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CHAPTER 1

Introduction

Morgan Kaufmann is pleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is (c) Copyright 1996 Morgan Kaufmann Publishers. This material may not be used or distributed for any
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this
material is a draft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterations in the final edition.

1.1 Introduction

We have enjoyed an explosive growth in performance and capability of computer systems for
over a decade. The theme of this dramatic success story is the advance of the underlying VLSI
technology, which allows larger and larger numbers of components to fit on a chip and clock
rates to increase. The plot is one of computer architecture, which translates the raw potential of
the technology into greater performance and expanded capability of the computer system. The
leading character is parallelism. A larger volume of resources means that more operations can be
done at once, in parallel. Parallel computer architecture is about organizing these resources so
that they work well together. Computers of all types have harnessed parallelism more and more
effectively to gain performance from the raw technology, and the level at which parallelism is
exlploited continues to rise. The other key character is storage. The data that is operated on at an
ever faster rate must be held somewhere in the machine. Thus, the story of parallel processing is
deeply intertwined with data locality and communication. The computer architect must sort out
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these changing relationships to design the various levels of a computer system so as to maximize
performance and programmability within the limits imposed by technology and cost at any par-
ticular time.

Parallelism is a fascinating perspective from which to understand computer architecture, because
it applies at all levels of design, it interacts with essentially all other architectural concepts, and it
presents a unique dependence on the underlying technology. In particular, the basic issues of
locality, bandwidth, latency, and synchronization arise at many levels of the design of parallel
computer systems. The trade-offs must be resolved in the context of real application workloads.

Parallel computer architecture, like any other aspect of design, involves elements of form and
function. These elements are captured nicely in the following definition[AGo89].

A parallel computer is a collection of processing elements that cooperate and communicate
to solve large problems fast.

However, this simple definition raises many questions. How large a collection are we talking
about? How powerful are the individual processing elements and can the number be increased in
a straight-forward manner? How do they cooperate and communicate? How are data transmitted
between processors, what sort of interconnection is provided, and what operations are available
to sequence the actions carried out on different processors? What are the primitive abstractions
that the hardware and software provide to the programmer? And finally, how does it all translate
into performance? As we begin to answer these questions, we will see that small, moderate, and
very large collections of processing elements each have important roles to fill in modern comput-
ing. Thus, it is important to understand parallel machine design across the scale, from the small
to the very large. There are design issues that apply throughout the scale of parallelism, and oth-
ers that are most germane to a particular regime, such as within a chip, within a box, or on a very
large machine. It is safe to say that parallel machines occupy a rich and diverse design space.
This diversity makes the area exciting, but also means that it is important that we develop a clear
framework in which to understand the many design alternatives.

Parallel architecture is itself a rapidly changing area. Historically, parallel machines have demon-
strated innovative organizational structures, often tied to particular programing models, as archi-
tects sought to obtain the ultimate in performance out of a given technology. In many cases,
radical organizations were justified on the grounds that advances in the base technology would
eventually run out of steam. These dire predictions appear to have been overstated, as logic den-
sities and switching speeds have continued to improve and more modest parallelism has been
employed at lower levels to sustain continued improvement in processor performance. Nonethe-
less, application demand for computational performance continues to outpace what individual
processors can deliver, and multiprocessor systems occupy an increasingly important place in
mainstream computing. What has changed is the novelty of these parallel architectures. Even
large-scale parallel machines today are built out of the same basic components as workstations
and personal computers. They are subject to the same engineering principles and cost-perfor-
mance trade-offs. Moreover, to yield the utmost in performance, a parallel machine must extract
the full performance potential of its individual components. Thus, an understanding of modern
parallel architectures must include an in-depth treatment of engineering trade-offs, not just a
descriptive taxonomy of possible machine structures.

Parallel architectures will play an increasingly central role in information processing. This view
is based not so much on the assumption that individual processor performance will soon reach a
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plateau, but rather on the estimation that the next level of system design, the multiprocessor level,
will become increasingly attractive with increases in chip density. The goal of this book is to
articulate the principles of computer design at the multiprocessor level. We examine the design
issues present for each of the system components — memory systems, processors, and networks —
and the relationships between these components. A key aspect is understanding the division of
responsibilities between hardware and software in evolving parallel machines. Understanding
this division, requires familiarity with the requirements that parallel programs place on the
machine and the interaction of machine design and the practice of parallel programming.

The process of learning computer architecture is frequently likened to peeling an onion, and this
analogy is even more appropriate for parallel computer architecture. At each level of understand-
ing we find a complete whole with many interacting facets, including the structure of the
machine, the abstractions it presents, the technology it rests upon, the software that exercises it,
and the models that describe its performance. However, if we dig deeper into any of these facets
we discover another whole layer of design and a new set of interactions. The wholistic, many
level nature of parallel computer architecture makes the field challenging to learn and challeng-
ing to present. Something of the layer by layer understanding is unavoidable.

