CS302

Concurrency Control

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 - Spring 2025 Lec.7.2 - Slide 1

Where are We?

e e P & Concurrency Control

24-Feb ¢ Transactional memory

3-Mar ¢ Point-to-point synchronization
e o ¢ Barriers

17-Mar

24-Mar

S1-Mar & Exercise session

7-Apr 9-Apr _

14-Apr 16-Apr ¢ Free session

21-Apr [22-Apr [23-Apr ¢ Ask doubts and questions to
28-Apr 0-Apr TAs and SAs

5-May 7-May

12-May 14-May

19-May 21-May ¢ Next Tuesday:

26-May 28-May ¢ Midterm exam

CS302 - Spring 2025 Lec.7.2 - Slide 2

Correction: Vectorized DAXPY Loop

¢ Assumption:
o Compute 64 elements at a time
o Elements are double-precision

;o x[]1 -> r2, Y[] -> r3
; a —-—> r4,
; & [n] -> r5

loop:

4 Hc_)w many serialized cac_;he 1v. v vl 0(r2) ; load x[i]
misses? (w/ 64B cache lines) lw.v v2, 0(r3) ; load yl[il
o Vector load brings 64 elements at a mul.sv vl rd, vl ; a*x[i]
. . : add.v vli, v1l, v2 ; . + yl[i]
time, equivalent to 8 cache lines < v vl 0(£3) . store y[i]
o 64*8B is the total number of bytes add r2, r2, 512 ; 64*8
loaded, not the number of elements add r3, r3, 512
* * — bne r2, r5, loop

o 2* (1024 / 64) = 32

CS302 - Spring 2025 Lec.7.2 - Slide 3

Difficulties of Locking

¢ Could build lock-free data structures
¢ Not easy to reason about and program

¢ Better idea: hardware to detect contention!

¢ No explicit lock ordering in the code
¢ Analogy: ‘I didn’t do it, no one saw me doing it!”

¢ Connection to Lec.7.1 (slide 15)
¢ LL/SC uses cache coherence to detect writes
¢ Why not extend it to the whole critical section?

CS302 - Spring 2025

Lec.7.2 - Slide 4

Speculative Lock per Hash Bucket

CS302 - Spring 2025

1 17

1 11

Lec.7.2 - Slide 5

Simultaneous Modification Without Locking

CS302 - Spring 2025

1 17

1 11

Lec.7.2 - Slide 6

Declarative Atomicity

¢ Wouldn't it be nice if...

Instead of writing difficult locking code, simply tell the runtime

to make a section atomic?

¢ Similar principle:

¢ Programmer declares a variable so its updates will be atomic, language
runtime figures it all out

¢ No need for manual memory fences or synch. variables

¢ Hardware Transactional Memory (HTM) does this

CS302 - Spring 2025 Lec.7.2 - Slide 7

Declarative/Transactional Example

Lock-based Code Transactional Code
void editHash (HashTbl tbl, void editHash (HashTbl tbl,
int key) { int key) {
synchronized (tbl) { — atomic {
// read objects // read objects
HashObj obj = tbl.get (key) ; HashObj obj = tbl.get (key) ;
// update // update
obj.update() ; obj.update() ;

} }
} }

¢ Warning! This is pseudo-code

¢ Atomic construct (not just a single statement, but a full code section)

¢ Code executes atomically
¢ All side-effects either entirely visible or not visible at all

CS302 - Spring 2025 Lec.7.2 - Slide 8

Transactional Processing (Databases)

¢ Used historically in databases (next semester)
¢ Concurrency for data on disk (cached in memory)
¢ In software
¢ Atomicity
¢ Upon transaction commit, all writes take effect at once
¢ On transaction abort, no writes take effect

¢ Isolation
¢ No other processor can observe writes before commit

¢ Serializability
¢ Transactions seem to commit in a single serial order
¢ The exact order is not guaranteed

CS302 - Spring 2025

Lec.7.2 - Slide 9

Transactional Memory (TM)

¢ Memory (not disk) transactions

¢ An atomic & isolated sequence of memory accesses

¢ Supported in hardware by processor & cache hierarchy
¢ Atomicity

¢ Upon commit, all memory writes take effect at once

¢ On abort, none of the writes take effect

¢ Isolation
¢ No other processor can observe writes before commit

¢ Serializability
¢ Transactions seem to commit in a single serial order
¢ The exact order is not guaranteed

CS302 - Spring 2025

Lec.7.2 - Slide 10

Transactions Are Composable

void editHash2 (HashTbl tbl, int keyA, int keyB)
{
atomic {
// read objects
HashObj objA = tbl.get(keyA) ;
HashObj objB tbl.get (keyB) ;
// update
objA.update (objB) ;
objB.update (obja) ;
}
}

