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u Concurrency Control
u Transactional memory
u Point-to-point synchronization
u Barriers

u Exercise session
u Free session
u Ask doubts and questions to 

TAs and SAs

u Next Tuesday:
u Midterm exam

Where are We?
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17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
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Correction: Vectorized DAXPY Loop

u Assumption:
o Compute 64 elements at a time
o Elements are double-precision

u How many serialized cache 
misses? (w/ 64B cache lines)
o Vector load brings 64 elements at a 

time, equivalent to 8 cache lines
o 64*8B is the total number of bytes 

loaded, not the number of elements
o 2 * (1024 / (64*8)) = 4
o 2 * (1024 / 64) = 32

; x[] -> r2, y[] -> r3 
; a -> r4,
; &x[n] -> r5

loop:
  lw.v     v1, 0(r2)   ; load x[i]
  lw.v     v2, 0(r3)   ; load y[i]
  mul.sv   v1, r4, v1  ; a*x[i]
  add.v    v1, v1, v2  ; … + y[i]
  sw.v     v1, 0(r3)   ; store y[i]
  add      r2, r2, 512 ; 64*8
  add      r3, r3, 512
  bne      r2, r5, loop
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Difficulties of Locking

u Could build lock-free data structures
u Not easy to reason about and program

u Better idea: hardware to detect contention!
u No explicit lock ordering in the code
u Analogy: “I didn’t do it, no one saw me doing it!”

u Connection to Lec.7.1 (slide 15)
u LL/SC uses cache coherence to detect writes
u Why not extend it to the whole critical section?
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Simultaneous Modification Without Locking
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u Wouldn’t it be nice if…

Instead of writing difficult locking code, simply tell the runtime                
to make a section atomic?

u Similar principle: 
u Programmer declares a variable so its updates will be atomic, language 

runtime figures it all out
u No need for manual memory fences or synch. variables

u Hardware Transactional Memory (HTM) does this

Declarative Atomicity
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Declarative/Transactional Example

u Warning! This is pseudo-code
u Atomic construct (not just a single statement, but a full code section) 

u Code executes atomically
u All side-effects either entirely visible or not visible at all

void editHash(HashTbl tbl, 
              int key) {
  synchronized(tbl) {
    // read objects
    HashObj obj = tbl.get(key);
    // update
    obj.update();
  }
}

void editHash(HashTbl tbl, 
              int key) {
  atomic {
    // read objects
    HashObj obj = tbl.get(key);
    // update
    obj.update();
  }
}

Lock-based Code Transactional Code
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Transactional Processing (Databases)

u Used historically in databases (next semester)
u Concurrency for data on disk (cached in memory)
u In software

u Atomicity 
u Upon transaction commit, all writes take effect at once
u On transaction abort, no writes take effect

u Isolation
u No other processor can observe writes before commit

u Serializability 
u Transactions seem to commit in a single serial order
u The exact order is not guaranteed
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Transactional Memory (TM)

u Memory (not disk) transactions 
u An atomic & isolated sequence of memory accesses 
u Supported in hardware by processor & cache hierarchy

u Atomicity
u Upon commit, all memory writes take effect at once
u On abort, none of the writes take effect

u Isolation
u No other processor can observe writes before commit

u Serializability 
u Transactions seem to commit in a single serial order
u The exact order is not guaranteed



CS302 – Spring 2025 Lec.7.2 -  Slide 11

Transactions Are Composable

u Transactions compose gracefully
u Programmer declares global intent (atomic transfer)
u No need to know about the implementation

u Outermost transaction defines atomicity boundary

void editHash2(HashTbl tbl, int keyA, int keyB) 
{
  atomic {
    // read objects
    HashObj objA = tbl.get(keyA);
    HashObj objB = tbl.get(keyB);
    // update
    objA.update(objB);
    objB.update(objA);
  }
}
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Intel Haswell Transactional Memory

