

Concurrency Control

Spring 2025

Arkaprava Basu & Babak Falsafi

parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

Where are We?

M	T	W	T	F
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar
31-Mar	1-Apr	2-Apr	3-Apr	4-Apr
7-Apr	8-Apr	9-Apr	10-Apr	11-Apr
14-Apr	15-Apr	16-Apr	17-Apr	18-Apr
21-Apr	22-Apr	23-Apr	24-Apr	25-Apr
28-Apr	29-Apr	30-Apr	1-May	2-May
5-May	6-May	7-May	8-May	9-May
12-May	13-May	14-May	15-May	16-May
19-May	20-May	21-May	22-May	23-May
26-May	27-May	28-May	29-May	30-May

- ◆ **Concurrency Control**
 - ◆ Transactional memory
 - ◆ Point-to-point synchronization
 - ◆ Barriers
- ◆ **Exercise session**
 - ◆ Free session
 - ◆ Ask doubts and questions to TAs and SAs
- ◆ **Next Tuesday:**
 - ◆ Midterm exam

Correction: Vectorized DAXPY Loop

◆ Assumption:

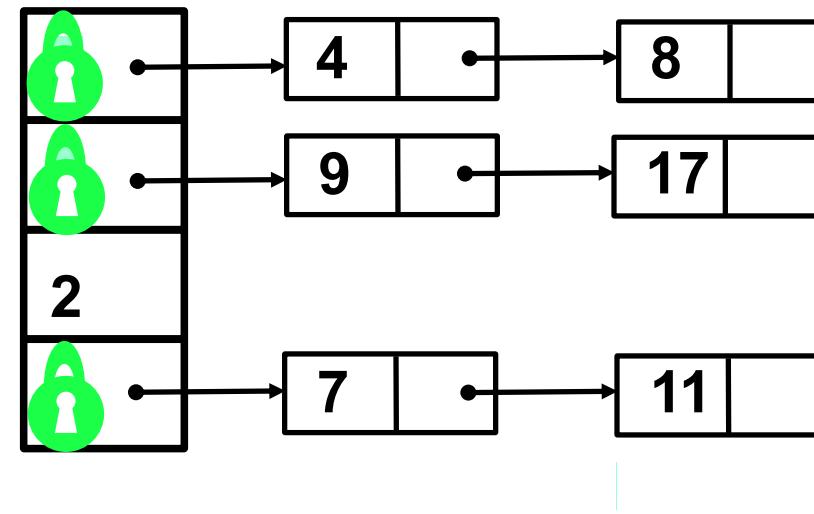
- Compute 64 elements at a time
- Elements are double-precision

◆ How many serialized cache misses? (w/ 64B cache lines)

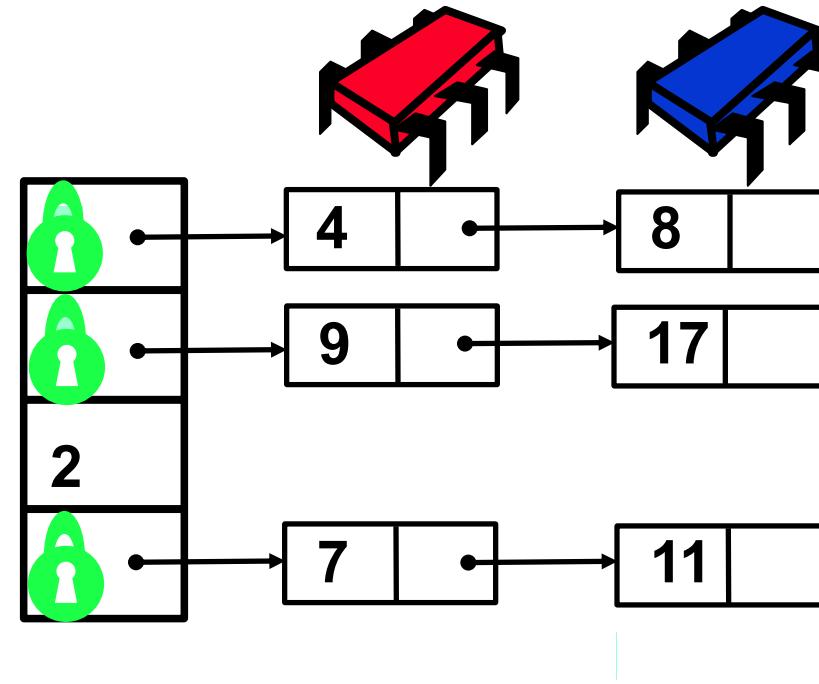
- Vector load brings 64 elements at a time, equivalent to 8 cache lines
- 64*8B is the total number of bytes loaded, not the number of elements
- ~~$2 * (1024 / (64 * 8)) = 4$~~
- $2 * (1024 / 64) = 32$

```
; x[] -> r2, y[] -> r3
; a -> r4,
; &x[n] -> r5

loop:
    lw.v      v1, 0(r2)      ; load x[i]
    lw.v      v2, 0(r3)      ; load y[i]
    mul.sv   v1, r4, v1      ; a*x[i]
    add.v    v1, v1, v2      ; ... + y[i]
    sw.v      v1, 0(r3)      ; store y[i]
    add      r2, r2, 512    ; 64*8
    add      r3, r3, 512
    bne     r2, r5, loop
```


Difficulties of Locking

- ◆ Could build lock-free data structures
 - ◆ Not easy to reason about and program
- ◆ Better idea: hardware to detect contention!
 - ◆ No explicit lock ordering in the code
 - ◆ Analogy: “I didn’t do it, no one saw me doing it!”
- ◆ Connection to Lec.7.1 (slide 15)
 - ◆ LL/SC uses cache coherence to detect writes
 - ◆ Why not extend it to the whole critical section?


