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Where are We?

u Language-Level Consistency
u Data Race Free
u Case studies: Java, C++, Rust, and Go

u Thursday
u Synchronization

u Friday lab session
u MPI programming assignment
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u Assignment 2 released!
o Deadline: May  4th, 23:59

u Objectives:
o Learn how to write programs using message passing
o Compare and combine with shared memory

u Group list has been updated on Moodle
o People whose partners left the course have been reassigned

§ Remains the same for others
o Please check and get in touch with your new group partners!

Assignment 2: Message Passing Programming
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u Homework 4 has been released
o Deadline: March 30th, 23:59

u Homework 3 grades will be released this week
o Feedback will be available on Moodle, ask TA if not found

u Sample midterm exam has been released
o Midterm from CS307 (the predecessor to this course)
o The coverage is not identical (CS307 was a 4-credit course)
o Try to solve on your own first, solutions will be made available from Thursday
o TA will go over some of the exam questions during Thursday’s exercise session

Homework 4 and Sample Midterm Exam
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u Programmers must write “correctly synchronized” or “well-labelled” 
code, containing no data races
u Then, language, runtime, and hardware will guarantee SC

u This is called “Data Race Free = SC”
u Removes burden from programmers to directly insert fences and barriers into 

their code

”Grand Compromise” with Languages
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u First, specify a minimal “memory operation”
u Indivisibly accesses a certain address (i.e., not as two separate memory 

operations)
u Two operations conflict if they access the same location, and at least 

one is a write
u A data race is when:

u Two conflicting operations from different threads occur simultaneously
u Simultaneous operations are defined as back-to-back accesses in any 

sequentially consistent interleaving

What is a Data Race?
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u Does our first example have a data race?

Data Race (Free?) Examples

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1
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u Does our first example have a data race?
1. Identify the locations: { A, B }
2. Identify the reads: (L1) (L0)
3. Identify the writes: (S1) (S0)
4. Are there SC executions where R/W to A or B are back to back?

Data Race (Free?) Examples

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1
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u Does our first example have a data race?
u Are there SC executions where R/W to A or B are back to back? 

u Answer: Yes! 

Data Race (Free?) Examples

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

A = 1
r1 = B
B = 1
r2 = A
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u Add inline fences, forcing the hardware to make the writes visible
u Has same problems w. portability, readability, and behavior discussed before

Data Race Free (DRF) Code: The Old-Fashioned Way

// A = 0

(S0) A = 1;
__sync_synchronize();
(L0) r1 = B;
print(r1);

// B = 0

(S1) B = 1;
__sync_synchronize();
(L1) r2 = A;
print(r2);

Thread 0 Thread 1
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u Add a compiler directive declaring A, B as special variables            
(in Java, C++11)
u The ”special type” depends on language (later this lecture!) 
u Compiler ensures atomic & program order for you
u e.g., atomic int

DRF Code: The New Way

// atomic int A = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// atomic int B = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1
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u Before: needed to adjust our programs depending on consistency 
model in the ISA

u After: even on hardware that uses PC or WC, our program sees it as 
SC!
u Programmer simply needs to obey the rules

u Approaches to implement synchronization in HW
u We will discuss synchronization in the next lecture

DRF Implies SC: Before and After
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u Does this code contain a data race?

Another DRF Example

// x = y = 0;
if( x ) {
y = true;

}

Thread 1
// x = y = 0;
if( y ) {
x = true;

}

Thread 0
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u Does this code contain a data race?
u Answer: No! (surprising, I know)
u Executing the reads to x, y atomically means that the writes can never happen!