u New instructions for 
u xbegin: starts transaction, takes pointer to “fallback address” in case of 

abort
u xend: ends transaction
u xabort: software-initiated transaction abort

u Similar to LL/SC but can have:
o A large sequence of instructions (as much as can fit in the pipeline)
o Multiple memory accesses to various addresses
o Alternative handler to run when aborting

u Processor commits all memory operations atomically
u May abort transaction
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Hardware Changes for TM

u Assume no conflicts occur
u Record reads and writes between xbegin and xend
u Keep all speculative state in the pipeline (as before)

u Check for conflicts in the data structure
u Coherence indicating data race (R/W, W/R, W/W)
u E.g., BusRd matches a ST in the LSQ (R/W)
u E.g., BusRdX or BusInv matching a LD (W/R) or a ST (W/W) in LSQ

u Other corner cases to roll back
u Cache eviction for blocks touched by critical section

u On conflict, execute specified recovery code
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Recovery Mechanism in TM

u TM does not have locking semantics…

u Therefore, rely on user code for recovery
u Once again, push behavior to the user
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Example With TM

u xbegin starts transaction
u HW begins speculating

u Memory R/W are recorded 
in the atomic section

u Check for conflicts on xend

u Conflicts trap to recover

xbegin recover
 
ld r1, mem[obj] 
addi r1, #10
st   mem[obj], r1

xend // commit trans.

recover:
br rec_handler
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TM

u Processor sees XBEGIN, starts speculating

ROB

XBEGIN

…

LD/ST 
queue

…
…
…
…
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ROB

LD OBJ

… LD OBJ

LD/ST 
queue

TM

XBEGIN
…
…
…

u Processor sees XBEGIN, starts speculating
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TM

u LD OBJ & ST OBJ hit in the cache
u All state remains in the pipeline
u Wait until we see XEND to start committing

ROB

XEND

XBEGIN

ST OBJ
LD OBJ

LD/ST 
queue

ST OBJ
ADD
LD OBJ
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TM

u Pipeline retires if no intervening coherence traffic
u e.g., BusRdX/BusInv/BusRd for OBJ 
u The entire critical section retires atomically

u When XEND retires, speculation is successful

ROB

XEND

LD/ST 
queue
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TM Rollback

u OBJ is in “S” state
u ST OBJ misses (BusInv to get to “M” state)
u Pipeline blocks waiting for permission to store

ROB

XBEGIN rec LD OBJ      cache hit
ST OBJ miss

LD/ST 
queue

XEND
ST OBJ
ADD
LD OBJ
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LD OBJ      cache hit
ST OBJ miss

TM Rollback

u BusInv arrives for OBJ
u Another thread is writing to OBJ

u Abort transaction
u Jump to recover routine

ROB

XBEGIN

LD/ST 
queue

XEND
ST OBJ
ADD
LD OBJ
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TM Rollback

u All instructions flushed
u Execution jumps to label “recover” given by user

ROB

BR

XBEGIN LD OBJ
ST OBJ

LD/ST 
queue

XEND
ST OBJ
ADD
LD OBJF
lu

sh
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TM Recovery

u Run from recovery code

ROB

BR

LD/ST 
queue
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TM Implementations

u Several decades worth of research
u Originally most done in software
u Software overhead for detecting conflicts is high
u Many HW and HW/SW hybrids have emerged
u See the book by Rajwar & Larus

u Real implementations in Intel, IBM CPUs
u Keep speculative data in cache hierarchies (not just pipeline)
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Extension: Data in Caches

u Recall: we assumed addresses tracked in LSQ
u How can we extend that to storing it in the caches and store buffer?

u Simple idea: add some bits to mark certain cache lines as speculative
u Same coherence mechanism to detect conflicts

Cache TagCoherence
State

Speculative Bit
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Detection Policy

u Check for conflict at every operation
u Use coherence actions (e.g., BusRd, BusRdX, BusInv)
u Intuition: “I suspect conflicts might happen, so always check to see if one has 

occurred upon each coherence operation.”