Speculative Lock per Hash Bucket

Simultaneous Modification Without Locking

Declarative Atomicity

- ◆ Wouldn't it be nice if...

Instead of writing difficult locking code, simply tell the runtime to make a section atomic?

- ◆ Similar principle:
 - ◆ Programmer declares a variable so its updates will be atomic, language runtime figures it all out
 - ◆ No need for manual memory fences or synch. variables
- ◆ Hardware Transactional Memory (HTM) does this

Declarative/Transactional Example

Lock-based Code

```
void editHash(HashTbl tbl,  
             int key) {  
    synchronized(tbl) {  
        // read objects  
        HashObj obj = tbl.get(key);  
        // update  
        obj.update();  
    }  
}
```

Transactional Code

```
void editHash(HashTbl tbl,  
             int key) {  
    atomic {  
        // read objects  
        HashObj obj = tbl.get(key);  
        // update  
        obj.update();  
    }  
}
```


- ◆ Warning! This is pseudo-code
- ◆ Atomic construct (not just a single statement, but a full code section)
 - ◆ Code executes atomically
 - ◆ All side-effects either entirely visible or not visible at all

Transactional Processing (Databases)

- ◆ Used historically in databases (next semester)
 - ◆ Concurrency for data on disk (cached in memory)
 - ◆ In software
- ◆ Atomicity
 - ◆ Upon transaction commit, all writes take effect at once
 - ◆ On transaction abort, no writes take effect
- ◆ Isolation
 - ◆ No other processor can observe writes before commit
- ◆ Serializability
 - ◆ Transactions seem to commit in a single serial order
 - ◆ The exact order is not guaranteed

Transactional Memory (TM)

- ◆ Memory (not disk) transactions
 - ◆ An atomic & isolated sequence of memory accesses
 - ◆ Supported in hardware by processor & cache hierarchy
- ◆ Atomicity
 - ◆ Upon commit, all memory writes take effect at once
 - ◆ On abort, none of the writes take effect
- ◆ Isolation
 - ◆ No other processor can observe writes before commit
- ◆ Serializability
 - ◆ Transactions seem to commit in a single serial order
 - ◆ The exact order is not guaranteed

Transactions Are Composable

```
void editHash2(HashTbl tbl, int keyA, int keyB)
{
    atomic {
        // read objects
        HashObj objA = tbl.get(keyA);
        HashObj objB = tbl.get(keyB);
        // update
        objA.update(objB);
        objB.update(objA);
    }
}
```

- ◆ Transactions compose gracefully
 - ◆ Programmer declares global intent (atomic transfer)
 - ◆ No need to know about the implementation
- ◆ Outermost transaction defines atomicity boundary

Intel Haswell Transactional Memory

- ◆ New instructions for
 - ◆ `xbegin`: starts transaction, takes pointer to “fallback address” in case of abort
 - ◆ `xend`: ends transaction
 - ◆ `xabort`: software-initiated transaction abort
- ◆ Similar to LL/SC but can have:
 - A large sequence of instructions (as much as can fit in the pipeline)
 - Multiple memory accesses to various addresses
 - Alternative handler to run when aborting
- ◆ Processor commits all memory operations atomically
 - ◆ May abort transaction

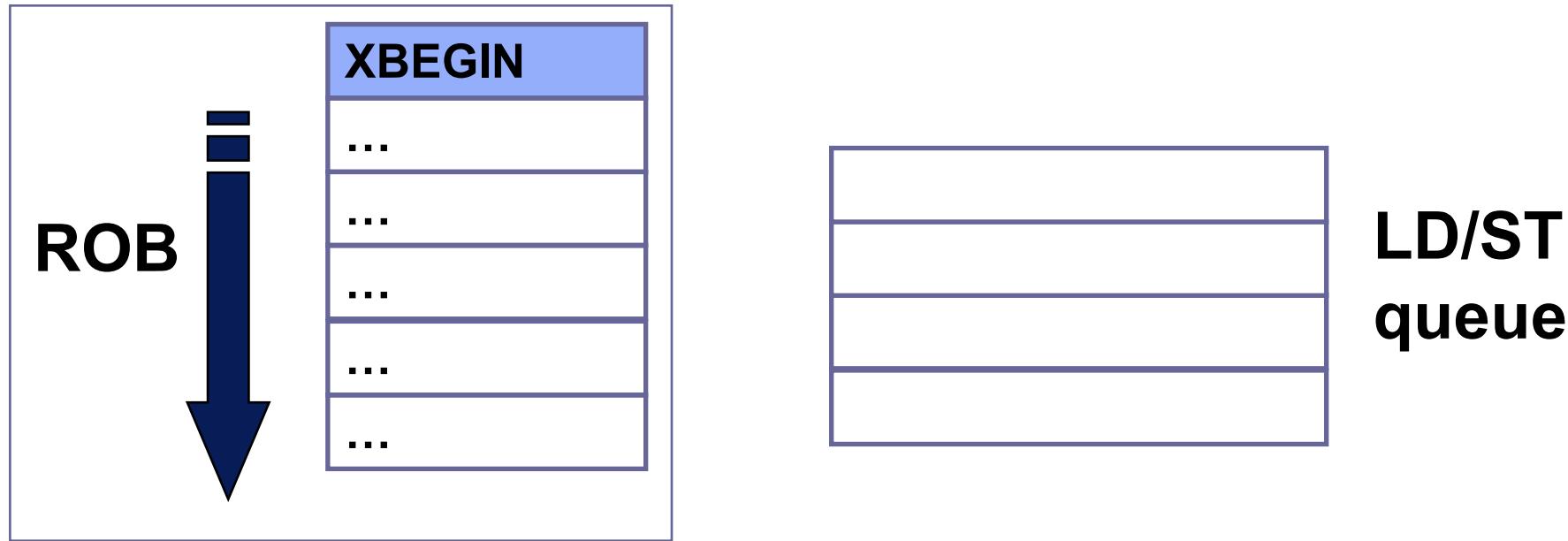
Hardware Changes for TM

- ◆ Assume no conflicts occur
 - ◆ Record reads and writes between $xbegin$ and $xend$
 - ◆ Keep all speculative state in the pipeline (as before)
- ◆ Check for conflicts in the data structure
 - ◆ Coherence indicating data race (R/W, W/R, W/W)
 - ◆ E.g., BusRd matches a ST in the LSQ (R/W)
 - ◆ E.g., BusRdX or BusInv matching a LD (W/R) or a ST (W/W) in LSQ
- ◆ Other corner cases to roll back
 - ◆ Cache eviction for blocks touched by critical section
- ◆ On conflict, execute specified recovery code

