CS302

Context Switching CONTEXT SWITCHING
THREAD X

Spring 2025 é

Arkaprava Basu & Babak Falsafi m

parsa.epfl.ch/course-info/cs302 ‘ *

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 - Spring 2025 Lec.8.2 - Slide 1

Where are We?

17-Feb
24-Feb ¢ Threads and Context

S-Mar Switching
10-Mar

17-Mar

24-Mar & EXxercise session

31-Mar _
7-Apr ¢ Go over midterm exam

14-Apr] 18-Apr solutions
21-Apr [22-Apr 24-Apr |25-Apr

28-Apr .
5-May ¢ Next Tuesday:

12-May & Coroutines
19-May
26-May

CS302 - Spring 2025 Lec.8.2 - Slide 2

Heads Up

¢ HW 5 is now available on Moodle
o Deadline to submit: Monday April 14th, 23:59

¢ HW 4 grades will be released by this week

& April 18" — April 25t is Easter Break

o No classes during this time

CS302 - Spring 2025 Lec.8.2 - Slide 3

Processes

¢ A process is a running

instance of a program Physical address space

- Pn private
| Virtual address spaces - i
& Processes are independent Load . 7
Of eaCh Other ’, _@ ng\mon physical
Pll | ? addresses
Po [o =
. Sl |
& Each process has its own Store / s river
.) > private
virtual address space of adress space
Private portion — 1 "] Prprivate
¢ Processes do not share any e I e S

system resources

CS302 - Spring 2025 Lec.8.2 - Slide 4

Multi-Processing

¢ Hundreds of processes can exist on a CPU
o But, only a few of them run in parallel at any given time
o Note: “P” in the pictures stands for process (not processor)

¢ The OS schedules and switches processes as needed

o Gives the illusion of multi-tasking and responsiveness
o Allows for concurrency (other process running when one is blocked)

PO)(P1 O PO [P2

Co C, C, C, |:> Co C, C, C,
s JIUs I s s s JIUs I s s

- J \C / - ‘ VAN /

CS302 - Spring 2025 Lec.8.2 - Slide 5

Multi-Threading Inside Processes

¢ A single process usually runs multiple threads at the same time
o For example: OpenMP programs, Web servers, Game engines, etc.

CS302 - Spring 2025

Follo]

‘ Code ‘ ‘ Data ‘ ‘ Files ‘

[Pc](sp][Regs]

‘ Stack ‘ ‘ Stack ‘
Thread O Thread 1

Example process with two threads

Lec.8.2 - Slide 6

Threads

¢ Threads are independent
o Can execute various functionality

o Each have their own program counter
(PC), stack, stack pointer (SP) and
variable values

¢ Unlike processes, threads also
share resources

o The heap, code and global data of the
process is shared

o All threads operate in the same virtual
address space

CS302 - Spring 2025

[_]Shared resources
[] Thread-private resources

‘ Code ‘

‘ Data ‘

| Files |

‘ Regs‘

‘ Regs‘

‘ Stack ‘

‘ Stack ‘

|

Thread 0

|

Thread 1

Lec.8.2 - Slide 7

Previously Seen: OpenMP Threads

#pragma omp parallel for
for(int 1 = 0; 1 < N; i++4)
arr[i] = compute (i) ;

¢ OpenMP threads are primarily used to parallelize computation

o Typically applied to split independent loop iterations amongst threads
o This simple example computes array elements in parallel

¢ Expect to get Nx speedup when running N threads on N cores

CS302 - Spring 2025 Lec.8.2 - Slide 8

OpenMP is an Abstraction Over POSIX threads (Pthreads)

typedef struct {
int start; int end;
} ThreadData;

void* worker (void* arg) {
ThreadData* data = (ThreadData*) arg;
for (int i = data->start; i < data->end; ++i)

arr[i] = compute(i) ;
#pragma omp parallel for return NULL;
for(int i = 0; i < N; i++) E::>}
arr[i] = compute(i); int main() {

pthread t threads[NUM_THREADS] ;
ThreadData thread data[NUM THREADS] ;
int chunk size = N / NUM THREADS;
for (int t = 0; t < NUM THREADS; t++) {
thread data[t].start = t * chunk size;
thread data[t].end = (t + 1) * chunk size;
pthread create(&threads[t], NULL, worker, &thread data[t]);

