
CS302 – Spring 2025 Lec.9.2 -  Slide 1

Some nice picture(s)

CS302

Microservices & RPC

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan 
Copyright 2025



CS302 – Spring 2025 Lec.9.2 -  Slide 2

Where are We?
M T W T F

17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

u Microservices and RPC
u Microservices vs Monoliths
u Communication using RPC

u Exercise session
u Coroutine examples

u Next Tuesday:
u Easter break! 

u Next lecture:
 Example RPC (gRPC)



CS302 – Spring 2025 Lec.9.2 -  Slide 3

Recap: Web Server Functions (Coroutines lecture)

def save_file(req):
...

def get_line():
    ...

def sha(req):
...

def handle_req(req):
...

Saves text to a file



CS302 – Spring 2025 Lec.9.2 -  Slide 4

Recap: Web Server Functions

def save_file(req):
...

def get_line():
    ...

def sha(req):
...

def handle_req(req):
...

Streams a file line by line



CS302 – Spring 2025 Lec.9.2 -  Slide 5

Recap: Web Server Functions

def save_file(req):
...

def get_line():
    ...

def sha(req):
...

def handle_req(req):
...

Calculates and saves a hash



CS302 – Spring 2025 Lec.9.2 -  Slide 6

Recap: Web Server Functions

def save_file(req):
...

def get_line():
    ...

def sha(req):
...

def handle_req(req):
...

Depending on the request type, calls 
the corresponding function 
(save_file/get_line/sha)
to execute



CS302 – Spring 2025 Lec.9.2 -  Slide 7

Recap: Web Server

Server

Memory

C0

$

NIC

C1

$

C2

$

C3

$

HDD

T0 T1 T2 T3T4

u Web server spawns a new thread to handle each request
o Threads run both in parallel and concurrently (if threads > cores)

Memory

C0

$

NIC

C1

$

C2

$

C3

$

HDD

ServerShown by 



CS302 – Spring 2025 Lec.9.2 -  Slide 8

Traditional Approach To Writing Server Software

Notice all functions are in a single 
program!

This is the traditional way of writing 
software we have looked at so far

def save_file(req):
...

def get_line():
    ...

def sha(req):
...

def handle_req(req):
...



CS302 – Spring 2025 Lec.9.2 -  Slide 9

Monoliths: Traditional Server Software

u A monolith is a single application that contains all the functionality
o All functions are part of the same program and run in the same address space
o E.g., The web server serving user requests and running on four cores

Memory

C0
$

NICHDD

Server
C1
$

C2
$

C3
$

def save_file(req):
...

def get_line():
...

def sha(req):
...

def handle_req(req):
...



CS302 – Spring 2025 Lec.9.2 -  Slide 10

Monoliths Do Not Scale Well

u Real world monoliths are complex and contain several functions
o Suffer from synchronization overheads among threads

u Overheads limit monoliths from fully utilizing all the cores
o Synchronization limits performance beyond a few cores

Memory NICHDD

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

C6
$

C7
$

C8
$

C9
$

C10
$

C11
$

Server

C12
$

C13
$

C14
$

C15
$



CS302 – Spring 2025 Lec.9.2 -  Slide 11

Example: A Real-World Server

u Memcached: one server keeps objects in memory for other servers
o Each server runs on a separate machine
o A few microseconds to fetch and object from another machine

T3

1
2
4
8

16
32
64

1 2 4 8 16 32 64

Actual
Speedup
Ideal
Speedup

# cores

Sp
ee

du
p



CS302 – Spring 2025 Lec.9.2 -  Slide 12

Not All Monoliths Scale Well

u Scaling the server beyond 8 cores does not utilize the cores effectively
o Only 26x performance gain when run on 64 cores!

