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u Synchronization
u Locks with hardware support
u Deadlocks

u Exercise session
u Free session
u Ask doubts and questions to 

TAs and SAs

u Next Tuesday:
u Midterm exam

Where are We?
M T W T F

17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May
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u The midterm will cover upto and including Lec 6.2
o Accounts for 20% of final grade

u The exam will be from 10:15 AM – 12:45 PM on 8th April (Tuesday)
o Will be held in rooms CM 1 3 and INF 2
o Exam duration will be 2 hrs 30 mins
o Seating arrangement will be announced via Moodle
o Please make sure to bring your Camipro card

Midterm Exam
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u Can instructions inside the LSQ bypass each other?
o All instructions inside the LSQ are speculative
o Instructions in the LSQ (and ROB) and can execute out of order but they 

commit in order
o Instructions can only bypass other instructions the store buffer based on the 

memory consistency model

u In PC and WC which instructions can bypass each other?
o In PC, loads can bypass committed stores and never other loads
o In WC, committed stores can also bypass other committed stores in 

addition to PC

FAQs on Ed
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u Lock:

u Unlock:

Reminder: Simple TS Lock

void Lock(int* lock){
  while (Test_and_Set(lock) != 0);
}

void Unlock(volatile int* lock){
  *lock = 0;
}
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u Low latency (under low contention)

u High coherence traffic

u Poor scaling

u Low storage cost (one int)

u No provisions for fairness

Simple TS Lock Performance Characteristics
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u Lock:

u Unlock:

Test-and-Test-and-Set (TTS) Lock

void Lock(int* lock){
  while (1) {    
    while (*lock != 0); // additional test
    // while another processor has the lock…

    // when lock is released, try to acquire it
    if (Test_and_Set(lock) == 0)
      return;
  }
}

void Unlock(volatile int* lock){
  *lock = 0;
}
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Test-and-Test-and-Set (TTS) Lock

Test:
    ld   r1, mem[addr]       // load lock value
    cmp  r1, #0
    bnz  Test                // compare to 0

Lock:
    ts   r1, mem[addr]       // load word into R1
    bnz  Test           // if 0, lock obtained

Unlock:
    st   mem[addr], #0       // store 0 to

u Reduce coherence traffic by testing locally
u Read from local cache without invalidating others
u BusRd instead of BusRdx



CS302 – Spring 2025 Lec.7.1 -  Slide 9

u If no contention
u To lock, read, if hit and available then RMW
u If miss or not available, spin reading
u To unlock, if hit, store
u If miss, get A with write permission, then store

u With contention (multiple processors spin)
u Most tests are read hits
u Writes only when acquiring the lock & releasing the lock
u Wait using reads

Test-and-Test-and-Set (TTS) Lock
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Test-and-Test-and-Set (TTS) Lock
Processor 0 Processor 1 Processor 2
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u Slightly higher latency than TS in uncontended case
u Must test …. then test-and-set

u Generates much less interconnect traffic
u One invalidation, per waiting processor, per lock release
u O(P) invalidations = O(2*P traffic); P = #waiting cores
u Recall: TS generated 1 invalidation per waiting processor per test

u More scalable (due to less traffic)

u Storage cost unchanged (one int)

u Still no provisions for fairness

TTS Lock Performance Characteristics
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u Reduce contention traffic by adding “wait time” after failing to acquire 
the lock
u Studies shown that using exponential waiting balances lock latency and 

contention

TS Lock with Exponential Back-off

void Lock(volatile int* lock) {
  int amount = 1;
  while (1) {
    if (Test_and_Set(lock) == 0)
      return;
    delay(amount);
    amount *= 2;
  }
}
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u If no contention
u Acts like Test & Set

u With contention (multiple processors spin)
u Every test is a store miss!!!!
u Every unlock is a store miss
u But the tests are exponentially distributed

TS Lock with Exponential Back-off
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u Same uncontended latency as TS
u But potentially higher latency under contention; why?