}
for (int t = 0; t < NUM THREADS; t++) {

pthread join(threads[t], NULL);
}

return O;
CS302 - Spring 2025 }

OpenMP is an Abstraction Over Pthreads

typedef struct {

Structure to store the

int start; int end;
} ThreadData;

void* worker (void* arg) {
ThreadData* data = (ThreadData¥*) arg;
for (int i = data->start; i < data->end; ++i)
arr[i] = compute(i) ;
return NULL;

int main() {

pthread t threads[NUM _THREADS] ;

ThreadData thread data[NUM THREADS] ;

int chunk size = N / NUM THREADS;

for (int t = 0; t < NUM THREADS; t++) {
thread data[t].start = t * chunk size;
thread data[t].end = (t + 1) * chunk_size;
pthread create(&threads[t], NULL, worker, &thread data[t]);

}

for (int t = 0; t < NUM_THREADS; t++) {
pthread join(threads[t], NULL);

}

return 0;

" start and end iteration
iIndex for each thread

Lec.8.2 - Slide 10

OpenMP is an Abstraction Over Pthreads

typedef struct {

int start; int end;

} ThreadData;

void* worker (void* arg) {

ThreadData* data = (ThreadData¥*) arg; "

for (int i = data->start; i < data->end; ++i) > The funCtlon exeCUted
[i] = te(i);

retuem NULL: by each thread

int

main() {
pthread t threads[NUM _THREADS] ;
ThreadData thread data[NUM THREADS] ;
int chunk size = N / NUM THREADS;
for (int t = 0; t < NUM THREADS; t++) {

thread data[t].start = t * chunk size;

thread data[t].end = (t + 1) * chunk_size;

pthread create(&threads[t], NULL, worker, &thread data[t]);
}
for (int t = 0; t < NUM_THREADS; t++) {

pthread join(threads[t], NULL);
}
return O;

Lec.8.2 - Slide 11

OpenMP is an Abstraction Over Pthreads

typedef struct {
int start; int end;
} ThreadData;

void* worker (void* arg) {
ThreadData* data (ThreadData*) arg;
for (int i = data->start; i < data->end; ++i)
arr[i] compute (1) ;
return NULL;

int main() {

pthread t threads[NUM _THREADS] ;
ThreadData thread data[NUM THREADS] ;
int chunk size = N / NUM THREADS;

for (int t = 0; t < NUM THREADS; t++) {

Create N threads and

thread data[t].start = t * chunk size;
thread data[t].end = (t + 1) * chunk_size;
pthread create(&threads[t], NULL, worker, &thread data[t]);

— passing each thread

}
for (int t = 0; t < NUM THREADS; t++) {

pthread join(threads[t], NULL);

}

return 0;

their arguments

Lec.8.2 - Slide 12

PThreads

¢ OpenMP is simply an easy-to-use abstraction over Pthreads

¢ POSIX threads (Pthreads) are general-purpose threads

o Created, scheduled and managed by the kernel
o These are also referred to as “kernel” threads
o Offer fine-grained control over functionality, synchronization, and scheduling

¢ Many languages offer high-level thread libraries using Pthreads
o For example, thread library in C++
o Complex multi-threaded programs can be built using Pthreads

¢ Threads can also switch to avoid wasting cycles (see example)

CS302 - Spring 2025 Lec.8.2 - Slide 13

Example Web Server

‘ Server ‘

®)

Thread 0 looping and listening for
Incoming requests

CS302 - Spring 2025 Lec.8.2 - Slide 14

Example Web Server

Create new thread

to handle request
Request >| Server I >|Thread1 ‘

CS302 - Spring 2025 Lec.8.2 - Slide 15

Example Web Server

‘ Server I >|Thread1 ‘

U

Thread 0 looping and listening for
incoming requests

CS302 - Spring 2025 Lec.8.2 - Slide 16

Example Web Server

Create new thread to
handle new request

Thread 2 ‘

Request >| Server

Thread 1 ‘

CS302 - Spring 2025 Lec.8.2 - Slide 17

Example Web Server

Thread 2 ‘

‘ Server

U Thread 1 ‘

Thread 0 looping and listening for
incoming requests

CS302 - Spring 2025 Lec.8.2 - Slide 18

Example Web Server

Terminate thread 1 once
finished handling the request

‘ Server I >| Thread 2 ‘

U

Thread 0 looping and listening for
incoming requests

CS302 - Spring 2025 Lec.8.2 - Slide 19

Example Web Server in C++

struct Request {
};
void handle request (Request req) ({

}

int main() {
while (true) {
auto req = get next request();

if (req) {
std: :thread t(handle request, *req);
t.detach() ;

