
CS302 – Spring 2025 Lec. 6.1 - Slide 1

CS302

Language-Level
Consistency

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Patterson, Wenisch, Fatahalian of CMU/EPFL, UC Berkeley,
Michigan, and CMU
Copyright 2025

CS302 – Spring 2025 Lec. 6.1 - Slide 2

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

Where are We?

u Language-Level Consistency
u Data Race Free
u Case studies: Java, C++, Rust, and Go

u Thursday
u Synchronization

u Friday lab session
u MPI programming assignment

CS302 – Spring 2025 Lec. 6.1 - Slide 3

u Assignment 2 released!
o Deadline: May 4th, 23:59

u Objectives:
o Learn how to write programs using message passing
o Compare and combine with shared memory

u Group list has been updated on Moodle
o People whose partners left the course have been reassigned

§ Remains the same for others
o Please check and get in touch with your new group partners!

Assignment 2: Message Passing Programming

CS302 – Spring 2025 Lec. 6.1 - Slide 4

u Homework 4 has been released
o Deadline: March 30th, 23:59

u Homework 3 grades will be released this week
o Feedback will be available on Moodle, ask TA if not found

u Sample midterm exam has been released
o Midterm from CS307 (the predecessor to this course)
o The coverage is not identical (CS307 was a 4-credit course)
o Try to solve on your own first, solutions will be made available from Thursday
o TA will go over some of the exam questions during Thursday’s exercise session

Homework 4 and Sample Midterm Exam

CS302 – Spring 2025 Lec. 6.1 - Slide 5

u Programmers must write “correctly synchronized” or “well-labelled”
code, containing no data races
u Then, language, runtime, and hardware will guarantee SC

u This is called “Data Race Free = SC”
u Removes burden from programmers to directly insert fences and barriers into

their code

”Grand Compromise” with Languages

CS302 – Spring 2025 Lec. 6.1 - Slide 6

u First, specify a minimal “memory operation”
u Indivisibly accesses a certain address (i.e., not as two separate memory

operations)
u Two operations conflict if they access the same location, and at least

one is a write
u A data race is when:

u Two conflicting operations from different threads occur simultaneously
u Simultaneous operations are defined as back-to-back accesses in any

sequentially consistent interleaving

What is a Data Race?

CS302 – Spring 2025 Lec. 6.1 - Slide 7

u Does our first example have a data race?

Data Race (Free?) Examples

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 8

u Does our first example have a data race?
1. Identify the locations: { A, B }
2. Identify the reads: (L1) (L0)
3. Identify the writes: (S1) (S0)
4. Are there SC executions where R/W to A or B are back to back?

Data Race (Free?) Examples

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 9

u Does our first example have a data race?
u Are there SC executions where R/W to A or B are back to back?

u Answer: Yes!

Data Race (Free?) Examples

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

A = 1
r1 = B
B = 1
r2 = A

CS302 – Spring 2025 Lec. 6.1 - Slide 10

u Add inline fences, forcing the hardware to make the writes visible
u Has same problems w. portability, readability, and behavior discussed before

Data Race Free (DRF) Code: The Old-Fashioned Way

// A = 0

(S0) A = 1;
__sync_synchronize();
(L0) r1 = B;
print(r1);

// B = 0

(S1) B = 1;
__sync_synchronize();
(L1) r2 = A;
print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 11

u Add a compiler directive declaring A, B as special variables
(in Java, C++11)
u The ”special type” depends on language (later this lecture!)
u Compiler ensures atomic & program order for you
u e.g., atomic int

DRF Code: The New Way

// atomic int A = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// atomic int B = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 12

u Before: needed to adjust our programs depending on consistency
model in the ISA

u After: even on hardware that uses PC or WC, our program sees it as
SC!
u Programmer simply needs to obey the rules

u Approaches to implement synchronization in HW
u We will discuss synchronization in the next lecture

DRF Implies SC: Before and After

CS302 – Spring 2025 Lec. 6.1 - Slide 13

u Does this code contain a data race?