u There are other options, TM open research area
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A note on Software Transactional Memory

u SW for speculation, buffering and detection in
u No hardware support
u Huge in the academic community
u Mostly a research testbed before HTM emerged
u Too slow for real-world deployment
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Point to Point Synchronization
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u Example: using a shared variable as a flag

u Assumes Sequential Consistency!
u Recall all of the problems that happen in real systems

Recall: Flag-Based Synchronization

// val = done = 0;

val = 
expensive_func();
done = 1;

// done = 0;

while(!done){ }
... = val; 

Thread 0 Thread 1
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u Flags mark updates to data, barriers introduce planned “stalls” in 
threads
u e.g., Wait for all threads to read their input before start

u Technically equivalent, barriers use flags
u Flags also have no built-in support for thread blocking

u You likely used these in Assignment 2!
u e.g., After each time step, threads wait for each other

Barriers
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u Information we need for a centralized barrier:
u How many threads to wait for
u Flag to tell threads to proceed or wait
u And… a lock to protect it all

Implementing Barriers

struct Barrier_t {
Lock aLock;
int counter;
int flag;

};
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u Conceptual algorithm:
1. Clear the flag, tell all incoming threads to wait
2. Every arriving thread increments counter
3. Last thread sees counter == num_threads
4. Set the flag, all threads leave

Implementing Barriers
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u Exercise: Does this work?
u Hint: think about two barriers in a row

First try: Centralized Barrier

void thrBarrier(Barrier_t* b, int num_threads) {
lock(b->aLock);
if(b->counter == 0)

b->flag = 0;                   // (Step 1)
int num_waiting = ++(b->counter);  // (Step 2)
if( num_waiting == num_threads ) { // (Step 3)

unlock(b->aLock);
b->counter = 0;
b->flag = 1; // (Step 4)

} else {
unlock(b->aLock);
while( b->flag == 0 ); // spin

}
}
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u Exercise: Does this work?
u Answer: No! A thread can set the flag, and continue on to the next barrier, 

which will clear the flag.
u Not all other threads might have “left” the first one!

Therefore, this might deadlock.

First try: Centralized Barrier

...
thrBarrier(aBarrier, Nthreads);

// flag is set, but not all threads may see it!
...
thrBarrier(aBarrier, Nthreads);

// flag cleared, no chance for others to leave
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u The problem was the lead thread resetting flag while all others 
spinning on it
u Toggled 0 → 1 → 0, but others may have missed that

u Keep a private copy of flag, first thread to arrive writes its private copy
u Prevents the problem of missing the write

Solution: Private Sense Reversal

struct Barrier_t {
Lock aLock;
int counter;
int flag;

};
int local_sense = 0; // private
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u Recommended: draw this out and convince yourself that it works!

Sense Reversal Implementation

void senseBarrier(Barrier_t* b, int num_threads) {
local_sense = !(local_sense);      // (Step 1)
lock(b->aLock);
int num_waiting = ++(b->counter);  // (Step 2)

if( num_waiting == num_threads ) { // (Step 3)
unlock(b->aLock);
b->counter = 0;
b->flag = local_sense; // (Step 4)

} else {
unlock(b->aLock);
while( b->flag != local_sense ); // spin

}
}
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u O(P) traffic on a bus:
u 2P write transactions to obtain barrier lock and update counter
u 2 write transactions to write flag + reset counter
u P-1 transactions to read updated flag

u Still we serialize on a single shared variable
u Latency is O(P)
u Can we do better?