1
2
4
8

16
32
64

1 2 4 8 16 32 64

Actual
Speedup
Ideal
Speedup

# cores

Sp
ee

du
p

Server stops 
scaling after 8 
cores



CS302 – Spring 2025 Lec.9.2 -  Slide 13

Running Multiple Instances of a Monolith

u A solution to use cores effectively is to run multiple monolith copies
o Each instance (copy) behaves as an independent server
o Threads among different instances do not synchronize with each other

u Each instance runs on a smaller number of cores and scales well
o Both server 1 and server 2 can utilize eight cores effectively

NICHDD

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

C6
$

C7
$

C8
$

C9
$

C10
$

C11
$

Server 1

C12
$

C13
$

C14
$

C15
$

Server 2

Memory



CS302 – Spring 2025 Lec.9.2 -  Slide 14

u Memory capacity
Each monolith can take a big chunk of machine’s memory

u Memory bandwidth
Analytic workloads (Spark) scale well but use a lot of memory bandwidth

u NIC bandwidth
Performance may be limited based on availability of NICs

u Accelerators
Only a few GPUs per machine needing only a few CPU cores to coordinate

But, Monoliths Use Other Resources Too



CS302 – Spring 2025 Lec.9.2 -  Slide 15

Example: Memory Capacity

u Each instance of a server can consume a large amount of memory
o E.g., 60% of the system’s total memory capacity is needed per instance

NICHDDMemory

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

C6
$

C7
$

C8
$

C9
$

C10
$

C11
$

Server 1

C12
$

C13
$

C14
$

C15
$



CS302 – Spring 2025 Lec.9.2 -  Slide 16

Example: Memory Capacity

u Each instance of a server can consume a large amount of memory
o E.g., 60% of the system’s total memory capacity is needed per instance

u Can not run many instances together on the same machine
o System does not have enough memory to run the second instance

NICHDDMemory ?

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

C6
$

C7
$

C8
$

C9
$

C10
$

C11
$

Server 1

C12
$

C13
$

C14
$

C15
$

Server 2



CS302 – Spring 2025 Lec.9.2 -  Slide 17

Monoliths Do Not Support Function Isolation

u Consider the case where one function is provided by a third party
o Functions may come from various service providers
o We may not even have direct access to the function
o A monolith cannot run these four functions together

int sha(Request req):
   ...

def save_file(req):
...

def get_line():
    ...

def handle_req(req):
    ...

Our server



CS302 – Spring 2025 Lec.9.2 -  Slide 18

Functions Can Be Grouped

u Functions can be grouped based on the type of task they perform
u In our web server, a request can perform two distinct types of tasks

o Save and serve files (save_file and get_line)
o Perform hash computations (sha)

sha

save_file

get_linehandle_reqRequest

Monolith



CS302 – Spring 2025 Lec.9.2 -  Slide 19

Idea: Split The Monolith

u These two tasks are independent and serve different needs
1. Do these functions have to be in the same program?
2. Do these functions have to execute on the same machine?



CS302 – Spring 2025 Lec.9.2 -  Slide 20

Idea: Split The Monolith

u These two tasks are independent and serve different needs
1. Do these functions have to be in the same program?
2. Do these functions have to execute on the same machine?

u No! These functions can be separated logically and physically



CS302 – Spring 2025 Lec.9.2 -  Slide 21

Microservices

u Groups of functions can be treated as separate “services”
o Separated based on functionality and needs
o Services have separate codebases, address spaces etc.

u This is called a Microservice architecture
o A set of small (micro), independent and self-contained services

sha
get_line

save_file Hash serviceFile service

handle_req
handle_req



CS302 – Spring 2025 Lec.9.2 -  Slide 22

Microservices’ Definition of Service

u A service executes a single task type in isolation
o Each service has its own address to receive requests

u Each service has its own copy of handle_request
o Processes incoming requests and chooses which function to execute

get_linesave_file

File service

handle_req

Request

sha

Hash service

Request

handle_req



CS302 – Spring 2025 Lec.9.2 -  Slide 23

Microservices vs. Monoliths

Monolith Microservices
One big program containing 

all functions
Functions are grouped into small 

programs (services)

def save_file(req):
...