Another DRF Example

// x = y = 0;
if(x) {
y = true;

}

Thread 1
// x = y = 0;
if(y) {
x = true;

}

Thread 0

CS302 – Spring 2025 Lec. 6.1 - Slide 14

u Does this code contain a data race?
u Answer: No! (surprising, I know)
u Executing the reads to x, y atomically means that the writes can never happen!

Another DRF Example

// x = y = 0;
if(x) {
y = true;

}

Thread 1
// x = y = 0;
if(y) {
x = true;

}

Thread 0

CS302 – Spring 2025 Lec. 6.1 - Slide 15

u Sections of code containing no synch. operations appear to execute
atomically to all other threads
u Why? Otherwise, there would be data races!
u Convince yourself this is true (draw examples)

u Calling an external library behaves as if it executes in one step, with
no intermediate values
u If stateless, no synchronization required in any form!
u If the library has internal state, it also has to be DRF

Implications of DRF Programming

CS302 – Spring 2025 Lec. 6.1 - Slide 16

u Each threads Ti and Tj execute actions An:
u Read or write to variables
u Lock (acquire) or unlock (release) a monitor

u Memory order in Java is defined by ”happens-before” (HB)
relationships
u These define which re-orderings are possible in both the compiler and the JVM
u From now on, “Happens Before” = ➝

u Given two threads’ actions, we can find their ➝ relationships and therefore check
for data races

Review: Java Memory Model

CS302 – Spring 2025 Lec. 6.1 - Slide 17

u➝ relationships you should care about:
u Actions in same thread ➝ each other in program order
u Unlocking a monitor➝ all locking operations
u Writing to a volatile➝ all reads of that field
u All actions in a thread ➝ a join() on that thread
u Transitivity: If Ax➝ Ay, and Ay➝ Az, then Ax➝ Az

u If we can find two actions Ax so that Ax does not➝ Ay , and Ay
does not ➝ Ax, we have found a data race

JMM: “Happens Before”

CS302 – Spring 2025 Lec. 6.1 - Slide 18

u Legend:
u wr()and rd()are variable

accesses
u acq()is a monitor lock
u rel()is a monitor unlock

Exercise: Find the ➝ Relationships

wr(x)

rel(m)

rd(z)

T0 T1
rd(y)

wr(x)

acq(m)

wr(x)

acq(m)

rd(t)

wr(v)
wr(z)

rel(m)

wr(t)

rd(x)

CS302 – Spring 2025 Lec. 6.1 - Slide 19

Exercise: Find the ➝ Relationships

wr(x)

rel(m)

rd(z)

rd(y)

wr(x)

acq(m)

wr(x)

acq(m)

rd(t)

wr(v)
wr(z)

rel(m)

wr(t)

rd(x)

T0 T1

CS302 – Spring 2025 Lec. 6.1 - Slide 20

u Any action sees all of the actions that ➝ it
u But, it may or may not see other actions

u Go back to the previous example:
u rel(m) ➝ acq(m)
u acq(m) ➝ rd(t)
u rel(m) ➝ wr(t)

u Does wr(t)➝ rd(t)??

Writing DRF Code in Java

acq(m)

rd(t)

rel(m)

wr(t)

rd(x)

T0
T1

CS302 – Spring 2025 Lec. 6.1 - Slide 21

u Any action sees all of the actions that ➝ it
u But, it may or may not see other actions

u Go back to the previous example:
u rel(m) ➝ acq(m)
u acq(m) ➝ rd(t)
u rel(m) ➝ wr(t)

u Does wr(t)➝ rd(t)??
u Answer: No!
rd(t) will see all of T1’s actions that ➝ rel(m),
but not guaranteed to see wr(t)!

u And therefore, this code has a data race

Writing DRF Code in Java

acq(m)

rd(t)

rel(m)

wr(t)

rd(x)

