
CS302 – Spring 2025 Lec.6.2 - Slide 1

CS302

Synchronization

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan
Copyright 2025

CS302 – Spring 2025 Lec.6.2 - Slide 2

u Synchronization
u Locks

u Exercise session
u Instruction streams under

various consistency models

u Next Tuesday:
u Synchronization continued

Where are We?
M T W T F

17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.6.2 - Slide 3

u From Lec. 2, need these for a parallel program:
u Express the parallelism
u Divide the work appropriately (load balancing)
u Communication & Synchronization

u This lecture: how to synchronize in hardware
u Closely tied to coherence & consistency model

Reminder: Principles of Parallel Computing

CS302 – Spring 2025 Lec.6.2 - Slide 4

u Recall Lectures 2 & 6:
u Threads communicate by reading/writing shared vars.
u Memory like a bulletin board, mostly global access

Shared Memory Synchronization

int X = 0;
X = 1;

int X;
while (X == 0) {}
print X;

Thread 1: Thread 2:

Thread 1
X

Thread 2

Memory
shared

between
threads

CS302 – Spring 2025 Lec.6.2 - Slide 5

u Threads can communicate via explicit messages
u Synchronization is inherent in sending and receiving (Not in this lecture)

Other Method: Message Passing

Variable Y

Variable X

V

V

CS302 – Spring 2025 Lec.6.2 - Slide 6

u Low overhead
u Synchronization can limit scalability

(E.g., single-lock OS kernels)

u Correctness (and ease of programming)
u Synchronization failures are difficult to debug

u Coordination of HW and SW
u SW semantics must be specified to prove correctness
u HW can often improve efficiency

Synchronization Objectives

CS302 – Spring 2025 Lec.6.2 - Slide 7

u Mutual exclusion
u Locks

u Point-to-point synchronization
u Flags, barriers

u Software methods (not in this lecture)
u Queues, counters, software pipelines

u Coarse-grain concurrency control
u Transactional Memory

Synchronization Methods

CS302 – Spring 2025 Lec.6.2 - Slide 8

u Acquire method
u How thread attempts to gain access to the resource

u Release method
u How to enable other threads to access the resource

u Waiting algorithm
u How thread waits for access to the resource

Phases of Synchronization

CS302 – Spring 2025 Lec.6.2 - Slide 9

Locks

CS302 – Spring 2025 Lec.6.2 - Slide 10

u Previously we talked about locks mainly from a software perspective
u What to lock, and when

u In this lecture, we focus on how locks work and their interactions
with hardware/OS
u Ties back to cache coherence protocol

u Because locks require communication…
u Use memory locations to implement them!

Focus on Implementation

CS302 – Spring 2025 Lec.6.2 - Slide 11

u Low latency
u Processors should be able to acquire free locks quickly

u Low traffic
u Waiting for lock should generate little/no traffic
u A busy lock should be handed off between processors with as little traffic as

possible
u Scalability

u Latency/traffic should scale reasonably with number of processors
u Low storage cost
u Fairness

u Avoid starvation or substantial unfairness
u Ideal: processors should acquire lock in order they request access

Desirable Lock Characteristics

CS302 – Spring 2025 Lec.6.2 - Slide 12

u Goal of locking is to force threads to access a location one at a time
u This is called mutual exclusion because threads both exclude each other

from executing

u To implement: use a construct called a lock
u Just a memory location where threads communicate wrt. who can execute

and who must wait

Conceptual Model of Locks

Thread 1

Thread 2
Lock

Current Holder : -
AcquiredFree

CS302 – Spring 2025 Lec.6.2 - Slide 13

u Goal of locking is to force threads to access a location one at a time
u This is called mutual exclusion because threads both exclude each other

from executing

u To implement: use a construct called a lock
u Just a memory location where threads communicate wrt. who can execute

and who must wait

Conceptual Model of Locks

Thread 1

Thread 2

Current Holder : T1

Lock
Acquired

CS302 – Spring 2025 Lec.6.2 - Slide 14

u Simple idea:
u If memory location holds 0, lock is free
u Store 1 into it to “acquire” the lock, other threads have to wait until the holder

stores 0 again

u Lock:

u Unlock:

First Try Creating a Lock

while (lock != 0);
lock = 1;

lock = 0;

CS302 – Spring 2025 Lec.6.2 - Slide 15

u Simple idea:
u If memory location holds 0, lock is free
u Store 1 into it to “acquire” the lock, other threads have to wait until the holder

stores 0 again
u Does this work?

