
CS302 – Spring 2025 Lec.8.2 - Slide 1

CS302

Context Switching

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 – Spring 2025 Lec.8.2 - Slide 2

u Threads and Context
Switching

u Exercise session
u Go over midterm exam

solutions

u Next Tuesday:
u Coroutines

Where are We?
M T W T F

17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.8.2 - Slide 3

Heads Up

u HW 5 is now available on Moodle
o Deadline to submit: Monday April 14th, 23:59

u HW 4 grades will be released by this week

u April 18th – April 25th is Easter Break
o No classes during this time

CS302 – Spring 2025 Lec.8.2 - Slide 4

Processes

u A process is a running
instance of a program

u Processes are independent
of each other

u Each process has its own
virtual address space

u Processes do not share any
system resources

Virtual address spaces

Physical address space

CS302 – Spring 2025 Lec.8.2 - Slide 5

Multi-Processing

u Hundreds of processes can exist on a CPU
o But, only a few of them run in parallel at any given time
o Note: “P” in the pictures stands for process (not processor)

u The OS schedules and switches processes as needed
o Gives the illusion of multi-tasking and responsiveness
o Allows for concurrency (other process running when one is blocked)

C0

$
C1

$

P0
C2

$
C3

$

P1
C0

$
C1

$

P0
C2

$
C3

$

P2

CS302 – Spring 2025 Lec.8.2 - Slide 6

Multi-Threading Inside Processes

u A single process usually runs multiple threads at the same time
o For example: OpenMP programs, Web servers, Game engines, etc.

Example process with two threads

Code Data Files

Regs

Stack

Thread 1

PC SPRegs

Stack

Thread 0

PC SP

CS302 – Spring 2025 Lec.8.2 - Slide 7

Threads

u Threads are independent
o Can execute various functionality
o Each have their own program counter

(PC), stack, stack pointer (SP) and
variable values

u Unlike processes, threads also
share resources
o The heap, code and global data of the

process is shared
o All threads operate in the same virtual

address space

Code Data Files

Regs

Stack

Thread 1

PC SPRegs

Stack

Thread 0

PC SP

Shared resources
Thread-private resources

CS302 – Spring 2025 Lec.8.2 - Slide 8

Previously Seen: OpenMP Threads

u OpenMP threads are primarily used to parallelize computation
o Typically applied to split independent loop iterations amongst threads
o This simple example computes array elements in parallel

u Expect to get N× speedup when running N threads on N cores

#pragma omp parallel for
for(int i = 0; i < N; i++)

arr[i] = compute(i);

CS302 – Spring 2025 Lec.8.2 - Slide 9

#pragma omp parallel for
for(int i = 0; i < N; i++)

arr[i] = compute(i);

typedef struct {
int start; int end;

} ThreadData;

void* worker(void* arg) {
ThreadData* data = (ThreadData*) arg;
for (int i = data->start; i < data->end; ++i)

arr[i] = compute(i);
return NULL;

}

int main() {
pthread_t threads[NUM_THREADS];
ThreadData thread_data[NUM_THREADS];
int chunk_size = N / NUM_THREADS;
for (int t = 0; t < NUM_THREADS; t++) {

thread_data[t].start = t * chunk_size;
thread_data[t].end = (t + 1) * chunk_size;
pthread_create(&threads[t], NULL, worker, &thread_data[t]);

}
for (int t = 0; t < NUM_THREADS; t++) {

pthread_join(threads[t], NULL);
}
return 0;

}

OpenMP is an Abstraction Over POSIX threads (Pthreads)

CS302 – Spring 2025 Lec.8.2 - Slide 10

typedef struct {
int start; int end;

} ThreadData;

void* worker(void* arg) {
ThreadData* data = (ThreadData*) arg;
for (int i = data->start; i < data->end; ++i)

arr[i] = compute(i);
return NULL;