¢ Transactions compose gracefully
¢ Programmer declares global intent (atomic transfer)
¢ No need to know about the implementation

¢ Outermost transaction defines atomicity boundary

CS302 - Spring 2025 Lec.7.2 - Slide 11

Intel Haswell Transactional Memory

& New instructions for

¢ xbegin: starts transaction, takes pointer to “fallback address” in case of
abort

& xend: ends transaction
& xabort: software-initiated transaction abort

¢ Similar to LL/SC but can have:
o A large sequence of instructions (as much as can fit in the pipeline)
o Multiple memory accesses to various addresses
o Alternative handler to run when aborting

¢ Processor commits all memory operations atomically
¢ May abort transaction

CS302 - Spring 2025 Lec.7.2 - Slide 12

Hardware Changes for TM

¢ Assume no conflicts occur
¢ Record reads and writes between xbegin and xend

¢ Keep all speculative state in the pipeline (as before)

& Check for conflicts in the data structure

¢ Coherence indicating data race (R/W, W/R, W/W)
¢ E.g., BusRd matches a ST in the LSQ (R/W)
¢ E.g., BusRdX or Buslnv matching a LD (W/R) or a ST (W/W) in LSQ

¢ Other corner cases to roll back
¢ Cache eviction for blocks touched by critical section

¢ On conflict, execute specified recovery code

CS302 - Spring 2025 Lec.7.2 - Slide 13

Recovery Mechanism in TM
¢ TM does not have locking semantics...

¢ Therefore, rely on user code for recovery
¢ Once again, push behavior to the user

CS302 - Spring 2025 Lec.7.2 - Slide 14

Example With TM

¢ xbegin starts transaction

xbegin recover _ _
¢ HW begins speculating

1d rl, mem[obj]
addi rl, #10 ¢ Memory R/W are recorded
st mem[obj], rl in the atomic section

xend // commit trans.

& Check for conflicts on xend
recover.:

br rec handler _
¢ Conflicts trap to recover

CS302 - Spring 2025 Lec.7.2 - Slide 15

™

¢ Processor sees XBEGIN, starts speculating

CS302 - Spring 2025

ROB

XBEGIN

LD/ST
queue

Lec.7.2 - Slide 16

™

¢ Processor sees XBEGIN, starts speculating

CS302 - Spring 2025

ROB

LD OBJ

XBEGIN

LD OBJ

LD/ST
queue

Lec.7.2 - Slide 17

™

ROB

XEND

ST OBJ

ADD

LD OBJ

ST OBJ

XBEGIN

LD OBJ

¢ LD OBJ & ST OBJ hit in the cache
¢ All state remains in the pipeline

¢ Wait until we see XEND to start committing

CS302 - Spring 2025

LD/ST
queue

Lec.7.2 - Slide 18

™

¢ Pipeline retires if no intervening coherence traffic
¢ €.g., BusRdX/Buslnv/BusRd for OBJ
¢ The entire critical section retires atomically

¢ When XEND retires, speculation is successful

CS302 - Spring 2025

ROB

XEND

LD/ST
queue

Lec.7.2 - Slide 19

TM Rollback

¢ OBJis in “S” state

ROB

XEND

ST OBJ

ADD

LD OBJ

XBEGIN rec

LD/ST

queue
LD OBJ cache hit

¢ ST OBJ misses (Buslnv to get to "M” state)
¢ Pipeline blocks waiting for permission to store

CS302 - Spring 2025

Lec.7.2 - Slide 20

TM Rollback

ROB

X
S
AD

LD OBJ

XBEGIN

¢ Buslinv arrives for OBJ

¢ Another thread is writing to OBJ

¢ Abort transaction

¢ Jump to recover routine

CS302 - Spring 2025

LD OBJ

cache hi

LD/ST

queue

Lec.7.2 - Slide 21

TM Rollback

¢ All instructions flushed
¢ Execution jumps to label “recover” given by user

CS302 - Spring 2025

ROB

ST OBJ

LD OBJ

LD/ST
queue

Lec.7.2 - Slide 22

TM Recovery

¢ Run from recovery code

CS302 - Spring 2025

ROB

BR

LD/ST
queue

Lec.7.2 - Slide 23

TM Implementations

¢ Several decades worth of research
¢ Originally most done in software
¢ Software overhead for detecting conflicts is high
¢ Many HW and HW/SW hybrids have emerged
¢ See the book by Rajwar & Larus

¢ Real implementations in Intel, IBM CPUs
¢ Keep speculative data in cache hierarchies (not just pipeline)

CS302 - Spring 2025 Lec.7.2 - Slide 24

Extension: Data in Caches

¢ Recall: we assumed addresses tracked in LSQ
¢ How can we extend that to storing it in the caches and store buffer?

