CS302

M e m O ry — Jan Potocki —e\.zf

Thought assists memory in

CO nS|Ste n Cy I : enabling it to order the material

it has assembled. So that in a

systematically ordered memory
every idea is individually
followed by all conclusions it
entails.

Spring 2025 N
Arkaprava Basu & Babak Falsafi

parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Prof. Falsafi
Copyright 2025

CS302 — Spring 2025 Lec.5.1 - Slide 1



Where are We?

CS302 — Spring 2025

:
23-Apr
30-Apr

7-May

14-May

21-May

28-May

23-Apr |
30-Apr |
7-May |
14-May
21-May
28-May |

¢ Memory Consistency

¢ Ordering reads/writes
¢ ISA level

¢ Exercise session
¢ MPI| demo continued

¢ Next Tuesday:

¢ Taking consistency to the compiler
and PL

Lec.5.1 - Slide 2



FAQSs on Ed

¢ Cannot diagnose the source of scalability bottleneck?
o Time the different parts (e.g., for loops) of your program
o All parallel parts should scale close to linearly with number of cores

¢ Optimizations for false sharing do not work?
o Make sure padding is applied to the correct variables
o Use performance counters to check if padding is working

¢ Recording problems for Week 3 Thursday:

o Older version of lecture recording uploaded on Moodle
¢ Questions on Ed should be answered within a day (email us if urgent)

CS302 — Spring 2025 Lec.5.1 - Slide 3



Assignment 1 and Assignment 2

¢ Assignment 1 deadline is this Sunday at 23:59!

o Submit report and code in a single zip file on Moodle
o No extensions!

¢ Assignment 2 to be released next Monday
o Parallel programming using MPI

¢ If your partner has left/will leave the course, send us an email!
o We will pair up these unpaired students for A2 and A3
o Your partner must have officially dropped the course

CS302 — Spring 2025 Lec.5.1 - Slide 4



Reminder: Hardware Cache Coherence

¢ Solves the problem of multiprocessors transparently sharing a single

memory location
& All processors agree on R/W order to address X

¢ Coherence makes caches appear invisible

¢ Programmer can have the illusion of uniform memory with reduced latency
due to the cache(s)

¢ But what about different memory locations?

CS302 — Spring 2025 Lec.5.1 - Slide 5



Coherence vs. Consistency

¢ Memory consistency defines the behavior of R/W operations across
different addresses

¢ Best illustrated with an example:
¢ Assume A & B are addresses, r, are registers

Thread 0 Thread 1
// A =1r,=0 // B=1xr, =0
(Sp) A = 1; (S;) B = 1;
(Ly) o = B; (L) r; = ;

print (xr,) ; print(r,);

CS302 — Spring 2025 Lec.5.1 - Slide 6



Cache Coherence Guarantees?

¢ After A=1, the cache block will propagate to T,
¢ Same for B=1

¢ So what values are possible for (r,, r{)?

CS302 — Spring 2025

Thread 0

//A:roz

print(xr,);

0

Thread 1

//B=r1=

print(r;);

Lec.5.1 - Slide 7



Thread 0 “Executes” First

| ____r____| Execution Order

0
Thread 0
// A = ro - 0
(SO) A = 1/

print(xr,);

CS302 — Spring 2025

(So) (Lo) (S1) (Ly)

Thread 1
// B = r, = 0

print(r;);

Lec.5.1 - Slide 8



Thread 1 "Executes” First

| ____r____| Execution Order

0 1 (So) (Lo) (S1) (Ly)
1 0 (S1) (L1) (So) (Lo)
Thread 0 Thread 1
// A =1r,=0 // B=1xr, =0
(Sp) A = 1; (S;) B = 1;
(Ly) o = B; (L) r; = ;

print (xr,) ; print(r,);