}

int main() {
pthread_t threads[NUM_THREADS];
ThreadData thread_data[NUM_THREADS];
int chunk_size = N / NUM_THREADS;
for (int t = 0; t < NUM_THREADS; t++) {

thread_data[t].start = t * chunk_size;
thread_data[t].end = (t + 1) * chunk_size;
pthread_create(&threads[t], NULL, worker, &thread_data[t]);

}
for (int t = 0; t < NUM_THREADS; t++) {

pthread_join(threads[t], NULL);
}
return 0;

}

Structure to store the
start and end iteration
index for each thread

OpenMP is an Abstraction Over Pthreads

CS302 – Spring 2025 Lec.8.2 - Slide 11

typedef struct {
int start; int end;

} ThreadData;

void* worker(void* arg) {
ThreadData* data = (ThreadData*) arg;
for (int i = data->start; i < data->end; ++i)

arr[i] = compute(i);
return NULL;

}

int main() {
pthread_t threads[NUM_THREADS];
ThreadData thread_data[NUM_THREADS];
int chunk_size = N / NUM_THREADS;
for (int t = 0; t < NUM_THREADS; t++) {

thread_data[t].start = t * chunk_size;
thread_data[t].end = (t + 1) * chunk_size;
pthread_create(&threads[t], NULL, worker, &thread_data[t]);

}
for (int t = 0; t < NUM_THREADS; t++) {

pthread_join(threads[t], NULL);
}
return 0;

}

The function executed
by each thread

OpenMP is an Abstraction Over Pthreads

CS302 – Spring 2025 Lec.8.2 - Slide 12

typedef struct {
int start; int end;

} ThreadData;

void* worker(void* arg) {
ThreadData* data = (ThreadData*) arg;
for (int i = data->start; i < data->end; ++i)

arr[i] = compute(i);
return NULL;

}

int main() {
pthread_t threads[NUM_THREADS];
ThreadData thread_data[NUM_THREADS];
int chunk_size = N / NUM_THREADS;
for (int t = 0; t < NUM_THREADS; t++) {

thread_data[t].start = t * chunk_size;
thread_data[t].end = (t + 1) * chunk_size;
pthread_create(&threads[t], NULL, worker, &thread_data[t]);

}
for (int t = 0; t < NUM_THREADS; t++) {

pthread_join(threads[t], NULL);
}
return 0;

}

Create N threads and
passing each thread
their arguments

OpenMP is an Abstraction Over Pthreads

CS302 – Spring 2025 Lec.8.2 - Slide 13

PThreads

u OpenMP is simply an easy-to-use abstraction over Pthreads

u POSIX threads (Pthreads) are general-purpose threads
o Created, scheduled and managed by the kernel
o These are also referred to as “kernel” threads
o Offer fine-grained control over functionality, synchronization, and scheduling

u Many languages offer high-level thread libraries using Pthreads
o For example, thread library in C++
o Complex multi-threaded programs can be built using Pthreads

u Threads can also switch to avoid wasting cycles (see example)

CS302 – Spring 2025 Lec.8.2 - Slide 14

Example Web Server

Server

Thread 0 looping and listening for
incoming requests

CS302 – Spring 2025 Lec.8.2 - Slide 15

Example Web Server

ServerRequest

Create new thread
to handle request

Thread 1

CS302 – Spring 2025 Lec.8.2 - Slide 16

Example Web Server

Server Thread 1

Thread 0 looping and listening for
incoming requests

CS302 – Spring 2025 Lec.8.2 - Slide 17

Example Web Server

Server

Thread 1

Request

Create new thread to
handle new request

Thread 2

CS302 – Spring 2025 Lec.8.2 - Slide 18

Example Web Server

Server

Thread 1

Thread 2

Thread 0 looping and listening for
incoming requests

CS302 – Spring 2025 Lec.8.2 - Slide 19

Example Web Server

Server Thread 2

Thread 0 looping and listening for
incoming requests

Terminate thread 1 once
finished handling the request

CS302 – Spring 2025 Lec.8.2 - Slide 20

Example Web Server in C++
struct Request {

...
};

void handle_request(Request req) {
...

