CS302

BY SCOTT ADAMS

Microservices & RPC

I WANT TO TAKE
A CLASS THAT
TEACHES ME HOW
TO COMMUNICATE |
BETTER.

|| I DON'T UNDERSTAND
| WHAT YOU'RE ASKING
ME.

CAN I TAKE A @
CLASS TO TMPROVE Y&“@Z&‘;{le
MY COMMUNICATION || oy
SKILLS? ~

b
k] |
|
H
3
E
#
Ez
3
3
4
g
°

DilbertCartoonist@gmail.com

[GAAAI THERE'S | | _I™MGLAD T TOOK
NO WAY TO GET THAT MANAGEMENT

CLASS ON HOW TO
T"‘ERF;RO"‘ HERE! }§ NOT LISTEN. IT

I AM ASKING I SEE YOUR LIPS

Spring 2025 S |
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

| ALREADY PAID OFF.)

worve.dilbert.com

41016

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 - Spring 2025 Lec.9.2 - Slide 1

Where are We?

CS302 - Spring 2025

19-Feb
26-Feb
5-Mar
12-Mar
19-Mar
26-Mar
2-Apr
9-Apr

\
22-Apr [23-Ap/|24-Apr |
7-May
14-May
21-May
28-May |29-May

¢ Microservices and RPC
¢ Microservices vs Monoliths
¢ Communication using RPC

¢ Exercise session
¢ Coroutine examples

¢ Next Tuesday:
¢ Easter break!

¢ Next lecture:
® Example RPC (gRPC)

Lec.9.2 - Slide 2

Recap: Web Server Functions (Coroutines lecture)

def save file(req): > Saves text to a file

def get line():

def sha(req):

def handle req(req):

CS302 - Spring 2025 Lec.9.2 - Slide 3

Recap: Web Server Functions

def save file(req):

def get line():

> Streams a file line by line

def sha(req):

def handle req(req):

CS302 - Spring 2025 Lec.9.2 - Slide 4

Recap: Web Server Functions

def save file(req):

def get line():

def sha(req): > Calculates and saves a hash

def handle req(req):

CS302 - Spring 2025 Lec.9.2 - Slide 5

Recap: Web Server Functions
def save file(req):
def get line():

def sha(req):
Depending on the request type, calls

def handle reqg(req): _the corresponding function
(save file/get line/sha)

to execute

CS302 - Spring 2025 Lec.9.2 - Slide 6

Recap: Web Server

¢ Web server spawns a new thread to handle each request
o Threads run both in parallel and concurrently (if threads > cores)

Server
Server

VAR B O R 2
=n) n) En S

J_é_¢_¢j_:_ ‘ Memory \ HDD NIC
‘ Memory \ HDD NIC

CS302 - Spring 2025 Lec.9.2 - Slide 7

Traditional Approach To Writing Server Software

def save file(req):

def get line():

def sha(req):

def handle req(req):

CS302 - Spring 2025

Notice all functions are in a single
program!

This is the traditional way of writing
software we have looked at so far

Lec.9.2 - Slide 8

Monoliths: Traditional Server Software

¢ A monolith is a single application that contains all the functionality
o All functions are part of the same program and run in the same address space
o E.g., The web server serving user requests and running on four cores

//”def save file(req):

C, C, C, Cs def get line():
\
\ def sha(req):

\ def handle reqg(req):

CS302 - Spring 2025 Lec.9.2 - Slide 9

Monoliths Do Not Scale Well

¢ Real world monoliths are complex and contain several functions
o Suffer from synchronization overheads among threads

¢ Overheads limit monoliths from fully utilizing all the cores
o Synchronization limits performance beyond a few cores

Server
Co Cy C, Cs Cy Cs Ce Cs Cs Cy C1o Cy Ciz Cis Cis Cis
LS NS MU S s N s s s It s JC s s s s s s s s |

CS302 - Spring 2025

Lec.9.2 - Slide 10

Example: A Real-World Server

¢ Memcached: one server keeps objects in memory for other servers
o Each server runs on a separate machine
o A few microseconds to fetch and object from another machine

t 64
25 —~Actual

a Speedup
3|16 ~Ideal
5 8 Speedup
o
7p 4

2

1

1 2 4 8 16 32 64

CS302 - Spring 2025 > Lec.9.2 - Slide 11

cores

Not All Monoliths Scale Well

t 64

—~Actual
o 32 Speedup
3| 16 ~|deal
% 8 Speedup
o | 4
2 Server stops
1 — scaling after 8
1 2 4 8 16 32 64 cores

>

cores

¢ Scaling the server beyond 8 cores does not utilize the cores effectively
o Only 26x performance gain when run on 64 cores!