First Try Creating a Lock

Lock:

Unlock:

ld r1, mem[addr] // load word into r1
cmp r1, #0 // if 0, store 1
bnz Lock // else, try again
st mem[addr], #1

st mem[addr], #0 // store 0 to address

CS302 – Spring 2025 Lec.6.2 - Slide 16

u Simple idea: Load and check if lock is 0
u Does this work? (Hint: Think cache coherence)
u Answer: No!

u Instructions from load to store not executed atomically
u Two cores can load 0, believe the lock is free, and we lose mutual exclusion

First Try Creating a Lock

Lock:

Unlock:

ld r1, mem[addr] // load word into r1
cmp r1, #0 // if 0, store 1
bnz Lock // else, try again
st mem[addr], #1

st mem[addr], #0 // store 0 to address

CS302 – Spring 2025 Lec.6.2 - Slide 17

u Create a new instruction, “test-and-set” (TS)
u ts reg, mem[addr]

u Atomically load memory location into reg and set contents of
location to 1
u Exercise: Sketch out how to create a lock using TS

Need Atomics in Hardware

CS302 – Spring 2025 Lec.6.2 - Slide 18

u Create a new instruction, “test-and-set” (TS)
u ts reg, mem[addr]

u Atomically load memory location into reg and set contents of
location to 1
u Exercise: Sketch out how to create a lock using TS
u Answer:

Need Atomics in Hardware

Lock:

Unlock:

ts r1, mem[addr] // load word into r1
bnz Lock // if 0, lock obtained
// fall-through, critical section

st mem[addr], #0 // store 0 to address

CS302 – Spring 2025 Lec.6.2 - Slide 19

u High-level pseudo code
u Actual code in assembly

u Lock:

u Unlock:

Simple TS Lock

void Lock(int* lock){
 while (Test_and_Set(lock) != 0);
}

void Unlock(volatile int* lock){
 *lock = 0;
}

CS302 – Spring 2025 Lec.6.2 - Slide 20

u x86
u XCHG (swaps memory values)
u LOCK prefix
u Add to “ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC,

INC, NEG, NOT, OR, SBB, SUB, XOR, XADD” when destination operand is
memory

u Reachable using intrinsics, e.g., __atomic_exchange(..) on GCC/Clang

Example: TS in x86

Test_and_set:
 mv %eax, #1
 xchg %eax, %(MEM)
 cmp %eax, #0
 bnz Test_and_set

CS302 – Spring 2025 Lec.6.2 - Slide 21

ld X – Read X

If block in cache
u in readable state, hit
u in invalid state or not in cache,

request a readable copy

Reminder: P-to-Cache Transactions

P

Cache

ld X

Read X

BusRd

CS302 – Spring 2025 Lec.6.2 - Slide 22

Reminder: P-to-Cache Transactions

P

Cache

st X

Write X

BusRdX
BusInv

st X – Write X

If block in cache
u in writable state, hit
u in readable, invalid state or not in

cache, request a writable copy

CS302 – Spring 2025 Lec.6.2 - Slide 23

New P-to-Cache (Atomic) Transaction

P

Cache

ts X

RMW X

BusRdX
BusInv

ts X – Read-Modify-Write X
u RMW for short
u Atomically reads and updates

Bus transactions similar to Write
If block in cache

u in writable state, hit
u in readable, invalid state or not in

cache, request a writable copy

CS302 – Spring 2025 Lec.6.2 - Slide 24

while (Test-and-set(&X) != 0);
 …. // update data structure
X= 0; // unlock

Example Critical Section & Coherence Traffic

MemoryX

P0

Cache

P1

Cache

CS302 – Spring 2025 Lec.6.2 - Slide 25

Example Critical Section & Coherence Traffic

Memory0X

P0

Cache

P1

Cache

RMW X RMW X

X is initially 0
1. P0 & P1 try lock acquire

CS302 – Spring 2025 Lec.6.2 - Slide 26

Example Critical Section & Coherence Traffic

Memory0X

P0

Cache

P1

Cache

BusRdX

RMW X

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration

CS302 – Spring 2025 Lec.6.2 - Slide 27

Example Critical Section & Coherence Traffic

MemoryX

P0 P1

Cache1X(M)