}

int main() {
while (true) {

auto req = get_next_request();
if (req) {

std::thread t(handle_request, *req);
t.detach();

} else {
std::this_thread::sleep_for(std::chrono::milliseconds(50));

}
}
return 0;

}

CS302 – Spring 2025 Lec.8.2 - Slide 21

Example Web Server in C++
struct Request {

...
};

void handle_request(Request req) {
...

}

int main() {
while (true) {

auto req = get_next_request();
if (req) {

std::thread t(handle_request, *req);
t.detach();

} else {
std::this_thread::sleep_for(std::chrono::milliseconds(50));

}
}
return 0;

}

Structure to store the
payload of a request

CS302 – Spring 2025 Lec.8.2 - Slide 22

Example Web Server in C++
struct Request {

...
};

void handle_request(Request req) {
...

}

int main() {
while (true) {

auto req = get_next_request();
if (req) {

std::thread t(handle_request, *req);
t.detach();

} else {
std::this_thread::sleep_for(std::chrono::milliseconds(50));

}
}
return 0;

}

Function that performs an
operation on a request

CS302 – Spring 2025 Lec.8.2 - Slide 23

Example Web Server in C++
struct Request {

...
};

void handle_request(Request req) {
...

}

int main() {
while (true) {

auto req = get_next_request();
if (req) {

std::thread t(handle_request, *req);
t.detach();

} else {
std::this_thread::sleep_for(std::chrono::milliseconds(50));

}
}
return 0;

}

A predefined function that gets
the next request from a queue

CS302 – Spring 2025 Lec.8.2 - Slide 24

Example Web Server in C++
struct Request {

...
};

void handle_request(Request req) {
...

}

int main() {
while (true) {

auto req = get_next_request();
if (req) {

std::thread t(handle_request, *req);
t.detach();

} else {
std::this_thread::sleep_for(std::chrono::milliseconds(50));

}
}
return 0;

}

If not NULL, then spawns a thread
that executes handle_request

for *req

CS302 – Spring 2025 Lec.8.2 - Slide 25

Example Web Server in C++
struct Request {

...
};

void handle_request(Request req) {
...

}

int main() {
while (true) {

auto req = get_next_request();
if (req) {

std::thread t(handle_request, *req);
t.detach();

} else {
std::this_thread::sleep_for(std::chrono::milliseconds(50));

}
}
return 0;

}

Makes sure that once thread finishes
executing the function, it exits

CS302 – Spring 2025 Lec.8.2 - Slide 26

Example Web Server in C++
struct Request {

...
};

void handle_request(Request req) {
...

}

int main() {
while (true) {

auto req = get_next_request();
if (req) {

std::thread t(handle_request, *req);
t.detach();

} else {
std::this_thread::sleep_for(std::chrono::milliseconds(50));

}
}
return 0;

}

If no request found, then waits 50ms
before checking again

CS302 – Spring 2025 Lec.8.2 - Slide 27

Running The Web Server

u Assume the web server is running on a CPU with four cores

Memory

C0

$

NIC

C1

$

C2

$

C3

$

HDD

Server

T0

CS302 – Spring 2025 Lec.8.2 - Slide 28

Running The Web Server

u Assume the web server is running on a CPU with four cores

Memory

C0

$

NIC

C1

$

C2

$

C3

$

HDD

Server

T0

Request 1

T1

CS302 – Spring 2025 Lec.8.2 - Slide 29

Running The Web Server

u Assume the web server is running on a CPU with four cores

Memory

C0

$

NIC

C1

$

C2

$

C3

$

HDD

Server

T0

Request 2

T1 T2

CS302 – Spring 2025 Lec.8.2 - Slide 30

Running The Web Server

u Assume the web server is running on a CPU with four cores

Memory

C0

$

NIC

C1

$

C2

$

C3

$

HDD

Server

T0

Request 3

T1 T2 T3

CS302 – Spring 2025 Lec.8.2 - Slide 31

Running The Web Server

u Assume the web server is running on a CPU with four cores

Memory

C0

$

NIC

C1

$

C2

$

C3

$

HDD

Server

T0

Request 4

T1 T2 T3

T4

??

