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CHAPTER 1

 

Introduction

 

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the 
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any 
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this 
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held 
liable for changes or alterations in the final edition.

 

1.1 Introduction

 

We have enjoyed an explosive growth in performance and capability of computer systems for
over a decade. The theme of this dramatic success story is the advance of the underlying VLSI
technology, which allows larger and larger numbers of components to fit on a chip and clock
rates to increase. The plot is one of computer architecture, which translates the raw potential of
the technology into greater performance and expanded capability of the computer system. The
leading character is parallelism. A larger volume of resources means that more operations can be
done at once, in parallel. Parallel computer architecture is about organizing these resources so
that they work well together. Computers of all types have harnessed parallelism more and more
effectively to gain performance from the raw technology, and the level at which parallelism is
exlploited continues to rise. The other key character is storage. The data that is operated on at an
ever faster rate must be held somewhere in the machine. Thus, the story of parallel processing is
deeply intertwined with data locality and communication. The computer architect must sort out



 

Introduction

 

20 

 

DRAFT: Parallel Computer Architecture 9/10/97

 

these changing relationships to design the various levels of a computer system so as to maximize
performance and programmability within the limits imposed by technology and cost at any par-
ticular time.

Parallelism is a fascinating perspective from which to understand computer architecture, because
it applies at all levels of design, it interacts with essentially all other architectural concepts, and it
presents a unique dependence on the underlying technology. In particular, the basic issues of
locality, bandwidth, latency, and synchronization arise at many levels of the design of parallel
computer systems. The trade-offs must be resolved in the context of real application workloads. 

Parallel computer architecture, like any other aspect of design, involves elements of form and
function. These elements are captured nicely in the following definition[AGo89].

A 

 

parallel computer

 

 is a collection of processing elements that cooperate and communicate
to solve large problems fast.

However, this simple definition raises many questions. How large a collection are we talking
about? How powerful are the individual processing elements and can the number be increased in
a straight-forward manner? How do they cooperate and communicate? How are data transmitted
between processors, what sort of interconnection is provided, and what operations are available
to sequence the actions carried out on different processors? What are the primitive abstractions
that the hardware and software provide to the programmer? And finally, how does it all translate
into performance? As we begin to answer these questions, we will see that small, moderate, and
very large collections of processing elements each have important roles to fill in modern comput-
ing. Thus, it is important to understand parallel machine design across the scale, from the small
to the very large. There are design issues that apply throughout the scale of parallelism, and oth-
ers that are most germane to a particular regime, such as within a chip, within a box, or on a very
large machine. It is safe to say that parallel machines occupy a rich and diverse design space.
This diversity makes the area exciting, but also means that it is important that we develop a clear
framework in which to understand the many design alternatives.

Parallel architecture is itself a rapidly changing area. Historically, parallel machines have demon-
strated innovative organizational structures, often tied to particular programing models, as archi-
tects sought to obtain the ultimate in performance out of a given technology. In many cases,
radical organizations were justified on the grounds that advances in the base technology would
eventually run out of steam. These dire predictions appear to have been overstated, as logic den-
sities and switching speeds have continued to improve and more modest parallelism has been
employed at lower levels to sustain continued improvement in processor performance. Nonethe-
less, application demand for computational performance continues to outpace what individual
processors can deliver, and multiprocessor systems occupy an increasingly important place in
mainstream computing. What has changed is the novelty of these parallel architectures. Even
large-scale parallel machines today are built out of the same basic components as workstations
and personal computers. They are subject to the same engineering principles and cost-perfor-
mance trade-offs. Moreover, to yield the utmost in performance, a parallel machine must extract
the full performance potential of its individual components. Thus, an understanding of modern
parallel architectures must include an in-depth treatment of engineering trade-offs, not just a
descriptive taxonomy of possible machine structures.

Parallel architectures will play an increasingly central role in information processing. This view
is based not so much on the assumption that individual processor performance will soon reach a
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plateau, but rather on the estimation that the next level of system design, the multiprocessor level,
will become increasingly attractive with increases in chip density. 

 

The goal of this book is to
articulate the principles of computer design at the multiprocessor level.

 

 We examine the design
issues present for each of the system components – memory systems, processors, and networks –
and the relationships between these components. A key aspect is understanding the division of
responsibilities between hardware and software in evolving parallel machines. Understanding
this division, requires familiarity with the requirements that parallel programs place on the
machine and the interaction of machine design and the practice of parallel programming.

The process of learning computer architecture is frequently likened to peeling an onion, and this
analogy is even more appropriate for parallel computer architecture. At each level of understand-
ing we find a complete whole with many interacting facets, including the structure of the
machine, the abstractions it presents, the technology it rests upon, the software that exercises it,
and the models that describe its performance. However, if we dig deeper into any of these facets
we discover another whole layer of design and a new set of interactions. The wholistic, many
level nature of parallel computer architecture makes the field challenging to learn and challeng-
ing to present. Something of the layer by layer understanding is unavoidable.

This introductory chapter presents the ‘outer skin’ of parallel computer architecture. It first out-
lines the reasons why we expect parallel machine design to become pervasive from desktop
machines to supercomputers. We look at the technological, architectural, and economic trends
that have led to the current state of computer architecture and that provide the basis for anticipat-
ing future parallel architectures. Section 1.2 focuses on the forces that have brought about the
dramatic rate of processor performance advance and the restructuring of the entire computing
industry around commodity microprocessors. These forces include the insatiable application
demand for computing power, the continued improvements in the density and level of integration
in VLSI chips, and the utilization of parallelism at higher and higher levels of the architecture. 

We then take a quick look at the spectrum of important architectural styles which give the field
such a rich history and contribute to the modern understanding of parallel machines. Within this
diversity of design, a common set of design principles and trade-offs arise, driven by the same
advances in the underlying technology. These forces are rapidly leading to a convergence in the
field, which forms the emphasis of this book. Section 1.3 surveys traditional parallel machines,
including 

 

shared-memory, message-passing, single-instruction-multiple-data, systolic arrays

 

,
and 

 

dataflow

 

, and illustrates the different ways that they address common architectural issues.
The discussion illustrates the dependence of parallel architecture on the underlying technology
and, more importantly, demonstrates the convergence that has come about with the dominance of
microprocessors. 

Building on this convergence, in Section 1.4 we examine the fundamental design issues that cut
across parallel machines: what can be named at the machine level as a basis for communication
and coordination, what is the latency or time required to perform these operations, and what is
the bandwidth or overall rate at which they can be performed. This shift from conceptual struc-
ture to performance components provides a framework for quantitative, rather than merely quali-
tative, study of parallel computer architecture.

With this initial, broad understanding of parallel computer architecture in place, the following
chapters dig deeper into its technical substance. Chapter 2 delves into the structure and require-
ments of parallel programs to provide a basis for understanding the interaction between parallel
architecture and applications. Chapter 3 builds a framework for evaluating design decisions in
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terms of application requirements and performance measurements. Chapter 4 is a complete study
of parallel computer architecture at the limited scale that is widely employed in commercial mul-
tiprocessors – a few processors to a few tens of processors. The concepts and structures intro-
duced at this scale form the building blocks for more aggressive large scale designs presented
over the next five chapters.

 

1.2 Why Parallel Architecture

 

Computer architecture, technology, and applications evolve together and have very strong inter-
actions. Parallel computer architecture is no exception. A new dimension is added to the design
space – the number of processors – and the design is even more strongly driven by the demand
for performance at acceptable cost. Whatever the performance of a single processor at a given
time, higher performance can, in principle, be achieved by utilizing many such processors. How
much additional performance is gained and at what additional cost depends on a number of fac-
tors, which we will explore throughout the book.

To better understand this interaction, let us consider the performance characteristics of the pro-
cessor building blocks. Figure 1-1

 

1

 

 illustrates the growth in processor performance over time for
several classes of computers[HeJo91]. The dashed lines represent a naive extrapolation of the
trends. Although one should be careful in drawing sharp quantitative conclusions from such lim-
ited data, the figure suggests several valuable observations, discussed below.

First, the performance of the highly integrated, single-chip CMOS microprocessor is steadily
increasing and is surpassing the larger, more expensive alternatives. Microprocessor performance
has been improving at a rate of more than 50% per year. The advantages of using small, inexpen-
sive, low power, mass produced processors as the building blocks for computer systems with
many processors are intuitively clear. However, until recently the performance of the processor
best suited to parallel architecture was far behind that of the fastest single processor system. This
is no longer so. Although parallel machines have been built at various scales since the earliest
days of computing, the approach is more viable today than ever before, because the basic proces-
sor building block is better suited to the job. 

The second and perhaps more fundamental observation is that change, even dramatic change, is
the norm in computer architecture. The continuing process of change has profound implications
for the study of computer architecture, because we need to understand not only how things are,
but how they might evolve, and why. Change is one of the key challenges in writing this book,
and one of the key motivations. Parallel computer architecture has matured to the point where it
needs to be studied from a basis of engineering principles and quantitative evaluation of perfor-
mance and cost. These are rooted in a body of facts, measurements, and designs of real machines.

 

1.  The figure is drawn from an influential 1991 paper that sought to explain the dramatic changes
taking place in the computing industry[HeJo91] The metric of performance is a bit tricky when
reaching across such a range of time and market segment. The study draws data from general
purpose benchmarks, such as the SPEC benchmark that is widely used to assess performance on
technical computing applications[HePa90]. After publication, microprocessors continued to track
the prediction, while mainframes and supercomputers went through tremendous crises and
emerged using multiple CMOS microprocessors in their market niche.
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Unfortunately, the existing data and designs are necessarily frozen in time, and will become
dated as the field progresses. We have elected to present hard data and examine real machines
throughout the book in the form of a “late 1990s” technological snapshot in order to retain this
grounding. We strongly believe that the methods of evaluation underlying the analysis of con-
crete design trade-offs transcend the chronological and technological reference point of the book.

The “late 1990s” happens to be a particularly interesting snapshot, because we are in the midst of
a dramatic technological realignment as the single-chip microprocessor is poised to dominate
every sector of computing, and as parallel computing takes hold in many areas of mainstream
computing. Of course, the prevalence of change suggests that one should be cautious in extrapo-
lating toward the future. In the remainder of this section, we examine more deeply the forces and
trends that are giving parallel architectures an increasingly important role throughout the com-
puting field and pushing parallel computing into the mainstream. We look first at the application
demand for increased performance and then at the underlying technological and architectural
trends that strive to meet these demands. We see that parallelism is inherently attractive as com-
puters become more highly integrated, and that it is being exploited at increasingly high levels of
the design. Finally, we look at the role of parallelism in the machines at the very high end of the
performance spectrum.

 

1.2.1 Application Trends

 

The demand for ever greater application performance is a familiar feature of every aspect of com-
puting. Advances in hardware capability enable new application functionality, which grows in

Figure  1-1  Performance trends over time of micro, mini, mainframe and supercomputer processors.[HeJo91]

Performance of microprocessors has been increasing at a rate of nearly 50% per year since the mid 80’s. More tra-
ditional mainframe and supercomputer performance has been increasing at a rate of roughly 25% per year. As a
result we are seeing the processor that is best suited to parallel architecture become the performance leader as well.
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significance and places even greater demands on the architecture, and so on. This cycle drives the
tremendous ongoing design, engineering, and manufacturing effort underlying the sustained
exponential performance increase in microprocessor performance. It drives parallel architecture
even harder, since parallel architecture focuses on the most demanding of these applications.
With a 50% annual improvement in processor performance, a parallel machine of a hundred pro-
cessors can be viewed as providing to applications the computing power that will be widely avail-
able ten years in the future, whereas a thousand processors reflects nearly a twenty year horizon.

Application demand also leads computer vendors to provide a range of models with increasing
performance and capacity at progressively increased cost. The largest volume of machines and
greatest number of users are at the low end, whereas the most demanding applications are served
by the high end. One effect of this “platform pyramid” is that the pressure for increased perfor-
mance is greatest at the high-end and is exerted by an important minority of the applications.
Prior to the microprocessor era, greater performance was obtained through exotic circuit technol-
ogies and machine organizations. Today, to obtain performance significantly greater than the
state-of-the-art microprocessor, the primary option is multiple processors, and the most demand-
ing applications are written as parallel programs. Thus, parallel architectures and parallel appli-
cations are subject to the most acute demands for greater performance. 

A key reference point for both the architect and the application developer is how the use of paral-
lelism improves the performance of the application. We may define the 

 

speedup

 

 on  processors
as

.

 

(EQ 1.1)

 

For a single, fixed problem, the performance of the machine on the problem is simply the recipro-
cal of the time to complete the problem, so we have the following important special case:

.

 

(EQ 1.2)

 

Scientific and Engineering Computing

 

The direct reliance on increasing levels of performance is well established in a number of
endeavors, but is perhaps most apparent in the field of computational science and engineering.
Basically, computers are used to simulate physical phenomena that are impossible or very costly
to observe through empirical means. Typical examples include modeling global climate change
over long periods, the evolution of galaxies, the atomic structure of materials, the efficiency of
combustion with an engine, the flow of air over surfaces of vehicles, the damage due to impacts,
and the behavior of microscopic electronic devices. Computational modeling allows in-depth
analyses to be performed cheaply on hypothetical designs through computer simulation. A direct
correspondence can be drawn between levels of computational performance and the problems
that can be studied through simulation. Figure 1-2 summarizes the 1993 findings of the Commit-
tee on Physical, Mathematical, and Engineering Sciences of the federal Office of Science and
Technology Policy[OST93]. It indicates the computational rate and storage capacity required to
tackle a number of important science and engineering problems. Also noted is the year in which
this capability was forecasted to be available. Even with dramatic increases in processor perfor-
mance, very large parallel architectures are needed to address these problems in the near future.
Some years further down the road, new grand challenges will be in view.

p

Speedup p processors( )
Performance p processors( )
Performance 1 processors( )
-------------------------------------------------------------------≡

Speedupfixed problem p processors( ) T ime 1 processor( )
T ime p processors( )
------------------------------------------------=
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Parallel architectures have become the mainstay of scientific computing, including physics,
chemistry, material science, biology, astronomy, earth sciences, and others. The engineering
application of these tools for modeling physical phenomena is now essential to many industries,
including petroleum (reservoir modeling), automotive (crash simulation, drag analysis, combus-
tion efficiency), aeronautics (airflow analysis, engine efficiency, structural mechanics, electro-
magnetism), pharmaceuticals (molecular modeling), and others. In almost all of these
applications, there is a large demand for visualization of the results, which is itself a demanding
application amenable to parallel computing.

The visualization component has brought the traditional areas of scientific and engineering com-
puting closer to the entertainment industry. In 1995, the first full-length computer-animated
motion picture, Toy Story, was produced on a parallel computer system composed of hundreds of
Sun workstations. This application was finally possible because the underlying technology and
architecture crossed three key thresholds: the cost of computing dropped to where the rendering
could be accomplished within the budget typically associated with a feature film, while the per-
formance of the individual processors and the scale of parallelism rose to where it could be
accomplished in a reasonable amount of time (several months on several hundred processors).

Figure  1-2  Grand Challenge Application Requirements

A collection of important scientific and engineering problems are positioned in a space defined by computational
performance and storage capacity. Given the exponential growth rate of performance and capacity, both of these
axes map directly to time. In the upper right corner appears some of the Grand Challenge applications identified by
the U.S. High Performance Computing and Communications program.
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Each science and engineering applications has an analogous threshold of computing capacity and
cost at which it becomes viable.

Let us take an example from the Grand Challenge program to help understand the strong interac-
tion between applications, architecture, and technology in the context of parallel machines. A
1995 study[JNNIE] examined the effectiveness of a wide range of parallel machines on a variety
of applications, including a molecular dynamics package, AMBER (Assisted Model Building
through Energy Refinement). AMBER is widely used to simulate the motion of large biological
models such as proteins and DNA, which consist of sequences of residues (amino acids and
nucleic acids, respectively) each composed of individual atoms. The code was developed on Cray
vector supercomputers, which employ custom ECL-based processors, large expensive SRAM
memories, instead of caches, and machine instructions that perform arithmetic or data movement
on a sequence, or 

 

vector

 

, of data values. Figure 1-3 shows the speedup obtained on three versions
of this code on a 128-processor microprocessor-based machine - the Intel Paragon, described
later. The particular test problem involves the simulation of a protein solvated by water. This test
consisted of 99 amino acids and 3,375 water molecules for approximately 11,000 atoms.

The initial parallelization of the code (vers. 8/94) resulted in good speedup for small configura-
tions, but poor speedup on larger configurations. A modest effort to improve the balance of work
done by each processor, using techniques we discuss in Chapter 2, improved the scaling of the
application significantly (vers. 9/94). An additional effort to optimize communication produced a
highly scalable version(12/94). This 128 processor version achieved a performance of 406
MFLOPS; the best previously achieved was 145 MFLOPS on a Cray C90 vector processor. The
same application on a more efficient parallel architecture, the Cray T3D, achieved 891 MFLOPS
on 128 processors. This sort of “learning curve” is quite typical in the parallelization of important
applications, as is the interaction between application and architecture. The application writer
typically studies the application to understand the demands it places on the available architec-
tures and how to improve its performance on a given set of machines. The architect may study
these demands as well in order to understand how to make the machine more effective on a given
set of applications. Ideally, the end user of the application enjoys the benefits of both efforts.

The demand for ever increasing performance is a natural consequence of the modeling activity.
For example, in electronic CAD as the number of devices on the chip increases, there is obvi-
ously more to simulate. In addition, the increasing complexity of the design requires that more
test vectors be used and, because higher level functionality is incorporated into the chip, each of
these tests must run for a larger number of clock cycles. Furthermore, an increasing level of con-
fidence is required, because the cost of fabrication is so great. The cumulative effect is that the
computational demand for the design verification of each new generation is increasing at an even
faster rate than the performance of the microprocessors themselves. 

