Introduction to OpenMP

Scientific Computing for Engineers: Spring 2017

Piotr Luszczek’

Innovative Computing Laboratory, University of Tennessee Knoxville

January 25, 2017

"luszczek (at) icl.utk.edu

Outline

. Introduction

—

2. Models
. Syntax and Semantics
. Individual Directives

. Work Sharing

3

4

5

6. Synchronization Primitives

7. Memory Consistency Model Considerations
8. Runtime

9. Mutual Exclusion, Timing, and Environment

10. Conclusions, Summary, Further Reading

Acknowledgment

These slides are adapted from the
Lawrence Livermore National Laboratory
OpenMP Tutorial
by
Blaise Barney
available at
https://computing.linl.gov/tutorials/openMP/

https://computing.llnl.gov/tutorials/openMP/

What is OpenMP?

m A language extension and an Application Program Interface
(API) that may be used to explicitly direct multi-threaded,
shared memory parallelism
m Comprises three primary APl components
m Compiler Directives
®m Runtime Library Routines
m Environment Variables

m Portable

m The API is specified for C/C++ and Fortran

m Has been implemented for most major platforms including
Unix/Linux platforms and Windows NT derivatives (Visual
Studio 2012)

What is OpenMP? (continued)

m Standardized
m Jointly defined and endorsed by a group of major computer
hardware and software vendors
m Still hoping for an ANSI standard
m What does OpenMP stand for?
m Short version: OpenMulti-Processing
m Long version: Open specifications for Multi-Processing via
collaborative work between interested parties from the
hardware and software industry, government and academia.

OpenMP is NOT

Meant for distributed memory parallel systems (by itself)
Necessarily implemented identically by all vendors
Guaranteed to make the most efficient use of shared memory

Required to check for data dependencies, data conflicts, race
conditions, or deadlocks

Required to check for code sequences that cause a program
to be classified as non-conforming

Meant to cover compiler-generated automatic parallelization
and directives to the compiler to assist such parallelization
Designed to guarantee that input or output to the same file is
synchronous when executed in parallel

m The programmer is responsible for synchronizing input and
output.

History of OpenMP

m In the early 90’s, vendors of shared-memory machines
supplied similar, directive-based, Fortran programming
extensions.

m The user would augment a serial Fortran program with
directives specifying which loops were to be parallelized.

m The compiler would be responsible for automatically
parallelizing such loops across the SMP processors.

m Implementations were all functionally similar, but were
divergent.

m First attempt at a standard was the draft for ANSIX3H5 in 1994.

m It was never adopted, largely due to waning interest as
distributed memory machines became popular.

History of OpenMP (continued)

m The OpenMP standard specification started in the spring of
1997, taking over where ANSI X3H5 had left off, as newer shared
memory machine architectures started to become prevalent.

m Led by the OpenMP Architecture Review Board (ARB). Original

ARB members included: (Disclaimer: all partner names
derived from the OpenMP web site)

Compaq / Digital (acquired by HP)

Hewlett-Packard Company (split into HP-E and HP-PC)
Intel Corporation

International Business Machines (IBM)

Kuck & Associates, Inc. (KAI) acquired by Intel

Silicon Graphics, Inc. (acquired by Rackable and now HPE)
Sun Microsystems, Inc. (acquired by Oracle)

U.S. Department of Energy ASCI program

Other Contributors

m Endorsing application developers

ADINA R&D, Inc.

ANSYS, Inc.

Dash Associates

Fluent, Inc.

ILOG CPLEX Division

Livermore Software Technology Corporation (LSTC)
MECALOG SARL

Oxford Molecular Group PLC

The Numerical Algorithms Group Ltd.(NAG)

m Endorsing software vendors

Absoft Corporation

Edinburgh Portable Compilers
GENIAS Software GmBH

Myrias Computer Technologies, Inc.
The Portland Group, Inc. (PGI)

OpenMP Release History

| 1997 | 1998 | 1999 [2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |

Fortran 1.0 | Fortran 1. C/C++ 2.0 OpenMP 2.5

c/c++10 Fortran2.0

2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |

OpenMP 3.0 OpenMP 3.1 OpenMP 4.5

OpenMP 4.0

Goals of OpenMP

m Standardization
m Provide a standard among a variety of shared memory
architectures/platforms
m Lean and mean
m Establish a simple and limited set of directives for
programming shared memory machines
m Significant parallelism can be implemented by using just 3 or 4
directives.
m Ease of Use
m Provide capability to incrementally parallelize a serial program,
unlike message-passing libraries which typically require an all
or nothing approach
m Provide the capability to implement both coarse-grain and
fine-grain parallelism
m Portability
m Supports Fortran (77, 90, 95, 2003, 2008); C and C++
m Public forum for APl and membership

OpenMP Programming Model

m Shared memory, thread-based parallelism
m OpenMP is based upon the existence of multiple threads in the
shared memory programming paradigm.
m A shared memory process consists of multiple threads.
m Explicit Parallelism
m OpenMP is an explicit (not automatic) programming model,
offering the programmer full control over parallelization.
m OpenMP uses the fork-join model of parallel execution.
m Compiler directive-based
m Most OpenMP parallelism is specified through the use of
compiler directives which are imbedded in C/C++ or Fortran
source code.
m Nested parallelism support
m The API provides for the placement of parallel constructs
inside of other parallel constructs.
m Implementations may or may not support this feature.

