CS302

Synchronization

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 - Spring 2025 Lec.6.2 - Slide 1

Where are We?

17-Feb
24-Feb
3-Mar
10-Mar
17-Mar
24-Mar
31-Mar
7-Apr
14-Apr

21-Apr

28-Apr 30-Apr
5-May 7-May
12-May 14-May
19-May 21-May
26-May 28-May

CS302 - Spring 2025

¢ Synchronization
¢ Locks

& EXxercise session

¢ Instruction streams under
various consistency models

¢ Next Tuesday:
¢ Synchronization continued

Lec.6.2 - Slide 2

Reminder: Principles of Parallel Computing

¢ From Lec. 2, need these for a parallel program:
¢ Express the parallelism

¢ Divide the work appropriately (load balancing)
¢ Communication & Synchronization

¢ This lecture: how to synchronize in hardware
¢ Closely tied to coherence & consistency model

CS302 - Spring 2025 Lec.6.2 - Slide 3

Shared Memory Synchronization

¢ Recall Lectures 2 & 6:
¢ Threads communicate by reading/writing shared vars.
¢ Memory like a bulletin board, mostly global access

Thread 1
Memory
shared
between
threads
Thread 2
Thread 1: Thread 2:
int X =0 int X;
X = 1; while (X == 0) {}

print X;

CS302 - Spring 2025 Lec.6.2 - Slide 4

Other Method: Message Passing

¢ Threads can communicate via explicit messages
¢ Synchronization is inherent in sending and receiving (Not in this lecture)

Thread 1 address space Thread 2 address space

\'

. semantics: send contexts of local
Variable X variable X as message to thread 2
: and tag message with the id

gsend(x, 2, my_msg_id)

: ésemantics: receive message with id V
: store contents in local variable Y

Variable Y

CS302 - Spring 2025 (Communication operations shown in red) Lec6.2 - Slide 5

Synchronization Objectives

¢ Low overhead

¢ Synchronization can limit scalability
(E.g., single-lock OS kernels)

¢ Correctness (and ease of programming)
¢ Synchronization failures are difficult to debug

¢ Coordination of HW and SW

¢ SW semantics must be specified to prove correctness
¢ HW can often improve efficiency

CS302 - Spring 2025 Lec.6.2 - Slide 6

Synchronization Methods

¢ Mutual exclusion
¢ Locks

¢ Point-to-point synchronization
¢ Flags, barriers

¢ Software methods (not in this lecture)
¢ Queues, counters, software pipelines

¢ Coarse-grain concurrency control
¢ Transactional Memory

CS302 - Spring 2025

Lec.6.2 - Slide 7

Phases of Synchronization

¢ Acquire method
¢ How thread attempts to gain access to the resource

¢ Release method
¢ How to enable other threads to access the resource

¢ Waiting algorithm
¢ How thread waits for access to the resource

CS302 - Spring 2025 Lec.6.2 - Slide 8

Locks

CS302 - Spring 2025 Lec.6.2 - Slide 9

Focus on Implementation

¢ Previously we talked about locks mainly from a software perspective
¢ What to lock, and when

¢ In this lecture, we focus on how locks work and their interactions
with hardware/OS

¢ Ties back to cache coherence protocol

¢ Because locks require communication...
¢ Use memory locations to implement them!

CS302 - Spring 2025 Lec.6.2 - Slide 10

Desirable Lock Characteristics

¢ Low latency
¢ Processors should be able to acquire free locks quickly

¢ Low traffic
¢ Waiting for lock should generate little/no traffic

¢ A busy lock should be handed off between processors with as little traffic as
possible

¢ Scalability
¢ Latencyl/traffic should scale reasonably with number of processors

¢ Low storage cost

& Fairness

¢ Avoid starvation or substantial unfairness
¢ |deal: processors should acquire lock in order they request access

CS302 - Spring 2025 Lec.6.2 - Slide 11

Conceptual Model of Locks

¢ Goal of locking is to force threads to access a location one at a time

¢ This is called mutual exclusion because threads both exclude each other
from executing

¢ To implement: use a construct called a lock

¢ Just a memory location where threads communicate wrt. who can execute
and who must wait

Thread 1 =" ™= Current Holder : -
Free

Lock

Thread 2 =’

CS302 - Spring 2025 Lec.6.2 - Slide 12

Conceptual Model of Locks

¢ Goal of locking is to force threads to access a location one at a time

¢ This is called mutual exclusion because threads both exclude each other
from executing

¢ To implement: use a construct called a lock

¢ Just a memory location where threads communicate wrt. who can execute
and who must wait

Thread 1 Current Holder : T1
Acquired

Lock

Thread 2 =’

CS302 - Spring 2025 Lec.6.2 - Slide 13

First Try Creating a Lock

¢ Simple idea:
¢ |If memory location holds 0, lock is free

¢ Store 1 into it to “acquire” the lock, other threads have to wait until the holder
stores 0 again

while (lock '= 0);

¢ Lock: lock = 1:

¢ Unlock: lock = O;

CS302 - Spring 2025 Lec.6.2 - Slide 14

First Try Creating a Lock

¢ Simple idea:
¢ |If memory location holds 0, lock is free

¢ Store 1 into it to “acquire” the lock, other threads have to wait until the holder
stores 0 again

¢ Does this work?

