CS302

Language-Level ((

Consistency )
G

c,/,

Spring 2025 |

Arkaprava Basu & Babak Falsafi Java

parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Patterson, Wenisch, Fatahalian of CMU/EPFL, UC Berkeley,

Michigan, and CMU
Copyright 2025

CS302 — Spring 2025 Lec. 6.1 - Slide 1



Where are We?

¢ Language-Level Consistency
¢ Data Race Free
¢ Case studies: Java, C++, Rust, and Go

¢ Thursday
& Synchronization
22-Apr |23-Apr
30-Apr . .
7-May ¢ Friday lab session
14-May ¢ MPI programming assignment

21-May
28-May

CS302 — Spring 2025 Lec. 6.1 - Slide 2

23-Apr |
30-Apr |
7-May |
14-May
21-May
28-May |



Assignment 2: Message Passing Programming

¢ Assignment 2 released!
o Deadline: May 4t 23:59

¢ Objectives:

o Learn how to write programs using message passing
o Compare and combine with shared memory

¢ Group list has been updated on Moodle

o People whose partners left the course have been reassigned
" Remains the same for others

o Please check and get in touch with your new group partners!

CS302 — Spring 2025 Lec. 6.1 - Slide 3



Homework 4 and Sample Midterm Exam

¢ Homework 4 has been released
o Deadline: March 30th, 23:59

¢ Homework 3 grades will be released this week
o Feedback will be available on Moodle, ask TA if not found

¢ Sample midterm exam has been released
o Midterm from CS307 (the predecessor to this course)
o The coverage is not identical (CS307 was a 4-credit course)
o Try to solve on your own first, solutions will be made available from Thursday
o TA will go over some of the exam questions during Thursday’s exercise session

CS302 — Spring 2025 Lec. 6.1 - Slide 4



"Grand Compromise” with Languages

¢ Programmers must write “correctly synchronized” or “well-labelled”
code, containing no data races
¢ Then, language, runtime, and hardware will guarantee SC

¢ This is called “Data Race Free = SC”

¢ Removes burden from programmers to directly insert fences and barriers into
their code

CS302 — Spring 2025 Lec. 6.1 - Slide 5



What is a Data Race”?

¢ First, specify a minimal “memory operation”

+ Indivisibly accesses a certain address (i.e., not as two separate memory
operations)

¢ Two operations conflict if they access the same location, and at least
one is a write

¢ A data race is when:

¢ Two conflicting operations from different threads occur simultaneously

¢ Simultaneous operations are defined as back-to-back accesses in any
sequentially consistent interleaving

CS302 — Spring 2025 Lec. 6.1 - Slide 6



Data Race (Free?) Examples

¢ Does our first example have a data race?

CS302 — Spring 2025

// A = r,
(Sp) A = 1;
(Lp) r; = B;

print(r,);

Thread 1
// B=1xr, =0

(S1) B = 1;
(Li) r, = A;

print(r;);

Lec. 6.1 - Slide 7



Data Race (Free?) Examples

¢ Does our first example have a data race?
1. Identify the locations: { A, B }
2. ldentify the reads: (L;) (L)
3. ldentify the writes: (S;) (S,)
4. Are there SC executions where R/\W to A or B are back to back?

Thread O Thread 1
// A =1r, =0 // B=1xr, =0
(So) 2 = 1; (S1) B = 1;
(Lp) r; = B; (L) r, = A;

CS302 — Spring 2025 Print (rl) ’ Print (rz) ’ Lec. 6.1 - Slide 8



Data Race (Free?) Examples

¢ Does our first example have a data race?
¢ Are there SC executions where R/W to A or B are back to back?

