
CS302 – Spring 2025 Lec.7.2 - Slide 1

CS302

Concurrency Control

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 – Spring 2025 Lec.7.2 - Slide 2

u Concurrency Control
u Transactional memory
u Point-to-point synchronization
u Barriers

u Exercise session
u Free session
u Ask doubts and questions to

TAs and SAs

u Next Tuesday:
u Midterm exam

Where are We?
M T W T F

17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.7.2 - Slide 3

Correction: Vectorized DAXPY Loop

u Assumption:
o Compute 64 elements at a time
o Elements are double-precision

u How many serialized cache
misses? (w/ 64B cache lines)
o Vector load brings 64 elements at a

time, equivalent to 8 cache lines
o 64*8B is the total number of bytes

loaded, not the number of elements
o 2 * (1024 / (64*8)) = 4
o 2 * (1024 / 64) = 32

; x[] -> r2, y[] -> r3
; a -> r4,
; &x[n] -> r5

loop:
 lw.v v1, 0(r2) ; load x[i]
 lw.v v2, 0(r3) ; load y[i]
 mul.sv v1, r4, v1 ; a*x[i]
 add.v v1, v1, v2 ; … + y[i]
 sw.v v1, 0(r3) ; store y[i]
 add r2, r2, 512 ; 64*8
 add r3, r3, 512
 bne r2, r5, loop

CS302 – Spring 2025 Lec.7.2 - Slide 4

Difficulties of Locking

u Could build lock-free data structures
u Not easy to reason about and program

u Better idea: hardware to detect contention!
u No explicit lock ordering in the code
u Analogy: “I didn’t do it, no one saw me doing it!”

u Connection to Lec.7.1 (slide 15)
u LL/SC uses cache coherence to detect writes
u Why not extend it to the whole critical section?

CS302 – Spring 2025 Lec.7.2 - Slide 5

0

1

2

3

4 8

9

7 11

17

Speculative Lock per Hash Bucket

CS302 – Spring 2025 Lec.7.2 - Slide 6

0

1

2

3

4 8

9

7 11

17

Simultaneous Modification Without Locking

CS302 – Spring 2025 Lec.7.2 - Slide 7

u Wouldn’t it be nice if…

Instead of writing difficult locking code, simply tell the runtime
to make a section atomic?

u Similar principle:
u Programmer declares a variable so its updates will be atomic, language

runtime figures it all out
u No need for manual memory fences or synch. variables

u Hardware Transactional Memory (HTM) does this

Declarative Atomicity

CS302 – Spring 2025 Lec.7.2 - Slide 8

Declarative/Transactional Example

u Warning! This is pseudo-code
u Atomic construct (not just a single statement, but a full code section)

u Code executes atomically
u All side-effects either entirely visible or not visible at all

void editHash(HashTbl tbl,
 int key) {
 synchronized(tbl) {
 // read objects
 HashObj obj = tbl.get(key);
 // update
 obj.update();
 }
}

void editHash(HashTbl tbl,
 int key) {
 atomic {
 // read objects
 HashObj obj = tbl.get(key);
 // update
 obj.update();
 }
}

Lock-based Code Transactional Code

CS302 – Spring 2025 Lec.7.2 - Slide 9

Transactional Processing (Databases)

u Used historically in databases (next semester)
u Concurrency for data on disk (cached in memory)
u In software

u Atomicity
u Upon transaction commit, all writes take effect at once
u On transaction abort, no writes take effect

u Isolation
u No other processor can observe writes before commit

u Serializability
u Transactions seem to commit in a single serial order
u The exact order is not guaranteed

CS302 – Spring 2025 Lec.7.2 - Slide 10

Transactional Memory (TM)

u Memory (not disk) transactions
u An atomic & isolated sequence of memory accesses
u Supported in hardware by processor & cache hierarchy

u Atomicity
u Upon commit, all memory writes take effect at once
u On abort, none of the writes take effect

u Isolation
u No other processor can observe writes before commit

u Serializability
u Transactions seem to commit in a single serial order
u The exact order is not guaranteed

CS302 – Spring 2025 Lec.7.2 - Slide 11

Transactions Are Composable

u Transactions compose gracefully
u Programmer declares global intent (atomic transfer)
u No need to know about the implementation

u Outermost transaction defines atomicity boundary

void editHash2(HashTbl tbl, int keyA, int keyB)
{
 atomic {
 // read objects
 HashObj objA = tbl.get(keyA);
 HashObj objB = tbl.get(keyB);
 // update
 objA.update(objB);
 objB.update(objA);
 }
}