u Generates less traffic than TS
u Not continually attempting to acquire lock

u Improves scalability (due to less traffic)

u Storage cost unchanged

u Exponential back-off can cause severe unfairness 
u Newer requesters back off for shorter intervals

TS w/ Exp. Back-off Characteristics
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u Both locks require an instruction that is both a read and write
u This is a challenge for pipelined processors

u Additionally, must lock the bus (block all ops) until the read-modify-
write completes
u Complicates cache controller logic
u Two memory accesses per instruction more difficult to track in CPU pipeline

Issues w. TS and TTS
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u Provides atomic read-modify-write with two instrs.
u Load-locked (LL) = l.l rx, mem[addr]
u Store-conditional (SC) = s.c rx, mem[addr]

u Interacts with cache-coherence protocol to guarantee no intervening 
writes to [addr]

u Used in MIPS, DEC Alpha, and all ARM cores

Alternative: Load-Locked & Store Conditional
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u Recall the incorrect first attempt:
u Two cores could both see the lock as free, and enter the critical section

u How does LL/SC solve the problem?

How is LL/SC Atomic?

Lock:

Unlock:

ld   r1, mem[addr]        // load word into r1
cmp  r1, #0               // if 0, store 1
bnz  Lock                 // else, try again
st   mem[addr], #1           

st   mem[addr], #0        // store 0 to address          
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u LL puts the address and flag into a link register

Remember and Validate the Address

P0

Cache

ll X

BusRd

X

Link Register
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u LL puts the address and flag into a link register
u Invalidations or evictions for that address clear the flag, and the SC will then fail
u Signals that another core modified the address

Remember and Validate the Address

P0

Cache

BusInv

X - 0

Link Register
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u Consider the following case:
u Processors 0 and 1 both execute the following code, with cache block X 

beginning in Shared
u Both ll [X] read 0
u Both begin to issue sc [X]
u Will we break mutual exclusion?

Simultaneous SCs?

Lock:
ll r2, [X]
cmp r2, #0
bnz Lock // if 1, spin
addi r2, #1
sc [X], r2
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u Will we break mutual exclusion?
u Answer: No! Why? 

u Remember, cache coherence ensures the propagation of values to a single 
address. 

u So, when both processors try to BusInv, one of them will “win”, and clear the 
other’s link register flag
u e.g., Say P1 wins, therefore P0’s copy of X gets invalidated, and its store 

will fail as well

Simultaneous SCs?

P0

sc X
X - 0

P1

sc X

BusInv (from P1)

X

X(I) X(M)
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u Can use LL/SC to build many types of locks
u This example builds TS in real ARM assembly

Example: TS with LL/SC in ARM 

Test_and_Set:   
  ldl_l  t0, 0(t1) ; load locked, t0 = lock
  bn    t0, L1  ; if not free, loop
  lda    t0, 1(0)  ; t0 = 1
  stl_c  t0, 0(t1) ; conditional store, 
                        ; lock = 1
  beq    t0, Test_and_Set  ; if failed, loop
   
Release:
  stl    0, 0(t1) 
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u So far threads were spinning while waiting (busy waiting)
u Keeping the CPU busy while making no progress

u Free up exec. resources if progress cannot be made

Busy Waiting

while(test is not successful) {
// wait while spinning

}

compute_assuming_test_succeeded();
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u Idea:
u If progress cannot be made because a resource cannot be acquired
u It’s desirable to free up exec. resources for another thread

u Blocking synchronization:
u Preempt the running thread (suspend)
u OS schedules another thread to run
u The other thread can run and make progress

Blocking Synchronization

if(test is not successful) {
block_until_true();  // OS de-schedules thread

}

compute_assuming_test_succeeded();
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u Busy-waiting is preferable if:
u Scheduling overhead is larger than expected wait time

u Scheduling overhead is in the order of microseconds
u While a few spinning iterations is in the order of nanoseconds

u Processor’s resources not needed for other tasks

u Blocking is preferred if waiting time is significant
u And there are other tasks that need processor’s resources