Centralized Barrier Traffic Analysis
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u Combining trees make better use of parallelism in interconnect 
topologies
u log(P) latency
u Strategy makes less sense on a bus 

(all traffic still serialized on single shared bus)

Combining Trees

Centralized Barrier Combining Tree Barrier
High 
contention!
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u Acquire: when processor arrives at barrier, performs atomicIncr() of 
parent counter
u Process recurses to root

u Release: beginning from root, notify children of release 

Combining Trees

Centralized Barrier Combining Tree Barrier
High 
contention!
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u OMP has support for all of the synchronization primitives we talked 
about in this lecture
u Locks, atomic operations (L6) and barriers

Synchronization in OpenMP
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u Critical Section (using Locks)
u A portion of code that only 1 thread at a time may execute

u Atomic Execution
u Protects a single variable update

Critical Sections and Atomics

#pragma omp critical
{
  /* Critical code here */
}

#pragma omp atomic
/* Update statement here */
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u Barrier
u Performs a barrier synchronization between all the threads in a team at a 

given point
u All threads wait at the barrier point and only continue when all threads have 

reached the barrier point

OMP Barriers

#pragma omp parallel { 
   int result = heavy_computation_part1();
   
   #pragma omp atomic
   sum += result;
   
   #pragma omp barrier
   heavy_computation_part2(sum); 
} 
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u Barrier
u Performs a barrier synchronization between all the threads in a team at a 

given point
u All threads wait at the barrier point and only continue when all threads have 

reached the barrier point

OMP Barriers

#pragma omp parallel { 
   int result = heavy_computation_part1();
   
   #pragma omp atomic
   sum += result;
   
   #pragma omp barrier
   heavy_computation_part2(sum); 
} 
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u Single-threaded region within a parallel region
u master and single directives

Single-Threaded Code

#pragma omp single
{
  /* Only executed once */
}

#pragma omp master
{
  /* Only executed by master*/
}
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u A lock in OpenMP is an object (omp_lock_t)
u At most one thread can hold it at a time

u omp_init_lock(omp_lock_t *)
u Initializes the lock variable passed in
u The lock is not held by the initializing thread

u omp_destroy_lock(omp_lock_t*)
u Disassociates the given lock variable from any locks

OpenMP Locks
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u A lock in OpenMP is an object (omp_lock_t)
u At most one thread can hold it at a time

u omp_set_lock(omp_lock_t*)
u Waits until the lock is available, then acquires the lock

u omp_unset_lock(omp_lock_t*)
u Unsets (releases) the lock

u omp_test_lock(omp_lock_t*)
u Attempts to set a lock, but does not block if the lock is unavailable

OpenMP Locks
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OpenMP Locks - Example

omp_lock_t lock;
omp_init_lock(&lock);

#pragma omp parallel num_threads(4)
{
  int tid = omp_get_thread_num( );
  int i;
  for (i = 0; i < 3; ++i){
    omp_set_lock(&lock);
    printf("T %d: begin locked region\n", tid);
    printf ("T %d: end locked region\n", tid);
    omp_unset_lock(&lock);
  }
}

omp_destroy_lock(&lock); 
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OpenMP Locks - Example

omp_lock_t lock;
omp_init_lock(&lock);

#pragma omp parallel num_threads(4)
{
  int tid = omp_get_thread_num( );
  int i, j;
  for (i = 0; i < 5; ++i){
    omp_set_lock(&lock);
    printf_s("T%d – begin locked region\n", tid);
    printf_s("T%d - end locked region\n", tid);
    omp_unset_lock(&lock);
  }
}

omp_destroy_lock(&lock); 

T 0: begin locked region
T 0: end locked region
T 0: begin locked region
T 0: end locked region
T 2: begin locked region
T 2: end locked region
T 2: begin locked region
T 2: end locked region
T 1: begin locked region
T 1: end locked region
T 1: begin locked region
T 1: end locked region
T 3: begin locked region
T 3: end locked region
T 3: begin locked region
T 3: end locked region
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u HW can enable declarative concurrency control
o Transforms implementation (locks) into intention (transactions)
o Programs can more easily manage concurrency

u Barriers, an example of point-to-point synch.
u Use locks as a part of their implementation
u Need to be careful of correctness, and traffic

Summary


