CS302

Locks, Deadlocks,
Livelocks

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 - Spring 2025 Lec.7.1 - Slide 1

Where are We?

¢ Synchronization

|
¢ Locks with hardware support

& Deadlocks

¢ Exercise session

¢ Free session

¢ Ask doubts and questions to
TAs and SAs
¢ Next Tuesday:

¢ Midterm exam

CS302 - Spring 2025 Lec.7.1 - Slide 2

Midterm Exam

¢ The midterm will cover upto and including Lec 6.2
o Accounts for 20% of final grade

¢ The exam will be from 10:15 AM — 12:45 PM on 8t April (Tuesday)

o Will be held in rooms CM 1 3 and INF 2

o Exam duration will be 2 hrs 30 mins

o Seating arrangement will be announced via Moodle
o Please make sure to bring your Camipro card

CS302 - Spring 2025 Lec.7.1 - Slide 3

FAQSs on Ed

¢ Can instructions inside the LSQ bypass each other?
o All instructions inside the LSQ are speculative

o Instructions in the LSQ (and ROB) and can execute out of order but they
commit in order

o Instructions can only bypass other instructions the store buffer based on the
memory consistency model

¢ In PC and WC which instructions can bypass each other?
o In PC, loads can bypass committed stores and never other loads

o In WC, committed stores can also bypass other committed stores in
addition to PC

CS302 - Spring 2025 Lec.7.1 - Slide 4

Reminder: Simple TS Lock

¢ Lock:

void Lock (int* lock) {
while (Test and Set(lock) !'= 0);
}

¢ Unlock:

void Unlock (volatile int* lock) {
*lock = 0;
}

CS302 - Spring 2025 Lec.7.1 - Slide 5

Simple TS Lock Performance Characteristics

¢ Low latency (under low contention)
¢ High coherence traffic

¢ Poor scaling

¢ Low storage cost (one int)

¢ No provisions for fairness

CS302 - Spring 2025 Lec.7.1 - Slide 6

Test-and-Test-and-Set (TTS) Lock

L 4 LOCk' void Lock (int* lock) {
while (1) {
while (*lock !'= 0); // additional test
// while another processor has the lock..

// when lock is released, try to acquire it
if (Test and Set(lock) == 0)
return;

¢ Unlock:

void Unlock (volatile int* lock) {
*lock = O;
}

CS302 - Spring 2025 Lec.7.1 - Slide 7

Test-and-Test-and-Set (TTS) Lock

¢ Reduce coherence traffic by testing locally

¢ Read from local cache without invalidating others
¢ BusRd instead of BusRdx

Test:
1d
cmp
bnz

Lock:
ts
bnz

Unlock:
st

CS302 - Spring 2025

rl, mem[addr]

rl, #0
Test

rl, mem[addr]

Test

mem[addr],

#0

// load lock wvalue

// compare to 0

// load word into Rl
// if 0, lock obtained

// store 0 to

Lec.7.1 - Slide 8

Test-and-Test-and-Set (TTS) Lock

¢ If no contention
¢ To lock, read, if hit and available then RMW
¢ |f miss or not available, spin reading
¢ To unlock, if hit, store
¢ If miss, get A with write permission, then store

¢ With contention (multiple processors spin)
¢ Most tests are read hits
¢ Writes only when acquiring the lock & releasing the lock
¢ Wait using reads

CS302 - Spring 2025 Lec.7.1 - Slide 9

Test-and-Test-and-Set (TTS) Lock

Processor 0 Processor 1 Processor 2
BusRdX e Invalidate line Invalidate line
 Update line in cache (setto 1)
BusRd BusRd
[P1 is holding lock...] [Many reads from local cache] [Many reads from local cache]
BusRdX
Update line in cache (set to 0) Invalidate line Invalidate line
Invalidate line Bushd BusRd
BusRdX T&S
Update line in cache (set to 1) .
Invalidateline BuskdX

T&S :
‘Attempt to update (t&s fails)
= thread has lock o

CS302 - Spring 2025 Lec.7.1 - Slide 10

TTS Lock Performance Characteristics

¢ Slightly higher latency than TS in uncontended case
¢ Must test then test-and-set

¢ Generates much less interconnect traffic
¢ One invalidation, per waiting processor, per lock release
¢ O(P) invalidations = O(2*P traffic); P = #waiting cores
¢ Recall: TS generated 1 invalidation per waiting processor per test

¢ More scalable (due to less traffic)
¢ Storage cost unchanged (one int)