CS302 – Spring 2025 Lec.7.2 - Slide 12

Intel Haswell Transactional Memory

u New instructions for
u xbegin: starts transaction, takes pointer to “fallback address” in case of

abort
u xend: ends transaction
u xabort: software-initiated transaction abort

u Similar to LL/SC but can have:
o A large sequence of instructions (as much as can fit in the pipeline)
o Multiple memory accesses to various addresses
o Alternative handler to run when aborting

u Processor commits all memory operations atomically
u May abort transaction

CS302 – Spring 2025 Lec.7.2 - Slide 13

Hardware Changes for TM

u Assume no conflicts occur
u Record reads and writes between xbegin and xend
u Keep all speculative state in the pipeline (as before)

u Check for conflicts in the data structure
u Coherence indicating data race (R/W, W/R, W/W)
u E.g., BusRd matches a ST in the LSQ (R/W)
u E.g., BusRdX or BusInv matching a LD (W/R) or a ST (W/W) in LSQ

u Other corner cases to roll back
u Cache eviction for blocks touched by critical section

u On conflict, execute specified recovery code

CS302 – Spring 2025 Lec.7.2 - Slide 14

Recovery Mechanism in TM

u TM does not have locking semantics…

u Therefore, rely on user code for recovery
u Once again, push behavior to the user

CS302 – Spring 2025 Lec.7.2 - Slide 15

Example With TM

u xbegin starts transaction
u HW begins speculating

u Memory R/W are recorded
in the atomic section

u Check for conflicts on xend

u Conflicts trap to recover

xbegin recover

ld r1, mem[obj]
addi r1, #10
st mem[obj], r1

xend // commit trans.

recover:
br rec_handler

CS302 – Spring 2025 Lec.7.2 - Slide 16

TM

u Processor sees XBEGIN, starts speculating

ROB

XBEGIN

…

LD/ST
queue

…
…
…
…

CS302 – Spring 2025 Lec.7.2 - Slide 17

ROB

LD OBJ

… LD OBJ

LD/ST
queue

TM

XBEGIN
…
…
…

u Processor sees XBEGIN, starts speculating

CS302 – Spring 2025 Lec.7.2 - Slide 18

TM

u LD OBJ & ST OBJ hit in the cache
u All state remains in the pipeline
u Wait until we see XEND to start committing

ROB

XEND

XBEGIN

ST OBJ
LD OBJ

LD/ST
queue

ST OBJ
ADD
LD OBJ

CS302 – Spring 2025 Lec.7.2 - Slide 19

TM

u Pipeline retires if no intervening coherence traffic
u e.g., BusRdX/BusInv/BusRd for OBJ
u The entire critical section retires atomically

u When XEND retires, speculation is successful

ROB

XEND

LD/ST
queue

CS302 – Spring 2025 Lec.7.2 - Slide 20

TM Rollback

u OBJ is in “S” state
u ST OBJ misses (BusInv to get to “M” state)
u Pipeline blocks waiting for permission to store

ROB

XBEGIN rec LD OBJ cache hit
ST OBJ miss

LD/ST
queue

XEND
ST OBJ
ADD
LD OBJ

CS302 – Spring 2025 Lec.7.2 - Slide 21

LD OBJ cache hit
ST OBJ miss

TM Rollback

u BusInv arrives for OBJ
u Another thread is writing to OBJ

u Abort transaction
u Jump to recover routine

ROB

XBEGIN

LD/ST
queue

XEND
ST OBJ
ADD
LD OBJ

CS302 – Spring 2025 Lec.7.2 - Slide 22

TM Rollback

u All instructions flushed
u Execution jumps to label “recover” given by user

ROB

BR

XBEGIN LD OBJ
ST OBJ

LD/ST
queue

XEND
ST OBJ
ADD
LD OBJF
lu

sh

CS302 – Spring 2025 Lec.7.2 - Slide 23

TM Recovery

u Run from recovery code

ROB

BR

LD/ST
queue

CS302 – Spring 2025 Lec.7.2 - Slide 24

TM Implementations

u Several decades worth of research
u Originally most done in software
u Software overhead for detecting conflicts is high
u Many HW and HW/SW hybrids have emerged
u See the book by Rajwar & Larus

u Real implementations in Intel, IBM CPUs
u Keep speculative data in cache hierarchies (not just pipeline)

CS302 – Spring 2025 Lec.7.2 - Slide 25

Extension: Data in Caches

u Recall: we assumed addresses tracked in LSQ
u How can we extend that to storing it in the caches and store buffer?

u Simple idea: add some bits to mark certain cache lines as speculative
u Same coherence mechanism to detect conflicts