T0
T1

CS302 – Spring 2025 Lec. 6.1 - Slide 22

u Conceptually, must add particular ➝ relationships to eliminate all
unordered accesses

u Can do that with monitors, synchronized { } blocks, or
@volatile variables
u All of them introduce ➝ between conflicting accesses (R/W and W/W)

Fixing Data Races

CS302 – Spring 2025 Lec. 6.1 - Slide 23

acq(m)

rd(t)

rel(m)

flush

rd(x)

T0
T1

wr(t)

To introduce ➝ between the write and
read to t, could declare t as volatile

u Language spec says that t will never be
cached “thread locally”, always written to
memory

u volatile in Java guarantees a ➝
between the write and read to t

u Specifics left up to JVM writers
(i.e., what H/W op it uses)

u Warning! This is only for Java, not C, C++

Eliminating Data Race on t

flush

CS302 – Spring 2025 Lec. 6.1 - Slide 24

Synchronized { … } versus Volatile

u Only works w. objects
u Thread can wait while

others in synch{…}
u Can wrap a function or

critical section

u Can use w. primitives (e.g., int)
u No synchronization/direct access
u Prevents specific memory

re-orderings

Synchronized Volatile

synchronized {
a = b+c;
x = foo();

}

@volatile int a,b;
a = b+c;
x = foo();
// can’t reorder before wr(a)

CS302 – Spring 2025 Lec. 6.1 - Slide 25

u C++ threads did not formally exist until 2011 (C++ was born in 1979)
u Libraries such as pthreads, OpenMP were layered on top of the old language

specification

u Behavior depends on version, platform, and compiler, since memory
model was not part of C++
u Code is often riddled with data races, not portable, etc…

Lack of a C++ Memory Model

CS302 – Spring 2025 Lec. 6.1 - Slide 26

u Threads are now officially part of the language
u std::thread(), and std::async()
u Therefore, need to formalize a memory model

u Provides the “DRF implies SC” guarantee
u Uses similar ”happens before” reasoning to Java

u If your prog. has a data race, its behavior is completely undefined
u Known as “catch fire semantics”

Changes in C++11

CS302 – Spring 2025 Lec. 6.1 - Slide 27

u All threads can read/write to any location in the program scope –
through references & pointers
u More permissive than Java

u Data races are similarly defined:
u Two conflicting memory operations that do not operate on “special” variables,

or ordered by ➝

C++11 Memory Model

CS302 – Spring 2025 Lec. 6.1 - Slide 28

u Reminder: a special variable is one that obeys an agreed upon
memory order

u C++11 uses an std::atomic<T> template to designate a special
variable of type T
u Conflicting accesses to a synch. variable are not considered a data race
u e.g., std::atomic<int>, std::atomic<TrivialClass>

u Can use your own class if it’s considered Trivial (which is well defined, you can read about
it online)

u C++11 also defines std::mutex(), which is the loose equivalent
of a Java monitor

C++11 Synchronization Variables

CS302 – Spring 2025 Lec. 6.1 - Slide 29

u Quick example with an atomic integer:
u Guaranteed that count = 4 after all threads complete and are joined
u Join omitted from the example

Use of Atomic Variables

std::atomic<int> count = 0;

void main() {
for(int i = 0; i<4;i++)
std::thread([&]{count++;});

}

CS302 – Spring 2025 Lec. 6.1 - Slide 30

u Assume std::atomic<int> variables translated to instructions:
S_Load, S_Store
u S_Load and S_Store can be implemented in a variety of ways (e.g., with

fence instructions in ARM, atomic instructions in x86)

DRF Example on PC Hardware

// A,B = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// possible compiled code

S_Store 1,(A)
S_Load (B),%eax

// setup args for print
...
jmp _print

Thread 0 pseudo-x86

CS302 – Spring 2025 Lec. 6.1 - Slide 31

u Now that our program is DRF,
hardware must execute it as if it were SC

u What behavior must we disable if our processor is PC?
(Recall Lecture 5.1)
u Synch reads cannot bypass blocked synch writes
u Need to hold operations in ROB, drain the store buffer

