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Where are We?
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¢ Microservices and RPC
¢ Microservices vs Monoliths
¢ Communication using RPC

¢ Exercise session
¢ Coroutine examples

¢ Next Tuesday:
¢ Easter break!

¢ Next lecture:
® Example RPC (gRPC)
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Recap: Web Server Functions (Coroutines lecture)

def save file(req): > Saves text to a file

def get line():

def sha(req):

def handle req(req):
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Recap: Web Server Functions

def save file(req):

def get line():

> Streams a file line by line

def sha(req):

def handle req(req):
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Recap: Web Server Functions

def save file(req):

def get line():

def sha(req): > Calculates and saves a hash

def handle req(req):
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Recap: Web Server Functions
def save file(req):
def get line():

def sha(req):
Depending on the request type, calls

def handle reqg(req): _the corresponding function
(save file/get line/sha)

to execute
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Recap: Web Server

¢ Web server spawns a new thread to handle each request
o Threads run both in parallel and concurrently (if threads > cores)

Server
Server

VAR B O R 2
=n ) n) En S

J_é_¢_¢j_:_ ‘ Memory \ HDD NIC
‘ Memory \ HDD NIC
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Traditional Approach To Writing Server Software

def save file(req):

def get line():

def sha(req):

def handle req(req):

CS302 - Spring 2025

Notice all functions are in a single
program!

This is the traditional way of writing
software we have looked at so far
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Monoliths: Traditional Server Software

¢ A monolith is a single application that contains all the functionality
o All functions are part of the same program and run in the same address space
o E.g., The web server serving user requests and running on four cores

//”def save file(req):

C, C, C, Cs def get line():
\
\ def sha(req):

\ def handle reqg(req):
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Monoliths Do Not Scale Well

¢ Real world monoliths are complex and contain several functions
o Suffer from synchronization overheads among threads

¢ Overheads limit monoliths from fully utilizing all the cores
o Synchronization limits performance beyond a few cores

Server
Co Cy C, Cs Cy Cs Ce Cs Cs Cy C1o Cy Ciz Cis Cis Cis
LS NS MU S s N s s s It s JC s s s s s s s s |
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Example: A Real-World Server

¢ Memcached: one server keeps objects in memory for other servers
o Each server runs on a separate machine
o A few microseconds to fetch and object from another machine

t 64
25 —~Actual

a Speedup
3|16 ~Ideal
5 8 Speedup
o
7p 4

2

1

1 2 4 8 16 32 64
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Not All Monoliths Scale Well

t 64

—~Actual
o 32 Speedup
3| 16 ~|deal
% 8 Speedup
o | 4
2 Server stops
1 — scaling after 8
1 2 4 8 16 32 64 cores

>

# cores

¢ Scaling the server beyond 8 cores does not utilize the cores effectively
o Only 26x performance gain when run on 64 cores!
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Running Multiple Instances of a Monolith

¢ A solution to use cores effectively is to run multiple monolith copies
o Each instance (copy) behaves as an independent server
o Threads among different instances do not synchronize with each other

& Each instance runs on a smaller number of cores and scales well
o Both server 1 and server 2 can utilize eight cores effectively

Server 1 Server 2
Co Ci C, Cs Cy Cs Ce Cs Cs Cy C1o Cy Ciz Cis Cis Cis
LS NS U JIE s N s s s e s s s mes s s s s o s |
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But, Monoliths Use Other Resources Too

¢ Memory capacity
@® Each monolith can take a big chunk of machine’s memory

¢ Memory bandwidth
® Analytic workloads (Spark) scale well but use a lot of memory bandwidth

¢ NIC bandwidth

@ Performance may be limited based on availability of NICs

¢ Accelerators
® Only a few GPUs per machine needing only a few CPU cores to coordinate
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Example: Memory Capacity

¢ Each instance of a server can consume a large amount of memory
o E.g., 60% of the system’s total memory capacity is needed per instance

Server 1
Co Ci C, Cs Cy Cs Ce C; Cs Cq C1o Cy Ciz Cis Cia Cis
LS NS U JIE s N s s st s s s s s s s s s |
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Example: Memory Capacity