CS302 — Spring 2025

Lec.5.1 - Slide 9



Stores “Execute” First

| ____r____| Execution Order

0 1
1 0
1 1
Thread 0
// A = Yo = 0
(SO) A = 1/

print(xr,);

CS302 — Spring 2025

(So) (Lo) (S1) (Ly)
(S1) (L1) (So) (Lo)
(S1) (So) (L1) (Lo)

Thread 1

//B=r1=

print(r;);

Lec.5.1 - Slide 10



Loads “Execute” First??

| ____r____| Execution Order

0
1
1
0
Thread O
// A = Yo = 0
(SO) A = 1/

print (ry) ;

CS302 — Spring 2025

1
0
1
0

(So) (Lo) (S1) (Ly)
(S1) (L1) (So) (Lo)
(S1) (So) (L1) (Lo)
(L1) (Lo) (S1) (So)

Thread 1
// B = r, = 0

print(r;);

Lec.5.1 - Slide 11



\
.' \
\ MOLY)
N L'
AR

Modern CPUs re-ord%r
| £
ovierlap memory accesses?

\ A



Loads “Execute” First??

¢ Yes, reading (0,0) is possible in the majority of today’'s CPUs
¢ And, furthermore, this still satisfies cache coherence!

¢ How?

Thread 0
// A = g =

print(xr,);

CS302 — Spring 2025

Thread 1
// B = r, = 0

print(r;);

Lec.5.1 - Slide 13



A Sample Cache-Coherent Execution

¢ Both processors begin 2 & B in
shared state

CS302 — Spring 2025

L

[

[

il

L

i ll

[l

[Tl

T T

‘ Dlrectory \ ‘AEC): \

Lec.5.1 - Slide 14



A Sample Cache-Coherent Execution

¢ Both processors begin 2 & B in
shared state

1. CPUs issue the stores

simultaneously
¢ Generate 2x Writes

¢ Requests injected into network,
headed for the directory

CS302 — Spring 2025

Po
% Writ
( ]

e A
] ]

[

[

il

I

I

I

Py
é Write B
™

- I 1 J
‘ Directory \ ‘Sg Mem.\

Lec.5.1 - Slide 15



A Sample Cache-Coherent Execution

¢ Both processors begin 2 & B in
shared state Po P,

1. CPUs issue the stores Read B Read A
simultaneously

2. CPUs issue reads

¢ Non-blocking caches proceed while 4 o A
msgs. are in network g LHILF

¢ Reads hit LHOHF

¢ Return:a = B = 0 \ i /

‘ Directory \ A Mem.

CS302 — Spring 2025 Lec.5.1 - Slide 16



Why Allow this Behavior?

¢ All system stakeholders have different needs!

¢ Programmers:

¢ Want memory to behave like everything happens in program order, and
atomically — Easy to reason about

¢ But.... they want it to be fast!
¢ H/W Designers:

¢ Want the ability to re-order operations for performance
¢ e.g., the example we just saw

¢ Therefore, we must define a rigorous memory model to tell each layer
what can and can’t happen

CS302 — Spring 2025 Lec.5.1 - Slide 17



Intuitive Expectation for Shared Memory

¢ Called Sequential Consistency (SC)
¢ MP should behave like “multitasked” single core
¢ (Earned Leslie Lamport the Turing Award in 2013!)

¢ More formally, a MP is SC if:

¢ “the result of any execution is the same as if the operations of all processors
(cores) were executed in some sequential order, and the operations of each
individual processor (core) appear in this sequence in the order specified by its
program.”