This introductory chapter presents the ‘outer skin’ of parallel computer architecture. It first out-
lines the reasons why we expect parallel machine design to become pervasive from desktop
machines to supercomputers. We look at the technological, architectural, and economic trends
that have led to the current state of computer architecture and that provide the basis for anticipat-
ing future parallel architectures. Section 1.2 focuses on the forces that have brought about the
dramatic rate of processor performance advance and the restructuring of the entire computing
industry around commodity microprocessors. These forces include the insatiable application
demand for computing power, the continued improvements in the density and level of integration
in VLSI chips, and the utilization of parallelism at higher and higher levels of the architecture.

We then take a quick look at the spectrum of important architectural styles which give the field
such a rich history and contribute to the modern understanding of parallel machines. Within this
diversity of design, a common set of design principles and trade-offs arise, driven by the same
advances in the underlying technology. These forces are rapidly leading to a convergence in the
field, which forms the emphasis of this book. Section 1.3 surveys traditional parallel machines,
including shared-memory, message-passing, single-instruction-multiple-data, systolic arrays,
and dataflow, and illustrates the different ways that they address common architectural issues.
The discussion illustrates the dependence of parallel architecture on the underlying technology
and, more importantly, demonstrates the convergence that has come about with the dominance of
MiCroprocessors.

Building on this convergence, in Section 1.4 we examine the fundamental design issues that cut
across parallel machines: what can be named at the machine level as a basis for communication
and coordination, what is the latency or time required to perform these operations, and what is
the bandwidth or overall rate at which they can be performed. This shift from conceptual struc-
ture to performance components provides a framework for quantitative, rather than merely quali-
tative, study of parallel computer architecture.

With this initial, broad understanding of parallel computer architecture in place, the following
chapters dig deeper into its technical substance. Chapter 2 delves into the structure and require-
ments of parallel programs to provide a basis for understanding the interaction between parallel
architecture and applications. Chapter 3 builds a framework for evaluating design decisions in
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1.2

terms of application requirements and performance measurements. Chapter 4 is a complete study
of parallel computer architecture at the limited scale that is widely employed in commercial mul-
tiprocessors — a few processors to a few tens of processors. The concepts and structures intro-
duced at this scale form the building blocks for more aggressive large scale designs presented
over the next five chapters.

Why Parallel Architecture

Computer architecture, technology, and applications evolve together and have very strong inter-
actions. Parallel computer architecture is no exception. A new dimension is added to the design
space — the number of processors — and the design is even more strongly driven by the demand
for performance at acceptable cost. Whatever the performance of a single processor at a given
time, higher performance can, in principle, be achieved by utilizing many such processors. How
much additional performance is gained and at what additional cost depends on a number of fac-
tors, which we will explore throughout the book.

To better understand this interaction, let us consider the performance characteristics of the pro-
cessor building blocks. Figure 1-1! illustrates the growth in processor performance over time for
several classes of computers|HeJo91]. The dashed lines represent a naive extrapolation of the
trends. Although one should be careful in drawing sharp quantitative conclusions from such lim-
ited data, the figure suggests several valuable observations, discussed below.

First, the performance of the highly integrated, single-chip CMOS microprocessor is steadily
increasing and is surpassing the larger, more expensive alternatives. Microprocessor performance
has been improving at a rate of more than 50% per year. The advantages of using small, inexpen-
sive, low power, mass produced processors as the building blocks for computer systems with
many processors are intuitively clear. However, until recently the performance of the processor
best suited to parallel architecture was far behind that of the fastest single processor system. This
is no longer so. Although parallel machines have been built at various scales since the earliest
days of computing, the approach is more viable today than ever before, because the basic proces-
sor building block is better suited to the job.

The second and perhaps more fundamental observation is that change, even dramatic change, is
the norm in computer architecture. The continuing process of change has profound implications
for the study of computer architecture, because we need to understand not only how things are,
but how they might evolve, and why. Change is one of the key challenges in writing this book,
and one of the key motivations. Parallel computer architecture has matured to the point where it
needs to be studied from a basis of engineering principles and quantitative evaluation of perfor-
mance and cost. These are rooted in a body of facts, measurements, and designs of real machines.