CS302 - Spring 2025 Lec.9.2 - Slide 12

Running Multiple Instances of a Monolith

¢ A solution to use cores effectively is to run multiple monolith copies
o Each instance (copy) behaves as an independent server
o Threads among different instances do not synchronize with each other

& Each instance runs on a smaller number of cores and scales well
o Both server 1 and server 2 can utilize eight cores effectively

Server 1 Server 2
Co Ci C, Cs Cy Cs Ce Cs Cs Cy C1o Cy Ciz Cis Cis Cis
LS NS U JIE s N s s s e s s s mes s s s s o s |

CS302 - Spring 2025

Lec.9.2 - Slide 13

But, Monoliths Use Other Resources Too

¢ Memory capacity
@® Each monolith can take a big chunk of machine’s memory

¢ Memory bandwidth
® Analytic workloads (Spark) scale well but use a lot of memory bandwidth

¢ NIC bandwidth

@ Performance may be limited based on availability of NICs

¢ Accelerators
® Only a few GPUs per machine needing only a few CPU cores to coordinate

CS302 - Spring 2025 Lec.9.2 - Slide 14

Example: Memory Capacity

¢ Each instance of a server can consume a large amount of memory
o E.g., 60% of the system’s total memory capacity is needed per instance

Server 1
Co Ci C, Cs Cy Cs Ce C; Cs Cq C1o Cy Ciz Cis Cia Cis
LS NS U JIE s N s s st s s s s s s s s s |

CS302 - Spring 2025

Lec.9.2 - Slide 15

Example: Memory Capacity

¢ Each instance of a server can consume a large amount of memory
o E.g., 60% of the system’s total memory capacity is needed per instance

¢ Can not run many instances together on the same machine
o System does not have enough memory to run the second instance

Server 1 Server 2

Co Ci C, Cs Cy Cs Ce C; Cs Cq C1o Cy Ciz Cis Cis Cis

| |
CS302 - Spring 2025 {]/ Lec.9.2 - Slide 16

Monoliths Do Not Support Function Isolation

¢ Consider the case where one function is provided by a third party
o Functions may come from various service providers

o We may not even have direct access to the function
o A monolith cannot run these four functions together

CS302 - Spring 2025

//;ef save file(req):
def get line():

def handle req(req):

\ Our server

~

int sha (Request req):

RSA

/

\ SECURITY?®

v

Lec.9.2 - Slide 17

Functions Can Be Grouped

¢ Functions can be grouped based on the type of task they perform

¢ In our web server, a request can perform two distinct types of tasks
o Save and serve files (save_file and get line)
o Perform hash computations (sha)

[sha ?
Request —*l handle req get line ‘
save_fileb

\I\/Ionolith

CS302 - Spring 2025 Lec.9.2 - Slide 18

ldea: Split The Monolith

¢ These two tasks are independent and serve different needs
1. Do these functions have to be in the same program?
2. Do these functions have to execute on the same machine?

CS302 - Spring 2025 Lec.9.2 - Slide 19

ldea: Split The Monolith

¢ These two tasks are independent and serve different needs
1. Do these functions have to be in the same program?
2. Do these functions have to execute on the same machine?

¢ No! These functions can be separated logically and physically

CS302 - Spring 2025 Lec.9.2 - Slide 20

Microservices

¢ Groups of functions can be treated as separate “services”
o Separated based on functionality and needs

o Services have separate codebases, address spaces etc.