CS302 — Spring 2025 Lec.5.1 - Slide 18



Sequential Consistency

¢ Memory appears like it has a “switch” in front

¢ Executes each processor's memory accesses
atomically and in program order

¢ Therefore:

¢ Memory has one seq. order

¢ It represents some interleaving of each processor’s
operations

v’ Therefore, we are SC

CS302 — Spring 2025

P

{

‘ Memory \

Lec.5.1 - Slide 19



Exercise: Same Example With SC

¢ Assuming SC, what values can be printed now?
¢ Hint, definition says:
¢ Operations from all threads happen sequentially
¢ The memory sees the operations in program order

Thread 0 Thread 1
// A =1r,=0 // B=1xr, =0
(Sp) A = 1; (S;) B = 1;
(Ly) o = B; (L) r; = ;

print (xr,) ; print(r,);

CS302 — Spring 2025 Lec.5.1 - Slide 20



Exercise: Same Example With SC

¢ Answer:
| r,| ExecutionOrder
0 1 (So) (Lo) (S1) (Ly1)
1 0 (S1) (L1) (So) (Lo)
1 1 (S1) (So) (L1) (Lo)
Thread O Thread 1
// A =1r,=0 // B=1xr, =0
(Sg) A = 1; (S;) B = 1;
(Lyp) ry = B; (L) r; = A;

print (xr,) ; print(r,);

CS302 — Spring 2025

Lec.5.1 - Slide 21



Implementing SC

¢ We have to ensure two things for SC:
1. Memory accesses happen in program order

2. Memory operations appear atomic (i.e., instantaneous to other processors
in the system)

¢ Single core program order
¢ Ensure that Load(A) reads the last Stored value
¢ We will focus on this problem first

CS302 — Spring 2025 Lec.5.1 - Slide 22



Reminder: Basic Out-of-Order CPU

& Enables instructions to execute out of order
¢ Why? Expose instruction-level-parallelism (ILP)

¢ In following example, assume |, |; miss in LLC:

¢ Loads take 100 cycles, adds take 1 cycle
# In an in-order core, have to wait for the values in r,,r,

Inst.____Code ___| In-Order Cycle

1 load r2, [r3] 100

2 addr2,r2, 4 101

3 load r4, [rd] 201

4 addrd, r4, 4 202

S add ro, r2, r4 203 oo - Siide 23

CS302 — Spring 2025



Reminder: Basic Out-of-Order CPU

& Enables instructions to execute out of order
¢ Why? Expose instruction-level-parallelism (ILP)

¢ In following example, assume |, |; miss in LLC:

¢ Loads take 100 cycles, adds take 1 cycle

¢ O00 core overlaps the loads, as they are independent

CS302 — Spring 2025

m In-Order Cycle | 000 Cycle

2
3
4
)

load r2, [r3]
add r2,r2, 4
load r4, [r9]
addr4d, r4, 4
add ro, r2, r4

100
101
201
202
203

100
101
102
103
104

Lec.5.1 - Slide 24



Reminder: Inside CPU

¢ Fetch/Decode, Execute, Keep context

CS302 — Spring 2025

Po

P

~
~
~
~
~
~
~
~
~
~
\\
~

\\~
~

Simplified CPU

S

(Lec. 2)

ALU
(Execute)

m=

Lec.5.1 - Slide 25



Reminder: OoO CPU Pipeline

¢ Fetch instructions in order, execute out of order, but reconstruct order

when retiring
¢ Why? Preserve CPU state on trap or exception

U
U
U

Simplified CPU /*
(Lec.2)

- In Order
(Execute) [ Execute ]
[ Memoy e
CS302 — Spring 2025 \\ Lec.5.1 - Slide 26




Reminder: OoO CPU Pipeline

¢ Central structure called the “Reorder Buffer”
# Instructions enter in order and exit (retire) in order

CS302 — Spring 2025

/

\_

\

Fetch/
Decode

)

Execute

|

Retire ]

Lec.5.1 - Slide 27



Reminder: Register Dependences

¢ Register names are encoded in the instruction

¢ Register dependences are established at decode
¢ All dependences among instructions are established in program order

_Inst.____Code | Dependence ___

load r2, [r3] produces r2
add r2,r2, 4 gets r2 from |,, produces r2
load r4, [r5] produces r4

addr4, r4, 4 gets r4 from |;, produces r4

add r6, r2, rd gets r2 from |,, gets r4 from
l,, produces r6

g B~ W DN -

CS302 — Spring 2025 Lec.5.1 - Slide 28



But What About Memory Dependence?