1. The figure is drawn from an influential 1991 paper that sought to explain the dramatic changes
taking place in the computing industry[HeJo91] The metric of performance is a bit tricky when
reaching across such a range of time and market segment. The study draws data from general
purpose benchmarks, such as the SPEC benchmark that is widely used to assess performance on
technical computing applications[HePa90]. After publication, microprocessors continued to track
the prediction, while mainframes and supercomputers went through tremendous crises and
emerged using multiple CMOS microprocessors in their market niche.
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Figure 1-1 Performance trends over time of micro, mini, mainframe and supercomputer processors.[HeJo91]

Performance of microprocessors has been increasing at a rate of nearly 50% per year since the mid 80’s. More tra-
ditional mainframe and supercomputer performance has been increasing at a rate of roughly 25% per year. As a
result we are seeing the processor that is best suited to parallel architecture become the performance leader as well.

1.2.1

Unfortunately, the existing data and designs are necessarily frozen in time, and will become
dated as the field progresses. We have elected to present hard data and examine real machines
throughout the book in the form of a “late 1990s” technological snapshot in order to retain this
grounding. We strongly believe that the methods of evaluation underlying the analysis of con-
crete design trade-offs transcend the chronological and technological reference point of the book.

The “late 1990s” happens to be a particularly interesting snapshot, because we are in the midst of
a dramatic technological realignment as the single-chip microprocessor is poised to dominate
every sector of computing, and as parallel computing takes hold in many areas of mainstream
computing. Of course, the prevalence of change suggests that one should be cautious in extrapo-
lating toward the future. In the remainder of this section, we examine more deeply the forces and
trends that are giving parallel architectures an increasingly important role throughout the com-
puting field and pushing parallel computing into the mainstream. We look first at the application
demand for increased performance and then at the underlying technological and architectural
trends that strive to meet these demands. We see that parallelism is inherently attractive as com-
puters become more highly integrated, and that it is being exploited at increasingly high levels of
the design. Finally, we look at the role of parallelism in the machines at the very high end of the
performance spectrum.

Application Trends

The demand for ever greater application performance is a familiar feature of every aspect of com-
puting. Advances in hardware capability enable new application functionality, which grows in
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significance and places even greater demands on the architecture, and so on. This cycle drives the
tremendous ongoing design, engineering, and manufacturing effort underlying the sustained
exponential performance increase in microprocessor performance. It drives parallel architecture
even harder, since parallel architecture focuses on the most demanding of these applications.
With a 50% annual improvement in processor performance, a parallel machine of a hundred pro-
cessors can be viewed as providing to applications the computing power that will be widely avail-
able ten years in the future, whereas a thousand processors reflects nearly a twenty year horizon.

Application demand also leads computer vendors to provide a range of models with increasing
performance and capacity at progressively increased cost. The largest volume of machines and
greatest number of users are at the low end, whereas the most demanding applications are served
by the high end. One effect of this “platform pyramid” is that the pressure for increased perfor-
mance is greatest at the high-end and is exerted by an important minority of the applications.
Prior to the microprocessor era, greater performance was obtained through exotic circuit technol-
ogies and machine organizations. Today, to obtain performance significantly greater than the
state-of-the-art microprocessor, the primary option is multiple processors, and the most demand-
ing applications are written as parallel programs. Thus, parallel architectures and parallel appli-
cations are subject to the most acute demands for greater performance.

A key reference point for both the architect and the application developer is how the use of paral-
lelism improves the performance of the application. We may define the speedup on p processors
as

Performance(p processors)
Performance(1 processors) ’

Speedup(p processors) = (EQ1.1)

For a single, fixed problem, the performance of the machine on the problem is simply the recipro-
cal of the time to complete the problem, so we have the following important special case:

Time(1 processor)

—_— EQ 1.2
Time(p processors) ( )

Speedupg;, g pmblem( P processors) =

Scientific and Engineering Computing

The direct reliance on increasing levels of performance is well established in a number of
endeavors, but is perhaps most apparent in the field of computational science and engineering.
Basically, computers are used to simulate physical phenomena that are impossible or very costly
to observe through empirical means. Typical examples include modeling global climate change
over long periods, the evolution of galaxies, the atomic structure of materials, the efficiency of
combustion with an engine, the flow of air over surfaces of vehicles, the damage due to impacts,
and the behavior of microscopic electronic devices. Computational modeling allows in-depth
analyses to be performed cheaply on hypothetical designs through computer simulation. A direct
correspondence can be drawn between levels of computational performance and the problems
that can be studied through simulation. Figure 1-2 summarizes the 1993 findings of the Commit-
tee on Physical, Mathematical, and Engineering Sciences of the federal Office of Science and
Technology Policy[OST93]. It indicates the computational rate and storage capacity required to
tackle a number of important science and engineering problems. Also noted is the year in which
this capability was forecasted to be available. Even with dramatic increases in processor perfor-
mance, very large parallel architectures are needed to address these problems in the near future.
Some years further down the road, new grand challenges will be in view.
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Figure 1-2 Grand Challenge Application Requirements

A collection of important scientific and enﬁineering problems are positioned in a space defined by computational

performance and storage capacity. Given tl

e exponential growth rate of performance and capacity, both of these

axes map directly to time. In the upper right corner appears some of the Grand Challenge applications identified by
the U.S. High Performance Computing and Communications program.

