int. nl; 

MPI_I~it {&arg('~ &argv); 

!~ Solving Ax = b for x *1 
/1< Hold.::: elements of A * I 
/* Constant vect.o:- */ 
/* So1l.1t ian vector "/ 
/ * f-i?I ?roc€sl?es ~!. 

/,1< '?:-occss ra!lK * I 
I * Rows ~n P. *,1 

/~ {:ol'Jmns in A *1 
/' llle:;:ents in b '/ 

MPLComm.size (!1~I_;-:OMM_~rcRLD, &p); 

MPCCoffiffi.Jank {MPI .. COMlUiORLI1: &io) ; 
read_blockJo"'-''1atrix (ld, p, argv[li, (void *) &a, 

(void *) &dstorage r MP(_D.)FBLEI~ &nt, &n) j 

III ~ead._Ie.plic~ted_vecto::.- (id l P, argv~2], 

(v0ia * '"' j &b. MPI_DOUBLE; j 

if ((m !~ nl j, in !~ Ill)) { • 

if {~id} 
print [ {. IncOInpatibJ e dimens j ons (%dx%d! x (%d) \n", 

TIl, n, nl); 
else ( 

x = (doub~e ~) rnalloc (r: .. sizeof{double}); 
cg (PI id, a, b, x, n); 
prinL_replicac-ed_vp.cto:- (iu, P, X, M~I.~J(1UBLEJ nl; 

MPIJinali w () ; 

. Figure 18.2 MP) program implementing the conjugate gradient 
method. 

iterated n times, whichever comes first. The algorithm typically finds a solution 
in far fewer than Il iterations. 

Function dot_pnJduct, when passed two vectors, returns a double­
precision scalarvaJue thatis the dot product ofthe two vectors. Since all vectors are 
replicated, every process has all the values it needs to compute any dot product­
no communications are nceded. The function has time complexity 8(n). 

Function rnatrix_vectorproduct, when passed a matrix and avec· 
tor, returns through another parameter the matrix-vector product, another vector. 
Each process is assigned a contiguous group of rows of the matrix, while vectors 
are replicated. Hence multiplying thc..,e rows times a vector results ill the solu· 
tion being distributed in blocks across the set of processes. The computational 
complexity of this function is 8(n1

/ p). 
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~defin~ I':PSILON \ Oe-\O 
doubl e 'pi oce; 

/* Convergence cri ted Ot~ -t' / 

1* Temp ,torag', alloc'ted once'! 

/* ConjugatE! gradient method solves ax: b for x 'x / 

cg (int p, int id. <Jouble ··a, double *b, double 'x, inL n ) 
{ 

int ':'r it; 
double 'd; 
double *g; 

double d~nomL d€nom2, numl, 
nu.m2 / s, * :mpv\S! c; 

/-tf Loop indices */ 

/~ Gradient: vector "/ 

dauble dot prod'.!ct idoubJ,8., do"ble , int); 
void il!atri;,,:,-'"!ectot ~p~odl;ct·~ (::rl't:·,) 'ir;t I in:: ~ dO}lble. 

doubl ~ *, d()1Jbl~ '1; 

/- rniti~lizp- gradient vectors .. ) 

d (daubJ e .) Iilailoc (n * so ~eof (double) I; 
g (double!\o) roalloc tn ~ si-leor Idollule)) i 

tmrvec ~ idouvle *1 malloe (n • sizeoEidouble)); 
piece = (double 'J malloc (BWCK_SI7;E(id,p,n) • 

for (i = 0; i. < n' i+.) ( 
d[i] 0.0; 
x[ i] 0.0, 
g[iJ -b[i]; 

sizeof (double) J ; 

/ * AlgoritiJm converges in n or fewer iterations > I 

for (it = 0; it < c; it,.) [ 
denDml = dot._prod~lct ("g, g, nl; 
matrix~~ vect.or~_producc (~d. pj n , a J XI g); 

for (.i ~ 0; i < n; i;+ I 
g[il -= b[ll; 

!luml, dot _.proc1',ct (g, g, n); 

1* When g is suificiently close to 0, time to halt *i 

if (numl < EPSILON) break; 

for (i 0; i < n; i.+] 

dfiJ ' -gii] + Inuml/denomll * dfi]; 
num? = dot_prod',ct (d, g, nl, 
miltrix_v€ctor_product (id, p. n, a, d, tmpvec); 
denom2 = dot_product (d, tmpvec, n); 
S -flurn?'! denom2; 
ior (i = 0; i < n; if") xii.I += s • d[i]; 

Figure 18.1 (eontd.) MPI program implementing the conjugate 
gradient method. 
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/* 
Return the dot producL of two vectors 

*/ 

double dot __ product (double ""''II double :>:b, inc nl 

*/ 

int i; 
doubl e answ'e r; 

answer ~ o~ 0; 
for i i ~ 0; i < n; i if) 

ans\o,ler +~ aliJ * b(i~: 
return answer; 

Compute the procucL of !na:rix a and V'c'ctor band 
store the resu] c it} vt>ctor c. 

void matrix_veccoy_product n.nt id r inc PI int nr 

inc i, j; 
double tmp; 

d01..lble *"a J jouble l-b r double "c) 

/* AccumU]2tes sum * J 

tor (i :;; 0; i < BLOCK~SIZE{id,Pln,; i++) 
tmp = 0.0; 
for (j = 0; j < fl; j++ ) 

tmp += alii [j I * b[iJ; 
piecefi) = tmp; 

new_replicate_block_vector {id, PI piece I G. 
{void *1 c, MPI_DOUBLE); 

Figure 18.1 (contd.) MPI program implementing the conjugate gradient 
method. 

In order to replicate the solution vector, function malrix_vector_ 
product calls function new_replicate_block-.vector. Function 
new_replicate_bl ock_ vector differs from funclion replicate_ 
block_vector in that it does not allocate space for the replicated veclor. 
Instead, the calling function passes a pointer to the memory where the replicated 
vector should be stored. Using the new function saves time, because it saves func­
tion matrix_yector _product from having to copy the replicated vector 
to where it is needed. Replicating a block vector is' an example of an all,gather 
operation that has time complexity EJ(log p + n). 

We see that the most computationally intensive portion of the conjugate 
gradient method is in the matrix-vector multiplications. In addition, the only 
commllnications required inside the method's whi Ie loop occur as part of the 
matrix,vector multiplications. 
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Table 18.1 Result of profiling the conjugate gradient program on one and 
eight CPUs of a commodity cluster. 

matrix_vector _product 
dot_product 
cg 

.. 8.2.2 Functional Profiling 

99.55% 
0.19 
0.25 

sepus. 
97.49% 

1.06 
1.44 

()--,r Our first step is to profile the program to discover where the greatest opportunities 
for further parallelization lie. . 

We insert calls to function NPI_Wtime inside the program to monitor the 
amount of time spent inside each ofthe principal functions (C9, do t _p r odue t 1 

and matr ix_vector _product). We record the average time spent inside 
each function as the program solves systems of size 768 on I CPU and on 8 CPUs 
of a commodity cluster. Table 18.1 reveals the results of Ibis benchmarking. (fhe 
figure for function cg excludes time spent in the functiol1~ ircalls.) 

As you can see, virtually all of the execution time is spent within function 
matrix_vector_product. This makes sense, since it is the part of the 
algorithm with the highest computational complexity. This function should be 
the focus of our parallelization. 

18.2.3 Parallelizing function matrix_vector_product 

Function ;:natrix_vector_product has nysted for loops. We maximize 
grain size by parallelizing the outermost possible loop. The outer loop, indexed by 
i, computes element i of the result vector. While various matrix and vector values 
are read inside the loop, theonlyva\ues written are tmp, j,andpiece [i 1.Every 
iteration of the Duter loop may be executed in parallel if each thread has a private 
copy of tmp and j. , . 

We can use the parallel for pragma to make parallel the loop indexed 
by i. The for loop index i is private by default. As we noted earlier, each thread 
needs its own copy of tmp and j, so we declare them to be private variables. Our 
completed pragma is 

#pra9ma omp parallel EoI' private(j,tmp) 

We also want to give the user the opportunity to specify the number of active 
threads per process. To do this, we add a call to omp .. set_ilum_threadsto 
function ma i fl. Its argument comes from the command line. We put this function 
call into main immediately after the call to MPI_CoTIUn.Jank: 

We have added only two lines to the program using MPI to transform it into 
a program using both MPI and OpenMP! 
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.. 8.2.4 Benchmarking 

Now let's benchmark our program on it commodity cluster containing four dual­
processor computers. First we run the original program. When it executes on one. 
two, three, and four processes (one to fourCPUs), each process is on a different 
node. By doing this we maximize memory bandwidth to the CPUs. When we 
execute five processes on five CPUs, two of the processes are on the same node. 
By the time we get to eight processes, a process is assigned to every available 
CPU, two per computer. 

In our MPIfOpenMP benchmarking, we create only one MPI process per 
computer. In our first experiment we run one process with two threads on one 
computer. Our second experiment runs two processes with a lotal of four threads 
on two computers, and 'so on. Our last experiment runs four processes and eight 
threads, so that one thread is assigned to every available CPU. In other words, we 
execute the program using MPI and OpenMP on two, four, six. and eight CPUs. 

Figure 18.2 illustrates the results of our benchmarking. Each lime plotted in 
the graph represents the average of five executions of the program. The original 
program executes faster than the hybrid program when two CPUs are used. This 
makes sense, because both OpenMP threads are execu ting on the same computer. 
The CPUs executing the OpenMP threads will have lower memory bandwidth and 
a lower cache hit rate .. By the same reasoning, we'd expect the program using only 
MPI to execute faster when four CPUs are used, and this is the case .. However. 

800 
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11/\ 

\r 
i.. 

'. 
"''ll, 

", 
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I 2 456 
Processors 

Figure 18.2 Result of benchmarking the 
original and hybrid parallel programs using 
the conjugate gradient method to solve a 
dense system of 768 equations. All limes are 
in milliseconds. The target architecture is a 
commodity cluster containing four 
dual-processor nodes. 
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once we get to six CPUs, computers are being shared for pairs of MPl processes, 
so the previous advantage dL~appears. At this point the lower communication cost 
of the hybrid program begins to payoff. The final data point shows that executing 
four MPJ processes, each with two threads, result~ in 27 percent lower execution 
time than executing eight MPI processes. 

18.3 JACOBI METHOD 

18.3.1 Profiling MPI Program 

For our second case study we will look at a more complicated example. We 
have written a C/MPI program that uses the Jacobi method to solve the steady­
state heat distribution problem, as de,~cribed in Chapter 11 To make our exam· 
pie easier to understand, we have chosen a rowwise block-striped decomposition 
of the two-dimensional matrix representing the finite difference mesh. The pro­
gram's eX~Lllt.i{)n is divide<1 into three phases, Function initiali ze_mesh is 
responsible for allocating a process's portion of the matrix and initializing buth 
the boundary and interior values. Function fi nd _ s tea dy _8 tat e implement~ 
the Jacobi method for solving the partial differenlial equation. It iterates until the 
values at the mesh points have converged. Fun~tion print_solut ion print~ 
to standard output the values at each mesh point. 

OUf first step is to profile the parallel program's execution on one and four 
processors 0 f a commodity cluster. The results are summarized in Table 18.2. The 
vast majority oftime is spent inside function find_s teady _state. For that 
reason we will focus our parallelization efforts on this function, which appears 
in Figure 18.3. 

18.3.2 Parallelizing Function find_steady _state 

Except for two early initializations and a return Slatemen~ function find 
steady _8 tat ~ consists of a for loop. There are many reasons we cannot 
execute the loop in parallel. It is not in canonical form. It contains a break slate­
ment. It contains ca\1s to MPI functions. The most significant reason, however. is 
that there are data dependences between iterations. Each iteration relies on values 
computed in the previous iteration. So we need to look for parallelism inside an 
iteration of the outer tor loop. 

Table 18.2 Result of profiling a CIMPI program implementing the 
Jacobi method, The target architecture is a commodity cluster. 

ini t ializE_mesh 
bud_steady _state 
Dr'i nt solut ion 

0.01% 
98.4S% 

1.51% 

) CPOs 

0.03% 
93.49% 
6.48% 
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int f.in~:Csteady·_.stdte (int p. int id, i!lt. my __ ro\'Js, 
double '*"l.L double ~~w} 

dO'-ibie dift; 
double global .cliff; 
int its; 
MPI_St.a::lls statlls; 

int i, ji 

its = 0; 
LuT (i; 1 

1 f (id > a i 
MPCSend ('J[ll, N, MPl_DOUBLE, id-l, 0, MPCCOMl.f.~WDRLJ); 

if 1 ill < p~ 1) { 

MPCSend (u["LTOWS-?], N, MPI_DOUBLE:, id'l, 0, I~Pl.COMl4_~rOF.1p); 
MPI_Reev {llluly ... rOwG 1],,' Nt MPT_DOUBLE$ id-tl , 0, MPI_COr-fM_"WRL:J, 

&:sta'".us) ; 

if (id , \1) 

MPCRecv (uIO], N, ~lPI_DOUBL,E, id-I, 0, I~PCCOMM_;,'ORLD, "status); 
dHf = 0.0; 
[or {i lj i < rr..y_:::"ows-l; itt) 

for (j ., 1; j < N-l; j++) { 

w[il ~jl = (u[i-l] Lj] + ,,[i.l] til, 
,,[i] [j-ll + ulil [j;,l]) /4.D; 

if (fabs(wiillJJ e[il [jl) > dHt) 
diU fabs(w[iJ [j] - uli] Ijl i; 

for (i = 1; i < my _rows-I; i H ) 

for (j c-' i; j < N-lj jH-} 

uri 1 ij] '.[11 ,j J; 
MP,_AllreducO' (&di fE, .global_di [f, 1, MPI_LXlUBLE, ~!PI_MAX, 

f4PI_COMM_"DRW) ; 

If (g.lubal_diff <0 EPSILON) break; 
ittH+i 

Figure 13.3 More than 90 percent of the program's execution lime is spent inside 
function find_steady _state. This is where we will look lor opportunities for 
paralielization thIDugh multithreading. 

Our focus shifts to the first Eor loop indexed by i. This is the [oopthat iterates 
through the rows of this process's share of the matrix, computing elements of 'oil 

from clements of u. These assignment statements are independent of each other 
and may execute simultaneously, 

However, when the absolute value of w [ i 1 [j J is greater than the current 
value ofdi ff, we need to update di ff.lfwe want multiple threads to reference 
[he shared variable di f f, we would need to put the if statement inside a critical 
section. This would reduce speedup. 

Instead, we are going to introduce a new, private variable called t di f f. Each 
thread will initialize its copy of tdi ff to zero before the for loop indexed by 
i and compare each value of wi i] [j 1 it computes with tdi ft. Since aU the 
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threads are assigning values to different elements of wand different private copies 
of tdi H, we can use the for pragma to indicatethatthe for wop indexed by 
i may be made parallel. 

The second for loop indexed by i copies elelnents of wio the correspm!rl~ng 
elements of u. We place a for pragma before this loop to instruct the compiler 
to make it parallel. 

After the second f or loop indexed by i we create a critical section in which 
each thread compares its valueof tdi ff wilh the value of shared variable di [[, 
and updates the value of di H to tdi tt when tdi f f is larger. 

Note that creating private variable ldi f f allows us to build a solution in 
which each thread only enters a critical section once per iteration of the Jacobi 
method. [f all threads had referenced d iff in the original pair of nested loops, 
each thread would have entered a critical section i times j times per iteration of 
the1 acobi method. 

We usc curly braces to create a block of code surrounding the two for prag­
mas, the critical pragrna, and the statement that Initializes private variable 
ldi f f. At the top of this block of code we insert a parallel pragma. Our 
modified version9f function find_steady _state appears in Figure 18.4. 

We also modify function main, adding the statement . 

omp_set_.nullLthreads (atcj (argv [1] ) 1 ; 

so that the User can specify the number of actiye tbreads per MPI process from 
the command line. 

1 B.3.3 Benchmarking 

We benchmark both the original program and the hybrid program on a commodity 
cluster containing four dual-processor nodes. First we run the C program using 
only MPI. Our allocation of processes to nodes is the same as in the previous 
example. \Vbeu executing on one to four CPUs, each process is on a different 
node, to maximize memory bandwidth to the CPUs. When we execute five pro­
Cesses on five CPUs, two of the processes arc on the same node. By the time 
We get to eight processes, a process is assigned to every available CPU, two per 
computer. 

In our MPIIOpcnMP benchmarking, we create only one MPI process per 
node. Two threads are associated with each process. Hence our four data points 
represent two, four, six, and eight active CPUs. 