 

Commercial Computing

 

Commercial computing has also come to rely on parallel architectures for its high-end. Although
the scale of parallelism is typically not as large as in scientific computing, the use of parallelism
is even more wide-spread. Multiprocessors have provided the high-end of the commercial com-
puting market since the mid-60s. In this arena, computer system speed and capacity translate
directly into the scale of business that can be supported by the system. The relationship between
performance and scale of business enterprise is clearly articulated in the on-line transaction pro-
cessing (OLTP) benchmarks sponsored by the Transaction Processing Performance Council
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(TPC) [tpc]. These benchmarks rate the performance of a system in terms of its throughput in

 

transactions-per-minute

 

 (tpm) on a typical workload. TPC-C is an order entry application with a
mix of interactive and batch transactions, including realistic features like queued transactions,
aborting transactions, and elaborate presentation features[GrRe93]. The benchmark includes an
explicit scaling criteria to make the problem more realistic: the size of the database and the num-
ber of terminals in the system increase as the tpmC rating rises. Thus, a faster system must oper-
ate on a larger database and service a larger number of users.

Figure 1-4 shows the tpm-C ratings for the collection of systems appearing in one edition of the
TPC results (March 1996), with the achieved throughput on the vertical axis and the number of
processors employed in the server along the horizontal axis. This data includes a wide range of
systems from a variety of hardware and software vendors; we have highlighted the data points for
models from a few of the vendors. Since the problem scales with system performance, we cannot
compare times to see the effectiveness of parallelism. Instead, we use the throughput of the sys-
tem as the metric of performance in Equation 1.1.

Figure  1-3  Speedup on Three Versions of a Parallel Program

The parallelization learning curve is illustrated by the speedup obtained on three successive versions of this
molecular dynamics code on the Intel Paragon.
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Example  1-1 

 

The tpmC for the Tandem Himalaya and IBM Power PC systems are given in the
following table. What is the speedup obtained on each?

For the IBM system we may calculate speedup relative to the uniprocessor system, whereas in
the Tandem case we can only calculate speedup relative to a sixteen processor system. For the
IBM machine there appears to be a significant penalty in the parallel database implementation in

 

tpmC

Number of Processors

 

IBM RS 6000 PowerPC Himalaya K10000
1 735
4 1438
8 3119
16 3043
32 6067
64 12021
112 20918

Figure  1-4  TPC-C throughput versus number of processors on TPC

he March 1996 TPC report documents the transaction processing performance for a wide range of system. The
figure shows the number of processors employed for all of the high end systems, highlights five leading vendor
product lines. All of the major database vendors utilize multiple processors for their high performance options,
although the scale of parallelism varies considerably.
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going from one to four processors, however, the scaling is very good (superlinear) from four to
eight processors. The Tandem system achieves good scaling, although the speedup appears to be
beginning to flatten towards the hundred processor regime.

Several important observations can be drawn from the TPC data. First, the use of parallel archi-
tectures is prevalent. Essentially all of the vendors supplying database hardware or software offer
multiprocessor systems that provide performance substantially beyond their uniprocessor prod-
uct. Second, it is not only large scale parallelism that is important, but modest scale multiproces-
sor servers with tens of processors, and even small-scale multiprocessors with two or four
processors. Finally, even a set of well-documented measurements of a particular class of system
at a specific point in time cannot provide a true technological snapshot. Technology evolves rap-
idly, systems take time to develop and deploy, and real systems have a useful lifetime. Thus, the
best systems available from a collection of vendors will be at different points in their life cycle at
any time. For example, the DEC Alpha and IBM PowerPC systems in the 3/96 TPC report were
much newer, at the time of the report, than the Tandem Himalaya system. We cannot conclude,
for example, that the Tandem system is inherently less efficient as a result of its scalable design.
We can, however, conclude that even very large scale systems must track the technology to retain
their advantage.

Even the desktop demonstrates a significant number of concurrent processes, with a host of
active windows and daemons. Quite often a single user will have tasks running on many
machines within the local area network, or farm tasks across the network. The transition to paral-
lel programming, including new algorithms in some cases or attention to communication and
synchronization requirements in existing algorithms, has largely taken place in the high perfor-
mance end of computing, especially in scientific programming. The transition is in progress
among the much broader base of commercial engineering software. In the commercial world, all
of the major database vendors support parallel machines for their high-end products. Typically,
engineering and commercial applications target more modest scale multiprocessors, which domi-
nate the server market. However, the major database vendors also offer “shared-nothing” ver-
sions for large parallel machines and collections of workstations on a fast network, often called

 

clusters

 

. In addition, multiprocessor machines are heavily used to improve throughput on multi-
programming workloads. All of these trends provide a solid application demand for parallel
architectures of a variety of scales.

 

Speedup

 

tpmC

 

Number of Processors

 

IBM RS 6000 PowerPC Himalaya K10000
1 1
4 1.96
8 4.24
16 1
32 1.99
64 3.95
112 6.87
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1.2.2 Technology Trends

 

The importance of parallelism in meeting the application demand for ever greater performance
can be brought into sharper focus by looking more closely at the advancements in the underlying
technology and architecture. These trends suggest that it may be increasingly difficult to “wait for
the single processor to get fast enough,” while parallel architectures will become more and more
attractive. Moreover, the examination shows that the critical issues in parallel computer architec-
ture are fundamentally similar to those that we wrestle with in “sequential” computers, such as
how the resource budget should be divided up among functional units that do the work, caches to
exploit locality, and wires to provide bandwidth.

The primary technological advance is a steady reduction in the basic VLSI feature size. This
makes transistors, gates, and circuits faster and smaller, so more fit in the same area. In addition,
the useful die size is growing, so there is more area to use. Intuitively, clock rate improves in pro-
portion to the improvement in feature size, while the number of transistors grows as the square,
or even faster due to increasing overall die area. Thus, in the long run the use of many transistors
at once, 

 

i.e

 

., parallelism, can be expected to contribute more than clock rate to the observed per-
formance improvement of the single-chip building block.

This intuition is borne out by examination of commercial microprocessors. Figure 1-5 shows the
increase in clock frequency and transistor count for several important microprocessor families.
Clock rates for the leading microprocessors increase by about 30% per year, while the number of
transistors increases by about 40% per year. Thus, if we look at the raw computing power of a
chip (total transistors switching per second), transistor capacity has contributed an order of mag-
nitude more than clock rate over the past two decades.

 

1

 

 The performance of microprocessors on
standard benchmarks has been increasing at a much greater rate. The most widely used bench-
mark for measuring workstation performance is the SPEC suite, which includes several realistic

Figure  1-5  Improvement in logic density and clock frequency of microprocessors. 

Improvements in lithographic technique, process technology, circuit design, and datapath design have yielded
a sustained improvement in logic density and clock rate.
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integer programs and floating point programs[SPEC]. Integer performance on SPEC has been
increasing at about 55% per year, and floating-point performance at 75% per year. The LINPACK
benchmark[Don94] is the most widely used metric of performance on numerical applications.
LINPACK floating-point performance has been increasing at more than 80% per year. Thus, pro-
cessors are getting faster in large part by making more effective use of an ever larger volume of
computing resources.

The simplest analysis of these technology trends suggests that the basic single-chip building
block will provide increasingly large capacity, in the vicinity of 100 million transistors by the
year 2000. This raises the possibility of placing more of the computer system on the chip, includ-
ing memory and I/O support, or of placing multiple processors on the chip[Gwe94b]. The former
yields a small and conveniently packaged building block for parallel architectures. The latter
brings parallel architecture into the single chip regime[Gwe94a]. Both possibilities are in evi-
dence commercially, with the system-on-a-chip becoming first established in embedded systems,
portables, and low-end personal computer products.[x86,mips] Multiple processors on a chip is
becoming established in digital signal processing[Fei94]. 

The divergence between capacity and speed is much more pronounced in memory technology.
From 1980 to 1995, the capacity of a DRAM chip increased a thousand-fold, quadrupling every
three years, while the memory cycle time improved by only a factor of two. In the time-frame of
the 100 million transistor microprocessor, we anticipate gigabit DRAM chips, but the gap
between processor cycle time and memory cycle time will have grown substantially wider. Thus,
the memory bandwidth demanded by the processor (bytes per memory cycle) is growing rapidly
and in order to keep pace, we must transfer more data in parallel. From PCs to workstations to
servers, designs based on conventional DRAMs are using wider and wider paths into the memory
and greater interleaving of memory banks. Parallelism. A number of advanced DRAM designs
are appearing on the market which transfer a large number of bits per memory cycle within the
chip, but then pipeline the transfer of those bits across a narrower interface at high frequency. In
addition, these designs retain recently data in fast on-chip buffers, much as processor caches do,
in order to reduce the time for future accesses. Thus, exploiting parallelism and locality is central
to the advancements in memory devices themselves.

The latency of a memory operation is determined by the access time, which is smaller than the
cycle time, but still the number of processor cycles per memory access time is large and increas-
ing. To reduce the average latency experienced by the processor and to increase the bandwidth
that can be delivered to the processor, we must make more and more effective use of the levels of
the memory hierarchy that lie between the processor and the DRAM memory. As the size of the
memory increases, the access time increases due to address decoding, internal delays in driving
long bit lines, selection logic, and the need to use a small amount of charge per bit. Essentially all
modern microprocessors provide one or two levels of caches on chip, plus most system designs
provide an additional level of external cache. A fundamental question as we move into multipro-
cessor designs is how to organize the collection of caches that lie between the many processors
and the many memory modules. For example, one of the immediate benefits of parallel architec-

 

1.  There are many reasons why the transistor count does not increase as the square of the clock rate. One is
that much of the area of a processor is consumed by wires, serving to distribute control, data, or clock, i.e.,
on-chip communication. We will see that the communication issue reappears at every level of parallel com-
puter architecture.
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tures is that the total size of each level of the memory hierarchy can increase with the number of
processors without increasing the access time.

Extending these observations to disks, we see a similar divergence. Parallel disks storage sys-
tems, such as RAID, are becoming the norm. Large, multi-level caches for files or disk blocks are
predominant.

 

1.2.3 Architectural Trends

 

Advances in technology determine what is possible; architecture translates the potential of the
technology into performance and capability. There are fundamentally two ways in which a larger
volume of resources, more transistors, improves performance: 

 

parallelism

 

 and 

 

locality. 

 

More-
over,

 

 

 

these two fundamentally compete for the same resources. Whenever multiple operations are
performed in parallel the number of cycles required to execute the program is reduced. However,
resources are required to support each of the simultaneous activities. Whenever data references
are performed close to the processor, the latency of accessing deeper levels of the storage hierar-
chy is avoided and the number of cycles to execute the program is reduced. However, resources
are also required to provide this local storage. In general, the best performance is obtained by an
intermediate strategy which devotes resources to exploit a degree of parallelism and a degree of
locality. Indeed, we will see throughout the book that parallelism and locality interact in interest-
ing ways in systems of all scales, from within a chip to across a large parallel machine. In current
microprocessors, the die area is divided roughly equally between cache storage, processing, and
off-chip interconnect. Larger scale systems may exhibit a somewhat different split, due to differ-
ences in the cost and performance trade-offs, but the basic issues are the same. 

Examining the trends in microprocessor architecture will help build intuition towards the issues
we will be dealing with in parallel machines. It will also illustrate how fundamental parallelism is
to conventional computer architecture and how current architectural trends are leading toward
multiprocessor designs. (The discussion of processor design techniques in this book is cursory,
since many of the readers are expected to be familiar with those techniques from traditional
architecture texts[HeP90] or the many discussions in the trade literature. It does provide provide
an unique perspective on those techniques, however, and will serve to refresh your memory.) 

The history of computer architecture has traditionally been divided into four generations identi-
fied by the basic logic technology: tubes, transistors, integrated circuits, and VLSI. The entire
period covered by the figures in this chapter is lumped into the fourth or VLSI generation.
Clearly, there has been tremendous architectural advance over this period, but what delineates
one era from the next within this generation? The strongest delineation is the kind of parallelism
that is exploited. The period up to about 1985 is dominated by advancements in 

 

bit-level parallel-
ism

 

, with 4-bit microprocessors replaced by 8-bit, 16-bit, and so on. Doubling the width of the
datapath reduces the number of cycles required to perform a full 32-bit operation. This trend
slows once a 32-bit word size is reached in the mid-80s, with only partial adoption of 64-bit oper-
ation obtained a decade later. Further increases in word-width will be driven by demands for
improved floating-point representation and a larger address space, rather than performance. With
address space requirements growing by less than one bit per year, the demand for 128-bit opera-
tion appears to be well in the future. The early microprocessor period was able to reap the bene-
fits of the easiest form of parallelism: bit-level parallelism in every operation. The dramatic
inflection point in the microprocessor growth curve in Figure 1-1 marks the arrival of full 32-bit
word operation combined with the prevalent use of caches.
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The period from the mid-80s to mid-90s is dominated by advancements in 

 

instruction-level par-
allelism

 

. Full word operation meant that the basic steps in instruction processing (instruction
decode, integer arithmetic, and address calculation) could be performed in a single cycle; with
caches the instruction fetch and data access could also be performed in a single cycle, most of the
time. The RISC approach demonstrated that, with care in the instruction set design, it was
straightforward to pipeline the stages of instruction processing so that an instruction is executed
almost every cycle, on average. Thus the parallelism inherent in the steps of instruction process-
ing could be exploited across a small number of instructions. While pipelined instruction pro-
cessing was not new, it had never before been so well suited to the underlying technology. In
addition, advances in compiler technology made instruction pipelines more effective.

The mid-80s microprocessor-based computers consisted of a small constellation of chips: an
integer processing unit, a floating-point unit, a cache controller, and SRAMs for the cache data
and tag storage. As chip capacity increased these components were coalesced into a single chip,
which reduced the cost of communicating among them. Thus, a single chip contained separate
hardware for integer arithmetic, memory operations, branch operations, and floating-point opera-
tions. In addition to pipelining individual instructions, it became very attractive to fetch multiple
instructions at a time and issue them in parallel to distinct function units whenever possible. This
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Figure  1-6  Number of transistors per processor chip over the last 25 years. 
The growth essentially follows Moore’s law which says that the number of transistors doubles every 2 years. Fore-
casting from past trends we can reasonably expect to be designing for a 50-100 million transistor budget at the end
of the decade. Also indicated are the epochs of design within the fourth, or VLSI generation of computer architec-
ture reflecting the increasing level of parallelism.
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form of instruction level parallelism came to be called 

 

superscalar

 

 execution. It provided a natu-
ral way to exploit the ever increasing number of available chip resources. More function units
were added, more instructions were fetched at time, and more instructions could be issued in
each clock cycle to the function units.

However, increasing the amount of instruction level parallelism that the processor can exploit is
only worthwhile if the processor can be supplied with instructions and data fast enough to keep it
busy. In order to satisfy the increasing instruction and data bandwidth requirement, larger and
larger caches were placed on-chip with the processor, further consuming the ever increasing
number of transistors. With the processor and cache on the same chip, the path between the two
could be made very wide to statisfy the bandwidth requirement of multiple instruction and data
accesses per cycle. However, as more instructions are issued each cycle, the performance impact
of each control transfer and each cache miss becomes more significant. A control transfer may
have to wait for the depth, or 

 

latency

 

, of the processor pipeline, until a particular instruction
reaches the end of the pipeline and determines which instruction to execute next. Similarly,
instructions which use a value loaded from memory may cause the processor to wait for the
latency of a cache miss.

Processor designs in the 90s deploy a variety of complex instruction processing mechanisms in
an effort to reduce the performance degradation due to latency in “wide-issue” superscalar pro-
cessors. Sophisticated branch prediction techniques are used to avoid pipeline latency by guess-
ing the direction of control flow before branches are actually resolved. Larger, more sophisticated
caches are used to 

 

avoid

 

 the latency of cache misses. Instructions are scheduled dynamically and
allowed to complete out of order so if one instruction encounters a miss, other instructions can
proceed ahead of it, as long as they do not depend on the result of the instruction. A larger win-
dow of instructions that are waiting to issue is maintained within the processor and whenever an
instruction produces a new result, several waiting instructions may be issued to the function
units. These complex mechanisms allow the processor to 

 

tolerate

 

 the latency of a cache-miss or
pipeline dependence when it does occur. However, each of these mechanisms place a heavy
demand on chip resources and a very heavy design cost.

Given the expected increases in chip density, the natural question to ask is how far will instruc-
tion level parallelism go within a single thread of control? At what point will the emphasis shift
to supporting the higher levels of parallelism available as multiple processes or multiple threads
of contol within a process, i.e, 

 

thread level parallelism? 

 

Several research studies have sought to
answer the first part of the question, either through simulation of aggressive machine
designs[Cha*91,Hor*90,Lee*91,MePa91] or through analysis of the inherent properties of pro-
grams[But*91,JoWa89,Joh90,Smi*89,Wal91]. The most complete treatment appears in
Johnson’s book devoted to the topic[Joh90]. Simulation of aggressive machine designs generally
shows that 2-way superscalar, i.e., issuing two instructions per cycle, is very profitable and 4-way
offers substantial additional benefit, but wider issue widths, e.g., 8-way superscalar, provide little
additional gain. The design complexity increases dramatically, because control transfers occur
roughly once in five instructions, on average. 

To estimate the maximum potential speedup that can be obtained by issuing multiple instructions
per cycle, the execution trace of a program is simulated on an ideal machine with unlimited
instruction fetch bandwidth, as many functions units as the program can use, and perfect branch
prediction. (The latter is easy, since the trace correctly follows each branch.) These generous
machine assumptions ensure that no instruction is held up because a function unit is busy or
because the instruction is beyond the look-ahead capability of the processor. Furthermore, to
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ensure that no instruction is delayed because it updates a location that is used by logically previ-
ous instructions, storage resource dependences are removed by a technique called 

 

renaming

 

.
Each update to a register or memory location is treated as introducing a new “name,” and subse-
quent uses of the value in the execution trace refer to the new name. In this way, the execution
order of the program is constrained only by essential data dependences; each instruction is exe-
cuted as soon as its operands are available. Figure 1-7 summarizes the result of this “ideal
machine” analysis based on data presented by Johnson[Joh91]. The histogram on the left shows
the fraction of cycles in which no instruction could issue, only one instruction, and so on.
Johnson’s ideal machine retains realistic function unit latencies, including cache misses, which
accounts for the zero-issue cycles. (Other studies ignore cache effects or ignore pipeline laten-
cies, and thereby obtain more optimistic estimates.) We see that even with infinite machine
resources, perfect branch prediction, and ideal renaming, 90% of the time no more than four
instructions issue in a cycle. Based on this distribution, we can estimate the speedup obtained at
various issue widths, as shown in the right portion of the figure. Recent work[LaWi92,Soh94]
provides empirical evidence that to obtain significantly larger amounts of parallelism, multiple
threads of control must be pursued simultaneously. Barring some unforeseen breakthrough in
instruction level parallelism, the leap to the next level of useful parallelism, multiple concurrent
threads, is increasingly compelling as chips increase in capacity.