Parallel architectures have become the mainstay of scientific computing, including physics,
chemistry, material science, biology, astronomy, earth sciences, and others. The engineering
application of these tools for modeling physical phenomena is now essential to many industries,
including petroleum (reservoir modeling), automotive (crash simulation, drag analysis, combus-
tion efficiency), aeronautics (airflow analysis, engine efficiency, structural mechanics, electro-
magnetism), pharmaceuticals (molecular modeling), and others. In almost all of these
applications, there is a large demand for visualization of the results, which is itself a demanding
application amenable to parallel computing.

The visualization component has brought the traditional areas of scientific and engineering com-
puting closer to the entertainment industry. In 1995, the first full-length computer-animated
motion picture, Toy Story, was produced on a parallel computer system composed of hundreds of
Sun workstations. This application was finally possible because the underlying technology and
architecture crossed three key thresholds: the cost of computing dropped to where the rendering
could be accomplished within the budget typically associated with a feature film, while the per-
formance of the individual processors and the scale of parallelism rose to where it could be
accomplished in a reasonable amount of time (several months on several hundred processors).
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Each science and engineering applications has an analogous threshold of computing capacity and
cost at which it becomes viable.

Let us take an example from the Grand Challenge program to help understand the strong interac-
tion between applications, architecture, and technology in the context of parallel machines. A
1995 study[JNNIE] examined the effectiveness of a wide range of parallel machines on a variety
of applications, including a molecular dynamics package, AMBER (Assisted Model Building
through Energy Refinement). AMBER is widely used to simulate the motion of large biological
models such as proteins and DNA, which consist of sequences of residues (amino acids and
nucleic acids, respectively) each composed of individual atoms. The code was developed on Cray
vector supercomputers, which employ custom ECL-based processors, large expensive SRAM
memories, instead of caches, and machine instructions that perform arithmetic or data movement
on a sequence, or vector, of data values. Figure 1-3 shows the speedup obtained on three versions
of this code on a 128-processor microprocessor-based machine - the Intel Paragon, described
later. The particular test problem involves the simulation of a protein solvated by water. This test
consisted of 99 amino acids and 3,375 water molecules for approximately 11,000 atoms.

The initial parallelization of the code (vers. 8/94) resulted in good speedup for small configura-
tions, but poor speedup on larger configurations. A modest effort to improve the balance of work
done by each processor, using techniques we discuss in Chapter 2, improved the scaling of the
application significantly (vers. 9/94). An additional effort to optimize communication produced a
highly scalable version(12/94). This 128 processor version achieved a performance of 406
MFLOPS; the best previously achieved was 145 MFLOPS on a Cray C90 vector processor. The
same application on a more efficient parallel architecture, the Cray T3D, achieved 891 MFLOPS
on 128 processors. This sort of “learning curve” is quite typical in the parallelization of important
applications, as is the interaction between application and architecture. The application writer
typically studies the application to understand the demands it places on the available architec-
tures and how to improve its performance on a given set of machines. The architect may study
these demands as well in order to understand how to make the machine more effective on a given
set of applications. Ideally, the end user of the application enjoys the benefits of both efforts.

The demand for ever increasing performance is a natural consequence of the modeling activity.
For example, in electronic CAD as the number of devices on the chip increases, there is obvi-
ously more to simulate. In addition, the increasing complexity of the design requires that more
test vectors be used and, because higher level functionality is incorporated into the chip, each of
these tests must run for a larger number of clock cycles. Furthermore, an increasing level of con-
fidence is required, because the cost of fabrication is so great. The cumulative effect is that the
computational demand for the design verification of each new generation is increasing at an even
faster rate than the performance of the microprocessors themselves.

Commercial Computing

Commercial computing has also come to rely on parallel architectures for its high-end. Although
the scale of parallelism is typically not as large as in scientific computing, the use of parallelism
is even more wide-spread. Multiprocessors have provided the high-end of the commercial com-
puting market since the mid-60s. In this arena, computer system speed and capacity translate
directly into the scale of business that can be supported by the system. The relationship between
performance and scale of business enterprise is clearly articulated in the on-line transaction pro-
cessing (OLTP) benchmarks sponsored by the Transaction Processing Performance Council
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Figure 1-3 Speedup on Three Versions of a Parallel Program

The parallelization learning curve is illustrated by the speedup obtained on three successive versions of this

molecular dynamics code on the Intel Paragon.
(TPC) [tpc]. These benchmarks rate the performance of a system in terms of its throughput in
transactions-per-minute (tpm) on a typical workload. TPC-C is an order entry application with a
mix of interactive and batch transactions, including realistic features like queued transactions,
aborting transactions, and elaborate presentation features|GrRe93]. The benchmark includes an
explicit scaling criteria to make the problem more realistic: the size of the database and the num-
ber of terminals in the system increase as the tpmC rating rises. Thus, a faster system must oper-
ate on a larger database and service a larger number of users.