Another DRF Example

// x = y = 0;
if( x ) {
y = true;

}

Thread 1
// x = y = 0;
if( y ) {
x = true;

}

Thread 0
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u Sections of code containing no synch. operations appear to execute 
atomically to all other threads
u Why? Otherwise, there would be data races!
u Convince yourself this is true (draw examples)

u Calling an external library behaves as if it executes in one step, with 
no intermediate values
u If stateless, no synchronization required in any form!
u If the library has internal state, it also has to be DRF

Implications of DRF Programming
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u Each threads Ti and Tj execute actions An:
u Read or write to variables
u Lock (acquire) or unlock (release) a monitor

u Memory order in Java is defined by ”happens-before” (HB) 
relationships
u These define which re-orderings are possible in both the compiler and the JVM
u From now on, “Happens Before” = ➝

u Given two threads’ actions, we can find their ➝ relationships and therefore check 
for data races

Review: Java Memory Model
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u➝ relationships you should care about:
u Actions in same thread ➝ each other in program order
u Unlocking a monitor➝ all locking operations
u Writing to a volatile➝ all reads of that field
u All actions in a thread ➝ a join() on that thread
u Transitivity: If Ax➝ Ay, and Ay➝ Az, then Ax➝ Az

u If we can find two actions Ax so that Ax does not➝ Ay , and Ay 
does not ➝ Ax, we have found a data race

JMM: “Happens Before”
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u Legend:
u wr()and rd()are variable 

accesses
u acq()is a monitor lock
u rel()is a monitor unlock

Exercise: Find the ➝ Relationships

wr(x)

rel(m)

rd(z)

T0 T1
rd(y)

wr(x)

acq(m)

wr(x)

acq(m)

rd(t)

wr(v)
wr(z)

rel(m)

wr(t)

rd(x)



CS302 – Spring 2025 Lec. 6.1 -  Slide 19

Exercise: Find the ➝ Relationships

wr(x)

rel(m)

rd(z)

rd(y)

wr(x)

acq(m)

wr(x)

acq(m)

rd(t)

wr(v)
wr(z)

rel(m)

wr(t)

rd(x)

T0 T1
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u Any action sees all of the actions that ➝ it
u But, it may or may not see other actions 

u Go back to the previous example:
u rel(m) ➝ acq(m)
u acq(m) ➝ rd(t)
u rel(m) ➝ wr(t)

u Does wr(t)➝ rd(t)??

Writing DRF Code in Java

acq(m)

rd(t)

rel(m)

wr(t)

rd(x)

T0
T1
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u Any action sees all of the actions that ➝ it
u But, it may or may not see other actions 

u Go back to the previous example:
u rel(m) ➝ acq(m)
u acq(m) ➝ rd(t)
u rel(m) ➝ wr(t)

u Does wr(t)➝ rd(t)??
u Answer: No!
rd(t) will see all of T1’s actions that ➝ rel(m),
but not guaranteed to see wr(t)!

u And therefore, this code has a data race

Writing DRF Code in Java

acq(m)

rd(t)

rel(m)

wr(t)

rd(x)

T0
T1
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u Conceptually, must add particular ➝ relationships to eliminate all 
unordered accesses

u Can do that with monitors, synchronized { } blocks, or 
@volatile variables
u All of them introduce ➝ between conflicting accesses (R/W and W/W)

Fixing Data Races
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acq(m)

rd(t)

rel(m)

flush

rd(x)

T0
T1

wr(t)

To introduce ➝ between the write and 
read to t, could declare t as volatile

u Language spec says that t will never be 
cached “thread locally”, always written to 
memory

u volatile in Java guarantees a ➝
between the write and read to t

u Specifics left up to JVM writers
(i.e., what H/W op it uses)

u Warning! This is only for Java, not C, C++

Eliminating Data Race on t

flush



CS302 – Spring 2025 Lec. 6.1 -  Slide 24

Synchronized { … } versus Volatile

u Only works w. objects
u Thread can wait while 

others in synch{…}
u Can wrap a function or 

critical section

u Can use w. primitives (e.g., int)
u No synchronization/direct access
u Prevents specific memory         

re-orderings

Synchronized Volatile

synchronized {
a = b+c;
x = foo();

}

@volatile int a,b;
a = b+c;
x = foo(); 
// can’t reorder before wr(a)
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u C++ threads did not formally exist until 2011 (C++ was born in 1979)
u Libraries such as pthreads, OpenMP were layered on top of the old language 

specification

u Behavior depends on version, platform, and compiler, since memory 
model was not part of C++
u Code is often riddled with data races, not portable, etc…