Fork-Join N\(gdel (akja BSP [1F, 2])

— J
— Ol — (0] - |0 - 0 —
master | R | — I R|— I
thread | K | — N K| — N
parallel region parallel region

m All OpenMP programs begin as a single process: the master
thread. The master thread executes sequentially until the first
parallel region construct is encountered.

m FORK: the master thread then creates a team of parallel
threads

m The statements in the program that are enclosed by the
parallel region construct are then executed in parallel among
the team threads.

m JOIN: When the team threads complete the statements in the

parallel region construct, they synchronize and terminate,
leaving only the master thread

Input/Output

m OpenMP specifies nothing about parallel I/0. This is
particularly important if multiple threads attempt to
read/write from/to the same file.

m If every thread conducts I/0 to a different file, the issues are
not as significant.

m Itis entirely up to the programmer to ensure that I/0 is
conducted correctly within the context of a multi-threaded
program.

Memory Model

m OpenMP provides a relaxed-consistency and temporary view
of thread memory (in their words). In other words, threads
can cache their data and are not required to maintain exact
consistency with real memory all of the time.

m When it is critical that all threads view a shared variable
identically, the programmer is responsible for insuring that
the variable is FLUSHed by all threads as needed.

m More on this later...

OpenMP Code Structure — Fortran

PROGRAM HELLO
INTEGER VAR1, VAR2, VAR3
Serial code

Beginning of parallel section. Fork a team of threads. Specify variable
scoping

ISOMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)
Parallel section executed by all threads

All threads join master thread and disband
ISOMP END PARALLEL
Resume serial code

END

OpenMP Code Structure - C/C++

#include <omp.h>
int main (void) {

intvar1, var2, vars;
Serial code

Beginning of parallel section. Fork a team of threads. Specify variable
scoping
#pragma omp parallel private(vari, var2) shared(vars)

{

Parallel section executed by all threads

All threads join master thread and disband

}

Resume serial code

Fortran Directives Format

<sentinel> <directive-name> [clause...]

m All Fortran OpenMP directives must begin with a sentinel. The
accepted sentinels depend on the type of Fortran source (see
next two slides).

m Avalid OpenMP directive must appear after the sentinel and
before any clauses.

m Optional clauses can be in any order and repeated as
necessary unless otherwise restricted.

m Example:

1$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)

Fortran Directives Format (continued)

m Fixed Form Source

m !SOMP CSOMP SOMP are accepted sentinels and must start in
column1

m All Fortran fixed form rules for line length, white space,
continuation and comment columns apply for the entire
directive line

m Initial directive lines must have a space/zero in column 6.

m Continuation lines must have a non-space/zero in column 6.

m Free Form Source

m !SOMP is the only accepted sentinel. Can appear in any column,
but must be preceded by white space only.

m All Fortran free form rules for line length, white space,
continuation and comment columns apply for the entire
directive line

m Initial directive lines must have a space after the sentinel.

m Continuation lines must have an ampersand as the last
non-blank character in a line. The following line must begin
with a sentinel and then the continuation directives.

Fortran Directives Format

m General Rules

m Comments cannot appear on the same line as a directive

m Only one directive-name may be specified per directive

m Fortran compilers that are OpenMP enabled generally include
a command line option that instructs the compiler to activate
and interpret all OpenMP directives.

m Several Fortran OpenMP directives come in pairs and have the
form shown below. The “end” directive is optional but advised
for readability.

1$OMP <directive> [structured block of code]
I$OMP end <directive>

C/C++ Directives Format

#pragma omp <directive-name> [clause,...]

m New line at the end required and precedes the structured
block that follows the directive

Example:
#pragma omp parallel default(shared) private(beta,pi)

C/C++ Directives Format (continued)

m General Rules:

m Case sensitive

m Directives follow conventions of the C/C++ standards for
compiler directives.

m Only one directive-name may be specified per line.

m Each directive applies to at most one succeeding statement,
which must be a structured block.

m Long directive lines can be “continued” on succeeding lines by
escaping the newline character with a backslash (“\") at the
end of a directive line.

Directive Scoping

m Static (Lexical) Extent
m The code textually enclosed between the beginning and the
end of a structured block following a directive.
m The static extent of a directives does not span multiple
routines or code files

m Orphaned Directive

m An OpenMP directive that appears independently from another
enclosing directive is said to be an orphaned directive. It exists
outside of another directive’s static (lexical) extent.

m Will span routines and possibly code files

m Dynamic Extent

m The dynamic extent of a directive includes both its static
(lexical) extent and the extents of its orphaned directives.

Directive Scoping Example

PROGRAM TEST SUBROUTINE SUB1
e ,
1$0MP PARALLEL !'$OMP CRITICAL

e .
1$0MP DO !'$OMP END CRITICAL

DO I=. . . o

St SUBROUTINE SUB2 ...
END DO 1$0MP SECTIONS

CALL suB2 !$OMP END SECTIONS

!$OMP END PARALLEL END DO

< tAtirrCcveen~ ORPHANED DIRECTIVES

'STA'IjIC EXTENT el The CRITICAL and SECTIONS
The DO directive occurs within an . . .
directives occur outside an

enclosing parallel region. enclosing parallel region.

DYNAMIC EXTENT
The CRITICAL and SECTIONS directives occur within the dynamic extent of
the DO and PARALLEL directives.

PARALLEL Region Construct

m Block of code that will be executed by multiple threads

m Fundamental OpenMP parallel construct

m When a thread reaches a PARALLEL directive, it creates a team
of threads and becomes the master of the team. The master is
a member of that team and has thread number o within that
team.

m Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.

m There is an implied barrier at the end of a parallel section.
Only the master thread continues execution past this point.

m If any thread terminates within a parallel region, all threads in
the team will terminate, and the work done up until that point
is undefined.