Figure 1-4 shows the tpm-C ratings for the collection of systems appearing in one edition of the
TPC results (March 1996), with the achieved throughput on the vertical axis and the number of
processors employed in the server along the horizontal axis. This data includes a wide range of
systems from a variety of hardware and software vendors; we have highlighted the data points for
models from a few of the vendors. Since the problem scales with system performance, we cannot
compare times to see the effectiveness of parallelism. Instead, we use the throughput of the sys-
tem as the metric of performance in Equation 1.1.
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Figure 1-4 TPC-C throughput versus number of processors on TPC
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Example 1-1 The tpmC for the Tandem Himalaya and IBM Power PC systems are given in the
following table. What is the speedup obtained on each?

Number of Processors

tpmC
IBM RS 6000 PowerPC

Himalaya K10000

1

4

8
16
32
64
112

735
1438
3119

3043
6067
12021
20918

For the IBM system we may calculate speedup relative to the uniprocessor system, whereas in
the Tandem case we can only calculate speedup relative to a sixteen processor system. For the
IBM machine there appears to be a significant penalty in the parallel database implementation in
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going from one to four processors, however, the scaling is very good (superlinear) from four to
eight processors. The Tandem system achieves good scaling, although the speedup appears to be
beginning to flatten towards the hundred processor regime.

Speeduptpmc

Number of Processors IBM RS 6000 PowerPC  Himalaya K10000

1 1

4 1.96

8 424

16 1

32 1.99
64 395
112 6.87

Several important observations can be drawn from the TPC data. First, the use of parallel archi-
tectures is prevalent. Essentially all of the vendors supplying database hardware or software offer
multiprocessor systems that provide performance substantially beyond their uniprocessor prod-
uct. Second, it is not only large scale parallelism that is important, but modest scale multiproces-
sor servers with tens of processors, and even small-scale multiprocessors with two or four
processors. Finally, even a set of well-documented measurements of a particular class of system
at a specific point in time cannot provide a true technological snapshot. Technology evolves rap-
idly, systems take time to develop and deploy, and real systems have a useful lifetime. Thus, the
best systems available from a collection of vendors will be at different points in their life cycle at
any time. For example, the DEC Alpha and IBM PowerPC systems in the 3/96 TPC report were
much newer, at the time of the report, than the Tandem Himalaya system. We cannot conclude,
for example, that the Tandem system is inherently less efficient as a result of its scalable design.
We can, however, conclude that even very large scale systems must track the technology to retain
their advantage.

Even the desktop demonstrates a significant number of concurrent processes, with a host of
active windows and daemons. Quite often a single user will have tasks running on many
machines within the local area network, or farm tasks across the network. The transition to paral-
lel programming, including new algorithms in some cases or attention to communication and
synchronization requirements in existing algorithms, has largely taken place in the high perfor-
mance end of computing, especially in scientific programming. The transition is in progress
among the much broader base of commercial engineering software. In the commercial world, all
of the major database vendors support parallel machines for their high-end products. Typically,
engineering and commercial applications target more modest scale multiprocessors, which domi-
nate the server market. However, the major database vendors also offer “shared-nothing” ver-
sions for large parallel machines and collections of workstations on a fast network, often called
clusters. In addition, multiprocessor machines are heavily used to improve throughput on multi-
programming workloads. All of these trends provide a solid application demand for parallel
architectures of a variety of scales.
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Figure 1-5 Improvement in logic density and clock frequency of microprocessors.

Improvements in lithographic technique, process technology, circuit design, and datapath design have yielded
a sustained improvement 1n logic density and clock rate.

122 Technology Trends

The importance of parallelism in meeting the application demand for ever greater performance
can be brought into sharper focus by looking more closely at the advancements in the underlying
technology and architecture. These trends suggest that it may be increasingly difficult to “wait for
the single processor to get fast enough,” while parallel architectures will become more and more
attractive. Moreover, the examination shows that the critical issues in parallel computer architec-
ture are fundamentally similar to those that we wrestle with in “sequential” computers, such as
how the resource budget should be divided up among functional units that do the work, caches to
exploit locality, and wires to provide bandwidth.