Cache TagCoherence
State

Speculative Bit

CS302 – Spring 2025 Lec.7.2 - Slide 26

Detection Policy

u Check for conflict at every operation
u Use coherence actions (e.g., BusRd, BusRdX, BusInv)
u Intuition: “I suspect conflicts might happen, so always check to see if one has

occurred upon each coherence operation.”

u There are other options, TM open research area

CS302 – Spring 2025 Lec.7.2 - Slide 27

A note on Software Transactional Memory

u SW for speculation, buffering and detection in
u No hardware support
u Huge in the academic community
u Mostly a research testbed before HTM emerged
u Too slow for real-world deployment

CS302 – Spring 2025 Lec.7.2 - Slide 28

Point to Point Synchronization

CS302 – Spring 2025 Lec.7.2 - Slide 29

u Example: using a shared variable as a flag

u Assumes Sequential Consistency!
u Recall all of the problems that happen in real systems

Recall: Flag-Based Synchronization

// val = done = 0;

val =
expensive_func();
done = 1;

// done = 0;

while(!done){ }
... = val;

Thread 0 Thread 1

CS302 – Spring 2025 Lec.7.2 - Slide 30

u Flags mark updates to data, barriers introduce planned “stalls” in
threads
u e.g., Wait for all threads to read their input before start

u Technically equivalent, barriers use flags
u Flags also have no built-in support for thread blocking

u You likely used these in Assignment 2!
u e.g., After each time step, threads wait for each other

Barriers

CS302 – Spring 2025 Lec.7.2 - Slide 31

u Information we need for a centralized barrier:
u How many threads to wait for
u Flag to tell threads to proceed or wait
u And… a lock to protect it all

Implementing Barriers

struct Barrier_t {
Lock aLock;
int counter;
int flag;

};

CS302 – Spring 2025 Lec.7.2 - Slide 32

u Conceptual algorithm:
1. Clear the flag, tell all incoming threads to wait
2. Every arriving thread increments counter
3. Last thread sees counter == num_threads
4. Set the flag, all threads leave

Implementing Barriers

CS302 – Spring 2025 Lec.7.2 - Slide 33

u Exercise: Does this work?
u Hint: think about two barriers in a row

First try: Centralized Barrier

void thrBarrier(Barrier_t* b, int num_threads) {
lock(b->aLock);
if(b->counter == 0)

b->flag = 0; // (Step 1)
int num_waiting = ++(b->counter); // (Step 2)
if(num_waiting == num_threads) { // (Step 3)

unlock(b->aLock);
b->counter = 0;
b->flag = 1; // (Step 4)

} else {
unlock(b->aLock);
while(b->flag == 0); // spin

}
}

CS302 – Spring 2025 Lec.7.2 - Slide 34

u Exercise: Does this work?
u Answer: No! A thread can set the flag, and continue on to the next barrier,

which will clear the flag.
u Not all other threads might have “left” the first one!

Therefore, this might deadlock.

First try: Centralized Barrier

...
thrBarrier(aBarrier, Nthreads);

// flag is set, but not all threads may see it!
...
thrBarrier(aBarrier, Nthreads);

// flag cleared, no chance for others to leave

CS302 – Spring 2025 Lec.7.2 - Slide 35

u The problem was the lead thread resetting flag while all others
spinning on it
u Toggled 0 → 1 → 0, but others may have missed that

u Keep a private copy of flag, first thread to arrive writes its private copy
u Prevents the problem of missing the write

Solution: Private Sense Reversal

struct Barrier_t {
Lock aLock;
int counter;
int flag;

};
int local_sense = 0; // private

CS302 – Spring 2025 Lec.7.2 - Slide 36

u Recommended: draw this out and convince yourself that it works!

Sense Reversal Implementation

void senseBarrier(Barrier_t* b, int num_threads) {
local_sense = !(local_sense); // (Step 1)
lock(b->aLock);
int num_waiting = ++(b->counter); // (Step 2)

if(num_waiting == num_threads) { // (Step 3)
unlock(b->aLock);
b->counter = 0;
b->flag = local_sense; // (Step 4)

} else {
unlock(b->aLock);
while(b->flag != local_sense); // spin

}
}

CS302 – Spring 2025 Lec.7.2 - Slide 37

u O(P) traffic on a bus:
u 2P write transactions to obtain barrier lock and update counter
u 2 write transactions to write flag + reset counter
u P-1 transactions to read updated flag

u Still we serialize on a single shared variable
u Latency is O(P)
u Can we do better?

Centralized Barrier Traffic Analysis

CS302 – Spring 2025 Lec.7.2 - Slide 38

u Combining trees make better use of parallelism in interconnect
topologies
u log(P) latency
u Strategy makes less sense on a bus

(all traffic still serialized on single shared bus)

Combining Trees

Centralized Barrier Combining Tree Barrier
High
contention!