¢ Note: This is non-trivial with the memory ops!
¢ Inst. 1 is a load miss (will take 100 cycles)

¢ Don’'t know addresses of 4(r1) and 8(r5) until execute
¢ Addresses are not known at decode time

1 load r1, O(r4
oad r1, 0(r4) Is 4(rl) the same

2 store r2, 4(r1) address as 8(r5)?
3 load r3, 8(r5)

CS302 — Spring 2025 Lec.5.1 - Slide 29



But What About Memory Dependence?

case #1 4(r1) = 8(rd)

case #2 4(r1) = 8(rd)

load r1, 0(r4)
2 store r2, 4(r1) waiting for r1
3 load r3, 8(r5)

¢ load has to wait for store to
complete

¢ r3 will get the same value stored in r2

CS302 — Spring 2025

load r1, 0(r4)
2 store r2, 4(r1) waiting for r1
3 load r3, 8(r5)

¢ Inst. 3 is independent of Inst. 2

¢ Inst. 2 could go ahead but does not
know until Inst. 1 finishes and
4 (rl) becomes known at execute

Lec.5.1 - Slide 30



Need to Order Memory Instructions

¢ Need to do the following things:
¢ Track the FIFO program order of loads & stores
¢ Resolve addresses when they are ready
¢ On a load, check for the youngest store to this address

& Use a structure called a “Load-Store Queue” (LSQ)

CS302 — Spring 2025 Lec.5.1 - Slide 31



Multiprocessor Memory Consistency

¢ Need a uniprocessor memory order

¢ Make sure that a load and store in program order pass their values correctly
(even in sequential, single-threaded programs)

¢ Need multiprocessor memory order
¢ Programmers want all memory accesses to be atomic & in-program order

¢ Memory consistency model affects performance
¢ Dictates acceptable memory re-orderings

CS302 — Spring 2025 Lec.5.1 - Slide 32



Types of Memory Dependences

St A ¢ Read After Write (RAW)
Ld B ¢ Store must complete before Load
St A + Notation: W — R (write blocks read)

St B )
Ld A RAW

St A

CS302 — Spring 2025 Lec.5.1 - Slide 33



Types of Memory Dependences

St A ¢ Read After Write (RAW)

Ld B ¢ Store must complete before Load
St A WAR ¢ Notation: W — R (write blocks read)
StB

¢ Write After Read (WAR)

Ld A RAW ¢ Load must complete before Store
StA ¢ Notation: R — W (read blocks write)

CS302 — Spring 2025

Lec.5.1 - Slide 34



Types of Memory Dependences

St A WAW
Ld B
St A WAR
St B
Ld A RAW
St A

CS302 — Spring 2025

¢ Read After Write (RAW)

¢ Store must complete before Load
¢ Notation: W — R (write blocks read)

¢ Write After Read (WAR)

¢ Load must complete before Store
¢ Notation: R — W (read blocks write)

¢ Write After Write (WAW)

¢ Store must complete before Store
¢ Notation: W — W (write blocks write)

Lec.5.1 - Slide 35



Specification for Solving Memory Dependences

¢ Given Storg(A, V) << Load;(A)
¢ Loadi(A) must return V if there isn’t a Store,() where:
Storei(A, V) << Storey(A, V') << Load(A)

¢ Can guarantee by observing these dependences:
¢ RAW: Store(A,V) — Load(A)
o WAW: Store(A,V) — Store(A,V')
¢ WAR: Load(A) — Store(A,V’)

CS302 — Spring 2025 Lec.5.1 - Slide 36



Take a break!