PARALLEL Region Syntax — Fortran

ISOMP PARALLEL [clause ...]
IF (scalar_logical_expression)
PRIVATE (list)
SHARED (list)
DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
FIRSTPRIVATE (list)
REDUCTION (operator: list)
COPYIN (list)
NUM_THREADS (scalar-integer-expression)
block
ISOMP END PARALLEL

PARALLEL Region Syntax — C/C++

#tpragma omp parallel [clause ...]

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer-expression)
structured_block

PARALLEL Region — Number of Threads

m The number of threads in a parallel region is determined by
the following factors, in order of precedence:
Evaluation of the IF clause
Setting of the NUM_THREADS clause
Use of the omp_set_num_threads() library function
Setting of the OMP_NUM _THREADS environment variable
Implementation default — usually the number of cores on a
node.

m Threads are numbered from 0 (master thread) to N — 1

Nested Parallel Regions

m Use the omp_get_nested() library function to determine if
nested parallel regions are enabled.

m The two methods available for enabling nested parallel
regions (if supported) are:

m The omp_set_nested() library routine
m Setting of the OMP_NESTED environment variable to TRUE

m If not supported, a parallel region nested with in another
parallel region results in the creation of a new team,
consisting of one thread, by default.

PARALLEL Region Restrictions

m A parallel region must be a structured block that does not
span multiple routines or code files

m ltisillegal to branch into or out of a parallel region
m Only a single IF clause is permitted
m Only a single NUM_THREADS clause is permitted

PARALLEL Region Example — Fortran

PROGRAM HELLO
INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS,
+ OMP_GET_THREAD_NUM
C Fork a team of threads with each thread having a private TID variable
ISOMP PARALLEL PRIVATE(TID)
C Obtain and print thread id
TID = OMP_GET_THREAD_NUM()
PRINT * 'Hello World from thread =’, TID
C Only master thread does this
IF (TID .EQ. 0) THEN
NTHREADS = OMP_GET_NUM_THREADS()
PRINT * 'Number of threads ="', NTHREADS
END IF
C All threads join master thread and disband
ISOMP END PARALLEL
END

PARALLEL Region Example — C/C++

#include <omp.h>
int main(void) {
int nthreads, tid;
/* Fork a team of threads with each thread having a private tid variable */
#pragma omp parallel private(tid)
{
/* Obtain and print thread id */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n”, tid);
[* Only master thread does this */
if (tid == 0) {
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n”, nthreads);

}
}

[* All threads join master thread and terminate */

}

Work-sharing Constructs

A work-sharing construct divides the execution of the
enclosed code region among the members of the team that
encounter it.

Work-sharing constructs do not launch new threads

There is no implied barrier upon entry to a work-sharing
construct, however there is an implied barrier at the end of a
work sharing construct.

A work-sharing construct must be enclosed dynamically
within a parallel region in order for the directive to execute in
parallel.

Work-sharing constructs must be encountered by all members
of a team or none at all

Successive work-sharing constructs must be encountered in
the same order by all members of a team.

Types of Work-sharing Constructs

m DO/for
m Shares iterations of a loop across the team
m Represents a type of “data parallelism”

m SECTIONS

m Breaks work into separate, discrete sections

m Each section is executed by a thread.

m Can be used to implement a type of “functional parallelism”
m SINGLE

m Serializes a section of code

Fortran DO Directive Syntax

ISOMP DO [clause ...]
SCHEDULE (type [,chunk])
ORDERED
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator | intrinsic : list)
COLLAPSE (n)

do_loop

ISOMP END DO [NOWAIT]

C/C++ DO Directive Syntax

#tpragma omp for [clause ...]
schedule (type [,chunk])
ordered
private (list)
firstprivate (list)
lastprivate (list)
shared (list)
reduction (operator: list)
collapse (n)
nowait

for_loop

SCHEDULE Clause

Describes how iterations of the loop are divided among the threads in
the team. The default schedule is implementation dependent.

STATIC Loop iterations are divided into pieces of size chunk and then
statically assigned to threads. If chunk is not specified, the iterations are
evenly (if possible) divided contiguously among the threads.

DYNAMIC Loop iterations are divided into pieces of size chunk, and
dynamically scheduled among the threads; when a thread finishes one
chunk, it is dynamically assigned another. The default chunk size is 1.
GUIDED For a chunk size of 1, the size of each chunk is proportional to
the number of unassigned iterations divided by the number of threads,
decreasing to 1. For a chunk size with value k (greater than 1), the size of
each chunk is determined in the same way with the restriction that the
chunks do not contain fewer than k iterations (except for the last chunk
to be assigned, which may have fewer than k iterations). The default
chunk size is 1.

RUNTIME The scheduling decision is deferred until runtime by the
environment variable OMP_SCHEDULE. It is illegal to specify a chunk size
for this clause.

Other DO/for Clauses

NOWAIT/nowait If specified, then threads do not synchronize at
the end of the parallel loop.

ORDERED Specifies that the iterations of the loop must be
executed as they would be in a serial program.

COLLAPSE Specifies how many loops in a nested loop should be
collapsed into one large iteration space and divided
according to the schedule clause. The sequential
execution of the iterations in all associated loops
determines the order of the iterations in the collapsed
iteration space.

Other clauses are described in detail later.