} else {

std: :this thread::sleep for(std::chrono::milliseconds(50));
}
}

return 0O;

}

CS302 - Spring 2025 Lec.8.2 - Slide 20

Example Web Server in C++

struct Request { R Structure to store the
Y payload of a request

void handle request (Request req) ({

}

int main() {
while (true) {
auto req = get next request();

if (req) {
std: :thread t(handle request, *req);
t.detach() ;

} else {

std: :this thread::sleep for(std::chrono::milliseconds(50));
}
}

return 0O;

}

CS302 - Spring 2025 Lec.8.2 - Slide 21

Example Web Server in C++

struct Request {

};

void handle request (Request req) ({ FunCtiOn that pel'formS an
« .. — .
} operation on a request

int main() {
while (true) {
auto req = get next request();

if (req) {
std: :thread t(handle request, *req);
t.detach() ;

} else {

std: :this thread::sleep for(std::chrono::milliseconds(50));
}
}

return 0O;

}

CS302 - Spring 2025 Lec.8.2 - Slide 22

Example Web Server in C++
struct Request {

};

void handle request(Request req) {

}

int main() {

while (true) { " "
e e ot moxt Temest A predefined function that gets
if (req) { the next request from a queue
std: :thread t(handle request, *req);
t.detach() ;
} else {

std: :this thread::sleep for(std::chrono::milliseconds(50));
}
}

return 0O;

}

CS302 - Spring 2025 Lec.8.2 - Slide 23

Example Web Server in C++

struct Request {

If not NULL, then spawns a thread

that executes handle request
void handle request (Request req) ({ fOr *req

};

}

int main() {
while (true) ({
auto req = get next request();

if (req) {
std: :thread t(handle request, *req);
t.detach() ;

} else {

std: :this thread::sleep for(std::chrono::milliseconds(50));
}
}

return 0O;

}

CS302 - Spring 2025 Lec.8.2 - Slide 24

Example Web Server in C++

struct Request {

vy Makes sure that once thread finishes

void handle request(Request req) { executing the function, it exits

}

int main() {
while (true) {
auto req = get next request

if (req) {
std: :thread t dle request, *req);
It.detach() ;

} else {

std: :this thread::sleep for(std::chrono::milliseconds(50));
}
}

return 0O;

}

CS302 - Spring 2025 Lec.8.2 - Slide 25

Example Web Server in C++

struct Request {

oo If no request found, then waits 50ms

void handle request (Request req) ({ befOre CheCking again

}

int main() {
while (true) {
auto req = get next request();

if (req) {
std: :thread t(handle request, *reqgy;
t.detach() ;

} else {

Istd: :this thread::sleep for(std::chrono::milliseconds (50)) |

}
}

return 0O;

}

CS302 - Spring 2025 Lec.8.2 - Slide 26

Running The Web Server

¢ Assume the web server is running on a CPU with four cores

‘ Server \

CS302 - Spring 2025 Lec.8.2 - Slide 27

Running The Web Server

¢ Assume the web server is running on a CPU with four cores

Request 1 >| Server \

10 T1

CS302 - Spring 2025 Lec.8.2 - Slide 28

Running The Web Server

¢ Assume the web server is running on a CPU with four cores

Request 2 >| Server \

10 T1 12

e

CS302 - Spring 2025 Lec.8.2 - Slide 29

Running The Web Server

¢ Assume the web server is running on a CPU with four cores

Request 3 >| Server \

10 T1 T2 T3

i

CS302 - Spring 2025 Lec.8.2 - Slide 30

Running The Web Server

¢ Assume the web server is running on a CPU with four cores

Request 4 Server
T4
!

O T1 T2 T3 o

o

CS302 - Spring 2025 Lec.8.2 - Slide 31

Running The Web Server

¢ At any given time, only three requests can be handled in parallel

¢ If there is a high rate of incoming requests,
o The web server will spawn new threads to handle the new requests
o These new threads will be blocked behind the threads handling the old requests

¢ Two options:
o Wait for the threads executing the old requests to finish first
o Context switch threads!