¢ Simple idea: add some bits to mark certain cache lines as speculative
¢ Same coherence mechanism to detect conflicts

Coherence

Cache Tag Speculative Bit
State /

CS302 - Spring 2025 Lec.7.2 - Slide 25

Detection Policy

¢ Check for conflict at every operation
¢ Use coherence actions (e.g., BusRd, BusRdX, Buslnv)

¢ Intuition: “l suspect conflicts might happen, so always check to see if one has
occurred upon each coherence operation.”

¢ There are other options, TM open research area

CS302 - Spring 2025 Lec.7.2 - Slide 26

A note on Software Transactional Memory

¢ SW for speculation, buffering and detection in
¢ No hardware support
¢ Huge in the academic community
¢ Mostly a research testbed before HTM emerged
¢ Too slow for real-world deployment

CS302 - Spring 2025 Lec.7.2 - Slide 27

Point to Point Synchronization

CS302 - Spring 2025 Lec.7.2 - Slide 28

Recall: Flag-Based Synchronization

¢ Example: using a shared variable as a flag

Thread 0 Thread 1
// val = done = 0; // done = 0;
val = while('done) { }
expensive func(); ... = val;
done = 1;

¢ Assumes Sequential Consistency!
¢ Recall all of the problems that happen in real systems

CS302 - Spring 2025 Lec.7.2 - Slide 29

Barriers

¢ Flags mark updates to data, barriers introduce planned “stalls™ in

threads
¢ e.g., Wait for all threads to read their input before start

¢ Technically equivalent, barriers use flags
¢ Flags also have no built-in support for thread blocking

¢ You likely used these in Assignment 2!
¢ €.g., After each time step, threads wait for each other

CS302 - Spring 2025 Lec.7.2 - Slide 30

Implementing Barriers

¢ Information we need for a centralized barrier:
¢ How many threads to wait for

¢ Flag to tell threads to proceed or wait
¢ And... a lock to protect it all

struct Barrier t ({
Lock alock;
int counter;
int flag;

};

CS302 - Spring 2025 Lec.7.2 - Slide 31

Implementing Barriers

¢ Conceptual algorithm:

1. Clear the flag, tell all incoming threads to wait
2. Every arriving thread increments counter

3. Last thread sees counter == num threads
4.

Set the flag, all threads leave

CS302 - Spring 2025 Lec.7.2 - Slide 32

First try: Centralized Barrier

¢ Exercise: Does this work?
¢ Hint: think about two barriers in a row

void thrBarrier (Barrier t* b, int num threads) ({

lock (b->aLock) ;
if (b->counter == 0)

b->flag = 0; // (Step 1)
int num waiting = ++(b->counter); // (Step 2)
if (num waiting == num threads) { // (Step 3)

unlock (b->alock) ;

b->counter = 0;

b->flag = 1; // (Step 4)
} else {

unlock (b->alock) ;

while(b->flag == 0); // spin

CS302 - Spring 2025 }

Lec.7.2 - Slide 33

First try: Centralized Barrier

& Exercise: Does this work?

¢ Answer: No! A thread can set the flag, and continue on to the next barrier,
which will clear the flag.

¢ Not all other threads might have “left” the first one!
Therefore, this might deadlock.

thrBarrier (aBarrier, Nthreads) ;
// flag is set, but not all threads may see it!

thrBarrier (aBarrier, Nthreads) ;
// f£lag cleared, no chance for others to leave

CS302 - Spring 2025 Lec.7.2 - Slide 34

Solution: Private Sense Reversal

¢ The problem was the lead thread resetting f1ag while all others
spinning on it
¢ Toggled 0 — 1 — 0, but others may have missed that

¢ Keep a private copy of £lag, first thread to arrive writes its private copy
¢ Prevents the problem of missing the write

struct Barrier t ({
Lock alock;
int counter;
int flag;

}s

int local sense = 0; // private

CS302 - Spring 2025 Lec.7.2 - Slide 35

Sense Reversal Implementation

¢ Recommended: draw this out and convince yourself that it works!

CS302 - Spring 2025

void senseBarrier (Barrier t* b, int num threads) ({

local sense = ! (local sense); // (Step 1)
lock (b->aLock) ;
int num waiting = ++(b->counter); // (Step 2)

if (num waiting == num threads) { // (Step 3)
unlock (b->alock) ;
b->counter = 0;

b->flag = local sense; // (Step 4)

} else {
unlock (b->alock) ;
while(b->flag != local sense); // spin

Lec.7.2 - Slide 36

Centralized Barrier Traffic Analysis

¢ O(P) traffic on a bus:
¢ 2P write transactions to obtain barrier lock and update counter
¢ 2 write transactions to write flag + reset counter
¢ P-1 transactions to read updated flag

¢ Still we serialize on a single shared variable
¢ Latency is O(P)
¢ Can we do better?