Figure 185 illustrates the results of OUI' benchmarking. Each time plotted in 
the graph represents the average of five executions of the program. Note that the 
hyhrid program is tniformly faster than Ihe original program executing on the 
same number of CPUs. This is because the computation/communication ratio 
of the hybrid program is superior. The number of mesh points updated per ele­
ment communicated is twice as high per node for the hybrid program. The lower 
communication overhead leads to a higher speedup. On eight CPUs the bybrirl 
program is 19 percent faster than the parallel program relying solely on MPJ. 
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int: fiIi.d_s::eadY_.2tat€ (int pr i~tt lO, int my_rows, 
doubl{~ I\' ~J.;, double. **w) 

double 
dou::·Le 
illt 
ill!:: 

diU; 
globul_diff; 
1, 

its; 
double tdiff; 
).[Pl_Sta::us st.ac1..:.s; 

i ts ~ OJ 
br (;;1 

if iid>QI 
IIPT_Send (u ,N, MFI

7
DOUBLE. id-I, 0, MPI_CDHl!U,ORLDi; 

it rid < p-li 
IIPT_Send !u[I!1\,]ows-2], N, IIPl_DOUllLE, idll, 0, 11Pl.C.'OMJ.UIORLD); 
IIPT_Hecv :llia~'_rows-1J, N, MP:i:_DOf]Bl.F:, id.l, Q, MPI_CQJ.llCWORLD, 

&status) ; 

if (id > 0 I 
MPI_Fecv fu[OL NJ MPT~"OOUBIJB, id-l, 0 1 MPI_COMt-C.WORT,D, &8tatus) i 

diU = O.D; 
ilpragll'", omp yarallel pr:vace (i, j, tdiff) 
{ 

tdiff 0.0; 
#pragrna amp for 

fCT {i = 1; i <: lUy"~ro~'Is-l; li ~i 
[or (j ~ 1; j < Ii-I'; ltd 

, 
I 

w[illi1 = (uii .. 1] u] • uti"]] lil + 
uri] [j-1J + u[il [j+1J /4.0, 

if {f"bs!w[i] [j] - u[llijll > l.d ffl 
t:di ff fabs (w i 11 [j 1 - IJ [i ! [j I, 

~pragma amp for nowait 
for Ii = 1; i < my __ rows··l; i++) 

for Ij 0 1; j ( 1H; j ++ ) 
u[ij [j1 ~ -;Ii] [jl; 

*prf~gw.a OTIlP critical 
if (taUf ). dUfl diU = Ldifi; 

MPTj,l1reduce i&di[f, &global_diff, 1, MPI_DOlJBLE, Ml'l_NAX. 
MPIJOM!>OiORLDI; 

if (glofJal_c1if[ <:: ;:::p;;-:lnNJ break; 

ltSi+ i 

return j ts; 

Figure 18.4 Function find_steady _state after OpenMP pragmas have been 
inserted. 

447 



448 CHAPTER 18 Combining MP1 and OpenMP 

88.0 

no 

66.0 

~ 55.0 
" ~ 
~ 44.0 

- .S 
.'" 33.0 

22,0 

11.0 

\ 

\ 
\ 

~ 
2 3 4 Ii 

ProceSSOJS 

Figure 18.5 Result of benchmarking the 
• original and hybrid parallel programs using the 

Jacobi method 10 solve the steady-state heal 
equation on a 200 x 200 grid. All limes are in 
seconds. The target architecture is a 
commodity cluster containing four 
dual-processor nodes. 

18.4 SUMMARY 
Many contemporary parallel computers, including most of the world's fastest sys­
tem.~, coOBist of a collection of multiprocessors, While it is possible to program 
a collection of multiprocessors solely using MPI, you can often improve perfor­
mance by using both MPI and OpenMP. MPI handles the larger -grained commu­
nications among multiprocessors, while the lighter-weight threads of OpenMP 
handle the processor interactions within each multiprocessor. 

In this chapter we have looked at two examples of transforming a C pr6gram 
with MPI calls program into a hybrid program suitable for execution on a cluster 
of multiprocessors. The lirst step of the traOBformation is profiling the original 
parallel program to discover the functions coOBuming the most CPU cycles. These 
need to be the focus of the parallelizatiOil effort Often, relatively few function 
calls and/or pragmas need to be added to the original program to complete its con­
version into a mixed cq:1e that leverages the strengths of both MPI and OpenMP. 

18.5 EXERCISES 
18.1 Which functions of the document classification program of Chapter 9 

are most likely to be suitable for paralleliz,ation with OpenMP pragmas? 
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'«())li.iOOer all of the program's functions, not simply those listed in 
Figure 9.7.) Justify your answer. 

18.2 Suppose your institution's computer center operates a commodity 
duster made out of multiprocessor nodes, Suppose further that most of 
the cluster's CPU cycles are devoted to executing Monte Carlo methods 
written in programs using the MPI library, The director of the computer 
renter would like these programs to execute faster. Knowing what you 
do about Monte Carlo methods, what are the prospecL~ for significantly 
improving their perfonnance by converting them into hybrid programs 
that also invoke OpenMP pragmas? Defend your position, 

18.3 COnVert . .t11e progr~m i~plementing Floyd's algorithm (Figure 6,9) into 
a hybrid'piogciin that includes OpenMP pragmas. Set the number of 
threads equal to the number of processors available to the program. 
Contrast the speedup achieved by your program with the original 
program, 

18.4 Convert the matrix-vector mUltiplication program appearing in 
Figure 8.8 into a hybrid program that includes OpenMP pragmas, Set 
the number of threads equal to the number of processors available to the 
program, Contrast the speedup achieved by your program with the 
original pro~am. 

18.5 Convert the matrix-vector multiplication program appearingin 
Figure 8.14 into a hybrid proglam thai includes OpenMP pragmas, 
Set the number of threads equal to the number of processors available 
to the.program. Contrast the speedup achieved by your program with 
the original program. 

18.6 Write a hybrid C program with both MPI function calls aM OpenMP 
pragmas that solves a dense system of linear equations using Gaussian 
elimination foDowed by back substitution. Benchmark your prognun for 
various values of nand p, where p is the number of multiprocessor 
nodes being used. 

18. 7 Write a hybrid program implementing Parallel Sorting by Regular 
Sampling, Benchmark your program for various values of nand p, 
where p is the number of multiprocessor nodes being used. 

18.8 Write a hybrid program implementing the fast Fourier transform. 
Benchmark your program for various values of nand p, where p is the 
number of mUltiprocessor nodes being used. 

18.9 Write a hybrid program solving the n-queens problem. Benchmark your 
program for various values of n and p, where p is the number of 
multiprocessor nodes being used. 

18.10 Write a hybrid program to solve the I5-puzzle. Benchmark your 
progT'dm for various values of n and p, where p is the number of 
mUltiprocessor nodes being used. 
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This appendix describes every function in the MPI-I standard. Every p<tmmeter 
is commented with one of these thfee notations: _ 

• IN (input pararneter}--the caller provides the value 

• OUT (output parameter)---the function sets the value 
• IN/OUT (input/output pararnerer)--,-the value is set QY both the caller and 

the function 

int NPI_Abort ( 
MPI_Comm COlllffi. /* IN - Communicator *f 
int err.or_code /* IN- Error code • / 

MPI_Abort makes a "best effort" attempt to abort all processes in the 
specified communicator. It returns the error code to the calling environment. 

int NFl_Address ( 
void *location, 
MPI_Aint *offsets 

/* IN - A location in 'offsets' */ 
/* IN - Array of addresses */ 

Function MPljlddress returns the byte address of location in array 
offsets. It is useful when buiiding derived datatypes. 

int MPI~11i1l:1.tli~r{ 
void *send_bUffer, 
int sp.nd_cnt, 
MP CDatatype 

send_dtype, 
void *recv_buffer, 
int recv-,-cnt, 

/* IN - Send-buffer */ 
/* IN - Elements in send buffer */ 

/* TN - Send buffer el~~ent type */ 
/* OUT - Receive burter */ 
/* IN - Elements gathered 

from each process */ 



MPI_Datatype 
recv_utype, 

MPI_Comm comm 

APPEIIDIX A MPI Functions 

/' IN - Receive buffer element type */ 

/' [N- - COllUUunicator * I 

t-'J?I_Allgather- is a collective communication function that performs 
an all-gather operation. AU processes gather send3nt elements from every 
process in the communicator. When the function returns, t1le concatenation of 
these elements is in recv _bu ff er- of every process. Use MPI _Allgatherv 
if different processes contribute different numbers of elements to the gather or if 
the elements are not concatenated in process rank order. 

J.iPI_Allgatherv is a collective communication function that performs 
an all-gather operation. The number of elements contributed by each process 
may vary. Array disp indicates where in recv _buffer each process's chunk 
should be placed; the pieces need not be assembled in process rank order. Wben the 
function returns, the gathered elements are in recv _ buffer of every process. 
Use the simpler MPI_Al 19ather if all processes contribute the same numbers 
of elements to-the gather and the elements are concatenated in process rank order. 

int HPI_Allreduce ( 
void 'send_buffer, j* IN - Send buffer *j 

void *recv_buffer, j* OU';' - Receive buffer. *j 

int ent, / * IN - Number of elements to reduce • j 
MPLDatatype dtype, / * IN - Element type */ 
M?I_Op op, /* IN - Reduction operator *j 

MPCComm corom /* IN - COlnmunicator * I 
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MPI_Alh"edu~e is a collective communication function "that penorms 
cnt reductions. When the function returns, aU processes have the results of the 
reductions. Use MPI _Reduce if only a single process needs the results of the 
reductions. 

int MPI_Alltoall ( 
void * send_buffer, 
:lnt send_cnt, 

/* lN - Send b~ffer T/ 
/* IN - Elements sent to each 

process */ 
MPI_Datatype send_dtype, 
void *recv_buffer, 

/* IN - Sent element type *; 
/* OUT - Receive buffer */ 

irit recv_cnt. /* IN - Elements received from 
each process * / 

MPl_Datatype recv_dtype, /T IN - Received element type */ 
MPl_Corum comm /* IN - Communicator */ 

MPI_All toall perfOQIlS 3ll all-to-all excbange within a communicator. 
Each process sends (and receives) the same number of elements to (and from) ev­
ery process, including itself. Use the more general function MPI _All toall v 
if tbenumber of elements sent from any process to any other process is not a 
constant. 

int MPI_Alltoallv ( 
void 'send_buffer, /* IN - Send buffer */ 

MPCDatatype 

/* IN - Group-sized array. Entry 
indicates n~ber or elements of 
se;nd_bu ffer to send to 
process j */ 

/* IN - Group-sized array_ Entry 
indicates the displacement from 
the start of send_buffer of the 
elements sent to process j */ 

send_dtype, /* IN - Send buffer elerne.nt type "/ 
void *rocv_buffer, /* OUT - Receive buffer */ 
int *recv_cnts, /" IN - Group-sized array_ Entry j is 

MPI_Datatype 

the number of elements being 
received from process j. '/ 

/* IN - Group-sized array. Entry j is 
the displacement f~om the 
start of recv_buffer where the 
ele!llents received from process 
j should be stored. */ 

recv_dtype, / t IN - Receive buffer element t)tpe * / 
Nl'LCOIJLlI1 corum /* IN - Cor.an~nicator */ 
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Function MPI_All toall V performs an all-to::aII' data e~~hange. Use the 
simpler functi{)n HPI _All toall if each process contributes the same number 
of elements to the exchange and fue received elements are concatenated in process 
rank order. 

int MPI_Attx_delete 
HPI_Comm corom, 
int key 

/* IN - COlillTlunicator * / 
/10 IN - Attribut9 identifier */ 

MPIJlt tr _deleLe deletes the cached attribute corresponding to key. 

int MPI_Attx_get \ 
MPI~COflun conun,. 
intkey, 
void *attr, 
int "flag 

/* !N - COlIlm\lnica~or "'I 
1* IN - Attribute identifier * I 
1* OU'l' - Pointer to attribute "/ 
1* OUT - Existence flag *1 

Function MPI_Attr_get returns through attr a pointer to a previously 
cached attribute with identifier key. Successful retrieval is indicated by the return 
value of flag. It is I if the attribute was retrieved, Mid OotheIWise. 

int'MPI_AttrJlUt 
MPT_Corr:m comm, 
int key, 
void *attr 

/* IN - Communicator *1 
/* IN - Attributed identifier */ 
/* IN - Pointer to attribute */ 

Function MPI_Attr_put associates the illteger value of key with the 
attribute record pointed to by at tr. 

int MPI_Barrier 
MFI_Comm /* TN - Communicator ,*j 

MPI_Barrier is a collective communication function that perfonns a 
barrier synchronization among all processes in the specified communicator. 

int HPI_Beast I 
void *buffer, 
int cnt, 
MPCDatatype dtype, 
int root, 
MPI_Comm conun 

/* IN/Ou'I' - Message address *'/ 
/* IN - Elements in message */ 
/* IN - Element type */ 
/* IN -~Rank of root process */ 
/* IN COJJ1Jllunic:ator */ 

Function MPI_Bcast is a coUec,tive communication operation allowing 
one prOcess to broadcast a message to 'all oilier processes in a communicator. 
Parameter root is the rank of the process with the message to broadcast. 
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Pllssed the handle to a Cartesian communicator and the number of dimensions 
in the grid, HP I_Car t _get returns the size of each grid dimension, whether Of 

not each dimension is periodic (wraps around), and the coordinates of the process 
calling the function. 

int MPl _Cart_map 
MPI _COlllID COIlUll, 1* IN- Cartesian co~~unicator *1 
int dims, 1* IN - Grid dimensions *1 
int * . Slze l 1* IN- Size of each grid dimension *1 
int ·periodic. 1* IN - Periodicity of each dimension *1 
int *new_rank I'" OUT "Opt-imized' process rank *1 

Passed the handle to a Cartesian communicator, the number of grid dimen­
sions, the size of each dimension, and information about whether each dimension 
is periodic (wraps around), function MPI _Cart_map returns the "optimi7cl" 
rank of the calling process through hewJank. 

int NPI-,~art_rank 
MPI_Comm comrn, 

,int *coords, 
int*rank 

1* IN - Cartesian communicator *1 
/* IN- PI'ocess coordinates *1 
1* OUT - Process rank *1 

P'dssed a Cartesian communicator handle and the coordinates of a process, 
function MPI_CartJank returns the rank of that process. 

int MPl_Cart_shift 
MPI_Comrn corom, 
int shift_dim. 
.int direction, 
int *src, 
int *dest 

1* IN - Cartesian communicator *1 
1* IN - Dimension of shift xl 
1* IN - >0 up; <0 down *1 
1* OUT - Source of received message, *1 
1* OUT - Destination of sent message * I 

Function MPI_Cart_shift provides the caIling process with the source 
and destination information it needs to perform a send-receive operation along a 
particular dimension of a Cartesian grid. If there is no wraparound, the function 
returns MPI_PRoc_rmLL in Sl-C and/ordest to indicate out"of~rang'e shifts. 

int NPl_Cart_sub 
MPI_Comm comm, 
int *free, 

/* IN - Cartesian communicator *1 
/ * IN - Array of size dimensions. 