def get_line():
    ...

def handle_req(req):
    ...

server.py

file.py (File service)

def save_file(req):
...

def get_line():
    ...

def sha(req):
...

def handle_req(req):
...

def sha(req):
...

def handle_req(req):
...

hash.py
(Hash service)



CS302 – Spring 2025 Lec.9.2 -  Slide 24

Microservices vs. Monoliths

Monolith Microservices
One big program containing all 

functions
Functions are grouped into small 

programs (services)
All functions run in the same 

address space
Each service runs in its own 

address space



CS302 – Spring 2025 Lec.9.2 -  Slide 25

Microservices vs. Monoliths

Monolith Microservices
One big program containing all 

functions
Functions are grouped into small 

programs (services)
All functions run in the same 

address space
Each service runs in its own 

address space
Functions call other functions and 

use shared memory to 
communicate

Functions in various services can 
also “call” each other and 

communicate using messages
(To be covered in detail later!)



CS302 – Spring 2025 Lec.9.2 -  Slide 26

Microservices Scale Better Than Monoliths

u Services have various machine requirements
o file.py uses more memory
o hash.py uses more compute

u Services are not used uniformly
o Some services are more popular than others
o These services handle more requests than others

u Each service can be scaled independently of the other services!
o Popular services can be scaled without scaling the other services
o Resources can be better allocated depending each service’s needs



CS302 – Spring 2025 Lec.9.2 -  Slide 27

Microservices Scale Better Than Monoliths

u Previously when using a monolith, one instance of a server used:
o Eight cores and 60% of the system’s total memory

NICHDDMemory

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

C6
$

C7
$

C8
$

C9
$

C10
$

C11
$

Server 1

C12
$

C13
$

C14
$

C15
$



CS302 – Spring 2025 Lec.9.2 -  Slide 28

Microservices Scale Better Than Monoliths (Slide 28)

u After splitting the monolith into two services, assume one instance of:
o File service runs on six cores and uses 50% of the system’s total memory
o Hash service runs on two cores and uses 10% of the system’s total memory

NICHDD

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

C6
$

C7
$

C8
$

C9
$

C10
$

C11
$

File service

C12
$

C13
$

C14
$

C15
$

Hash 
service

Memory



CS302 – Spring 2025 Lec.9.2 -  Slide 29

Microservices Scale Better Than Monoliths (Slide 29)

u What if 2x more requests/second started arriving for Hash?
u Hash service can be scaled independently!

o Another instance of hash service gets created
o Only two more cores and 10% more memory needs to be allocated
o The instance of file service remains unchanged

NICHDD

C8
$

C9
$

C10
$

C11
$

C12
$

C13
$

C14
$

C15
$

Hash 
service

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

C6
$

C7
$

File service Hash 
service

Memory



CS302 – Spring 2025 Lec.9.2 -  Slide 30

Microservices Scale Better Than Monoliths (Slide 30)

u This was not possible when using a monolith
o A new instance of the entire server must have been created

u Microservices offer flexibility on how to scale services as needed!
o Five instances of hash service can be created to serve requests
o Completely utilizes all cores and memory

NICHDD

C8
$

C9
$

Hash 
service

C0
$

C1
$

C2
$

C3
$

C4
$

C5
$

File service

C6
$

C7
$

Hash 
service

C12
$

C13
$

Hash 
service

C10
$

C11
$

Hash 
service

C14
$

C15
$

Hash 
service

Memory



CS302 – Spring 2025 Lec.9.2 -  Slide 31

Microservices Can Run On Different Machines

u Diverse requirements for file service and hash service
o File service needs a machine with more memory and cheap storage
o Hash service needs a machine with less memory and no storage

u Services may run independently
o Each service can run on a machine that matches its requirements

get_linesave_file

File service

handle_req

Request

sha

Hash service

Request

handle_req



CS302 – Spring 2025 Lec.9.2 -  Slide 32

Microservices Can Run On Different Machines

u Cloud providers offer servers with a variety of resources
o Cheaper plans can be bought depending on the service!

