
Introduction to OpenMP
Scienti�c Computing for Engineers: Spring 2017

Piotr Luszczek1

Innovative Computing Laboratory, University of Tennessee Knoxville

January 25, 2017

1luszczek (at) icl.utk.edu

Outline
1. Introduction

2. Models

3. Syntax and Semantics

4. Individual Directives

5. Work Sharing

6. Synchronization Primitives

7. Memory Consistency Model Considerations

8. Runtime

9. Mutual Exclusion, Timing, and Environment

10. Conclusions, Summary, Further Reading

Acknowledgment

These slides are adapted from the
Lawrence Livermore National Laboratory

OpenMP Tutorial
by

Blaise Barney
available at

https://computing.llnl.gov/tutorials/openMP/

https://computing.llnl.gov/tutorials/openMP/

What is OpenMP?

A language extension and an Application Program Interface
(API) that may be used to explicitly direct multi-threaded,
shared memory parallelism
Comprises three primary API components

Compiler Directives
Runtime Library Routines
Environment Variables

Portable
The API is speci�ed for C/C++ and Fortran
Has been implemented for most major platforms including
Unix/Linux platforms and Windows NT derivatives (Visual
Studio 2012)

What is OpenMP? (continued)

Standardized
Jointly de�ned and endorsed by a group of major computer
hardware and so�ware vendors
Still hoping for an ANSI standard

What does OpenMP stand for?
Short version: OpenMulti-Processing
Long version: Open speci�cations for Multi-Processing via
collaborative work between interested parties from the
hardware and so�ware industry, government and academia.

OpenMP is NOT
Meant for distributed memory parallel systems (by itself)
Necessarily implemented identically by all vendors
Guaranteed to make the most e�cient use of shared memory
Required to check for data dependencies, data con�icts, race
conditions, or deadlocks
Required to check for code sequences that cause a program
to be classi�ed as non-conforming
Meant to cover compiler-generated automatic parallelization
and directives to the compiler to assist such parallelization
Designed to guarantee that input or output to the same �le is
synchronous when executed in parallel

The programmer is responsible for synchronizing input and
output.

History of OpenMP

In the early 90’s, vendors of shared-memory machines
supplied similar, directive-based, Fortran programming
extensions.
The user would augment a serial Fortran program with
directives specifying which loops were to be parallelized.
The compiler would be responsible for automatically
parallelizing such loops across the SMP processors.
Implementations were all functionally similar, but were
divergent.
First attempt at a standard was the dra� for ANSIX3H5 in 1994.

It was never adopted, largely due to waning interest as
distributed memory machines became popular.

History of OpenMP (continued)

The OpenMP standard speci�cation started in the spring of
1997, taking over where ANSI X3H5 had le� o�, as newer shared
memory machine architectures started to become prevalent.
Led by the OpenMP Architecture Review Board (ARB). Original
ARB members included: (Disclaimer: all partner names
derived from the OpenMP web site)

Compaq / Digital (acquired by HP)
Hewlett-Packard Company (split into HP-E and HP-PC)
Intel Corporation
International Business Machines (IBM)
Kuck & Associates, Inc. (KAI) acquired by Intel
Silicon Graphics, Inc. (acquired by Rackable and now HPE)
Sun Microsystems, Inc. (acquired by Oracle)
U.S. Department of Energy ASCI program

Other Contributors
Endorsing application developers

ADINA R&D, Inc.
ANSYS, Inc.
Dash Associates
Fluent, Inc.
ILOG CPLEX Division
Livermore So�ware Technology Corporation (LSTC)
MECALOG SARL
Oxford Molecular Group PLC
The Numerical Algorithms Group Ltd.(NAG)

Endorsing so�ware vendors
Abso� Corporation
Edinburgh Portable Compilers
GENIAS So�ware GmBH
Myrias Computer Technologies, Inc.
The Portland Group, Inc. (PGI)

OpenMP Release History
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Fortran 1.0

C/C++ 1.0

Fortran 1.1

Fortran 2.0

C/C++ 2.0 OpenMP 2.5

OpenMP 3.0 OpenMP 3.1

OpenMP 4.0

OpenMP 4.5

Goals of OpenMP
Standardization

Provide a standard among a variety of shared memory
architectures/platforms

Lean and mean
Establish a simple and limited set of directives for
programming shared memory machines
Signi�cant parallelism can be implemented by using just 3 or 4
directives.

Ease of Use
Provide capability to incrementally parallelize a serial program,
unlike message-passing libraries which typically require an all
or nothing approach
Provide the capability to implement both coarse-grain and
�ne-grain parallelism

Portability
Supports Fortran (77, 90, 95, 2003, 2008); C and C++

Public forum for API and membership

OpenMP Programming Model
Shared memory, thread-based parallelism

OpenMP is based upon the existence of multiple threads in the
shared memory programming paradigm.
A shared memory process consists of multiple threads.

Explicit Parallelism
OpenMP is an explicit (not automatic) programming model,
o�ering the programmer full control over parallelization.

OpenMP uses the fork-join model of parallel execution.
Compiler directive-based
Most OpenMP parallelism is speci�ed through the use of
compiler directives which are imbedded in C/C++ or Fortran
source code.
Nested parallelism support

The API provides for the placement of parallel constructs
inside of other parallel constructs.
Implementations may or may not support this feature.