CS302 — Spring 2025 Lec.5.1 - Slide 37



Load Store Queue Functionality

¢ LSQ accomplishes the following two key tasks:
1. Resolve which Ld/St addresses overlap
2. Hold all store operations until they retire

¢ Address resolution necessary to forward values

¢ Cannot write “speculative” values to caches
¢ Speculative values are those that ran out of order

¢ They wait until all prior accesses are complete
¢ Otherwise, they may corrupt the system’s state

CS302 — Spring 2025 Lec.5.1 - Slide 38



Load Store Queue Address Resolution

¢ Address Resolution in LSQ

+ Use an NxN half-matrix of Index Addr
comparators, cross checks A 0 |
every entry against all older 1
ones Older 2

3
4
A
LSQ[O][1][2][3][4]
A 4
Address
Calculation
(registers)

CS302 — Spring 2025 Lec.5.1 - Slide 39



Load Store Queue Address Resolution

¢ Address Resolution in LSQ

¢ Load sets bits for all older
Index Addr.
stores they depend on A 0 St(A)
1 St(B)
3 Ld(C)
41 Ld@) Set 1
LSQ[O][1][2][3][4]
\ 4
Address
Calculation
(reqisters)

CS302 — Spring 2025 Lec.5.1 - Slide 40



Load Store Queue Address Resolution

¢ Address Resolution in LSQ

¢ Load sets bits for all older
stores they depend on A In((j)ex 'AS‘?(%
& Store resets its column when 1 St(B)
updating the cache Older 2 Ld(A)
3 Ld(C)
4 Ld(B)
A
LSQIO][1][2][3][
A 4
Address

Calculation
(registers)

CS302 — Spring 2025 Lec.5.1 - Slide 41



Load Store Queue Address Resolution

¢ Address Resolution in LSQ
¢ Load sets bits for all older

St(A)
stores they depend on N SHB)
¢ Store resets its column when 1 Ld(A)
updating the cache Older 2 Ld(C)
3 Ld(B)
4
A
LSQ[O][1][2][3][4]
\ 4
Address
Calculation
(registers)

CS302 — Spring 2025

Lec.5.1 - Slide 42



Load Store Queue Functionality

¢ Hold speculative stores until they resolve
¢ O00 processors predict branches and speculate
¢ e.g., Store r3, 0(r4) but preceding branch was mispredicted!

¢ May corrupt memory if store allowed to complete

LOOP:

test r2,0 # test loop counter
jmp_nz LOOP # loop if not zero yet
store r3,0(r4) # offending store

CS302 — Spring 2025 Lec.5.1 - Slide 43



How to Block Speculative Stores

¢ Integrate LSQ operation w. Reorder Buffer (ROB)

¢ Reminder: Instructions get an ROB entry at rename, and release it when they
commit

¢ In-order fetch, In-order commit, OoO execute

¢ Only remove an LSQ entry when store exits ROB

CS302 — Spring 2025 Lec.5.1 - Slide 44



How to Block Speculative Stores

¢ Memory Operation (blue) at head of ROB
¢ Retires from ROB and de-allocates LSQ entry
¢ Has not triggered exception or page walk

CS302 — Spring 2025

/

\_

Fetch/
Decode

\

)

Execute

)

Retire

ROB

Lec.5.1 - Slide 45



Problem: Why wait for stores?

¢ Currently, processor waits for stores to complete

¢ What if it misses in L1/L2/LLC? 100+ cycle stali
¢ LSQ entries are scarce due to NxN address dep. check

¢ Stores do not generate operands for the core
¢ Loads and arithmetic operations do

¢ Processor should continue while store pending!
¢ Reclaim LSQ entry for new memory operations

CS302 — Spring 2025 Lec.5.1 - Slide 46



Solution: Add Store Buffer

¢ Store buffer (SB) sits between core and L1 cache
¢ Holds committed stores, which cannot be rolled back

¢ Note: Now loads must check SB as well as L1
¢ No guarantee on when values will be written