¢ Answer: Yes! A =
r]_ —_
B =
r2 —_ A
Thread O Thread 1
// A =1r, =0 // B=1xr, =0
(So) 2 = 1; (S1) B = 1;
(Lp) r; = B; (L) r; = A;

CS302 — Spring 2025 Print (rl) ’ Print (rz) ’ Lec. 6.1 - Slide 9



Data Race Free (DRF) Code: The Old-Fashioned Way

¢ Add inline fences, forcing the hardware to make the writes visible
¢ Has same problems w. portability, readability, and behavior discussed before

Thread O
// A =0

(So) A = 1,’
__sync_synchronize() ;
(L) r; = B;
print(r;);

CS302 — Spring 2025

Thread 1
// B =20

(S1) B = 1;
__sync_synchronize() ;
(L) r, = A;
print(r,) ;

Lec. 6.1 - Slide 10



DRF Code: The New Way

¢ Add a compiler directive declaring A, B as special variables

(in Java, C++11)

¢ The "special type” depends on language (later this lecture!)
¢ Compiler ensures atomic & program order for you

¢ €.g.,atomic 1nt

Thread O
// atomic int A

print(r,);

CS302 — Spring 2025

0

Thread 1
// atomic int B = 0

(S1) B = 1;
(L) r; = A;

print(r;);

Lec. 6.1 - Slide 11



DRF Implies SC: Before and After

¢ Before: needed to adjust our programs depending on consistency
model in the ISA

¢ After: even on hardware that uses PC or WC, our program sees it as
SC!

¢ Programmer simply needs to obey the rules

¢ Approaches to implement synchronization in HW
¢ We will discuss synchronization in the next lecture

CS302 — Spring 2025 Lec. 6.1 - Slide 12



Another DRF Example

¢ Does this code contain a data race?

Thread 0
// x =y =0;
1f( x ) {
y = true;

}

CS302 — Spring 2025

Thread 1
// x =y =0;
if(y ) {
X = true;

}

Lec. 6.1 - Slide 13



Another DRF Example

¢ Does this code contain a data race?
¢ Answer: No! (surprising, | know)
¢ Executing the reads to x, y atomically means that the writes can never happen!

Thread 0 Thread 1
// x =y =0; // x =y =0;
if( x ) { if(y ) {
y = true; X = true;

} }

CS302 — Spring 2025 Lec. 6.1 - Slide 14



Implications of DRF Programming

¢ Sections of code containing no synch. operations appear to execute
atomically to all other threads

¢ Why? Otherwise, there would be data races!
¢ Convince yourself this is true (draw examples)

¢ Calling an external library behaves as if it executes in one step, with
no intermediate values

¢ If stateless, no synchronization required in any form!
¢ If the library has internal state, it also has to be DRF

CS302 — Spring 2025 Lec. 6.1 - Slide 15



Review: Java Memory Model

¢ Each threads T, and T, execute actions A_.

¢ Read or write to variables
¢ Lock (acquire) or unlock (release) a monitor

¢ Memory order in Java is defined by "happens-before” (HB)
relationships
¢ These define which re-orderings are possible in both the compiler and the JVM
¢ From now on, “Happens Before” = —

¢ Given two threads’ actions, we can find their — relationships and therefore check
for data races

CS302 — Spring 2025 Lec. 6.1 - Slide 16



JMM: "Happens Before”

€ — relationships you should care about:

¢ Actions in same thread — each other in program order
¢ Unlocking amonitor — all locking operations

¢ Writing to a volatile — all reads of that field
¢ All actions in a thread & a join () on that thread
¢ Transitivity: IfA, > A ,and A, > A, thenA, A,

¢ If we can find two actions 2, so that A, does not > A, and A,
does not = A, we have found a data race

CS302 — Spring 2025 Lec. 6.1 - Slide 17



Exercise: Find the — Relationships

¢ Legend:

¢ wr ()and rd () are variable
accesses

¢ acqg()Is a monitor lock
¢ rel ()is a monitor unlock

CS302 — Spring 2025

=
B

Lec. 6.1 - Slide 18



Exercise: Find the = Relationships

To T,

CS302 — Spring 2025 Lec. 6.1 - Slide 19




Writing DRF Code in Java

¢ Any action sees all of the actions that — it
¢ But, it may or may not see other actions