Fork-Join Model (aka BSP [1, 2])
F → J F → J

→ O → O → O → O →
master R → I R → I
thread K → N K → N

parallel region parallel region
All OpenMP programs begin as a single process: the master
thread. The master thread executes sequentially until the �rst
parallel region construct is encountered.
FORK: the master thread then creates a team of parallel
threads
The statements in the program that are enclosed by the
parallel region construct are then executed in parallel among
the team threads.
JOIN: When the team threads complete the statements in the
parallel region construct, they synchronize and terminate,
leaving only the master thread

Input/Output

OpenMP speci�es nothing about parallel I/O. This is
particularly important if multiple threads attempt to
read/write from/to the same �le.
If every thread conducts I/O to a di�erent �le, the issues are
not as signi�cant.
It is entirely up to the programmer to ensure that I/O is
conducted correctly within the context of a multi-threaded
program.

Memory Model

OpenMP provides a relaxed-consistency and temporary view
of thread memory (in their words). In other words, threads
can cache their data and are not required to maintain exact
consistency with real memory all of the time.
When it is critical that all threads view a shared variable
identically, the programmer is responsible for insuring that
the variable is FLUSHed by all threads as needed.
More on this later. . .

OpenMP Code Structure – Fortran
PROGRAM HELLO
INTEGER VAR1, VAR2, VAR3

Serial code
.
.
Beginning of parallel section. Fork a team of threads. Specify variable
scoping

!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)
Parallel section executed by all threads
.
.
All threads join master thread and disband

!$OMP END PARALLEL
Resume serial code
. . .

END

OpenMP Code Structure – C/C++
#include <omp.h>
int main (void) {

int var1, var2, var3;
Serial code
. . .
Beginning of parallel section. Fork a team of threads. Specify variable
scoping

#pragma omp parallel private(var1, var2) shared(var3)
{

Parallel section executed by all threads
. . .

All threads join master thread and disband
}

Resume serial code
. . .
}

Fortran Directives Format

<sentinel> <directive-name> [clause...]

All Fortran OpenMP directives must begin with a sentinel. The
accepted sentinels depend on the type of Fortran source (see
next two slides).
A valid OpenMP directive must appear a�er the sentinel and
before any clauses.
Optional clauses can be in any order and repeated as
necessary unless otherwise restricted.
Example:

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)

Fortran Directives Format (continued)
Fixed Form Source

!$OMP C$OMP $OMP are accepted sentinels and must start in
column 1
All Fortran �xed form rules for line length, white space,
continuation and comment columns apply for the entire
directive line
Initial directive lines must have a space/zero in column 6.
Continuation lines must have a non-space/zero in column 6.

Free Form Source
!$OMP is the only accepted sentinel. Can appear in any column,
but must be preceded by white space only.
All Fortran free form rules for line length, white space,
continuation and comment columns apply for the entire
directive line
Initial directive lines must have a space a�er the sentinel.
Continuation lines must have an ampersand as the last
non-blank character in a line. The following line must begin
with a sentinel and then the continuation directives.

Fortran Directives Format

General Rules
Comments cannot appear on the same line as a directive
Only one directive-name may be speci�ed per directive
Fortran compilers that are OpenMP enabled generally include
a command line option that instructs the compiler to activate
and interpret all OpenMP directives.
Several Fortran OpenMP directives come in pairs and have the
form shown below. The “end” directive is optional but advised
for readability.

!$OMP <directive> [structured block of code]
!$OMP end <directive>

C/C++ Directives Format

#pragma omp <directive-name> [clause,...]

New line at the end required and precedes the structured
block that follows the directive

Example:
#pragma omp parallel default(shared) private(beta,pi)

C/C++ Directives Format (continued)

General Rules:
Case sensitive
Directives follow conventions of the C/C++ standards for
compiler directives.
Only one directive-name may be speci�ed per line.
Each directive applies to at most one succeeding statement,
which must be a structured block.
Long directive lines can be “continued” on succeeding lines by
escaping the newline character with a backslash (“\”) at the
end of a directive line.

Directive Scoping

Static (Lexical) Extent
The code textually enclosed between the beginning and the
end of a structured block following a directive.
The static extent of a directives does not span multiple
routines or code �les

Orphaned Directive
An OpenMP directive that appears independently from another
enclosing directive is said to be an orphaned directive. It exists
outside of another directive’s static (lexical) extent.
Will span routines and possibly code �les

Dynamic Extent
The dynamic extent of a directive includes both its static
(lexical) extent and the extents of its orphaned directives.

Directive Scoping Example
PROGRAM TEST
...

!$OMP PARALLEL
...

!$OMP DO
DO I=. . .
...
CALL SUB1 ...
END DO
...
CALL SUB2
...

!$OMP END PARALLEL

SUBROUTINE SUB1
...

!$OMP CRITICAL
...

!$OMP END CRITICAL
END

SUBROUTINE SUB2 ...
...

!$OMP SECTIONS
...

!$OMP END SECTIONS
...
END DO

STATIC EXTENT
The DO directive occurs within an

enclosing parallel region.

ORPHANED DIRECTIVES
The CRITICAL and SECTIONS
directives occur outside an
enclosing parallel region.

DYNAMIC EXTENT
The CRITICAL and SECTIONS directives occur within the dynamic extent of

the DO and PARALLEL directives.

PARALLEL Region Construct

Block of code that will be executed by multiple threads
Fundamental OpenMP parallel construct
When a thread reaches a PARALLEL directive, it creates a team
of threads and becomes the master of the team. The master is
a member of that team and has thread number 0 within that
team.
Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.
There is an implied barrier at the end of a parallel section.
Only the master thread continues execution past this point.
If any thread terminates within a parallel region, all threads in
the team will terminate, and the work done up until that point
is unde�ned.