DRF Example on PC Hardware

CS302 – Spring 2025 Lec. 6.1 - Slide 32

DRF Example on PC Hardware

1. S_Store 1,(A)
u Resolves address (A)

LSQ

S_Store A

ROB

Older

L1
B

S_Store A

SB

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program

CS302 – Spring 2025 Lec. 6.1 - Slide 33

DRF Example on PC Hardware

1. S_Store 1,(A)
u Resolves address (A)
u Retires to Store Buffer but incurs

L1 cache miss (red)
2. S_Load (B),%eax

u Resolves address (B)

LSQ

S_Load B

ROB

Older

L1
B

S_Load B

S_Store A
SB

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program

CS302 – Spring 2025 Lec. 6.1 - Slide 34

DRF Example on PC Hardware

1. S_Store 1,(A)
u Waiting for cache

2. S_Load (B),%eax
u Resolves address (B)
u A regular load (not S_Load) in PC,

could issue and incur non-SC
reordering (but in x86 all loads are
the same, later)

LSQ

…

jmp _print

S_Load B

ROB

Older
…

L1
B

S_Load B

S_Store A
SB

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program

CS302 – Spring 2025 Lec. 6.1 - Slide 35

DRF Example on PC Hardware

1. S_Store 1,(A)
u Waiting for cache

2. S_Load (B),%eax
u Resolves address (B)
u But S_Load must wait for SB to drain

(can peek to overlap latency)

CPU 0

LSQ

S_Load B

ROB

Older

L1
B

S_Load B

S_Store A
SB

…

jmp _print

…

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program

CS302 – Spring 2025 Lec. 6.1 - Slide 36

DRF Example on PC Hardware

1. S_Store 1,(A)
u Now in cache

2. S_Load (B),%eax
u Resolves address (B)
u Issue Load B → Hit

u When S_Store 1,(A)
finishes, load executes

CPU 0

S_Store 1,(A)
S_Load (B),%eax
...
jmp _print

Program

LSQ

…

ROB

Older

L1
B

SB

…
jmp _print

1A Load B

CS302 – Spring 2025 Lec. 6.1 - Slide 37

Take a Break!

CS302 – Spring 2025 Lec. 6.1 - Slide 38

u Example with the code with variables swapped in two threads
u A, B are declared atomic

Recall What Happens with Two Threads

// atomic<int> A,B = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// atomic<int> A,B = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 39

u If we show both processors’ SBs/LSQs,
we see how the hardware looks like as if it is SC
u Issuing loads can lead to a non-SC (0,0) outcome
u But, holding both means the memory behaves like our “switch” model, and

therefore we get only SC outcomes!

DRF Example on PC Hardware

Memory

LSQ
L1 0B

S_Load BS_Store A

SB

CPU 0

LSQ
L1 0A

S_Load AS_Store B

SB

CPU 1

CS302 – Spring 2025 Lec. 6.1 - Slide 40

u Potential orders when loads wait for local stores:
u I - Both stores first, outcome (1,1)
u II - CPU 0 first, outcome (0,1)
u III - CPU 1 first, outcome (1,0)

DRF Example on PC Hardware

Memory

S_Store A
S_Store B
S_Load A = 1
S_Load B = 1

Order I
S_Store A
S_Load B = 0
S_Store B
S_Load A = 1

Order II
S_Store B
S_Load A = 0
S_Store A
S_Load B = 1

Order III

CS302 – Spring 2025 Lec. 6.1 - Slide 41

u C++11 provides the "DRF implies SC" guarantee
u Uses similar "happens before" reasoning to Java

u C++11 uses std::atomic<T> to declare a special variable of type T
u Conflicting accesses to a special variable are not considered a data race

Review: C++11 Memory Model

CS302 – Spring 2025 Lec. 6.1 - Slide 42

u Example: Thread 0 passes data to thread 1 with flag for readiness

u data and flag are std::atomic<int>’s initialized to 0
u std::atomic ensures SC ordering by default
u SC execution: thread 1 must return 1