Lack of a C++ Memory Model
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u Threads are now officially part of the language
u std::thread( ), and std::async( )
u Therefore, need to formalize a memory model

u Provides the “DRF implies SC” guarantee
u Uses similar ”happens before” reasoning to Java

u If your prog. has a data race, its behavior is completely undefined
u Known as “catch fire semantics”

Changes in C++11
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u All threads can read/write to any location in the program scope –
through references & pointers
u More permissive than Java

u Data races are similarly defined:
u Two conflicting memory operations that do not operate on “special” variables, 

or ordered by ➝

C++11 Memory Model
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u Reminder: a special variable is one that obeys an agreed upon 
memory order

u C++11 uses an std::atomic<T> template to designate a special 
variable of type T
u Conflicting accesses to a synch. variable are not considered a data race 
u e.g., std::atomic<int>,  std::atomic<TrivialClass>

u Can use your own class if it’s considered Trivial (which is well defined, you can read about 
it online)

u C++11 also defines std::mutex( ), which is the loose equivalent 
of a Java monitor 

C++11 Synchronization Variables
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u Quick example with an atomic integer:
u Guaranteed that count = 4 after all threads complete and are joined
u Join omitted from the example

Use of Atomic Variables

std::atomic<int> count = 0;

void main( ) {
for(int i = 0; i<4;i++)
std::thread( [&]{count++;} );

}
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u Assume std::atomic<int> variables translated to instructions: 
S_Load, S_Store
u S_Load and S_Store can be implemented in a variety of ways (e.g., with 

fence instructions in ARM, atomic instructions in x86)

DRF Example on PC Hardware

// A,B = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// possible compiled code

S_Store 1,(A)
S_Load (B),%eax

// setup args for print
...
jmp _print

Thread 0 pseudo-x86
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u Now that our program is DRF,
hardware must execute it as if it were SC

u What behavior must we disable if our processor is PC? 
(Recall Lecture 5.1)
u Synch reads cannot bypass blocked synch writes
u Need to hold operations in ROB, drain the store buffer

DRF Example on PC Hardware



CS302 – Spring 2025 Lec. 6.1 -  Slide 32

DRF Example on PC Hardware

1. S_Store 1,(A)
u Resolves address (A)

LSQ

S_Store A

ROB

Older

L1
B

S_Store A

SB

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program
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DRF Example on PC Hardware

1. S_Store 1,(A)
u Resolves address (A)
u Retires to Store Buffer but incurs 

L1 cache miss (red)
2. S_Load (B),%eax

u Resolves address (B)

LSQ

S_Load B

ROB

Older

L1
B

S_Load B

S_Store A
SB

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program
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DRF Example on PC Hardware

1. S_Store 1,(A)
u Waiting for cache

2. S_Load (B),%eax
u Resolves address (B)
u A regular load (not S_Load) in PC, 

could issue and incur non-SC 
reordering (but in x86 all loads are 
the same, later)

LSQ

…

jmp _print

S_Load B

ROB

Older
…

L1
B

S_Load B

S_Store A
SB

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program
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DRF Example on PC Hardware

1. S_Store 1,(A)
u Waiting for cache

2. S_Load (B),%eax
u Resolves address (B)
u But S_Load must wait for SB to drain

(can peek to overlap latency)

CPU 0

LSQ

S_Load B

ROB

Older

L1
B

S_Load B

S_Store A
SB

…

jmp _print

…

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program



CS302 – Spring 2025 Lec. 6.1 -  Slide 36

DRF Example on PC Hardware

1. S_Store 1,(A)
u Now in cache

2. S_Load (B),%eax
u Resolves address (B)
u Issue Load B → Hit 

u When S_Store 1,(A) 
finishes, load executes

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program

LSQ

…

ROB

Older

L1
B

SB

…
jmp _print

1A Load B
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Take a Break!
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u Example with the code with variables swapped in two threads
u A, B are declared atomic

Recall What Happens with Two Threads

// atomic<int> A,B = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// atomic<int> A,B = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1
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u If we show both processors’ SBs/LSQs,
we see how the hardware looks like as if it is SC
u Issuing loads can lead to a non-SC (0,0) outcome
u But, holding both means the memory behaves like our “switch” model, and 

therefore we get only SC outcomes!