PARALLEL Region Syntax – Fortran

!$OMP PARALLEL [clause ...]
IF (scalar logical expression)
PRIVATE (list)
SHARED (list)
DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
FIRSTPRIVATE (list)
REDUCTION (operator: list)
COPYIN (list)
NUM THREADS (scalar-integer-expression)

block
!$OMP END PARALLEL

PARALLEL Region Syntax – C/C++

#pragma omp parallel [clause ...]
if (scalar expression)
private (list)
shared (list)
default (shared | none)
�rstprivate (list)
reduction (operator: list)
copyin (list)
num threads (integer-expression)

structured block

PARALLEL Region – Number of Threads

The number of threads in a parallel region is determined by
the following factors, in order of precedence:

1 Evaluation of the IF clause
2 Setting of the NUM THREADS clause
3 Use of the omp set num threads() library function
4 Setting of the OMP NUM THREADS environment variable
5 Implementation default – usually the number of cores on a
node.

Threads are numbered from 0 (master thread) to N − 1

Nested Parallel Regions

Use the omp get nested() library function to determine if
nested parallel regions are enabled.
The two methods available for enabling nested parallel
regions (if supported) are:

The omp set nested() library routine
Setting of the OMP NESTED environment variable to TRUE

If not supported, a parallel region nested with in another
parallel region results in the creation of a new team,
consisting of one thread, by default.

PARALLEL Region Restrictions

A parallel region must be a structured block that does not
span multiple routines or code �les
It is illegal to branch into or out of a parallel region
Only a single IF clause is permitted
Only a single NUM THREADS clause is permitted

PARALLEL Region Example – Fortran
PROGRAM HELLO
INTEGER NTHREADS, TID, OMP GET NUM THREADS,
+ OMP GET THREAD NUM

C Fork a team of threads with each thread having a private TID variable
!$OMP PARALLEL PRIVATE(TID)
C Obtain and print thread id

TID = OMP GET THREAD NUM()
PRINT *, ’Hello World from thread = ’, TID

C Only master thread does this
IF (TID .EQ. 0) THEN
NTHREADS = OMP GET NUM THREADS()
PRINT *, ’Number of threads = ’, NTHREADS

END IF
C All threads join master thread and disband
!$OMP END PARALLEL

END

PARALLEL Region Example – C/C++
#include <omp.h>
int main(void) {

int nthreads, tid;
/* Fork a team of threads with each thread having a private tid variable */
#pragma omp parallel private(tid)

{
/* Obtain and print thread id */
tid = omp get thread num();
printf(”Hello World from thread = %d\n”, tid);
/* Only master thread does this */
if (tid == 0) {
nthreads = omp get num threads();
printf(”Number of threads = %d\n”, nthreads);

}
}

/* All threads join master thread and terminate */
}

Work-sharing Constructs
A work-sharing construct divides the execution of the
enclosed code region among the members of the team that
encounter it.
Work-sharing constructs do not launch new threads
There is no implied barrier upon entry to a work-sharing
construct, however there is an implied barrier at the end of a
work sharing construct.
A work-sharing construct must be enclosed dynamically
within a parallel region in order for the directive to execute in
parallel.
Work-sharing constructs must be encountered by all members
of a team or none at all
Successive work-sharing constructs must be encountered in
the same order by all members of a team.

Types of Work-sharing Constructs

DO/for
Shares iterations of a loop across the team
Represents a type of “data parallelism”

SECTIONS
Breaks work into separate, discrete sections
Each section is executed by a thread.
Can be used to implement a type of “functional parallelism”

SINGLE
Serializes a section of code

Fortran DO Directive Syntax

!$OMP DO [clause ...]
SCHEDULE (type [,chunk])
ORDERED
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator | intrinsic : list)
COLLAPSE (n)

do loop
!$OMP END DO [NOWAIT]

C/C++ DO Directive Syntax

#pragma omp for [clause ...]
schedule (type [,chunk])
ordered
private (list)
�rstprivate (list)
lastprivate (list)
shared (list)
reduction (operator: list)
collapse (n)
nowait

for loop

SCHEDULE Clause
Describes how iterations of the loop are divided among the threads in
the team. The default schedule is implementation dependent.
STATIC Loop iterations are divided into pieces of size chunk and then
statically assigned to threads. If chunk is not speci�ed, the iterations are
evenly (if possible) divided contiguously among the threads.
DYNAMIC Loop iterations are divided into pieces of size chunk, and
dynamically scheduled among the threads; when a thread �nishes one
chunk, it is dynamically assigned another. The default chunk size is 1.
GUIDED For a chunk size of 1, the size of each chunk is proportional to
the number of unassigned iterations divided by the number of threads,
decreasing to 1. For a chunk size with value k (greater than 1), the size of
each chunk is determined in the same way with the restriction that the
chunks do not contain fewer than k iterations (except for the last chunk
to be assigned, which may have fewer than k iterations). The default
chunk size is 1.
RUNTIME The scheduling decision is deferred until runtime by the
environment variable OMP SCHEDULE. It is illegal to specify a chunk size
for this clause.
AUTO The scheduling decision is delegated to the compiler and/or
runtime system.

Other DO/for Clauses

NOWAIT/nowait If speci�ed, then threads do not synchronize at
the end of the parallel loop.

ORDERED Speci�es that the iterations of the loop must be
executed as they would be in a serial program.

COLLAPSE Speci�es how many loops in a nested loop should be
collapsed into one large iteration space and divided
according to the schedule clause. The sequential
execution of the iterations in all associated loops
determines the order of the iterations in the collapsed
iteration space.

Other clauses are described in detail later.