Fortran DO Directive Example
PROGRAM VEC_ADD_DO
INTEGER N, CHUNKSIZE, CHUNK, |
PARAMETER (N=1000, CHUNKSIZE=100)
REAL A(N), B(N), C(N)
! Some initializations
DO1=1,N
A(l)=1*1.0
B(1) = A(l)
END DO
CHUNK = CHUNKSIZE
ISOMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
ISOMP DO SCHEDULE(DYNAMIC,CHUNK)
DO1=1,N
C(1) = A(1) + B(1)
END DO
ISOMP END DO NOWAIT
ISOMP END PARALLEL
END

C/C++ for Directive Example

#include <omp.h>
#tdefine CHUNKSIZE 100
#tdefine N 1000
int main (void) {
int i, chunk;
float a[N], b[N], c[N];
/* Some initializations */
for (i=0; i < N; i++) alil = b[il =i * 1.0;
chunk = CHUNKSIZE;
#tpragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++) c[i] = a[i] + b[i;
}

} /* end of parallel section */

SECTIONS Directive — Fortran Syntax

ISOMP SECTIONS [clause ...]
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (operator | intrinsic : list)
ISOMP SECTION
block
ISOMP SECTION
block
ISOMP END SECTIONS [NOWAIT]

SECTIONS Directive - C/C++ Syntax

#pragma omp sections [clause ...]
private (list)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
nowait

{

#pragma omp section newline
structured_block

#pragma omp section newline
structured_block

}

SECTIONS Directive Example - Fortran

PROGRAM VEC_ADD_SECTIONS
INTEGER N, 1
PARAMETER (N=1000)
REAL A(N), B(N), C(N), D(N)
I Some initializations
DOI=1N
Al)=1*15
B(I) =1 +22.35
END DO
ISOMP PARALLEL SHARED(A,B,C,D), PRIVATE(I)
ISOMP SECTIONS
ISOMP SECTION
DOI=1N
c(1) = A1) + B(1)
END DO
ISOMP SECTION
DOI=1N
D(1) = A1) * B(1)
END DO
ISOMP END SECTIONS NOWAIT
ISOMP END PARALLEL
END

SECTIONS Directive Example — C/C++

int main (void) {
int i; float a[N], b[N], c[N], d[N];
for (i=0; i < N; i++) { /* Some initializations */
alil]=i*15; bli] =i+ 22.35;
}

#pragma omp parallel shared(a,b,c,d) private(i)

{

#pragma omp sections nowait
{
#pragma omp section
for (i=0; i < N; i++) c[i] = a[i] + b[i];
#pragma omp section
for (i=0; i < N; i++) d[i] = a[i] * blil;
} /* end of sections */
} /* end of parallel section */

Questions for Thought

m What happens if the number of threads and the number of
SECTIONSs are different?

m What if there are more threads than SECTIONs?
m Fewer threads than SECTIONS?
m Which thread executes which SECTION?

Synchronization Constructs

m Motivation: Consider a simple example where two threads on
two different processors are both trying to increment a
variable x at the same time (assume x is initially o).

THREAD 1: THREAD 2:
increment(x) { increment(x) {
X=X+1; X=X+1;
} }
THREAD 1: THREAD 2:
10 LOAD A, (x address) | 10 LOAD A, (x address)
20 ADD A, 1 20 ADD A, 1
30 STORE A, (x address) | 30 STORE A, (x address)

m The incrementation of x must be synchronized between the
two threads to insure that the correct result is produced.

m OpenMP provides a variety of synchronization constructs that
control how the execution of each thread proceeds relative to
other team threads.

Synchronization Constructs

m The CRITICAL directive specifies a region of code that must be
executed by only one thread at a time.

ISOMP CRITICAL [name]

Fortran | block

ISOMP END CRITICAL

#pragma omp critical [name]

C/C++ structured_block

m If a thread is currently executing inside a CRITICAL region and
another thread reaches that CRITICAL region and attempts to
execute it, it will block until the first thread exits that CRITICAL
region.

m The optional name enables multiple different CRITICAL
regions to exist.

m Names act as global identifiers. Different CRITICAL regions
with the same name are treated as the same region.

m All unnamed CRITICAL regions are treated as the same region.

CRITICAL Directive Example

PROGRAM CRITICAL #include <omp.h>
INTEGER X int main(void) {
X=0 intx=o0;
ISOMP PARALLEL SHARED(X) #pragma omp parallel shared(x)
ISOMP CRITICAL {
X=X+1 #pragma omp critical
ISOMP END CRITICAL X=X+1;
ISOMP END PARALLEL } /* end of parallel region */

END }

Other Synchronization Constructs

[] \ MASTER directive \ specifies a region that is to be executed only by
the master thread
m All other threads on the team skip this section of code.
Fortran !SOMP MASTER C/C++ #pragma omp master
block structured block
ISOMP END MASTER
m | BARRIER directive | synchronizes all threads in the team
m When a BARRIER directive is reached, a thread will wait at that
point until all other threads have reached that barrier. All
threads then resume executing in parallel the code that follows
the barrier.
Fortran !SOMP BARRIER C/C++ #tpragma omp barrier
[] \ATOMIC directive \ designates a given memory location for atomic

update, rather than letting multiple threads attempt to write
m Applies only to a single, immediately following statement (only

limited syntax supported)

Fortran 'SOMP ATOMIC C/C++ #pragma omp atomic

FLUSH Directive

m Identifies a synchronization point at which the
implementation must provide a consistent view of memory

m Thread-visible variables are written back to memory at this
point.

m Necessary to instruct the compiler that a variable must be
written to/read from the memory system, i.e. that a variable
cannot be kept in a local CPU register

m Keeping a variable in a register in a loop is very common when
producing efficient machine language code for a loop.

FLUSH Directive (continued)

Fortran !SOMP FLUSH (list)
C/C++ #pragma omp flush (list)

m The optional list contains a list of named variables that will
be flushed in order to avoid flushing all variables. For pointers
in the list, the pointer itself is flushed, not the object to which
it points.

m Implementations must ensure any prior modifications to
thread-visible variables are visible to all threads after this
point; i.e., compilers must restore values from registers to
memory, hardware might need to flush write buffers, etc.

m The FLUSH directive is implied for the directives shown in the
table below. The directive is not implied if a NOWAIT clause is
present.