Entry free[il is 1 if coord 
can vary, 0 otherwise. * i 

, MPI_Corom *new",comm U OUT - Handle to new conununicator * I 
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Function MPCCart_sub partitions a Cartesian grid into multiple grids 
of l.ower dimension. The number of dimensions in tile new grids is equal to'the 
number of elements of free that have value 0: The function returns, through 
new _ comm, a handle 10 tile new communicator to which the calling process 
belongs. 

int MPI_CartduL9'et 

MPCComm comrn, 
int *dims 

/* IN - Cartesian communicator */ 
/* OUT - Dimensions */ 

Function MPIJ::artdim_get returns the number of dimensions in a 
Cartesian communicator. 

int MPI_Comm_compare 
MPCComm COIIJl!ll, 

MPI_Comm comm2, 

int *result 

/ * IN ., First communicator * / 
/* IN - Second c01'llllunicator */ 
/* OUT - Result of compari~on */ 

Function HPI _ C omm _compare compares two communicators. The result 
of tile compari~n, returned through result, may be MPI_IDENT if the con­
text~ and the groups ·are the same; MP I _ CONGRUEN'l' if the contexts are different 
but the groups contain the same p~ocesses with the same ranks; MP I _SIMILAR 
if the contexts and process ranks are different but the groups contain the same 
processes; and NPl_UNEQUAL otherwise. 

int HPI_Carom_create ( 
NPI_Corom ol~corrm, /* IN - old communicator */ 
MPI_Group gr01lp, /* IN - Process group" / 
MPI_Corom *new_comm / * OUT -. New cO!lllllunicator * / 

The collective functi()n MPI Comm_ create creates a new communicator 
from the processes ii.,ted in gr OUp. 

int lIPI_Comm_dup ( 

MPCCommoJd_COllUll, /, IN - old communicator * / 
MPI_Comrn *new_com. /* OUT - New conununicator • / 

The collective function MPl _ COInm_ dup duplicates a communicator, re­
turning a new conununicator with the same group but a new context 

int HPI_Comm_free 
MPI_co;rlIll* comrn /* IN - communicator xl 

The collectiye function MPI_comm_free frees the resources associated 
with communicator COffiffi. 
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int Ml'I_Comm_group ( 

MPI_Cornrn COnull, 

MPI_Group *group 
I * III ComJllunicator *1 
It OUT - Process group *1 

Function MPI_colllilLgrouP returns the process group associated with 
communicator comm. 

int MPI_Comm_rank 
MPI_Cornrn comm, It IN - Communicator tl 
int *rank 1* OUT - Rank of calling process *1 

Function MPI_Comm_rank returns the rank of the calling process in a 
communicator. 

int MPI_ComnLremote_group i 
MPI_Co~~ cornrn, 1* IN - Handle to inter-communicator *1 
MPI_Group 'procs I * OUT - Handle t.o remote' gr-oup * I 

Passed the handle to an inter-communicator, MPCComm_remote_group 
returns the remote process group. 

int MPI_CQIll.llLreDlOte_size ( 

MFI_Comm (:omm, 1* IN - Handle to inter··cornrnunicator * I 
int 'size 1* OUT - Remote group size *1 

Passed the handle to an inter-communicator, MPI_ Comm_remot e_size 
returns the number of processes in the remDte group. 

int MPI_comID_size ( 
MPI_CoD@ comm, /* IN - Communicator */ 

int *size 1* OUT .. Number of procs in communicator '1 

MPI_Comm_size returns the number of processes in a communicator. 

int MPI_COmID_SPlit ( 

MFI -Cornrn old_comm, It IN - old comm,micator *1 
int partition, /* 111- Partition n~er */ 
int new_rank, 1* IN - Ranking value * I 
MPI _C8rnrn tnew_comffi I' our New comrnunicat or *1 

Collective function MPI_Comm_spl it partitions the processes in an ex­
isting c9mmuni~ator (Qld_cornm) into one or more subgroups. p,ro~esses with 
the same value ofparti tion are put in the same subgroup. ~ithina subgro~p, 
processes are ranked according to the values of new_rank.;6es are broken 
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according to the processes' ranh in old_comrn. The function returns to each 
process a pointer to the new communicator to which it belongs. 

l1PI_conun com, 
int *flag 

1* IN - COJJl1!lunicator * I 
1* OL~ - Result of test *1 

Function MPI_ComDl_test_inter, passed a communicator Comm, set,<; 
fl ag to true if corom is an inter-communlcalor and false otherwise. -

int nodes, 
int dims, 
int 'size 

I * IN - Nu.'l'ber of grid nodes * I 
/* IN - Number of dimensions * I 
1* OUT - Size of each dimension *1 

Passed the.totalnumber of nodes desired for a Cartesian grid and the number 
o~ grid dimensions, MPI_Dims_create returns an array of integers specifying 
th~ number of nodes in each dimension of the grid, so that the sizes of the 
dimensions are as balanced as possible. 

int MPI_Errh!ndler_create ( 
MPI_Handler_funct~on 

*eh_fWlc, 
MPI_Errhandler *eh 

/* IN - Error handler function *1 
1* OUT - Handle to error handler *1 

Call functionMPI_Errhandler _create 10 r~isterfunction eh_Eunc 
as an MPI exception handler. The function returns a pointer to the error handler, 
an opaque object. 

User-created error handlern should be C functions oftype MPI_Handler_ 
function, which has this definition: 

typedef void (MPI_Handler_function) (MPI_Comm *, int * ••.. j; 

The firnt argument is the communicator in use. The second argument is the 
error code that should be returned by the MPI function raising the exception. The 
number and meaning of the remaining arguments are implementation dependent. 

int MPI_Errhandler_free 
MPI_Errhandler *eh 1* IN - Halldle to error handler *1 

Function MPI_Errhandl er _E ree marks for deallocation the error 
handler associated with eh, replacing it with MP I _ ERRHANDLER_ NULL. 

int MPI_Errhandler~et [ 
MPI~Comm corum, /' IN - Corununicator *1 
MPI_ErrhaI'_dler *ell_func 1* IN - Error handler function' I 
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MPI_Errhandler _get as!lociates, for the calling process, tbeerror han­
dler function eh f unc with communicator corom. 

int MPI_Errhandler_set 
~PI_Comm carom, 
MPI_Errhanuler eh 

/. IN - Comnmnicator * / 
/* IN - Error handler */ 

MPT _Errhandl er _set associates, for the calling process, the error han­
dler eh with communicator COIIlllL 

int MPI_Error_claas 
int code, 
int 'class 

/* IN - Error code */ 
/* OUT - Rrror class * / 

Error codes are implementation dependent. Error classes are part of the MPI 
standard. Passed an error code, function MPI_Error_class returns via the 
second parameter the error class that the code maps to. 

int MPI_Error_string 
int err_code, • /* IN - Error code * / 
char *err_string, /* OUT - Error string */ 
int *err_string_Iength /* OUT - I.ength of enor string * / 

Passed an error code or class, function MPI_error_string returns tht;. 
errQ!: string associated with that code or class, as well as the length of the string. 
Allocate the buffer for err_string before calling the function; the buffer 
should be at least MPCMAX_ERROR_STRING bytes long. 

int MPI_Finalize (void) 
MPI_F inal i ze terminates the MPI execution environment. Every process 

must call this function before exiting. 

int MPI_Gather ( 
void 'send_buffer, 
int send_cnt, 
M?I_Datatype 

send_dtype, 
void *recv_buffer, 
int recv_cnt, 

M?CDatatype 
recv_dtype, 

int root, 
MPI_Comm carom 

f* IN - Send buffer */ 
/* IN - Elements in send buffer */ 

f* IN - Send buffer element type *f 
f* OUT - Receive buffer *f ~ 

f* IN - Number of eleroents gathered 
from each process *f 

f* IN - Receive buffer element type */ 
f* IN - Rank of gathering process */ 
f* IN - Coromunicator * / 
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HPI _ Ga ther is a collective communication function that perfonns a gather 
operation. The root process gathers send_cnt element~ from every process in 
the communicator (including itJJelf). When the function returns; the result, a.con­
catenation {)f elements, is in recv _buffer. Use HPI_Gatherv if different 
processes contribute different numbers of elements to the gather or if the elements 
are not concatenated in process rank order. 

int MPI_Gatberv ( 
void 'send_Duffer, 
int send3nt, 
MPI_Datatype 

send_dtype, 
void *recv_buffer, 
int *recv_cnt, 

/* IN - Send buffer * / 
/* TN - Elements .in send buffer */ 

/* IN - Send buffer element type */ 
/* Our - Address of receive buffer */ 
/* IN - Elements to gather from 

each process */ 
.int *dispiacelllents, /* IN - Displacement in recv_buffer 

of elements gathered from 
each process */ 

MPI __ Datatype 
recv_utype, 

int root, 
MPI_CoIPm COIliln '-

. /* IN - ReceiVe buffer element type */ 
/* IN - Rank of gathering procesS * / 
/* IN - COIlilnunicator ~I 

MPI_Gatherv is a collective communication function thilt performs a 
gather operation. The root process gathers 5 end_ cn t [ i 1 elements from every 
process i in the communicator (including itself). It puts the elements collected 
from process i in a contiguous group of elements of recv _buffer begin­
ning with element di splacement s [ i 1 . When the function returns, the result, 
a concatenation of elements, is in recv _buf fer. Use the simpler function 
MPCGather if all processes contribute the same number of elements to the 
gather. and the gathered elements are concatenated in process rank order. 

int MPI_Get_coullt ( 
MPI_Status 'status, /* IN - Result of receive *1 
MPCDatatype dtype, I" TN - 'IYPe of el€J1\ents received */ 
int* cnt /* OUT - count of elements received */ 

Passed both a handle fa the status variable containing the result of a receive 
operation and the type of the elementheceived, function MPI_Get_count 
returns the number of elements (not bytes) actually received. 

int MPI_Get_elements ( 
MPI_Status 'status, /* IN - Result of receive */ 
MPI_Datatype dtype, /* IN - 'Type of elements received 0/ 
int* pe_cnt /* OUT - Count of elements received * 1 
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Passed both a handle to the status variable associated with a receive operation 
and the type of the element~ received, function MPCGet_elernents returns 
the number of primitive elements actually received. 

char *name, 
int *length 

/, OUT - Processor name */ 
!' OUT - Length of processor nal1'.e */ 

Function MPI _Get _proc es S or _name returns the name of the physical 
processor on which the calling process is execllting. Allocate buffer name before 
calling the function; the buffer should have length MPI_MAX_PROCESSOR_ 
NlI.ME. 

int MPI_Get_version ( 
int 'major, 1* OUT - Major version number (lor 2) *; 
int *minor ;* OUT - Minor version number *1 

Function MPT_Get_version returns the major and minor MPI version 
numbers. 

int MPI_Grapb_crellte 
MPCConun 

old_com, 
inl~ n, 
int *degree, 

into *edge, 

int reorder, 
M.PI_COJmn 

1* IN - Old communicator"/ 
/* UJ - Nodes in,process graph */ 
/* IN - Array of size n with vertex degree 

stored indirectly. Entry 0 is 
degree of vertex O. For all other 
vertices i, degree{i]-degree]i-l] 
is degree of vertex i. */ 

/* IN - Array with rest of edge info. Entry 
i is destination of edge i. */ 

/ * IN - Ranks changeabl e (log i cal) 1< I 

*graph_comm / * OUT - Graph communicator * / 

Function MPI_Graph_create returns a pointer to a new communicator 
containing information about the directed graph '>1ructure of a group of processes. 
Ifr~qrd~r:" fal~e, tb,~~yste.m\ ~ay, notcb,ange the. rank of the proce,sses. 
Otherwise, it mayre(}'rderprocess ranks !(l improve efficiency. The source of 
each directed edge can bedetennined from array degree; the destination of 
each edgeis stored in array edges. 

int MPI_Graph_get 
HPI_corom com!!l, 

int rL 
irrtrn, 

/* IN - Graph communicator */ 
/* IN - Number of vertices in graph */ 
/* IN .;. Number of edges in graph '/ 
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int > index, 
int *edge 

f* Ol~ - Index information 0/ 
/* 0VT c Edge information */ 

Passed a communicator associated with a graph topology, the number of ver­
tices (processes) in the communicator, and the number of edges (connections be­
tween processes) in the communicator,MPI_Graph_get returns arrays index 
and edge that together represent the structure of the graph. See the description 
of function MP J _Graph _ c rea t € for an explanation of the graph structure. 

int l!IPI_Graph_map 
MPI_Conun CODlltl, 

int n, 
int 'index, 
int 'edge, 
int *newJank 

/*IN - Graph communicator */ 
/ * IN ,- Vertices in graph,· / 
/* IN - Index information '/ 
/* IN - Edge information "I 
It OUT - New rank of process */ 

Collective function MPI_Graph_map attempts to optimize the placement' 
of processes on processors, given the connections specified in a graph communi­
cator, The new rant of the calling process is returned through the last parameter. 
This value is MPI_tn:'DEFINED if the calling process is not part of the grap~ 
communicator. ' 

int lIPI_oraph_neigbbors 
MPI_Comm COlI!m, / * IN - Graph communicator ~ / 
int rank, 1* IN - Process rank * / 
int max_neighbors, /* IN - Hax number of neighbors */ 
int *neighbors I" OUT - Ranks of neighbors *1 

Function MPI_Graph_neighbors returns through the last parameter the 
rank numbers of the processes that are neighbors of the specified process. (This 
list of neighbors is part of the edge array used to create the graph communicat{)f.) 

MP I_COITUU cornm, 
int rank, 
lnt "neighbors 

! * IN - Graph cOIDffiunicat,or * / 
1* IN Process rank *1 
I~ OUT - Number of neighbors *1 

Function l<!PI_Graph_neighbors_count returns the number of neigh­
bors in the specified cornmunitrator for the process having the specified mnt. 

int KPI_Graphdim.s3et 
HPI_Coann COillIIl, 

lnt *vertices, 
lnt 'edges 

1* IN - Graph co;mnunicatox */ 
1* om' - Vertices in the graph * I 
I" OUT - Edges in the graph "I 
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Passed a graph communicator,MP I _ Graphdims _ge t returns the number 
of vertices (processes) in the communicator and the number of directed edges 
(links) between these processes. 

int MPI_Group_campare 
MPI_Group groupl, 
MPI_Group group2, 
int *result 

/* IN- First process group */ 
/* IN - Second process group */ 
/* OUT - Result of comparison */ 

Function MPl_Group_compare compares two groups of processes. It 
returns MPl_IDENT if the two groups have the same processes and the same 
process ranking; MPI_SIMILAR if the two groups have the same processes but 
theirrankings are different; and MPI_UNEQUAL otherwise. 

int MPI_Group_difference 
MPI_Group groupl, 
MPI_Group group2, 
MPCGroup *group_diff 

/* IN - First group */ 
/* IN - Second group */ 
/* bUT - Difference */ 

Function MPl_Group_difference, when passed two process groups, 
produces a new process group whose members are all processes in the first group 
that are noUn the second group. The ordering of the processes is the same as in 
the first group. 

int MPI_Group_excl 
MPI_Group group, /* IN - Existing process group */ 
int excl_nurn, /* IN - Number of processes to exclude */ 
int *excl_ranks, /* IN - Ranks of excluded processes */ 
MPI_Group *new; /* OUT - New group */ 

Function MPI_Group_exclcreates a new group by removing processes 
with particular rank numbers from an existing group. The processes in the new 
group have the same order as in the original group. 

int MPI_Group_free ( 
MPI_Group *group /* IN - Process group */ 

Function MPl_Group_free marks a group object for deallocation and 
changes the group hand1¢to MPI_GROUP _NULL. The group object will not be 
deallocated until all operations using the group have completed. 

intMPI_Group_inCl 
MPCGroup old; 
int new"':size,-

/* IN - Existtng process group */ 
/* IN - Number of procs in new group */ 
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int * old_ranks , 1* IN - Ord€r of procs in new group */ 
MPI_Group *new; 1* OUT - New process group */ 

FunctionMPI _Group_incl produces a new group from an existing group. 
The new group may be smaller than the existing group. The size of the·new group 
is specified by parameter new_size. Only the processes whose ronks appear 
in oldJanks are in the new group. The order in which rank numbers appear 
in old_ranks determines the processes' ronkings in the new group. The first 
process identified in old_ranks has rank 0 in the new group. The last process 
identified in oldJanks has the highest rank in the new group. 

into MPI_Group_intersection ( 
MPI_Group groupl, 1* IN - Group 1 *1 
MPI_Group group2, 1* IN - Group 2 *1 
MPI_Group *new_group 1* OUT - Intersection group *1 

. ) 

Function MPI_Group_intersection produces a new group that is the­
intersection of two existing groups. The ordering of processes is as in the first 
group. 

int MPI_Group_range_excl 
MPI_Group group, 1* IN ~ Existing process group *1 
int n, 1* IN - Ranges to evaluate */ 
int rangel] 13], 1* IN - Ranges of processes to exclude *1 
MPI_Group *new 1* OUT - New process group *1 

Function MPI_Group_range_excl produces a new group from an old 
group and a set of n ranges. Each range consists of a first rank, a last rank, and 
a stride. For example, the range {5, 11, 3) represents processes with ranks 5, 8, 
and II. The new group consists of processes in the original group that are not 
included in any of the ranges. The ordering of these processes is identical to their 
ordering in the original group. 

int MPI_Group_range_incl 
MPI_Group old, 1* IN - Existing process group *1 
int n, 1* IN - Ranges to evaluate * l 
.int rangel][3]. 1* IN - Ranges of processes to include *1 
MPI_Group *new 1* OUT - New process group *1 

Function MPI_Group_range_inc1 produces a new group from anpld 
group and a set of n: ranges. Each range consists of a first rank, a last rank, and a 
stride. For example, the range 15, 11, 3) represents processes with ranks 5, 8, and 
11. The new group consists of only those processes included in one of the ranges. 
The ordering of these processes is identical to their ordering in the original group. 
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int MPI_Group_rank 
MPI_Group group, 
inl *rank 

1* IN - Process group * I 
I' OUT - Rank of process *1 

Passed a process group handle, MPI_GroupJank returns the rank of the 
calling process in that group. 

int MPI_Group_size 
MPI_Group group, 
int 'size 

/* IN - Process group *1 
1* OUT - Size of group *1 

Passed a process group handle, MPI_Group~size returns the number of 
processes in the group. 

int MPI_Group_translate_raoJr.s 
MPI_Group groupl, 1* IN - First: group *1 
int n, /* IN - Number of ranks to compare * I 
int *rankl, 1* IN - Valid ranks in first group *1 
MPI_Group group2. ;* IN - Second group *1 
int *rank2 1* OUT - Ranks in second group *1 

Use function MPI_Group_translate_ranks to detennine, forpartic· 
ular processes in one group, their ranks in a second group. Parameter n represents 
the number of comparisons to make. Array rankllist~ ranks of processes in 
groupl. The function returns through array rank2 the corresponding ranks 
of these processes in group2. For example, suppose the process with rank" 
3 in groupl has rank 4 in group2. Then if rank! til == 3, then 
rank2 [il= 4. 

int MPI_Group_union 
MPI_Group groupl, 
MPJ_Group group2, 
MPI_Group knew_group 

1* I,N - First group *1 
1* IN - Second group *1 
1* OUT - Union of two groups *1 

Function MPI_Group_union returns a new group that is the union of the 
groups supplied as the first two parameters. The ordering of the processes is all 
elements of the first group follOWed by all elements of the second group that are 
not in the first group. 

int MPI_Ibsend ( 
void *buffer, 
int cnt I 
MPJ_Datalyp6'd~yp~, 

iIft;~est, 
hit tag, 

1* IN 
I' IN 
1* IN 
I' IN 
/*. IN 

- Message buffer *1 
- Elements in message *1 
- Element lyp'i 
- I\ap,kot .destination process *1 
- Message identifier */ 
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HPI_Comrn comIll, /* IN - Communi'7ator *; 
MPI_Requ€:,t *handle ;, GO'f - !landle to request .. ! 