¢ This is called a Microservice architecture
o A set of small (micro), independent and self-contained services

,

get line ‘T

|

save_file ‘

‘ handle_rquL
\<

CS302 - Spring 2025

File service

-
‘ sha

|

‘ handle req ‘
\& — -

Hash service

Lec.9.2 - Slide 21

Microservices’ Definition of Service

¢ A service executes a single task type in isolation
o Each service has its own address to receive requests

¢ Each service has its own copy of handle request
o Processes incoming requests and chooses which function to execute

Request Request
| |
¥ ¥
g ‘ handle req ‘ A Thandle_req?
/\ I
‘ save file ‘ ‘ get line ‘ ‘ sha ‘
2 ~/ \C ~/

CS302 - Spring 2025 File service Hash service

Lec.9.2 - Slide 22

Microservices vs. Monoliths

Monolith Microservices
One big program containing Functions are grouped into small
all functions programs (services)

def save file(req): def save file(req):

def sha(req):

def get line() : .
?. . tnel) server.py def get line():

def handle req(req):

detisha(req): def handle req(req):

hash.py
def handle req(req): file_py (File service) (Hash service)

CS302 - Spring 2025 Lec.9.2 - Slide 23

Microservices vs. Monoliths

Monolith

Microservices

One big program containing all
functions

Functions are grouped into small
programs (services)

All functions run in the same

address space

Each service runs in its own
address space

CS302 - Spring 202!

N

Shared portion
of address space

s

Common physical
addresses

/

Private portion
of address space

Po private

Pn private

Load ’
77

P2 | / addresses

Common physical

N e
Y =
Store ol
P2 private
Shared portion
of address space| | |
' - ' P, private
Private portion L | |
of address space
[P —\ P private Lec.9.2 - Slide 24

Microservices vs. Monoliths

Monolith Microservices
One big program containing all Functions are grouped into small
functions programs (services)

All functions run in the same
address space

Each service runs in its own
address space

Functions call other functions and
use shared memory to
communicate

Functions in various services can
also “call” each other and
communicate using messages
(To be covered in detail later!)

CS302 - Spring 2025

Lec.9.2 - Slide 25

Microservices Scale Better Than Monoliths

¢ Services have various machine requirements
o file.py USes more memory
o hash.py uses more compute

¢ Services are not used uniformly
o Some services are more popular than others
o These services handle more requests than others

¢ Each service can be scaled independently of the other services!

o Popular services can be scaled without scaling the other services
o Resources can be better allocated depending each service’s needs

CS302 - Spring 2025 Lec.9.2 - Slide 26

Microservices Scale Better Than Monoliths

¢ Previously when using a monolith, one instance of a server used:
o Eight cores and 60% of the system’s total memory

Server 1
Co C; C, Cs Cy Cs Ce C; Cs Co Cio Ciy Cio Cis Cia Cis
LS ES NMES MU s N s It s s e s s it s s s s s s s |

CS302 - Spring 2025

Lec.9.2 - Slide 27

Microservices Scale Better Than Monoliths (Slide 28)

¢ After splitting the monolith into two services, assume one instance of:
o File service runs on six cores and uses 50% of the system’s total memory
o Hash service runs on two cores and uses 10% of the system’s total memory

CS302 - Spring 2025

File service Hagh
service
Co Cy C, Cs Cy Cs Ce Cs Ce Cg C1o Cy Ciz Cis Cia Cis
A A A A A A
I HDD NIC

Lec.9.2 - Slide 28

Microservices Scale Better Than Monoliths (Slide 29)

¢ What if 2x more requests/second started arriving for Hash?

¢ Hash service can be scaled independently!
o Another instance of hash service gets created
o Only two more cores and 10% more memory needs to be allocated
o The instance of file service remains unchanged

CS302 - Spring 2025

File service Has_h Has_h
service service
Co Cy C, Cs Cy Cs Ce Cs Ce Cg Cio Cy Ciz Cis Cis Cis
““‘P“““““““““““““
A A A A A A A A A
I HDD NIC

Lec.9.2 - Slide 29

Microservices Scale Better Than Monoliths (Slide 30)

¢ This was not possible when using a monolith
o A new instance of the entire server must have been created

¢ Microservices offer flexibility on how to scale services as needed!

o Five instances of hash service can be created to serve requests
o Completely utilizes all cores and memory

CS302 - Spring 2025

File service Hash Hash Hash Hash Hash
service service service service service
Co C; C, Cs Cq Cs Ce C; Cs Co C1o Cyy Ciy Ci3 Cis Cis
LS ML S U JIE s MU s s Jut s N s TR s MU s JmC s It os e s s Jmr s M os |
A A A A A A A A A A A A A A A A
v v \ 4 v v \ 4 v
I HDD NIC

Lec.9.2 - Slide 30

Microservices Can Run On Different Machines

¢ Diverse requirements for file service and hash service
o File service needs a machine with more memory and cheap storage
o Hash service needs a machine with less memory and no storage

Request Request
r ; N - ; N
| handle req | | handle req |
/\ !
isave_file | | get line L J sha L
File service Hash service

¢ Services may run independently
o Each service can run on a machine that matches its requirements

CS302 - Spring 2025 Lec.9.2 - Slide 31

Microservices Can Run On Different Machines

¢ Cloud providers offer servers with a variety of resources
o Cheaper plans can be bought depending on the service!