DRF Example on PC Hardware

Memory

LSQ
L1 0B

S_Load BS_Store A

SB

CPU 0

LSQ
L1 0A

S_Load AS_Store B

SB

CPU 1
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u Potential orders when loads wait for local stores:
u I - Both stores first, outcome (1,1)
u II - CPU 0 first, outcome (0,1)
u III - CPU 1 first, outcome (1,0)

DRF Example on PC Hardware

Memory

S_Store A
S_Store B
S_Load A = 1
S_Load B = 1

Order I
S_Store A
S_Load B = 0
S_Store B
S_Load A = 1

Order II
S_Store B
S_Load A = 0
S_Store A
S_Load B = 1

Order III
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u C++11 provides the "DRF implies SC" guarantee
u Uses similar "happens before" reasoning to Java

u C++11 uses std::atomic<T> to declare a special variable of type T
u Conflicting accesses to a special variable are not considered a data race

Review: C++11 Memory Model
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u Example: Thread 0 passes data to thread 1 with flag for readiness

u data and flag are std::atomic<int>’s initialized to 0
u std::atomic ensures SC ordering by default
u SC execution: thread 1 must return 1

DRF Example on PC Hardware

// data = flag = 0

data = 1;
flag = 1;

while (!flag) {}

return data;

Thread 0 Thread 1
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u Assembly code on x86
u S_Load becomes mov [addr], reg (move memory data to reg)
u S_Store becomes xchg reg, [addr] (exchange reg and memory data)

DRF Example on PC Hardware

mov  1, %eax
xchg %eax, [data]
xchg %eax, [flag]

loop:
    mov [flag], %eax
    cmp %eax, 0
    je  loop

mov [data], %eax

Thread 0 Thread 1
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u data and flag can also be volatile int’s
u Prevents the compiler from removing or reordering memory accesses
u In this case both S_Load and S_Store are normal mov's
u This code runs correctly on PC hardware

volatile int vs. std::atomic<int>

mov 1, %eax
mov %eax, [data]
mov %eax, [flag]

loop:
    mov [flag], %eax
    cmp %eax, 0
    je  loop

mov [data], %eax

Thread 0 Thread 1
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u std::atomic<int> also works on WC hardware
u std::atomic ensures SC ordering by default
u SC execution: thread 1 must return 1, same as on PC hardware

DRF Example on WC Hardware

// data = flag = 0

data = 1;
flag = 1;

while (!flag) {}

return data;

Thread 0 Thread 1
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u Assembly code on ARMv8
u dmb is ARMv8’s memory fence
u S_Load becomes dmb; ldr; dmb
u S_Store becomes dmb; str; dmb

DRF Example on WC Hardware

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

loop:
dmb
ldr x10, [flag]
dmb
cbz x10, loop
dmb
ldr x10, [data]
dmb

Thread 0 Thread 1
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u Commit dmb
u Prevents reordering of younger 

loads/stores (e.g., str [data])

Execution on ARMv8 (Thread 0)

LSQ

str [data]

dmb

dmb

ROB

Older
dmb

L1

str [data]
dmb

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
0data
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u Commit str [data]

Execution on ARMv8 (Thread 0)

LSQ

dmb

str [flag]

str [data]

ROB

Older
dmb

L1

dmb
str [data]

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
0data
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Execution on ARMv8 (Thread 0)

LSQ

dmb

dmb

dmb

ROB

Older
str [flag]

L1

dmb
dmb

SB

CPU 0u Commit dmb
u str [data] enters into SB
u dmb waits for SB to be drained

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
0data

str [data]
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u Commit dmb
u SB drained
u Prevents reordering of younger 

loads/stores (e.g., str [flag])