Function MPl_lbsend initiates an immediate (nonblocking) buffered send. 
Use the request handle to query the slatus of the send (jrwait for its completion. 
Because the call is nonblocking. do not access the message buffer until the send 
completes. 

int MPI_lnit 
int *argc, ;* IN -First pararr,eter to function main *1 
char ***argv ;* Hi - Second parameter to furiction main * I 

Function MPl_Ini t allows the parallel environment to be set up. An MPI 
program must calLMPl--.:lnit before any other MPI function. (The only ex­
ception is funetionMPl:.Jnitialized.) Subsequent calls to l1Pl_Init are 
erroneous. Pass pointers to the same parameters argcand a:cgv appearing in 
function main. 

int MPI_Init_thread ( 
int *argc, 'I' IN - First parOllleter to function main *.; 
char ***argv, 1* IN - Second parametBr t"o function main *1 
int desin:d, I * IN - Desired level of thread support * / 
int *provided /* OU!, - Provided level .of thrfead support * / 

Function MPl_lnit~[hread initializes MPI in the same way as MPl_ 
lni t. In addition, it initializes the t1iread environment IfMPl_.lni t_thread 
is called, then a call to MPl_lni t is omitted. The fitst two arguments are the 
same as to MPl_lnit. The third argument is the desired level ofthread support: 

1. MPl_THEEAD_SlNGLE-:-Single thread execution. 
2. MPCTHREAD_FUNNELED--While the process may be multithreaded, 

only the main thread will make MPI calls. 
3. MPl_THREAD_SERIALIZED-Multiple threads may make MPI calls, 

but these calls arc serialized. 
4. HPl_THREAD_MULTIPLE-Multiple threads may make MPI calls 

concurrently. 

A higher number represents ahlgher level of support. The function returns through 
the last parameter the value of the support the system can provide. 

Impleme'ltations ofMPI are not required to support threads. 

intMPI_Initial,izea ( 
intO flag /*OUT - Indicates if MPI has been initialized */ 
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Function MPl_Init ialized, whenpa~sed a pointer to an integer, sets the 
value of the integer to true if MPI_Init ha.~ been called, and false otherwise. 
This is thennly function that may be called before MPI_Init. 

int MPI_Intercomm_create \ 
MPI_Co;nw local_comm, /* IN - Local cOlTl!llunicator *) 
int local_leader, /* IN - Rank of local" leader' * / 
~lPI_Coll1Ill remote_cornm, / * IN - Remote communicator * / 
int remote_leader, 
int tag, 
MPI_Comm *new_comrn 

/' IN - Rank of remote "leader' * / 
/* IN - Intercornm identifier */ 
/* OUT - Inter-co~municator */ 

The collective function MPI_Intercorrnn_create creates a new inter­
communicator from an existing, local communicator (of which the process is 
a member) and a remote communicator (of which the process i~ nota mem­
ber). Parameter tag is used to disambiguate messages a~sociatedwithsettingup 
the inter-communicator in the eventthat mUltiple inter,.communicators are being 
constructed concurrently. The resulting inter-communicator still has the notion of 
"local" and "remote" groups. At least one member from each group (the leaders) 
have the ability to communicate with each other. 

int MPI_Intercomm merge ( 
MPI_COlftlll inter, f* IN - Handle to inter-communicator */ 
int high, /* IN - 'High' group indicator */ 
MPI_Comm *intra /* OUT - Handle to intracOIllIllunicator */ 

Collective function MPI_Intercorrnn_rnerge converts an inter­
communicator into an intracommunicator All the processes in one group of the 
inter-communicator should set high to true, while all processes in the olher 
group should set high to false. When determining the ranks of the processes 
in the new intrarommunicator, the system orders the "low" processes before the 
"high" processes. 

int MPI_Iprobe 

"') 

int. src, 
inc tag, 
MPI_Comm comm, 
int 'flag, 
MPI._Status *status 

/* IN - Rank of sending pI'oeess '/ 
/* IN - Incoming message tag */ 
/' IN - COIllIllunicator '/ 
/* OUT - Success flag * / 
/. OUT - Pointer'to status object '/ 

t<!PI_Iprobe is a nonblocking function that thecksfor an incoming mes­
sage withoulactually receiving the message. When the function returns, flag is 
true if a mes~ge from the specified source process with the·sp6Cified tagjsready 
to be received. Otherwise, fl ag is false when the function returns. If flag is true, . 
information ,about the message can be retrieved through the status pointer This 
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functiOll is useful when you want to allocate a J.<:Ceive buffer based on the size of 
an incoming message. To allow any message source, use MPIjillY_SOURCE. 

To allow any message tag, use MPI_ANY_'I'AG. If you want your program to 
block until the message is ready to be received, use function MPI_Probe. 

lnt HPI_Irecv ( 
void *buffer, 
int cnt, 
MPI~Datatype dtype. 
int src, 
int tag, 
MPI_COlfull camm, 
MPI_Request 'handle 

1* DUT - Address of receive buffer·*1 
1* IN ~ Elements to receive *1 
1* IN - Type Df message elements '1 
1* IN - Source process of message *1 
1* IN - Message ID *1 
I * IN - CommunicatDr .* I 
1* OUT - Request handle *1 

MPI.:...Ir'ecv implements a nonblocking, or immediate; receive; It posts a 
re<juest for the receive to the run-time system, then retums control immediately to 
thecaJling function.· Do not access the receive buffer until completing the receive 
with a call to MPI_Wai.t. 

int KPI_Irsend ( 
void *buffer,' 1* IN - Message buffer *1 
lnt cnt, - I*,IN - Elements in message *1 
MPl.JJatatype dtype, 1* I1I - Element type *1 
int dest, 
int tag, 

1* IN - Rank of destination process *1 
1* IN - Message identifier °1 

MPI_COmID conml, I' IN - Comunicator * I 
MPI_Req~eBt *handle 1* OUT - Handie to request *1 

Function MPI_Irsend initiates an immediate (nonblocking) ready send. 
Use me re<juest handle to query the status of the send or wait for its completion. 
BecaUse the call is nonblocking, do not access the message buffer until the send 
completes. 

int HPI_Isend 
void * buffer, 
int cnt. 
MPI....,Datatype dtype, 
int dest., 
int tag, 
MPI_Com .. a COmID, 
MPI_Request ·handle 

IT IN - Message buffer *1 
1* IN - El.ements in message *1 
1* IN - Type of elements *1 
1* IN - Des~ination process 'I 
1* IN - Message identifier *1 
1* IN - Communicator *1 
I * our - Reques t handle * I 

. Function MPCI s.end is anonblocking, orirnmediate, communication func­
tion.It posM the cornmunication reqtJestto therun4ime system andretums imme­
diately to the calling. procedure, having initialized a pointer to an opaque object 



470 APPENDIX AMPl FunctiOflS 

containing information about the pending send. You must complete the function 
by passing the handle to another MPIfunction, such as MPCWa i t. Until then, 
you should oot modify the contents of the send buffer. 

int MJ?I_Isllend ( 
void 'buffer, 1* IN - Message buffer *1 
int cnt., I * IN - El"'.llcnts in message *! 
MPI_D~tatype dtype, 1* IN - Element.type *1 
int dest, 1* IN - ~~nk of destination process *1 
int tag, j* IN - Message id,mtifier *1 
MPCComrn CClIT'llI, /* lN - Communicator *! 
MPI~_'Reguest *handle I' OUT - Handle to request * / 

FunctionMPI_Is sendiniliates a synchronous mode immediate (nonblock­
lng) send. Conrrql does Dot return to the calling function until the corresponding 
reeei ves have stmted. Use the request handle to query the status of the send or wait 
for its completion .. Because the caU is nonblock}ng, do not access the message 
buffer until ibe send completes. 

int MPI_Keyval_ create [ 
MPCCopy _funr-tion 

'copy_fn, I' IN - Ptr to copy attribute function */ 
~!PI_Delete_funct ion 

'del_in, 1* IN - Ptr t.O delete attribute func * I 
int *key, 1* OUT - Ptr to attribute key 'I 
void *extra r* IN- Extra info for callbacks *1 

Function MPCKeyva1_.create cfeates a new attribute key, identified by 
key. 

int MPI_Keyval_free 
int *keyval 1* TN Key value */ 

Function NPI_ Reyv a 1_£ r ee marks an integer key value for deallocation 
and sets the value of keyva1 to MPI_KEYVAL_INVALID. 

int MPI_Op_create ( 
MPCUser .... functiOIl 

*assoc...,::func, 
int commutative, 
MPI_Op *Op 

j' IN - Associative function */ 
1* IN - ComrnutativiC<{ flag (logiciil) 'j 

1* OIJT- Op handle *1 

You,caird~rre . Y0!lr own. global -reduction operation and use function 
MPCOP::C:Creat e to'bind it to ,an op handlethatean be used in calls to MPC 
R.edlic8i·MNc.:Cl!.1'Lreduce,'MPl_Red\lce::.c.scatter,andMPI.c.:SCaI). The 



APPENDIX A MPI FuncVolis 

global operation mustbe associative. Jffbe operation is commutative as well, make 
the second parameter true. The function returns the ophandle through the third 
parameter. 

The ANSI-e prototype for the function performing your global operation is 

typedef void MPI_User_function (void * in_vector. 
void *in_out_vector. iut * length. MPCDatatype *dtype); 

Let u(O], u(I], ... , uflength - 11 represenlilie elements of in_vector 
when the function is invoked; ufO]. vUl •.... v[length - I] represent the ele­
ments of in_out_ vector when the function is invoked; and wfD1, w{l1, ... , 
wflength..., 11 represent the element~o.f in_out,-vect or when the function 
returns. finally, 1(:1. $ represent the ,associative operation computed by the func­
tion. Thep the elements of II' shQuId .be·. compu~ liS follows: If UJ= ufil ffi 
vIi], for all i «! ength. In other words, your function overwrites the values in 
in_out_ vee toxwitli.theresult. 

int Iq'I-=.Op_free ( 
MPI_Op 'op Ii IN - Handle to il user-defined operation *1 

Function MPI_Op_free marks a useI-defined operation for deal location. 
It changes the value 'of op 10 MPCOP.JWLL. 

int IIPI _Pack ( 

void *:'n_bu£fer. 
int elements i 
MPI_Datatype dtype, 
void *out_buffer, 
int out_size, 
int "offset. 

MPI Conun COlfull -

1* 
/. 

1* 
/. 

1* 
/. 

f* 

IN- Original message buffer *1 
IN '. Elements in message buffer' I 
IN - Type of elements "; 
OUT - Packed message buffer "I 
IN - Bytes in out_buffer *; 
IN/OU'!' - Index in out_buffer where 

packing starts/ends */ 

IN - Conununicator used in 
subsequent send *1 

You can use tunctionMPI_Pack to pack noncontiguous data into a contigu­
ous buffer before sending it. After the message is received, it must be unpacked. 
An alternative tD packing and unpacIcing is to use derived datatypes. Another use 
of packingaJId unpacking is to avoid system buffering. 

int MPI_Pac~si~e ( 
int ent, I' IN - Elements in mes3age */ 

MPI~Dal;atypedtYPe, ;.* IN..- .El.ement type • / 
MPI~GOlfl!l1. Ii:Pnun, !' IJ;i'. -:. CeIJlllll)nicator * I 
int;,~l?o.l)n(i. 1*. OUT .. - .JJ~I?.er Round on packed 

message size *1 
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Function MPI_Pack_size computes an upper bound on the number of 
bytes a packed message will occupy. By calling this function before MPCPack, 
you can determine how large to make the buffer containing the packed message. 

int MPI_Probe 
int sre, 
int tag, 
MPI_Comm COIlUll, 
,MPI_Status 'status 

1* IN - Rank of message source *1 
I * IN - Incoming I:l.essage tag * I 
1* IN- Co~~unieator *1 
1* OUT - Pointer to status object *1 

Fllncti6n MPl_Probe checks for an ineonring message without actually 
receiving the'message. It is useful when you want'to allocate a receive buffer 
based on the size o(an incoming message. To allow any message source"uSe 
MPI_ANY_SOURCE. To allow any messagetag, Ui>eMPIj,NY_TAG. Thisfunc­
tion blocks until a message matching the source and tag·hag arrived. To check for 
the existence of a message without blocking, use function MPI_Iprobe. 

int MPI_Recv( 
void* buffer, 
int cnt, 

MPI_Datatype dtype, 
int src, 
lnt tag, 
MPI_CoIlUll corom, 
,MPI_Status 'status 

1* OUT - Receive buffer *1 
1* IN - Max number of elements 

to receive *1 
1* IN ~ ~ype of message elements *1 
/* IN - Source process of message *1 
/* IN - Message ID *1 
I * IN - Communicator • I 
I' OUT, - Result of receive * 1 

MPI_Recv implements a blocking receive. Assuming the receive is suc­
cessful, when control returns from MP I_Recv, buf fer points to the received 
message. 

int MPI_Recv_init 
void 'buffer, 
int cnt, 

MPI_Datatype dtype, 
int ·src, 
int tag, 
MPI_Cornm "cornrn, 
MPI_Request "handle 

/* OUT - Receive buffer *1 
1* IN - Max number of elements 

to recei v.e' • I 
1* IN - Type of element */ 
It IN - Rank of message source */ 

(* IN - Message identifi,catipn *1 
1* IN - Communicator *1 
/* OUT - Request handle ~I 

Function MPI _ Recv _ i n-i t creates a persistent communication request for 
a standard mode receive operation. It is useful wben your program repeatedly calls 
the receive function withidenticalargumenKThereceive is aCtually initiated with 
a can to MPl_Start. ' 



lnt !WI_Reduce ( 
void 'send_buffer, 
voiu *reev_buffer, 

int ent, 
MPI_Datatype dtype, 
MPI_Op op, 
inc root, 
MPI_C6;r\lIl COTIl'!) 
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1* IN - Send buffer *1 
1* OU!' - Receive b1lffer. Only root 

process gets results. *1 
1* IN - Nwnber e~ements to reduce */ 
1* IN - EleEenL type *1 
1* IN - Reduction operator *1 
1* IN Rank of root process *1 
1* IN - Corruaunicator *1 

MPI_Reduce is a collective communication function that perfonns cnt 
reductions. When the function returns, the process witbrankroot has the results 
of the reductions. Use MPI _All reduce if you want all processes to have the 
results of the reductions. 

void <send_buffer, 
voiu *recv_buffer, 
int *recv_cnts, 

1* IN - Send buffer * I 
/ < our - Receive buffer * I 
1* IN Group-sized array.hutry 

is the nuntber of result 
eIements to send proc,esB j. • I 

MPI_Datacype dtype, 1* IN . Element type *1 
MPI_Op op, 1* 'IN - MPI reduction operator *1 

I' IN - CommunIcator *1 

Function MP I _ Reduc~ _ s catt e r is a collective communication fu~ction 
that perfonns a reduction and then scatters the resulting elements. The number of 
elements reduced is the sum ofthe values ill array recv _cnts. 

int MPI_Request_.free j 

MPI_Re~lest *handle 1* IN . Message request handle *1 

Function NPI_Request_free requests deallocation of an MPI_ 
Request object associated with a persistent communication. Any out~tandillg 
communication a.~sociated with the request object will finish before the system 
deallocates the objecL 

into MPI_Rsend ( 

) ; 

void *buff&r, 
int cnt, 
MPI_Datatype dtype, 
int dest, 
int tag, 
MPI_C6rmn COJlll1l 

1* IN - Message buffer */ 
1* IN - Elements in message *1 
1* IN - Type of elements *1 
/* IN - Destination process *1 
1* IN - Message identifier *1 
/* IN - Communicator *1 
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Function MPl_Rsend implement~ a ready mode send. In the ready mode, a 
send may only be started if the matching receive is already posted. If the matching 
receive ha.~ not already been posted, it is aJl errpr condition. The use of ready mode 
sends can improve performance on some systems by eliminating a handshake 
operation. When this function returns, the send buffer may be reused. 

int MPI~Rsend_init 
void *buffer, 
int ent, 
MPI_Datatyp~ dtype, 

/*·IN·~ Send buffer */ 
/* IN ~ Elements in message */ 
/* IN - Type of elements */ 

int dest, / * IN - Rank of destinat ion * / 
int tag, /* IN - Message identifier */-
MPCCOJlli11 comm, / * IN -- Communicator *1 
MPCReguest 'handle /* ODT - Request handle */ 

MPl _.Rs end_Jni t creates a persistent communication request for a re<ldy 
mode send. It is useful when your progrnm repeated I y executes a communication 
with the same argument lisl A call tOMPI_Start actually initiates the message 
send. 

int MPI_Scan ( 
void * send_buffer, 
void *recv_buffer, 
int cnt, 
MPCD~t;,tYp'e dtype, 
MPCOp op, 
MPI_Comlu carom 

/* IN - Send buffer */ 
/* OUT - Receive buffer */ 
/ * IN - Size of send buffer * / 
/* IN - Type of sent elements */ 
/* IN - HPl operator */ 

/' IN - CbmElunicator */ 

HPl_Scan performs a paranel prefix operator. After the function ha~ re­
turned, each element in recv _buffer is the result of using the MPIoperator 
op to combine the similar recv __ buffer elements in all processes having equal 
or lower rank. 

int MPI __ Scatter ( 

void * send_buffer , /* IN - Send buffer */ 
illt send_cnt, 
MPI_Datatype 

/* IN - Elements sent. each process */ 

send_dtype, /* IN - Type of sent elements '/ 
void *recvyuffer, /* OUT - Address of receive buffer */ 

int recv_cnt, /* IN - Number of elements this process 

MPI_Datatype 
recv..:.dtype, 

int- root, 
MPI..:.Comrn COllUlr 

receives */ 

/* IN -Type of received elements */ 

/ * IN -;Rank of sending proCess * / 
/* IN - Communicator 0/ 
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MP I _S cat t er is a collective communication function /hat performs a scat­
ter: a group of element~ held by tberootprocess is divided into equal-sired chunks, 
and olle chunk is sent to every process in the communicator (including the root). 
Use the more general function MPl_Scat terv if the group of elements is 
divided into chunks of varying size. 

lnt MPI_Scatt~rv ( 
vold *send_buffer, 1* IN - Send buffer *1 
int *send_cnt s, 

int *senricdisp, 

MPI_Datatype 
send_dtype, 

1* IN - Number o[ elements to send to 
each process *1 

1* IN - Element i is the offset in 
selld_buffer of the first data 
element going to prDcess i *1 

1* IN - Type of sent elements °1 
void "'recv_buffer, 1* OUT - Receive buffer • I 

MPCDatatype 
recv_dtype, 

int root, 
MPI_Corrun corom . 