Fortran DO Directive Example
PROGRAM VEC ADD DO
INTEGER N, CHUNKSIZE, CHUNK, I
PARAMETER (N=1000, CHUNKSIZE=100)
REAL A(N), B(N), C(N)

! Some initializations
DO I = 1, N
A(I) = I * 1.0
B(I) = A(I)

END DO
CHUNK = CHUNKSIZE

!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP DO SCHEDULE(DYNAMIC,CHUNK)

DO I = 1, N
C(I) = A(I) + B(I)

END DO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

END

C/C++ for Directive Example
#include <omp.h>
#de�ne CHUNKSIZE 100
#de�ne N 1000
int main (void) {

int i, chunk;
�oat a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++) a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++) c[i] = a[i] + b[i];
}

} /* end of parallel section */

SECTIONS Directive – Fortran Syntax

!$OMP SECTIONS [clause ...]
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
REDUCTION (operator | intrinsic : list)

!$OMP SECTION
block

!$OMP SECTION
block

!$OMP END SECTIONS [NOWAIT]

SECTIONS Directive – C/C++ Syntax

#pragma omp sections [clause ...]
private (list)
�rstprivate (list)
lastprivate (list)
reduction (operator: list)
nowait

{
#pragma omp section newline

structured block
#pragma omp section newline

structured block
}

SECTIONS Directive Example – Fortran
PROGRAM VEC ADD SECTIONS
INTEGER N, I
PARAMETER (N=1000)
REAL A(N), B(N), C(N), D(N)

! Some initializations
DO I = 1, N
A(I) = I * 1.5
B(I) = I + 22.35

END DO
!$OMP PARALLEL SHARED(A,B,C,D), PRIVATE(I)
!$OMP SECTIONS
!$OMP SECTION

DO I = 1, N
C(I) = A(I) + B(I)

END DO
!$OMP SECTION

DO I = 1, N
D(I) = A(I) * B(I)

END DO
!$OMP END SECTIONS NOWAIT
!$OMP END PARALLEL

END

SECTIONS Directive Example – C/C++
int main (void) {

int i; �oat a[N], b[N], c[N], d[N];
for (i=0; i < N; i++) { /* Some initializations */
a[i] = i * 1.5; b[i] = i + 22.35;

}
#pragma omp parallel shared(a,b,c,d) private(i)

{
#pragma omp sections nowait

{
#pragma omp section

for (i=0; i < N; i++) c[i] = a[i] + b[i];
#pragma omp section

for (i=0; i < N; i++) d[i] = a[i] * b[i];
} /* end of sections */

} /* end of parallel section */
}

Questions for Thought

What happens if the number of threads and the number of
SECTIONs are di�erent?
What if there are more threads than SECTIONs?
Fewer threads than SECTIONs?
Which thread executes which SECTION?

Synchronization Constructs
Motivation: Consider a simple example where two threads on
two di�erent processors are both trying to increment a
variable x at the same time (assume x is initially 0).

THREAD 1: THREAD 2:
increment(x) { increment(x) {
x = x + 1; x = x + 1;

} }
THREAD 1: THREAD 2:
10 LOAD A, (x address) 10 LOAD A, (x address)
20 ADD A, 1 20 ADD A, 1
30 STORE A, (x address) 30 STORE A, (x address)

The incrementation of x must be synchronized between the
two threads to insure that the correct result is produced.
OpenMP provides a variety of synchronization constructs that
control how the execution of each thread proceeds relative to
other team threads.

Synchronization Constructs
The CRITICAL directive speci�es a region of code that must be
executed by only one thread at a time.

!$OMP CRITICAL [name]
Fortran block

!$OMP END CRITICAL
#pragma omp critical [name]

C/C++ structured block
If a thread is currently executing inside a CRITICAL region and
another thread reaches that CRITICAL region and attempts to
execute it, it will block until the �rst thread exits that CRITICAL
region.
The optional name enables multiple di�erent CRITICAL
regions to exist.
Names act as global identi�ers. Di�erent CRITICAL regions
with the same name are treated as the same region.
All unnamed CRITICAL regions are treated as the same region.

CRITICAL Directive Example

PROGRAM CRITICAL
INTEGER X
X = 0

!$OMP PARALLEL SHARED(X)
!$OMP CRITICAL

X = X + 1
!$OMP END CRITICAL
!$OMP END PARALLEL

END

#include <omp.h>
int main(void) {

int x = 0;
#pragma omp parallel shared(x)

{
#pragma omp critical

x = x + 1;
} /* end of parallel region */

}

Other Synchronization Constructs
MASTER directive speci�es a region that is to be executed only by
the master thread
All other threads on the team skip this section of code.
Fortran !$OMP MASTER C/C++ #pragma omp master

block structured block
!$OMP END MASTER

BARRIER directive synchronizes all threads in the team
When a BARRIER directive is reached, a thread will wait at that
point until all other threads have reached that barrier. All
threads then resume executing in parallel the code that follows
the barrier.

Fortran !$OMP BARRIER C/C++ #pragma omp barrier
ATOMIC directive designates a given memory location for atomic
update, rather than letting multiple threads attempt to write

Applies only to a single, immediately following statement (only
limited syntax supported)

Fortran !$OMP ATOMIC C/C++ #pragma omp atomic

FLUSH Directive

Identi�es a synchronization point at which the
implementation must provide a consistent view of memory
Thread-visible variables are written back to memory at this
point.
Necessary to instruct the compiler that a variable must be
written to/read from the memory system, i.e. that a variable
cannot be kept in a local CPU register

Keeping a variable in a register in a loop is very common when
producing e�cient machine language code for a loop.