DRF Example on PC Hardware

// data = flag = 0

data = 1;
flag = 1;

while (!flag) {}

return data;

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 43

u Assembly code on x86
u S_Load becomes mov [addr], reg (move memory data to reg)
u S_Store becomes xchg reg, [addr] (exchange reg and memory data)

DRF Example on PC Hardware

mov 1, %eax
xchg %eax, [data]
xchg %eax, [flag]

loop:
 mov [flag], %eax
 cmp %eax, 0
 je loop

mov [data], %eax

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 44

u data and flag can also be volatile int’s
u Prevents the compiler from removing or reordering memory accesses
u In this case both S_Load and S_Store are normal mov's
u This code runs correctly on PC hardware

volatile int vs. std::atomic<int>

mov 1, %eax
mov %eax, [data]
mov %eax, [flag]

loop:
 mov [flag], %eax
 cmp %eax, 0
 je loop

mov [data], %eax

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 45

u std::atomic<int> also works on WC hardware
u std::atomic ensures SC ordering by default
u SC execution: thread 1 must return 1, same as on PC hardware

DRF Example on WC Hardware

// data = flag = 0

data = 1;
flag = 1;

while (!flag) {}

return data;

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 46

u Assembly code on ARMv8
u dmb is ARMv8’s memory fence
u S_Load becomes dmb; ldr; dmb
u S_Store becomes dmb; str; dmb

DRF Example on WC Hardware

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

loop:
dmb
ldr x10, [flag]
dmb
cbz x10, loop
dmb
ldr x10, [data]
dmb

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 47

u Commit dmb
u Prevents reordering of younger

loads/stores (e.g., str [data])

Execution on ARMv8 (Thread 0)

LSQ

str [data]

dmb

dmb

ROB

Older
dmb

L1

str [data]
dmb

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
0data

CS302 – Spring 2025 Lec. 6.1 - Slide 48

u Commit str [data]

Execution on ARMv8 (Thread 0)

LSQ

dmb

str [flag]

str [data]

ROB

Older
dmb

L1

dmb
str [data]

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
0data

CS302 – Spring 2025 Lec. 6.1 - Slide 49

Execution on ARMv8 (Thread 0)

LSQ

dmb

dmb

dmb

ROB

Older
str [flag]

L1

dmb
dmb

SB

CPU 0u Commit dmb
u str [data] enters into SB
u dmb waits for SB to be drained

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
0data

str [data]

CS302 – Spring 2025 Lec. 6.1 - Slide 50

u Commit dmb
u SB drained
u Prevents reordering of younger

loads/stores (e.g., str [flag])

Execution on ARMv8 (Thread 0)

LSQ

dmb

dmb

dmb

ROB

Older
str [flag]

L1

dmb
dmb

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
1data

CS302 – Spring 2025 Lec. 6.1 - Slide 51

u Commit str [flag]

Execution on ARMv8 (Thread 0)

LSQ

dmb
str [flag]

ROB

Older

L1

dmb
str [flag]

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

0flag
1data

CS302 – Spring 2025 Lec. 6.1 - Slide 52

u Commit dmb
u str [flag] enters into SB
u dmb waits for SB to be drained

Execution on ARMv8 (Thread 0)

LSQ

dmb

ROB

Older

L1

dmb

SB

CPU 0

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

1data
0flag

str [flag]

CS302 – Spring 2025 Lec. 6.1 - Slide 53

u Commit dmb
u SB drained

Execution on ARMv8 (Thread 0)

LSQ

dmb

ROB

Older

L1

dmb

SB

CPU 0

1flag

mov x10, #1
dmb
str x10, [data]
dmb
dmb
str x10, [flag]
dmb

1data

CS302 – Spring 2025 Lec. 6.1 - Slide 54

u Using volatile int’s does not work anymore!

volatile int vs. std::atomic<int>

// data = flag = 0

data = 1;
flag = 1;

while (!flag) {}

return data;