1* IN - Number of elements thi~ 
pro.cess will receive * I 

1* IN - Type of received elements *1 
1* IN - Rank of sending process *1 
1* IN - Corrununicator *1 

MPI_Scatterv is a collective communication function that performs a 
scatter: a group of elements held by the root process is divided into chunks, and 
one chunk is sent to every process in the communicator (including the root). The 

. array s end_en t s indicates the number of elements going to each process; array 
send_di sp contains the offset inside s end_buf fer ofthe chunk destined for 
each process. Use the simpler function MPI _Sea t t er if the group of elements 
is divided into equal-sized chunks and the chunks are distributed in proce$s rank 
order. 

lnt HPI_Send { 
vOld *buffer. 1* IN - Message buffer *1 
i.nt cnt, 1* IN - Elements in message *1 
MPI_Datatype dtype, 1* IN - Type of elements *1 
int dest, 
inttag, 
MPCC6n1m· corom 

1* IN - Destination process *1 
1* IN - Message identifier *1 
1* 'IN - Communicator * I 

Function MPI_ Send iJll,plements a blocking send operation: when the func­
tion re(ufils, .he message buffer IlJAY Qe imme4iately reused. The MPI runctime 
system' decideso/hether to COPy the message. into a system buffer or copy the 
~&SlIge d#~tlyiJltp.tlIe, pl"tcl!:ing reFeive:tuf(er. If the run-time system does 
not choose t~'huffer the outgomg message, the call to MPl_Send will not return 
until the message has been sent to the receiving process. 
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void *buffer, /* IN - Send buffer *1 
int cot, 1;1: IN - Elements in message *1 

MPI_Datatype dtype, 1* IN - 'l"ipe of ele..ments. * I 
int dest, 
int tag, 

1* IN - Rank of destination *J 
1* IN - Message identif ier *1 

HPl_Corom COTh~, 1* IN - Cowmunicator *1 
MPI_Request 'handle 1* OUT - Request handle 'I 

MPI _Send _ini t creates a persistent communication request for astandard 
mode send.It is useful when your program repeatedly executes a communication 
with the same argument list. A call to MPI_Start actually initiates the message 
send. 

int MPI_Sendrecv j 

void • send_buffer , I' IN - Send buffer *1 
int send_cnt, I' IN Elements to send *1 
MPI_Datatype 

int dest, 
1* IN - outgoing message element typo *1 
1* IN - Destination process for 

outgoing message *1 
in~. ~,eng,,"t9-5i' 1* IN - outgoing mes~age ID *1 
vqiri ~reqY;..l;JUffer, 1* OUT- Receive buffer *1 
iilt n~~~,~~t!' i* IN - Elements to receive '1 
MPr..:D~i:atype 
. iei::v~dtWe'; 
int src, 

1* IN - Ir.c6ming ~essage element type *1 
1* In - Source process of incoming 

message *J 
int recv_tag, 1* IN - Incoming message ID 'J 
MPI_Comlll carom, J * IN - communicator * / 
MPI_Status *status/' OUT - Status of received message *1 

MPI_Sendrecv combines in a single function call the sending of a mes­
sage to one process and the receiving of a message from that process or another 
process. It is particularly useful wqen pr~~ses form a ring and each process 
is sending a message to its neighbor. If ordinary blocking sends and receives 
are used., careful choreography .is needed to prevent deadlock. Replacing two 
inaividUiJ.rseitd~j.eCeive fmiCtion calls with asingle call to MPI_Sencirecv 
gllafal1fee~;a'rle;idlockwillnot aceili-. Furictian MPCSendrecvis a blocking 
send and receivJo~ratiOn. The.sertdand receive buffers must be disjoint. Use 
}fPt..:.seli'ctre~2-{r~PePla:t:erfYou want the send lindteceivebuffers to"be the §':ilill.,q .; '. . 



APPENDIX A MPI Functions 

int MPI_Sendrecv_replace ( 
void 'buffer, II. IN(OllT - Message buffer *1 
int cnt, 1* IN - ElEments in message *1 
MPI_Datatype dtY'~e, 'I 1* IN - Type of message elements 
int dest, 1* IN - Destination process *1 
int send_tag, 1* TN - Sent message ID *1 
int src.,. I' IN Source process *( 

int recv_tag, 1* IN - Received message ID *1 
NPl_Carom comm, 1* IN - COilllllunicator *1 

1* OUT - Received message status MPI_StatuE "status *1 

Function MpLSendrecv Jeplace periOlTIlS a blocking send and re­
ceiye. It is similar to MPCSendrecv, except that the buffer containing the 
message to be sent is also where the received message will be stored. The length 
of both the sent and received messages must be identical, 

int NPI_Seend ( 
void *buffer, 
int cnt, 
MPI_Datatype dtype, 
int dest, 
int tag. 
MFI...:Corom corom 

1* IN - Send buffer" I 
1* IN - Number of elements to send *1 
1* IN - ~jpe of elements *1 
1* IN - Destination process *1 
I' IN - Message tag *1 
I*'IN - Communicator *1 

Function MPI_Ssend implements a sync.:hronous mode send operation, in 
which the send f,lnction successfully finishes only when a matching receive has 
been posted and the rec~iving process has begun to receive the message. Com­
pletion ofMPI_Ssend indicates the send buffer can be reused. 

int MPI _Seend_ init 
void *buffer, 1* IN - Send buffer *1 
int cnt, 1* IN - Elements in message *1 
MFLDatatype dtype, 1* IN - Type of elements *1 
int dest, 1* IN - Rank of destination *1 
int tag, 1* IN -. Message identifier *1 
MPI_Comm comm, 1* IN - COllllllunicator * I i 

MPI_Request *handle I' IN - Request handle *1 

MPI_Ssend_ini t creates a persistent communication request fora syn­
chronous mode send. It is useful when your program repeatedly executes a com­
munication with the same argument list. A cal\toMPI_Starl actually initiates 
the messagesend. 

int MPI_St/irt I 
MPI_Request *handle I * IN - Requesthandle * i 
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Call function MPI_Start to initiate the persistent communication request 
(either a send or a receive) represented by the handle. 

lnt MPI_Startall ( 

'lnt size, 1* IN - Elements ir.. request_array *1 
MPI_Req1J.esL *requests 1* IN - Array of pointers to 

corrmunlcation obje~ts *1 

Calling function MPI_Startall with an array of size communication 
handles is equivalent to a llenes of size calls to MPI_Start that pass the 
handles in r eque s t s insomearl!itrary order. 

int HPI_Test 1 
MPI_Request *handIe, . I * IN ~ Persistent req1J.est handle * I 
lnt * flag, I' OUT - Completior; flag • / 
MPI_StaLus 'status /* OUT - Results of ~omrounication */ 

Use function MPI_']'est to determine- if the operation associated with a 
communication request has been completed. The function returns the value true 
for flag if the operation has been Completed, and false otherwise. If a re­
ceive operation has ended, you can access status to find the message source 
(status->HPI_SOURCE), message tag (status->MPI_TAG), and error 
code (status->~1PI_ERROR). 

int MPl~TeBt_oanoelled 
MFl_Status "handie,' 
int *flag 

.' I * IN - C0l1ll111micJtion handle * I 
1* OUT - Result flag *1 

Function MPI_'rest_cancelled, when passed the handle to a commu­
nication object, returns through flag the value true if the communication was 
successfully cancelled, and false otherwise. 

int NPl_Testall ! 
int cnt, /* IN - Requests to t.est * / 
MPCRequest. 'har..dle, / * IN - Array of request hamlles * / 
int *flag, !~ OUT. 7.R"sultflag */ 
MPI_Stat'ls ~stat'ls /* OUT - Array of status info *! 

When passed handles to cr:t communication request object~,· function 
MPI_Testall returns a value of true through' flag if and only if all of the 
communications have ended. If fl ag is true, then the elements of array s ta t us 
are set to reflect the outcomes of the communications. 
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int MPI_Testany { 
int Cl"t, /* IN "" Number of requests to check */ 
MPI_Request *handle, J' IN Handles to request obj ed s * / 

int <index, /* OUT - Index of a c:ompleteu 
communication */ 

int 'flag, /' OUT - ResuJ.t fl ag *f 
MPI Status - ~status 1* OUT - Status information */ 

You can use function MPl _Testany to check to see if any of a list of cnt 
communications have ended. If fl ag is false whentbe function returns, none of 
the communications have ~~ncofIlPleted. If flag is true, then at least one of the 
conununications has been completed. The value of index indicates the position 
in arrayhandl e of the handle to the completed communication. If the completed 
communication is a receive, additional information about it is available through 
status. 

in~ MPI __ Testsome 
int in_cnt, 
HFl_Request 

1* IN - Nurriller of requests to test */ 

*hanulearra~, I * IN - !~rray of reques t handles *! 
int 'out_cut, /* OUT - Nurriller of completed requests 'f 

- int *index_array, / * OUT' - Array of l"cquest indices * f 
NPI_Status 

'status_array f* OUT - Array of statlls records * / 

Function MPl-,l'estsoflle returns information on all completed commu­
nications. Array index_array indicates which request handles in handle-' 
arrilY correspond to completed communications. Additional information about 
receives is available in status_array. 

int MPI_Topa_test 
HPCComm conun, / * IN - Communicator • f 
int *topology /* OUT Communicator's topology */ 

Function MPI_'l'opo~test returns the topology type of a communicator. 
The possible ret\llJ! values of t opo logy are HPI _GRAPH for a graph topology, 
MP"LCl'.RTfQr a Cartesian topology; and NPl_UNDEFINED for no topology. 

int MPI_Type_commit ( 
}!PI_Datatype 'dtype f* IN - Derived datatype object • f 

: Function MPI ..:.:Type _ commi tcommits a derived datatype so that it can be 
used in communication operations. See MPl_Type_free. 

479 



480 APPENDIX A MPl FunctiofTS 

int MPI_Type_contiguous ( 
int cnt, 
MPI_Datatype old_dtype. 
MPI_Datatype *new_dtype 

/* IN - Copies to make '1 
/* IN - Old datati~e *1 
1* 07JT - New datatype */ 

Function MPI __ 'I'ype_cont iguous creates a new datatype consi~ng of 
cnt copies of 01 d_d type concatenated together. 

int MPI_Type~count ( 
MPI_Datatype dtype, 1* IN - Datatype */ 

1* 001' - Top-level entry count *1 

Function MPCType_count returns the number of "top-level" entries in 
datatype dtype. 

int MPI Type extent - .-
MPI_Datatype dtype, 1* IN - Datatype *1 
MPI __ Aint * extent 1* ocn .. c Extent ofdtype *1 

Function MPI_Type_extent returns the extent of a datatype dtype, 
A datatype's extent is the number of bytes a single instance of the datatype 
would occupy in a message. It is equal to the number of bytes occupied by 
the datatype's elements, rounded up to satisfy the underlying hardware's data 
alignment requirements. 

int MPI_Type_free ( 
MPI_Datatype *dtype 1* IN - Derived datatype *1 

Function 11PI..,.:Typc_free marks for deallocation the datatype object 
associated wilh dtype and sets dtype to MPI_DATATYPE:"'NUi,L. Any out­
standing communications involving dt ype will end normally. See MPI_ 'I'ype_ 
cormnit. 

int MPI_Type_hindexed { 
int cnt, 1* IN - Number of blocks *1 
iut *block_len_array, 1* IN - Elements in each block *1 
M-pI:...Aint *disp_array, 1* IN . Block byte displacements *1 
MPI_Datatype old, 1* IN - Handle to old data type *1 
MPI_Datatype *new 1* oU'!' - F1and 1 e to new data type * I 

Function MPI_Type_hindexed is identical to function MPI_Type_ 
intiexed;.except that Iheblock displacements given in disP3rray are given 
in bytes, 



illt HPI_'l'ype_hvector 
int cnt, 
int len, 
MPI_.Aint stride, 

MPI_Datat}~e old, 
MPCDatatype *new 
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1* IN - Number of blocks */ 
1* II{ - Number of elements per block • / 
1* IN - Displacement in bytes between 

start of each block *1 
1* IN - Randle to old datatype "I 
/* OU'1' - Handle to new data type 0 I 

Function MPI_Typ~_hvec tor constructs anewderiveddatatype by repli­
eating an existing dalatype. The new datatype consists of cnt blocks. Each block 
contains block_length copies of old. The distance between blocks (mea­
sured in bytes) is s t ride.' 

int HPI_Type_indexed 
int cnt, 
iot *block_len, 

i lnt *{lisp, 
MPCDatatype old, 

'MPI_Datatype *new 

1* IN - Number of blocks in 'new' *1 
1* IN - Array indicating copies of old 

datatype in each block *1 
1* IN - Block displacements array *1 
1* W - Handle to old data'type "I 
1* OUT - Handle to new datatype 01 

Function MPI_Type_indexed takes a sequence of one or more blocks, 
each consisting of one or more coPies of an old datatype 0] d, and concatenates 
them together to fonn a derived datatype new. lnteger ent is the number of 
blocks to concatenate. Array bloc k_Ie:1 gives the number of copies of old in 
each block. Array di s p gives the displacement of each block in multiples of the 
extent of old. 

int MPI_Type_lb 
MPCDa,tatype dtype, lOIN - Handle to datatype *1 
MPI_Aint *lb 1* OUT - Lower bound's displacement *1 

Function MPC'Iype_l b returns the displacement in bytes of the lower 
bound of datatype dtype from the origin. 

illt MPI_Type_size { 
MPI_Datatype dtype, 1* IN- Handle to datatype *1 
int *size /* ou'r - Total size of type 

signature entries *1 

The type sigqature of a datatype is the sequence of basic types it contains. 
Function MPClype _ s i z e returns the number of bytes occupied by the entries 
in the typ~signature ofdtype. It is equal to the number of bytes of data in a 
fu~~fige t6riuiiniDg one.element of the datatype. 
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int MPl_TYPe_struct 
int cnt, 
int *block_len, 
MPI_Ai;;t *dis!). 
MPI_Datatype *dtype, 
MPT_Datatype *new 

/* IN - Number of blocks in 'new' */ 
/* IN - EJ.ements in each block */ 

/' IN - Displacement of each block */ 
/* IN - Array of clatatype handl~s */ 
/* OUT - Handle to new datatype */ 

Function l"lPI_'l'ype_,struct constructs anew datatype co misting of cnt 
blocks. Each block i contains bl ock_l en (i 1 copies of the datatype corre­
spOIiding to handle dtype (i 1; The displacement of each block i is indicated 
by disp[i 1. 
~ -"~ .. / .-. :'~. '. 

int MPI_TYPe_ub ( 
MPI_Datatype dtype, /* IN - Handle to datatype */ 
MPI_,Aint *ub /* OUT - Upper bound's displacement */ 

Function MPI_T'jpe_ub returns the displacement in bytes of the 
upper bound of datatype dtype from the origin. 

int NFl_TYPe_vector ( 
int cnt, 
int block_length, 
int stride, 

/ * IN - Numb~r of blocl<,s */ 
/* IN - Elements in each block */ 
/* IN - Elements between start 

o[ each'block */ 
MPI_Datatype old_dtype, /* IN - Iiandleto old datatype ,,/ 
MPlc-Datatype *newJltype, /* OUT - New datatype's handl'e *; 

Function MPI 3ype _ vect or constructs a new derived datatype by repli­
cating an existing datatype. The new datatype consists of cnt blocks. Each block 
contains block_length copies of old_dtype. The distance between blocks 
(measured in terms of multiples of the extent of old_dtype) is stride. 

int NFl_Unpack ( 
void 'L~_buffer, 
int len, 

/* IN _. Input buffer * I 
/* IN - 'Length of input buffer ./ 

int *pos ition, /* IN /OU'l' - Position in 'in_buffer' * / 
void *olltJJuffer, /* OUT - Output buffiCr * / 
int out_crlt, /* IN - Number of items to unpack * / 
t1PCDatatype dtype, /* IN - Handle to 
MPCComm COlml /* IN - Communicator */ 

Function MPI_Unpack unpacks a Q1essage len bytes long from 
in buffer into out buffer. . 