¢ Still no provisions for fairness

CS302 - Spring 2025 Lec.7.1 - Slide 11

TS Lock with Exponential Back-off

¢ Reduce contention traffic by adding “wait time” after failing to acquire

the lock

¢ Studies shown that using exponential waiting balances lock latency and
contention

void Lock (volatile int* lock) {

int amount = 1;
while (1) {
if (Test and Set(lock) == 0)
return;

delay (amount) ;
amount *= 2;

}
}

CS302 - Spring 2025 Lec.7.1 - Slide 12

TS Lock with Exponential Back-off

¢ If no contention
& Acts like Test & Set

¢ With contention (multiple processors spin)

¢ Every test is a store miss!!!!
¢ Every unlock is a store miss
¢ But the tests are exponentially distributed

CS302 - Spring 2025 Lec.7.1 - Slide 13

TS w/ Exp. Back-off Characteristics

¢ Same uncontended latency as TS
¢ But potentially higher latency under contention; why?

¢ Generates less traffic than TS
¢ Not continually attempting to acquire lock

¢ Improves scalability (due to less traffic)
¢ Storage cost unchanged

¢ Exponential back-off can cause severe unfairness
¢ Newer requesters back off for shorter intervals

CS302 - Spring 2025 Lec.7.1 - Slide 14

Issuesw. TSand TTS

¢ Both locks require an instruction that is both a read and write
¢ This is a challenge for pipelined processors

¢ Additionally, must lock the bus (block all ops) until the read-modify-

write completes
¢ Complicates cache controller logic
¢ Two memory accesses per instruction more difficult to track in CPU pipeline

CS302 - Spring 2025 Lec.7.1 - Slide 15

Alternative: Load-Locked & Store Conditional

¢ Provides atomic read-modify-write with two instrs.
¢ Load-locked (LL)=1.1 r,, mem[addr]
¢ Store-conditional (SC)=s.c r,, mem[addr]

¢ Interacts with cache-coherence protocol to guarantee no intervening
writes to [addr]

¢ Used in MIPS, DEC Alpha, and all ARM cores

CS302 - Spring 2025 Lec.7.1 - Slide 16

How is LL/SC Atomic?

¢ Recall the incorrect first attempt:
¢ Two cores could both see the lock as free, and enter the critical section

Lock:
1d rl, mem[addr] // load word into rl
cmp rl, #0 // if 0, store 1
bnz Lock // else, try again
st mem[addr], #1
Unlock:
st mem[addr], #0 // store 0 to address

¢ How does LL/SC solve the problem?

CS302 - Spring 2025 Lec.7.1 - Slide 17

Remember and Validate the Address

¢ LL puts the address and flag into a link register

Link Register

CS302 - Spring 2025 Lec.7.1 - Slide 18

Remember and Validate the Address

¢ LL puts the address and flag into a link register
¢ Invalidations or evictions for that address clear the flag, and the SC will then fail
¢ Signals that another core modified the address

P, : Link Register
_x-o0 |

Buslnv
G—

CS302 - Spring 2025 Lec.7.1 - Slide 19

Simultaneous SCs?

¢ Consider the following case:
¢ Processors 0 and 1 both execute the following code, with cache block X
beginning in Shared
¢ Both 11 [X]read O
¢ Both begin to issue sc [X]

¢ Will we break mutual exclusion?

Lock:
11 r2, [X]
cmp r2, #0
bnz Lock // if 1, spin
addi r2, #1
sc [X], xr2

CS302 - Spring 2025 Lec.7.1 - Slide 20

Simultaneous SCs?

& Will we break mutual exclusion?

¢ Answer: No! Why?

¢ Remember, cache coherence ensures the propagation of values to a single

address.

¢ S0, when both processors try to Businv, one of them will “win”, and clear the
other’s link register flag

¢ e.g., Say P1 wins, therefore PO’s copy of X gets invalidated, and its store

CS302 - Spring 2025

will fail as well

Po

Buslnv (from P;)

P,

Lec.7.1 - Slide 21

Example: TS with LL/SC in ARM

¢ Can use LL/SC to build many types of locks
¢ This example builds TS in real ARM assembly

Test_and_Set:
1dl 1 t0, 0(tl)
bn t0, L1

load locked, tO0 = lock
if not free, loop

lda t0, 1(0) ; 0 =1

stl ¢ t0, O0(tl) ; conditional store,
; lock =1

beq t0, Test and Set ; if failed, loop

Release:
stl 0, 0(tl)