The trend toward thread or process-level parallelism has been strong at the computer system level
for some time. Computers containing multiple state-of-the-art microprocessors sharing a com-
mon memory became prevalent in the mid 80’s, when the 32-bit microprocessor was first intro-
duced[Bel85]. As indicated by Figure 1-8, which shows the number of processors available in
commercial multiprocessors over time, this bus-based shared-memory multiprocessor approach
has maintained a substantial multiplier to the increasing performance of the individual proces-
sors. Almost every commercial microprocessor introduced since the mid-80s provides hardware
support for multiprocessor configurations, as we discuss in Chapter 5. Multiprocessors dominate
the server and enterprise (or mainframe) markets and have migrated down to the desktop. 

Figure  1-7  Distribution of potential instruction-level parallelism and estimated speedup under ideal superscalar
execution

The figure shows the distribution of available instruction-level parallelism and maximum potential speedup under ide-
alized superscalar execution, including unbounded processing resources and perfect branch prediction. Data is an
average of that presented for several benchmarks by Johnson[Joh91].
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The early multi-microprocessor systems were introduced by small companies competing for a
share of the minicomputer market, including Synapse[Nes85], Encore[Sha85], Flex[Mat85],
Sequent[Rod85] and Myrias[Sav85]. They combined 10 to 20 microprocessors to deliver com-
petitive throughput on timesharing loads. With the introduction of the 32-bit Intel i80386 as the
base processor, these system obtained substantial commercial success, especially in transaction
processing. However, the rapid performance advance of RISC microprocessors, exploiting
instruction level parallelism, sapped the CISC multiprocessor momentum in the late 80s (and all
but eliminated the minicomputer). Shortly thereafter, several large companies began producing
RISC multiprocessor systems, especially as servers and mainframe replacements. Again, we see
the critical role of bandwidth. In most of these multiprocessor designs, all the processors plug
into a common bus. Since a bus has a fixed aggregate bandwidth, as the processors become faster,
a smaller number can be supported by the bus. The early 1990s brought a dramatic advance in the
shared memory bus technology, including faster electrical signalling, wider data paths, pipelined
protocols, and multiple paths. Each of these provided greater bandwidth, growing with time and
design experience, as indicated in Figure 1-9. This allowed the multiprocessor designs to ramp
back up to the ten to twenty range and beyond, while tracking the microprocessor
advances[AR94,Cek*93,Fen*95,Fra93,Gal*94,GoMa95].

The picture in the mid-90s is very interesting. Not only has the bus-based shared-memory multi-
processor approach become ubiquitous in the industry, it is present at a wide range of scale.
Desktop systems and small servers commonly support two to four processors, larger servers sup-
port tens, and large commercial systems are moving toward a hundred. Indications are that this
trend will continue. As indication of the shift in emphasis, in 1994 Intel defined a standard
approach to the design of multiprocessor PC systems around its Pentium microprocessor[Sla94].
The follow-on PentiumPro microprocessor allows four-processor configurations to be con-
structed by wiring the chips together without even any glue logic; bus drivers, arbitration, and so
on are in the microprocessor. This development is expected to make small-scale multiprocessors
a true commodity. Additionally, a shift in the industry business model has been noted, where mul-
tiprocessors are being pushed by software vendors, especially database companies, rather than
just by the hardware vendors. Combining these trends with the technology trends, it appears that
the question is when, not if, multiple processors per chip will become prevalent.

 

1.2.4 Supercomputers

 

We have looked at the forces driving the development of parallel architecture in the general mar-
ket. A second, confluent set of forces come from the quest to achieve absolute maximum perfor-
mance, or 

 

supercomputing

 

. Although commercial and information processing applications are
increasingly becoming important drivers of the high end, historically, scientific computing has
been a kind of proving ground for innovative architecture. In the mid 60’s this included pipelined
instruction processing and dynamic instruction scheduling, which are commonplace in micropro-
cessors today. Starting in the mid 70’s, supercomputing was dominated by 

 

vector processors,

 

which perform operations on sequences of data elements, i.e, a vector, rather than individual sca-
lar data. Vector operations permit more parallelism to be obtained within a single thread of con-
trol. Also, these vector supercomputers were implemented in very fast, expensive, high power
circuit technologies.

Dense linear algebra is an important component of Scientific computing and the specific empha-
sis of the LINPACK benchmark. Although this benchmark evaluates a narrow aspect of system
performance, it is one of the few measurements available over a very wide class of machines over
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a long period of time. Figure 1-10 shows the Linpack performance trend for one processor of the
leading Cray Research vector supercomputers[Aug*89,Rus78] compared with that of the fastest
contemporary microprocessor-based workstations and servers. For each system two data points
are provided. The lower one is the performance obtained on a 100x100 matrix and the higher one
on a 1000x1000 matrix. Within the vector processing approach, the single processor performance
improvement is dominated by modest improvements in cycle time and more substantial increases
in the vector memory bandwidth. In the microprocessor systems, we see the combined effect of
increasing clock rate, on-chip pipelined floating-point units, increasing on-chip cache size,
increasing off-chip second-level cache size, and increasing use of instruction level parallel-
ism.The gap in uniprocessor performance is rapidly closing.

Multiprocessor architectures are adopted by both the vector processor and microprocessor
designs, but the scale is quite different. The Cray Xmp provided first two and later four proces-
sors, the Ymp eight, the C90 sixteen, and the T94 thirty-two. The microprocessor based super-
computers provided initially about a hundred processors, increasing to roughly a thousand from
1990 onward. These 

 

massively parallel processors

 

 (MPPs) have tracked the microprocessor
advance, with typically a lag of one to two years behind the leading microprocessor-based work-
station or personal computer. As shown in Figure 1-11, the large number of slightly slower
microprocessors has proved dominant for this benchmark. (Note the change of scale from
MFLOPS Figure 1-10to GFLOPS.) The performance advantage of the MPP systems over tradi-

Figure  1-8  Number of processors in fully configured commercial bus-based shared-memory multiprocessors.

After an initial era of 10 to 20-way SMPs based on slow CISC microprocessors, companies such as Sun, HP, DEC,
SGI, IBM and CRI began producing sizable RISC-based SMPs, as did commercial vendors not shown here, including
NCR/ATT, Tandem, and Pyramid.
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tional vector supercomputers is less substantial on more complete applications[NAS] owing to
the relative immaturity of the programming languages, compilers, and algorithms, however, the
trend toward the MPPs is still very pronounced. The importance of this trend was apparent
enough that in 1993 Cray Research announced its T3D, based on the DEC Alpha microprocessor.
Recently the Linpack benchmark has been used to rank the fastest computers systems in the
world. Figure 1-12 shows the number of multiprocessor vector processors (PVP), MPPs, and
bus-based shared memory machines (SMP) appearing in the list of the top 500 systems. The lat-
ter two are both microprocessor based and the trend is clear.

 

1.2.5 Summary

 

In examining current trends from a variety of perspectives – economics, technology, architecture,
and application demand – we see that parallel architecture is increasingly attractive and increas-
ingly central. The quest for performance is so keen that parallelism is being exploited at many
different levels at various points in the computer design space. Instruction level parallelism is
exploited in all modern high-performance processors. Essentially all machines beyond the desk-
top are multiprocessors, including servers, mainframes, and supercomputers. The very high-end
of the performance curve is dominated by massively parallel processors. The use of large scale
parallelism in applications is broadening and small-scale multiprocessors are emerging on the

Figure  1-9  Bandwidth of the shared memory bus in commercial multiprocessors.

.After slow growth for several years, a new era of memory bus design began in 1991. This supported the use of sub-
stantial numbers of very fast microprocessors.
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desktop and servers are scaling to larger configurations. The focus of this book is the multipro-
cessor level of parallelism. We study the design principles embodied in parallel machines from
the modest scale to the very large, so that we may understand the spectrum of viable parallel
architectures that can be built from well proven components.

Our discussion of the trends toward parallel computers has been primarily from the processor
perspective, but one may arrive at the same conclusion from the memory system perspective.
Consider briefly the design of a memory system to support a very large amount of data, i.e., the
data set of 

 

large

 

 problems. One of the few physical laws of computer architecture is that fast
memories are small, large memories are slow. This occurs as a result of many factors, including
the increased address decode time, the delays on the increasingly long bit lines, the small drive of
increasingly dense storage cells, and the selector delays. This is why memory systems are con-
structed as a hierarchy of increasingly larger and slower memories. On average, a large hierarchi-
cal memory is fast, as long as the references exhibit good locality. The other trick we can play to
“cheat the laws of physics” and obtain fast access on a very large data set is to replicate the pro-
cessor and have the different processors access independent smaller memories. Of course, phys-
ics is not easily fooled. We pay the cost when a processor accesses non-local data, which we call
communication, and when we need to orchestrate the actions of the many processors,

 

 i.e.

 

, in syn-
chronization operations.

Figure  1-10  Uniprocessor performance of supercomputers and microprocessor-based systems on the LINPACK
benchmark.

Performance in MFLOPS for a single processor on solving dense linear equations is shown for the leading Cray
vector supercomputer and the fastest workstations on a 100x100 and 1000x1000 matrix.
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1.3 Convergence of Parallel Architectures

 

Historically, parallel machines have developed within several distinct architectural “camps” and
most texts on the subject are organized around a taxonomy of these designs. However, in looking
at the evolution of parallel architecture, it is clear that the designs are strongly influenced by the
same technological forces and similar application requirements. It is not surprising that there is a
great deal of convergence in the field. In this section, our goal is to construct a framework for
understanding the entire spectrum of parallel computer architectures and to build intuition as to
the nature of the convergence in the field. Along the way, we will provide a quick overview of the
evolution of parallel machines, starting from the traditional camps and moving toward the point
of convergence.

1.3.1 Communication Architecture

Given that a parallel computer is “a collection of processing elements that communicate and
cooperate to solve large problems fast,” we may reasonably view parallel architecture as the
extension of conventional computer architecture to address issues of communication and cooper-
ation among processing elements. In essence, parallel architecture extends the usual concepts of
a computer architecture with a communication architecture. Computer architecture has two dis-

Figure  1-11  Performance of supercomputers and MPPs on the LINPACK Peak-performance benchmark.

Peak performance in GFLOPS for solving dense linear equations is shown for the leading Cray multiprocessor vec-
tor supercomputer and the fastest MPP systems. Note the change in scale from Figure 1-10.
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tinct facets. One is the definition of critical abstractions, especially the hardware/software bound-
ary and the user/system boundary. The architecture specifies the set of operations at the boundary
and the data types that these operate on. The other facet is the organizational structure that real-
izes these abstractions to deliver high performance in a cost-effective manner. A communication
architecture has these two facets, as well. It defines the basic communication and synchronization
operations, and it addresses the organizational structures that realize these operations. 

The framework for understanding communication in a parallel machine is illustrated in Figure 1-
13. The top layer is the programming model, which is the conceptualization of the machine that
the programmer uses in coding applications. Each programming model specifies how parts of the
program running in parallel communicate information to one another and what synchronization
operations are available to coordinate their activities. Applications are written in a programming
model. In the simplest case, a multiprogramming workload in which a large number of indepen-
dent sequential programs are run on a parallel machine, there is no communication or coopera-
tion at the programming level. The more interesting cases include parallel programming models,
such as shared address space, message passing, and data parallel programming. We can describe
these models intuitively as follows:

• Shared address programming is like using a bulletin board, where one can communicate with
one or many colleagues by posting information at known, shared locations. Individual activi-
ties can be orchestrated by taking note of who is doing what task. 

Figure  1-12  Type of systems used in 500 fastest computer systems in the world.

Parallel vector processors (PVPs) have given way to microprocessor-based Massively Parallel Processors (MPPs)
and bus-based symmetric shared-memory multiprocessors (SMPs) at the high-end of computing.
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• Message passing is akin to telephone calls or letters, which convey information from a spe-
cific sender to a specific receiver. There is a well-defined event when the information is sent
or received, and these events are the basis for orchestrating individual activities. However,
there is no shared locations accessible to all.

• Data parallel processing is a more regimented form of cooperation, where several agents per-
form an action on separate elements of a data set simultaneously and then exchange informa-
tion globally before continuing en masse. The global reorganization of data may be
accomplished through accesses to shared addresses or messages, since the programming
model only defines the overall effect of the parallel steps.

A more precise definition of these programming models will be developed later in the text; at this
stage it is most important to understand the layers of abstraction. 

A programming model is realized in terms of the user-level communication primitives of the sys-
tem, which we call the communication abstraction. Typically, the programming model is embod-
ied in a parallel language or programming environment, so there is a mapping from the generic
language constructs to the specific primitives of the system. These user-level primitives may be
provided directly by the hardware, by the operating system or by machine specific user software
which maps the communication abstractions to the actual hardware primitives. The distance
between the lines in the figure is intended to indicate that the mapping from operations in the pro-
gramming model to the hardware primitives may be very simple or it may be very involved. For
example, access to a shared location is realized directly by load and store instructions on a
machine in which all processors use the same physical memory, however, passing a message on
such a machine may involve a library or system call to write the message into a buffer area or to
read it out. We will examine the mapping between layers more below.

The communication architecture defines the set of communication operations available to the
user software, the format of these operations, and the data types they operate on, much as an

Figure  1-13  Layers of Abstraction in Parallel Computer Architecture 

Critical layers of abstractions lie between the application program and the actual hardware. The application is writ-
ten for a programming model, which dictates how pieces of the program share information and coordinate their
activies. The specific operations providing communication and synchronization form the communication abstrac-
tion, which is he boundary between the user program and the system implementation. This abstraction is realized
through compiler or library support using the primitives available from the hardware of from the operating system,
which uses priviledged hardware primtives. The communication hardware is organized to provide these operations
efficiently on the physical wires connecting together the machine.
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instruction set architecture does for a processor. Note that even in conventional instruction sets,
some operations may be realized by a combination of hardware and software, such as a load
instruction which relies on operating system intervention in the case of a page fault. The commu-
nication architecture also extends the computer organization with the hardware structures that
support communication.

As with conventional computer architecture, there has been a great deal of debate over the years
as to what should be incorporated into each layer of abstraction in parallel architecture and how
large the “gap” should be between the layers. This debate has been fueled by various assumptions
about the underlying technology and more qualitative assessments of “ease of programming.” We
have drawn the hardware/software boundary as flat, which might indicate that the available hard-
ware primitives in different designs have more or less uniform complexity. Indeed, this is becom-
ing more the case as the field matures. In most early designs the physical hardware organization
was strongly oriented toward a particular programming model, i.e., the communication abstrac-
tion supported by the hardware was essentially identical to the programming model. This “high
level” parallel architecture approach resulted in tremendous diversity in the hardware organiza-
tions. However, as the programming models have become better understood and implementation
techniques have matured, compilers and run-time libraries have grown to provide an important
bridge between the programming model and the underlying hardware. Simultaneously, the tech-
nological trends discussed above have exerted a strong influence, regardless of programming
model. The result has been a convergence in the organizational structure with relatively simple,
general purpose communication primitives.

In the remainder of this section surveys the most widely used programming models and the cor-
responding styles of machine design in past and current parallel machines. Historically, parallel
machines were strongly tailored to a particular programming model, so it was common to lump
the programming model, the communication abstraction, and the machine organization together
as “the architecture”, e.g., a shared memory architecture, a message passing architecture, and so
on. This approach is less appropriate today, since there is a large commonality across parallel
machines and many machines support several programming models. It is important to see how
this convergence has come about, so we will begin from the traditional perspective and look at
machine designs associated with particular programming models, and explain their intended role
and the technological opportunities that influenced their design. The goal of the survey is not to
develop a taxonomy of parallel machines per se, but to identify a set of core concepts that form
the basis for assessing design trade-offs across the entire spectrum of potential designs today and
in the future. It also demonstrates the influence that the dominant technological direction estab-
lished by microprocessor and DRAM technologies has had on parallel machine design, which
makes a common treatment of the fundamental design issues natural or even imperative. Specifi-
cally, shared-address, message passing, data parallel, dataflow and systolic approaches are pre-
sented. In each case, we explain the abstraction embodied in the programming model and look at
the motivations for the particular style of design, as well as the intended scale and application.
The technological motivations for the approach are examine and how these changed over time.
These changes are reflected in the machine organization, which determines what is fast and what
is slow. The performance characteristics ripple up to influence aspects of the programming
model. The outcome of this brief survey is a clear organizational convergence, which is captured
in a generic parallel machine at then end of the section.
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1.3.2 Shared Memory

One of the most important classes of parallel machines is shared memory multiprocessors. The
key property of this class is that communication occurs implicitly as a result of conventional
memory access instructions, i.e., loads and stores. This class has a long history, dating at least to
precursors of mainframes in the early 60s1, and today it has a role in almost every segment of the
computer industry. Shared memory multiprocessors serve to provide better throughput on multi-
programming workloads, as well as to support parallel programs. Thus, they are naturally found
across a wide range of scale, from a few processors to perhaps hundreds. Below we examine the
communication architecture of shared-memory machines and the key organizational issues for
small-scale designs and large configurations.