Example Amazon AWS offerings



CS302 – Spring 2025 Lec.9.2 -  Slide 33

Microservices Allow Isolation Among Services

u Each service runs in its own address space
o A service cannot directly read or write another service’s private address space
o Allows isolation across various services



CS302 – Spring 2025 Lec.9.2 -  Slide 34

Microservices Allow Flexibility for Developers

u Services can be written independently of each other
o Choose the best programming language according to a service’s needs
o E.g., Python for ML services, C/C++ for data services, JS for web services., etc.

def save_file(req):
...

def get_line():
    ...

def handle_req(req):
...

file.py (File service)

char * sha(Request req):
...

void handle_req(Request req):
...

hash.cpp (Hash service)



CS302 – Spring 2025 Lec.9.2 -  Slide 35

Microservices Allow Fault Tolerance

u One service failing does not lead to the entire workload failing
o Services are isolated with address spaces
o In contrast, a single error in a monolith crashes the entire monolith

get_linesave_file

File service

handle_req

Request

sha

Hash service

Request

handle_req



CS302 – Spring 2025 Lec.9.2 -  Slide 36

Microservices Allow Reusability

u Services are isolated but can be accessed from any other service
o Enables reusability by other users and applications

u E.g., consider we want to add a hash file function to file service
o Reads a line from a file and computes the hash of the line
o It should be able to reuse the functions from the hash service

def hash_file():
    content = ‘\n’.join([line for line in get_line])
    hash = sha(content)
    return hash



CS302 – Spring 2025 Lec.9.2 -  Slide 37

Connecting Services

get_line

save_file

File service

handle_req

hash_file

sha

Hash service

handle_req

u Services need to be able to interact with each other
o Functions in different services should be able to call each other
o Communication across different services can happen through messages



CS302 – Spring 2025 Lec.9.2 -  Slide 38

Interaction Among Services

u Communication becomes critical as the number of services increases
o E.g., consider adding authentication, payment and data logging services

u The connectivity graph is also important in scalability
o O(N2) connections possible where N is the number of services
o Services are also from diverse programming languages

Auth 
service

Hash 
service

File 
service

Payment 
service

Logging 
service



CS302 – Spring 2025 Lec.9.2 -  Slide 39

Example: Real-World Connectivity Graphs

[source: DeathStarBench, ASPLOS’19]



CS302 – Spring 2025 Lec.9.2 -  Slide 40

Need a Standard Communication Protocol

u Must be fast (faster than the runtime of each service)
u Must be fault-tolerant
u Able to find each service (in the network)
u Able to pass input to the service and receive its output

Auth 
service

Hash 
service

File 
service

Payment 
service

Logging 
service



CS302 – Spring 2025 Lec.9.2 -  Slide 41

RPC: A Remote Procedure Call

u Microservices communicate with function calls
o Local calls: Calls by a function to another function within the same service

§This is our conventional function call (e.g., in Python, C)
§We call this local procedure call (LPC)

o Remote calls: Calls by a function to another function in a different service
§This is new and used for microservices
§A remote procedure call (RPC)

u Procedure (Function) calls can be abstracted so both local and remote 
calls look the same for our program



CS302 – Spring 2025 Lec.9.2 -  Slide 42

RPC : A Remote Procedure Call

u When a program calls a procedure to execute in another address 
space as if it was a local procedure, it is called a remote procedure call 
or an RPC

u We will use RPC to run our two services separately
o Our File service in Python
o Our Hash service in C++

§Better suited for real-time and compute heavy applications



CS302 – Spring 2025 Lec.9.2 -  Slide 43

RPC : A Remote Procedure Call

def sha(req):
hash_arr[req.id] = calc_hash(req.payload)
return

def hash_file(req):
... // get‘s file and prepares it for sha
sha(req)

u A reminder of our file service using the hash service using LPC
u What steps are involved in a LPC and how are they changed?