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 55

u Assembly code on ARMv8
u Two str’s can be reordered because of WC hardware
u This code does not run correctly!

volatile int vs. std::atomic<int>

mov x10, #1
str x10, [data]
str x10, [flag]

loop:
 ldr x10, [flag]
 cbz x10, loop

ldr x10, [data]

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 56

u Explicit load/store, assuming std::atomic<int> x
u x.load(order)
u x.store(value, order)

u For a specific load/store order can be directly specified

u The default order is std::memory_order_seq_cst

Advanced Usage of C++ Atomics

CS302 – Spring 2025 Lec. 6.1 - Slide 57

For example, std::atomic<int> x

 x = 1 is the same as
 x.store(1, std::memory_order_seq_cst)

 … = x is the same as
 … = x.load(std::memory_order_seq_cst)

Advanced Usage of C++ Atomics

CS302 – Spring 2025 Lec. 6.1 - Slide 58

u Other memory orders options
u std::memory_order_relaxed
u std::memory_order_acquire (for more advanced hardware)
u std::memory_order_release (for more advanced hardware)

u Specifying other memory orders does not make a difference on PC

u More on this in the MS course

Advanced Usage of C++ Atomics

CS302 – Spring 2025 Lec. 6.1 - Slide 59

u For example, to minimize memory fences on ARMv8
u Leveraging various memory order options
u flag is still std::atomic<int> (special), but data can be int (normal)

Advanced Usage of C++ Atomics

// data = flag = 0

data = 1;
flag.store(1,
std::memory_order_relaxed);

while
(!flag.load(std::memory_ord
er_relaxed)) {
}

return data;

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 60

u Assembly code on ARMv8
u stlr: store-release: no load/store before it can be reordered after it
u ldar: load-acquire: no load/store after it can be reordered before it
u ARMv8 provides direct support for C++ semantics

Advanced Usage of C++ Atomics

mov x10, #1
str x10, [data]
stlr x10, [flag]

loop:
 ldar x10, [flag]
 cbz x10, loop
 ldr x10, [data]
 ret

Thread 0 Thread 1

CS302 – Spring 2025 Lec. 6.1 - Slide 61

u At the language level
u Compiler issues load/store instructions in the same order as in the program

u At the ISA level
u Compiler issues ISA-specific instructions with the required ordering constraints
u E.g., in ARMv8, the compiler inserts dmb’s (memory fences)
u In x86 (PC), the compiler just emits normal mov’s or atomic instructions for

locks (covered on Thursday)

How Compiler Enforces the Ordering Constraints

CS302 – Spring 2025 Lec. 6.1 - Slide 62

u Since OMP is yet another threading library, its memory model differs
from C++11

u Key differences:
u Variables can have different “scope”
u There is no concept of a “synchronization variable” like Java’s @volatile

and C++11’s std::atomic<T>
u Locks must be accompanied by a Flush (ex. to come)

u Officially, OMP implements weak consistency except for flush
operations
u Almost any reordering is therefore possible

OpenMP Memory Ordering

CS302 – Spring 2025 Lec. 6.1 - Slide 63

u Recall from Lecture 2.1, each thread has a set of shared and private
variables
u Shared – refers to the same address as the original
u Private – runtime provides a new var, same size & type

u When writing code, need to consider data races only on shared
variables

OMP Variable Scope

#pragma omp parallel
private(x) shared(y)
{

x = ...
*y++; // data race

}
Y

Memory

T0 T1X X

CS302 – Spring 2025 Lec. 6.1 - Slide 64

u Definition of a flush:
u “Memory operations for variables in the flush set that precede the flush in program

execution order must be firmly lodged in memory and available to all threads
before the flush completes, and memory operations for variables in the flush set,
that follow a flush in program order cannot start until the flush completes.”

u In plain English, a flush is a memory fence

u In order to communicate between threads, do all of the following:
u First thread writes the shared variable, flushes the variable
u Second thread flushes, and then reads

OMP Flushes

CS302 – Spring 2025 Lec. 6.1 - Slide 65

u One thread updating a shared variable y
u Assume thr_id is already set

u Note how we flush after write, and before read

Example of Communication

int y;
#pragma omp parallel shared(y)
{
if(thr_id == 0) {
y = ...;
#pragma omp flush(y)

}
#pragma omp flush(y)
... = y;

}

CS302 – Spring 2025 Lec. 6.1 - Slide 66

u The hardware’s memory model percolates all of the way up the stack,
to how we all program
u Corollary: Write data race free programs!

u Even in relaxed hardware, need special support to behave SC in
some cases!