The primary programming model for these machine is essentially that of timesharing on a single
processor, except that real parallelism replaces interleaving in time. Formally, a process is a vir-
tual address space and one or more threads of control. Processes can be configured so that por-
tions of their address space are shared, i.e., are mapped to common physical location, as
suggested by Figure 1-19. Multiple threads within a process, by definition, share portions of the
address space. Cooperation and coordination among threads is accomplished by reading and
writing shared variables and pointers referring to shared addresses. Writes to a logically shared
address by one thread are visible to reads of the other threads. The communication architecture
employs the conventional memory operations to provide communication through shared
addresses, as well as special atomic operations for synchronization. Completely independent pro-
cesses typically share the kernel portion of the address space, although this is only accessed by
operating system code. Nonetheless, the shared address space model is utilized within the operat-
ing system to coordinate the execution of the processes. 

While shared memory can be used for communication among arbitrary collections of processes,
most parallel programs are quite structured in their use of the virtual address space. They typi-
cally have a common code image, private segments for the stack and other private data, and
shared segments that are in the same region of the virtual address space of each process or thread
of the program. This simple structure implies that the private variables in the program are present
in each process and that shared variables have the same address and meaning in each process or
thread. Often straightforward parallelization strategies are employed; for example, each process
may perform a subset of the iterations of a common parallel loop or, more generally, processes
may operate as a pool of workers obtaining work from a shared queue. We will discuss the struc-
ture of parallel program more deeply in Chapter 2. Here we look at the basic evolution and devel-
opment of this important architectural approach.

The communication hardware for shared-memory multiprocessors is a natural extension of the
memory system found in most computers. Essentially all computer systems allow a processor
and a set of I/O controllers to access a collection of memory modules through some kind of hard-
ware interconnect, as illustrated in Figure 1-15. The memory capacity is increased simply by
adding memory modules. Additional capacity may or may not increase the available memory
bandwidth, depending on the specific system organization. I/O capacity is increased by adding

1.  Some say that BINAC was the first multiprocessors, but it was intended to improve reliability. The two
processors check each other at every instruction. They never agreed, so people eventually turned one of
them off.
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devices to I/O controllers or by inserting additional I/O controllers. There are two possible ways
to increase the processing capacity: wait for a faster processor to become available, or add more
processors. On a timesharing workload, this should increase the throughput of the system. With
more processors, more processes run at once and throughput is increased. If a single application
is programmed to make use of multiple threads, more processors should speed up the application.
The primitives provided by the hardware are essentially one-to-one with the operations available
in the programming model.

Within the general framework of Figure 1-15, there has been a great deal of evolution of shared
memory machines as the underlying technology advanced. The early machines were “high end”
mainframe configurations [Lon61,Padeg]. On the technology side, memory in early mainframes
was slow compared to the processor, so it was necessary to interleave data across several memory
banks to obtain adequate bandwidth for a single processor; this required an interconnect between
the processor and each of the banks. On the application side, these systems were primarily
designed for throughput on a large number of jobs. Thus, to meet the I/O demands of a workload,
several I/O channels and devices were attached. The I/O channels also required direct access each
of the memory banks. Therefore, these systems were typically organized with a cross-bar switch
connecting the CPU and several I/O channels to several memory banks, as indicated by Figure 1-
16a. Adding processors was primarily a matter of expanding the switch; the hardware structure to
access a memory location from a port on the processor and I/O side of the switch was unchanged.
The size and cost of the processor limited these early systems to a small number of processors.
As the hardware density and cost improved, larger systems could be contemplated. The cost of
scaling the cross-bar became the limiting factor, and in many cases it was replaced by a multi-

Figure  1-14  Typical memory model for shared-memory parallel programs
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stage interconnect, suggested by Figure 1-16b, for which the cost increases more slowly with the
number of ports. These savings come at the expense of increased latency and decreased band-
width per port, if all are used at once. The ability to access all memory directly from each proces-
sor has several advantages: any processor can run any process or handle any I/O event and within
the operating system data structures can be shared.

The widespread use of shared-memory multiprocessor designs came about with the 32-bit micro-
processor revolution in the mid 80s, because the processor, cache, floating point, and memory
management unit fit on a single board[Bel95], or even two to a board. Most mid-range machines,
including minicomputers, servers, workstations, and personal computers are organized around a
central memory bus, as illustrated in Figure 1-16a. The standard bus access mechanism allows
any processor to access any physical address in the system. Like the switch based designs, all
memory locations are equidistant to all processors, so all processors experience the same access
time, or latency, on a memory reference. This configuration is usually called a symmetric multi-
processor (SMP)1. SMPs are heavily used for execution of parallel programs, as well as multi-

Figure  1-15  Extending a system into a shared-memory multiprocessor by adding processor modules

Most systems consist of one or more memory modules accessible by a processor and I/O controllers through a hard-
ware interconnect, typically a bus, cross-bar or multistage interconnect. Memory and I/O capacity is increased by
attaching memory and I/O modules. Shared-memory machines allow processing capacity to be increased by adding
processor modules.
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programming. The typical organization of bus-based symmetric multiprocessor is illustrated by
Figure 1-17, which describes the first highly integrated SMP for the commodity market.
Figure 1-18 illustrates a high-end server organization which distributes the physical memory over
the processor modules.

The factors limiting the number of processors that can be supported with a bus-based organiza-
tion are quite different from those in the switch-based approach. Adding processors to the switch
is expensive, however, the aggregate bandwidth increases with the number of ports. The cost of
adding a processor to the bus is small, but the aggregate bandwidth is fixed. Dividing this fixed
bandwidth among the larger number of processors limits the practical scalability of the approach.
Fortunately, caches reduce the bandwidth demand of each processor, since many references are
satisfied by the cache, rather than by the memory. However, with data replicated in local caches
there is a potentially challenging problem of keeping the caches “consistent”, which we will
examine in detail later in the book.

Starting from a baseline of small-scale shared memory machines, illustrated in the figures above,
we may ask what is required to scale the design to a large number of processors. The basic pro-
cessor component is well-suited to the task, since it is small and economical, but there is clearly a
problem with the interconnect. The bus does not scale because it has a fixed aggregate band-
width. The cross-bar does not scale well, because the cost increases as the square of the number
of ports. Many alternative scalable interconnection networks exist, such that the aggregate band-
width increases as more processors are added, but the cost does not become excessive. We need
to be careful about the resulting increase in latency, because the processor may stall while a
memory operation moves from the processor to the memory module and back. If the latency of
access becomes too large, the processors will spend much of their time waiting and the advan-
tages of more processors may be offset by poor utilization.

One natural approach to building scalable shared memory machines is to maintain the uniform
memory access (or “dancehall”) approach of Figure 1-15 and provide a scalable interconnect
between the processors and the memories. Every memory access is translated into a message
transaction over the network, much as it might be translated to a bus transaction in the SMP
designs. The primary disadvantage of this approach is that the round-trip network latency is expe-
rienced on every memory access and a large bandwidth must be supplied to every processor.

An alternative approach is to interconnect complete processors, each with a local memory, as
illustrated in Figure 1-19. In this non-uniform memory access (NUMA) approach, the local
memory controller determines whether to perform a local memory access or a message transac-
tion with a remote memory controller. Accessing local memory is faster than accessing remote
memory. (The I/O system may either be a part of every node or consolidated into special I/O
nodes, not shown.) Accesses to private data, such as code and stack, can often be performed
locally, as can accesses to shared data that, by accident or intent, are stored on the local node. The
ability to access the local memory quickly does not increase the time to access remote data appre-
ciably, so it reduces the average access time, especially when a large fraction of the accesses are

1.  The term SMP is widely used, but causes a bit of confusion. What exactly needs to be symmetric? Many
designs are symmetric in some respect. The more precise description of what is intended by SMP is a shared
memory multiprocessor where the cost of accessing a memory location is the same for all processors, i.e., it
has uniform access costs when the access actually is to memory. If the location is cached, the access will be
faster, but still it is symmetric with respect to processors.
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to local data. The bandwidth demand placed on the network is also reduced. Although some con-
ceptual simplicity arises from having all shared data equidistant from any processor, the NUMA
approach has become far more prevalent because of its inherent performance advantages and
because it harnesses more of the mainstream processor memory system technology. One example
of this style of design is the Cray T3E, illustrated in Figure 1-20. This machine reflects the view-
point where, although all memory is accessible to every processor, the distribution of memory
across processors is exposed to the programmer. Caches are used only to hold data (and instruc-
tions) from local mmory. It is the programmer’s job to avoid frequent report references. The SGI
Origin is an example of a machine with a similar organizational structure, but it allows data from
any memory to be replicated into any of the caches and provide hardware support to keep these
caches consistent, without relying on a bus connecting all the modules with a common set of
wires. While this book was being written, the two dsigns literally converged after the two compa-
nies merged.

To summarize, the communication abstraction underlying the shared address space programming
model is reads and writes to shared variables, this is mapped one-to-one to a communication
abstraction consisting of load and store instructions accessing a global, shared address space,
which is supported directly in hardware through access to shared physical memory locations. The
communication abstraction is very “close” to the actual hardware. Each processor can name

Figure  1-17  Physical and logical organization of the Intel PentiumPro four processor “quad pack”

The Intel quad-processor Pentium Pro motherboard employed in many multiprocessor servers illustrates the major
design elements of most small scale SMPs. Its logical block diagram shows there can be up to four processor mod-
ules, each containing a Pentium-Pro processor, first level caches, TLB, 256 KB second level cache, interrupt con-
troller (IC), and a bus interface (BI) in a single chip connecting directly to a 64-bit memory bus. The bus operates at
66 MHz and memory transactions are pipelined to give a peak bandwidth of 528 MB/s. A two-chip memory con-
troller and four-chip memory interleave unit (MIU) connect the bus to multiple banks of DRAM. Bridges connect
the memory bus to two independent PCI busses, which host display, network, SCSI, and lower speed I/O connec-
tions. The Pentium-Pro module contains all the logic necessary to support the multiprocessor communication archi-
tecture, including that required for memory and cache consistency. The structure of the Pentium-Pro “quad pack” is
similar to a large number of earlier SMP designs, but has a much higher degree of integration and is targeted at a
much larger volume.
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every physical location in the machine; a process can name all data it shares with others within its
virtual address space. Data transfer is a result of conventional load and store instructions, and the
data is transferred either as primitive types in the instruction set, bytes, words, etc., or as cache
blocks. Each process performs memory operations on addresses in its virtual address space; the

Figure  1-18  Physical and logical organization of the Sun Enterprise Server

A larger scale design is illustrated by the Sun Ultrasparc-based Enterprise multiprocessor server. The diagram
shows its physical structure and logical organization. A wide (256 bit), highly pipelined memory bus delivers 2.5
GB/s of memory bandwidth. This design uses a hierarchical structure, where each card is either a complete dual-
processor with memory or a complete I/O system. The full configuration supports 16 cards of either type, with at
least one of each. The CPU/Mem card contains two Ultrasparc processor modules, each with 16 KB level-1 and 512
KB level-2 caches, plus two 512-bit wide memory banks and an internal switch. Thus, adding processors adds
memory capacity and memory interleaving. The I/O card provides three SBUS slots for I/O extensions, a SCSI con-
nector, 100bT Ethernet port, and two FiberChannel interfaces. A typical complete configuration would be 24 pro-
cessors and 6 I/O cards. Although memory banks are physically packaged with pairs of processors, all
memory is equidistant from all processors and accessed over the common bus, preserving the SMP
characteristics. Data may be placed anywhere in the machine with no performance impact.
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address translation process identifies a physical location, which may be local or remote to the
processor and may be shared with other processes. In either case, the hardware accesses it
directly, without user or operating system software intervention. The address translation realizes
protection within the shared address space, just as it does for uniprocessors, since a process can
only access the data in its virtual address space. The effectiveness of the shared memory
approach depends on the latency incurred on memory accesses, as well as the bandwidth of data
transfer that can be supported. Just as a memory storage hierarchy allows that data that is bound
to an address to be migrated toward the processor, expressing communication in terms of the
storage address space allows shared data to be migrated toward the processor that accesses it.
However, migrating and replicating data across a general purpose interconnect presents a unique
set of challenges. We will see that to achieve scalability in such a design it is necessary, but not
sufficient, for the hardware interconnect to scale well. The entire solution, including the mecha-
nisms used for maintaining the consistent shared memory abstractions, must also scale well.

1.3.3 Message-Passing

A second important class of parallel machines, message passing architectures, employs complete
computers as building blocks – including the microprocessor, memory and I/O system – and pro-
vides communication between processors as explicit I/O operations. The high-level block dia-

Figure  1-20   Cray T3E Scalable Shared Address Space Machine

The Cray T3E is designed to scale up to a thousand processors supporting a global shared address space.
Each node contains a DEC Alpha processor, local memory, a network interface integrated with the
memory controller, and a network switch. The machine is organized as a three dimensional cube, with
each node connected to its six neighbors through 480 MB/s point-to-point links. Any processor can read
or write any memory location, however, the NUMA characteristic of the machine is exposed in the com-
munication architecture, as well as in its performance characteristics. A short sequence of instructions is
required to establish addressability to remote memory, which can then be accessed by conventional
loads and stores. The memory controller captures the access to a remote memory and conducts a mes-
sage transaction with the memory controller of the remote node on the local processor’s behalf. The
message transaction is automatically routed through intermediate nodes to the desired destination, with
a small delay per “hop”. The remote data is typically not cached, since there is no hardware mechanism
to keep it consistent. (We will look at other design points that allow shared data to be replicated through-
out the processor caches.) The Cray T3E I/O system is distributed over a collection of nodes on the sur-
face of the cube, which are connected to the external world through an addition I/O network
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gram for a message passing machine is essentially the same as the NUMA shared-memory
approach, shown in Figure 1-19. The primary difference is that communication is integrated at
the I/O level, rather than into the memory system. This style of design also has much in common
with networks of workstations, or “clusters”, except the packaging of the nodes is typically much
tighter, there is no monitor or direct user access, and the network is of much higher capability
than standard local area network. The integration between the processor and the network tends to
be much tighter than in traditional I/O structures, which support connection to devices that are
much slower than the processor, since message passing is fundamentally processor-to-processor
communication. 

In message-passing there is generally a substantial distance between the programming model and
the communication operations at the physical hardware level, because user communication is
performed through operating system or library calls which perform many lower level actions,
including the actual communication operation. Thus, the discussion of message-passing begins
with a look at the communication abstraction, and then briefly surveys the evolution of hardware
organizations supporting this abstraction.

The most common user-level communication operations on message passing systems are variants
of send and receive. In its simplest form, send specifies a local data buffer that is to be transmitted
and a receiving process (typically on a remote processor). Receive specifies a sending process
and a local data buffer into which the transmitted data is to be placed. Together, the matching
send and receive cause a data transfer from one process to another, as indicated in Figure 1-19. In
most message passing systems, the send operation also allows an identifier or tag to be attached
to the message and the receiving operation specifies a matching rule, such as a specific tag from a
specific processor, any tag from any processor. Thus, the user program names local addresses and
entries in an abstract process-tag space. The combination of a send and a matching receive
accomplishes a memory to memory copy, where each end specifies its local data address, and a
pairwise synchronization event. There are several possible variants of this synchronization event,
depending upon whether the send completes when the receive has been executed, when the send
buffer is available for reuse, or when the request has been accepted. Similarly, the receive can
potentially wait until a matching send occurs or simply post the receive. Each of these variants
have somewhat different semantics and different implementation requirements.

Message passing has long been used as a means of communication and synchronization among
arbitrary collections of cooperating sequential processes, even on a single processor. Important
examples include programming languages, such as CSP and Occam, and common operating sys-
tems functions, such as sockets. Parallel programs using message passing are typically quite
structured, like their shared-memory counter parts. Most often, all nodes execute identical copies
of a program, with the same code and private variables. Usually, processes can name each other
using a simple linear ordering of the processes comprising a program.

Early message passing machines provided hardware primitives that were very close to the simple
send/receive user-level communication abstraction, with some additional restrictions. A node was
connected to a fixed set of neighbors in a regular pattern by point-to-point links that behaved as
simple FIFOs[Sei85]. This sort of design is illustrated in Figure 1-22 for a small 3D cube. Most
early machines were hypercubes, where each node is connected to  other nodes differing by one
bit in the binary address, for a total of  nodes, or meshes, where the nodes are connect to
neighbors on two or three dimensions. The network topology was especially important in the
early message passing machines, because only the neighboring processors could be named in a
send or receive operation. The data transfer involved the sender writing into a link and the
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receiver reading from the link. The FIFOs were small, so the sender would not be able to finish
writing the message until the receiver started reading it, so the send would block until the receive
occured. In modern terms this is called synchronous message passing because the two events
coincide in time. The details of moving data were hidden from the programmer in a message
passing library, forming a layer of software between send and receive calls and the actual hard-
ware.1

The direct FIFO design was soon replaced by more versatile and more robust designs which pro-
vided direct memory access (DMA) transfers on either end of the communication event. The use
of DMA allowed non-blocking sends, where the sender is able to initiate a send and continue
with useful computation (or even perform a receive) while the send completes. On the receiving
end, the transfer is accepted via a DMA transfer by the message layer into a buffer and queued
until the target process performs a matching receive, at which point the data is copying into the
address space of the receiving process.

The physical topology of the communication network dominated the programming model of
these early machines and parallel algorithms were often stated in terms of a specific interconnec-
tion topology, e.g., a ring, a grid, or a hypercube[Fox*88]. However, to make the machines more
generally useful, the designers of the message layers provided support for communication
between arbitrary processors, rather than only between physical neighbors[NX]. This was origi-
nally supported by forwarding the data within the message layer along links in the network. Soon
this routing function was moved into the hardware, so each node consisted of a processor with
mmory, and a switch that could forward messsages, called a router. However, in this store-and-
forward approach the time to transfer a message is proportional to the number of hops it takes

1.  The motivation for synchronous message passing was not just from the machine structure; it
was also was also present in important programming languages, especially CSP[***CSP]. Early
in the microprocesor era the approach was captured in a single chip building block, the Trans-
puter, which was widely touted during its development by INMOS as a revolution in computing.