The primary technological advance is a steady reduction in the basic VLSI feature size. This
makes transistors, gates, and circuits faster and smaller, so more fit in the same area. In addition,
the useful die size is growing, so there is more area to use. Intuitively, clock rate improves in pro-
portion to the improvement in feature size, while the number of transistors grows as the square,
or even faster due to increasing overall die area. Thus, in the long run the use of many transistors
at once, i.e., parallelism, can be expected to contribute more than clock rate to the observed per-
formance improvement of the single-chip building block.

This intuition is borne out by examination of commercial microprocessors. Figure 1-5 shows the
increase in clock frequency and transistor count for several important microprocessor families.
Clock rates for the leading microprocessors increase by about 30% per year, while the number of
transistors increases by about 40% per year. Thus, if we look at the raw computing power of a
chip (total transistors switching per second), transistor capacity has contributed an order of mag-
nitude more than clock rate over the past two decades.! The performance of microprocessors on
standard benchmarks has been increasing at a much greater rate. The most widely used bench-
mark for measuring workstation performance is the SPEC suite, which includes several realistic
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integer programs and floating point programs[SPEC]. Integer performance on SPEC has been
increasing at about 55% per year, and floating-point performance at 75% per year. The LINPACK
benchmark[Don94] is the most widely used metric of performance on numerical applications.
LINPACK floating-point performance has been increasing at more than 80% per year. Thus, pro-
cessors are getting faster in large part by making more effective use of an ever larger volume of
computing resources.

The simplest analysis of these technology trends suggests that the basic single-chip building
block will provide increasingly large capacity, in the vicinity of 100 million transistors by the
year 2000. This raises the possibility of placing more of the computer system on the chip, includ-
ing memory and I/O support, or of placing multiple processors on the chip[Gwe94b]. The former
yields a small and conveniently packaged building block for parallel architectures. The latter
brings parallel architecture into the single chip regime[Gwe94a]. Both possibilities are in evi-
dence commercially, with the system-on-a-chip becoming first established in embedded systems,
portables, and low-end personal computer products.[x86,mips] Multiple processors on a chip is
becoming established in digital signal processing[Fei94].

The divergence between capacity and speed is much more pronounced in memory technology.
From 1980 to 1995, the capacity of a DRAM chip increased a thousand-fold, quadrupling every
three years, while the memory cycle time improved by only a factor of two. In the time-frame of
the 100 million transistor microprocessor, we anticipate gigabit DRAM chips, but the gap
between processor cycle time and memory cycle time will have grown substantially wider. Thus,
the memory bandwidth demanded by the processor (bytes per memory cycle) is growing rapidly
and in order to keep pace, we must transfer more data in parallel. From PCs to workstations to
servers, designs based on conventional DRAMs are using wider and wider paths into the memory
and greater interleaving of memory banks. Parallelism. A number of advanced DRAM designs
are appearing on the market which transfer a large number of bits per memory cycle within the
chip, but then pipeline the transfer of those bits across a narrower interface at high frequency. In
addition, these designs retain recently data in fast on-chip buffers, much as processor caches do,
in order to reduce the time for future accesses. Thus, exploiting parallelism and locality is central
to the advancements in memory devices themselves.

The latency of a memory operation is determined by the access time, which is smaller than the
cycle time, but still the number of processor cycles per memory access time is large and increas-
ing. To reduce the average latency experienced by the processor and to increase the bandwidth
that can be delivered to the processor, we must make more and more effective use of the levels of
the memory hierarchy that lie between the processor and the DRAM memory. As the size of the
memory increases, the access time increases due to address decoding, internal delays in driving
long bit lines, selection logic, and the need to use a small amount of charge per bit. Essentially all
modern microprocessors provide one or two levels of caches on chip, plus most system designs
provide an additional level of external cache. A fundamental question as we move into multipro-
cessor designs is how to organize the collection of caches that lie between the many processors
and the many memory modules. For example, one of the immediate benefits of parallel architec-

1. There are many reasons why the transistor count does not increase as the square of the clock rate. One is
that much of the area of a processor is consumed by wires, serving to distribute control, data, or clock, i.e.,
on-chip communication. We will see that the communication issue reappears at every level of parallel com-
puter architecture.
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tures is that the total size of each level of the memory hierarchy can increase with the number of
processors without increasing the access time.

Extending these observations to disks, we see a similar divergence. Parallel disks storage sys-
tems, such as RAID, are becoming the norm. Large, multi-level caches for files or disk blocks are
predominant.