FLUSH Directive (continued)
Fortran !$OMP FLUSH (list)
C/C++ #pragma omp �ush (list)

The optional list contains a list of named variables that will
be �ushed in order to avoid �ushing all variables. For pointers
in the list, the pointer itself is �ushed, not the object to which
it points.
Implementations must ensure any prior modi�cations to
thread-visible variables are visible to all threads a�er this
point; i.e., compilers must restore values from registers to
memory, hardware might need to �ush write bu�ers, etc.
The FLUSH directive is implied for the directives shown in the
table below. The directive is not implied if a NOWAIT clause is
present.

FLUSH Directive and the End of Other
Directives

The FLUSH directive is implied for the directives shown in the table
below. The directive is not implied if a NOWAIT clause is present.
Fortran C/C++
BARRIER barrier
END PARALLEL parallel – upon entry and exit
CRITICAL and END CRITICAL critical – upon entry and exit
END DO for – upon exit
END SECTIONS sections – upon exit
END SINGLE single – upon exit
ORDERED and END ORDERED ordered – upon entry and exit

ORDERED Directive
Speci�es that iterations of the enclosed loop will be executed in the
same order as if they were executed on a serial processor
Threads will need to wait before executing their chunk of iterations
if previous iterations haven’t completed yet.
Used within a DO / for loop with an ORDERED clause
The ORDERED directive provides a way to ”�ne tune” where ordering
is to be applied within a loop. Otherwise, it is not required.
An ORDERED directive can only appear in the dynamic extent of the
following directives:
Fortran DO or PARALLEL DO C/C++ for or parallel for
Only one thread is allowed in an ordered section at any time
It is illegal to branch into or out of an ORDERED block.
An iteration of a loop must not execute the same ORDERED directive
more than once, and it must not execute more than one ORDERED
directive.
A loop that contains an ORDERED directive must be a loop with an
ORDERED clause.

ORDERED Directive Syntax

Fortran !$OMP DO ORDERED [clauses...]
(loop region)
!$OMP ORDERED
(block)
!$OMP END ORDERED
(end of loop region)
!$OMP END DO

C/C++ #pragma omp for ordered [clauses...]
(loop region)
#pragma omp ordered
structured block
(endo of loop region)

ORDERED Directive Syntax
#include <stdio.h>
#include <omp.h>
static �oat a[1000], b[1000], c[1000
];
void test(int �rst, int last) {

int i;
#pragma omp for schedule(static)
ordered

for (i = �rst; i <= last; ++i) {
/* Do something here. */

if (i % 2) {
#pragma omp ordered

printf(”test() iteration %d\n”, i);
}

}

void test2(int iter) {
#pragma omp ordered

printf(”test2() iteration %d\n”,
iter);
}
int main(void) {

int i;
#pragma omp parallel

{
test(1, 8);

#pragma omp for ordered
for (i = 0 ; i < 5 ; i++)
test2(i);

}
}

Data Scope Attribute Clauses
Also called data sharing attribute clauses
Because OpenMP is based upon the shared memory
programming model, most variables are shared by default.
Global variables include:

Fortran: COMMON blocks, SAVE variables, MODULE variables
C/C++: File scope variables, static

Private variables include:
Loop index variables
Stack variables in subroutines called from parallel regions
Fortran: Automatic variables within a statement block

Clauses used to explicitly de�ne how variables should be
scoped include:

PRIVATE SHARED
FIRSTPRIVATE LASTPRIVATE
DEFAULT
REDUCTION
COPYIN

Data Scope Attribute Clauses (continued)

Used in conjunction with several directives (PARALLEL, DO/for,
and SECTIONS) to control the scoping of enclosed variables.
Provide the ability to control the data environment during
execution of parallel constructs
De�ne how and which data variables in the serial section of
the program are transferred to the parallel sections of the
program (and back)
De�ne which variables will be visible to all threads in the
parallel sections and which variables will be privately
allocated to all threads
E�ective only with in their lexical/static extent

PRIVATE and SHARED Clauses
PRIVATE Clause

Declares variables in its list to be private to each thread
A new object of the same type is declared once for each thread
in the team.
All references to the original object are replaced with
references to the new object.
Variables declared PRIVATE should be assumed to be
uninitialized for each thread.

SHARED Clause
Declares variables in its list to be shared among all threads in
the team
A shared variable exists in only one memory location and all
threads can read or write to that address
It is the programmer’s responsibility to ensure that multiple
threads properly access SHARED variables (such as via CRITICAL
sections)

FIRSTPRIVATE and LASTPRIVATE Clauses
FIRSTPRIVATE Clause

Combines the behavior of the PRIVATE clause with automatic
initialization of the variables in its list
Listed variables are initialized according to the value of their
original objects prior to entry into the parallel or work-sharing
construct.

LASTPRIVATE Clause
Combines the behavior of the PRIVATE clause with a copy from
the last loop iteration or section to the original variable object
The value copied back into the original variable object is
obtained from the last (sequentially) iteration or section of the
enclosing construct.
For example, the team member that executes the �nal iteration
for a DO section, or the team member that executes the last
SECTION of a SECTIONS context, performs the copy with its own
values.

PRIVATE Variables Example
int main(void) {

int A = 10;
int B, C;
int n = 20;

#pragma omp parallel
{

#pragma omp for private(i) �rstprivate(A) lastprivate(B)
for (int i=0; i < n; i++) {
/* */
B = A + i; /* A unde�ned unless declared �rstprivate */
/* */

}
C = B; /* B unde�ned unless declared lastprivate */
} /* end of parallel region */

}

DEFAULT Clause

Allows the user to specify a default scope for all variables in
the lexical extent of any parallel region
Speci�c variables can be exempted from the default using the
PRIVATE, SHARED, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION
clauses.
The C/C++ OpenMP speci�cation does not include private or
�rstprivate as a possible default. However, actual
implementations may provide this option.
Using NONE as a default requires that the programmer
explicitly scope all variables.