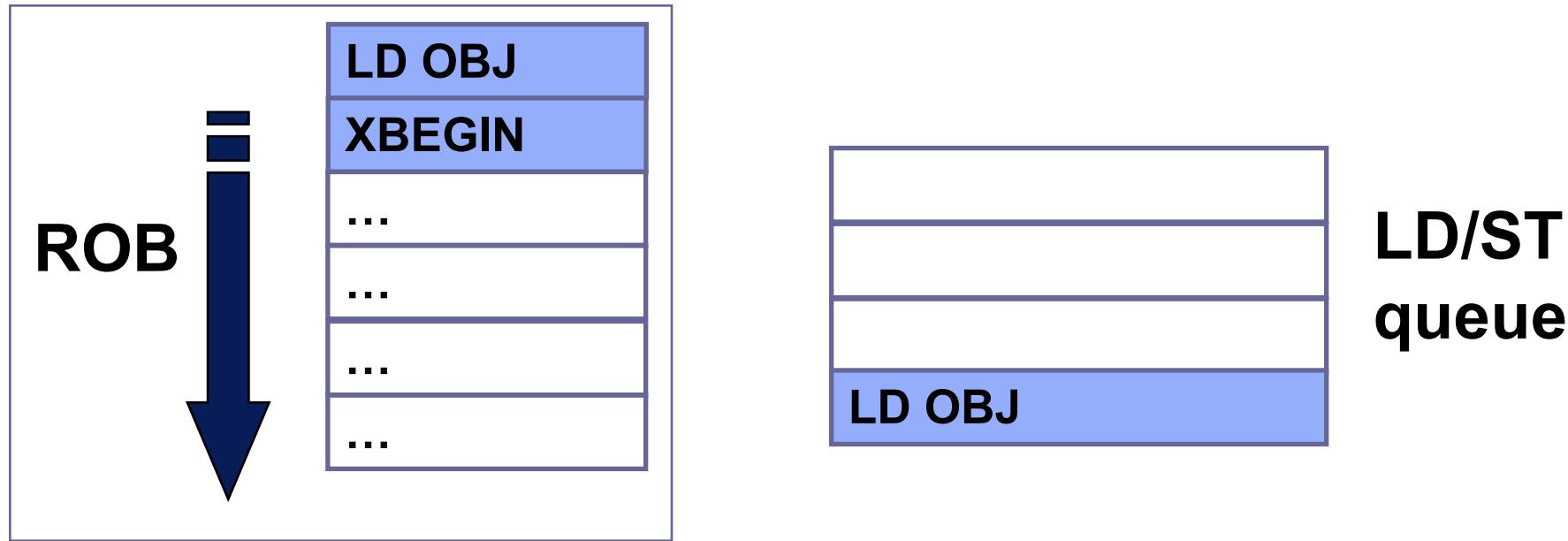
Recovery Mechanism in TM

- ◆ TM does not have locking semantics...
- ◆ Therefore, rely on user code for recovery
 - ◆ Once again, push behavior to the user