ROB LSQ

E Speculative State

Store Buffer

CS302 — Spring 2025 Lec.5.1 - Slide 47



Return to Conditions for SC

¢ Maintain program order in the CPU
¢ Use LSQ/SB, in the fashion we just demonstrated

¢ Must maintain atomicity in the memory system
¢ In small-scale systems, use a shared bus
& At larger scale, explicit completion acknowledgements

CS302 — Spring 2025 Lec.5.1 - Slide 48



Problems with the SC Model

¢ True SC would be painfully slow
¢ Can only issue one memory operation at a time

¢ Modern processors are:
¢ Superscalar
¢ Out of order

¢ Caches are:
¢ Non-blocking, multi-ported
¢ Buffered at input/output

CS302 — Spring 2025 Lec.5.1 - Slide 49



Example

¢ To quantify SC performance, use this code:

Store X ' missesin L1 & L2
Store B : hits in L1

Load A : hits in L1

Add

Store A

Load Y 'misses in L1 & L2

Store Z ' missesin L1 & L2

CS302 — Spring 2025 Lec.5.1 - Slide 50



Execution with Naive SC

CS302 — Spring 2025

ROB

Older

. = Long latency

L)

¢ Store X blocks ROB

¢ Cannot overlap Load Y & Store Z (other misses)

Add LSQ
Load A Load A
Store B Store B
ore Miss

Lec.5.1 - Slide 51



Execution with SC + Store Buffer

. = Long latency

ROB —
Load Y LSQ
Store A Load Y Wait
Add Store A Wait
Load A Load A Wait
Store Store B
Buffer Store X

¢ Store buffer frees up two slots in ROB/LSQ

& All ops still need to wait on Store X

CS302 — Spring 2025

Lec.5.1 - Slide 52



Performance Comparison

¢ Assume all misses take 100 cycles, hits 1 cycle

| behavior | Naive SC

Store X L2 miss 100
Store B L1 hit 1
Load A L1 hit 1

Add - 1
Store A L1 hit 1
Load Y L2 miss 100
Store Z L2 miss 100

“Total |- | 304

CS302 — Spring 2025 Lec.5.1 - Slide 53



Using Stalled Operations in LSQ

¢ If operation in LSQ has address, why not issue it?
¢ Violates order or atomicity

¢ ldea: Peek at L1, see if address is already there
¢ If not (miss), fetch the block from lower level into L1
+ If so, do not load the value into the core

¢ Insight:

¢ Fetching blocks into L1 from lower levels (or other L1’s) does not impact order
or atomicity

¢ No values move between the core & L1

¢ Helps overlap latency
¢ Can fetch as many blocks in parallel into L1 as needed

CS302 — Spring 2025 Lec.5.1 - Slide 54



New SC Interpretation

¢ Memory appears program order and atomic
¢ All loads/stores still execute with no re-ordering

¢ But, we add the ability to peek into L1 cache
¢ No ordering or atomicity constraints
¢ Other cores may see coherence messages!
¢ e.g., Load(A) invalidates A in remote core

CS302 — Spring 2025 Lec.5.1 - Slide 55



Exercise: Does Peeking Violate SC?

¢ Same example as before, with SC + L1 peeking
¢ Assume 2 cores, private L1 caches, w. bus interconnect

¢ Can we possibly observer; =r, =0 ?

Thread 0 Thread 1
// A =1r, =0 // B=1xr, =0
(Sp) A = 1; (S;) B =1;
(L) r; = B; (L;) r, = A;

CS302 — Spring 2025 Print (rl) ; print (r2) ; Lec.5.1 - Slide 56



Exercise: Does Peeking Violate SC?

¢ Same example as before, with SC + L1 peeking
¢ Assume 2 cores, private L1 caches, w. bus interconnect

¢ Can we possibly observer; =r, =0 ?

& Answer: No.