Execution on ARMv8 (Thread 0)

LSQ

dmb

dmb

dmb

ROB

Older
str [flag]

L1

dmb
dmb

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
1data
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u Commit str [flag]

Execution on ARMv8 (Thread 0)

LSQ

dmb
str [flag]

ROB

Older

L1

dmb
str [flag]

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
1data
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u Commit dmb
u str [flag] enters into SB
u dmb waits for SB to be drained

Execution on ARMv8 (Thread 0)

LSQ

dmb

ROB

Older

L1

dmb

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

1data
0flag

str [flag]
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u Commit dmb
u SB drained

Execution on ARMv8 (Thread 0)

LSQ

dmb

ROB

Older

L1

dmb

SB

CPU 0

1flag

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

1data
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u Using volatile int’s does not work anymore!

volatile int vs. std::atomic<int>

// data = flag = 0

data = 1;
flag = 1;

while (!flag) {}

return data;

Thread 0 Thread 1
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u Assembly code on ARMv8
u Two str’s can be reordered because of WC hardware
u This code does not run correctly!

volatile int vs. std::atomic<int>

mov x10, #1
str x10, [data]
str x10, [flag]

loop:
    ldr x10, [flag]
    cbz x10, loop

ldr x10, [data]

Thread 0 Thread 1
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u Explicit load/store, assuming std::atomic<int> x
u x.load(order)
u x.store(value, order)

u For a specific load/store order can be directly specified

u The default order is std::memory_order_seq_cst

Advanced Usage of C++ Atomics
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For example, std::atomic<int> x
 

 x = 1 is the same as 
         x.store(1, std::memory_order_seq_cst)

 … = x is the same as 
 … = x.load(std::memory_order_seq_cst) 

Advanced Usage of C++ Atomics
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u Other memory orders options
u std::memory_order_relaxed 
u std::memory_order_acquire (for more advanced hardware)
u std::memory_order_release (for more advanced hardware)

u Specifying other memory orders does not make a difference on PC

u More on this in the MS course

Advanced Usage of C++ Atomics
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u For example, to minimize memory fences on ARMv8
u Leveraging various memory order options
u flag is still std::atomic<int> (special), but data can be int (normal)

Advanced Usage of C++ Atomics

// data = flag = 0

data = 1;
flag.store(1,  
std::memory_order_relaxed);

while 
(!flag.load(std::memory_ord
er_relaxed)) {
}

return data;

Thread 0 Thread 1
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u Assembly code on ARMv8
u stlr: store-release: no load/store before it can be reordered after it
u ldar: load-acquire: no load/store after it can be reordered before it
u ARMv8 provides direct support for C++ semantics

Advanced Usage of C++ Atomics

mov  x10, #1
str  x10, [data]
stlr x10, [flag]

loop:
    ldar x10, [flag]
    cbz  x10, loop
    ldr  x10, [data]
    ret

Thread 0 Thread 1
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u At the language level
u Compiler issues load/store instructions in the same order as in the program

u At the ISA level
u Compiler issues ISA-specific instructions with the required ordering constraints
u E.g., in ARMv8, the compiler inserts dmb’s (memory fences)
u In x86 (PC), the compiler just emits normal mov’s or atomic instructions for 

locks (covered on Thursday)

How Compiler Enforces the Ordering Constraints
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u Since OMP is yet another threading library, its memory model differs 
from C++11

u Key differences:
u Variables can have different “scope”
u There is no concept of a “synchronization variable” like Java’s @volatile 

and C++11’s std::atomic<T>
u Locks must be accompanied by a Flush (ex. to come)

u Officially, OMP implements weak consistency except for flush
operations
u Almost any reordering is therefore possible