¢ Go back to the previous example: "
¢ rel (m) — acg((m) | /‘il(m)
& acg(m) — rd(t) acq (m) “L
¢ rel (m) — wr(t) :% wr (t)

rd(t)

& Does wr (t) = rd(t)?? I rd (x)

CS302 — Spring 2025 Lec. 6.1 - Slide 20



Writing DRF Code in Java

¢ Any action sees all of the actions that — it
¢ But, it may or may not see other actions

¢ Go back to the previous example: h
¢ rel(m) — acg(m) | rel (m)
¢ acg(m) — rd(t) /_

acqg (m) v
¢ rel(m) — wr(t) :% wr (t)
rd(t)

& Does wr (t) = rd(t)?? I rd (x)

¢ Answer: No!
rd (t) will see all of T4's actions that = rel (m),
but not guaranteed to see wr (t)!

¢ And therefore, this code has a data race

CS302 — Spring 2025

Lec. 6.1 - Slide 21



Fixing Data Races

¢ Conceptually, must add particular — relationships to eliminate all
unordered accesses

¢ Can do that with monitors, synchronized { } blocks, or
@volatile variables

¢ All of them introduce — between conflicting accesses (R/W and W/W)

CS302 — Spring 2025 Lec. 6.1 - Slide 22



Eliminating Data Race on ¢

To introduce — between the write and
read to t, could declare t as volatile
¢ Language spec says that t will never be

cached “thread locally”, always written to
memory

¢ volatile in Java guarantees a —
between the write and read to ¢

¢ Specifics left up to JVM writers
(i.e., what H/W op it uses)

¢ Warning! This is only for Java, not C, C++

CS302 — Spring 2025

T,
Ty !
| rel (m)

wr (t)
v Ql'
- flush

og— 1

! rd (x)

Lec. 6.1 - Slide 23



Synchronized { ... } versus Volatile

Synchronized Volatile
¢ Only works w. objects ¢ Can use w. primitives (e.g., int)
¢ Thread can wait while ¢ No synchronization/direct access
others in synch{...} ¢ Prevents specific memory
¢ Can wrap a function or re-orderings

critical section

synchronized { @volatile int a,b;
a = b+c; a = b+c;
x = fool(); x = foo();

} // can’t reorder before wr(a)

CS302 — Spring 2025 Lec. 6.1 - Slide 24



Lack of a C++ Memory Model

¢ C++ threads did not formally exist until 2011 (C++ was born in 1979)

& Libraries such as pthreads, OpenMP were layered on top of the old language
specification

¢ Behavior depends on version, platform, and compiler, since memory

model was not part of C++
¢ Code is often riddled with data races, not portable, etc...

CS302 — Spring 2025 Lec. 6.1 - Slide 25



Changes in C++11

¢ Threads are now officially part of the language
¢ std::thread( ),and std::async( )
¢ Therefore, need to formalize a memory model

¢ Provides the "DRF implies SC” guarantee
¢ Uses similar "happens before” reasoning to Java

¢ If your prog. has a data race, its behavior is completely undefined
¢ Known as “catch fire semantics”

CS302 — Spring 2025 Lec. 6.1 - Slide 26



C++11 Memory Model

¢ All threads can read/write to any location in the program scope —
through references & pointers
¢ More permissive than Java

¢ Data races are similarly defined:

¢ Two conflicting memory operations that do not operate on “special” variables,
or ordered by —

CS302 — Spring 2025 Lec. 6.1 - Slide 27



C++11 Synchronization Variables

¢ Reminder: a special variable is one that obeys an agreed upon
memory order

¢ C++11 uses an std: :atomic<T> template to designate a special
variable of type T

¢ Conflicting accesses to a synch. variable are not considered a data race

¢ €.Jd., std::atomic<int>, std::atomic<TrivialClass>

¢ Can use your own class if it's considered Trivial (which is well defined, you can read about
it online)