FLUSH Directive and the End of Other
Directives

The FLUSH directive is implied for the directives shown in the table
below. The directive is not implied if a NOWAIT clause is present.

Fortran C/C++

BARRIER barrier

END PARALLEL parallel - upon entry and exit
CRITICAL and END CRITICAL critical — upon entry and exit
END DO for — upon exit

END SECTIONS sections - upon exit

END SINGLE single — upon exit

ORDERED and END ORDERED ordered - upon entry and exit

ORDERED Directive

Specifies that iterations of the enclosed loop will be executed in the
same order as if they were executed on a serial processor

Threads will need to wait before executing their chunk of iterations
if previous iterations haven’t completed yet.

Used within a DO / for loop with an ORDERED clause

The ORDERED directive provides a way to "fine tune” where ordering
is to be applied within a loop. Otherwise, it is not required.

An ORDERED directive can only appear in the dynamic extent of the
following directives:

Fortran DO or PARALLEL DO C/C++ for or parallel for
Only one thread is allowed in an ordered section at any time

It is illegal to branch into or out of an ORDERED block.

An iteration of a loop must not execute the same ORDERED directive
more than once, and it must not execute more than one ORDERED

directive.

A loop that contains an ORDERED directive must be a loop with an

ORDERED clause.

ORDERED Directive Syntax

Fortran !SOMP DO ORDERED [clauses...]
(loop region)
ISOMP ORDERED
(block)
ISOMP END ORDERED
(end of loop region)
ISOMP END DO

C/C++ #tpragma omp for ordered [clauses...]
(loop region)
#pragma omp ordered
structured_block
(endo of loop region)

ORDERED Directive Syntax

#include <stdio.h> void test2(int iter) {
#tinclude <omp.h> #fpragma omp ordered
static float a[1000], b[1000], c[1000 printf("test2() iteration %d\n”,
I iter);
void test(int first, int last) { }
inti; int main(void) {
#tpragma omp for schedule(static) int i;
ordered #ipragma omp parallel
for (i = first; i <= last; ++i) { {
/* Do something here. */ test(1, 8);
if(i%2){ #pragma omp for ordered
#pragma omp ordered for(i=0;i<5;i++)
printf("test() iteration %d\n”, i); test2(i);
¥ }

Data Scope Attribute Clauses

m Also called data sharing attribute clauses
m Because OpenMP is based upon the shared memory
programming model, most variables are shared by default.
m Global variables include:
m Fortran: COMMON blocks, SAVE variables, MODULE variables
m C/C++: File scope variables, static
m Private variables include:
m Loop index variables
m Stack variables in subroutines called from parallel regions
m Fortran: Automatic variables within a statement block
m Clauses used to explicitly define how variables should be
scoped include:
m PRIVATE SHARED
FIRSTPRIVATE LASTPRIVATE
DEFAULT
REDUCTION
COPYIN

Data Scope Attribute Clauses (continued)

m Used in conjunction with several directives (PARALLEL, DO/for,
and SECTIONS) to control the scoping of enclosed variables.

m Provide the ability to control the data environment during
execution of parallel constructs

m Define how and which data variables in the serial section of
the program are transferred to the parallel sections of the
program (and back)

m Define which variables will be visible to all threads in the
parallel sections and which variables will be privately
allocated to all threads

m Effective only with in their lexical/static extent

PRIVATE and SHARED Clauses

m PRIVATE Clause

m Declares variables in its list to be private to each thread

m A new object of the same type is declared once for each thread
in the team.

m All references to the original object are replaced with
references to the new object.

m Variables declared PRIVATE should be assumed to be
uninitialized for each thread.

m SHARED Clause

m Declares variables in its list to be shared among all threads in
the team

m Ashared variable exists in only one memory location and all
threads can read or write to that address

m It is the programmer’s responsibility to ensure that multiple
threads properly access SHARED variables (such as via CRITICAL
sections)

FIRSTPRIVATE and LASTPRIVATE Clauses

m FIRSTPRIVATE Clause

m Combines the behavior of the PRIVATE clause with automatic
initialization of the variables in its list

m Listed variables are initialized according to the value of their
original objects prior to entry into the parallel or work-sharing
construct.

m LASTPRIVATE Clause

m Combines the behavior of the PRIVATE clause with a copy from
the last loop iteration or section to the original variable object

m The value copied back into the original variable object is
obtained from the last (sequentially) iteration or section of the
enclosing construct.

m For example, the team member that executes the final iteration
for a DO section, or the team member that executes the last
SECTION of a SECTIONS context, performs the copy with its own
values.

PRIVATE Variables Example

int main(void) {

int A =10;

int B, C;

int n =20;
#pragma omp parallel

{

#pragma omp for private(i) firstprivate(A) lastprivate(B)
for (inti=o;i < n;i++) {

[* ... %
B=A+i; /*Aundefined unless declared firstprivate */
[* ... %

}

C = B; /* B undefined unless declared lastprivate */
} /* end of parallel region */

DEFAULT Clause

m Allows the user to specify a default scope for all variables in
the lexical extent of any parallel region

m Specific variables can be exempted from the default using the
PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION
clauses.

m The C/C++ OpenMP specification does not include private or
firstprivate as a possible default. However, actual
implementations may provide this option.

m Using NONE as a default requires that the programmer
explicitly scope all variables.