CS302 – Spring 2025 Lec.7.2 - Slide 39

u Acquire: when processor arrives at barrier, performs atomicIncr() of
parent counter
u Process recurses to root

u Release: beginning from root, notify children of release

Combining Trees

Centralized Barrier Combining Tree Barrier
High
contention!

CS302 – Spring 2025 Lec.7.2 - Slide 40

u OMP has support for all of the synchronization primitives we talked
about in this lecture
u Locks, atomic operations (L6) and barriers

Synchronization in OpenMP

CS302 – Spring 2025 Lec.7.2 - Slide 41

u Critical Section (using Locks)
u A portion of code that only 1 thread at a time may execute

u Atomic Execution
u Protects a single variable update

Critical Sections and Atomics

#pragma omp critical
{
 /* Critical code here */
}

#pragma omp atomic
/* Update statement here */

CS302 – Spring 2025 Lec.7.2 - Slide 42

u Barrier
u Performs a barrier synchronization between all the threads in a team at a

given point
u All threads wait at the barrier point and only continue when all threads have

reached the barrier point

OMP Barriers

#pragma omp parallel {
 int result = heavy_computation_part1();

 #pragma omp atomic
 sum += result;

 #pragma omp barrier
 heavy_computation_part2(sum);
}

CS302 – Spring 2025 Lec.7.2 - Slide 43

u Barrier
u Performs a barrier synchronization between all the threads in a team at a

given point
u All threads wait at the barrier point and only continue when all threads have

reached the barrier point

OMP Barriers

#pragma omp parallel {
 int result = heavy_computation_part1();

 #pragma omp atomic
 sum += result;

 #pragma omp barrier
 heavy_computation_part2(sum);
}

CS302 – Spring 2025 Lec.7.2 - Slide 44

u Single-threaded region within a parallel region
u master and single directives

Single-Threaded Code

#pragma omp single
{
 /* Only executed once */
}

#pragma omp master
{
 /* Only executed by master*/
}

CS302 – Spring 2025 Lec.7.2 - Slide 45

u A lock in OpenMP is an object (omp_lock_t)
u At most one thread can hold it at a time

u omp_init_lock(omp_lock_t *)
u Initializes the lock variable passed in
u The lock is not held by the initializing thread

u omp_destroy_lock(omp_lock_t*)
u Disassociates the given lock variable from any locks

OpenMP Locks

CS302 – Spring 2025 Lec.7.2 - Slide 46

u A lock in OpenMP is an object (omp_lock_t)
u At most one thread can hold it at a time

u omp_set_lock(omp_lock_t*)
u Waits until the lock is available, then acquires the lock

u omp_unset_lock(omp_lock_t*)
u Unsets (releases) the lock

u omp_test_lock(omp_lock_t*)
u Attempts to set a lock, but does not block if the lock is unavailable

OpenMP Locks

CS302 – Spring 2025 Lec.7.2 - Slide 47

OpenMP Locks - Example

omp_lock_t lock;
omp_init_lock(&lock);

#pragma omp parallel num_threads(4)
{
 int tid = omp_get_thread_num();
 int i;
 for (i = 0; i < 3; ++i){
 omp_set_lock(&lock);
 printf("T %d: begin locked region\n", tid);
 printf ("T %d: end locked region\n", tid);
 omp_unset_lock(&lock);
 }
}

omp_destroy_lock(&lock);

CS302 – Spring 2025 Lec.7.2 - Slide 48

OpenMP Locks - Example

omp_lock_t lock;
omp_init_lock(&lock);

#pragma omp parallel num_threads(4)
{
 int tid = omp_get_thread_num();
 int i, j;
 for (i = 0; i < 5; ++i){
 omp_set_lock(&lock);
 printf_s("T%d – begin locked region\n", tid);
 printf_s("T%d - end locked region\n", tid);
 omp_unset_lock(&lock);
 }
}

omp_destroy_lock(&lock);

T 0: begin locked region
T 0: end locked region
T 0: begin locked region
T 0: end locked region
T 2: begin locked region
T 2: end locked region
T 2: begin locked region
T 2: end locked region
T 1: begin locked region
T 1: end locked region
T 1: begin locked region
T 1: end locked region
T 3: begin locked region
T 3: end locked region
T 3: begin locked region
T 3: end locked region

CS302 – Spring 2025 Lec.7.2 - Slide 49

u HW can enable declarative concurrency control
o Transforms implementation (locks) into intention (transactions)
o Programs can more easily manage concurrency

u Barriers, an example of point-to-point synch.
u Use locks as a part of their implementation
u Need to be careful of correctness, and traffic

Summary