¢ C++11 also defines std: :mutex ( ), which is the loose equivalent
of a Java monitor

CS302 — Spring 2025 Lec. 6.1 - Slide 28



Use of Atomic Variables

¢ Quick example with an atomic integer:
¢ Guaranteed that count = 4 after all threads complete and are joined
¢ Join omitted from the example

std: :atomic<int> count = 0;
void main( ) {

for(int 1 = 0; i<4;i++4)
std: :thread( [&] {count++;} ) ;

CS302 — Spring 2025 Lec. 6.1 - Slide 29



DRF Example on PC Hardware

& Assume std: :atomic<int> variables translated to instructions:
S Load S Store

¢ S Load and S Store can be implemented in a variety of ways (e.g., with
fence instructions in ARM, atomic instructions in x86)

Thread 0 pseudo-x86
// A,B =0 // possible compiled code
(Sp)A = 1; S Store 1, (3)
(Ly) r; = B; S Load (B), %eax
print (r,) ; // setup args for print

CS302 - Sprin jmp _print 30



DRF Example on PC Hardware

¢ Now that our program is DRF,
hardware must execute it as if it were SC

¢ What behavior must we disable if our processor is PC?

(Recall Lecture 5.1)

¢ Synch reads cannot bypass blocked synch writes
¢ Need to hold operations in ROB, drain the store buffer

CS302 — Spring 2025 Lec. 6.1 - Slide 31



DRF Example on PC Hardware

1.5 Store 1, (A)

¢ Resolves address (A)

CS302 — Spring 2025

Program

S Store 1, (Aa)
S Load (B), %eax

Jmp print

CPUO
ROB LSQ
Older
S Store A ||| S_Store A

v

SB

Lo

Lec. 6.1 - Slide 32



DRF Example on PC Hardware

1.5 Store 1, (A) CPU 0
¢ Resolves address (A)

¢ Retires to Store Buffer but incurs R_OB LSQ
L1 cache miss (red) i
2. S Load (B), %eax
Older
¢ Resolves address (B) s Tosa sl S oars

v

S Store A

Program

S Store 1, (Aa)
S Load (B), %eax

Lec. 6.1 - Slide 33

CS302 — Spring 2025 Jmp _p rint



DRF Example on PC Hardware

1.5 Store 1, (A) CPU 0
¢ Waiting for cache - —
2. S Load (B), %eax = . |
¢ Resolves address (B) l jmp _print

¢ Aregularload (not S_Load) in PC,
could issue and incur non-SC
reordering (but in x86 all loads are
the same, later)

S Load B S Load B

v

S Store A

Program

S Store 1, (Aa)
S Load (B), %eax

Lec. 6.1 - Slide 34

CS302 — Spring 2025 Jmp _p rint



DRF Example on PC Hardware

1.5 Store 1, (A)
¢ Waiting for cache

2. S Load (B), %eax

¢ Resolves address (B)

¢ But S_Load must wait for SB to drain
(can peek to overlap latency)

Program

S Store 1, (Aa)
S Load (B), %eax

CS302 — Spring 2025 Jmp _p rint

CPUO
ROB LSQ
i jmp _print
Older
S Load B S Load B

v

S Store A

Lec. 6.1 - Slide 35



DRF Example on PC Hardware

1. S Store 1, (A) CPU 0
¢ Now in cache

2. S Load (B), %eax SPB LSQ

¢ Resolves address (B) l
¢ Issue Load B — Hit
Older

¢ When S Store 1, (A)

finishes, load executes ¥
SB

S Store 1, (Aa) L1 A
S Load (B), %eax Load B

Lec. 6.1 - Slide 36

jmp _print

CS302 — Spring 2025 Jmp _p rint



Take a Break!