Architectural Trends

Advances in technology determine what is possible; architecture translates the potential of the
technology into performance and capability. There are fundamentally two ways in which a larger
volume of resources, more transistors, improves performance: parallelism and locality. More-
over, these two fundamentally compete for the same resources. Whenever multiple operations are
performed in parallel the number of cycles required to execute the program is reduced. However,
resources are required to support each of the simultaneous activities. Whenever data references
are performed close to the processor, the latency of accessing deeper levels of the storage hierar-
chy is avoided and the number of cycles to execute the program is reduced. However, resources
are also required to provide this local storage. In general, the best performance is obtained by an
intermediate strategy which devotes resources to exploit a degree of parallelism and a degree of
locality. Indeed, we will see throughout the book that parallelism and locality interact in interest-
ing ways in systems of all scales, from within a chip to across a large parallel machine. In current
microprocessors, the die area is divided roughly equally between cache storage, processing, and
off-chip interconnect. Larger scale systems may exhibit a somewhat different split, due to differ-
ences in the cost and performance trade-offs, but the basic issues are the same.

Examining the trends in microprocessor architecture will help build intuition towards the issues
we will be dealing with in parallel machines. It will also illustrate how fundamental parallelism is
to conventional computer architecture and how current architectural trends are leading toward
multiprocessor designs. (The discussion of processor design techniques in this book is cursory,
since many of the readers are expected to be familiar with those techniques from traditional
architecture texts[HeP90] or the many discussions in the trade literature. It does provide provide
an unique perspective on those techniques, however, and will serve to refresh your memory.)

The history of computer architecture has traditionally been divided into four generations identi-
fied by the basic logic technology: tubes, transistors, integrated circuits, and VLSI. The entire
period covered by the figures in this chapter is lumped into the fourth or VLSI generation.
Clearly, there has been tremendous architectural advance over this period, but what delineates
one era from the next within this generation? The strongest delineation is the kind of parallelism
that is exploited. The period up to about 1985 is dominated by advancements in bit-level parallel-
ism, with 4-bit microprocessors replaced by 8-bit, 16-bit, and so on. Doubling the width of the
datapath reduces the number of cycles required to perform a full 32-bit operation. This trend
slows once a 32-bit word size is reached in the mid-80s, with only partial adoption of 64-bit oper-
ation obtained a decade later. Further increases in word-width will be driven by demands for
improved floating-point representation and a larger address space, rather than performance. With
address space requirements growing by less than one bit per year, the demand for 128-bit opera-
tion appears to be well in the future. The early microprocessor period was able to reap the bene-
fits of the easiest form of parallelism: bit-level parallelism in every operation. The dramatic
inflection point in the microprocessor growth curve in Figure 1-1 marks the arrival of full 32-bit
word operation combined with the prevalent use of caches.

32

DRAFT: Parallel Computer Architecture 9/10/97



Why Parallel Architecture

Bit Level Parallelism Instruction Level Thread Level (?)
100,000,000 g
¢
10,000,000 5 poy /
3 b4 1000
1 %o
1 Y
® 1,000,000 1 e
o 3]
@ ] :
2 1 &i30386
< )
o ¢40286 | ¢ @ R3000
= 100,000 .« S R2000
] i8086
10,000
E ig®s0
] #4004
1,000 ; ; } ; } ; !

1970 1975 1980 1985 1990 1995 2000 2005

Year

Figure 1-6 Number of transistors per processor chip over the last 25 years.

The growth essentially follows Moore’s law which says that the number of transistors doubles every 2 years. Fore-
casting from past trends we can reasonably expect to be designing for a 50-100 million transistor budget at the end
of the decade. Also indicated are the epochs of design within the fourth, or VLSI generation of computer architec-
ture reflecting the increasing level of parallelism.

The period from the mid-80s to mid-90s is dominated by advancements in instruction-level par-
allelism. Full word operation meant that the basic steps in instruction processing (instruction
decode, integer arithmetic, and address calculation) could be performed in a single cycle; with
caches the instruction fetch and data access could also be performed in a single cycle, most of the
time. The RISC approach demonstrated that, with care in the instruction set design, it was
straightforward to pipeline the stages of instruction processing so that an instruction is executed
almost every cycle, on average. Thus the parallelism inherent in the steps of instruction process-
ing could be exploited across a small number of instructions. While pipelined instruction pro-
cessing was not new, it had never before been so well suited to the underlying technology. In
addition, advances in compiler technology made instruction pipelines more effective.

The mid-80s microprocessor-based computers consisted of a small constellation of chips: an
integer processing unit, a floating-point unit, a cache controller, and SRAMs for the cache data
and tag storage. As chip capacity increased these components were coalesced into a single chip,
which reduced the cost of communicating among them. Thus, a single chip contained separate
hardware for integer arithmetic, memory operations, branch operations, and floating-point opera-
tions. In addition to pipelining individual instructions, it became very attractive to fetch multiple
instructions at a time and issue them in parallel to distinct function units whenever possible. This
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form of instruction level parallelism came to be called superscalar execution. It provided a natu-
ral way to exploit the ever increasing number of available chip resources. More function units
were added, more instructions were fetched at time, and more instructions could be issued in
each clock cycle to the function units.