Fortran DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
C/C++ default (shared | none)

REDUCTION Clause

Performs a reduction on the variables that appear in its list.
A private copy for each list variable is created for each thread.
At the end of the reduction, the reduction operator is applied
to all private copies of the shared variable, and the �nal result
is written to the global shared variable.
Syntax:

Fortran REDUCTION (operator | intrinsic: list)
C/C++ reduction (operator: list)

REDUCTION Clause Example – Fortran
PROGRAM DOT PRODUCT
INTEGER N, CHUNKSIZE, CHUNK, I
PARAMETER (N=100, CHUNKSIZE=10)
REAL A(N), B(N), RESULT

! Some initializations
DO I = 1, N
A(I) = I * 1.0 ; B(I) = I * 2.0

END DO
RESULT= 0.0
CHUNK = CHUNKSIZE

!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(I)
!$OMP& SCHEDULE(STATIC,CHUNK) REDUCTION(+:RESULT)

DO I = 1, N
RESULT = RESULT + (A(I) * B(I))

END DO
!$OMP END PARALLEL DO NOWAIT

PRINT *, ’Final Result= ’, RESULT
END

REDUCTION Clause Example – C/C++
#include <omp.h>
int main (void) {

int i, n = 100, chunk = 10;
�oat a[100], b[100], result = 0.0;
/* Some initializations */
for (i=0; i < n; i++) {
a[i] = i * 1.0;
b[i] = i * 2.0;
}
#pragma omp parallel for default(shared) private(i) \
schedule(static,chunk) reduction(+:result)
for (i=0; i < n; i++)
result += (a[i] * b[i]);
printf(”Final result= %f\n”,result);

}

THREADPRIVATE Directive
Used to make global �le scope variables (C/C++) or common blocks
(Fortran) local and persistent to a thread through the execution of
multiple parallel regions
Must appear a�er the declaration of listed variables/common
blocks
Each thread then gets its own copy of the variable/common block,
so data written by one thread is not visible to other threads.
On �rst entry to a parallel region, data in THREADPRIVATE variables
and common blocks should be assumed unde�ned, unless a COPYIN
clause is speci�ed in the PARALLEL directive
THREADPRIVATE variables di�er from PRIVATE ones because they are
able to persist between di�erent parallel sections of a code.
Data in THREADPRIVATE objects is guaranteed to persist only if the
dynamic threads mechanism is ”turned o�” and the number of
threads in di�erent parallel regions remains constant. The default
setting of dynamic threads is unde�ned.

Fortran !$OMP THREADPRIVATE (/cb/, ...)
C/C++ #pragma omp threadprivate (list)

THREADPRIVATE Example – Fortran
PROGRAM THREADPRIV
INTEGER A, B, I, TID, OMP GET THREAD NUM ; REAL*4 X
COMMON /C1/ A

!$OMP THREADPRIVATE(/C1/, X)
C * * * Explicitly turn o� dynamic threads * * *

CALL OMP SET DYNAMIC(.FALSE.)
PRINT *, ’1st Parallel Region:’

!$OMP PARALLEL PRIVATE(B, TID)
TID = OMP GET THREAD NUM ()
A = TID ; B = TID ; X = 1.1 * TID + 1.0
PRINT *, ’Thread’,TID,’: A,B,X=’,A,B,X

!$OMP END PARALLEL
PRINT *, ’Master thread doing serial work here’, ’2nd Parallel Region: ’

!$OMP PARALLEL PRIVATE(TID)
TID = OMP GET THREAD NUM ()
PRINT *, ’Thread’,TID,’: A,B,X=’,A,B,X

!$OMP END PARALLEL
END

THREADPRIVATE Example - C/C++
#include <omp.h>
int a, b, i, tid; �oat x;
#pragma omp threadprivate(a, x)
int main (void) {

omp set dynamic(0); /* Explicitly turn o� dynamic threads */
printf(”1st Parallel Region:\n”);

#pragma omp parallel private(b,tid)
{
tid = omp get thread num(); a = tid; b = tid; x = 1.1 * tid +1.0;
printf(”Thread %d: a,b,x= %d %d %f\n”,tid,a,b,x);
} /* end of parallel region */
printf(”Master thread doing serial work here\n”);
printf(”2nd Parallel Region:\n”);

#pragma omp parallel private(tid)
{
tid = omp get thread num();
printf(”Thread %d: a,b,x= %d %d %f\n”,tid,a,b,x);
} /* end of parallel section */

}

COPYIN Clause

Provides a means for assigning the same value to
THREADPRIVATE variables for all threads in the team
List contains the names of variables to copy. In Fortran, the
list can contain both the names of common blocks and
named variables.
The master thread variable is used as the copy source. The
team threads are initialized with its value upon entry into the
parallel construct.

Fortran COPYIN (list)
C/C++ copyin (list)

Runtime Library Routines

The OpenMP standard de�nes an API for library calls that
perform a variety of functions:

Query the number of threads/processors, set number of
threads to use
General purpose locking routines (semaphores)
Portable wall clock timing routines
Set execution environment functions: nested parallelism,
dynamic adjustment of threads.
For C/C++, it may be necessary to specify the include �le
”omp.h”.