CS302 — Spring 2025 Lec. 6.1 - Slide 37



Recall What Happens with Two Threads

¢ Example with the code with variables swapped in two threads
¢ A, B are declared atomic

Thread O Thread 1
// atomic<int> A,B = 0 // atomic<int> A,B = 0
(Sp) A = 1; (S1) B = 1;
(Lp) r; = B; (L) r, = A;

print (x,) ; print(r,) ;

CS302 — Spring 2025 Lec. 6.1 - Slide 38



DRF Example on PC Hardware

¢ If we show both processors’ SBs/LSQs,
we see how the hardware looks like as if it is SC

¢ Issuing loads can lead to a non-SC (0,0) outcome

¢ But, holding both means the memory behaves like our “switch” model, and
therefore we get only SC outcomes!

CS302 — Spring 2025

CPUO

CPU 1

SB

S Load B

LSQ SB

S Load A

LSQ

T Wemory

Lec. 6.1 - Slide 39



DRF Example on PC Hardware

¢ Potential orders when loads wait for local stores:
¢ | - Both stores first, outcome (1,1)
¢ Il - CPU O first, outcome (0,1)
¢ lll - CPU 1 first, outcome (1,0)

Order | Order Il Order Il
S_Store A S_Store A S Store B
S_Store B S Load B =0 S LoadA=0
S LoadA=1 S_Store B S Store A
S LloadB =1 S LloadA=1 S Lload B =1

“

CS302 — Spring 2025 Lec. 6.1 - Slide 40




Review: C++11 Memory Model

¢ C++11 provides the "DRF implies SC" guarantee
¢ Uses similar "happens before" reasoning to Java

¢ C++11 uses std: :atomic<T> to declare a special variable of type T
¢ Conflicting accesses to a special variable are not considered a data race

CS302 — Spring 2025 Lec. 6.1 - Slide 41



DRF Example on PC Hardware

¢ Example: Thread 0 passes data to thread 1 with £1ag for readiness

¢ data and flagare std: :atomic<int>'s initialized to 0
¢ std::atomic ensures SC ordering by default
¢ SC execution: thread 1 must return 1

Thread O Thread 1

// data = flag = 0

while ('flag) {}
data
flag

1;
1; return data;

CS302 — Spring 2025 Lec. 6.1 - Slide 42



DRF Example on PC Hardware

¢ Assembly code on x86
¢ S Load becomesmov [addr], reg(move memory data to reqg)
¢ S Store becomes xchg reg, [addr] (exchange reg and memory data)

Thread O Thread 1
loop:
mov 1, %eax mov [flag], %eax
xchg %eax, [data] cmp %eax, 0
xchg %Seax, [flag] Jje 1loop

mov [data], %eax

CS302 — Spring 2025 Lec. 6.1 - Slide 43



volatile 1int VS.std::atomic<int>

¢ data and flag can also be volatile int’s

¢ Prevents the compiler from removing or reordering memory accesses
¢ In this case both S Load and S Store are normal mov's

¢ This code runs correctly on PC hardware

Thread O Thread 1
loop:
mov 1, %eax mov [flag], %eax
mov %eax, [data] cmp %eax, 0
mov 3seax, [flag] Jje 1loop

mov [data], %eax

CS302 — Spring 2025 Lec. 6.1 - Slide 44



DRF Example on WC Hardware

® std::atomic<int> also works on WC hardware
¢ std::atomic ensures SC ordering by default
¢ SC execution: thread 1 must return 1, same as on PC hardware

Thread O Thread 1

// data = flag = 0
while ('flag) {}

data
flag

1;
1; return data;

CS302 — Spring 2025 Lec. 6.1 - Slide 45



DRF Example on WC Hardware

¢ Assembly code on ARMvS8
¢ dmb is ARMv8’s memory fence
¢ S Load becomes dmb; 1ldr; dmb
¢ S Store becomes dmb; str; dmb

Thread O
mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

CS302 — Spring 202%

Thread 1
loop:

dmb

1ldr x10, [flag]
dmb

cbz x10, loop
dmb

l1dr x10, [data]
dmb

Lec. 6.1 - Slide 46



Execution on ARMv8 (Thread 0)