Example With TM

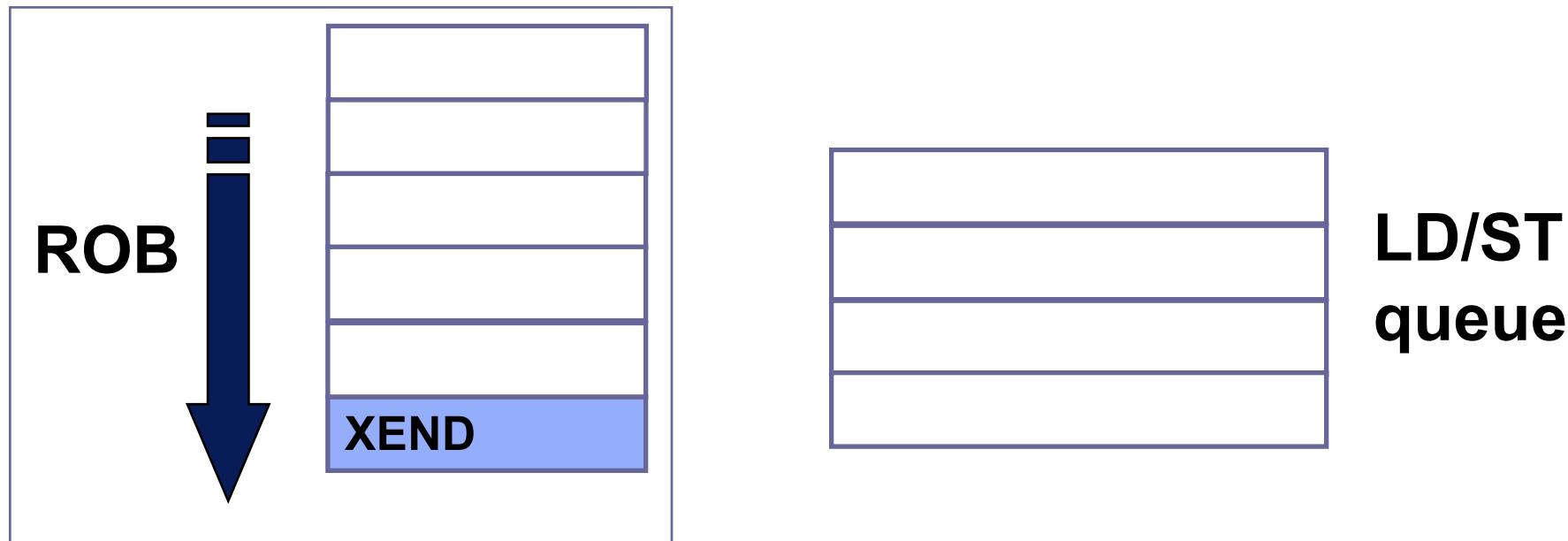

```
xbegin      recover

ld  r1, mem[obj]
addi r1, #10
st  mem[obj], r1

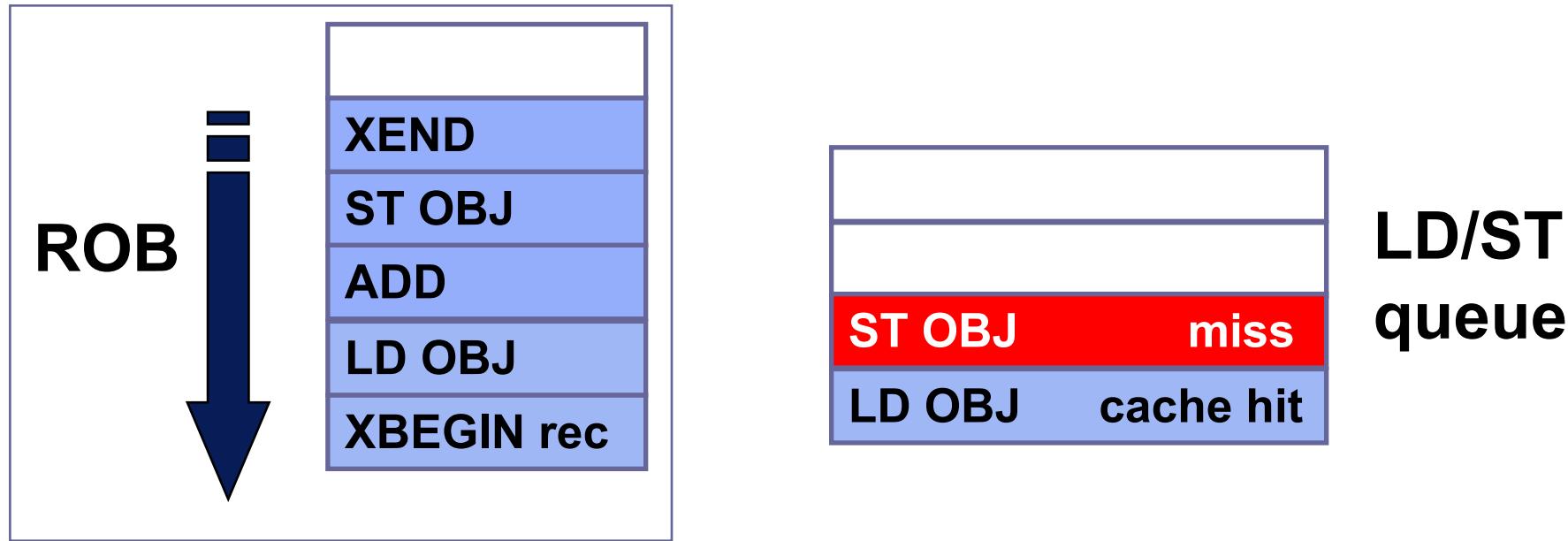

xend // commit trans.

recover:
br  rec_handler
```

- ◆ `xbegin` starts transaction
 - ◆ HW begins speculating
- ◆ Memory R/W are recorded in the atomic section
- ◆ Check for conflicts on `xend`
- ◆ Conflicts trap to `recover`