-A(th{bigiruungof 'the fU~9ii(l1l'S ex~ptipJJ; posit i on j~tneinctex)r 
in_bUf fer of the beginning ofihc'pick~message. When the fUIlction rewrns, 
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position is the index of the first byte after the message that was unpacked, 
The posi tion parameter allows several messages to be packed into a single 
packing unit, sent, and then unpacked individllllUy, 

int KPI_Wait ( 
MPI_Reqm~st *handle, 
MPI_Status 's~atus 

/* IN - Request handle * / 
i* OUT - Result of communication */ 

Function I1PI _vI a it completes any nonbloclring operation, If the operation 
was a send, this function willts until themessage hru;b~ eIther buffered or 
sent by the run-time system, At this pomt the seml'briffcrinay'be reused::If the 
operation was a receive, it waits until the message has been.copied into the receive 
buffer, 

int MPI_i'/aitall ( 
int cnt, /* IN - Number of comms to wait on "/ 
MPI_Reqilest *handle, /* IN - Request handles array * / 
MPI_Status *status /* our - Status otCcorripleted cOlDlns */ 

Function MP CWa i tall b!ocks until all cnt of the communication opera­
tions associated with the handl~s stored in handle_array have ended, When 
the function returns, the status array contains information about all of the 
completed communications. 

int MPI_Waitany 
int cnt, /* IN - Number of comms to check * / 
~PI_Reql.lest *handle, /* IN- Array of request haIldles * / 
int 'index, /* OUT -- Index of completed comm ,/ 
I!!!PI_Status *status /* OUT - Status of completed cOIHm */ 

Function MPI_Wa i tany blocks until one of the specified communications 
operations has been completed. When it returns, the value of index is the index 
inlohandle of the completed communication, and status points to the status 
rt!{;ord of the completed communication. 

int MPI waitsome ( 
"int ~_cnt, 
MPI_Requ8st *handle, 

int • out_cnt, 
int *index_array, 
MPI_Statl.ls *status 

/* IN - Number of COIDIT,S to check * / 
/' IN - lI,rray of request handles * / 
/* OUT - Nlmiber of completed ops * / 
/* OUT - Array of completed OpS */ 
! * OUT - Array of status info * / 
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Function MPI_Wai t some blocks until Qne {JI more of the specified com­
munication operations have ended. When it returns, fhe value of out_cnt is the 
number of operations that have been completed. The first out _.ent elements of 
index are the indices in handl e of the completed operations, and the first out 
elements of status are the completion ~tatus object~ for these communications. 

double" MPI_Wtick (void) 

Function HPCWt ick returns a double-precision floating-point number in­
di~ating the n(lmber of seconds between tick.~ of the clock used by function 
HPJ _ Wt ime.For example, iithe clik is incremented every microsecond, func-
tion MPI~Wtick slioul\l retumthevaiue~IG";5.· . 

double MPI_Wtime (void) 

Function MP I _Wtime returns a double-precision 1I0ating-point number rep­
resenting the number of seconds since some time in the past. The defiiJition of 
"some time in the past" is guaranteed not to change during the life of a pro­
cess. Hence the elapsed time of a block of code can be determined by calling 
MPI_Wt ime before it and after it and computing the difference. 
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Utility Functions 

B.1 HEADER FILE MYKPI . h 
1* MyMPLh 

*/ 

Header file for a library of matrix/vecl:or 
input/output/redistribution functions. 

Programmed by Nichael J. Quinn 

Last modifico.tion: 4 SeptC'.mber 2002 

I***********~******t****** MACROS *****************~********/ 

#define DATA_MSG 0 
#define ?ROMPT_MSG 1 
#define RESPONSE_MSG 2 

#define OPEN_FILE_ERROR -1 
#define MALLOC_ERROR -2 
#define TYPE_ERROR -3 

#define MIN(a,b) ((a)<{b)?(a):(b)) 
idefine BLOCK_LO~1 ( i d, p, n) ( I idi * (n )h{1J) 

#define BLOCK_H I 011 (id .p, n) {BLOCK_LOW ( (id) +1, p, n) -1) 
#define BLOCK •. SIZE(id,p,n) \ 

(BLOCK_HIGH (id,p, nl -BW.CfCLOW(id,p, nJ + 11 
lIdefine BLOCK_OWNER(j ,P,IlI (( (p) *( (j-) +11-1) / (nl) 
#define PTR_SIZE 
#define CEILING!i,j) 

(sheaf (void')) 
(((i)+(j)-I) / (j)) 
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/***************** MISCEJA1U1EOUS FUNCTIONS *****************/ 

void terminate (int, char *l; 

/*************** DATA DISTRIBUTION FUNCTIONS *************'*; 

void replicate_block_vector (void", int, veid .. , 
MPCDatatype, MPIJommi; 

void create_l~ixed_xfer_arrays (int, int, int, int", Lnt**); 
void create_11niforID_xfer_arrays (int, int, int, int**,int**); 

/*** .~******* •• **** IN\'UT FL'NCTIONS ~*****/ 

void read_checkerboard_Irtatrix (char *, void ***, void **, 
MPI_Datatype, int *, Lnt " MPI_Comm); 

void read_col_striped_matrix (char *, void ***, void 
MPLDatatype, int *, int *'. MPI_Co;r.\1l); 

void read_row_striped_matrix . (char * , ·void: ' .... , v()id 
MPI_Datatype J int .. , int .. , MPCCornmr; 

** J 

** , 

void read_black_vector (ctar *, void **, MPI_Datatype, 
int *, MPI_Corum); 

void read_replicated_vector (char * void **, MPI_Datatype, 
int *, MPI_Comm)~ 

void print_checkErboard_matrix (void **, MPI_Datatype, int, 
int, MPLConnn); 

void print_co I_strip ed_matrix (void ** , HPI _Da t atype, 
intr MPl_Comrn) ; 

void print_row_striped_matrix (void ** , MPLDatatype, 
int, MPI_Connn) ; 

void print_block3ector (void *, MPl_Datatype, int, 
MPCComm); 

int, 

int, 

void print_replicatcd_vector (void *, MPI_Dacatype, int, 
MPl_Corom) ; 

B.2 SOURCE, FILE MyMPI . c 

/* 

* 

*j 

MyMPI. c .. - A library of matrix/vector 
input/output/redis.tribution funct ions 

Programmed by Michael J. Quinn 

Last modification: 4 September 2002 
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# incJ ude < s tdic. h> 
#include <stdlib.h> 
#include <mpi.h> 
# inc] ude " My..fP I. h" 

/***************** MISCELLANEOUS FUNCTIONS *****************/ 

1* 
* 

*/ 

Gi ven MPCDatatype 't', fUIlction • get_size' retllrns the 
size of a single datum of· that data type. 

int get_size (MPI_Datatype t) { 
if it =~ NPl_BY'l'EJ return sizeof (char) ; 

. if it NPl_DOUBLE) return sizeof(double); 

/* 

* 

if (t ~-= MPI]WAT) return sizeofifloat); 
if it ,,= NPl_INTI return sizeof(int); 
printf ('Error: Unrecognized argwrlent to • get_size' 'In") ; 
fflush (s tdout i ; 
M!'CAbort (MPI_COMICWORLD, TYPE_ERROR); 

Function 'rnY_IDalloc' is called when a process Wrults 
to allocate some space from the heap, If the. memory 
allocation fails, the process prints an error message 

* .and then aborts execution of the program. 

*1 

void 'my_malloe i 
int id, 1* IN - Process rank * I 
int bytes) I' IN - Bytes to allocatc • I 

void 'buffer; 
if r (buffer = maUoc (isize_tJ bytes») == NULL) ( 

printf ("Error: MaUoc failed for process %d\n", id); 
ffJush (stdout); 
MPI_illio,t (MPI_COMICWORLD, MALLOC_ERROR); 

return buffer; 
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1* 
Function 'terminate' is called when the program should 
not conti!lue execution. due to an error condition that 
all of the processes are aware of. Process 0 prints the 
error message passed as an argument to the function. 

All processes must invoke this function together! 
*/ 

void terminate ( 
int id, 1* IN - Process rank */ 
char terror_message) 1* IN - Message to print *1 

if (J id) { 
printf ('Error: %s\n', error_message); 
fflush \stdout); 

MPI_Finalize () ; 
exit (-1); 

/***** ..... .-. DATA DISTRIBUTrOl~ FUNCTION'S u'''*:****,******/ 

1* 

* 

*/ 

This function creates the count and displacement arrays 
needed by scatter and gather functions, when the number 
of elements send/received tolfrom other processes 
varies. 

void create_mixed_x£er_arraye ( 
int id, I * IN - Process rank *! 
int p, 

int n, 
int **count, 
int **dL;p/ 

int i; 

1* 
I' 
/* 
1* 

IN - Number of processes· *1 
IN - Total number of elements */ 
OUT - Array of counts *! 
OUT - Array of displacements *1 

*count = ~y_malloc lid, p * sizeof(int)); 
*disp" my_manoe (id, p * sizenf(int,); 
i*count) [01 = BWCK_SIZE{O.p,n); 
(*disp) [OJ = 0; 

for 11 = 1; 1 < Pi i++) { 
(*disp) iil = (*disp) [i-lJ + I'count) [i-lJ; 
('count] [1J = BLOCK_sIZEIi,p,n); 
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This fUllction creates the count and displaceinent arrays 
needed in an all-to-all exchange, when e. process gets 
the same: number of elements from every other process. 

void create_uniform_xfer_arraYB ( 

1* 
• 

*/ 

int id, I' IN - Process rank *1 
int. p, j* IN - Number. of processes *1 
int n, I' IN - Number of elements *1 
int. "count, 1* OUT - Array of counts *1 
int o*disp) 1* OUT - Array of displacements 

int i; 

'count ~ my_malloc lid, p * sizeof(int)); 
*disp ~ my_rnalloc lid, p * sizeof(int)); 
i'count) [Ol ~ BLOCK...SIZE(id,p,n); 
(*disp) [0] " 0; 
for (i = 1; i < p; iff) ( 

(*disp) iil " I"'disp) [i-lJ + (*count) [i··l1; 
(*count) IiJ ~ BLOCK_SrZE{id,p,n); 

*/ 

This function.is used to t.ransform a vector from a 
block dist~ibution to a replicated distribution within a 
communicator. 

void teplicate_block_?ector \ 
void *ablock,!~ IN - Elock-distributed vector * / 
int n, /* IN - Elements in vector */ 
void °arep, /* OUT - Replicated vector */ 
MPI_Datatype dtype, /* IN - Element type */ 

carow! /' IN - Communicator */ 

int 'cnt; /* Elements contributed by each process 
int *dispi /* Displacement in concatenated array */ 
int ld; /~ Process id */ 

int Pi /* Processes iu communicator */ 

MPIJ{)mm_size (COlllJJ1, &p); 
MPI_Cornm_rank (corom, &id); 
create_mixed~xfeLar.:-ays (id, P, n, &cnt, &disp); 
MPIjlllgatherv (ablock, cnt[idj, dtype, arep, cnt, 

disp, dtypc, comm); 

*/ 
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feee (cnt); 
free idispl; 

1********************* INPU'll FUNCTIONS *-tJ:****'f'!***-1c*********/ 

/* 

, 

, 

f\!nction 'read_.checkerboard_matrix' reads a n:atrix from 
a file. The first two elements of the file are integers 
wbose values are the dimensiDns Dt the rnatrix ('m' rows 
and 'n' columns). What follows are 'm' * 'n' values 
representing the matrix elernent~ stored in row-major 
order. 1'his function allocates blocks of the matrix to 
t.he OIPI processes. 

The number of processes must be a square number. 
./ 

'lOid read_checkerboard -matrix 
char 's, /t IN - flile name */ 
void ***subs, /t OUT - 2D array */ 
void *'storage, / * om' - Array elements */ 
MPI_Datatype dtype, /* m - Element tYPE */ 
int *m, 
int tn, 
MPI _Comm 

void 
int 

bt 
int 
int 
ir;t 
int 
int 
int 
FILE 

void 
int 
int 
void 
bl; 
void 

gri~coroml 

tbuffer; 
coords[21; 

/* 
i* 
/ * 

OUT - Array rows .. / 
OUT - Array eols */ 
IN - Communicator *i 

/ * File buffer .. / 
/* Coords of proc receiving 

next row of: matrix *1 
datum_size; 1* BYtes per element *1 
dest_id; /* Rank of receiving proc */ 
grid_coordI21; /' PrOCess coords *1 
grid_id; /* Process rank */ 
grid--period[2]; /* Wraparound */ 
grid_sizet21; /* Dimensions of grid *1 
it j l k; 

*infileptr; 
*laddr; 
lQcal_cols; 
10caLrows; 

**lptr; " 
p;-

*raddr; 

! * Input file pointer * / 
i* Used "hen proc 0 gets row */ 
1* Matrix cols on this proc *1 
/ * Matrix rows on this proc * / 
/* Pointer into 'subs' */ 
/* Nurr~er of processes *1 
/* Address ot first element 

to send */ 
void *rptr; 1* Pointer into 'storage' */ 

/* Results of read */ MPI_Status status; 



M?CConmuank (grid_cor:Ull, &grid_id); 
MPl_ColIUlL.slze (grid~cOl:~Il, &pl; 
datllllL,size get_size (dtype); 

APPENDIX B Utility FunctiOlls 

/* Process 0 opens file, gets number of rows and 
number of. cols, and broadcasts this infonnation 
to the other processes. */ 

if (grid_id == 0) { 

infileptr = fopen (s, "r ~) ; 
if (infileptr oc= NULL) 'm" O. 
else { 

tread (m, sizeof(int), 1, infileptr); 
fread (n, si7.eof(int), 1, infileptri; 

/* Each process determines the size of the submatrix 
it is responsible for. '/ 

MPI_Cart_get (grid_corom, 2, geid_size. gri~eriod, 
gridJoord) ; 

local~rows = BLOCK_SIZE(grld_coord[Ol,grid_size[Ol,*m); 
local_eols", BLOCK_SIZE (gridJoord[l] ,grid_size[l], *nl; 

/* Dynamically allocate t;'lO-dimensional matrix 'subs' * I 

'storage ~ illY_malloe (grid_id, 
local_rows' local_eols • datUffi_sihe); 

·subs = (void **i my_malloe (grid_id, local_rows*PTR~SIZE); 
Iptr = (void *) *subs; 
rptr = (void *j 'storage; 
for (i = 0; i < 10caCrows; l++j ( 

*(lptr++) = (void *) rptr; 

rptr += loca1..~cols * datUJU",size; 

/* Grid process 0 reads in the matrix one row at a time 
and distributes each row aIDong the HPJ pl~ocesses. * / 

if (grid_id == 0) 

buffer = 1TlY_malloc (grid~id, *n • datum~size); 
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1* For each row of processes in the proceSs grid ... *1 
for (i ~ 0; i < grid_si:ze[Ol; i++) { 

cooras{O] " i; 

/* For eacb matrix row controlled by this proc row .•• *1 
for (j 0; j < llLOCK_SIZEI i,grid_size{()] ,*m); j++) [ 

1* Read in a row of the matrix ~I 

if (grid_id ,,~ 0) 

tread (buffer, datu~size, Tn, infileptr); 

1* Distribute it among processes in the grid .ro~1 * I 

for Ik = 0; k < grid_size[l]; k,+) { 
coords[l] = k; 

/* Find address of first clement to send *1 
raddr = buffer + 

BLOCK_LOW(k,grid_size[l],*nj • datum_size; 

I' Determine the grid 10 of the pmcess getting 

the subrow • / 

I~ Process 0 is responsible for sending ... *1 
if (grid_id == 0) ( 

/. It is sending (copyir;gj t.O itself *1 
it: (dest_id "-= 0) ( 

landr = ('subs) [j]; 
F1P.mcpy (laddr, raddr, 

local_cols * datum_size); 

1* It is sending to another process *1 
else { 
MPI_Send (raddr, 

BLOCK.J)IZE(k,grid_size[l] , *n), dtype, 
dest_id, 0, grid_cOln:nl; 

I' Process 'dest_id' is responsible for 
receiVing... * I 

else.if (grid_id =~ dest_id) ( 
MPI_Recv ((*subs) [j), local_eols, dtype, 0, 

0, grid_comIn, &status) ; 

I 
I 
I 
I 
j 
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0) fr~e (buffer); 

Function 'read_col_striped_matrix' reads a matrix from a 
file. The first two elements of the file are integers 
whose values are the dimensions of the matrix ('m' rows 
and 'n' columns). Nhat follows are 'm'*'n' values 
representing the matrix elements stored in row~il\ajor 

* order. This function allocates blocks of columns of the 
matrix to the MPI processes. 