Instance On-Demand hourly Network

A v vCPU V Memory V Storage V v
name rate performance
t4g.nano $0.0042 2 0.5 GIiB EBS Only Up to 5 Gigabit
t4g.micro $0.0084 2 1 GiB EBS Only Up to 5 Gigabit
t4g.small $0.0168 2 2 GiB EBS Only Up to 5 Gigabit

Example Amazon AWS offerings

CS302 - Spring 2025 Lec.9.2 - Slide 32

Microservices Allow Isolation Among Services

¢ Each service runs in its own address space
o A service cannot directly read or write another service’s private address space
o Allows isolation across various services

CS302 - Spring 2025

Load
P2 | ////////
Po |
A
Store
Shared portion

of address space

Private portion ||
of address space

et
—

Pn private

s

Common physical
addresses

P> private

P; private

Po private

Lec.9.2 - Slide 33

Microservices Allow Flexibility for Developers

¢ Services can be written independently of each other
o Choose the best programming language according to a service’s needs
o E.g., Python for ML services, C/C++ for data services, JS for web services., etc.

def save file(req):
char * sha (Request req):

def get line():
void handle req(Request req):

def handle_req(req): hash.cpp (Hash service)

file.py (File service)

CS302 - Spring 2025 Lec.9.2 - Slide 34

Microservices Allow Fault Tolerance

¢ One service failing does not lead to the entire workload failing
o Services are isolated with address spaces
o In contrast, a single error in a monolith crashes the entire monolith

CS302 - Spring 2025

Request
|
4 ¥
‘ handle req ‘
‘ save_file‘ ‘ get line
2

File service

Hash service

Lec.9.2 - Slide 35

Microservices Allow Reusability

¢ Services are isolated but can be accessed from any other service
o Enables reusability by other users and applications

¢ E.g., consider we want to add a hash file function to file service
o Reads a line from a file and computes the hash of the line
o It should be able to reuse the functions from the hash service

def hash file():

content = '‘\n’.join([line for line in get line])
hash = sha(content)
return hash

CS302 - Spring 2025 Lec.9.2 - Slide 36

Connecting Services

¢ Services need to be able to interact with each other
o Functions in different services should be able to call each other

o Communication across different services can happen through messages

,l’ get line W\

CS302 - Spring 2025

‘ save_file

| hash_file

‘ <

‘\handle_req)

File service

/-
‘ sha

|

‘ handle req
\&

L

Hash service

Lec.9.2 - Slide 37

Interaction Among Services

& Communication becomes critical as the number of services increases

o E.g., consider adding authentication, payment and data logging services

¢ The connectivity graph is also important in scalability
o O(N?) connections possible where N is the number of services
o Services are also from diverse programming languages

CS302 - Spring 2025

Auth)

service

1

Hash
service
A

N

:[Logging
service

]

File
service

1

Payment
service

”

Lec.9.2 - Slide 38

Example: Real-World Connectivity Graphs

Social Network

Ne’rfllx‘ Twitter

[source: DeathStarBench, ASPLOS'19]

CS302 - Spring 2025 Lec.9.2 - Slide 39

Need a Standard Communication Protocol

¢ Must be fast (faster than the runtime of each service)

¢ Must be fault-tolerant
¢ Able to find each service (in the network)
¢ Able to pass input to the service and receive its output

Auth) { Hash
service service
1’[Logging]
service
l File l {Payment
service service

<

CS302 - Spring 2025

Lec.9.2 - Slide 40

RPC: A Remote Procedure Call

¢ Microservices communicate with function calls
o Local calls: Calls by a function to another function within the same service
" This is our conventional function call (e.g., in Python, C)
" We call this local procedure call (LPC)
o Remote calls: Calls by a function to another function in a different service

" This is new and used for microservices
" A remote procedure call (RPC)

¢ Procedure (Function) calls can be abstracted so both local and remote
calls look the same for our program