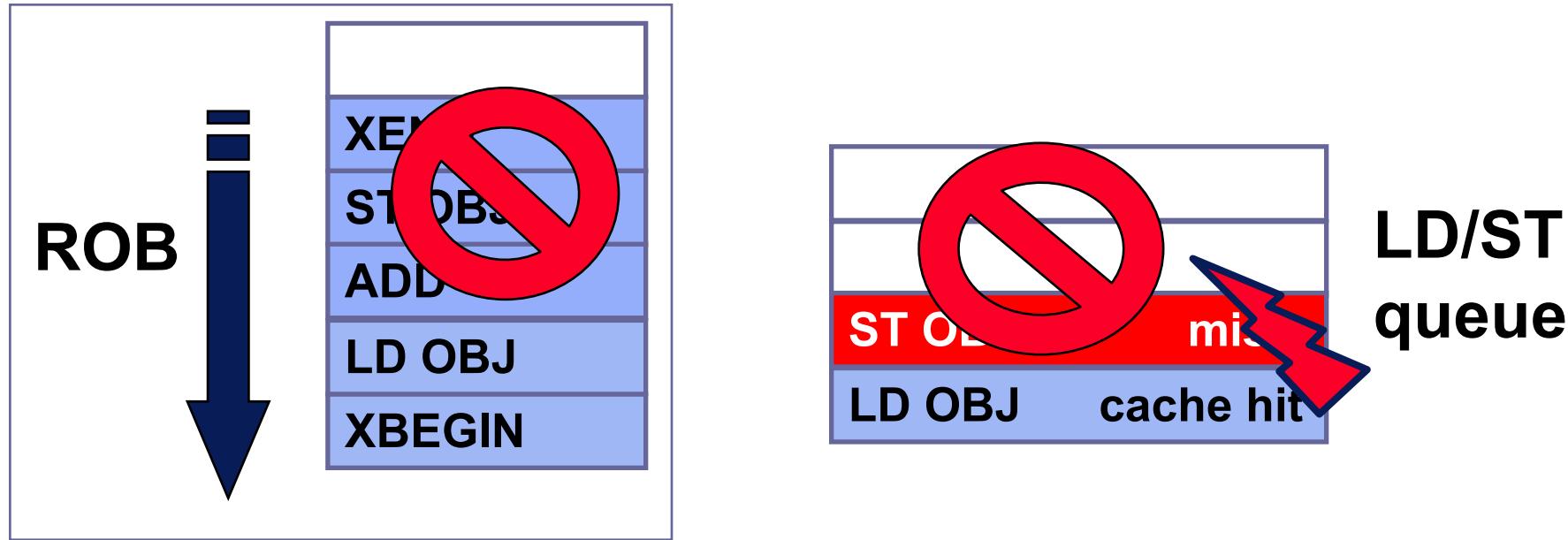

- ◆ Processor sees XBEGIN, starts speculating

- ◆ Processor sees XBEGIN, starts speculating

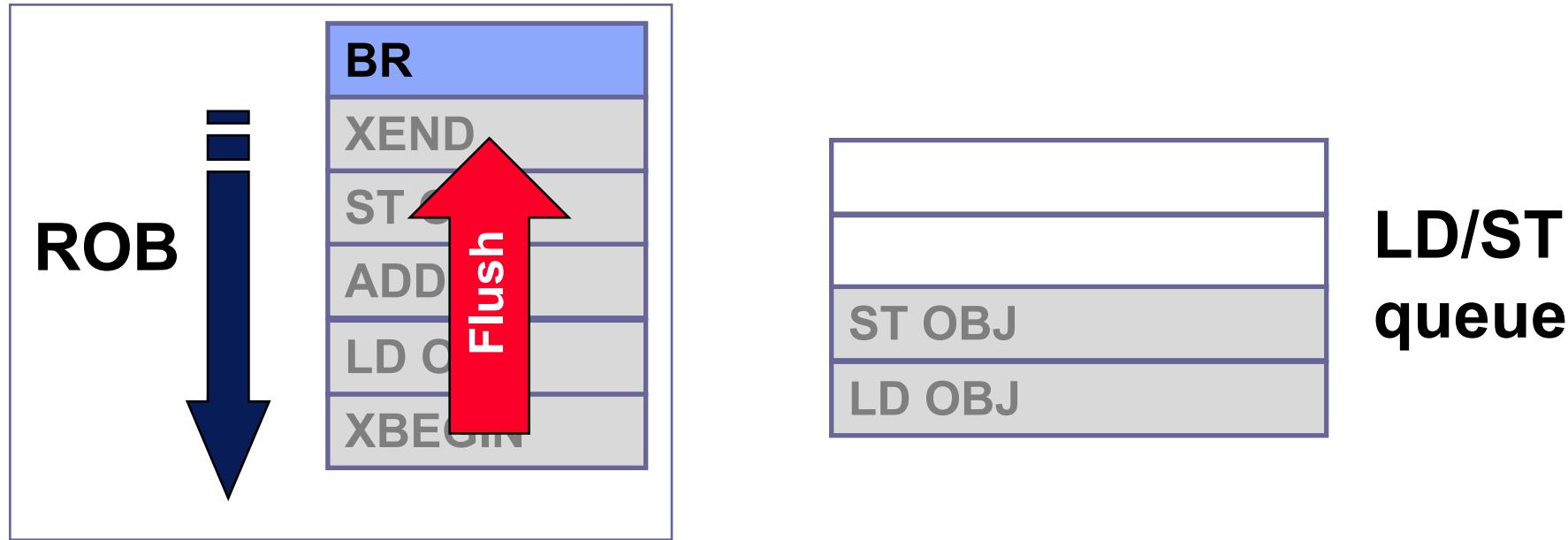


- ◆ LD OBJ & ST OBJ hit in the cache
- ◆ All state remains in the pipeline
- ◆ Wait until we see XEND to start committing

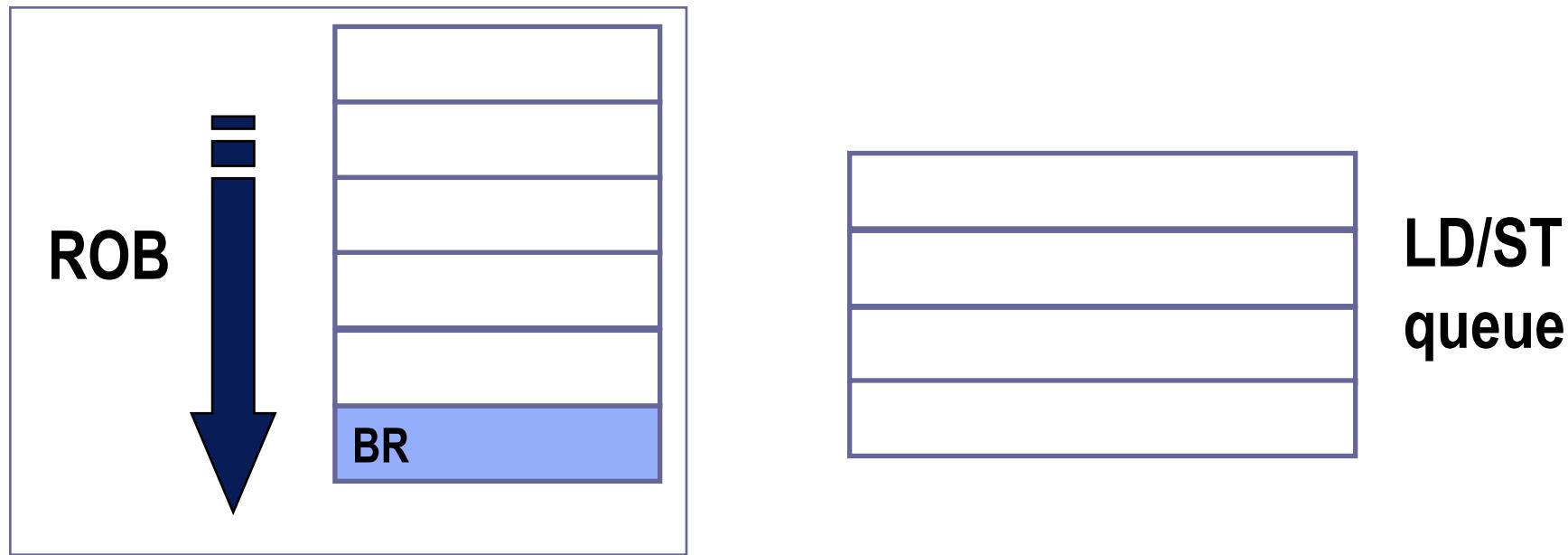
- ◆ Pipeline retires if no intervening coherence traffic
 - ◆ e.g., BusRdX/BusInv/BusRd for OBJ
 - ◆ The entire critical section retires atomically
- ◆ When XEND retires, speculation is successful