Lock:
1d rl, mem[addr] // load word into rl
cmp rl, #0 // if 0, store 1
bnz Lock // else, try again

st mem[addr], #1

Unlock:
st mem[addr], #0 // store 0 to address

CS302 - Spring 2025 Lec.6.2 - Slide 15

First Try Creating a Lock

¢ Simple idea: Load and check if lock is O
¢ Does this work? (Hint: Think cache coherence)

& Answer: No!
¢ Instructions from load to store not executed atomically
¢ Two cores can load 0, believe the lock is free, and we lose mutual exclusion

Lock:
1d rl, mem[addr] // load word into rl
cmp rl, #0 // if 0, store 1
bnz Lock // else, try again
st mem[addr], #1

Unlock:

st mem[addr], #0 // store 0 to address

CS302 - Spring 2025 Lec.6.2 - Slide 16

Need Atomics in Hardware

¢ Create a new instruction, “test-and-set” (TS)
¢ ts reg, mem[addr]

¢ Atomically load memory location into reg and set contents of

location to 1
¢ Exercise: Sketch out how to create a lock using TS

CS302 - Spring 2025 Lec.6.2 - Slide 17

Need Atomics in Hardware

¢ Create a new instruction, “test-and-set” (TS)
¢ ts reg, mem[addr]

¢ Atomically load memory location into reg and set contents of

location to 1
¢ Exercise: Sketch out how to create a lock using TS

¢ Answer:
Lock:
ts rl, mem[addr] // load word into rl
bnz Lock // if 0, lock obtained
// fall-through, critical section
Unlock:

st mem[addr], #O0 // store 0 to address

CS302 - Spring 2025 Lec.6.2 - Slide 18

Simple TS Lock

¢ High-level pseudo code
¢ Actual code in assembly

¢ Lock: void Lock (int* lock) {
while (Test and Set(lock) != 0);
}

¢ Unlock: void Unlock (volatile int* lock) {

*lock = 0;
}

CS302 - Spring 2025 Lec.6.2 - Slide 19

Example: TS in x86

¢ X386

¢ XCHG (swaps memory values)
¢ LOCK prefix

¢ Add to “ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC,

INC, NEG, NOT, OR, SBB, SUB, XOR, XADD” when destination operand is
memory

¢ Reachable using intrinsics, e.g., __atomic_exchange(..) on GCC/Clang

Test and set:
mv %eax, #1
xchg %eax, % (MEM)
cmp %eax, #0
bnz Test and set

CS302 - Spring 2025 Lec.6.2 - Slide 20

Reminder: P-to-Cache Transactions

ld X — Read X ld X
I
If block in cache
¢ In readable state, hit Read X

¢ in invalid state or not in cache,
request a readable copy

BusRd

CS302 - Spring 2025 Lec.6.2 - Slide 21

Reminder: P-to-Cache Transactions

st X — Write X

If block in cache

CS302 - Spring 2025

¢ in writable state, hit

¢ In readable, invalid state or not in
cache, request a writable copy

st X

Write X

|

BusRdX
BusInv

Lec.6.2 - Slide 22

New P-to-Cache (Atomic) Transaction

ts X — Read-Modify-Write X ts X
¢ RMW for short P
¢ Atomically reads and updates

n n n n RMW X
Bus transactions similar to Write

If block in cache

¢ in writable state, hit

¢ In readable, invalid state or not in I
cache, request a writable copy

BusRdX
BusInv

CS302 - Spring 2025 Lec.6.2 - Slide 23

Example Critical Section & Coherence Traffic

while (Test-and-set(&X) I= 0);
.... Il'update data structure
X=0; //unlock

CS302 - Spring 2025 Lec.6.2 - Slide 24

Example Critical Section & Coherence Traffic

X is initially O
1. PO & P1 try lock acquire

CS302 - Spring 2025 Lec.6.2 - Slide 25

Example Critical Section & Coherence Traffic

X is initially O
1. PO & P1 try lock acquire
2. PO wins bus arbitration

CS302 - Spring 2025 Lec.6.2 - Slide 26

Example Critical Section & Coherence Traffic

X is initially O
1. PO & P1 try lock acquire
2. PO wins bus arbitration

¢ Reads 0
¢ Writes 1

CS302 - Spring 2025 Lec.6.2 - Slide 27

Example Critical Section & Coherence Traffic

X is initially O

1. PO & P1 try lock acquire
2. PO wins bus arbitration
3. P1 gets a bus grant

CS302 - Spring 2025 Lec.6.2 - Slide 28

Example Critical Section & Coherence Traffic

X is initially O
1. PO & P1 try lock acquire
2. PO wins bus arbitration

3. P1 gets a bus grant . =
o PO writes back X °] :

CS302 - Spring 2025 Lec.6.2 - Slide 29

Example Critical Section & Coherence Traffic

X is initially O

1. PO & P1 try lock acquire

2. PO wins bus arbitration

3. P1 gets a bus grant x

¢ PO writes back X
¢ P1reads 1
¢ P1 writes 1

CS302 - Spring 2025 Lec.6.2 - Slide 30

Example Critical Section & Coherence Traffic

X is initially O

1. PO & P1 try lock acquire
2. PO wins bus arbitration
3. P1 gets a bus grant

4. PO in critical section

¢ P1 keeps looping on RMW
reading 1

¢ Not shown in diagram

CS302 - Spring 2025 Lec.6.2 - Slide 31

Example Critical Section & Coherence Traffic

X is initially O

SAE ol A

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

¢ Writes O

Po | P,

-

Lec.6.2 - Slide 32

Example Critical Section & Coherence Traffic

X is initially O

SAE ol A

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

¢ Writes O

Lec.6.2 - Slide 33

Example Critical Section & Coherence Traffic

X is initially O

SAE ol A

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

¢ Writes O

Lec.6.2 - Slide 34

Example Critical Section & Coherence Traffic

X is initially O

SAE ol A

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

¢ Writes O

Lec.6.2 - Slide 35

Example Critical Section & Coherence Traffic

X is initially O

2

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

P1 retries lock acquire

Lec.6.2 - Slide 36

Example Critical Section & Coherence Traffic

X is initially O

2

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

P1 retries lock acquire

1 BusRdX I

‘ X Memory \

Lec.6.2 - Slide 37

Example Critical Section & Coherence Traffic

X is initially O

2

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

P1 retries lock acquire

DataWB 1 I

‘ X Memory \

Lec.6.2 - Slide 38

Example Critical Section & Coherence Traffic

X is initially O

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

P1 retries lock acquire
¢ Reads 0O
¢ Writes 1

2

CS302 - Spring 2025 Lec.6.2 - Slide 39

Example Critical Section & Coherence Traffic

X is initially O

Ok owh =

CS302 - Spring 2025

PO & P1 try lock acquire
PO wins bus arbitration
P1 gets a bus grant

PO in critical section

PO releases the lock

P1 retries lock acquire

¢ Reads 0
¢ Writes 1

. P1 in critical section

Lec.6.2 - Slide 40

Reminder: Desirable Lock Characteristics

¢ Low latency
¢ Processors should be able to acquire free locks quickly

¢ Low traffic
¢ Waiting for lock should generate little/no traffic

¢ A busy lock should be handed off between processors with as little traffic as
possible

¢ Scalability
¢ Latencyl/traffic should scale reasonably with number of processors

¢ Low storage cost

¢ Fairness
¢ Avoid starvation or substantial unfairness
¢ |deal: processors should acquire lock in order they request access

CS302 - Spring 2025 Lec.6.2 - Slide 41

TS Lock: Excessive Coherence Traffic

CS302 - Spring 2025

Processor (

4

Invalidate line

[P0 is holding lock ...]

BusRdX
Update line in cache (set to 0)

Invalidate line

= thread has lock

Processor 1

Invalidate line

' BusRdX
- Attempt to update (t&s fails)

BusRdX 185!
- Attempt to update (t&s fails)

Processor 2

Invalidate line

- BusRdX Tes;
. Attempt to update (t&s fails)

...

Invalidate line

Lec.6.2 - Slide 42

Test-and-Set Lock’s Performance

20

Time (us)

(o]

CS302 - Spring 2025

Benchmark executes:
Lock(L);
critical-section(c)
Unlock(L);

Bus contention increases amount of
time to transfer lock (lock holder
must wait to acquire bus to release)

AN

Not shown: bus contention also
slows down execution of critical
section

Ideal: one bus

’ transaction

per lock event
Number of Processors

Lec.6.2 - Slide 43

Summary

¢ Desirable Lock Characteristics
¢ Basic TS lock hardware primitives

¢ TS lock’s lack of scalability due to contention
o Contention while spinning
o Contention when lock is released

CS302 - Spring 2025 Lec.6.2 - Slide 44