Busy Waiting vs. Blocking Synchronization
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Recall: Concurrent Data Structures

u Various flavors
u Coarse grained locks

u easy to code, but bad performance
u Fine grained locks

u hard to code and reasonable performance
u Lock-free data structures

u very hard to code and best performance
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Coarse-grained Locking

honk!
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Coarse-grained Locking

u Simple implementation
u Lots of contention
u No concurrency inside the data structure

void editHash(HashTbl tbl, int key) {
   synchronized(tbl) {
       // read objects
       HashObj obj = tbl.get(key);
       // update
       obj.update(); 
   }
}
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Fine-grained Locking

u Contention for objects only
u Lots of concurrency exposed

u Limited only to updating and reading each object
u Cannot actually modify the hash table structure

void editHash(HashTbl tbl, int key) {
  // read objects
  HashObj obj = tbl.get(key);
  synchronized(obj) {
      // update
      obj.update(); 
  }
}



CS302 – Spring 2025 Lec.7.1 -  Slide 33

Performance of Fine-grained locking
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Modifying the Hash Table

{obj.update();}

u Just saw, fine grained works well when the locks are very small, and 
held for a short time
u e.g., only protecting 1 line of code

u Where do we lock if we are removing?
u Choice 1: Just the node we are removing

u Incorrect (Ask yourself why?)
u Choice 2: The whole hash bucket

u Correct, but not a lot of concurrency
u Choice 3: All of the nodes that we modify

u Correct, allows more concurrency in case of large lists
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Localized Locking

u Which pointers do we edit on delete(12)?

4 8 12 13
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Localized Locking

u Which pointers do we edit on delete(12)?

u Answer: Deleted node, and previous node.
u 8→next now needs to point to 13, 12 is removed

4 8 12 13

4 8 12 13

4 8 13
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Localized Locking

u How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur→next

u Otherwise, another thread could delete it, making our behavior undefined

u This is called “hand over hand” locking

4 8 12 13
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Localized Locking

u How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur→next

u Otherwise, another thread could delete it, making our behavior undefined

u This is called “hand over hand” locking

4 8 12 13
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Localized Locking

u How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur→next

u Otherwise, another thread could delete it, making our behavior undefined

u This is called “hand over hand” locking

4 8 12 13
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Localized Locking

u How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur→next

u Otherwise, another thread could delete it, making our behavior undefined

u This is called “hand over hand” locking

4 8 12 13
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Localized Locking

u How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur→next

u Otherwise, another thread could delete it, making our behavior undefined

u This is called “hand over hand” locking

4 8 12 13
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Performance Trade-offs

u Which specific scenarios does this allow?
u Threads concurrently deleting elements in non-decreasing numerical order

u e.g., delete(12); delete(4);

u Hand over hand forbids threads from passing
u Probably a fairly rare scenario

4 8 12 13
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But, locks have other problems (alas 😔)

u Priority inversion
u Higher priority threads waiting for a lock held by a lower-priority thread

u Convoying
u Threads holding locks and are de-scheduled

u Lock composability
u Threads holding multiple locks can lead to deadlocks or livelocks if 

implemented incorrectly
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Fine-grained Locking: Good case
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Fine-grained Locking: Contention

honk!
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Fine-grained Locking: Priority Inversion

u Higher priority thread waiting behind lower priority thread
u E.g., OS thread, or app thread in real-time systems

honk!
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Fine-grained Locking: Priority Inversion

u Priority inversion:
u When low-priority process is preempted while holding a lock needed by a 

high-priority process
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Fine-grained Locking: Convoying

u Thread holding the lock gets swapped out by OS
u E.g., thread waiting for I/O sleeps, other threads run
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Fine-grained Locking: Convoying

u Thread holding the lock gets swapped out by OS
u E.g., thread waiting for I/O sleeps, other threads run

honk!
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Fine-grained Locking: Convoying

u Convoying
u When a process holding a lock is de-scheduled (e.g. page fault, no more 

quantum), no forward progress for other processes capable of running
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Take a Break!