Figure  1-21  User level send/receive message passing abstraction
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a received postd by that process.
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through the network, so there remained an emphasis on interconnection topology.(See
Exercise 1.7) 

The emphasis on network topology was significantly reduced with the introduction of more gen-
eral purpose networks, which pipelined the message transfer through each of the routers forming
the interconnection network[Bar*94,BoRo89,Dun88,HoMc93,Lei*92,PiRe94,VEi*92]. In most
modern message passing machines, the incremental delay introduced by each router is small
enough that the transfer time is dominated by the time to simply move that data between the pro-
cessor and the network, not how far it travels.[Gro92,HoMc93,Hor*93PiRe94]. This greatly sim-
plifies the programming model; typically the processors are viewed as simply forming a linear
sequence with uniform communication costs. In other words, the communication abstraction
reflects an organizational structure much as in Figure 1-19. One important example of such
machine is the IBM SP-2, illustrated in Figure 1-23, which is constructed from conventional
RS6000 workstations, a scalable network, and a network interface containing a dedicated proces-
sor. Another is the Intel Paragon, illustrated in Figure 1-24, which integrates the network inter-
face more tightly to the processors in an SMP nodes, where one of the processors is dedicated to
supporting message passing.

A processor in a message passing machine can name only the locations in its local memory, and
it can name each of the procesors, perhaps by number or by route. A user process can only name
private addresses and other processes; it can transfer data using the send/receive calls.

1.3.4 Convergence

Evolution of the hardware and software has blurred the once clear boundary between the shared
memory and message passing camps. First, consider the communication operations available to
the user process.

Figure  1-22   Typical structure of an early message passing machines
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• Traditional message passing operations (send/receive) are supported on most shared memory
machines through shared buffer storage. Send involves writing data, or a pointer to data, into
the buffer, receive involves reading the data from shared storage. Flags or locks are used to
control access to the buffer and to indicate events, such as message arrival.

• On a message passing machine, a user process may construct a global address space of sorts
by carrying along pointers specifying the process and local virtual address in that process.
Access to such a global address can be performed in software, through an explicit message
transaction. Most message passing libraries allow a process to accept a message for “any”
process, so each process can serve data requests from the others. A logical read is realized by
sending an request to the process containing the object and receiving a response. The actual
message transaction may be hidden from the user; it may be carried out by compiler gener-
ated code for access to a shared variable.[Split-C,Midway,CID,Cilk]

Figure  1-23   IBM SP-2 Message Passing Machine

The IBM SP-2 is a scalable parallel machine constructed essentially out of complete RS6000 workstations. Modest
modifications are made to packaging the workstations into standing racks. A network interface card (NIC) is
inserted at the MicroChannel I/O bus. The NIC contains the drivers for the actual link into the network, a substan-
tial amount of memory to buffer message data, and a complete i960 microprocessor to move data between host
memory and the network. The network itself is a butterfly-like structure, constructed by cascading 8x8 cross-bar
switches. The links operate at 40 MB/s in each direction, which is the full capability of the I/O bus. Several other
machine employ a similar network interface design, but connect directly to the memory bus, rather than at the I/O
bus.
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• A shared virtual address space can be established on a message passing machine at the page
level. A collection of processes have a region of shared addresses, but for each process only
the pages that are local to it are accessible. Upon access to a missing (i.e., remote) page, a
page fault occurs and the operating system engages the remote node in a message transaction
to transfer the page and map it into the user address space.

At the level of machine organization, there has been substantial convergence as well. Modern
message passing architectures appear essentially identical at the block diagram level to the scal-
able NUMA design illustrated in Figure 1-19. In the shared memory case, the network interface
was integrated with the cache controller or memory controller, in order for that device to observe
cache misses and conduct a message transaction to access memory in a remote node. In the mes-
sage passing approach, the network interface is essentially an I/O device. However, the trend has
been to integrate this device more deeply into the memory system as well, and to transfer data
directly from the user address space. Some designs provide DMA transfers across the network,
from memory on one machine to memory on the other machine, so the network interface is inte-

Figure  1-24   Intel Paragon

The Intel Paragon illustrates a much tighter packaging of nodes. Each card is an SMP with two or more i860 pro-
cessors and a network interface chip connected to the cache-coherent memory bus. One of the processors is dedi-
cated to servicing the network. In addition, the node has a DMA engine to transfer contiguous chunks of data to and
from the network at a high rate. The network is a 3D grid, much like the Cray T3E, with links operating at 175 MB/
s in each direction.
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grated fairly deeply with the memory system. Message passing is implemented on top of these
remote memory copies[HoMc92]. In some designs a complete processor assists in communica-
tion, sharing a cache-coherent memory bus with the main processor[Gro92,PiRe94,HoMc92].
Viewing the convergence from the other side, clearly all large-scale shared memory operations
are ultimately implemented as message transactions at some level.

In addition to the convergeence of scalable message passing and shared memory machines,
switched-based local area networks, including fast ethernet, ATM, FiberChannel, and several
proprietary design[Bod95, Gil96] have emerged, providing scalable interconnects that are
approaching what traditional parallel machines offer. These new networks are being used to con-
nect collections of machines, which may be shared-memory multiprocessors in their own right,
into clusters, which may operate as a parallel machine on individual large problems or as many
individual machines on a multiprogramming load. Also, essentially all SMP vendors provide
some form of network clustering to obtain better reliability.

In summary, message passing and a shared address space represent two clearly distinct program-
ming models, each providing a well-defined paradigm for sharing, communication, and synchro-
nization. However, the underlying machine structures have converged toward a common
organization, represented by a collection of complete computers, augmented by a communication
assist connecting each node to a scalable communication network. Thus, it is natural to consider
supporting aspects of both in a common framework. Integrating the communication assist more
tightly into the memory system tends to reduce the latency of network transactions and improve
the bandwidth that can be supplied to or accepted from the network. We will want to look much
more carefully at the precise nature of this integration and understand how it interacts with cache
design, address translation, protection, and other traditional aspects of computer architecture.

1.3.5 Data Parallel Processing

A third important class of parallel machines has been variously called: processor arrays, single-
instruction-multiple-data machines, and data parallel architectures. The changing names reflect a
gradual separation of the user-level abstraction from the machine operation. The key characteris-
tic of the programming model is that operations can be performed in parallel on each element of
a large regular data structure, such as an array or matrix. The program is logically a single
thread of control, carrying out a sequence of either sequential or parallel steps. Within this gen-
eral paradigm, there has been many novel designs, exploiting various technological opportuni-
ties, and considerable evolution as microprocessor technology has become such a dominate
force.

An influential paper in the early 70’s[Fly72] developed a taxonomy of computers, known as
Flynn’s taxonomy , which characterizes designs in terms of the number of distinct instructions
issued at a time and the number of data elements they operate on. Conventional sequential com-
puters being single-instruction-single-data (SISD) and parallel machines built from multiple con-
ventional processors being multiple-instruction-multiple-data (MIMD). The revolutionary
alternative was single-instruction-multiple-data (SIMD). Its history is rooted in the mid-60s
when an individual processor was a cabinet full of equipment and an instruction fetch cost as
much in time and hardware as performing the actual instruction. The idea was that all the instruc-
tion sequencing could be consolidated in the control processor. The data processors included only
the ALU, memory, and a simple connection to nearest neighbors. 
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In the early data parallel machines, the data parallel programming model was rendered directly in
the physical hardware[Bal*62, Bou*72,Cor72,Red73,Slo*62,Slot67,ViCo78]. Typically, a con-
trol processor broadcast each instruction to an array of data processing elements (PEs), which
were connected to form a regular grid, as suggested by Figure 1-25. It was observed that many
important scientific computations involved uniform calculation on every element of an array or
matrix, often involving neighboring elements in the row or column. Thus, the parallel problem
data was distributed over the memories of the data processors and scalar data was retained in the
control processor’s memory. The control processor instructed the data processors to each perform
an operation on local data elements or all to perform a communication operation. For example, to
average each element of a matrix with its four neighbors, a copy of the matrix would be shifted
across the PEs in each of the four directions and a local accumulation performed in each PE. Data
PEs typically included a condition flag, allowing some to abstain from an operation. In some
designs, the local address can be specified with an indirect addressing mode, allowing processors
to all do the same operation, but with different local data addresses.

The development of arrays of processors was almost completely eclipsed in the mid 70s with the
development of vector processors. In these machines, a scalar processor is integrated with a col-
lection of function units that operate on vectors of data out of one memory in a pipelined fashion.
The ability to operate on vectors anywhere in memory eliminated the need to map application
data structures onto a rigid interconnection structure and greatly simplified the problem of getting
data aligned so that local operations could be performed. The first vector processor, the CDC
Star-100, provided vector operations in its instruction set that combined two source vectors from
memory and produced a result vector in memory. The machine only operated at full speed if the
vectors were contiguous and hence a large fraction of the execution time was spent simply trans-
posing matrices. A dramatic change occurred in 1976 with the introduction of the Cray-1, which
extended the concept of a load-store architecture employed in the CDC 6600 and CDC 7600 (and
rediscovered in modern RISC machines) to apply to vectors. Vectors in memory, of any fixed
stride, were transferred to or from contiguous vector registers by vector load and store instruc-
tions. Arithmetic was performed on the vector registers. The use of a very fast scalar processor
(operating at the unprecedented rate of 80 MHz) tightly integrated with the vector operations and

Figure  1-25  Typical organization of a data parallel (SIMD) parallel machine

Individual processing elements (PEs) operate in lock-step under the direction of a single control processor. Tradi-
tionally, SIMD machines provide a limited, regular interconnect among the PEs, although this was generalized in
later machines, such as the Thinking Machines Connection Machine and the MasPar.
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utilizing a large semiconductor memory, rather than core, took over the world of supercomput-
ing. Over the next twenty years Cray Research led the supercomputing market by increasing the
bandwidth for vector memory transfers, increasing the number of processors, the number of vec-
tor pipelines, and the length of the vector registers, resulting in the performance growth indicated
by Figure 1-10 and Figure 1-11.

The SIMD data parallel machine experienced a renaissance in the mid-80s, as VLSI advances
made simple 32-bit processor just barely practical[Bat79,Bat80,Hill85,Nic90,TuRo88]. The
unique twist in the data parallel regime was to place thirty-two very simple 1-bit processing ele-
ments on each chip, along with serial connections to neighboring processors, while consolidating
the instruction sequencing capability in the control processor. In this way, systems with several
thousand bit-serial processing elements could be constructed at reasonable cost. In addition, it
was recognized that the utility of such a system could be increased dramatically with the provi-
sion of a general interconnect allowing an arbitrary communication pattern to take place in a sin-
gle rather long step, in addition to the regular grid neighbor connections[Hill85,HiSt86,Nic90].
The sequencing mechanism which expands conventional integer and floating point operations
into a sequence of bit serial operations also provided a means of “virtualizing” the processing
elements, so that a few thousand processing elements can give the illusion of operating in parallel
on millions of data elements with one virtual PE per data element.

The technological factors that made this bit-serial design attractive also provided fast, inexpen-
sive, single-chip floating point units, and rapidly gave way to very fast microprocessors with inte-
grated floating point and caches. This eliminated the cost advantage of consolidating the
sequencing logic and provided equal peak performance on a much smaller number of complete
processors. The simple, regular calculations on large matrices which motivated the data parallel
approach also have tremendous spatial and temporal locality, if the computation is properly
mapped onto a smaller number of complete processors, with each processor responsible for a
large number of logically contiguous data points. Caches and local memory can be brought to
bear on the set of data points local to each node, while communication occurs across the bound-
aries or as a global rearrangement of data.

Thus, while the user-level abstraction of parallel operations on large regular data structures con-
tinued to offer an attractive solution to an important class of problems, the machine organization
employed with data parallel programming models evolved towards a more generic parallel archi-
tecture of multiple cooperating microprocessors, much like scalable shared memory and message
passing machines, often with the inclusion of specialized network support for global synchroni-
zation, such as a barrier , which causes each process to wait at a particular point in the program
until all other processes have reach that point[Hor93,Lei*92,Kum92,KeSc93,Koe*94]. Indeed,
the SIMD approach evolved into the SPMD (single-program-multiple-data) approach, in which
all processors execute copies of the same program, and has thus largely converged with the more
structured forms of shared memory and message passing programming. 

Data parallel programming languages are usually implemented by viewing the local address
spaces of a collection of processes, one per processor, as forming an explicit global address
space. Data structures are laid out across this global address space and there is a simple mapping
from indexes to processor and local offset. The computation is organized as a sequence of “bulk
synchronous” phases of either local computation or global communication, separated by a global
barrier [cite BSP]. Because all processors do communication together and there is a global view
of what is going on, either a shared address space or message passing can be employed. For
example, if a phase involved every processor doing a write to an address in the processor “to the
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left”, it could be realized by each doing a send to the left and a receive “from the right” into the
destination address. Similarly, every processor reading can be realized by every processor send-
ing the address and then every processor sending back the data. In fact, the code that is produced
by compilers for modern data parallel languages is essentially the same as for the structured con-
trol-parallel programs that are most common in shared-memory and message passing program-
ming models. With the convergence in machine structure, there has been a convergence in how
the machines are actually used.

1.3.6 Other Parallel Architectures

The mid-80s renaissance gave rise to several other architectural directions which received con-
siderable investigation by academia and industry, but enjoyed less commercial success than the
three classes discussed above and therefore experienced less use as a vehicle for parallel pro-
gramming. Two approaches that were developed into complete programming systems were data-
flow architectures and systolic architectures. Both represent important conceptual developments
of continuing value as the field evolves.

Dataflow Architecture

Dataflow models of computation sought to make the essential aspects of a parallel computation
explicit at the machine level, without imposing artificial constraints that would limit the available
parallelism in the program. The idea is that the program is represented by a graph of essential
data dependences, as illustrated in Figure 1-26, rather than as a fixed collection of explicitly
sequenced threads of control. An instruction may execute whenever its data operands are avail-
able. The graph may be spread arbitrarily over a collection of processors. Each node specifies an
operation to perform and the address of each of the nodes that need the result. In the original
form, a processor in a dataflow machine operates a simple circular pipeline. A message, or token,
from the network consists of data and an address, or tag, of its destination node. The tag is com-
pared against those in a matching store. If present, the matching token is extracted and the
instruction is issued for execution. If not, the token is placed in the store to await its partner.
When a result is computed, a new message, or token, containing the result data is sent to each of
the destinations specified in the instruction. The same mechanism can be used whether the suc-
cessor instructions are local or on some remote processor. The primary division within dataflow
architectures is whether the graph is static, with each node representing a primitive operation, or
dynamic, in which case a node can represent the invocation of an arbitrary function, itself repre-
sented by a graph. In dynamic or tagged-token architectures, the effect of dynamically expanding
the graph on function invocation is usually achieved by carrying additional context information
in the tag, rather than actually modifying the program graph.

The key characteristic of dataflow architectures is the ability to name operations performed any-
where in the machine, the support for synchronization of independent operations, and dynamic
scheduling at the machine level. As the dataflow machine designs matured into real systems, pro-
grammed in high level parallel languages, a more conventional structure emerged. Typically, par-
allelism was generated in the program as a result of parallel function calls and parallel loops, so it
was attractive to allocate these larger chunks of work to processors. This led to a family of
designs organized essentially like the NUMA design of Figure 1-19. The key differentiating fea-
tures being direct support for a large, dynamic set of threads of control and the integration of
communication with thread generation. The network was closely integrated with the processor;
in many designs the “current message” is available in special registers, and there is hardware sup-
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port for dispatching to a thread identified in the message. In addition, many designs provide extra
state bits on memory locations in order to provide fine-grained synchronization, i.e., synchroni-
zation on an element-by-element basis, rather than using locks to synchronize accesses to an
entire data structure. In particular, each message could schedule a chunk of computation which
could make use of local registers and memory. 

By contrast, in shared memory machines one generally adopts the view that a static or slowly
varying set of processes operate within a shared address space, so the compiler or program maps
the logical parallelism in the program to a set of processes by assigning loop iterations, maintain-
ing a shared work queue, or the like. Similarly, message passing programs involve a static, or
nearly static, collection of processes which can name one another in order to communicate. In
data parallel architectures, the compiler or sequencer maps a large set of “virtual processor” oper-
ations onto processors by assigning iterations of a regular loop nest. In the dataflow case, the
machine provides the ability to name a very large and dynamic set of threads which can be
mapped arbitrarily to processors. Typically, these machines provided a global address space as
well. As we have seen with message passing and data parallel machines, dataflow architectures
experienced a gradual separation of programming model and hardware structure as the approach
matured.

Figure  1-26  Dataflow graph and basic execution pipeline
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Systolic Architectures

Another novel approach was systolic architectures, which sought to replace a single sequential
processor by a regular array of simple processing elements and, by carefully orchestrating the
flow of data between PEs, obtain very high throughput with modest memory bandwidth require-
ments. These designs differ from conventional pipelined function units, in that the array structure
can be non-linear, e.g. hexagonal, the pathways between PEs may be multidirectional, and each
PE may have a small amount of local instruction and data memory. They differ from SIMD in
that each PE might do a different operation.

The early proposals were driven by the opportunity offered by VLSI to provide inexpensive spe-
cial purpose chips. A given algorithm could be represented directly as a collection of specialized
computational units connected in a regular, space-efficient pattern. Data would move through the
system at regular “heartbeats” as determined by local state. Figure 1-27 illustrates a design for
computing convolutions using a simple linear array. At each beat the input data advances to the
right, is multiplied by a local weight, and is accumulated into the output sequence as it also
advances to the right. The systolic approach has aspects in common with message passing, data
parallel, and dataflow models, but takes on a unique character for a specialized class of problems.

Practical realizations of these ideas, such as iWarp[Bor*90], provided quite general programma-
bility in the nodes, in order for a variety of algorithms to be realized on the same hardware. The
key differentiation is that the network can be configured as a collection of dedicated channels,
representing the systolic communication pattern, and data can be transferred directly from pro-
cessor registers to processor registers across a channel. The global knowledge of the communica-
tion pattern is exploited to reduce contention and even to avoid deadlock. The key characteristic
of systolic architectures is the ability to integrate highly specialized computation under a simple,
regular, and highly localized communication patterns.

Figure  1-27  Systolic Array computation of an inner product
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Systolic algorithms have also been generally amenable to solutions on generic machines, using
the fast barrier to delineate coarser grained phases. The regular, local communication pattern of
these algorithms yield good locality when large portions of the logical systolic array are executed
on each process, the communication bandwidth needed is low, and the synchronization require-
ments are simple. Thus, these algorithms have proved effective on the entire spectrum of parallel
machines.