*/ 

char *8, 

void *'*subs, 
void **storage, 
MPI_Datatype dtype, 
int 
int 
MPCCml\;n 

*rn, 
tn. 

cornrn) 

void 
int 
int 
int 
FILE 
iqt 
voi.d 
void 
int 
int 
int 

*huffer; 
datum_size; 
i I j; 

id; 
*inEileptr; 
local_cols; 

**lptr; 
*rptr; 
p; 

'send_count; 
'send_disp; 

/* IN - File name *1 
I * OUT -" 2-D array • I 
It OUT - Array elements */ 
/* IN - Element type */ 
/* QUi' ~ Rows ./ 
/* OUT - Cols *1 
1* IN - COmIDfu,icator *1 

1* File buffer */ 
/* Size of matrix element "/ 

/* Process rank */ 
1* Input file ptr "I 
/* Cols on this process *1 
/* Pointer into 'subs' *1 
/* Pointer into 'storage' */ 
/' Number of processes *1 
1* Each proc's count *1 
1* Each proc's displacement *1 

MPI_COilillLsize (comm, &p); 
MPI_Comm_rank (comm, &id); 
datum_size·" get_size (dtype); 

1* Process p-I opens file. gets number of rows and 
cols, and broadcasts this info to other procs. *1 

if lid == (p~l)) I 
infileptr -= fopen (s, 'r"i; 
it (intileptr == NULL) *m -= 0; 
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1* 

*/ 

else [ 
frcad (m, sizeoflint) , 1, infileptr); 
fread (n, sizeof(int), L infileptr); 

MPCBcilSt (m, L MPCINT, p-l, coml; 

if I! (*m» HPT_Abort (COITlin, OPEN]ILE_EHROR); 

~IPl_Bcast In, 1, MPCINT, p-l, comIn); 

/~ D'inamicaHy allocate two-dimensional matrix 'subs' ~ I 

~storage '" Ilry'_malloc (id, *m * local_co Is * datum_size); 
'subs", (void **) my_malloc (id, 'm ' P1'R_SIZE); 
lptr = (void *) 'subs; 

rptr " (void *) *storage; 
for (i ~ 0; i < *m; i ++) [ 

*(lptrtt) = (void *J ~ptr; 

rptr t= local_cols * datum_size; 

i* Process p-l reads in the ;natrix one row at a time and 
distributes each row among the-MPJ processes. i/ 

if lid == (p-l) 
buffer = my_malloc (id, *n * datum_size); 

create_mixed_xfer_arrays (id,p,*n,&send_cQunt,&send_disp); 
for (i = 0; i < *m; itt) ( 

if lid == (p_.l) 

fread (bufter, datum_size, tn, infileptr); 
MPCScatterv (buffer, send_co\!nt, send_disp, dtype, 

('storage) + i * lo,;al_cols *datul'Lsize, local_cols, 
dtype, p-J, comm); 

free (send_count); 
free (send_disp); 
if lid == (p-l)) free (buffer); 

Proces[; p-l opens a file and inputs a two-dimensionaJ 
matrix, reading and distributing blocks of rows to the 
other processes. 
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void read_row_striped_matrix ( 
chax *s> 1* IN - File name *! 
void ***s'Jbs, 1* 
void "storage, I' 

MPI_Datatype dtype, /. 
int 'm, 1* 
int *n, i* 
MPI _Comrn COJJllll) 1* 

int datum_riize; 
iot i; 
int id; 
FILE *infileptr; 
int local_Tows; 
void ** lptr; 
int p; 
void *rptr; 

MPI~Status statl1s; 
int x; 

OUT ~ 2D submatrix indices '/ 
OUT - Slibmatrix stored here *1 
IN - Matxix element type *1 
OUT - M3.trix rows '! 
OUT - Matrix eols */ 
IN - Corrununicator *1 

/* Size of matrix eJement */ 

/* Process rank *1 
/* Input file pointer *1 
/ * Rows on this proc * / 
/* Pointer into 'subs' */ 
I' Number of processes .! 
/ * Poinr.€ r into • storage' * j 
/" Result of receive * I 
1* Result of r~ad *1 

MPI_COffilll_size (comm, &p); 
NPI_COlfIlJLrallk (comrn, &id); 
datulTLsiJe =: get_she (dtyp"); 

/" Process p~'l opens file, reads size of matrix, 
and broadcasts matrix dimensions to other procs ~! 

if (id ,,~ (p-l)j { 

ir,filep'C.r = [open (s. "r"); 
if (infilepu: =O~ NULL) *ro =: o· 
else ( 

fread 1m, sizeof(int), 1, infilePt~}; 

fread In, Siz8of(intl, 1, infileptr); 

local_rows = BLOCICSIZE (id, p, *m) ; 

" 1* r:ynamically allocate matrix. Allow double subscripting 
through' a'. * / 

'storage '0 (void *J my",IDalloc {id, 
local_rows *'n* datuIlLsize); 

'subs = (void H) my_malloe (id, local_rows • PTR_,SJZE); 
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1* 

*1 

lptr " (void *) &{*subslO} i; 
l~tr ~ (void *) 'storage; 
for (i = 0; i < local_rows; itt) 

*(lptrff)= (void *) rptr; 
rptr += *n * datum_size; 

1* Process p-l reads blocks ot rows from file and 
sends each block to the correct destination proces:>. 
The last block it keeps. *1 

if [id (p-l)) { 

for (i = 0,. i < p-l; ih) { 
x·= fread (*storage. datum_size. 

BLOCK_SIZE(i .• p. *m) * ·n. infileptr); 
Npl_Send [*storage. BLOCK_SIZE !i, p. *m) , on, dtype. 

L DATA_MSG, corom]; 

x tread (*storage, datum_size. local_rows * tn. 
inE il eptr) ; 

fclose (intileptr); 
else 
MPI_Recv {"storage. local_rows * tn. dtype. p-l, 

DA'fA_MSG, corom, &status); 

0llen a tile containing a vector, read its contents, 
and distribute the elements by block among the 
processes in a communicator. 

char '*Sr 1* IN - File name *1 
void **v, 1* OUT - Subvector *1 
MPI_Datatype dtype. 1* IN - Element t}~e 'I 
lnt tn. I' our - Vector length *1 
MPI_Corum conun} I' IN - Communicator *1 

int datum_size; 1* Bytes per element *1 
int it 
FILE *infileptr; 1* Input file pointer *1 
int local~els; 1* Elements on this proc *1 
MPI_Sti1tus status; 1* Result of receive *1 
int id; 1* Process rank ~I 
int Pi l*.Numb."r of processes *1 
int x; 1* Result oE read */ 



datu~_siz~ get_size ldtype); 
MPI_COlllll1_~ize(cornm, &p); 
MPI_Co!llll1_rank(coInTIl, &id); 

APP£RD IX B Utility F(Joctioos 

/ * Process p-l opens file, detenr.ines number of vector 
elements, and broadcasts this value to the other 
processes. * / 

if (id ~= (p-li) 
infileptr = fopen (s, "r'); 
if (infi leptr == NULl,) *n = 0; 
else fread in,. siz,eol (int) , 1, infileptrl; 

MPI_Bcast (n, 1, MPI_INT, p-l, comm); 
if (! *nl { 

if (! idl [ 
prin~f ("Input file '%s' cannot be opened\n', 81; 

fflush (stoout);. 

/* Block mappi~g of vector elements to processes */ 

/* Dynamically allocate vector. */ 

*v = my_malloc lid, local_els ' datum_size); 
if (id == (p-1J) ( 

for (i = 0; i < p-l; 1+1) { 
x = tread ('v, dat\lllLsize, BLOCK_SIZE (i,p, 'nl, 

infileptr) ; 
MPI_Send (~v, BLOCK_SIZEii,p,*n\, dtype, i. DATA_MSG. 

comm) ; 

x = fread t·v, datum_size. BLOCK_SIZB(Ld,p,*n). 
infileptr) ; 

tclose (infileptr); 
else { 
MPI_Recv ('v, BLOCK_SIZE (id,p, 'nl, dtype, p-l, DA'I'A_MSG, 

corom. &statusl; 

/* Open a file containing a vector, read its contents. 
and replicate the vector among all processes· in a 
cOlllll1unicator. • / 
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void read_replicated_vector ( 

char *s, 1* IN - File name *1 
void "v, /* OUT - Vector * / 
MPI_Dalatype dtype, j* IN - vector type • / 
lnt 
l1P'CComm 

tn, 
cOIllll1) 

/* OUT - Vector length */ 
/ie IN - Communicator */ 

int. 
int 
int 
FILE 
lnt 

datum_size; 1* Bytes per vector element 
i: 
id; /* Px'ocess rank *1 

*infi1eptr; /* Input file pointer 

Pi 1* Number 

MPI Conun]ank {comm, &idl; 
MPI_ComID_size (corum, &p); 
datum_size = get_size (dtype); 

if lid "" (p-l/) { 
infileptr = fopen (s, "r"); 
if (inEileptr =~ NULL) *n ~ 0; 

of processes 

else head (n, sizeof (int), 1, infileptr); 

*1 
*f 

MPI __ Bcast (n, 1, MPeIN,)" p-l, MPI_COMM_WORLDI; 

*/ 

if (! *n) terminate (id, "Cannot open vector fi 1e") ; 

if (id =~ (p-lJ) { 
head ('v, datllllLsize, *n, infi1eptr); 
Eclose (infileptr); 

/*********"********:t** OUTPUT FUNC1'IONS ********-..r***********/ 

1* 

* f f 

Print elements of a doubly subscripted array. 

voidprint_subm&trix 
vcid '-*aJ 
MPI_Datatype dtype, 
int 
int 

int i. j; 

ro~rs{ 

co1.s) 

I * OUT - Doubly sUbscripted array * I 
1* QU'!' - 'TYPe of array elements *1 
/ * OU'l' - !1a tr ix rows * I 
1* OUT - Matrix cols *1 

for (i -- 0; i '< rows: i++) ( 

for ( j - 0; j < cals; j++) 

< 

I 
I 
1 

I 



1* 

*/ 

1* 
* 

*j 
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it \dtype =" I1PI_DOUBLE) 
printf (·%6.3f ", ((double **)al[iJ1iJ); 

else ( 
if (dtype "'= NPI_FLOAT) 

printf (·%5.]f " (float **)a)[i) [j]); 
else if (dtype ~= HPCINT) 

printf ('%6d', ((int **)a)[ij[j]); 

putchar ('\n'l; 

Print ele~ents of a singly subscripted array. 

void *a, /* IN - Array pointer 

int n) 

I. 
1 

/* 
IN 
IN 

- IIrray type *1 
- Array sb:e * 1 1 

int I; 

for (i = D; i < n; i ++ ) 
if (dtype == MPI_DOUBLE) 

print£ ("%6.3f ", (double *)al[i]); 
e-lse { 

if (dtype == MPIJLOAT) 
printf ("%6.3f " ((float *)a)[i]); 

else if (dtype == MPI_INTI 
printf ('%6d ", ((int *)a)liJI; 

*/ 

Print a matrix distributed checkerboard fashion i31l\orlg 
the processes in a communicator. 

void print_checkerboard_matrix ( 

void **a, 1* IN -2D matrix * / 
NPLDatat:''Pe dtype, I, 

1 IN -Matrix element type *f 
int m, 1* IN -Matrix rows * I / 

int n, /* IN -Matrix columIls *1 
MPI_Comm grid_carom I 1* IN - Communicator */ 
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void 
int 

int 
int 
int 
int 
int 
int 
int 
void 
int 
int 

"buffer; 
coords[2]; 

datum~si~e; 

/* Room to hold 1 matrix row */ 
/" Grid coords of process 

sending elements "; 
/* Bytes per matrix element */ 

els; /* 

grid_coords[21; /* 
l':lements received' I 
Coords of this process *1 

I" Process rank in grid */ grid_id; 
grid-pe:"iod [2]; 

grid_size!2]; 
i, d I k; 

*laddr; 
locai_cols; 
p; 

/* Wraparound */ 
/* Dims of process grid */ 

/* Where to p11t subrow * / 
/* l'latrix cols on this proc * / 
/* Number of processes */ 

int src; /* ID of proc with subrow */ 
/* Result of receive *1 !4PCStatus status; 

MPCCOlllrrL_rank (grid_comIll. &grld_id); 
MPI_CornID_size (grid_comrn. &p); 
datum_size =~get_size (dtype); 

M?I_Cart_get (grid_comm, 2, grid_size, grid-period, 
grid_coords) ; 

lociiLcols = BLOCK_SIZE (grid_coords [1] ,grid_size[11,n); 

if (!grid_idl 
bu ffer .., lll'( ~malloc [grid_id, n*datuffi_size); 

/* For each row of the process grid *1 
~or (i = 0; i < grid_size[O]; i++) { 

coords [0 J " i; 

/* For each matrix row controlled by the process row * I 
for (j " 0; j < BLOCK_SIZF.(i, grid_size [0] ,m); j+~) 

/* Collect the matrix row on grid process 0 and 
prbt it. * I 

if (! grid_id) { 
for (k ~ 0; k < qri~size[lj; k~+) ( 

coords[l] = k; 
MPI_Cart_rank (grid_corum, coords, &src); 
els ~ BLOCK_SrZE(k,grid_si7,e[lj,n); 
lagdr = buffer + 

BLOCK_LOW(k,grid_size(11,n) * datum_size; 
if (src ,,~ Or ( 

memcpy (laddr, a[j], els • datum_size); 
edse ( 
MPI_Recv{laddr, els, dtype, src, 0, 

grld_cOIl'.rn, &status); 



/* 
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prlnt_subvector (buffer, dtype, nl; 
putchar (' \n' ; 

else if (grid_coords [01 == i) ( 

MPI_Send (a[j), local_co Is , dtype, 0, 0, 
grid_comm) ; 

.if (!grid_id) 
fr,"," (buffer); 
put char ( '\n'); 

Print a matrix that has a columEwise-block-striped data 
decomposition among the elements of a communicator . . / 

void print_col_Btriped_matrix 
void *'a, /.--IN - 2D array • / 
MPI_Datatype dtype, J* IN - Type of matrix el?-ffients */ 
int m, /' IN - Matrix rows */ 
int 
MPl _COImn 

NFl_Status 
int 
void 
iIlt 
int 
int 
int* 
int" 

n, 
comm} 

status; 
datum_size; 

'buffer; 
i, j; 
id; 
p; 
rec_count; 
recdisp; 

J* IN - Matrix cols */ 

/* IN - Communicator */ 

/ * Result of receive ./ 
f* Bytes per matrix element */ 
/* Enough room to hold l row */ 

/" Process rank */ 
/* Numc~er of processes */ 
/* Elements received per proc */ 
/* Offset of each proc's block */ 

MPCComrrLrank (comm, &id); 
MPI_Comm_size (comm, &p); 
datum_size = get_size (dtype); 
create_mixed_xfer_arrays (id, p, n, &rec_count,&rec_disp); 

if (! id) 
buffer = my~alloc (id, n*datU!lLsize); 

for (i ~ 0; i < m; i ++) ( 

MPl_Gatherv laii), BLOCK_SIZE(id,p,n), dtype, buEfer, 
reccount., rec_disp,c dtype, 0, MPI_COW'LWORLD); 
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• 1 

1* 

if Uid) { 
print_subvector (buffer, dtype, n); 
putchar ·('\n'i; 

tree (rec_count); 
free (rec_disp); 
if (! id) { 

free (buffer); 
putchar (' \n' ) ; 

"rint a matrix that is distributed in row-striped 
fashion among the proceEses in a communicator. 

*1 

void print_row _striped_matrix \ 
void **a, 1* IN - 2D array *1 
MPI_Oatatype dtype, 1* IN - Matrix element type * I 
int m, 1* IN - Matrix r.Ows • I 

/* TN - Matrix cols * I 
;* IN .- Communicator * I 

int n, 
~lPI_Comm comm) 

NPl_Status status; 
'void *bstorage; 

void 1c*b; 

int datuI!Lsizej 
int 1 ; 

int id~ 

int local_.rows 1 

int max_block_size; 

int prompt; 
int p. - . 