Note: Your implementation may or may not support nested
parallelism and/or dynamic threads. If nested parallelism is
supported, it is o�en only nominal, in that a nested parallel region
may only have one thread.

OMP SET NUM THREADS()

Sets the number of threads that will be used in the next
parallel region
Must be a positive integer
Can only be called from serial portion of the code
Has precedence over the OMP NUM THREADS environment
variable
Fortran SUBROUTINE OMP SET NUM THREADS(integer)
C/C++ #include <omp.h>

void omp set num threads(int num threads)

OMP GET NUM THREADS() and
OMP GET THREAD NUM()

OMP GET NUM THREADS()
Returns the number of threads that are currently in the team
executing the parallel region from which it is called

OMP GET THREAD NUM()
Returns the thread number of the thread, within the team,
making this call. This number will be between 0 and
OMP GET NUM THREADS-1. The master thread of the team is
thread 0.
If called from a nested parallel region, or a serial region, this
function will return 0.

Fortran INTEGER FUNCTION OMP GET NUM THREADS()
INTEGER FUNCTION OMP GET THREAD NUM()

C/C++ #include <omp.h>
int omp get num threads(void)
int omp get thread num(void)

OMP GET MAX THREADS()

Returns the maximum value that can be returned by a call to
the OMP GET NUM THREADS function
Generally re�ects the number of threads as set by the
OMP NUM THREADS environment variable or the
OMP SET NUM THREADS() library routine.
May be called from both serial and parallel regions of code
Fortran INTEGER FUNCTION OMP GET MAX THREADS()
C/C++ #include <omp.h>

int omp get max threads(void)

OMP GET THREAD LIMIT() and
OMP GET NUM PROCS()

OMP GET THREAD LIMIT()
New with OpenMP 3.0
Returns the maximum number of OpenMP threads available to
a program

OMP GET NUM PROCS()
Returns the number of processors that are available to the
program

Fortran INTEGER FUNCTION OMP GET THREAD LIMIT()
INTEGER FUNCTION OMP GET NUM PROCS()

C/C++ #include <omp.h>
int omp get thread limit(void)
int omp get num procs(void)

OMP IN PARALLEL()

May be called to determine if the section of code currently
executing is parallel or not
For Fortran, this function returns .TRUE. if it is called from the
dynamic extent of a region executing in parallel, and .FALSE.
otherwise. For C/C++, it will return a non- zero integer if
parallel, and zero otherwise.

Fortran LOGICAL FUNCTION OMP IN PARALLEL()
C/C++ #include <omp.h>

int omp in parallel(void)

OMP SET DYNAMIC()
Enables or disables dynamic adjustment (by the run time
system) of the number of threads available for execution of
parallel regions
For Fortran, if called with .TRUE. then the number of threads
available for subsequent parallel regions can be adjusted
automatically by the run-time environment. If called with
.FALSE., dynamic adjustment is disabled.
For C/C++, if dynamic threads evaluates to non-zero, then the
mechanism is enabled, otherwise it is disabled.
The OMP SET DYNAMIC subroutine has precedence over the
OMP DYNAMIC environment variable.
The default setting is implementation dependent.
Must be called from a serial section of the program

Fortran SUBROUTINE OMP SET DYNAMIC(scalar logical expression)
C/C++ #include <omp.h>

void omp set dynamic(int dynamic threads)

OMP GET DYNAMIC()

Used to determine if dynamic thread adjustment is enabled
or not
For Fortran, this function returns .TRUE. if dynamic thread
adjustment is enabled, and .FALSE. otherwise.
For C/C++, non-zero will be returned if dynamic thread
adjustment is enabled, and zero otherwise.

Fortran LOGICAL FUNCTION OMP GET DYNAMIC()
C/C++ #include <omp.h>

int omp get dynamic(void)

OMP SET NESTED()

Used to enable or disable nested parallelism
For Fortran, calling this function with .FALSE. will disable
nested parallelism, and calling with .TRUE. will enable it.
For C/C++, if nested evaluates to non-zero, nested parallelism
is enabled; otherwise it is disabled.
The default is for nested parallelism to be disabled.
This call has precedence over the OMP NESTED environment
variable.

Fortran SUBROUTINE OMP SET NESTED(scalar logical expr)
C/C++ #include <omp.h>

void omp set nested(int nested)

OMP GET NESTED()

Used to determine if nested parallelism is enabled or not
For Fortran, this function returns .TRUE. if nested parallelism
is enabled, and .FALSE. otherwise.
For C/C++, non-zero will be returned if nested parallelism is
enabled, and zero otherwise.

Fortran LOGICAL FUNCTION OMP GET NESTED()
C/C++ #include <omp.h>

int omp get nested(void)

Locking Routines

OMP INIT LOCK()
Initializes a lock associated with the lock variable
The initial state is unlocked.
For Fortran, var must be an integer large enough to hold an
address, such as INTEGER *8 on 64-bit systems.
Fortran SUBROUTINE OMP INIT LOCK(var)
C/C++ #include <omp.h>

void omp init lock(omp lock t *lock)
OMP DESTROY LOCK()

Disassociates the given lock variable from any locks
Fortran SUBROUTINE OMP DESTROY LOCK(var)
C/C++ #include <omp.h>

void omp destroy lock(omp lock t *lock)

Locking Routines (continued)

OMP SET LOCK()
Forces the executing thread to wait until the speci�ed lock is
available
Fortran SUBROUTINE OMP SET LOCK(var)
C/C++ #include <omp.h>

void omp set lock(omp lock t *lock)
OMP UNSET LOCK()