RMW X

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration

u Reads 0
u Writes 1

CS302 – Spring 2025 Lec.6.2 - Slide 28

Example Critical Section & Coherence Traffic

MemoryX

P1

Cache1X(M)

BusRdX

P0

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant

CS302 – Spring 2025 Lec.6.2 - Slide 29

Example Critical Section & Coherence Traffic

MemoryX

P1

Cache1X(M)

DataWB

P0

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant

u P0 writes back X

CS302 – Spring 2025 Lec.6.2 - Slide 30

Example Critical Section & Coherence Traffic

MemoryX

P1

X(I) 1X(M)

P0

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant

u P0 writes back X
u P1 reads 1
u P1 writes 1

CS302 – Spring 2025 Lec.6.2 - Slide 31

Example Critical Section & Coherence Traffic

MemoryX

P1

X(I) 1X(M)

P0

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section

u P1 keeps looping on RMW
reading 1

u Not shown in diagram

CS302 – Spring 2025 Lec.6.2 - Slide 32

Example Critical Section & Coherence Traffic

MemoryX

P1

X(I) 1X(M)

Write X

P0

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock

u Writes 0

CS302 – Spring 2025 Lec.6.2 - Slide 33

Example Critical Section & Coherence Traffic

MemoryX

P1

X(I) 1X(M)

BusRdX

P0

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock

u Writes 0

CS302 – Spring 2025 Lec.6.2 - Slide 34

Example Critical Section & Coherence Traffic

MemoryX

P1

X(I) 1X(M)

Data WB

P0

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock

u Writes 0

CS302 – Spring 2025 Lec.6.2 - Slide 35

Example Critical Section & Coherence Traffic

MemoryX

P0 P1

0X(M) X(I)

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock

u Writes 0

CS302 – Spring 2025 Lec.6.2 - Slide 36

Example Critical Section & Coherence Traffic

MemoryX

P0 P1

RMW X

0X(M) X(I)

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock
6. P1 retries lock acquire

CS302 – Spring 2025 Lec.6.2 - Slide 37

Example Critical Section & Coherence Traffic

MemoryX

P0 P1

0X(M)

BusRdX

X(I)

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock
6. P1 retries lock acquire

CS302 – Spring 2025 Lec.6.2 - Slide 38

Example Critical Section & Coherence Traffic

MemoryX

P0 P1

0X(M)

DataWB

X(I)

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock
6. P1 retries lock acquire

CS302 – Spring 2025 Lec.6.2 - Slide 39

Example Critical Section & Coherence Traffic

MemoryX

P0 P1

X(I) 1X(M)

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock
6. P1 retries lock acquire

u Reads 0
u Writes 1

CS302 – Spring 2025 Lec.6.2 - Slide 40

Example Critical Section & Coherence Traffic

X is initially 0
1. P0 & P1 try lock acquire
2. P0 wins bus arbitration
3. P1 gets a bus grant
4. P0 in critical section
5. P0 releases the lock
6. P1 retries lock acquire

u Reads 0
u Writes 1

7. P1 in critical section
MemoryX

P0 P1

X(I) 1X(M)

CS302 – Spring 2025 Lec.6.2 - Slide 41

u Low latency
u Processors should be able to acquire free locks quickly

u Low traffic
u Waiting for lock should generate little/no traffic
u A busy lock should be handed off between processors with as little traffic as

possible
u Scalability

u Latency/traffic should scale reasonably with number of processors
u Low storage cost
u Fairness

u Avoid starvation or substantial unfairness
u Ideal: processors should acquire lock in order they request access

Reminder: Desirable Lock Characteristics

CS302 – Spring 2025 Lec.6.2 - Slide 42

TS Lock: Excessive Coherence Traffic
Processor 0 Processor 1 Processor 2

[P0 is holding lock …]

CS302 – Spring 2025 Lec.6.2 - Slide 43

Test-and-Set Lock’s Performance

Benchmark executes:
Lock(L);
critical-section(c)
Unlock(L);

Ti
m

e
(u

s)

Number of processors

Ideal: one bus
transaction
per lock event

Bus contention increases amount of
time to transfer lock (lock holder

must wait to acquire bus to release)
Not shown: bus contention also
slows down execution of critical

section

CS302 – Spring 2025 Lec.6.2 - Slide 44

u Desirable Lock Characteristics

u Basic TS lock hardware primitives

u TS lock’s lack of scalability due to contention
o Contention while spinning
o Contention when lock is released

Summary