¢ Each instance of a server can consume a large amount of memory
o E.g., 60% of the system’s total memory capacity is needed per instance

¢ Can not run many instances together on the same machine
o System does not have enough memory to run the second instance

Server 1 Server 2

Co Ci C, Cs Cy Cs Ce C; Cs Cq C1o Cy Ciz Cis Cis Cis

| |
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Monoliths Do Not Support Function Isolation

¢ Consider the case where one function is provided by a third party
o Functions may come from various service providers

o We may not even have direct access to the function
o A monolith cannot run these four functions together

CS302 - Spring 2025

//;ef save file(req):
def get line():

def handle req(req):

\ Our server

~

int sha (Request req):

RSA

/

\ SECURITY?®

v
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Functions Can Be Grouped

¢ Functions can be grouped based on the type of task they perform

¢ In our web server, a request can perform two distinct types of tasks
o Save and serve files (save_file and get line)
o Perform hash computations (sha)

[ sha ?
Request —*l handle req get line ‘
save_fileb

\I\/Ionolith
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ldea: Split The Monolith

¢ These two tasks are independent and serve different needs
1. Do these functions have to be in the same program?
2. Do these functions have to execute on the same machine?
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ldea: Split The Monolith

¢ These two tasks are independent and serve different needs
1. Do these functions have to be in the same program?
2. Do these functions have to execute on the same machine?

¢ No! These functions can be separated logically and physically
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Microservices

¢ Groups of functions can be treated as separate “services”
o Separated based on functionality and needs

o Services have separate codebases, address spaces etc.

¢ This is called a Microservice architecture
o A set of small (micro), independent and self-contained services

,

get line ‘T

|

save_file ‘

‘ handle_rquL
\<

CS302 - Spring 2025

File service

-
‘ sha

|

‘ handle req ‘
\& — -

Hash service
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Microservices’ Definition of Service

¢ A service executes a single task type in isolation
o Each service has its own address to receive requests

¢ Each service has its own copy of handle request
o Processes incoming requests and chooses which function to execute

Request Request
| |
¥ ¥
g ‘ handle req ‘ A Thandle_req?
/\ I
‘ save file ‘ ‘ get line ‘ ‘ sha ‘
2 ~/ \C ~/

CS302 - Spring 2025 File service Hash service
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Microservices vs. Monoliths

Monolith Microservices
One big program containing Functions are grouped into small
all functions programs (services)

def save file(req): def save file(req):

def sha(req):

def get line() : .
?. . tnel) server.py def get line():

def handle req(req):

detisha(req): def handle req(req):

hash.py
def handle req(req): file_py (File service) (Hash service)
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Microservices vs. Monoliths

Monolith

Microservices

One big program containing all
functions

Functions are grouped into small
programs (services)

All functions run in the same

address space

Each service runs in its own
address space

CS302 - Spring 202!
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Microservices vs. Monoliths

Monolith Microservices
One big program containing all Functions are grouped into small
functions programs (services)

All functions run in the same
address space

Each service runs in its own
address space

Functions call other functions and
use shared memory to
communicate

Functions in various services can
also “call” each other and
communicate using messages
(To be covered in detail later!)

CS302 - Spring 2025
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Microservices Scale Better Than Monoliths

¢ Services have various machine requirements
o file.py USes more memory
o hash.py uses more compute

¢ Services are not used uniformly
o Some services are more popular than others
o These services handle more requests than others

¢ Each service can be scaled independently of the other services!

o Popular services can be scaled without scaling the other services
o Resources can be better allocated depending each service’s needs
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Microservices Scale Better Than Monoliths

¢ Previously when using a monolith, one instance of a server used:
o Eight cores and 60% of the system’s total memory

Server 1
Co C; C, Cs Cy Cs Ce C; Cs Co Cio Ciy Cio Cis Cia Cis
LS ES NMES MU s N s It s s e s s it s s s s s s s |
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Microservices Scale Better Than Monoliths (Slide 28)

¢ After splitting the monolith into two services, assume one instance of:
o File service runs on six cores and uses 50% of the system’s total memory
o Hash service runs on two cores and uses 10% of the system’s total memory

CS302 - Spring 2025

File service Hagh
service
Co Cy C, Cs Cy Cs Ce Cs Ce Cg C1o Cy Ciz Cis Cia Cis
A A A A A A
I HDD NIC
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Microservices Scale Better Than Monoliths (Slide 29)

¢ What if 2x more requests/second started arriving for Hash?