¢ If Load(B) peeks, value brought into cache is B =1 or B = 0 (depending on
T1). Still needs to read B when it executes (S1 may have invalidated it)

Thread 0 Thread 1
// A =1r, =0 // B=1xr, =0
(Sy) A = 1; (S;) B =1;
(L) r; = B; (L;) r, = A;

CS302 — Spring 2025 Print (rl) ; Print (r2) ; Lec.5.1 - Slide 57



Exercise: Does Peeking Violate SC?

Highly Recommended
Do the same exercise for a general non-atomic
interconnect w. directory protocol, convince
yourself that we still cannot see r; = r, = 0!

Thread 0 Thread 1
// A =1r, =0 // B=1xr, =0
(Sp) A = 1; (S;) B =1;
(L) r; = B; (L;) r, = A;

CS302 — Spring 2025 Print (rl) ’ Print (rz) ’

Lec.5.1 - Slide 58




Execution with SC + SB + L1 Peeking

ROB — e . = Long latency
Store A Peek
Add Store A In L1
Load A Load A In L1
Store Store é
Buffer Store X

¢ While waiting, peek on all waiting ops. in LSQ
¢ Ais in cache, Y is not — Overlap latency of Load Y

CS302 — Spring 2025 Lec.5.1 - Slide 59



Performance Comparison Continued

¢ Loading Y in advance converts miss latency to hit

| behavior | NaiveSC__| SC+Peek

Store X L2 miss 100 100
Store B L1 hit 1 1
Load A L1 hit 1 1

Add - 1 1
Store A L1 hit 1 1
Load Y L2 miss 100 1
Store Z L2 miss 100

—mm

CS302 — Spring 2025 Lec.5.1 - Slide 60



Unblocking the LSQ and ROB

¢ Peeking in L1 does not let ops. proceed in CPU

¢ ROB is completely full, no instructions can fetch
¢ Why? Load A waits for Store X, Store B

¢ To keep the CPU running, need to free up Load A
¢ Unfortunately, cannot do with SC
¢ Violates program order constraint

¢ ldea: Relax W — R (write blocks younger read)

¢ If address is the same, result comes from LSQ or SB
¢ If different, let it pass and unblock the processor

CS302 — Spring 2025

Lec.5.1 - Slide 61



Relaxed Consistency Models

¢ Defining a relaxed model requires the following:
1. What specific orders are relaxed?
2. Detectable by the programmer or compiler?
3. Are there methods provided to disallow the behavior?

¢ |In our idea to unblock independent reads:
1. We relax W — R serialization
2. Yes, it is detectable (try first example on your laptop!)
3. Yes, but semantics depend...
¢ e.g., MFence instructions (to come later)

CS302 — Spring 2025 Lec.5.1 - Slide 62



Formally: Processor Consistency (PC)

¢ In VAX processors ('70s) before being defined

¢ Specification:

¢ "Before a load is performed with respect to other processors, all preceding
loads must be performed.”

¢ “Before a store is performed with respect to other processors, all preceding
operations (L & S) must be performed.”

¢ In plain language: Reads can bypass writes
¢ x86 (Intel/AMD) uses a variant of PC

CS302 — Spring 2025 Lec.5.1 - Slide 63



Execution with PC

ROB =

Store Z

LSQ

Store Z

Load Y
Store A

. = Long latency

Peek

L1 miss

SB full

Store A
Store Store é
Buffer Store X

¢ Let Load A and Add retire from CPU
¢ Fetch, rename, and execute Store Z

CS302 — Spring 2025

Lec.5.1 - Slide 64



Differences Between SC+Peek and PC

SC+Peek PC
Peek Store Z
Store A In L1 Load Y
Load A In L1 Store A

Peek

L1 miss

SB full

Compare the two LSQs:
¢ In SC+Peek, Load A hits L1, but still had to walit

¢ PC allows it to bypass the ordered Stores to X, B, and A

¢ In PC, why is Load Y an L1 miss, not a Peek?
¢ Independent addresses, so the load is actually issued
¢ If it hit the L1, another instruction could read the result