1.3.7 A Generic Parallel Architecture

In examining the evolution of the major approaches to parallel architecture, we see a clear con-
vergence for scalable machines toward a generic parallel machine organization, illustrated in
Figure 1-28. The machine comprises a collection of essentially complete computers, each with
one or more processors and memory, connected through a scalable communication network via
communications assist, some kind of controller or auxiliary processing unit which assists in gen-
erating outgoing messages or handling incoming messages. While the consolidation within the
field may seem to narrow the interesting design space, in fact, there is great diversity and debate
as to what functionality should be provided within the assist and how it interfaces to the proces-
sor, memory system, and network. Recognizing that these are specific differences within a
largely similar organization helps to understand and evaluate the important organizational trade-
offs. 

Not surprisingly, different programming models place different requirements on the design of the
communication assist, and influence which operations are common and should be optimized. In
the shared memory case, the assist is tightly integrated with the memory system in order to cap-
ture the memory events that may require interaction with other nodes. Also, the assist must
accept messages and perform memory operations and state transitions on behalf of other nodes.
In the message passing case, communication is initiated by explicit actions, either at the system
or user level, so it is not required that memory system events be observed. Instead, there is a need
to initiate the messages quickly and to respond to incoming messages. The response may require
that a tag match be performed, that buffers be allocated, that data transfer commence, or that an
event be posted. The data parallel and systolic approaches place an emphasis on fast global syn-
chronization, which may be supported directly in the network or in the assist. Dataflow places an
emphasis on fast dynamic scheduling of computation based on an incoming message. Systolic
algorithms present the opportunity to exploit global patterns in local scheduling. Even with these
differences, is important to observe that all of these approaches share common aspects; they need
to initiate network transactions as a result of specific processor events, and they need to perform
simple operations on the remote node to carry out the desired event.

We also see that a separation has emerged between programming model and machine organiza-
tion as parallel programming environments have matured. For example, Fortran 90 and High Per-
formance Fortran provide a shared-address data-parallel programming model, which is
implemented on a wide range of machines, some supporting a shared physical address space, oth-
ers with only message passing. The compilation techniques for these machines differ radically,
even though the machines appear organizationally similar, because of differences in communica-
tion and synchronization operations provided at the user level (i.e., the communication abstrac-
tion) and vast differences in the performance characteristics of these communication operations.
As a second example, popular message passing libraries, such as PVM (parallel virtual machine)
and MPI (message passing interface), are implemented on this same range of machines, but the
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implementation of the libraries differ dramatically from one kind of machine to another. The
same observations hold for parallel operating systems. 

1.4 Fundamental Design Issues

Given how the state of the art in parallel architecture has advanced, we need to take a fresh look
at how to organize the body of material in the field. Traditional machine taxonomies, such as
SIMD/MIMD, are of little help since multiple general purpose processors are so dominant. One
cannot focus entirely on programming models, since in many cases widely differing machine
organizations support a common programming model. One cannot just look at hardware struc-
tures, since common elements are employed in many different way. instead, we ought to focus
our attention on the architectural distinctions that make a difference to the software that is to run
on the machine. In particular, we need to highlight those aspects that influence how a compiler
should generate code from a high-level parallel language, how a library writer would code a well-
optimized library, or how an application would be written in a low-level parallel language. We
can then approach the design problem as one that is constrained from above by how programs use
the machine and from below by what the basic technology can provide.

In our view, the guiding principles for understanding modern parallel architecture are indicated
by the layers of abstraction presented in Figure 1-13. Fundamentally, we must understand the
operations that are provided at the user-level communication abstraction, how various program-
ming models are mapped to these primitives, and how these primitives are mapped to the actual
hardware. Excessive emphasis on the high-level programming model without attention to how it
can be mapped to the machine would detract from understanding the fundamental architectural
issues, as would excessive emphasis on the specific hardware mechanisms in each particular
machine.

This section looks more closely at the communication abstraction and the basic requirements of a
programming model. It then defines more formally the key concepts that tie together the layers:

Figure  1-28  Generic scalable multiprocessor organization. 

A collection of essentially complete computers, including one or more processors and memory, communicating
through a general purpose, high-performance, scalable interconnect. Typically, each node contains a controller
which assists in communication operations across the network.
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naming, ordering, and communication and replication of data. Finally, it introduces the basic per-
formance models required to resolve design trade-offs.

1.4.1 Communication Abstraction

The communication abstraction forms the key interface between the programming model and the
system implementation. It plays a role very much like the instruction set in conventional sequen-
tial computer architecture. Viewed from the software side, it must have a precise, well-defined
meaning so that the same program will run correctly on many implementations. Also the opera-
tions provided at this layer must be simple, composable entities with clear costs, so that the soft-
ware can be optimized for performance. Viewed from the hardware side, it also must have a well-
defined meaning so that the machine designer can determine where performance optimizations
can be performed without violating the software assumptions. While the abstraction needs to be
precise, the machine designer would like it not to be overly specific, so it does not prohibit useful
techniques for performance enhancement or frustrate efforts to exploit properties of newer tech-
nologies.

The communication abstraction is, in effect, a contract between the hardware and the software
allowing each the flexibility to improve what it does, while working correctly together. To under-
stand the “terms” of this contract, we need to look more carefully at the basic requirements of a
programming model.

1.4.2 Programming Model Requirements

A parallel program consists of one or more threads of control operating on data. A parallel pro-
gramming model specifies what data can be named by the threads, what operations can be per-
formed on the named data, and what ordering exists among these operations.

To make these issues concrete, consider the programming model for a uniprocessor. A thread can
name the locations in its virtual address space and can name machine registers. In some systems
the address space is broken up into distinct code, stack, and heap segments, while in others it is
flat. Similarly, different programming languages provide access to the address space in different
ways; for example, some allow pointers and dynamic storage allocation, while others do not.
Regardless of these variations, the instruction set provides the operations that can be performed
on the named locations. For example, in RISC machines the thread can load data from or store
data to memory, but perform arithmetic and comparisons only on data in registers. Older instruc-
tion sets support arithmetic on either. Compilers typically mask these differences at the hardware/
software boundary, so the user’s programing model is one of performing operations on variables
which hold data. The hardware translates each virtual address to a physical address on every
operation.

The ordering among these operations is sequential program order – the programmer’s view is
that variables are read and modified in the top-to-bottom, left-to-right order specified in the pro-
gram. More precisely, the value returned by a read to an address is the last value written to the
address in the sequential execution order of the program. This ordering assumption is essential to
the logic of the program. However, the reads and writes may not actually be performed in pro-
gram order, because the compiler performs optimizations when translating the program to the
instruction set and the hardware performs optimizations when executing the instructions. Both
make sure the program cannot tell that the order has been changed. The compiler and hardware
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preserve the dependence order. If a variable is written and then read later in the program order,
they make sure that the later operation uses the proper value, but they may avoid actually writing
and reading the value to and from memory or may defer the write until later. Collections of reads
with no intervening writes may be completely reordered and, generally, writes to different
addresses can be reordered as long as dependences from intervening reads are preserved. This
reordering occurs at the compilation level, for example, when the compiler allocates variables to
registers, manipulates expressions to improve pipelining, or transforms loops to reduce overhead
and improve the data access pattern. It occurs at the machine level when instruction execution is
pipelined, multiple instructions are issued per cycle, or when write buffers are used to hide mem-
ory latency. We depend on these optimizations for performance. They work because for the pro-
gram to observe the effect of a write, it must read the variable, and this creates a dependence,
which is preserved. Thus, the illusion of program order is preserved while actually executing the
program in the looser dependence order.1 We operate in a world where essentially all program-
ming languages embody a programming model of sequential order of operations on variables in a
virtual address space and the system enforces a weaker order wherever it can do so without get-
ting caught.

Now let’s return to parallel programming models. The informal discussion earlier in this chapter
indicated the distinct positions adopted on naming, operation set, and ordering. Naming and
operation set are what typically characterize the models, however, ordering is of key importance.
A parallel program must coordinate the activity of its threads to ensure that the dependences
within the program are enforced; this requires explicit synchronization operations when the
ordering implicit in the basic operations is not sufficient. As architects (and compiler writers) we
need to understand the ordering properties to see what optimization “tricks” we can play for per-
formance. We can focus on shared address and message passing programming models, since they
are the most widely used and other models, such as data parallel, are usually implemented in
terms of one of them.

The shared address space programming model assumes one or more threads of control, each
operating in an address space which contains a region that is shared between threads, and may
contain a region that is private to each thread. Typically, the shared region is shared by all
threads. All the operations defined on private addresses are defined on shared addresses, in partic-
ular the program accesses and updates shared variables simply by using them in expressions and
assignment statements. 

Message passing models assume a collection of processes each operating in a private address
space and each able to name the other processes. The normal uniprocessor operations are pro-
vided on the private address space, in program order. The additional operations, send and receive,
operate on the local address space and the global process space. Send transfers data from the
local address space to a process. Receive accepts data into the local address space from a process.
Each send/receive pair is a specific point-to-point synchronization operation. Many message
passing languages offer global or collective communication operations as well, such as broad-
cast.

1.  The illusion breaks down a little bit for system programmers, say, if the variable is actually a
control register on a device. Then the actual program order must be preserved. This is usually
accomplished by flagging the variable as special, for example using the volatile type modifier in
C.
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1.4.3 Naming

The position adopted on naming in the programming model is presented to the programmer
through the programming language or programming environment. It is what the logic of the pro-
gram is based upon. However, the issue of naming is critical at each level of the communication
architecture. Certainly one possible strategy is to have the operations in the programming model
be one-to-one with the communication abstraction at the user/system boundary and to have this
be one-to-one with the hardware primitives. However, it is also possible for the compiler and
libraries to provide a level of translation between the programming model and the communica-
tion abstraction, or for the operating system to intervene to handle some of the operations at the
user/system boundary. These alternatives allow the architect to consider implementing the com-
mon, simple operations directly in hardware and supporting the more complex operations partly
or wholely in software.

Let us consider the ramification of naming at the layers under the two primary progrramming
models: shared address and mssage passing. First, in a shared address model, accesses to shared
variables in the program are usually mapped by the compiler to load and store instructions on
shared virtual addresses, just like access to any other variable. This is not the only option, the
compiler could generate special code sequences for accesses to shared variables, the uniform
access to private and shared addresses is appealing in many respects. A machine supports a glo-
bal physical address space if any processor is able to generate a physical address for any location
in the machine and access the location in a single memory operation. It is straightforward to real-
ize a shared virtual address space on a machine providing a global physical address space: estab-
lish the virtual-to-physical mapping so that shared virtual addresses map to the same physical
location, i.e., the processes have the same entries in their page tables. However, the existence of
the level of translation allows for other approaches. A machine supports independent local physi-
cal address spaces, if each processor can only access a distinct set of locations. Even on such a
machine, a shared virtual address space can be provided by mapping virtual addresses which are
local to a process to the corresponding physical address. The non-local addresses are left
unmapped, so upon access to a non-local shared address a page fault will occur, allowing the
operating system to intervene and access the remote shared data. While this approach can provide
the same naming, operations, and ordering to the program, it clearly has different hardware
requirements at the hardware/software boundary. The architect’s job is resolve these design
trade-offs across layers of the system implementation so that the result is efficient and cost effec-
tive for the target application workload on available technology.

Secondly, message passing operations could be realized directly in hardware, but the matching
and buffering aspects of the send/receive operations are better suited to software implementation.
More basic data transport primitives are well supported in hardware. Thus, in essentially all par-
allel machines, the message passing programming model is realized via a software layer that is
built upon a simpler communication abstraction. At the user/system boundary, one approach is to
have all message operations go through the operating system, as if they were I/O operations.
However, the frequency of message operations is much greater than I/O operations, so it makes
sense to use the operating system support to set up resources, priviledges etc. and allow the fre-
quent, simple data transfer operations to be supported directly in hardware. On the other hand,
we might consider adopting a shared virtual address space as the lower level communication
abstraction, in which case send and receive operations involve writing and reading shared buffers
and posting the appropriate synchronization events. The issue of naming arises at each level of
abstraction in a parallel architecture, not just in the programming model. As architects, we need
to design against the frequency and type of operations that occur at the communication abstrac-
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tion, understanding that there are trade-offs at this boundary involving what is supported directly
in hardware and what in software.

Operations

Each programming model defines a specific set of operations that can be performed on the data or
objects that can be named within the model. For the case of a shared address model, these include
reading and writing shared variables, as well as various atomic read-modify-write operations on
shared variables, which are used to synchronize the threads. For message passing the operations
are send and receive on private (local) addresses and process identifiers, as described above. One
can observe that there is a global address space defined by a message passing model. Each ele-
ment of data in the program is named by a process number and local address within the process.
However, there are no operations defined on these global addresses. They can be passed around
and interpreted by the program, for example, to emulate a shared address style of programming
on top of message passing, but they cannot be operated on directly at the communication abstrac-
tion. As architects we need to be aware of the operations defined at each level of abstraction. In
particular, we need to be very clear on what ordering among operations is assumed to be present
at eacg level of abstraction, where communication takes place, and how data is replicated. 

1.4.4 Ordering

The properties of the specified order among operations also has a profound effect throughout the
layers of parallel architecture. Notice, for example, that the message passing model places no
assumption on the ordering of operations by distinct processes, except the explicit program order
associated with the send/receive operations, whereas a shared address model must specify
aspects of how processes see the order of operations performed by other processes. Ordering
issues are important and rather subtle. Many of the “tricks” that we play for performance in the
uniprocessor context involve relaxing the order assumed by the programmer to gain performance,
either through parallelism or improved locality or both. Exploiting parallelism and locality is
even more important in the multiprocessor case. Thus, we will need to understand what new
tricks can be played. We also need to examine what of the old tricks are still valid. Can we per-
form the traditional sequential optimizations, at the compiler and architecture level, on each pro-
cess of a parallel program? Where can the explicit synchronization operations be used to allow
ordering to be relaxed on the conventional operations? To answer these questions we will need to
develop a much more complete understanding of how programs use the communication abstrac-
tion, what properties they rely upon, and what machine structures we would like to exploit for
performance.

A natural position to adopt on ordering is that operations in a thread are in program order. That is
what the programmer would assume for the special case of one thread. However, there remains
the question of what ordering can be assumed among operations performed on shared variables
by different threads. The threads operate independently and, potentially, at different speeds so
there is no clear notion of “latest”. If one has in mind that the machines behave as a collection of
simple processors operating on a common, centralized memory, then it is reasonable to expect
that the global order of memory accesses will be some arbitrary interleaving of the individual
program orders. In reality we won’t build the machines this way, but it establishes what opera-
tions are implicitly ordered by the basic operations in the model. This interleaving is also what
we expect if a collection of threads that are timeshared, perhaps at a very fine level, on a unipro-
cessor.
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Where the implicit ordering is not enough, explicit synchronization operations are required.
There are two types of synchronization required in parallel programs: 

• Mutual exclusion ensures that certain operations on certain data are performed by only
one thread or process at a time. We can imagine a room that must be entered to perform
such an operation, and only one process can be in the room at a time. This is accom-
plished by locking the door upon entry and unlocking it on exit. If several processes
arrive at the door together, only one will get in and the others will wait till it leaves. The
order in which the processes are allowed to enter does not matter and may vary from one
execution of the program to the next; what matters is that they do so one at a time.
Mutual exclusion operations tend to serialize the execution of processes.

• Events are used to inform other processes that some point of execution has been reached
so that they can proceed knowing that certain dependences have been satisfied. These
operations are like passing a batton from one runner to the next in a relay race or the
starter firing a gun to indicate the start of a race. If one process writes a value which
another is supposed to read, there needs to be an event synchronization operation to
indicate that the value is ready to be read. Events may be point-to-point, involving a pair
of processes, or they may be global, involving all processes, or a group of processes.

1.4.5 Communication and Replication

The final issues that are closely tied to the layers of parallel architecture are that of communica-
tion and data replication. Replication and communication are inherently related. Consider first a
message passing operation. The effect of the send/receive pair is to copy data that is in the
sender’s address space into a region of the receiver’s address space. This transfer is essential for
the receiver to access the data. If the data was produced by the sender, it reflects a true communi-
cation of information from one process to the other. If the data just happened to be stored at the
sender, perhaps because that was the initial configuration of the data or because the data set is
simply to large to fit on any one node, then this transfer merely replicates the data to where it is
used. The processes are not actually communicating via the data transfer. If the data was repli-
cated or positioned properly over the processes to begin with, there would be no need to commu-
nicate it in a message. More importantly, if the receiver uses the data over and over again, it can
reuse its replica without additional data transfers. The sender can modify the region of addresses
that was previously communicated with no effect on the previous receiver. If the effect of these
later updates are to be communicated, an additional transfer must occur.

Consider now a conventional data access on a uniprocessor through a cache. If the cache does not
contain the desired address, a miss occurs and the block is transfered from the memory that
serves as a backing store. The data is implicitly replicated into cache near the processor that
accesses it. If the processor resuses the data while it resides in the cache, further transfers with
the memory are avoided. In the uniprocessor case, the processor produces the data and the pro-
cessor that consumes it, so the “communication” with the memory occurs only because the data
does not fit in the cache or it is being accessed for the first time.

Interprocess communication and data transfer within the storage hierarchy become melded
together in a shared physical address space. Cache misses cause a data transfer across the
machine interconnect whenever the physical backing storage for an address is remote to the node
accessing the address, whether the address is private or shared and whether the transfer is a result
of true communication or just a data access. The natural tendency of the machine is to replicate
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data into the caches of the processors that access the data. If the data is reused while it is in the
cache, no data transfers occur; this is a major advantage. However, when a write to shared data
occurs, something must be done to ensure that later reads by other processors get the new data,
rather than the old data that was replicated into their caches. This will involve more than a simple
data transfer.