CS302 – Spring 2025 Lec.9.2 -  Slide 44

RPC: Function Definition

u First step: Function definition
u This is where we define the function signatures as interfaces
u Then we implement the functions

Set up input Run 
function

Prepare 
return

Receive return 
and continue

Function 
definition



CS302 – Spring 2025 Lec.9.2 -  Slide 45

RPC: Function Definition

def sha(req) -> str:
hash_arr[req.id] = calc_hash(req.payload)
return

def hash_file():
    content = ‘\n’.join([line for line in get_line])
    hash = sha(content)
    return hash

u hash_file depends on sha, so we need to define the sha function 
first



CS302 – Spring 2025 Lec.9.2 -  Slide 46

RPC: Function Definition

def sha(req) -> str:
...

u What is involved in defining a function?
o Function name
o Input
o Output



CS302 – Spring 2025 Lec.9.2 -  Slide 47

RPC: Function Definition

u In LPC (a regular function call) we just define the function in code
o Can be just the function interface or header

u Importing and referencing the function by other parts of the code is 
handled by the compiler/interpreter

u How can we do this if the two functions are in two different address 
spaces and may even be in two different languages?



CS302 – Spring 2025 Lec.9.2 -  Slide 48

Interface Definition Language

service hash{
...

}

u Use an interface definition language (IDL) to describe functions
o This language will not run any code
o Common format to describe functions across languages

u First define each of our services



CS302 – Spring 2025 Lec.9.2 -  Slide 49

RPC: Function Definition

service hash{
rpc sha(Request) returns (StringValue) {}

}

u Define the functions of one microservice exposed to other services
o This is just an interface and has no implementation



CS302 – Spring 2025 Lec.9.2 -  Slide 50

RPC: Function Definition

u RPC library will take in the IDL code as input
o Example: Protobuf (used by Google), Thrift (used by Facebook)

u RPC library has implementation for various languages like C, 
Python, etc.

u RPC library will generate code in the language of all our services 
from one interface definition code



CS302 – Spring 2025 Lec.9.2 -  Slide 51

RPC: Server Stub

// generated by rpc library in C for the hash service
class HashService::service{

// Abstract function, later implemented by developer
virtual char * sha(Request req:)= 0;

}

u The code generated for the service that implements and serves a 
function is called the server stub



CS302 – Spring 2025 Lec.9.2 -  Slide 52

RPC: Server Stub

// generated by rpc library in C for the hash service
class HashService::service{

// Abstract function, later implemented by developer
virtual char * sha(Request req:)= 0;

}

u RPC leaves the function as an abstract function
u The developer implements it



CS302 – Spring 2025 Lec.9.2 -  Slide 53

RPC: Client Stub

# generated by rpc library in Python for the file service
class HashService:

def sha(req: Request)-> String:
# RPC sending the request to hash service
resp = sendReq(req)
...

u The code generated for the services that use a function is called the 
client stub



CS302 – Spring 2025 Lec.9.2 -  Slide 54

RPC: Function Definition

# generated by rpc library in Python for the file service
class HashService:

def sha(req: Request)-> String:
# RPC sending the request to hash service
resp = sendReq(req)
...

u Client stub is a concreate code
u RPC implements sending the request to the service that serves it



CS302 – Spring 2025 Lec.9.2 -  Slide 55

Summary

u Microservices allow
o Isolation of services
o Scalability of services based on their needs
o Fault isolation
o Heterogenous tech stack 
o Reusability 

u Communication becomes complex with more services
u RPC abstracts communication among services as normal function calls

o To be continued in the next lecture!