TM Rollback

- ◆ OBJ is in “S” state
- ◆ ST OBJ misses (BusInv to get to “M” state)
- ◆ Pipeline blocks waiting for permission to store


TM Rollback

- ◆ BusInv arrives for OBJ
 - ◆ Another thread is writing to OBJ
- ◆ Abort transaction
- ◆ Jump to recover routine

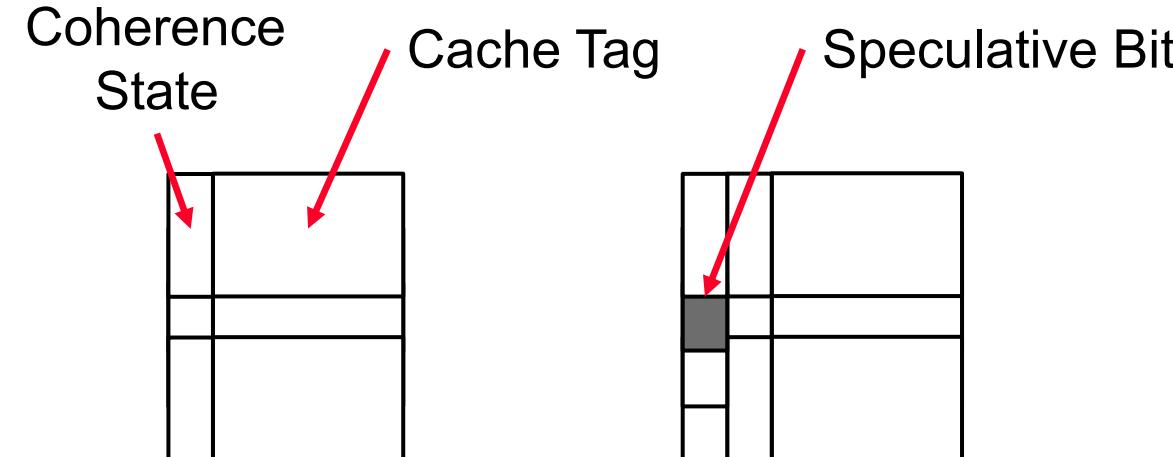

TM Rollback

- ◆ All instructions flushed
- ◆ Execution jumps to label “recover” given by user

TM Recovery

- ◆ Run from recovery code

TM Implementations



- ◆ Several decades worth of research
 - ◆ Originally most done in software
 - ◆ Software overhead for detecting conflicts is high
 - ◆ Many HW and HW/SW hybrids have emerged
 - ◆ See the book by Rajwar & Larus
- ◆ Real implementations in Intel, IBM CPUs
 - ◆ Keep speculative data in cache hierarchies (not just pipeline)

Extension: Data in Caches

- ◆ Recall: we assumed addresses tracked in LSQ
 - ◆ How can we extend that to storing it in the caches and store buffer?
- ◆ Simple idea: add some bits to mark certain cache lines as speculative
 - ◆ Same coherence mechanism to detect conflicts

Detection Policy

- ◆ Check for conflict at every operation
 - ◆ Use coherence actions (e.g., BusRd, BusRdX, BusInv)
 - ◆ Intuition: “I suspect conflicts might happen, so always check to see if one has occurred upon each coherence operation.”
- ◆ There are other options, TM open research area

A note on Software Transactional Memory

- ◆ SW for speculation, buffering and detection in
 - ◆ No hardware support
 - ◆ Huge in the academic community
 - ◆ Mostly a research testbed before HTM emerged
 - ◆ Too slow for real-world deployment

Point to Point Synchronization

Recall: Flag-Based Synchronization

- ◆ Example: using a shared variable as a flag

Thread 0

```
// val = done = 0;  
  
val =  
expensive_func();  
done = 1;
```

Thread 1

```
// done = 0;  
  
while (!done) { }  
... = val;
```

- ◆ Assumes Sequential Consistency!
 - ◆ Recall all of the problems that happen in real systems

Barriers

- ◆ Flags mark updates to data, barriers introduce planned “stalls” in threads
 - ◆ e.g., Wait for all threads to read their input before start
- ◆ Technically equivalent, barriers use flags
 - ◆ Flags also have no built-in support for thread blocking
- ◆ You likely used these in Assignment 2!
 - ◆ e.g., After each time step, threads wait for each other

Implementing Barriers

- ◆ Information we need for a centralized barrier:
 - ◆ How many threads to wait for
 - ◆ Flag to tell threads to proceed or wait
 - ◆ And... a lock to protect it all

```
struct Barrier_t {  
    Lock aLock;  
    int counter;  
    int flag;  
};
```