CS302 - Spring 2025 Lec.7.1 - Slide 22

Busy Waiting

¢ So far threads were spinning while waiting (busy waiting)
¢ Keeping the CPU busy while making no progress

while (test is not successful) {
// wait while spinning

}

compute assuming test succeeded();

¢ Free up exec. resources if progress cannot be made

CS302 - Spring 2025 Lec.7.1 - Slide 23

Blocking Synchronization

¢ ldea:
¢ If progress cannot be made because a resource cannot be acquired
¢ It's desirable to free up exec. resources for another thread

¢ Blocking synchronization:

¢ Preempt the running thread (suspend)
¢ OS schedules another thread to run
¢ The other thread can run and make progress

if (test is not successful) {
block until true(); // OS de-schedules thread

}

compute assuming test succeeded() ;

CS302 - Spring 2025 Lec.7.1 - Slide 24

Busy Waiting vs. Blocking Synchronization

¢ Busy-waiting is preferable if:
¢ Scheduling overhead is larger than expected wait time
¢ Scheduling overhead is in the order of microseconds
¢ While a few spinning iterations is in the order of nanoseconds
¢ Processor’s resources not needed for other tasks

¢ Blocking is preferred if waiting time is significant
¢ And there are other tasks that need processor’s resources

CS302 - Spring 2025 Lec.7.1 - Slide 25

Recall: Concurrent Data Structures

¢ Various flavors
¢ Coarse grained locks
¢ easy to code, but bad performance

¢ Fine grained locks
¢ hard to code and reasonable performance

¢ Lock-free data structures
¢ very hard to code and best performance

CS302 - Spring 2025 Lec.7.1 - Slide 26

Coarse-grained Locking

CS302 - Spring 2025

117

1 11

Lec.7.1 - Slide 27

Coarse-grained Locking

CS302 - Spring 2025

117

w6

1 11

Lec.7.1 - Slide 28

Coarse-grained Locking

void editHash (HashTbl tbl, int key) ({
synchronized (tbl) ({
// read objects
HashObj obj = tbl.get (key);
// update
obj.update() ;

}

¢ Simple implementation

¢ Lots of contention
¢ No concurrency inside the data structure

CS302 - Spring 2025 Lec.7.1 - Slide 29

Fine-grained Locking

CS302 - Spring 2025

{1 17

0 °
1 o
2

3 —

1 11

Lec.7.1 - Slide 30

Fine-grained Locking

CS302 - Spring 2025

?

{1 17

WIiIN]| =]O

!

Lec.7.1 - Slide 31

Fine-grained Locking

void editHash (HashTbl tbl, int key) ({
// read objects
HashObj obj = tbl.get (key) ;
synchronized (obj) {
// update
obj.update() ;
}
}

¢ Contention for objects only

¢ Lots of concurrency exposed
¢ Limited only to updating and reading each object
¢ Cannot actually modify the hash table structure

CS302 - Spring 2025 Lec.7.1 - Slide 32

Performance of Fine-grained locking

CS302 - Spring 2025

Execution Time

Concurrent Hash Table Performance

1.0000

0.7500

0.5000

0.2500

0.0000

-s-coarse locks -#-fine locks

4 8 16
processors

Reduced contention leads to better performance

Lec.7.1 - Slide 33

Modifying the Hash Table

¢ Just saw, fine grained works well when the locks are very small, and

held for a short time
¢ e.g., only protecting 1 line of code

¢ Where do we lock if we are removing?

¢ Choice 1: Just the node we are removing
¢ Incorrect (Ask yourself why?)

¢ Choice 2: The whole hash bucket

¢ Correct, but not a lot of concurrency

¢ Choice 3: All of the nodes that we modify

¢ Correct, allows more concurrency in case of large lists

CS302 - Spring 2025

{obj.update () ; }

Lec.7.1 - Slide 34

Localized Locking

¢ Which pointers do we edit on delete (12)?

CS302 - Spring 2025

{ 4

{ 8

112

113

Lec.7.1 - Slide 35

Localized Locking

¢ Which pointers do we edit on delete (12)?

¢ Answer: Deleted node, and previous node.