To be clear on the relationship of communication and replication it is important to distinguish
several concepts that are frequently bundled together. When a program performs a write, it binds
a data value to an address; a read obtains the data value bound to an address. The data resides in
some physical storage element in the machine. A data transfer occurs whenever data in one stor-
age element is transfered into another. This does not necessarily change the bindings of addresses
and values. The same data may reside in multiple physical locations, as it does in the uniproces-
sor storage hierarchy, but the one nearest to the processor is the only one that the processor can
observe. If it is updated, the other hidden replicas, including the actual memory location, must
eventually be updated. Copying data binds a new set of addresses to the same set of values. Gen-
erally, this will cause data transfers. Once the copy has been made, the two sets of bindings are
completely independent, unlike the implicit replication that occurs within the storage hierarchy,
so updates to one set of addresses do not effect the other. Communication between processes
occurs when data written by one process is read by another. This may cause a data transfer within
the machine, either on the write or the read, or the data transfer may occur for other reasons.
Communication may involve establishing a new binding, or not, depending on the particular
communication abstraction.

In general, replication avoids “unnecessary” communication, that is transferring data to a con-
sumer that was not produced since the data was previously accessed. The ability to perform repli-
cation automatically at a given level of the communication archtiecture depends very strongly on
the naming and ordering properties of the layer. Moreover, replication is not a panacea. Replica-
tion itself requires data transfers. It is disadvantageous to replicate data that is not going to be
used. We will see that replication plays an important role throughout parallel computer architec-
ture.

1.4.6 Performance

In defining the set of operations for communication and cooperation, the data types, and the
addressing modes, the communication abstraction specifies how shared objects are named, what
ordering properties are preserved, and how synchronization is performed. However, the perfor-
mance characteristics of the available primitives determines how they are actually used. Program-
mers and compiler writers will avoid costly operations where possible. In evaluating architectural
trade-offs, the decision between feasible alternatives ultimately rests upon the performance they
deliver. Thus, to complete our introduction to the fundamental issues of parallel computer archi-
tecture, we need to lay a framework for understanding performance at many levels of design.

Fundamentally, there are three performance metrics, latency, the time taken for an operation,
bandwidth, the rate at which operations are performed, and cost, the impact these operations have
on the execution time of the program. In a simple world where processors do only one thing at a
time these metrics are directly related; the bandwidth (operations per second) is the reciprocal of
the latency (seconds per operation) and the cost is simply the latency times the number of opera-
tions performed. However, modern computer systems do many different operations at once and
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the relationship between these performance metrics is much more complex. Consider the follow-
ing basic example.

Example  1-2 Suppose a component can perform a specific operation in 100ns. Clearly it can
support a bandwidth of 10 million operations per second. However, if the
component is pipelined internally as ten equal stages, it is able to provide a peak
bandwidth of 100 million operations per second. The rate at which operations can
be initiated is determined by how long the slowest stage is occupied, 10 ns, rather
than by the latency of an individual operation. The bandwidth delivered on an
application depends on how frequently it initiates the operations. If the application
starts an operation every 200 ns, the delivered bandwidth is 5 million operations per
seconds, regardless of how the component is pipelined. Of course, usage of
resources is usually birsty, so pipelining can be advantageous even when the
average initiation rate is low. If the application performed one hundred million
operations on this component, what is the cost of these operations? Taking the
operation count times the operation latency would give upper bound of 10 seconds.
Taking the operation count divided by the peak rate gives a lower bound of 1
second. The former is accurate if the program waited for each operation to complete
before continuing. The latter assumes that the operations are completely overlapped
with other useful work, so the cost is simply the cost to initiate the operation.
Suppose that on average the program can do 50 ns of useful work after each
operation issued to the component before it depends on the operations result. Then
the cost to the application is 50 ns per operation – the 10 ns to issue the operation
and the 40 ns spent waiting for it to complete.

Since the unique property of parallel computer architecture is communication, the operations that
we are concerned with most often are data transfers. The performance of these operations can be
understood as a generalization of our basic pipeline example. 

Data Transfer Time

The time for a data transfer operation is generally described by a linear model:

(EQ 1.3)

where  is the amount of data (e.g., number of bytes),  is the transfer rate of the component
moving the data (e.g., bytes per second), and the constant term, , is the start-up cost. This is a
very convenient model, and it is used to describe a diverse collection of operations, including
messages, memory accesses, bus transactions, and vector operations. For message passing, the
start up cost can be thought of as the time for the first bit to get to the destination. It applies in
many aspects of traditional computer architecture, as well. For memory operations, it is essen-
tially the access time. For bus transactions, it reflects the bus arbitration and command phases.
For any sort of pipelined operation, including pipelined instruction processing or vector opera-
tions, it is the time to fill pipeline.

Using this simple model, it is clear that the bandwidth of a data transfer operation depends on the
transfer size. As the transfer size increases it approaches the asymptotic rate of , which is some-
times referred to as . How quickly it approaches this rate depends on the start-up cost. It is eas-
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ily shown that the size at which half of the peak bandwidth is obtained, the half-power point, is
given by

. (EQ 1.4)

Unfortunately, this linear model does not give any indication when the next such operation can be
initiated, nor does it indicate whether other useful work can be performed during the transfer.
These other factors depend on how the transfer is performed.

Overhead and Occupancy

The data transfer in which we are most interested is the one that occurs across the network in par-
allel machines. It is initiated by the processor through the communication assist. The essential
components of this operation can be described by the following simple model.

(EQ 1.5)

The Overhead is the time the processor spends initiating the transfer. This may be a fixed cost, if
the processor simply has to tell the communication assist to start, or it may be linear in , if the
processor has to copy the data into the assist. The key point is that this is time the processor is
busy with the communication event; it cannot do other useful work or initiate other communica-
tion during this time. The remaining portions of the communication time is considered the net-
work latency; it is the part that can be hidden by other processor operations.

The Occupancy is the time it takes for the data to pass through the slowest component on the
communication path. For example, each link that is traversed in the network will be occupied for

time , where  is the bandwidth of the link. The data will occupy other resources, including

buffers, switches, and the communication assist. Often the communication assist is the bottleneck
that determines the occupancy. The occupancy limits how frequently communication operations
can be initiated. The next data transfer will have to wait until the critical resource is no longer
occupied before it can use that same resource. If there is buffering between the processor and the
bottleneck, the processor may be able to issue a burst of transfers at a frequency greater than

, however, once this buffering is full, the processor must slow to the rate set by the

occupancy. A new transfer can start only when a older one finishes.

The remaining communication time is lumped into the Network Delay, which includes the time
for a bit to be routed across the actual network and many other factors, such as the time to get
through the communication assist. From the processors viewpoint, the specific hardware compo-
nents contributing to network delay are indistinguishable. What effects the processor is how long
it must wait before it can use the result of a communication event, how much of this time it can
be bust with other activities, and how frequently it can communicate data. Of course, the task of
designing the network and its interfaces is very concerned with the specific components and their
contribution to the aspects of performance that the processor observes.

In the simple case where the processor issues a request and waits for the response, the breakdown
of the communication time into its three components is immaterial. All that matters is the total
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round trip time. However, in the case where multiple operations are issued in a pipelined fashion,
each of the components has a specific influence on the delivered performance.

Indeed, every individual component along the communication path can be described by its delay
and its occupancy. The network delay is simply the sum of the delays along the path. The net-
work occupancy is the maximum of the occupancies along the path. For interconnection net-
works there is an additional factor that arises because many transfers can take place
simultaneously. If two of these transfers attempt to use the same resource at once, for example is
they use the same wire at the same time, one must wait. This contention for resources increases
the average communication time. From the processors viewpoint, contention appears as
increased occupancy. Some resource in the system is occupied for a time determined by the col-
lection of transfers across it.

Equation 1.5 is a very general model. It can be used to describe data transfers in many places in
modern, highly pipelined computer systems. As one example, consider the time to move a block
between cache and memory on a miss. There is a period of time that the cache controller spends
inspecting the tag to determine that it is not a hit and then starting the transfer; this is the over-
head. The occupancy is the block size divided by the bus bandwidth, unless there is some slower
component in the system. The delay includes the normal time to arbitrate and gain access to the
bus plus the time spent delivering data into the memory. Additional time spent waiting to gain
access to the bus or wait for the memory bank cycle to complete is due to contention. A second
obvious example is the time to transfer a message from one processor to another. 

Communication Cost

The bottom line is, of course, the time a program spends performing communication. A useful
model connecting the program characteristics to the hardware performance is given by the fol-
lowing.

(EQ 1.6)

The frequency of communication, defined as the number of communication operations per unit of
work in the program, depends on many programming factors (as we will see in Chapter 2) and
many hardware design factors. In particular, hardware may limit the transfer size and thereby
determine the minimum number of messages. It may automatically replicate data or migrate it to
where it is used. However, there is a certain amount of communication that is inherent to parallel
execution, since data must be shared and processors must coordinate their work. In general, for a
machine to support programs with a high communication frequency the other parts of the com-
munication cost equation must be small – low overhead, low network delay, and small occu-
pancy. The attention paid to communication costs essentially determines which programming
models a machine can realize efficiently and what portion of the application space it can support.
Any parallel computer with good computational performance can support programs that commu-
nicate infrequently, but as the frequency increases or volume of communication increases greater
stress is placed on the communication architecture.

The overlap is the portion of the communication operation which is performed concurrently with
other useful work, including computation or other communication. This reduction of the effective
cost is possible because much of the communication time involves work done by components of
the system other than the processor, such as the network interface unit, the bus, the network or the
remote processor or memory. Overlapping communication with other work is a form of small

CommunicationCost f requency CommunicationTime Overlap–( )×=
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scale parallelism, as is the instruction level parallelism exploited by fast microprocessors. In
effect, we may invest some of the available parallelism in a program to hide the actual cost of
communication. 

Summary

The issues of naming, operation set, and ordering apply at each level of abtraction in a parallel
architecture, not just the programming model. In general, there may be a level of translation or
run-time software between the programming model and the communication abstraction, and
beneath this abstraction are key hardware abstractions. At any level, communication and replica-
tion are deeply related. Whenever two processes access the same data, it either needs to be com-
municated between the two or replicated so each can access a copy of the data. The ability to
have the same name refer to two distinct physical locations in a meaningful manner at a given
level of abstraction depends on the position adopted on naming and ordering at that level. Wher-
ever data movement is involved, we need to understand its performance characteristics in terms
of the latency and bandwidth, and furthermore how these are influenced by overhead and occu-
pancy. As architects, we need to design against the frequency and type of operations that occur at
the communication abstraction, understanding that there are trade-offs across this boundary
involving what is supported directly in hardware and what in software. The position adopted on
naming, operation set, and ordering at each of these levels has a qualitiative impact on these
trade-offs, as we will see throughout the book.

1.5 Concluding Remarks

Parallel computer architecture forms an important thread in the evolution of computer architec-
ture, rooted essentially in the beginnings of computing. For much of this history it takes on a
novel, even exotic role, as the avenue for advancement over and beyond what the base technology
can provide. Parallel computer designs have demonstrated a rich diversity of structure, usually
motivated by specific higher level parallel programming models. However, the dominant techno-
logical forces of the VLSI generation have pushed parallelism increasingly into the mainstream,
making parallel architecture almost ubiquitous. All modern microprocessors are highly parallel
internally, executing several bit-parallel instructions in every cycle and even reordering instruc-
tions within the limits of inherent dependences to mitigate the costs of communication with hard-
ware components external to the processor itself. These microprocessors have become the
performance and price-performance leaders of the computer industry. From the most powerful
supercomputers to departmental servers to the desktop, we see even higher performance systems
constructed by utilizing multiple of such processors integrated into a communications fabric.
This technological focus, augmented with increasing maturity of compiler technology, has
brought about a dramatic convergence in the structural organization of modern parallel machines.
The key architectural issue is how communication is integrated into the memory and I/O systems
that form the remainder of the computational node. This communications architecture reveals
itself functionally in terms of what can be named at the hardware level, what ordering guarantees
are provided and how synchronization operations are performed, while from a performance point
of view we must understand the inherent latency and bandwidth of the available communication
operations. Thus, modern parallel computer architecture carries with it a strong engineering com-
ponent, amenable to quantitative analysis of cost and performance trade-offs. 

Computer systems, whether parallel or sequential, are designed against the requirements and
characteristics of intended workloads. For conventional computers, we assume that most practi-
tioners in the field have a good understanding of what sequential programs look like, how they
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are compiled, and what level of optimization is reasonable to assume the programmer has per-
formed. Thus, we are comfortable taking popular sequential programs, compiling them for a tar-
get architecture, and drawing conclusions from running the programs or evaluating execution
traces. When we attempt to improve performance through architectural enhancements, we
assume that the program is reasonably “good” in the first place.

The situation with parallel computers is quite different. There is much less general understanding
of the process of parallel programming and there is a wider scope for programmer and compiler
optimizations, which can greatly affect the program characteristics exhibited at the machine
level. To address this situation, Chapter 2 provides an overview of parallel programs, what they
look like, how they are constructed. Chapter 3 explains the issues that must be addressed by the
programmer and compiler to construct a “good” parallel program, i.e., one that is effective
enough is using multiple processors to form a reasonable basis for architectural evaluation. Ulti-
mately, we design parallel computers against the program characteristics at the machine level, so
the goal of Chapter 3 is to draw a connection between what appears in the program text and how
the machine spends its time. In effect, Chapter 2 and 3 take us from a general understanding of
issues at the application level down to a specific understanding of the character and frequency of
operations at the communication abstraction.

Chapter 4 establishes a framework for workload-driven evaluation of parallel computer designs.
Two related scenarios are addressed. First, for a parallel machine that has already been built, we
need a sound method of evaluating its performance. This proceeds by first testing what individual
aspects of the machine are capable of in isolation and then measures how well they perform col-
lectively. The understanding of application characteristics is important to ensure that the work-
load run on the machine stresses the various aspects of interest. Second, we outline a process of
evaluating hypothetical architectural advancements. New ideas for which no machine exists need
to be evaluated through simulations, which imposes severe restrictions on what can reasonably be
executed. Again, an understanding of application characteristics and how they scale with problem
and machine size is crucial to navigating the design space.

Chapters 5 and 6 study the design of symmetric multiprocessors with a shared physical address
space in detail. There are several reasons to go deeply into the small-scale case before examining
scalable designs. First, small-scale multiprocessors are the most prevalent form of parallel archi-
tecture; they are likely to be what the most students are exposed to, what the most software devel-
opers are targeting and what the most professional designers are dealing with. Second, the issues
that arise in the small-scale are indicative of what is critical in the large scale, but the solutions
are often simpler and easier to grasp. Thus, these chapters provides a study in the small of what
the following four chapters address in the large. Third, the small-scale multiprocessor design is a
fundamental building block for the larger scale machines. The available options for interfacing a
scalable interconnect with a processor-memory node are largely circumscribed by the processor,
cache, and memory structure of the small scale machines. Finally, the solutions to key design
problems in the small-scale case are elegant in their own right.

The fundamental building-block for the designs in Chapter 5 and 6 is the shared bus between pro-
cessors and memory. The basic problem that we need to solve is to keep the contents of the
caches coherent and the view of memory provided to the processors consistent. A bus is a power-
ful mechanism. It provides any-to-any communication through a single set of wires, but more-
over can serve as a broadcast medium, since there is only one set of wires, and even provide
global status, via wired-or signals. The properties of bus transactions are exploited in designing
extensions of conventional cache controllers that solve the coherence problem. Chapter 5 pre-
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sents the fundamental techniques to bus-based cache coherence at the logical level and presents
the basic design alternatives. These design alternatives provide an illustration of how workload-
driven evaluation of can be brought to bear in making design decisions. Finally, we return to the
parallel programming issues of the earlier chpapters and examine how aspects of the machine
design influence the software level, especially in regard to cache effects on sharing patterns and
the design of robust synchronization routines. Chapter 6 focuses on the organization structure
and machine implementation of bus-based cache coherence. It examines a variety of more
advanced designs that seek to reduce latency and increase bandwidth while preserving a consis-
tent view of memory.

Chapters 7 through 10 form a closely interlocking study of the design of scalable parallel archi-
tectures. Chapter 7 makes the conceptual step from a bus transaction as a building block for
higher level abstractions to a network transaction as a building block. To cement this understand-
ing, the communication abstractions that we have surveyed in this introductory chapter are con-
structed from primitive network transactions. Then the chapter studies the design of the node to
network interface in depth using a spectrum of case studies. 

Chapters 8 amd 9 go deeply into the design of scalable machines supporting a shared address
space, both a shared physical address space and a shared virtual address space upon independent
physical address spaces. The central issue is automatic replication of data while preserving a con-
sistent view of memory and avoiding performance bottlenecks. The study of a global physical
address space emphasizes hardware organizations that provide efficient, fine-grain sharing. The
study of a global virtual address space provides an understanding of what is the minimal degree
of hardware support required for most workloads. 

Chapter 10 takes up the question of the design of the scalable network itself. As with processors,
caches, and memory systems, there are several dimensions to the network design space and often
a design decision involves interactions along several dimensions. The chapter lays out the funda-
mental design issues for scalable interconnects, illustrates the common design choices, and eval-
uates them relative to the requirements established in chapters 5 and 6. Chapter 9 draws together
the material from the other three chapters in the context of an examination of techniques for
latency tolerance, including bulk transfer, write-behind, and read-ahead across the spectrum of
communication abstractions. Finally, Chapter 11 looks at what has been learned throughout the
text in light of technologocal, application, and economic trends to forcast what will be the key
on-going developments in parallel computer architecture. The book presents the conceptual foun-
dations as well as the engineering issues across a broad range of potential scales of design, all of
which have an important role in computing today and in the future.
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Historical References

Parallel computer architecture has a long, rich, and varied history that is deeply interwoven with advances in
the underlying processor, memory, and network technologies. The first blossoming of parallel architectures
occurs around 1960. This is a point where transistors have replaced tubes and other complicated and constrain-
ing logic technologies. Processors are smaller and more manageable. A relatively cheap, inexpensive storage
technology exists (core memory), and computer architectures are settling down into meaningful “families.”
Small-scale shared-memory multiprocessors took on an important commercial role at this point with the incep-
tion of what we call mainframes today, including the Burroughs B5000[LoKi61] and D825[And*62] and the
IBM System 360 model 65 and 67[Pad81]. Indeed, support for multiprocessor configurations was one of the
key extensions in the evolution of the 360 architecture to System 370. These included atomic memory opera-
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tions and interprocessor interrupts. In the scientific computing area, shared-memory multiprocessors were also
common. The CDC 6600 provided an asymmetric shared-memory organization to connect multiple peripheral
processors with the central processor, and a dual CPU configuration of this machine was produced. The origins
of message-passing machines can be seen as the RW400, introduced in 1960[Por60]. Data parallel machines
also emerged, with the design of the Solomon computer[Bal*62,Slo*62].