CS302 – Spring 2025 Lec.8.2 - Slide 32

Running The Web Server

u At any given time, only three requests can be handled in parallel

u If there is a high rate of incoming requests,
o The web server will spawn new threads to handle the new requests
o These new threads will be blocked behind the threads handling the old requests

u Two options:
o Wait for the threads executing the old requests to finish first
o Context switch threads!

CS302 – Spring 2025 Lec.8.2 - Slide 33

Drawback of Waiting: Requests Can Waste Cycles

struct Request {
int id, type;
std::string payload;

};

int hash_arr[N];
void handle_request(Request req) {

if (req.type == 0) {
std::ofstream outfile("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close();

} else if (req.type == 1) {
hash_arr[req.id] = calc_hash(req.payload);

}
}

CS302 – Spring 2025 Lec.8.2 - Slide 34

struct Request {
int id, type;
std::string payload;

};

int hash_arr[N];
void handle_request(Request req) {

if (req.type == 0) {
std::ofstream outfile("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close();

} else if (req.type == 1) {
hash_arr[req.id] = calc_hash(req.payload);

}
}

Drawback of Waiting: Requests Can Waste Cycles

There are two types of requests
Each request contains a string payload

CS302 – Spring 2025 Lec.8.2 - Slide 35

Drawback of Waiting: Requests Can Waste Cycles

struct Request {
int id, type;
std::string payload;

};

int hash_arr[N];
void handle_request(Request req) {

if (req.type == 0) {
std::ofstream outfile("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close();

} else if (req.type == 1) {
hash_arr[req.id] = calc_hash(req.payload);

}
}

Global array to store SHA hash of the
payloads for each request

CS302 – Spring 2025 Lec.8.2 - Slide 36

struct Request {
int id, type;
std::string payload;

};

int hash_arr[N];
void handle_request(Request req) {

if (req.type == 0) {
std::ofstream outfile("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close();

} else if (req.type == 1) {
hash_arr[req.id] = calc_hash(req.payload);

}
}

Drawback of Waiting: Requests Can Waste Cycles

Type 0 requests write the string into a
file (I/O operation)

CS302 – Spring 2025 Lec.8.2 - Slide 37

struct Request {
int id, type;
std::string payload;

};

int hash_arr[N];
void handle_request(Request req) {

if (req.type == 0) {
std::ofstream outfile("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close();

} else if (req.type == 1) {
hash_arr[req.id] = calc_hash(req.payload);

}
}

Drawback of Waiting: Requests Can Waste Cycles

Type 1 requests compute the SHA
hash of the string and store it

CS302 – Spring 2025 Lec.8.2 - Slide 38

Drawback of Waiting: Requests Can Waste Cycles

u Writing a single line to a file can take between 100s µs to ms
o Flash/HDD raw access time and syscall overhead

u So, a thread handling a type 0 request is simply idle during I/O
o > 100 µs are wasted per line

// Thread handling a type 0 request

std::ofstream outfile("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close();

CS302 – Spring 2025 Lec.8.2 - Slide 39

Wasted Cycles Could Be Harnessed

u The cycles wasted by type 0 requests could be harnessed
o Computing the SHA hash takes 1-10 µs
o Ten type 1 requests could be serviced in the wasted time per line

u Threads executing type 1 requests can get blocked behind threads
executing type 0 requests that are wasting clock cycles!