{ 4

{ 8

112

113

¢ 8—next now needs to pointto 13, 12 is removed

tH

CS302 - Spring 2025

1 8

1 12

113

113

Lec.7.1 - Slide 36

Localized Locking

¢ How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur—-next

o{ 4

Y
»

8

112

113

¢ Otherwise, another thread could delete it, making our behavior undefined

¢ This is called “*hand over hand” locking

CS302 - Spring 2025

Lec.7.1 - Slide 37

Localized Locking

¢ How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur—-next

b

Y
»

8

112

113

¢ Otherwise, another thread could delete it, making our behavior undefined

¢ This is called “*hand over hand” locking

CS302 - Spring 2025

Lec.7.1 - Slide 38

Localized Locking

¢ How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur—-next

b

Y
»

1

112

113

¢ Otherwise, another thread could delete it, making our behavior undefined

¢ This is called “*hand over hand” locking

CS302 - Spring 2025

Lec.7.1 - Slide 39

Localized Locking

¢ How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur—-next

b

Y
»

1

> 1 g‘ bo

113

¢ Otherwise, another thread could delete it, making our behavior undefined

¢ This is called “*hand over hand” locking

CS302 - Spring 2025

Lec.7.1 - Slide 40

Localized Locking

¢ How to ensure we get both those locks?

1. Grab locks as we traverse the list
2. Do not release cur until we have cur—-next

Ay

Y
»

1

> 1 g‘ it

113

¢ Otherwise, another thread could delete it, making our behavior undefined

¢ This is called “*hand over hand” locking

CS302 - Spring 2025

Lec.7.1 - Slide 41

Performance Trade-offs

¢ Which specific scenarios does this allow?
¢ Threads concurrently deleting elements in non-decreasing numerical order

¢ €.g.,delete(12); delete(4);

&h

> 1 g‘ bo

¢ Hand over hand forbids threads from passing

¢ Probably a fairly rare scenario

CS302 - Spring 2025

113

Lec.7.1 - Slide 42

But, locks have other problems (alas &)

¢ Priority inversion
¢ Higher priority threads waiting for a lock held by a lower-priority thread

¢ Convoying
¢ Threads holding locks and are de-scheduled

¢ Lock composability

¢ Threads holding multiple locks can lead to deadlocks or livelocks if
Implemented incorrectly

CS302 - Spring 2025 Lec.7.1 - Slide 43

Fine-grained Locking: Good case

CS302 - Spring 2025

?

117

WiliN |~]O

1 11

Lec.7.1 - Slide 44

Fine-grained Locking: Contention

ﬁ*hnk!]
Y

0 ——14 [

1 «—— 9 1 17
2

3 1 7 11

CS302 - Spring 2025 Lec.7.1 - Slide 45

Fine-grained Locking: Priority Inversion

¢ Higher priority thread waiting behind

?

WiliN |~]0O

1 7

honk! |

1 11

ower priority thread

¢ E.g., OS thread, or app thread in real-time systems

CS302 - Spring 2025

Lec.7.1 - Slide 46

Fine-grained Locking: Priority Inversion

¢ Priority inversion:

¢ When low-priority process is preempted while holding a lock needed by a
high-priority process

CS302 - Spring 2025 Lec.7.1 - Slide 47

Fine-grained Locking: Convoying

CS302 - Spring 2025

5

?

117

WiliN |~]O

1 11

Lec.7.1 - Slide 48

Fine-grained Locking: Convoying

il

0 ~ oy 4 1 =8£
1 ——{9 117

2

3 - - 7 11

CS302 - Spring 2025 Lec.7.1 - Slide 49

Fine-grained Locking: Convoying

¢ Thread holding the lock gets swapped out by OS

¢ E.g., thread waiting for I/O sleeps, other threads run

CS302 - Spring 2025

?

WiliN |~]0O

1 11

Lec.7.1 - Slide 50

Fine-grained Locking: Convoying

?

WiliN |~]0O

1 11

L

¢ Thread holding the lock gets swapped out by OS

¢ E.g., thread waiting for I/O sleeps, other threads run

CS302 - Spring 2025

honk!]

Lec.7.1 - Slide 51

Fine-grained Locking: Convoying

¢ Convoying

¢ \When a process holding a lock is de-scheduled (e.g. page fault, no more
gquantum), no forward progress for other processes capable of running

CS302 - Spring 2025 Lec.7.1 - Slide 52

Take a Break!

CS302 - Spring 2025 Lec.7.1 - Slide 53

Fine-grained Locking: Lock Composability

void editHash2 (HashTbl tbl, int keyA, int keyB)

{
// read objects

HashObj objA = tbl.get (keyA) ;
HashObj objB = tbl.get (keyB) ;
synchronized (objA) {
synchronized (objB) { PO
// update editHash2 (tbl,1,2);
objA.update (objB) ;
objB.update (obja) ; P1

}
editHash2 (tbl,2,1) ;

This code deadlocks! Why?