¢ Commit dmb CPUO

¢ Prevents reordering of younger ROB LSQ
loads/stores (e.g., str [datal) _

dmb
dmb

mov x10, #1

dmb
str x10,
dmb
dmb
str x10,
dmb

CS302 — Spring 2025

[data]

[flag]

Older

str [data]

str [data]

dmb

dmb

SB

Lec. 6.1

- Slide 47



Execution on ARMv8 (Thread 0)

& Commit str

mov x10, #1

dmb
str x10,
dmb
dmb
str x10,
dmb

CS302 — Spring 2025

[data]

[flag]

[data]

CPUO
ROB LSQ
i str [flag] |
l’ dmb
Older dmb dmb
str [data] str [data]
SB

L1

Lec. 6.1

- Slide 48



Execution on ARMv8 (Thread 0)

dmb

CS302 — Spring 2025

lEK O

¢ Commit dmb CPU O
¢ str [data] entersinto SB ROB LSQ
¢ dmb waits for SB to be drained =
dmb
l str [flag]
mov x10, #1 Older SEE SEE
dInb A4
str x10, [data]
dmb SB str [data]
dmb
str x10, [flag] | 1 S0

Lec. 6.1

- Slide 49



Execution on ARMv8 (Thread 0)

¢ Commit dmb
¢ SB drained

¢ Prevents reordering of younger
loads/stores (e.g., str [flag])

mov x10, #1

dmb
str x10,
dmb
dmb
str x10,
dmb

CS302 — Spring 2025

[data]

[flag]

CPUO
ROB LSQ
A dmb
l str [flag]
Older dmb dmb
dmb dmb
SB

L1

data @®
flag @i®

Lec. 6.1

- Slide 50



Execution on ARMv8 (Thread 0)

¢ Commit str [flag] CPUO
ROB LSQ
Older dmb dmb
mov x10, #1 str [flag] str [flag]
dmb i
str x10, [data]
dmb SB
dmb
str x10, [flag] 11 data@®

lEK O

dmb

CS302 — Spring 2025 Lec. 6.1 - Slide 51



Execution on ARMv8 (Thread 0)

¢ Commit dmb

¢ Str

¢ dmb waits for SB to be drained

mov x10,
dmb
str x10,
dmb
dmb
str x10,
dmb

CS302 — Spring 2025

[flag] enters into SB

#1

[data]

[flag]

CPUO
ROB LSQ
Older
dmb dmb
SB str [flag]

data @®

L1 fag am

Lec. 6.1

- Slide 52



Execution on ARMv8 (Thread 0)

& Commit dmb CPUO
¢ SB drained ROB LSQ

mov x10, #1 Older dmb dmb
dmb
str x10, [data]
dmb
dmb
str x10, [flag] | 1 eIl L)
dmb

SB

flag

CS302 — Spring 2025 Lec. 6.1 - Slide 53



volatile 1int VS.std::atomic<int>

¢ Using volatile int’s does not work anymore!

Thread O Thread 1

// data = flag = 0

while ('flag) {}
data
flag

1;
1; return data;

CS302 — Spring 2025 Lec. 6.1 - Slide 54



volatile 1int VS.std::atomic<int>

¢ Assembly code on ARMvS8

¢ Two str’s can be reordered because of WC hardware
¢ This code does not run correctly!