Implementing Barriers

- ◆ Conceptual algorithm:

1. Clear the flag, tell all incoming threads to wait
2. Every arriving thread increments counter
3. Last thread sees `counter == num_threads`
4. Set the flag, all threads leave

First try: Centralized Barrier

- ◆ Exercise: Does this work?
 - ◆ Hint: think about two barriers in a row

```
void thrBarrier(Barrier_t* b, int num_threads) {  
    lock(b->aLock);  
    if(b->counter == 0)  
        b->flag = 0;                                // (Step 1)  
    int num_waiting = ++(b->counter); // (Step 2)  
    if( num_waiting == num_threads ) { // (Step 3)  
        unlock(b->aLock);  
        b->counter = 0;  
        b->flag = 1;                                // (Step 4)  
    } else {  
        unlock(b->aLock);  
        while( b->flag == 0 ); // spin  
    }  
}
```

First try: Centralized Barrier

- ◆ Exercise: Does this work?

- ◆ Answer: No! A thread can set the flag, and continue on to the next barrier, which will clear the flag.
- ◆ Not all other threads might have “left” the first one!
Therefore, this might deadlock.

```
...
thrBarrier(aBarrier, Nthreads);
    // flag is set, but not all threads may see it!
...
thrBarrier(aBarrier, Nthreads);
    // flag cleared, no chance for others to leave
```

Solution: Private Sense Reversal

- ◆ The problem was the lead thread resetting flag while all others spinning on it
 - ◆ Toggled 0 → 1 → 0, but others may have missed that
- ◆ Keep a private copy of flag, first thread to arrive writes its private copy
 - ◆ Prevents the problem of missing the write

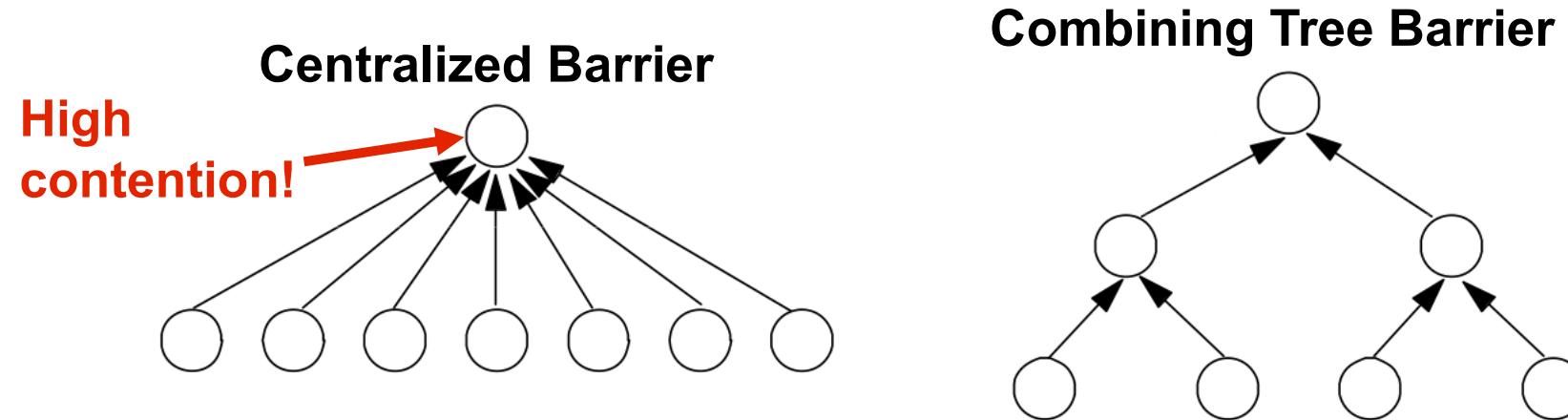
```
struct Barrier_t {  
    Lock aLock;  
    int counter;  
    int flag;  
};  
int local_sense = 0; // private
```

Sense Reversal Implementation

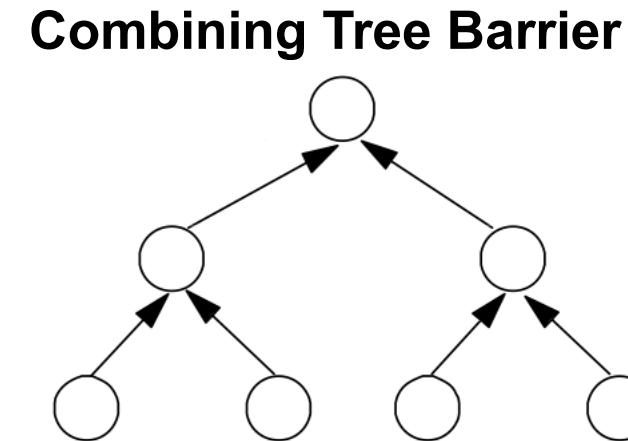
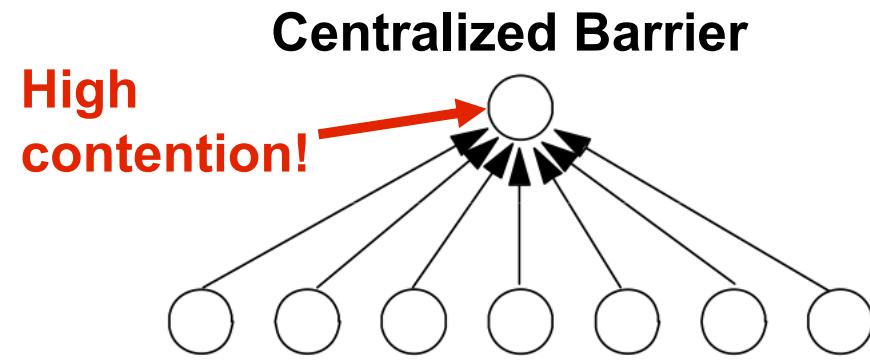
- ◆ Recommended: draw this out and convince yourself that it works!

```
void senseBarrier(Barrier_t* b, int num_threads) {
    local_sense = !(local_sense);           // (Step 1)
    lock(b->aLock);
    int num_waiting = ++(b->counter);    // (Step 2)

    if( num_waiting == num_threads ) { // (Step 3)
        unlock(b->aLock);
        b->counter = 0;
        b->flag = local_sense;           // (Step 4)
    } else {
        unlock(b->aLock);
        while( b->flag != local_sense ); // spin
    }
}
```