OpenMP Memory Ordering
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u Recall from Lecture 2.1, each thread has a set of shared and private 
variables
u Shared – refers to the same address as the original
u Private – runtime provides a new var, same size & type

u When writing code, need to consider data races only on shared 
variables

OMP Variable Scope

#pragma omp parallel 
private(x) shared(y) 
{

x = ...
*y++; // data race

}
Y

Memory

T0 T1X X
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u Definition of a flush:
u “Memory operations for variables in the flush set that precede the flush in program 

execution order must be firmly lodged in memory and available to all threads 
before the flush completes, and memory operations for variables in the flush set, 
that follow a flush in program order cannot start until the flush completes.”

u In plain English, a flush is a memory fence

u In order to communicate between threads, do all of the following:
u First thread writes the shared variable, flushes the variable
u Second thread flushes, and then reads

OMP Flushes
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u One thread updating a shared variable y
u Assume thr_id is already set

u Note how we flush after write, and before read

Example of Communication

int y;
#pragma omp parallel shared(y) 
{
if( thr_id == 0 ) {
y = ...;
#pragma omp flush(y)

}
#pragma omp flush(y)
... = y;

}
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u The hardware’s memory model percolates all of the way up the stack, 
to how we all program
u Corollary: Write data race free programs!

u Even in relaxed hardware, need special support to behave SC in 
some cases!

Summary
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u Rust was created to solve several challenges in systems programming
u Memory safety without garbage collection
u Concurrency without data races
u Zero-cost abstractions

u Rust's approach: ensure programs do not have undefined behaviors
u Check statically as much as possible
u Programmers cannot do whatever they want, including sharing data among 

threads without synchronization
u Otherwise, the compiler complains!

Rust: A Memory-Safe Language from Mozilla
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u Rust does not allow threads write to the same variable
u Programmers must rely on explicit synchronization primitives

Multithreading in Rust vs. C++

// declare a vector
let mut data = vec![1, 2, 3];

// create and run a thread
// error[E0373]: closure may outlive the 
current function, but it borrows `data`, 
which is owned by the current function
let handle = thread::spawn(|| {

data.push(4);
});

// error[E0499]: cannot borrow `data` as 
mutable more than once at a time
data.push(5);

// declare a vector
std::vector<int> data = {1, 2, 3};

// create and run a thread

std::thread handle([&data]() {
data.push_back(4);

});

data.push_back(5);
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u Correctly using safe primitives, or compilation errors!

Safe Way of Sharing Data in Rust

// Arc: Atomic Reference Count
let data = Arc::new(Mutex::new(vec![1, 2, 3]));
// clone the Arc to create another reference to the same data
let data_clone = Arc::clone(&data);

let handle = thread::spawn(move || {
// grab lock and get the reference
let mut v = data_clone.lock().unwrap();
v.push(4);

});
{

// grab lock and get the reference
let mut v = data.lock().unwrap();
v.push(5);

}
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u Go was created to address challenges in software development
u Scalability: efficiently handle large codebase and systems
u Concurrency: simplify writing programs that utilize multicore processors
u Simplicity: reduce complexity compared to C++ and Java

u Go's approach
u Do not communicate by sharing memory; use message passing
u So no need to care about memory consistency anymore!

Go: A Modern Programming Language from Google
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u Goroutine: light-weight thread
u More on this in Lecture 8 and 9!

u Channel: typed pipes between goroutines

Components in A Go Program

func send(c chan int) {
c <- 1

}
func recv(c chan int) {

<- c
}

// create a channel
c = make(chan int);

// start goroutines
go send(c);
go recv(c);

Channel
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u Goroutine: light-weight thread
u More on this in Lecture 8 and 9!

u Channel: typed pipes between goroutines

Components in A Go Program

func send(c chan int) {
c <- 1

}
func recv(c chan int) {

<- c
}

// create a channel
c = make(chan int);

// start goroutines
go send(c);
go recv(c);

Send Channel Recv
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u Goroutine: light-weight thread
u More on this in Lecture 8 and 9!

u Channel: typed pipes between goroutines

Components in A Go Program

func send(c chan int) {
c <- 1

}
func recv(c chan int) {

<- c
}

// create a channel
c = make(chan int);

// start goroutines
go send(c);
go recv(c);

Send Channel Recv1