CS302 - Spring 2025 Lec.8.2 - Slide 32

Drawback of Waiting: Requests Can Waste Cycles

struct Request {

int id, type;

std: :string payload;
};

int hash arr[N];
void handle request (Request req) {
if (req.type == 0) {
std: :ofstream outfile ("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close() ;
} else if (req.type == 1) ({
hash arr[req.id] = calc hash(req.payload);

}

CS302 - Spring 2025 Lec.8.2 - Slide 33

Drawback of Waiting: Requests Can Waste Cycles

struct Request {
int id, type; » There are two types of requests

td: :stri load; ' '
Stc:-string bay oa Each request contains a string payload

};

int hash arr[N];
void handle request (Request req) {
if (req.type == 0) {
std: :ofstream outfile ("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close() ;
} else if (req.type == 1) ({
hash arr[req.id] = calc hash(req.payload);
}
}

CS302 - Spring 2025 Lec.8.2 - Slide 34

Drawback of Waiting: Requests Can Waste Cycles

struct Request {
int id, type; Global array to store SHA hash of the

std::string payload; payloads for each request

};

int hash arr[N];
Vo1l andle request (Request req) {
if (req.type == 0) {
std: :ofstream outfile ("output.txt", std::ios::app);
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close() ;
} else if (req.type == 1) ({
hash arr[req.id] = calc hash(req.payload);
}
}

CS302 - Spring 2025 Lec.8.2 - Slide 35

Drawback of Waiting: Requests Can Waste Cycles

struct Request { _ _ _
int id, type; Type 0 requests write the string into a

Y Std::string payload; file (I/O operation)

int hash arr[N];
void handle request (Request req) ({

if (reqg.type == 0) {
std: :ofstream outfile ("output.txt", std::ios::app):;
outfile << "Request " << req.id << ": " << req.payload << "\n";
outfile.close() ;

} else if (req.type == 1) {
hash arr[req.id] = calc hash(req.payload);
}
}

CS302 - Spring 2025 Lec.8.2 - Slide 36

Drawback of Waiting: Requests Can Waste Cycles

struct Request {
int id, type; Type 1 requests compute the SHA

|, CEeiistEng payleady hash of the string and store it

int hash arr[N];
void handle request (Request req) {
if (req.type == 0) {
std: :ofstream outfile ("output.f£Lt", std::ios::app);
outfile << "Request " << regfid << ": " << req.payload << "\n";

outfile.close() ;
} else if (req.type == 1) {
hash arr[req.id] = calc hash(req.payload);

}
}

CS302 - Spring 2025 Lec.8.2 - Slide 37

Drawback of Waiting: Requests Can Waste Cycles

// Thread handling a type 0 request

std: :ofstream outfile ("output.txt", std::ios::app);

outfile << "Request " << req.id << ": " << req.payload << "\n";

outfile.close () ;

¢ Writing a single line to a file can take between 100s ps to ms
o Flash/HDD raw access time and syscall overhead

¢ S0, a thread handling a type 0 request is simply idle during 1/O

o > 100 ys are wasted per line

CS302 - Spring 2025

Lec.8.2 - Slide 38

Wasted Cycles Could Be Harnessed

// Thread handling a type 1 request

hash arr[req.id] = calc hash(req.payload);

¢ The cycles wasted by type 0 requests could be harnessed
o Computing the SHA hash takes 1-10 s
o Ten type 1 requests could be serviced in the wasted time per line

¢ Threads executing type 1 requests can get blocked behind threads
executing type 0 requests that are wasting clock cycles!