// Thread handling a type 1 request

hash_arr[req.id] = calc_hash(req.payload);

CS302 – Spring 2025 Lec.8.2 - Slide 40

Concurrency vs. Parallelism

u Parallelism is the ability to execute multiple threads at the same time
o Speed up a single task by splitting it amongst multiple threads

u Parallelism exploits multiple cores

C0

$

C0

$
C1

$
C2

$
C3

$

CS302 – Spring 2025 Lec.8.2 - Slide 41

Concurrency vs. Parallelism

u Concurrency is the ability to hide latency among blocked threads
o Increase utilization of a core and throughput

C0

$

compute

wait

compute

wait

C0

$

compute

compute wait

compute
wait

compute

T0
T1

T2

T0

CS302 – Spring 2025 Lec.8.2 - Slide 42

Context Switching Threads

u Reminder: Pthreads are “kernel” threads
o The kernel has full control over how to schedule the threads

u The highlighted line results in syscalls for the I/O operation
o The kernel switches the thread with a “ready” thread
o Once I/O operation is done, the kernel switches back the waiting thread

// Thread handling a type 0 request

std::ofstream outfile("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close();

CS302 – Spring 2025 Lec.8.2 - Slide 43

The Kernel Co-ordinates the Switch

u The kernel co-ordinates the switch:
o Saves the context of the current thread
o Calls the scheduler algorithm to pick the next thread
o Restores the context of the next thread

u The next thread resumes execution

u Question:
o What context needs to be saved so that threads can be paused and restored

without any data loss?

CS302 – Spring 2025 Lec.8.2 - Slide 44

Example of Context

u The “state” of a thread that must be saved before a switch
u Consider the following snippet of assembly code:

lw r1, 0(r2)
lw r6, 0(r3)

/* Switch to a different thread */
...
/* Resume normal execution */

mul r1, r1, r4
add r6, r1, r6
sw r6, 0(r3)

Assume switch happens here

CS302 – Spring 2025 Lec.8.2 - Slide 45

Example of Context

u The “state” of a thread that must be saved before a switch
u Consider the following snippet of assembly code:

lw r1, 0(r2)
lw r6, 0(r3)

/* Switch to a different thread */
...
/* Resume normal execution */

mul r1, r1, r4
add r6, r1, r6
sw r6, 0(r3)

Need to remember the PC of
the last executed instruction

CS302 – Spring 2025 Lec.8.2 - Slide 46

Example of Context

u The “state” of a thread that must be saved before a switch
u Consider the following snippet of assembly code:

lw r1, 0(r2)
lw r6, 0(r3)

/* Switch to a different thread */
...
/* Resume normal execution */

mul r1, r1, r4
add r6, r1, r6
sw r6, 0(r3)

Need to remember the value of
all registers before the switch

CS302 – Spring 2025 Lec.8.2 - Slide 47

Thread Context

u On a switch, a thread will be
replaced by another thread from the
same process

u No need to save shared resources
on a switch, e.g.,
o Heap, Code and Data segments, File

descriptors, Process attributes, etc.

u Only save thread-private:
o Register values, Stack, PC and SP

Code Data Files

Regs

Stack

Thread 1

PC SPRegs

Stack

Thread 0

PC SP

Shared resources
Thread-private resources

CS302 – Spring 2025 Lec.8.2 - Slide 48

Thread Switching Overhead

u Explicit overhead:
o Syscall means let the pipeline empty, use the trap table to jump to the syscall

code, switch to OS
o Dump the current threads’ context to memory, load the new thread’s context
o Return from syscall, switch back to user

u Implicit overhead:
o All microarchitectural state that is shared (branch tables, TLB, cache

hierarchy) is affected while a thread is running
o The next thread may not find all it state left behind

CS302 – Spring 2025 Lec.8.2 - Slide 49

Is Context Switching Worth It?

u A single context switch between threads in Linux takes ~1 - 5µs
u Switching is only worth it if the time to switch → run → switch back

is less than idle time (while waiting)

u In our example,
o Context switch time is a few µs ~ Type 1 request execution time
o Would be better if context switching took less time

u Context switching overhead increases with the number of threads
o The kernel needs to keep track of more threads

CS302 – Spring 2025 Lec.8.2 - Slide 50

Summary

u Threads are independent units of execution within a process

u Pthreads are general purpose kernel threads
o Enable concurrency, not just parallelism

u If a thread blocks, the core sits idle unless another thread can run

u Context switching lets the core switch between threads
o Comes with overhead (~1–5 µs for kernel threads)