CS302 - Spring 2025 Lec.7.2 - Slide 37

Combining Trees

¢ Combining trees make better use of parallelism in interconnect
topologies
¢ log(P) latency

¢ Strategy makes less sense on a bus
(all traffic still serialized on single shared bus)

Centrallzed Barrier Comb'"'"g Tree Barrier

High

R . { S

CS302 - Spring 2025 Lec.7.2 - Slide 38

Combining Trees

¢ Acquire: when processor arrives at barrier, performs atomiclncr() of

parent counter
& Process recurses to root

¢ Release: beginning from root, notify children of release

Centrallzed Barrier Comb'"'"g Tree Barrier

High

R] @g %

CS302 - Spring 2025 Lec.7.2 - Slide 39

Synchronization in OpenMP

¢ OMP has support for all of the synchronization primitives we talked

about in this lecture
¢ Locks, atomic operations (L6) and barriers

CS302 - Spring 2025 Lec.7.2 - Slide 40

Critical Sections and Atomics

¢ Critical Section (using Locks)
¢ A portion of code that only 1 thread at a time may execute

#pragma omp critical

{

/* Critical code here */

}

¢ Atomic Execution
¢ Protects a single variable update

#pragma omp atomic
/* Update statement here */

CS302 - Spring 2025 Lec.7.2 - Slide 41

OMP Barriers

& Barrier

¢ Performs a barrier synchronization between all the threads in a team at a
given point

¢ All threads walit at the barrier point and only continue when all threads have
reached the barrier point

#pragma omp parallel ({
int result = heavy computation partl();

#pragma omp atomic
sum += result;

#pragma omp barrier
heavy computation part2 (sum) ;

CS302 - Spring 2025 Lec.7.2 - Slide 42

OMP Barriers

& Barrier

¢ Performs a barrier synchronization between all the threads in a team at a
given point

¢ All threads walit at the barrier point and only continue when all threads have
reached the barrier point

#pragma omp parallel ({
int result = heavy computation partl()

#pragma omp atomic

sum += result;
#pragma omp ba;;;;;~‘\\\\1

heavy computation part2(sum) ;

CS302 - Spring 2025 Lec.7.2 - Slide 43

Single-Threaded Code

¢ Single-threaded region within a parallel region
¢ master and single directives

#pragma omp single
{

/* Only executed once */

#pragma omp master
{
/* Only executed by master*/

CS302 - Spring 2025 Lec.7.2 - Slide 44

OpenMP Locks

¢ A lock in OpenMP is an object (omp lock t)
¢ At most one thread can hold it at a time

¢omp 1nit lock(omp lock t *)
¢ Initializes the lock variable passed in
¢ The lock is not held by the initializing thread

¢ omp destroy lock(omp lock t¥*)
¢ Disassociates the given lock variable from any locks

CS302 - Spring 2025

Lec.7.2 - Slide 45

OpenMP Locks

¢ A lock in OpenMP is an object (omp lock t)
¢ At most one thread can hold it at a time

¢ omp set lock(omp lock t*)
¢ Waits until the lock is available, then acquires the lock

¢ omp unset lock(omp lock t¥*)
¢ Unsets (releases) the lock

¢ omp test lock(omp lock t¥*)
¢ Attempts to set a lock, but does not block if the lock is unavailable

CS302 - Spring 2025 Lec.7.2 - Slide 46

OpenMP Locks - Example

omp lock t lock;
omp init lock(&lock) ;

#pragma omp parallel num threads (4)
{
int tid = omp get thread num();
int 1i;
for (1 = 0; 1 < 3; ++1){
omp set lock(&lock);
printf ("T %d: begin locked region\n", tid);
printf ("T %d: end locked region\n", tid);
omp unset lock(&lock);
}
}

omp destroy lock(&lock);

CS302 - Spring 2025 Lec.7.2 - Slide 47

OpenMP Locks - Example

CS302 - Spring 2025

o I o O O T O IO I O O o O O O

WWwwkRPRRFRPRFPFEFELDMNMDMDMNMNDMNOOODO

begin locked region
end locked region
begin locked region
end locked region
begin locked region
end locked region
begin locked region
end locked region
begin locked region
end locked region
begin locked region
end locked region
begin locked region
end locked region
begin locked region
end locked region

Lec.7.2 - Slide 48

Summary

¢ HW can enable declarative concurrency control
o Transforms implementation (locks) into intention (transactions)
o Programs can more easily manage concurrency

¢ Barriers, an example of point-to-point synch.
¢ Use locks as a part of their implementation
¢ Need to be careful of correctness, and traffic

CS302 - Spring 2025 Lec.7.2 - Slide 49