1* Resu1t of receive *1 
1* Elements received from 

another process *f 
1* 20 array tndexing into 

'bstoraqe' *; 
1* Byte3 per ele~eot *1 

1* Process rank *; 
1* This proc's rows *f 
1* Most matrix rows held by 

any process * I 
1* Dummy variable *1 
1* Nmt'ber of processes *; 

MPl Cowm_rank (corum. &id); 
MPI_Co!lUlLsize (comm, &p); 
local_rows = BLOCK_SIZE (id, p,m) ; 
if (lid) { 

print_submatrix (a, dtype, locaL_rows, n); 

i i' (p > 1) ( 

datum_size = get_size (dtype); 
max..:block_size.= BLOCK_SlZE(p-l,p,m); 
bstarag'e-rt',y~ma:lloc(i d, 



/* 

*1 
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max_block_size * n * datum_size); 
b = (void **) ~j~alloc lid, 

max_block_size * datum_size); 
b[O] bstorage; 
for (i = 1: i < malcblock_s.ize; i++) 

biij = b[i-11 ;. n * datum_size·; 

for (i = 1; i< p; iH).{ 

MPCSend (£promp1:, 1, MPCINT, L PROMPT_MBC, 

MPI_COillLWORLD) ; 
MPI_Recv (bstorage, BLOCK_SIZE(i,p/m)*n. dtype, 

i, RESpONSE_~GG, MPI_COMM_WORLD. &status); 
print~submatrix (b, dtype, BLOCK_SIZE{i,p,m), nl; 

freB (bl; 
free (bstorage); 

put char (' \n') ; 
else { 
MPI]ecv (&:prompt, 1, 11PLIN':', 0, PROMPT_MSG, 

MPl_COMM_WORLD, &scatus); 
MPl_Send lOa, locaLrows * n, dtype, 0, RESPONSE_MSG, 

IfFI_CDMM_WORLD1; 

Print a vector that is block distributed among the 
processes in a COllinlunicator. 

void.print_block_vector 
void 'v, 
MPi:_Datatype dtype, 
int 
MPLCorrun 

n, 
corum) 

1* IN - Address of vector .. / 
/* IN - Vector· element type" I 
/* IN - Elements in vector *1 
/* IN - Communicator *j 

int datum_size; /* Bytes per vector element */ 
int 
int 
MP:l_Status 
void 
int 
int 

1; 

prompt; 
status; 
*trnp; 
id; 
p; 

1* Dummy variable "j 

/* Result of receive "; 
1* Other process's subvector ,; 
I' Process rank *; 
1* Number of processes *1 

NPI_C01llIILSize (comm, &p); 
MPl_ComnLrank leo:ran, &id) j 

datUl1LS1Ze = get_size (dtype); 
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It 

* 
* 
°1 

if (! id) [ 
print_subvector (v, dtype, BI,(X'K_SIZE(id, p, oJ); 

if (p > 1) { 

tmp '" my_malloc (id,BLOCK_SIZE(p-l,p,n)*datuffi_size); 
for (i = 1; i < p; i++) ( 

MPI_Send (&pwmpt; L !{PI_INT, i, PROMPT_MSG, 
coroml; 

MFCRecv (tmp, BLOCK_SIZE (i,p,n) , dtype. i, 
RESPONSE_MSG, carom, &status); 

print_subvector (tmp, dtype. BLOCK_SIZE(i,p,n)}; 

free (tmp); 

. print[ ("\n\n"); 
else { 
MPI_Recv (&prompt, 1, MPI_INT, 0, PROMPT_MSG, comm, 

&status} ; 
MPI_Send (v, BLOCK_SIZE (id.p,n) , dtype, 0, 

RESPQNSE_MSG, corum); 

Print a vector that is replicated among the processes 
in a communicatOl:. 

void print_replicateG_vector ( 
void *v, /* TN Address of vector *1 
MPJ_Datatype dtype, 1* IN - Vector element type *1 
int n, 1* IN - Elements in vector *1 
MPl_Corum corum) 1° IN - Communicator *1 

int id; 1* Process rank °1 

if (lid) ( 
print_subvector (v, dtype, n); 
printf ['\n\n"); 



Debugging MPI Programs 

C.1 INTRODUCTION 
Progranuning is an error-prone activity. While careful design is perhaps the single 
most important step in developing a correct program, virtually every programmer . 
writes programs that need debugging. Most programmers use a symbolic debugger 
to isolate .some bugs and printf statements to find the rest; the amOU!!l of 
time spent with each methodology depends upon the prognmuner's skill and the 
complexity of the application. 

Debugging parallel programs is much harder than debugging serial pro­
gr!lIllS. First, there is much more to go wron g. Multiple processes are perfonning 
computations that interact with each_other through a variety of message-passing 
funLiions. Second, parallel debuggers are not a~ advanced a~ serial debuggers. 
Typically, parallel programmers do not have access to good tools. 

This appendix lists the kinds of bugs typically found in MPI programs, and 
il provides some rules of thumb for debugging your programs. 

C.2 TYPICAL BUGS IN MPI PROGRAMS 

C.2.1 Bugs Leading to Deadlock 

A process is deadlocked if it is "blocked waiting for a condition that wiII never 
become.true"f3]. An MPI program will not be completed if one or more of it~ 
processes are deadlocked. You can often trace deadlock in an MPI program to 
one of the two following bugs: 

Deadlock Bug 1 A Single. process calls a collective communication function. 
For e:lample, only the loot process calls MPI_Reduce or MPI_Bcas t. 

Prevention. Do not put a call to a collective communication function inside 
conditionally executed code. If you must pUl the call inside conditional! y executed 
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code, ensure that the conditional expression evaluates to the same value on 
every process, so that either aU or none ofthe processes enler the block of code 
containing the collective corrununication function. 

Deadlock Bug 2 Two or more processes are trying to exchange data, bUI all call 
a blocking receive function such as !<IPT _Recv before any calls an MPI send 
function. 

Prevention There are several ways to prevent this bug. FirstJ you could structure 
your program so that processes always call MPI_Serid or another message­
sending function before they call MPT_Recv. Second, you could replace the 

:;;,,,,.{,,,,, ", -C'~(;:':-,'ci{~~'r;;'f1,Irir8f.t~nEti0llca,lls ~~I,:..send and MPI_Recv withtlJe single function call 
':t'+PI-=SEmdi~cv~' w1,ijch iB,guaranteOO nQt todeadlock: Third, you could replace 

the bioeking call HP CRecv with the nonbloc1dng call MPI_l'recv and place 
the matching call to MPI_Wait after the callw MPCSend. 

Deadlock Bug 3 A process tries.to receive data, [rom a process that will never 
send it, resulting in deadlock. ' 

Prevention If the rank number does not correspond to a process in the com­
municirtor;the MPI run:time system will catch the error. However, this does not 
help you if the raltk is In the acceptable range. The best way to avoid this bug is 
to use collective communications functions whenever possible, If point-to-point 
commtinications are necessary, keep the conuriunicalion pattern simple. 

Deadlqck Bug 4 A process tries to receive ,data from itself. 

,PreveJl,tion Asim:pie examination of the source code can weed out instances 
of this bug. As an alternative, YOir courd put a run-time check before each call to 
a receive functi6n. 

C.2.2 Bugs Leading'to Incorrect Results 

Incorrect Result Bug 1 Type mismatch between send and receive. For exam­
ple, the sending process may put a message with element type !.fPI_INT into 
the buffer, while the receiving process may read a message with element type 
t.fPT~FLOAT. 

Prevention Structure your program so that each can to a message-sending func­
tion has exactly one matching call to a message-receiving function. Make sure it 
is 'easy to'determiiiethe,receive that goes with each send; Double-check to ensure 

. that thet)JrureMuncti~ncaUs assume the message has the same length and the 

. same element type; 

Incorrect Result Bug 2 Mixed-up parameters. An example of this kind of error 
is!feversing theordefofthe first and second parameters to MPI_Reduce. 

Prevention Most MPI functions have many parameters. Your safest strategy 
;1' " . is 10 refer .to. the: f,unCti€lR. headers in Appendix A whenever coding up an MPI 

'! I funenlfin,lt(CJiIUSurelthat3toupuNbe:a.guments inthecorre<.i ·order. . 
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C.2.3 Advantages of Collective Communications 

There are more opportunitie.~ for bugs with point-Io-point communications (e.g., 
send and receive) than with collective communications (e.g., broadcast and 
reduce). In a collective communication, typically all processes are at the same 
point of execution in the program. All processes usually invoke the function from 
the same line of the source program. Hence all the arguments are the same. If one 
process has called the function correctly, all have. 

In contra.~~ consider point-to-point {;ommunications. In Joost local commu­
nications the sender and Ibe receiver are calling different MPI functions,· creating 
opportunities for argument mismatches or other errors. It is possible to indi­
cate the wrong source or destinatiQJ!2~~tl'tfl",;mme at'guments 
wrong, to get "'Tong the number of data elements being passed, or to specify the 
wrong tag. 

For these reasons, use collective communications whenever it makes sense. 

C.3 PRACTICAL DEBUGGING STRATEGIES 
• If the parallel program will run on a single process, your first step should be 

to get the one-process version of the parallel prograII} working correctly. It 
often tests much of the program's functionality, such as I/O. More 
importantly, you can take advantage of a sequential debugger to sel 
breakpoints, test values, etc. 

• After you have the program working correctly with one process, work with 
the smallest number of processes that allows all of the program's 
functionality to be exercised. Usually two or three processes are sufficient. 

• Work with the smallest problem size that exercises all of the program's 
functionality. For example, when writing a program that solves a system of 
linear equations, a 4 x 4 system might exercise the same functionality as a 
1024 x 1024 system. By using a smaller problem size, you can put in 
printf statements that let you look at entire data structures. In addition, 
since the program has less output, the output you do get will be easier to 
understand. 

• Put fflush (stdout)i after every pri.ntf statement. Otherwise, you 
may not get all of the output produced by every process before your 
program crashes/deadlocks. 

• For point-to-point messages, print the data that are being sent and print the 
data that are received to make sure that the values match. 

• The messages received from anyone process will be in chronological order, 
but messages received from different processes do not necessarily arrive in 
chronological order. Do not assume if a message from process X appears 
before a message from process Y, that message X was printed before 
message Y. Prefix each message with the process rank, then nm the output 
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of the program through the Unix sort. utility. This will organize output by 
process, which is about as well a.~ you can do. 

• First debug the initialization phase of the program to make sure that all the 
data structures have been set lip correct! y. 

• Check to make sure that the local indices used to access local data on each 
processor are correctly calculated. 

• When debugging the program, do not combine messages or use complex 
data structures to optimize performance. Fiflit get the logic right Then 
worry about combining messages or taking other performance-enhancing 
steps, 

~c'o~$;~.~~>~~,'~,:~;;"'~oIi!'~i;;;;"):.~ .. ,,~. >e 



This appendix reviews how tD perform arithmetic on complex numbers. The 
material cI osely foUows the presentation of Weaver {112]. 
A complex number is an ordered pair of real numbers, denoted (x, y). We call 

x the real part of the complex number and y the imaginary part. Two cmnplex 
numbers (x" y,) and (X2, yz) are equal if.and only if x, == X2 and y, == J2. 

Let .2,'= (x" yd and Z2 = (X2' yz) be two complex numbers. The sum of 
these complex numbe~s is 

z, +Z2 = (x, +X2, YI + yz) 

The product of these complex numbers is 

ZIZZ = (X,X2 - Y,h X,Y2 + YIXZ) 

Addition and multiplication with complex numbers is commutative, associa­
tive, and distributive, 

Any real number x can be represented as the complex number (X, 0). 
Three special complex numbers are the z.ero element, the unit elemen~ and 

the imaginary unit element. 
The zero element, denoted 0, is the complex number (0,0). 
The sum of any complex number z and the zero element is z: 

z +0 = (x,y) + (0,0) = (x +O,y + 0) = (x,y) = Z 

The product of any complex number z and the 7i:rO element is 0: 

zO = (x, y)(O, 0) == (x x 0 - Y x 0, x x 0 + y x 0) = (0,0) = 0 

The unit element, denoted 1, is the complex number (1,0). 
The product of any complex number z and the unit element is z: 

z x 1= (x,y)(1,O) = (x x 1- y x 0, I x y+O xx) = (x,y)==z 
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The inuiginary el~ment, denoted i, is the complex number (0,1). The 
imaginary element is the square robt of -1: 

,2 = (0, 1)(0, 1) = (0 x 0 - 1 x 1,0 x I + I X 0) = (-1,0):= -I 

See Figure D.l. We have represented the complex number z asx +iy, where 
the horizontal axis corresponds to the real part of z; and the vertical axis corre­
sponds to the imaginary part of z. 

Real 

Figure D.1 Every complex number zcan 
be represented as an ordered pair of real 
numbers (x, y), where x is the real part and 
y is the imaginary part. It can also be 
represented as a vector having length r and 
angle 0, where 1/ is measured 
counterclockwise from the real axis. 
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We can also think of z as a vector having length r and angle 0, where f! if;' 
measured counterclockwise from the real axis. Note that 

l =rcosO 

y=rsinB 

Using these equations we can write l = X + iy = r(cos 0 + i sin B). 
When we study the discrete Fourier trdJIsform we want to represent l in 

exponential fonn, which we derive here. Using Taylor's series we can sh?w 

and 

e3 n-> 97 

sin tI = e - - + - - - + ... 
3 5 7 

02 e4 (J6 
case = 1-- + - - + .. -

246 

i& • 02 j83 (J4 ie) 
e =1+lB----+-+-+.·· 

234 5 

= (I -~ + ~ + .. -) + i ((J _ ~ + e; + ... ) 
Combining Ihese equations yields 

ei~ = cos (J + i sin (J 

e-iB = cosO - i sinO 

Recall that z = x + iy =r(cos(J + i sin(J). Hence 

is another way to represent a complex number. 
One property of the exponential representation of complex numbers is that 

it simplifies multiplicalion and division. Let 21 == rleli
, and 22 = r2eih be two 

complex numbers. Then 

ZdZ2 = (rll')/(r2i') :;= (rJ/r 2)i1
-

OI 

A complex nth roat of unity is a complex number w suchthirt w' = 1, the 
ullit element 

There are exactly n complex nth roots of unity, represented by e21rik /. for 
k = 1,2, ... , n. 

The complex number e2rri
/", denotedwn, is the principal nth roat afunity. 

Figure D.2 illustrates the principal eighth root of unity and its powers, the 
other complex eighth roots of unity. 
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Figure. D.2 °lhep(inoipat,eightti;motot~··'·,;~;ic;:!,::';.;,.,ii:i'S; ;'''~ 
unity and its powers. . . 



A P 

OpenMP Functions e 

This appendix describes aU the C/CH functions In the 0penMP srandm'd. 
Eyery function has either no parameters or one parameter. All parameters are 

input parameters, where the caller provides the value. AU· results are returned to 
the user Ibrough the function's return value. 

int'DIDP_get __ dynamic (void) 

Function omp_get_dynamic returns 1 if dynamic threads are enabled and 
o if they are disabled. 

int omp_get_~_threads (void) 

Function omp_get_max_threads returns an integer whose value is the 
maximum number of threads that the run-time system will let your program create. 

int omp_get_nested (void) 

Function omp~et_nested returns 1 if nested parallelism is enabled 
and 0 otherwise. All current OpenMP implementations have nested parallelism 
disabled by default. 

int omp_get_num~rocs (void) 

Function omp_getJluffi_procs returns the number of processors the 
pardilel program can use. 

int omp_get._num_threads (void) 

Function amp _get_num_threads returns the number of threads that are 
currently active. If it is called from a serial portion of the program, the function 
returns I. 
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int omp_get_thread __ num (void) 

Function omp_get_ thread_numretums the thread's identification num­
ber. If there are t active threads. the thread identification numbers range from 0 
tot - L 

int omp_in~arallel (void) 

Function omp_in_"'parallel returns I ifit has been called inside a parallel 
block and 0 otherwise. 

void omp __ set_dynamic ( 
int k j I< 1 = ON, 0 FA{,SE':Jr7t '" 

Function omp_set __ dynamic can be used to enable or disable dynamic 
threads. If dynamic threads are enabled, the run-time system may adjust the 
number of active threads to mat~ the humber of physical processQrs available. 
You may wish to disable dynamic threads if you want to know exactly how many 
threads are created when parallel regions are entered. 

void omp~set_Dested ( 
int k /* 1 = enable; 0 = disable */ 

Functio~ omp _set _ nes t €d is used 10 enable or disable nested parallelism. 
Current implementations ofOpenMP only support one level of parallelism. Nested 
parallelism is turned off by default, and activating it has no effect. Hence this 
function call has no value in current OpenMP iniplementations. 

void omp~set_num_tbreads { 
int t /* :--Tumber of threads desired */ 

Function omp_set_nllID_threads sets the desired number of parallel 
tbrea.ds for subsequent executions of parallel regions. The numbeLof threads may 
exceed the number of available processors, in which case multiple threads may 
be mapped to the same processor. This call must be made from a serial portion 
of a program. 
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