¢ Hash service can be scaled independently!
o Another instance of hash service gets created
o Only two more cores and 10% more memory needs to be allocated
o The instance of file service remains unchanged

CS302 - Spring 2025

File service Has_h Has_h
service service
Co Cy C, Cs Cy Cs Ce Cs Ce Cg Cio Cy Ciz Cis Cis Cis
““‘P“““““““““““““
A A A A A A A A A
I HDD NIC
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Microservices Scale Better Than Monoliths (Slide 30)

¢ This was not possible when using a monolith
o A new instance of the entire server must have been created

¢ Microservices offer flexibility on how to scale services as needed!

o Five instances of hash service can be created to serve requests
o Completely utilizes all cores and memory

CS302 - Spring 2025

File service Hash Hash Hash Hash Hash
service service service service service
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Microservices Can Run On Different Machines

¢ Diverse requirements for file service and hash service
o File service needs a machine with more memory and cheap storage
o Hash service needs a machine with less memory and no storage

Request Request
r ; N - ; N
| handle req | | handle req |
/\ !
isave_file | | get line L J sha L
File service Hash service

¢ Services may run independently
o Each service can run on a machine that matches its requirements
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Microservices Can Run On Different Machines

¢ Cloud providers offer servers with a variety of resources
o Cheaper plans can be bought depending on the service!

Instance On-Demand hourly Network

A v vCPU V Memory V Storage V v
name rate performance
t4g.nano $0.0042 2 0.5 GIiB EBS Only Up to 5 Gigabit
t4g.micro $0.0084 2 1 GiB EBS Only Up to 5 Gigabit
t4g.small $0.0168 2 2 GiB EBS Only Up to 5 Gigabit

Example Amazon AWS offerings
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Microservices Allow Isolation Among Services

¢ Each service runs in its own address space
o A service cannot directly read or write another service’s private address space
o Allows isolation across various services

CS302 - Spring 2025
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Microservices Allow Flexibility for Developers

¢ Services can be written independently of each other
o Choose the best programming language according to a service’s needs
o E.g., Python for ML services, C/C++ for data services, JS for web services., etc.

def save file(req):
char * sha (Request req):

def get line():
void handle req(Request req):

def handle_req(req): hash.cpp (Hash service)

file.py (File service)
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Microservices Allow Fault Tolerance

¢ One service failing does not lead to the entire workload failing
o Services are isolated with address spaces
o In contrast, a single error in a monolith crashes the entire monolith

CS302 - Spring 2025

Request
|
4 ¥
‘ handle req ‘
‘ save_file‘ ‘ get line
2

File service

Hash service
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Microservices Allow Reusability

¢ Services are isolated but can be accessed from any other service
o Enables reusability by other users and applications

¢ E.g., consider we want to add a hash file function to file service
o Reads a line from a file and computes the hash of the line
o It should be able to reuse the functions from the hash service

def hash file():

content = '‘\n’.join([line for line in get line])
hash = sha(content)
return hash
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Connecting Services

¢ Services need to be able to interact with each other
o Functions in different services should be able to call each other

o Communication across different services can happen through messages

,l’ get line W\

CS302 - Spring 2025

‘ save_file

| hash_file

‘ <

‘\handle_req)

File service

/-
‘ sha

|

‘ handle req
\&

L

Hash service
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Interaction Among Services

& Communication becomes critical as the number of services increases

o E.g., consider adding authentication, payment and data logging services

¢ The connectivity graph is also important in scalability
o O(N?) connections possible where N is the number of services
o Services are also from diverse programming languages

CS302 - Spring 2025
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Example: Real-World Connectivity Graphs

Social Network

Ne’rfllx‘ Twitter

[source: DeathStarBench, ASPLOS'19]
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Need a Standard Communication Protocol