CS302 – Spring 2025 Lec.7.1 -  Slide 54

Fine-grained Locking: Lock Composability

void editHash2(HashTbl tbl, int keyA, int keyB) 
{
   // read objects
   HashObj objA = tbl.get(keyA);
   HashObj objB = tbl.get(keyB);
   synchronized(objA) {
     synchronized(objB) {
        // update
        objA.update(objB);
        objB.update(objA);
     }
   }
}

P0
editHash2(tbl,1,2);

This code deadlocks! Why?

P1
editHash2(tbl,2,1);
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Fine-grained Locking: Lock Composability

P0
editHash2(tbl,1,2);

P1
editHash2(tbl,2,1);

objA = tbl.get(1); 
synchronized(objA){

objA = tbl.get(2);
synchronized(objA){

P0 P1

tb1.get(1)

tb1.get(2)
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Fine-grained Locking: Lock Composability

P0
editHash2(tbl,1,2);

P1
editHash2(tbl,2,1);

objA = tbl.get(1);
synchronized(objA){

objA = tbl.get(2);
synchronized(objA){

P0 P1

tb1.get(1)

tb1.get(2)
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Fine-grained Locking: Lock Composability

P0
editHash2(tbl,1,2);

P1
editHash2(tbl,2,1);

objB = tbl.get(2);
synchronized(objA){
  synchronized(objB){  

objB = tbl.get(1);
synchronized(objA){
  synchronized(objB){

P0 P1

tb1.get(1)

tb1.get(2)
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Fine-grained Locking: Lock Composability

P0
editHash2(tbl,1,2);

P1
editHash2(tbl,2,1);

u Neither process can 
proceed!

u Each process waiting 
for the other one to 
release lock

u Deadlock!

P0 P1

tb1.get(1)

tb1.get(2)
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Fine-grained Locking: Lock Composability

u Composing lock-based code is tricky
o Can lead to deadlock or livelock if implemented incorrectly
o Major problem in most modern systems



CS302 – Spring 2025 Lec.7.1 -  Slide 60

u All processes should make forward progress
o Processes make progress toward completing their tasks
o Processes will eventually finish what they started
o Processes are not stuck, waiting forever, or being blocked indefinitely

Expectations from Software

P0 P1 P2 P3
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u Long-latency operations such as memory or I/O
o Will eventually complete if hardware is designed correctly

u Synchronization
o Waiting for other threads/processes to reach a barrier
o Atomic operations
o Waiting for locks

u A process can get stuck indefinitely because of incorrect placement of 
synchronization in software

Recap: What can block the progress of processes?
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u What are deadlocks/livelocks?
o Deadlock (processes sleep waiting for one another)
o Livelock (processes execute but make no progress)

u We want execution to be deadlock-/livelock-free AND
o No starvation of shared resources
o Aim for fairness
o Minimality (no unnecessary waiting or signaling)

Liveness Properties
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u Every process in a set is waiting for an event that can only be caused 
by another process in the same set

u Consider the previous example with two processes:

Formally Defining Deadlocks

P0 P1

tb1.get(1)

tb1.get(2)

u Process 0 waiting for 
process 1

u Process 1 waiting for 
process 0
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1. Mutual exclusion: resources protected by locks
2. Hold and wait: hold a resource and wait for another
3. No pre-emption: no way for B to “seize the lock” from A
4. Cyclic waiting: A waits for B, B waits for A (a “circular” pattern)

If any of these four properties are missing, deadlock will not happen
Our goal: Try to prevent one of the conditions from being true

Necessary and Sufficient Conditions for Deadlock



CS302 – Spring 2025 Lec.7.1 -  Slide 65

Deadlock Prevention (1)

u Mutual exclusion: resources protected by locks
o A resource can be a variable, pointer, shared object, etc.
o For example,

u Essential property to maintain data integrity
o Cannot be prevented from being true in modern systems