Thread O Thread 1
mov x10, #1 loop:
str x10, [data] 1dr x10, [flag]
str x10, [flag] cbz x10, loop

l1dr x10, [data]

CS302 — Spring 2025 Lec. 6.1 - Slide 55



Advanced Usage of C++ Atomics

¢ Explicit load/store, assuming std: :atomic<int> x
¢ x.load (order)
& X.store(value, order)

¢ For a specific load/store order can be directly specified

¢ The default orderis std: :memory order seqg cst

CS302 — Spring 2025 Lec. 6.1 - Slide 56



Advanced Usage of C++ Atomics

For example, std: :atomic<int> x

x = 1 Isthe same as

x.store(l, std::memory order seq cst)

. = x Isthe same as

. = X.load(std::memory order seqg cst)

CS302 — Spring 2025 Lec. 6.1 - Slide 57



Advanced Usage of C++ Atomics

¢ Other memory orders options
¢ std::memory order relaxed
¢ std::memory order acquire (for more advanced hardware)
¢ std::memory order release (for more advanced hardware)

¢ Specifying other memory orders does not make a difference on PC

¢ More on this in the MS course

CS302 — Spring 2025 Lec. 6.1 - Slide 58



Advanced Usage of C++ Atomics

¢ For example, to minimize memory fences on ARMv8

¢ Leveraging various memory order options
¢ flagisstill std: :atomic<int> (special), but data can be int (normal)

Thread O Thread 1
// data = flag = 0 while
(!flag.load(std: :memory ord
data = 1; er relaxed)) ({
flag.store(1, }

std: :memory order relaxed);
return data;

CS302 — Spring 2025 Lec. 6.1 - Slide 59



Advanced Usage of C++ Atomics

¢ Assembly code on ARMvS8

¢ stlr: store-release: no load/store before it can be reordered after it
¢ ldar: load-acquire: no load/store after it can be reordered before it

¢ ARMvS provides direct support for C++ semantics

Thread O Thread 1
mov x10, #1 loop:
str x10, [data] ldar x10, [flag]
stlr x10, [flag] cbz x10, loop

ldr x10, [data]
ret

CS302 — Spring 2025 Lec. 6.1 - Slide 60



How Compiler Enforces the Ordering Constraints

¢ At the language level
¢ Compiler issues load/store instructions in the same order as in the program

¢ At the ISA level

¢ Compiler issues ISA-specific instructions with the required ordering constraints
¢ E.g.,in ARMv8, the compiler inserts dmb’s (memory fences)

¢ In x86 (PC), the compiler just emits normal mov’s or atomic instructions for
locks (covered on Thursday)

CS302 — Spring 2025 Lec. 6.1 - Slide 61



OpenMP Memory Ordering

¢ Since OMP is yet another threading library, its memory model differs
from C++11

¢ Key differences:

¢ Variables can have different “scope”

¢ There is no concept of a “synchronization variable” like Java's @volatile
and C++11's std: :atomic<T>

¢ Locks must be accompanied by a F1ush (ex. to come)

¢ Officially, OMP implements weak consistency except for f1ush

operations
¢ Almost any reordering is therefore possible

CS302 — Spring 2025 Lec. 6.1 - Slide 62



OMP Variable Scope

¢ Recall from Lecture 2.1, each thread has a set of shared and private

variables

¢ Shared — refers to the same address as the original
¢ Private — runtime provides a new var, same size & type

¢ When writing code, need to consider data races only on shared

variables

#pragma omp parallel
private (x) shared(y)
{

X = ...

*y++; // data race
}

CS302 — Spring 2025

Memory

Lec. 6.1 - Slide 63



OMP Flushes

¢ Definition of a flush:

¢ "Memory operations for variables in the flush set that precede the flush in program
execution order must be firmly lodged in memory and available to all threads

before the flush completes, and memory operations for variables in the flush set,
that follow a flush in program order cannot start until the flush completes.”

¢ In plain English, a flush is a memory fence

¢ In order to communicate between threads, do all of the following:
¢ First thread writes the shared variable, flushes the variable
¢ Second thread flushes, and then reads

CS302 — Spring 2025 Lec. 6.1 - Slide 64



Example of Communication

¢ One thread updating a shared variable vy
¢ Assume thr id is already set

¢ Note how we flush after write, and before read

int y;
#pragma omp parallel shared(y)
{
if( thr id == 0 ) {
Yy = ...;
#pragma omp flush (y)
}
#pragma omp flush(y)
. =y

CS302 — Spring 2025 }

Lec. 6.1 - Slide 65



Summary

¢ The hardware’s memory model percolates all of the way up the stack,
to how we all program
¢ Corollary: Write data race free programs!