Releases the lock from the executing thread
OMP TEST LOCK()

Attempts to set a lock, but does not block if the lock is
unavailable

OMP GET WTIME()

Provides a portable wall clock timing routine
Returns a double-precision �oating point value equal to the
number of elapsed seconds since some point in the past
Usually used in pairs with the value of the �rst call subtracted
from the value of the second call to obtain the elapsed time
for a block of code
Designed to be per thread times, and therefore may not be
globally consistent across all threads in a team
Fortran DOUBLE PRECISION FUNCTION OMP GET WTIME()
C/C++ #include <omp.h>

double omp get wtime(void)

OpenMP Environment Variables

OMP SCHEDULE
Applies only to DO, PARALLEL DO (Fortran) and for, parallel for
(C/C++) directives which have their schedule clause set to
RUNTIME. The value of this variable determines how iterations
of the loop are scheduled on processors.
For example:
setenv OMP SCHEDULE "guided, 4"
setenv OMP SCHEDULE "dynamic"

OMP NUM THREADS
Sets the number of threads to use during execution
For example:
setenv OMP NUM THREADS 8

OpenMP Environment Variables (cont.-d)

OMP DYNAMIC
Enables or disables dynamic adjustment of the number of
threads available for execution of parallel regions
Valid values are TRUE or FALSE.
For example:
setenv OMP DYNAMIC TRUE

OMP NESTED
Enables or disables nested parallelism
Valid values are TRUE or FALSE.
For example:
setenv OMP NESTED TRUE

Thread Stack Size

The OpenMP standard does not specify how much stack space
a thread should have. Consequently, implementations will
di�er in the default thread stack size.
Default thread stack size can be easy to exhaust. It can also
be non-portable between compilers.
Threads that exceed their stack allocation may or may not seg
fault. An application may continue to run while data is being
corrupted.
Statically linked codes may be subject to further stack
restrictions.
A user’s login shell may also restrict stack size.
May need to increase thread stack size. How to do this is
system-dependent.

Performance Expectations
One might expect to get an N times speedup when running a
program parallelized using OpenMP on an N processor/core
platform. However, this is seldom the case due to the
following reasons:

A large portion of the program may not be parallelized by
OpenMP, which means that the theoretical upper limit of
speedup is limited according to Amdahl’s law.
N processors in a SMP may have N times the computation
power, but the memory bandwidth usually does not scale up N
times. Quite o�en, the original memory path is shared by
multiple processors and performance degradation may be
observed when they compete for the shared memory
bandwidth.
Many other common problems a�ecting the �nal speedup in
parallel computing also apply to OpenMP, such as load
balancing and synchronization overhead.

References and Further Reading
1 OpenMP website: openmp.org
API speci�cations, FAQ, presentations, discussions, media
releases, calendar, membership application and more . . .

2 Wikipedia: en.wikipedia.org/wiki/OpenMP
3 Barbara Chapman, Gabriele Jost, and Ruud van der Pas: Using

OpenMP . The MIT Press, 2008.
4 Compiler documentation

IBM: www-4.ibm.com/so�ware/ad/fortran
Cray: http://docs.cray.com/ (Cray Fortran Reference Manual)
Intel: www.intel.com/so�ware/products/compilers/
PGI: www.pgroup.com
PathScale: http://www.pathscale.com/EKOPath-User-Guide
GNU: http://gcc.gnu.org/projects/gomp/

5 cOMPunity http://www.compunity.org/
6 International workshop on OpenMP www.iwomp.org

openmp.org
en.wikipedia.org/wiki/OpenMP
www-4.ibm.com/software/ad/fortran
http://docs.cray.com/
www.intel.com/software/products/compilers/
www.pgroup.com
http://www.pathscale.com/EKOPath-User-Guide
http://gcc.gnu.org/projects/gomp/
http://www.compunity.org/
www.iwomp.org

Advanced Usage, Alternative Views and
Opinions on OpenMP
1 Tasks API

Compare with Apple’s Grand Central Dispatch, Cilk, Cilk++, Intel
Parallel Collections, ompSS, StarPU, QUARK, Thread Building
Blocks, . . .

2 Features speci�c to C++
Not covered: invocation of c-tors (constructors) and d-tors, . . .

3 Thread local storage
4 EPCC micro benchmark

http://www.epcc.ed.ac.uk/so�ware-products/
openmpmpi-microbenchmarks

5 Is OpenMP for Users? by William Gropp
www.cs.illinois.edu/∼wgropp/bib/talks/tdata/2004/
openmpusers.pdf

6 OpenACC and OpenMP 4.0
Work in progress that depends on committee time, community
feedback, and market pressures within the industry

http://www.epcc.ed.ac.uk/software-products/openmpmpi-microbenchmarks
http://www.epcc.ed.ac.uk/software-products/openmpmpi-microbenchmarks
www.cs.illinois.edu/~wgropp/bib/talks/tdata/2004/openmpusers.pdf
www.cs.illinois.edu/~wgropp/bib/talks/tdata/2004/openmpusers.pdf

References

L. Valiant.
A bridging model for parallel computation.
Communications of ACM, 33(8):103–111, 1990.
L. G. Valiant.
Bulk-synchronous parallel computers.
In M. Reeve, editor, Parallel Processing and Arti�cial
Intelligence, pages 15–22. John Wiley & Sons, 1989.

	Introduction
	Models
	Syntax and Semantics
	Individual Directives
	Work Sharing
	Synchronization Primitives
	Memory Consistency Model Considerations
	Runtime
	Mutual Exclusion, Timing, and Environment
	Conclusions, Summary, Further Reading