Up through the late 60s there was tremendous innovation in the use of parallelism within the processor through
pipelining and replication of function units to obtain a far greater range of performance within a family than
could be obtained by simply increasing the clock rate. It was argued that these efforts were reaching a point of
diminishing returns and a major research project got underway involving the University of Illinois and Bur-
roughs to design and build a 64 processor SIMD machine, called Illiac IV[Bou*67], based on the earlier
Solomon work (and in spite of Amdahl’s arguments to the contrary[Amdh67]). This project was very ambi-
tious, involving research in the basic hardware technologies, architecture, I/O devices, operating systems, pro-
gramming languages, and applications. By the time a scaled-down, 16 processor system was working in 1975,
the computer industry had undergone massive structural change.

First, the concept of storage as a simple linear array of moderately slow physical devices had been revolution-
ized, first with the idea of virtual memory and then with the concept of caching. Work on Multics and its prede-
cessors, e.g., Atlas and CTSS, separated the concept of the user address space from the physical memory of the
machine. This required maintaining a short list of recent translations, a TLB, in order to obtain reasonable per-
formance. Maurice Wilkes, the designer of EDSAC, saw this as a powerful technique for organizing the
addressable storage itself, giving rise to what we now call the cache. This proved an interesting example of
locality triumphing over parallelism. The introduction of caches into the 360/85 yielded higher performance
than the 360/91, which had a faster clock rate, faster memory, and elaborate pipelined instruction execution
with dynamic scheduling. The use of caches was commercialized in the IBM 360/185, but this raised a serious
difficulty for the I/O controllers as well as the additional processors. If addresses were cached and therefore not
bound to a particular memory location, how was an access from another processor or controller to locate the
valid data? One solution was to maintain a directory of the location of each cache line. An idea that has
regained importance in recent years.

Second, storage technology itself underwent a revolution with semiconductor memories replacing core memo-
ries. Initially, this technology was most applicable to small cache memories. Other machines, such as the CDC
7600, simply provided a separate, small, fast explicitly addressed memory. Third, integrated circuits took hold.
The combined result was that uniprocessor systems enjoyed a dramatic advance in performance, which miti-
gated much of the added value of parallelism in the Illiac IV system, with its inferior technological and archi-
tectural base. Pipelined vector processing in the CDC STAR-100 addressed the class of numerical
computations that Illiac was intended to solve, but eliminated the difficult data movement operations. The final
straw was the introduction of the Cray-1 system, with an astounding 80 MHz clock rate owing to exquisite cir-
cuit design and the use of what we now call a RISC instruction set, augmented with vector operations using
vector registers and offering high peak rate with very low start-up cost. The use of simple vector processing
coupled with fast, expensive ECL circuits was to dominate high performance computing for the next 15 years.

A fourth dramatic change occurred in the early 70s, however, with the introduction of microprocessors.
Although the performance of the early microprocessors was quite low, the improvements were dramatic as bit-
slice designs gave way to 4-bit, 8-bit, 16-bit and full-word designs. The potential of this technology motivated
a major research effort at Carnegie-Mellon University to design a large shared memory multiprocessor using
the LSI-11 version of the popular PDP-11 minicomputer. This project went through two phases. First, C.mmp
connected 16 processors through a specially design circuit-switched cross-bar to a collection of memories and
I/O devices, much like the dancehall design in Figure 1-19a[Wul*75]. Second, CM* sought to build a hundred
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processor system by connecting 14-node clusters with local memory through a packet-switched network in a
NUMA configuration[Swa*77a,Swa77b], as in Figure 1-19b.

This trend toward systems constructed from many, small microprocessors literally exploded in the early to mid
80s. This resulted in the emergence of several disparate factions. On the shared memory side, it was observed
that a confluence of caches and properties of busses made modest multiprocessors very attractive. Busses have
limited bandwidth, but are a broadcast medium. Caches filter bandwidth and provide a intermediary between
the processor and the memory system. Research at Berkeley [Goo83,Hell*86] introduced extensions of the
basic bus protocol that allowed the caches to maintain a consistent state. This direction was picked up by sev-
eral small companies, including Synapse[Nes85], Sequent[Rod85], Encore[Bel85,Sha85], Flex[Mate85] and
others, as the 32-bit microprocessor made its debut and the vast personal computer industry took off. A decade
later this general approach dominates the server and high-end workstation market and is taking hold in the PC
servers and the desktop. The approach experienced a temporary set back as very fast RISC microprocessors
took away the performance edge of multiple slower processors. Although the RISC micros were well suited to
multiprocessor design, their bandwidth demands severely limited scaling until a new generation of shared bus
designs emerged in the early 90s.

Simultaneously, the message passing direction took off with two major research efforts. At CalTech a project
was started to construct a 64-processor system using i8086/8087 microprocessors assembled in a hypercube
configuration[Sei85,AtSe88]. From this base-line several further designs were pursued at CalTech and
JPL[Fox*88] and at least two companies pushed the approach into commercialization, Intel with the iPSC
series[] and Ametek. A somewhat more aggressive approach was widely promoted by the INMOS corporation
in England in the form of the Transputer, which integrated four communication channels directly onto the
microprocessor. This approach was also followed by nCUBE, with a series of very large scale message passing
machines. Intel carried the commodity processor approach forward, replacing the i80386 with the faster i860,
then replacing the network with a fast grid-based interconnect in the Delta[] and adding dedicated message
processors in the Paragon. Meiko moved away from the transputer to the i860 in their computing surface. IBM
also investigated an i860-based design in Vulcan.

Data parallel systems also took off in the early 80s, after a period of relative quiet. This included Batcher’s
MPP system developed by Goodyear for image processing and the Connection Machine promoted by Hillis for
AI Applications[Hill85]. The key enhancement was the provision of a general purpose interconnect to prob-
lems demanding other than simple grid-based communication. These ideas saw commercialization with the
emergence of Thinking Machines Corporation, first with the CM-1 which was close to Hillis’ original concep-
tions and the CM-2 which incorporated a large number of bit-parallel floating-point units. In addition, MAS-
PAR and Wavetracer carried the bit-serial, or slightly wider organization forward in cost-effective systems.

A more formal development of highly regular parallel systems emerged in the early 80s as systolic arrays, gen-
erally under the assumption that a large number of very simple processing elements would fit on a single chip.
It was envisioned that these would provide cheap, high performance special-purpose add-ons to conventional
computer systems. To some extent these ideas have been employed in programming data parallel machines.
The iWARP project at CMU produced a more general, smaller scale building block which has been developed
further in conjunction with Intel. These ideas have also found their way into fast graphics, compression, and
rendering chips.

The technological possibilities of the VLSI revolution also prompted the investigation of more radical architec-
tural concepts, including dataflow architectures[Den80,Arv*83,Gur*85], which integrated the network very
closely with the instruction scheduling mechanism of the processor. It was argued that very fast dynamic
scheduling throughout the machine would hide the long communication latency and synchronization costs of a
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large machine and thereby vastly simplify programming. The evolution of these ideas tended to converge with
the evolution of message passing architectures, in the form of message driven computation [Dal93]

Large scale shared-memory designs took off as well. IBM pursued a high profile research effort with the RP-
3[Pfi*85] which sought to connect a large number of early RISC processors, the 801, through a butterfly net-
work. This was based on the NYU Ultracomputer work[Gott*83], which was particularly novel for its use of
combining operations. BBN developed two large scale designs, the BBN Butterfly using Motorola 68000 pro-
cessors and the TC2000[Bro*] using the 88100s. These efforts prompted a very broad investigation of the pos-
sibility of providing cache-coherent shared memory in a scalable setting. The Dash project at Stanford sought
to provide a fully cache coherent distributed shared memory by maintaining a directory containing the disposi-
tion of every cache block[LLJ*92,Len*92]. SCI represented an effort to standardize an interconnect and cache-
coherency protocol[IEEE93]. The Alewife project at MIT sought to minimize the hardware support for shared
memory[Aga*94], which was pushed further by researchers ar Wisconsin[Woo*93]. The Kendall Square
Research KSR1[Fra93,Saa93] goes even further and allows the home location of data in memory to migrate.
Alternatively, the Denelcor HEP attempted to hide the cost of remote memory latency by interleaving many
independent threads on each processor.

The 90s have exhibited the beginnings of a dramatic convergence among these various factions. This conver-
gence is driven by many factors. One is clearly that all of the approach have clear common aspects. They all
require a fast, high quality interconnect. They all profit from avoiding latency where possible and reducing the
absolute latency when it does occur. They all benefit from hiding as much of the communication cost as possi-
ble, where it does occur. They all must support various forms of synchronization. We have seen the shared
memory work explicit seek to better integrate message passing in Alewife[Aga*94] and Flash [Flash-ISCA94],
to obtain better performance where the regularity of the application can provide large transfers. We have seen
data parallel designs incorporate complete commodity processors in the CM-5[Lei*92], allowing very simple
processing of messages at user level, which provides much better efficiency for Message Driven computing and
shared memory[vEi*92,Spe*93]. There remains the additional support for fast global synchronization. We
have seen fast global synchronization, message queues, and latency hiding techniques developed in a NUMA
shared memory context in the Cray T3D[Kesc93,Koe*94] and the message passing support in the Meiko CS-
2[Bar*94,HoMc93] provides direct virtual memory to virtual memory transfers within the user address space.
The new element that continues to separate the factions is the use of complete commodity workstation nodes,
as in the SP-1, SP-2 and various workstation clusters using merging high bandwidth networks, such as
ATM.[And*94,Kun*91,Pfi95]. The costs of weaker integration into the memory system, imperfect network
reliability, and general purpose system requirements have tended to keep these systems more closely aligned
with traditional message passing, although the future developments are far from clear.
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1.7 Exercises

1.1  Compute the annual growth rate in number of transistors, die size, and clock rate by fitting an
exponential to the technology leaders using available data inTable 1-1.

1.2  Compute the annual performance growth rates for each of the benchmarks shown in Table 1-
1. Comment on the differences that you observe

Generally, in evaluating performance trade-offs we will evaluate the improvement in perfor-
mance, or speedup, due to some enhancement. Formally,

In particular, we will often refer to the speedup as a function of the machine parallel, e.g., the
number of processors.

1.3  Suppose you are given a program which does a fixed amount of work and some fraction  of
that work must be done sequentially. The remaining portion of the work is perfectly parallel-
izable on  processors. Assuming  is the time taken on one processor, derive a formula for

the time taken on  processors. Use this to get a formula giving an upper bound on the
potential speedup on  processors. (This is a variant of what is often called Amdahl’s
Law[Amd67].) Explain why it is an upper bound?

1.4  Given a histogram of available parallelism such as that shown in Figure 1-7, where  is the
fraction of cycles on an ideal machine in which  instructions issue, derive a generalization of
Amdahl’s law to estimate the potential speedup on a -issue superscalar machine. Apply your
formula the histogram data in Figure 1-7 to produce the speedup curve shown in that figure.

1.5  Locate the current TPC performance data on the web and compare the mix of system config-
urations, performance, and speedups obtained on those machines with the data presented in
Figure 1-4.

Programming Models

1.6  In message passing models each process is provided with a special variable or function that
gives its unique number or rank among the set of processes executing a program. Most
shared-memory programming systems provide a fetch&inc operation, which reads the value
of a location and atomically increments the location. Write a little pseudo-code to show how

Table 1-1   Performance of leading workstations

Year Machine SpecInt SpecFP Linpack n=1000 Peak FP
Sun 4/260    1987 9 6 1.1 1.1 3.3
MIPS M/120 1988 13 10.2 2.1 4.8 6.7
MIPS M/2000 1989 18 21 3.9 7.9 10
IBM RS6000/540 1990 24 44 19 50 60
HP 9000/750 1991 51 101 24 47 66
DEC Alpha AXP 1992 80 180 30 107 150
DEC 7000/610 1993 132.6 200.1 44 156 200
AlphaServer 2100 1994 200 291 43 129 190
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to use fetch&add to assign each process a unique number. Can you determine the number of
processes comprising a shared memory parallel program in a similar way?

1.7  To move an  message along  links in an unloaded store-and-forward network takes

time , where  is the raw link bandwidth, and  is the routing delay per hop.

In a network with cut-through routing this takes time . Consider an 8x8 grid

consisting of 40 MB/s links and routers with 250ns of delay. What is the minimum, maxi-

mum, and average time to move a 64 byte message through the network? A 246 byte mes-

sage?

1.8  Consider a simple 2D finite difference scheme where at each step every point in the matrix

updated by a weighted average of its four neighbors,

 
All the values are 64-bit floating point numbers. Assuming one element per processor and 

1024x1024 elements, how much data must be communicated per step? Explain how this computation 
could be mapped onto 64 processors so as to minimize the data traffic. Compute how much data must be 
communicated per step.

Latency and bandwidth

1.9  Consider the simple pipelined component described in Example 1-2. Suppose that the appli-
cation alternates beween bursts of  independent operations on the component and phases of
computation lasting  ns that do not use the component. Develop an expression describing
the execution time of the program based on these parameters. Compare this with the unpipe-
lined and fully pipelined bounds. At what points to you get the maximum discrepancy
between the models? How large is it as a fraction of overal execution time?

1.10  Show that Equation 1.4 follows from Equation 1.3.
1.11  What is the x-intercept of the line in Equation 1.3?

If we consider loading a cache line from memory the transfer time is the time to actually transmit
the data across the bus. The start-up includes the time to obtain access to the bus, convey the
address, access the memory, and possibly to place the data in the cache before responding to the
processor. However, in a modern processor with dynamic instruction scheduling, the overhead
may include only the portion spent accessing the cache to detect the miss and placing the request
on the bus. The memory access portion contributes to latency, which can potentially be hidden by
the overlap with execution of instructions that do not depend on the result of the load.

1.12  Suppose we have a machine with a 64-bit wide bus running at 40 MHz. It takes 2 bus cycles
to arbitrate for the bus and present the address. The cache line size is 32 bytes and the mem-
ory access time is 100ns. What is the latency for a read miss? What bandwidth is obtained on
this transfer?

1.13  Suppose this 32-byte line is transferred to another processor and the communication archi-
tecture imposes a start-up cost of 2µs and data transfer bandwidth of 20MB/s. What is the
total latency of the remote operation?

If we consider sending an  message to another processor, we may use the same model. The
start-up can be thought of as the time for a zero length message; it includes the software overhead

n-byte H

H n
W
----- H 1–( )R+ W R

n
W
----- H 1–( )R+
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on the two processors, the cost of accessing the network interface, and the time to actually cross
the network. The transfer time is usually determined by the point along the path with the least
bandwidth, i.e., the bottleneck.

1.14  Suppose we have a machine with a message start-up of 100µs and a asymptotic peak band-
width of 80MB/s. At what size message is half of the peak bandwidth obtained? 

1.15  Derive a general formula for the “half-power point” in terms of the start-up cost and peak
bandwidth.

The model makes certain basic trade-offs clear. For example, longer transfers take more time, but
obtain higher bandwidth because the start-up cost is amortized over more data movement. This
observation can help guide design trade-offs, at least up to a point where the collection of data
transfers interact to increase the start-up cost or reduce the effective bandwidth.

In some cases we will use the model in Equation 1.6 for estimating data transfer performance
based on design parameters, as in the examples above. In other cases, we will use it as an empiri-
cal tool and fit measurements to a line to determine the effective start-up and peak bandwidth of a
portion of a system. Observe, for example, that if data undergoes a series of copies as part of a
transfer 

1.16  Assuming that before transmitting a message the data must be copied into a buffer. The basic
message time is as in Exercise 1.14, but the copy is performed at a cost of 5 cycles per 32-bit
words on a 100 MHz machine. Given an equation for the expected user-level message time.
How does the cost of a copy compare with a fixed cost of, say, entering the operating system.

1.17  Consider a machine running at 100 MIPS on some workload with the following mix: 50%
ALU, 20% loads, 10% stores, 10% branches. Suppose the instruction miss rate is 1%, the
data miss rate is 5%, the cache line size is 32 bytes. For the purpose of this calculation, treat a
store miss as requiring two cache line transfers, one to load the newly update line and one to
replace the dirty line. If the machine provides a 250 MB/s bus, how many processors can it
accommodate at 50% of peak bus bandwidth? What is the bandwidth demand of each proces-
sor?

The scenario is Exercise 1.17 is a little rosy because it looks only at the sum of the average band-
widths, which is why we left 50% headroom on the bus. In fact, what happens as the bus
approaches saturation is that it takes longer to obtain access for the bus, so it looks to the proces-
sor as if the memory system is slower. The effect is to slow down all of the processors in the sys-
tem, thereby reducing their bandwidth demand. Let’s try a analogous calculation from the other
direction. 

1.18  Assume the instruction mix and miss rate as in Exercise 1.17, but ignore the MIPS, since that
depends on the performance of the memory system. Assume instead that the processor run as
100 MHz and has an ideal CPI (with an perfect memory system). The unloaded cache miss
penalty is 20 cycles. You can ignore the write-back for stores. (As a starter, you might want to
compute the MIPS rate for this new machine.) Assume that the memory system, i.e., the bus
and the memory controller is utilized throughout the miss. What is the utilization of the mem-
ory system, , with a single processor? From this result, estimate the number of processors
that could be supported before the processor demand would exceed the available bus band-
width.

U1
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1.19  Of course, no matter how many processors you place on the bus, they will never exceed the
available bandwidth. Explains what happens to processor performance in response to bus
contention. Can you formalize your observations?