#pragma omp parallel { 
   int result = heavy_computation_part1();
   
   #pragma omp atomic
   sum += result;
}
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Deadlock Prevention (2)

u Hold and wait: hold a resource and wait for another
u Consider the previous example with P0:

objA = tbl.get(1);
objB = tb1.get(2);
synchronized(objA){
  synchronized(objB){
    ...

u P0 holds the lock for objA while waiting for objB
u Especially prevalent when using fine-grained locks
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Deadlock Prevention (2)

u Possible solution: acquire all resources before running
o In the prior example, it would be equivalent to coarse-grained locking

synchronized(tbl) {  // Lock the entire hash table
  objA = tbl.get(1);
 objB = tb1.get(2);
 ...
}

u Process 0 locks the entire hash table
u Comes with all the drawbacks of coarse-grained locking as discussed
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Deadlock Prevention (3)

u No pre-emption: no way for B to “seize the lock” from A

u Leads to problems such as priority inversion as discussed earlier
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honk!
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Deadlock Prevention (3)

u Possible solution:
o Allocate priority to threads
o Higher priority thread can pre-empt lower priority thread and steal all resources

u But this approach is generally unsafe
u Several problems can arise

o Data corruption possible if a thread is pre-empted during execution
o Performance overheads with pre-emption
o Some resources cannot be safely pre-empted (e.g., syscalls)
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Deadlock Prevention (4)

u Cyclic waiting: A waits for B, B waits for A (a “circular” pattern)

u Easiest and most practical to ensure this property never holds

P0 P1

tb1.get(1)

tb1.get(2)



CS302 – Spring 2025 Lec.7.1 -  Slide 71

Deadlock Prevention (4)

u Possible solution: only allow acquiring locks in a fixed order
u For example, allow only increasing order of locking keys

int small_key = (keyA < keyB) ? keyA : keyB;
int big_key = (keyA > keyB) ? keyA : keyB;

HashObj objA = tbl.get(small_key);
HashObj objB = tbl.get(big_key);
synchronized(objA) {
 synchronized(objB) {
  ...
 }
}
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Deadlock Prevention (4)

u Solves the problem for P0 and P1
u Both P0 and P1 will try to lock the first element at the beginning

o Regardless of the order in which their arguments are passed
o Whichever process wins, proceeds with the execution first

P0
editHash3(tbl,1,2);

P1
editHash3(tbl,2,1);

small_key = 1;
big_key = 2;

objA = tbl.get(1); 
synchronized(objA){

small_key = 1;
big_key = 2;

objA = tbl.get(1); 
synchronized(objA){
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Practical Challenges

u Processes often do not know ahead of time which resources to lock
o For example, consider the following code snippet:

o No way to know the value of objB prior to locking objA

u Self-imposed rule: Programmer must ensure code follows ordering

void editHash4(HashTbl tbl, int keyA) {
  HashObj objA = tbl.get(keyA);
  synchronized(objA) {
    int keyB = objA.val {
    HashObj objB = tb1.get(keyB);
    synchronized(objB) {
      ...
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Practical Applications

u Ordering locks often applied to list-like data structures

u For example, consider:
o Multiple threads accessing a single array
o Sort the elements of the array in some order
o Allow threads to lock the elements one by one in the order

u Popular approach inside the Linux kernel
u Simple but practical approach to prevent deadlocks
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Livelock

u Contrary to deadlock, processes are always active
o Constantly changing states or retrying
o But make no progress

u Real life example:
o Two people meet face-to-face in a corridor
o Each move aside to let the other pass
o They end up swaying from side to side without making any progress
o They always move the same way at the same time

u The same four necessary and sufficient conditions for deadlocks apply
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u Building fast locks with hardware support
u TS, TTS, LL/SC
u All of them directly interact with coherence protocol

(and consistency model too!)
u how to build one type of locking primitive out of another

u Deadlocks prevention/detection an essential part of modern systems

Summary