CS302 - Spring 2025

Lec.7.1 - Slide 54

Fine-grained Locking: Lock Composability

PO Pl

editHash2 (tbl,1,2); editHash2 (tbl,2,1);
objA = tbl.get (1) ; objA = tbl.get(2);
synchronized (objA) { synchronized (objA) {

» tbl.get(1)

D oM

tbl.get(2) |«

CS302 - Spring 2025 Lec.7.1 - Slide 55

Fine-grained Locking: Lock Composability

PO

editHash2 (tbl,1,2) ;

objA =

tbl.get (1) ;

synchronized (objA) {

CS302 - Spring 2025

Pl
editHash2 (tbl,2,1) ;

objA = tbl.get(2);
synchronized (objA) {

e

tbl

{(1)

@
()

Lec.7.1 - Slide 56

Fine-grained Locking: Lock Composability

PO Pl
editHash2 (tbl,1,2) ; editHash2 (tbl,2,1) ;
objB = tbl.get(2) ; objB = tbl.get(1l);
synchronized (objA) { synchronized (objA) {
synchronized (objB) { synchronized (objB) {
tble (1) |

O o

| 1 E2)
CS302 - Spring 2025 Lec.7.1 - Slide 57

Fine-grained Locking: Lock Composability

PO Pl
editHash2 (tbl,1,2); editHash2 (tbl,2,1);

¢ Neither process can
th1/ 4(1) |s x proceed!

@ I ¢ Each process waiting
for the other one to

release lock

¢ Deadlock!

CS302 - Spring 2025 Lec.7.1 - Slide 58

Fine-grained Locking: Lock Composability

¢ Composing lock-based code is tricky
o Can lead to deadlock or livelock if implemented incorrectly
o Major problem in most modern systems

CS302 - Spring 2025 Lec.7.1 - Slide 59

Expectations from Software

¢ All processes should make forward progress
o Processes make progress toward completing their tasks

o Processes will eventually finish what they started
o Processes are not stuck, waiting forever, or being blocked indefinitely

PO P1 P2 P3

|

CS302 - Spring 2025 Lec.7.1 - Slide 60

Recap: What can block the progress of processes?

¢ Long-latency operations such as memory or I/O
o Will eventually complete if hardware is designed correctly

¢ Synchronization
o Waiting for other threads/processes to reach a barrier
o Atomic operations
o Waiting for locks

¢ A process can get stuck indefinitely because of incorrect placement of
synchronization in software

CS302 - Spring 2025 Lec.7.1 - Slide 61

Liveness Properties

¢ What are deadlocks/livelocks?
o Deadlock (processes sleep waiting for one another)
o Livelock (processes execute but make no progress)

¢ \We want execution to be deadlock-/livelock-free AND
o No starvation of shared resources
o Aim for fairness
o Minimality (no unnecessary waiting or signaling)

CS302 - Spring 2025 Lec.7.1 - Slide 62

Formally Defining Deadlocks

¢ Every process in a set is waiting for an event that can only be caused
by another process in the same set

¢ Consider the previous example with two processes:

I I ¢ Process 1 waiting for

rocess 0O
| th1E2) P

CS302 - Spring 2025 Lec.7.1 - Slide 63

th1d (1) 1«

¢ Process 0 waiting for
process 1

Necessary and Sufficient Conditions for Deadlock

1. Mutual exclusion: resources protected by locks

2. Hold and wait: hold a resource and wait for another

3. No pre-emption: no way for B to “seize the lock” from A

4. Cyclic waiting: A waits for B, B waits for A (a “circular” pattern)

If any of these four properties are missing, deadlock will not happen
Our goal: Try to prevent one of the conditions from being true

CS302 - Spring 2025 Lec.7.1 - Slide 64

Deadlock Prevention (1)

¢ Mutual exclusion: resources protected by locks
o Aresource can be a variable, pointer, shared object, etc.
o For example,

#pragma omp parallel ({
int result = heavy computation partl();

#pragma omp atomic
sum += result;

}

¢ Essential property to maintain data integrity
o Cannot be prevented from being true in modern systems

CS302 - Spring 2025 Lec.7.1 - Slide 65

Deadlock Prevention (2)