¢ Even in relaxed hardware, need special support to behave SC in
some cases!

CS302 — Spring 2025 Lec. 6.1 - Slide 66



Rust: A Memory-Safe Language from Mozilla

¢ Rust was created to solve several challenges in systems programming
¢ Memory safety without garbage collection
¢ Concurrency without data races
& Zero-cost abstractions

¢ Rust's approach: ensure programs do not have undefined behaviors
¢ Check statically as much as possible

¢ Programmers cannot do whatever they want, including sharing data among
threads without synchronization

¢ Otherwise, the compiler complains!

CS302 — Spring 2025 Lec. 6.1 - Slide 69



Multithreading in Rust vs. C++

¢ Rust does not allow threads write to the same variable
¢ Programmers must rely on explicit synchronization primitives

// declare a wvector // declare a wvector
std: :vector<int> data = {1, 2, 3}; let mut data = vec![1l, 2, 3];
// create and run a thread // create and run a thread

// error[E0373]: closure may outlive the
current function, but it borrows "data’,
which is owned by the current function
std: :thread handle([&data] () { let handle = thread::spawn (|| {
data.push back (4) ; data.push(4) ;
}); }) s

// error[E0499]: cannot borrow ‘data’ as
mutable more than once at a time
data.push back(5) ; data.push(5) ;

CS302 — Spring 2025 Lec. 6.1 - Slide 70



Safe Way of Sharing Data in Rust

¢ Correctly using safe primitives, or compilation errors!

// Arc: Atomic Reference Count

let data = Arc::new(Mutex::new(vec![1l, 2, 3]));

// clone the Arc to create another reference to the same data
let data_clone = Arc::clone(&data);

let handle = thread: :spawn (move || {
// grab lock and get the reference
let mut v = data clone.lock() .unwrap() ;
v.push (4) ;

// grab lock and get the reference
let mut v = data.lock () .unwrap() ;
v.push(5) ;

CS302 — Spring 2025 Lec. 6.1 - Slide 71



Go: A Modern Programming Language from Google

¢ Go was created to address challenges in software development
¢ Scalability: efficiently handle large codebase and systems
¢ Concurrency: simplify writing programs that utilize multicore processors
¢ Simplicity: reduce complexity compared to C++ and Java

¢ Go's approach
¢ Do not communicate by sharing memory; use message passing
¢ S0 no need to care about memory consistency anymore!

CS302 — Spring 2025 Lec. 6.1 - Slide 72



Components in A Go Program

¢ Goroutine: light-weight thread
¢ More on this in Lecture 8 and 9!

¢ Channel: typed pipes between goroutines

func send(c chan int) {
c <-1
}

func recv(c chan int) {

<- C
} Channel

// create a channel
¢ = make(chan int);

// start goroutines
go send(c) ;

go recv(c) ;
CS302 — Spring 2025 Lec. 6.1 - Slide 73



Components in A Go Program

¢ Goroutine: light-weight thread
¢ More on this in Lecture 8 and 9!

¢ Channel: typed pipes between goroutines

func send(c chan int) {
c <-1

}

func recv(c chan int) {

// create a channel
¢ = make(chan int);

// start goroutines
go send(c) ;

go recv(c) ;
CS302 — Spring 2025 Lec. 6.1 - Slide 74



Components in A Go Program

¢ Goroutine: light-weight thread
¢ More on this in Lecture 8 and 9!

¢ Channel: typed pipes between goroutines

func send(c chan int) {
c <-1

}

func recv(c chan int) {

o 0

// create a channel
¢ = make(chan int);

// start goroutines
go send(c) ;

go recv(c) ;
CS302 — Spring 2025 Lec. 6.1 - Slide 75