Fortran \ DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)

C/C++ | default (shared | none)

REDUCTION Clause

m Performs a reduction on the variables that appear in its list.

m A private copy for each list variable is created for each thread.
At the end of the reduction, the reduction operator is applied
to all private copies of the shared variable, and the final result
is written to the global shared variable.

m Syntax:

Fortran | REDUCTION (operator | intrinsic: list)
C/C++ | reduction (operator: list)

REDUCTION Clause Example - Fortran
PROGRAM DOT_PRODUCT
INTEGER N, CHUNKSIZE, CHUNK, |
PARAMETER (N=100, CHUNKSIZE=10)
REAL A(N), B(N), RESULT
! Some initializations
DO1=1,N
A(D=1*1.0;:B()=1*2.0
END DO
RESULT= 0.0
CHUNK = CHUNKSIZE
ISOMP PARALLEL DO DEFAULT(SHARED) PRIVATE(I)
ISOMP& SCHEDULE(STATIC,CHUNK) REDUCTION(+:RESULT)
DO1=1,N
RESULT = RESULT + (A(1) * B(1))
END DO
ISOMP END PARALLEL DO NOWAIT
PRINT * "Final Result=", RESULT
END

REDUCTION Clause Example — C/C++

#tinclude <omp.h>
int main (void) {
inti, n =100, chunk =10;
float a[100], b[100], result = 0.0;
/* Some initializations */
for (i=0; i < n; i++) {

ali]=i*1.0;
bli]=i*2.0;
}

#tpragma omp parallel for default(shared) private(i) \
schedule(static,chunk) reduction(+:result)

for (i=0; i < n; i++)

result += (a[i] * b[il);

printf("Final result= %f\n”,result);

THREADPRIVATE Directive

Used to make global file scope variables (C/C++) or common blocks
(Fortran) local and persistent to a thread through the execution of

multiple parallel regions
Must appear after the declaration of listed variables/common

blocks
Each thread then gets its own copy of the variable/common block,

so data written by one thread is not visible to other threads.
On first entry to a parallel region, data in THREADPRIVATE variables

and common blocks should be assumed undefined, unless a COPYIN

clause is specified in the PARALLEL directive
THREADPRIVATE variables differ from PRIVATE ones because they are

able to persist between different parallel sections of a code.
Data in THREADPRIVATE objects is guaranteed to persist only if the

dynamic threads mechanism is "turned off” and the number of
threads in different parallel regions remains constant. The default

setting of dynamic threads is undefined.
Fortran ﬁ ISOMP THREADPRIVATE (/cb/, ...)

C/C++ | #tpragma omp threadprivate (list)

THREADPRIVATE Example - Fortran

PROGRAM THREADPRIV
INTEGER A, B, I, TID, OMP_GET_THREAD_NUM ; REAL*4 X
COMMON /C1/ A
ISOMP THREADPRIVATE(/C1/, X)
C ** * Explicitly turn off dynamic threads * * *
CALL OMP_SET_DYNAMIC(.FALSE.)
PRINT * "1st Parallel Region:’
ISOMP PARALLEL PRIVATE(B, TID)
TID = OMP_GET_THREAD_NUM ()
A=TID;B=TID;X=1a4*TID +1.0
PRINT * "Thread’,TID,”: A,B,X=",A,B,X
ISOMP END PARALLEL
PRINT * 'Master thread doing serial work here’, 2nd Parallel Region:’
ISOMP PARALLEL PRIVATE(TID)
TID = OMP_GET_THREAD_NUM ()
PRINT * 'Thread’,TID,: A,B,X=",A,B,X
ISOMP END PARALLEL
END

THREADPRIVATE Example - C/C++

#tinclude <omp.h>
inta, b, i, tid; float x;
#pragma omp threadprivate(a, x)
int main (void) {
omp_set_dynamic(o); /* Explicitly turn off dynamic threads */
printf("1st Parallel Region:\n");
#pragma omp parallel private(b,tid)
{
tid = omp_get_thread_num(); a = tid; b = tid; x = 1.1 * tid +1.0;
printf("Thread %d: a,b,x= %d %d %f\n" tid,a,b,x);
} /* end of parallel region */
printf("Master thread doing serial work here\n");
printf("2nd Parallel Region:\n");
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num();
printf("Thread %d: a,b,x= %d %d %f\n" tid,a,b,x);
1 /* end of parallel section */

COPYIN Clause

m Provides a means for assigning the same value to
THREADPRIVATE variables for all threads in the team

m List contains the names of variables to copy. In Fortran, the
list can contain both the names of common blocks and
named variables.

m The master thread variable is used as the copy source. The
team threads are initialized with its value upon entry into the
parallel construct.

Fortran | COPYIN (list)
C/C++ | copyin (list)

Runtime Library Routines

m The OpenMP standard defines an API for library calls that
perform a variety of functions:

m Query the number of threads/processors, set number of
threads to use

m General purpose locking routines (semaphores)

m Portable wall clock timing routines

m Set execution environment functions: nested parallelism,
dynamic adjustment of threads.

m For C/C++, it may be necessary to specify the include file
"omp.h".

Note: Your implementation may or may not support nested
parallelism and/or dynamic threads. If nested parallelism is
supported, it is often only nominal, in that a nested parallel region
may only have one thread.