CS302 — Spring 2025

Lec.5.1 - Slide 65



Performance Comparison Continued

¢ Assume all misses take 100 cycles, hits 1 cycle

| behavior | Naive SC | SC+Peek | _PC___

Store X L2 miss 100 100 100
Store B L1 hit 1 1 1
Load A L1 hit 1 1 1 (overlap)

Add - 1 1 1 (overlap)
Store A L1 hit 1 1 1
Load Y L2 miss 100 1 1
Store Z L2 miss 100

——mm

CS302 — Spring 2025 Lec.5.1 - Slide 66



PC Summary

¢ Ordering constraints relaxed: W — R

¢ PC provides a relaxed model whose semantics are relatively easy to

reason about
¢ Variants in most real CPUs (AMD, Intel, Oracle/Sun)

¢ How to enforce order in a relaxed memory model?
¢ All ISAs have special atomic instructions (x86 — xchq)

¢ We will study these in detail later in the course

¢ Functionally, they transit the CPU, drain the entire store buffer, and the whole
system can see them immediately

CS302 — Spring 2025 Lec.5.1 - Slide 67



Further Ordering Relaxation

¢ Recall that PC blocks if SB is full or on an atomic
¢ Given that SB size is limited, can only take PC so far

¢ Key constraint preserved in PC: R - RW
¢ Reads block other reads and writes

¢ New idea: Relax everything, only obey uniprocessor constraints for
correctness

CS302 — Spring 2025 Lec.5.1 - Slide 68



Weak Consistency

¢ Memory ops. classified as data or synchronization
¢ Only synchronization operations have any ordering
¢ Data ops. have no order enforced among themselves

¢ Synch. instructions are called Fences
¢ Enforces program order for operations before/after

¢ Weak Consistency is used in ARM, RISC-V

CS302 — Spring 2025 Lec.5.1 - Slide 69



Conceptual Model for Weak Consistency

CS302 — Spring 2025

Read X

Write Y

Read 7%

Write X

Read Y

Write Y

Write Y
guaranteed visible

Write X
guaranteed visible

Lec.5.1 - Slide 70



Example w. Weak Consistency

& Note: there are no fences!

Store X ' missesin L1 & L2
Store B : hits in L1

Load A : hits in L1

Add

Store A

Load Y 'misses in L1 & L2

Store Z ' missesin L1 & L2

CS302 — Spring 2025 Lec.5.1 - Slide 71



Execution with WC

ROB

LSQ

. = Long latency

Peek

L1 miss

¢ Store B and Store A retired, and overtook Store X

¢ All long latency operations happening in parallel

CS302 — Spring 2025

Lec.5.1 - Slide 72



Example w. Weak Consistency and Fence

Store X ' missesin L1 & L2
___fence

Store B : hits in L1

Load A : hits in L1

Add

Store A

Load Y 'misses in L1 & L2

Store Z ' missesin L1 & L2

CS302 — Spring 2025 Lec.5.1 - Slide 73



Execution with WC + Fence

ROB

. = Long latency

LSQ
Load A Peek
Store B Peek

Store
Buffer

¢ When fence reaches head of ROB, the CPU blocks
¢ Wait for SB to drain and Store X to finish

CS302 — Spring 2025

Lec.5.1 - Slide 74



Summary

¢ Cache coherence is not memory consistency

¢ Memory models dictate what behavior can be observed across different
memory locations

¢ Uniprocessor memory ordering

¢ Ensure program order and access atomicity
¢ Use a Load Store Queue to solve address overlap

¢ Basic consistency models: SC, PC, Weak

¢ Consistency is a very meticulous topic, and mistakes are often made!

CS302 — Spring 2025 Lec.5.1 - Slide 75