¢ Hold and wait: hold a resource and wait for another
¢ Consider the previous example with PO:

objA = tbl.get (1) ;

objB = tbl.get(2) ;

synchronized (objA) {
synchronized (objB) {

¢ PO holds the lock for objA while waiting for objB
¢ Especially prevalent when using fine-grained locks

CS302 - Spring 2025 Lec.7.1 - Slide 66

Deadlock Prevention (2)

¢ Possible solution: acquire all resources before running
o In the prior example, it would be equivalent to coarse-grained locking

synchronized(tbl) { // Lock the entire hash table

objA
objB

tbl.get (1) ;
tbl.get (2) ;

¢ Process 0 locks the entire hash table
¢ Comes with all the drawbacks of coarse-grained locking as discussed

CS302 - Spring 2025

Lec.7.1 - Slide 67

Deadlock Prevention (3)

¢ No pre-emption: no way for B to “seize the lock” from A

*ﬁhnk!]
EREGY

0 o ~ 4 1

1 ——1 9 {17
2

3 7 +1 11

¢ Leads to problems such as priority inversion as discussed earlier

CS302 - Spring 2025 Lec.7.1 - Slide 68

Deadlock Prevention (3)

¢ Possible solution:
o Allocate priority to threads
o Higher priority thread can pre-empt lower priority thread and steal all resources

¢ But this approach is generally unsafe

¢ Several problems can arise
o Data corruption possible if a thread is pre-empted during execution

o Performance overheads with pre-emption
o Some resources cannot be safely pre-empted (e.g., syscalls)

CS302 - Spring 2025 Lec.7.1 - Slide 69

Deadlock Prevention (4)

¢ Cyclic waiting: A waits for B, B waits for A (a “circular” pattern)

b1l 4(1) |+

e o

" th1€2)

¢ Easiest and most practical to ensure this property never holds

CS302 - Spring 2025 Lec.7.1 - Slide 70

Deadlock Prevention (4)

¢ Possible solution: only allow acquiring locks in a fixed order
¢ For example, allow only increasing order of locking keys

int small key = (keyA < keyB) ? keyA : keyB;
int big key = (keyA > keyB) ? keyA : keyB;

HashObj objA = tbl.get(small key);
HashObj objB = tbl.get(big key);
synchronized (objA) {

synchronized (objB) {

}

CS302 - Spring 2025 Lec.7.1 - Slide 71

Deadlock Prevention (4)

¢ Solves the problem for PO and P1

¢ Both PO and P1 will try to lock the first element at the beginning
o Regardless of the order in which their arguments are passed
o Whichever process wins, proceeds with the execution first

PO Pl
editHash3(tbl,1,2); editHash3(tbl,2,1) ;
small key = 1; small key = 1;
big key = 2; big key = 2;
objA = tbl.get (1) ; objA = tbl.get(1l);

synchronized (objA) { synchronized (obja) {

CS302 - Spring 2025 Lec.7.1 - Slide 72

Practical Challenges

¢ Processes often do not know ahead of time which resources to lock
o For example, consider the following code snippet:
void editHash4 (HashTbl tbl, int keyA) {

HashObj objA = tbl.get (keyi);

synchronized (objA) {
int keyB = objA.val {
HashObj objB = tbl.get (keyB) ;
synchronized (objB) {

o No way to know the value of ob5jB prior to locking objA

¢ Self-imposed rule: Programmer must ensure code follows ordering

CS302 - Spring 2025 Lec.7.1 - Slide 73

Practical Applications

¢ Ordering locks often applied to list-like data structures

¢ For example, consider:
o Multiple threads accessing a single array
o Sort the elements of the array in some order
o Allow threads to lock the elements one by one in the order

¢ Popular approach inside the Linux kernel
¢ Simple but practical approach to prevent deadlocks

CS302 - Spring 2025 Lec.7.1 - Slide 74

Livelock

¢ Contrary to deadlock, processes are always active
o Constantly changing states or retrying
o But make no progress

¢ Real life example:
o Two people meet face-to-face in a corridor
o Each move aside to let the other pass
o They end up swaying from side to side without making any progress
o They always move the same way at the same time

¢ The same four necessary and sufficient conditions for deadlocks apply

CS302 - Spring 2025 Lec.7.1 - Slide 75

Summary

¢ Building fast locks with hardware support
¢ TS, TTS, LL/SC

¢ All of them directly interact with coherence protocol
(and consistency model too!)

¢ how to build one type of locking primitive out of another

¢ Deadlocks prevention/detection an essential part of modern systems

CS302 - Spring 2025 Lec.7.1 - Slide 76