OMP_SET_NUM_THREADS()

m Sets the number of threads that will be used in the next
parallel region

m Must be a positive integer

m Can only be called from serial portion of the code

m Has precedence over the OMP_NUM_THREADS environment
variable
Fortran \ SUBROUTINE OMP_SET_NUM_THREADS(integer)

C/C++ | #include <omp.h>
void omp_set_num_threads(int num_threads)

OMP_GET_NUM_THREADS() and

OMP_GET_THREAD_NUM()

m OMP_GET_NUM_THREADS()

m Returns the number of threads that are currently in the team

executing the parallel region from which it is called
m OMP_GET_THREAD_NUM()

m Returns the thread number of the thread, within the team,
making this call. This number will be between 0 and
OMP_GET_NUM_THREADS-1. The master thread of the team is
thread o.

m If called from a nested parallel region, or a serial region, this
function will return o.

Fortran | INTEGER FUNCTION OMP_GET_NUM _THREADS()
INTEGER FUNCTION OMP_GET_THREAD_NUM()
C/C++ | #include <omp.h>
int omp_get_num_threads(void)
int omp_get_thread_num(void)

OMP_GET_MAX_THREADS()

m Returns the maximum value that can be returned by a call to
the OMP_GET_NUM_THREADS function

m Generally reflects the number of threads as set by the
OMP_NUM_THREADS environment variable or the
OMP_SET_NUM_THREADS() library routine.

m May be called from both serial and parallel regions of code
Fortran | INTEGER FUNCTION OMP_GET_MAX_THREADS()

C/C++ | #include <omp.h>
int omp_get_max_threads(void)

OMP_GET_THREAD_LIMIT() and
OMP_GET_NUM_PROCS()

m OMP_GET_THREAD_LIMIT()
m New with OpenMP 3.0
m Returns the maximum number of OpenMP threads available to
a program
m OMP_GET_NUM_PROCS()
m Returns the number of processors that are available to the
program

Fortran

INTEGER FUNCTION OMP_GET_THREAD_LIMIT()
INTEGER FUNCTION OMP_GET_NUM_PROCS()

C/C++

#tinclude <omp.h>
int omp_get_thread_limit(void)
int omp_get_num_procs(void)

OMP_IN_PARALLEL()

m May be called to determine if the section of code currently
executing is parallel or not

m For Fortran, this function returns .TRUE. if it is called from the
dynamic extent of a region executing in parallel, and .FALSE.
otherwise. For C/C++, it will return a non- zero integer if
parallel, and zero otherwise.

Fortran ‘ LOGICAL FUNCTION OMP_IN_PARALLEL()
C/C++ | #tinclude <omp.h>
int omp_in_parallel(void)

OMP_SET_DYNAMIC()

m Enables or disables dynamic adjustment (by the run time
system) of the number of threads available for execution of
parallel regions

m For Fortran, if called with .TRUE. then the number of threads
available for subsequent parallel regions can be adjusted
automatically by the run-time environment. If called with
.FALSE., dynamic adjustment is disabled.

m For C/C++, if dynamic_threads evaluates to non-zero, then the
mechanism is enabled, otherwise it is disabled.

m The OMP_SET_DYNAMIC subroutine has precedence over the
OMP_DYNAMIC environment variable.

m The default setting is implementation dependent.

m Must be called from a serial section of the program

Fortran | SUBROUTINE OMP_SET_DYNAMIC(scalar_logical_expressit

C/C++ | #include <omp.h>
void omp_set_dynamic(int dynamic_threads)

OMP_GET_DYNAMIC()

m Used to determine if dynamic thread adjustment is enabled
or not

m For Fortran, this function returns .TRUE. if dynamic thread
adjustment is enabled, and .FALSE. otherwise.

m For C/C++, non-zero will be returned if dynamic thread
adjustment is enabled, and zero otherwise.

Fortran ‘ LOGICAL FUNCTION OMP_GET_DYNAMIC()
C/C++ | #include <omp.h>
int omp_get_dynamic(void)

OMP_SET_NESTED()

m Used to enable or disable nested parallelism
m For Fortran, calling this function with .FALSE. will disable
nested parallelism, and calling with .TRUE. will enable it.

m For C/C++, if nested evaluates to non-zero, nested parallelism
is enabled; otherwise it is disabled.

m The default is for nested parallelism to be disabled.

m This call has precedence over the OMP_NESTED environment
variable.
Fortran | SUBROUTINE OMP_SET_NESTED(scalar_logical_expr)
C/C++ | #tinclude <omp.h>
void omp_set_nested(int nested)

OMP_GET_NESTED()

m Used to determine if nested parallelism is enabled or not
m For Fortran, this function returns .TRUE. if nested parallelism
is enabled, and .FALSE. otherwise.

m For C/C++, non-zero will be returned if nested parallelism is
enabled, and zero otherwise.

Fortran ‘ LOGICAL FUNCTION OMP_GET_NESTED()
C/C++ | #tinclude <omp.h>
int omp_get_nested(void)

Locking Routines

m OMP_INIT_LOCK()

m Initializes a lock associated with the lock variable

m The initial state is unlocked.

m For Fortran, var must be an integer large enough to hold an
address, such as INTEGER *8 on 64-bit systems.