Centralized Barrier Traffic Analysis

- ◆ $O(P)$ traffic on a bus:
 - ◆ 2P write transactions to obtain barrier lock and update counter
 - ◆ 2 write transactions to write flag + reset counter
 - ◆ $P-1$ transactions to read updated flag
- ◆ Still we serialize on a single shared variable
 - ◆ Latency is $O(P)$
 - ◆ Can we do better?



Combining Trees

- ◆ Combining trees make better use of parallelism in interconnect topologies
 - ◆ $\log(P)$ latency
 - ◆ Strategy makes less sense on a bus (all traffic still serialized on single shared bus)

Combining Trees

- ◆ Acquire: when processor arrives at barrier, performs atomicIncr() of parent counter
 - ◆ Process recurses to root
- ◆ Release: beginning from root, notify children of release

Synchronization in OpenMP

- ◆ OMP has support for all of the synchronization primitives we talked about in this lecture
 - ◆ Locks, atomic operations (L6) and barriers

Critical Sections and Atomics

- ◆ Critical Section (using Locks)
 - ◆ A portion of code that only 1 thread at a time may execute

```
#pragma omp critical
{
    /* Critical code here */
}
```

- ◆ Atomic Execution
 - ◆ Protects a single variable update

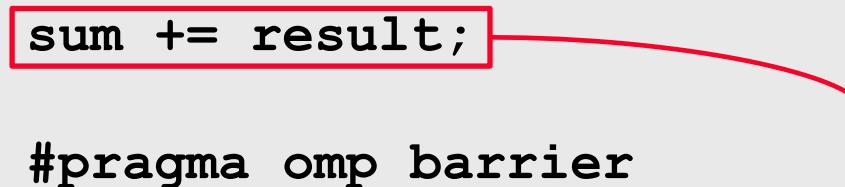
```
#pragma omp atomic
/* Update statement here */
```

OMP Barriers

◆ Barrier

- ◆ Performs a barrier synchronization between all the threads in a team at a given point
- ◆ All threads wait at the barrier point and only continue when all threads have reached the barrier point

```
#pragma omp parallel {  
    int result = heavy_computation_part1();  
  
    #pragma omp atomic  
    sum += result;  
  
    #pragma omp barrier  
    heavy_computation_part2(sum);  
}
```


OMP Barriers

◆ Barrier

- ◆ Performs a barrier synchronization between all the threads in a team at a given point
- ◆ All threads wait at the barrier point and only continue when all threads have reached the barrier point

```
#pragma omp parallel {  
    int result = heavy_computation_part1();  
  
    #pragma omp atomic  
    sum += result;  
  
    #pragma omp barrier  
    heavy_computation_part2(sum);  
}
```


Single-Threaded Code

- ◆ Single-threaded region within a parallel region
 - ◆ `master` and `single` directives

```
#pragma omp single
{
    /* Only executed once */
}
```

```
#pragma omp master
{
    /* Only executed by master*/
}
```

OpenMP Locks

- ◆ A lock in OpenMP is an object (`omp_lock_t`)
 - ◆ At most one thread can hold it at a time
- ◆ `omp_init_lock(omp_lock_t *)`
 - ◆ Initializes the lock variable passed in
 - ◆ The lock is not held by the initializing thread
- ◆ `omp_destroy_lock(omp_lock_t *)`
 - ◆ Disassociates the given lock variable from any locks

OpenMP Locks

- ◆ A lock in OpenMP is an object (`omp_lock_t`)
 - ◆ At most one thread can hold it at a time
- ◆ `omp_set_lock(omp_lock_t*)`
 - ◆ Waits until the lock is available, then acquires the lock
- ◆ `omp_unset_lock(omp_lock_t*)`
 - ◆ Unsets (releases) the lock
- ◆ `omp_test_lock(omp_lock_t*)`
 - ◆ Attempts to set a lock, but does not block if the lock is unavailable

OpenMP Locks - Example

```
omp_lock_t lock;
omp_init_lock(&lock);

#pragma omp parallel num_threads(4)
{
    int tid = omp_get_thread_num( );
    int i;
    for (i = 0; i < 3; ++i){
        omp_set_lock(&lock);
        printf("T %d: begin locked region\n", tid);
        printf ("T %d: end locked region\n", tid);
        omp_unset_lock(&lock);
    }
}

omp_destroy_lock(&lock);
```

OpenMP Locks - Example

```
T 0: begin locked region
T 0: end locked region
T 0: begin locked region
T 0: end locked region
T 2: begin locked region
T 2: end locked region
T 2: begin locked region
T 2: end locked region
T 1: begin locked region
T 1: end locked region
T 1: begin locked region
T 1: end locked region
T 3: begin locked region
T 3: end locked region
T 3: begin locked region
T 3: end locked region
```

Summary

- ◆ HW can enable declarative concurrency control
 - Transforms implementation (locks) into intention (transactions)
 - Programs can more easily manage concurrency
- ◆ Barriers, an example of point-to-point synch.
 - ◆ Use locks as a part of their implementation
 - ◆ Need to be careful of correctness, and traffic