¢ Must be fast (faster than the runtime of each service)

¢ Must be fault-tolerant
¢ Able to find each service (in the network)
¢ Able to pass input to the service and receive its output

Auth ) { Hash
service service
1’[ Logging ]
service
l File l {Payment
service service

<

CS302 - Spring 2025
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RPC: A Remote Procedure Call

¢ Microservices communicate with function calls
o Local calls: Calls by a function to another function within the same service
" This is our conventional function call (e.g., in Python, C)
" We call this local procedure call (LPC)
o Remote calls: Calls by a function to another function in a different service

" This is new and used for microservices
" A remote procedure call (RPC)

¢ Procedure (Function) calls can be abstracted so both local and remote
calls look the same for our program
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RPC : A Remote Procedure Call

¢ When a program calls a procedure to execute in another address
space as if it was a local procedure, it is called a remote procedure call

or an RPC

¢ We will use RPC to run our two services separately
o Our File service in Python

o Our Hash service in C++
" Better suited for real-time and compute heavy applications
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RPC : A Remote Procedure Call

¢ A reminder of our file service using the hash service using LPC
¢ What steps are involved in a LPC and how are they changed?

def sha(req):
hash arr[req.id] = calc hash(req.payload)
return

def hash file(req):
// get's file and prepares it for sha
sha (req)

CS302 - Spring 2025
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RPC: Function Definition

¢ First step: Function definition

¢ This is where we define the function signatures as interfaces
¢ Then we implement the functions

Function . Run Prepare Receive return
... 1 Setup input |— —
definition

function return and continue
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RPC: Function Definition

¢ hash file depends on sha, so we need to define the sha function
first

def sha(req) -> str:
hash arr[req.id] = calc hash(req.payload)
return

def hash file():
content = ‘\n’ .join([line for line in get line])
hash = sha (content)
return hash
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RPC: Function Definition

¢ What is involved in defining a function?
o Function name
o Input
o Output

def sha(req) -> str:
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RPC: Function Definition

¢ In LPC (a regular function call) we just define the function in code
o Can be just the function interface or header

¢ Importing and referencing the function by other parts of the code is
handled by the compiler/interpreter

¢ How can we do this if the two functions are in two different address
spaces and may even be in two different languages?
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Interface Definition Language

¢ Use an interface definition language (IDL) to describe functions
o This language will not run any code
o Common format to describe functions across languages

¢ First define each of our services

service hash{

}
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RPC: Function Definition

¢ Define the functions of one microservice exposed to other services
o This is just an interface and has no implementation

service hash({
rpc sha (Request) returns (StringValue) ({}

}
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RPC: Function Definition

¢ RPC library will take in the IDL code as input
o Example: Protobuf (used by Google), Thrift (used by Facebook)

¢ RPC library has implementation for various languages like C,
Python, etc.

¢ RPC library will generate code in the language of all our services
from one interface definition code
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RPC: Server Stub

¢ The code generated for the service that implements and serves a
function is called the server stub

// generated by rpc library in C for the hash service

class HashService: :service({
// Abstract function, later implemented by developer
virtual char * sha(Request req:)= 0;
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RPC: Server Stub

¢ RPC leaves the function as an abstract function
¢ The developer implements it

// generated by rpc library in C for the hash service
class HashService: :service({
// Abstract function, later implemented by developer
virtual char * sha(Request req:)= 0;
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RPC: Client Stub

¢ The code generated for the services that use a function is called the
client stub

# generated by rpc library in Python for the file service
class HashService:
def sha(req: Request)-> String:
# RPC sending the request to hash service
resp = sendReq(req)
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RPC: Function Definition

¢ Client stub is a concreate code
¢ RPC implements sending the request to the service that serves it

# generated by rpc library in Python for the file service
class HashService:
def sha(req: Request)-> String:
# RPC sending the request to hash service
resp = sendReq(req)
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Summary

¢ Microservices allow
o Isolation of services
o Scalability of services based on their needs
o Fault isolation
o Heterogenous tech stack
o Reusability

¢ Communication becomes complex with more services

¢ RPC abstracts communication among services as normal function calls
o To be continued in the next lecture!
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