Fortran | SUBROUTINE OMP_INIT_LOCK(var)
C/C++ | #tinclude <omp.h>
void omp_init_lock(omp_lock_t *lock)
m OMP_DESTROY_LOCK()
m Disassociates the given lock variable from any locks
Fortran ‘ SUBROUTINE OMP_DESTROY_LOCK(var)
C/C++ | #include <omp.h>
void omp_destroy_lock(omp_lock_t *lock)

Locking Routines (continued)

m OMP_SET_LOCK()

m Forces the executing thread to wait until the specified lock is

available
Fortran \ SUBROUTINE OMP_SET_LOCK(var)
C/C++ | #include <omp.h>
void omp_set_lock(omp_lock_t *lock)

m OMP_UNSET_LOCK()

m Releases the lock from the executing thread
m OMP_TEST_LOCK()

m Attempts to set a lock, but does not block if the lock is
unavailable

OMP_GET_WTIME()

m Provides a portable wall clock timing routine

m Returns a double-precision floating point value equal to the
number of elapsed seconds since some point in the past

m Usually used in pairs with the value of the first call subtracted
from the value of the second call to obtain the elapsed time
for a block of code

m Designed to be per thread times, and therefore may not be
globally consistent across all threads in a team

Fortran ‘ DOUBLE PRECISION FUNCTION OMP_GET_WTIME()
C/C++ | #tinclude <omp.h>
double omp_get_wtime(void)

OpenMP Environment Variables

m OMP_SCHEDULE

m Applies only to DO, PARALLEL DO (Fortran) and for, parallel for
(C/C++) directives which have their schedule clause set to
RUNTIME. The value of this variable determines how iterations
of the loop are scheduled on processors.

m For example:
setenv OMP_SCHEDULE "guided, 4"
setenv OMP_SCHEDULE "dynamic”

m OMP_NUM_THREADS

m Sets the number of threads to use during execution
m For example:
setenv OMP_NUM_THREADS 8

OpenMP Environment Variables (cont.-d)

m OMP_DYNAMIC
m Enables or disables dynamic adjustment of the number of
threads available for execution of parallel regions
m Valid values are TRUE or FALSE.
m For example:
setenv OMP_DYNAMIC TRUE

® OMP_NESTED

m Enables or disables nested parallelism
m Valid values are TRUE or FALSE.
m For example:

setenv OMP_NESTED TRUE

Thread Stack Size

m The OpenMP standard does not specify how much stack space
a thread should have. Consequently, implementations will
differ in the default thread stack size.

m Default thread stack size can be easy to exhaust. It can also
be non-portable between compilers.

m Threads that exceed their stack allocation may or may not seg
fault. An application may continue to run while data is being
corrupted.

m Statically linked codes may be subject to further stack
restrictions.

m A user’s login shell may also restrict stack size.

m May need to increase thread stack size. How to do this is
system-dependent.

Performance Expectations

m One might expect to get an N times speedup when running a
program parallelized using OpenMP on an N processor/core
platform. However, this is seldom the case due to the
following reasons:

m A large portion of the program may not be parallelized by
OpenMP, which means that the theoretical upper limit of
speedup is limited according to Amdahl’s law.

m N processors in a SMP may have N times the computation
power, but the memory bandwidth usually does not scale up N
times. Quite often, the original memory path is shared by
multiple processors and performance degradation may be
observed when they compete for the shared memory
bandwidth.

m Many other common problems affecting the final speedup in
parallel computing also apply to OpenMP, such as load
balancing and synchronization overhead.

References and Further Reading

OpenMP website: openmp.org
API specifications, FAQ, presentations, discussions, media
releases, calendar, membership application and more ...

Wikipedia: en.wikipedia.org/wiki/OpenMP

Barbara Chapman, Gabriele Jost, and Ruud van der Pas: Using
OpenMP. The MIT Press, 2008.

Compiler documentation

IBM: www-4.ibm.com/software/ad/fortran

Cray: http://docs.cray.com/ (Cray Fortran Reference Manual)
Intel: www.intel.com/software/products/compilers/

PGI: www.pgroup.com

PathScale: http://www.pathscale.com/EKOPath-User-Guide
GNU: http://gcc.gnu.org/projects/gomp/

cOMPunity http://www.compunity.org/
A International workshop on OpenMP www.iwomp.org

openmp.org
en.wikipedia.org/wiki/OpenMP
www-4.ibm.com/software/ad/fortran
http://docs.cray.com/
www.intel.com/software/products/compilers/
www.pgroup.com
http://www.pathscale.com/EKOPath-User-Guide
http://gcc.gnu.org/projects/gomp/
http://www.compunity.org/
www.iwomp.org

Advanced Usage, Alternative Views and

Opinions on OpenMP

Tasks API
m Compare with Apple’s Grand Central Dispatch, Cilk, Cilk++, Intel
Parallel Collections, ompSS, StarPU, QUARK, Thread Building
Blocks, ...
Features specific to C++
m Not covered: invocation of c-tors (constructors) and d-tors, ...
Thread local storage
EPCC micro benchmark
m http://www.epcc.ed.ac.uk/software-products/
openmpmpi-microbenchmarks
Is OpenMP for Users? by William Gropp
m www.cs.illinois.edu/~wgropp/bib/talks/tdata/2004/
openmpusers.pdf
@A OpenACC and OpenMP 4.0
m Work in progress that depends on committee time, community
feedback, and market pressures within the industry

http://www.epcc.ed.ac.uk/software-products/openmpmpi-microbenchmarks
http://www.epcc.ed.ac.uk/software-products/openmpmpi-microbenchmarks
www.cs.illinois.edu/~wgropp/bib/talks/tdata/2004/openmpusers.pdf
www.cs.illinois.edu/~wgropp/bib/talks/tdata/2004/openmpusers.pdf

References

@ L. Vvaliant.
A bridging model for parallel computation.
Communications of ACM, 33(8):103-111, 1990.

@ L. G.Valiant.
Bulk-synchronous parallel computers.
In M. Reeve, editor, Parallel Processing and Artificial
Intelligence, pages 15-22. John Wiley & Sons, 1989.

	Introduction
	Models
	Syntax and Semantics
	Individual Directives
	Work Sharing
	Synchronization Primitives
	Memory Consistency Model Considerations
	Runtime
	Mutual Exclusion, Timing, and Environment
	Conclusions, Summary, Further Reading