Summary

CS302 – Spring 2025 Lec. 6.1 - Slide 69

u Rust was created to solve several challenges in systems programming
u Memory safety without garbage collection
u Concurrency without data races
u Zero-cost abstractions

u Rust's approach: ensure programs do not have undefined behaviors
u Check statically as much as possible
u Programmers cannot do whatever they want, including sharing data among

threads without synchronization
u Otherwise, the compiler complains!

Rust: A Memory-Safe Language from Mozilla

CS302 – Spring 2025 Lec. 6.1 - Slide 70

u Rust does not allow threads write to the same variable
u Programmers must rely on explicit synchronization primitives

Multithreading in Rust vs. C++

// declare a vector
let mut data = vec![1, 2, 3];

// create and run a thread
// error[E0373]: closure may outlive the
current function, but it borrows `data`,
which is owned by the current function
let handle = thread::spawn(|| {

data.push(4);
});

// error[E0499]: cannot borrow `data` as
mutable more than once at a time
data.push(5);

// declare a vector
std::vector<int> data = {1, 2, 3};

// create and run a thread

std::thread handle([&data]() {
data.push_back(4);

});

data.push_back(5);

CS302 – Spring 2025 Lec. 6.1 - Slide 71

u Correctly using safe primitives, or compilation errors!

Safe Way of Sharing Data in Rust

// Arc: Atomic Reference Count
let data = Arc::new(Mutex::new(vec![1, 2, 3]));
// clone the Arc to create another reference to the same data
let data_clone = Arc::clone(&data);

let handle = thread::spawn(move || {
// grab lock and get the reference
let mut v = data_clone.lock().unwrap();
v.push(4);

});
{

// grab lock and get the reference
let mut v = data.lock().unwrap();
v.push(5);

}

CS302 – Spring 2025 Lec. 6.1 - Slide 72

u Go was created to address challenges in software development
u Scalability: efficiently handle large codebase and systems
u Concurrency: simplify writing programs that utilize multicore processors
u Simplicity: reduce complexity compared to C++ and Java

u Go's approach
u Do not communicate by sharing memory; use message passing
u So no need to care about memory consistency anymore!

Go: A Modern Programming Language from Google

CS302 – Spring 2025 Lec. 6.1 - Slide 73

u Goroutine: light-weight thread
u More on this in Lecture 8 and 9!

u Channel: typed pipes between goroutines

Components in A Go Program

func send(c chan int) {
c <- 1

}
func recv(c chan int) {

<- c
}

// create a channel
c = make(chan int);

// start goroutines
go send(c);
go recv(c);

Channel

CS302 – Spring 2025 Lec. 6.1 - Slide 74

u Goroutine: light-weight thread
u More on this in Lecture 8 and 9!

u Channel: typed pipes between goroutines

Components in A Go Program

func send(c chan int) {
c <- 1

}
func recv(c chan int) {

<- c
}

// create a channel
c = make(chan int);

// start goroutines
go send(c);
go recv(c);

Send Channel Recv

CS302 – Spring 2025 Lec. 6.1 - Slide 75

u Goroutine: light-weight thread
u More on this in Lecture 8 and 9!

u Channel: typed pipes between goroutines

Components in A Go Program

func send(c chan int) {
c <- 1

}
func recv(c chan int) {

<- c
}

// create a channel
c = make(chan int);

// start goroutines
go send(c);
go recv(c);

Send Channel Recv1