CS302 - Spring 2025 Lec.8.2 - Slide 39

Concurrency vs. Parallelism

¢ Parallelism is the ability to execute multiple threads at the same time

o Speed up a single task by splitting it amongst multiple threads

¢ Parallelism exploits multiple cores

CS302 - Spring 2025

—

Co

Lec.8.2 - Slide 40

Concurrency vs. Parallelism

¢ Concurrency is the ability to hide latency among blocked threads
o Increase utilization of a core and throughput

CS302 - Spring 2025

|

|

v

compute _ 1
|

wait _ |

v

T0
T1

10

T2

compute «H

compute {l

compute {1

compute 1

Co

L wait

wait

—

Lec.8.2 - Slide 41

Context Switching Threads

// Thread handling a type 0 request

std: :ofstream outfile ("output.txt", std::ios::app);

outfile << "Request " << req.id << ": " << reqg.payload << "\n";

outfile.close () ;

¢ Reminder: Pthreads are “kernel” threads
o The kernel has full control over how to schedule the threads

¢ The highlighted line results in syscalls for the 1/O operation

o The kernel switches the thread with a “ready” thread
o Once /O operation is done, the kernel switches back the waiting thread

CS302 - Spring 2025

Lec.8.2 - Slide 42

The Kernel Co-ordinates the Switch

¢ The kernel co-ordinates the switch:
o Saves the context of the current thread

o Calls the scheduler algorithm to pick the next thread
o Restores the context of the next thread

¢ The next thread resumes execution

¢ Question:

o What context needs to be saved so that threads can be paused and restored
without any data loss?

CS302 - Spring 2025 Lec.8.2 - Slide 43

Example of Context

¢ The “state” of a thread that must be saved before a switch
¢ Consider the following snippet of assembly code:

lw rl, 0(r2)
lw r6, 0(r3) Assume switch happens here

/* Switch to a different thread */
/* Resume normal execution */
mul rl, rl, r4

add r6, rl, r6
sw r6, 0(r3)

CS302 - Spring 2025 Lec.8.2 - Slide 44

Example of Context

¢ The “state” of a thread that must be saved before a switch
¢ Consider the following snippet of assembly code:

1w rl, 0(xr2)

lw 26, 0(r3) < Need to remember the PC of

the last executed instruction
/* Switch to a different thread */

/* Resume normal execution */
mul rl, rl, r4

add r6, rl, r6
sw r6, 0(r3)

CS302 - Spring 2025 Lec.8.2 - Slide 45

Example of Context

¢ The “state” of a thread that must be saved before a switch
¢ Consider the following snippet of assembly code:

1w rl, 0(xr2)
lw r6, 0(r3)
/* Switch to a different thread */

/* Resume normal execution */

mul rl, (zleled)e= Need to remember the value of
add r6, rl — - :

r all registers before the switch
sw r6, 0(z3)

CS302 - Spring 2025 Lec.8.2 - Slide 46

Thread Context

¢ On a switch, a thread will be

[_]Shared resources

replaced by another thread from the [] Thread-private resources

Same process

& No need to save shared resources

on a switch, e.qg.,

o Heap, Code and Data segments, File
descriptors, Process attributes, etc.

¢ Only save thread-private:
o Register values, Stack, PC and SP

CS302 - Spring 2025

‘ Code ‘

‘ Data ‘

| Files |

‘Regs‘

‘Regs‘

‘ Stack ‘

‘ Stack ‘

|

Thread 0O

|

Thread 1

Lec.8.2 - Slide 47

Thread Switching Overhead

¢ Explicit overhead:

o Syscall means let the pipeline empty, use the trap table to jump to the syscall
code, switch to OS

o Dump the current threads’ context to memory, load the new thread’s context
o Return from syscall, switch back to user

¢ Implicit overhead:

o All microarchitectural state that is shared (branch tables, TLB, cache
hierarchy) is affected while a thread is running

o The next thread may not find all it state left behind

CS302 - Spring 2025 Lec.8.2 - Slide 48

Is Context Switching Worth [t?

¢ A single context switch between threads in Linux takes ~1 - Sus

¢ Switching is only worth it if the time to switch — run — switch back
IS less than idle time (while waiting)

¢ In our example,
o Context switch time is a few us ~ Type 1 request execution time
o Would be better if context switching took less time

¢ Context switching overhead increases with the number of threads
o The kernel needs to keep track of more threads

CS302 - Spring 2025 Lec.8.2 - Slide 49

Summary

¢ Threads are independent units of execution within a process

¢ Pthreads are general purpose kernel threads
o Enable concurrency, not just parallelism

¢ If a thread blocks, the core sits idle unless another thread can run

¢ Context switching lets the core switch between threads
o Comes with overhead (~1-5 us for kernel threads)

CS302 - Spring 2025 Lec.8.2 - Slide 50