However, increasing the amount of instruction level parallelism that the processor can exploit is
only worthwhile if the processor can be supplied with instructions and data fast enough to keep it
busy. In order to satisfy the increasing instruction and data bandwidth requirement, larger and
larger caches were placed on-chip with the processor, further consuming the ever increasing
number of transistors. With the processor and cache on the same chip, the path between the two
could be made very wide to statisfy the bandwidth requirement of multiple instruction and data
accesses per cycle. However, as more instructions are issued each cycle, the performance impact
of each control transfer and each cache miss becomes more significant. A control transfer may
have to wait for the depth, or latency, of the processor pipeline, until a particular instruction
reaches the end of the pipeline and determines which instruction to execute next. Similarly,
instructions which use a value loaded from memory may cause the processor to wait for the
latency of a cache miss.

Processor designs in the 90s deploy a variety of complex instruction processing mechanisms in
an effort to reduce the performance degradation due to latency in “wide-issue” superscalar pro-
cessors. Sophisticated branch prediction techniques are used to avoid pipeline latency by guess-
ing the direction of control flow before branches are actually resolved. Larger, more sophisticated
caches are used to avoid the latency of cache misses. Instructions are scheduled dynamically and
allowed to complete out of order so if one instruction encounters a miss, other instructions can
proceed ahead of it, as long as they do not depend on the result of the instruction. A larger win-
dow of instructions that are waiting to issue is maintained within the processor and whenever an
instruction produces a new result, several waiting instructions may be issued to the function
units. These complex mechanisms allow the processor to folerate the latency of a cache-miss or
pipeline dependence when it does occur. However, each of these mechanisms place a heavy
demand on chip resources and a very heavy design cost.

Given the expected increases in chip density, the natural question to ask is how far will instruc-
tion level parallelism go within a single thread of control? At what point will the emphasis shift
to supporting the higher levels of parallelism available as multiple processes or multiple threads
of contol within a process, i.e, thread level parallelism? Several research studies have sought to
answer the first part of the question, either through simulation of aggressive machine
designs[Cha*91,Hor*90,Lee*91 ,MePa91] or through analysis of the inherent properties of pro-
grams[But*91,JoWa89,Joh90,Smi*89,Wal91]. The most complete treatment appears in
Johnson’s book devoted to the topic[Joh90]. Simulation of aggressive machine designs generally
shows that 2-way superscalar, i.e., issuing two instructions per cycle, is very profitable and 4-way
offers substantial additional benefit, but wider issue widths, e.g., 8-way superscalar, provide little
additional gain. The design complexity increases dramatically, because control transfers occur
roughly once in five instructions, on average.

To estimate the maximum potential speedup that can be obtained by issuing multiple instructions
per cycle, the execution trace of a program is simulated on an ideal machine with unlimited
instruction fetch bandwidth, as many functions units as the program can use, and perfect branch
prediction. (The latter is easy, since the trace correctly follows each branch.) These generous
machine assumptions ensure that no instruction is held up because a function unit is busy or
because the instruction is beyond the look-ahead capability of the processor. Furthermore, to
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ensure that no instruction is delayed because it updates a location that is used by logically previ-
ous instructions, storage resource dependences are removed by a technique called renaming.
Each update to a register or memory location is treated as introducing a new “name,” and subse-
quent uses of the value in the execution trace refer to the new name. In this way, the execution
order of the program is constrained only by essential data dependences; each instruction is exe-
cuted as soon as its operands are available. Figure 1-7 summarizes the result of this “ideal
machine” analysis based on data presented by Johnson[Joh91]. The histogram on the left shows
the fraction of cycles in which no instruction could issue, only one instruction, and so on.
Johnson’s ideal machine retains realistic function unit latencies, including cache misses, which
accounts for the zero-issue cycles. (Other studies ignore cache effects or ignore pipeline laten-
cies, and thereby obtain more optimistic estimates.) We see that even with infinite machine
resources, perfect branch prediction, and ideal renaming, 90% of the time no more than four
instructions issue in a cycle. Based on this distribution, we can estimate the speedup obtained at
various issue widths, as shown in the right portion of the figure. Recent work[LaWi92,Soh94]
provides empirical evidence that to obtain significantly larger amounts of parallelism, multiple
threads of control must be pursued simultaneously. Barring some unforeseen breakthrough in
instruction level parallelism, the leap to the next level of useful parallelism, multiple concurrent
threads, is increasingly compelling as chips increase in capacity.
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Figure 1-7 Di