CS302 - Spring 2025 Lec.9.2 - Slide 41

RPC : A Remote Procedure Call

¢ When a program calls a procedure to execute in another address
space as if it was a local procedure, it is called a remote procedure call

or an RPC

¢ We will use RPC to run our two services separately
o Our File service in Python

o Our Hash service in C++
" Better suited for real-time and compute heavy applications

CS302 - Spring 2025 Lec.9.2 - Slide 42

RPC : A Remote Procedure Call

¢ A reminder of our file service using the hash service using LPC
¢ What steps are involved in a LPC and how are they changed?

def sha(req):
hash arr[req.id] = calc hash(req.payload)
return

def hash file(req):
// get's file and prepares it for sha
sha (req)

CS302 - Spring 2025

Lec.9.2 - Slide 43

RPC: Function Definition

¢ First step: Function definition

¢ This is where we define the function signatures as interfaces
¢ Then we implement the functions

Function . Run Prepare Receive return
... 1 Setup input |— —
definition

function return and continue

CS302 - Spring 2025 Lec.9.2 - Slide 44

RPC: Function Definition

¢ hash file depends on sha, so we need to define the sha function
first

def sha(req) -> str:
hash arr[req.id] = calc hash(req.payload)
return

def hash file():
content = ‘\n’ .join([line for line in get line])
hash = sha (content)
return hash

CS302 - Spring 2025 Lec.9.2 - Slide 45

RPC: Function Definition

¢ What is involved in defining a function?
o Function name
o Input
o Output

def sha(req) -> str:

CS302 - Spring 2025 Lec.9.2 - Slide 46

RPC: Function Definition

¢ In LPC (a regular function call) we just define the function in code
o Can be just the function interface or header

¢ Importing and referencing the function by other parts of the code is
handled by the compiler/interpreter

¢ How can we do this if the two functions are in two different address
spaces and may even be in two different languages?

CS302 - Spring 2025 Lec.9.2 - Slide 47

Interface Definition Language

¢ Use an interface definition language (IDL) to describe functions
o This language will not run any code
o Common format to describe functions across languages

¢ First define each of our services

service hash{

}

CS302 - Spring 2025 Lec.9.2 - Slide 48

RPC: Function Definition

¢ Define the functions of one microservice exposed to other services
o This is just an interface and has no implementation

service hash({
rpc sha (Request) returns (StringValue) ({}

}

CS302 - Spring 2025 Lec.9.2 - Slide 49

RPC: Function Definition

¢ RPC library will take in the IDL code as input
o Example: Protobuf (used by Google), Thrift (used by Facebook)

¢ RPC library has implementation for various languages like C,
Python, etc.

¢ RPC library will generate code in the language of all our services
from one interface definition code

CS302 - Spring 2025 Lec.9.2 - Slide 50

RPC: Server Stub

¢ The code generated for the service that implements and serves a
function is called the server stub

// generated by rpc library in C for the hash service

class HashService: :service({
// Abstract function, later implemented by developer
virtual char * sha(Request req:)= 0;

CS302 - Spring 2025 Lec.9.2 - Slide 51

RPC: Server Stub

¢ RPC leaves the function as an abstract function
¢ The developer implements it

// generated by rpc library in C for the hash service
class HashService: :service({
// Abstract function, later implemented by developer
virtual char * sha(Request req:)= 0;

CS302 - Spring 2025 Lec.9.2 - Slide 52

RPC: Client Stub

¢ The code generated for the services that use a function is called the
client stub

generated by rpc library in Python for the file service
class HashService:
def sha(req: Request)-> String:
RPC sending the request to hash service
resp = sendReq(req)

CS302 - Spring 2025 Lec.9.2 - Slide 53

RPC: Function Definition

¢ Client stub is a concreate code
¢ RPC implements sending the request to the service that serves it

generated by rpc library in Python for the file service
class HashService:
def sha(req: Request)-> String:
RPC sending the request to hash service
resp = sendReq(req)

CS302 - Spring 2025 Lec.9.2 - Slide 54

Summary

¢ Microservices allow
o Isolation of services
o Scalability of services based on their needs
o Fault isolation
o Heterogenous tech stack
o Reusability

¢ Communication becomes complex with more services

¢ RPC abstracts communication among services as normal function calls
o To be continued in the next lecture!

CS302 - Spring 2025 Lec.9.2 - Slide 55

