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Where are We?
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:
23-Apr
30-Apr

7-May

14-May

21-May

28-May

23-Apr |
30-Apr |
7-May |
14-May
21-May
28-May |

¢ Memory Consistency

¢ Ordering reads/writes
¢ ISA level

¢ Exercise session
¢ MPI| demo continued

¢ Next Tuesday:

¢ Taking consistency to the compiler
and PL
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FAQSs on Ed

¢ Cannot diagnose the source of scalability bottleneck?
o Time the different parts (e.g., for loops) of your program
o All parallel parts should scale close to linearly with number of cores

¢ Optimizations for false sharing do not work?
o Make sure padding is applied to the correct variables
o Use performance counters to check if padding is working

¢ Recording problems for Week 3 Thursday:

o Older version of lecture recording uploaded on Moodle
¢ Questions on Ed should be answered within a day (email us if urgent)
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Assignment 1 and Assignment 2

¢ Assignment 1 deadline is this Sunday at 23:59!

o Submit report and code in a single zip file on Moodle
o No extensions!

¢ Assignment 2 to be released next Monday
o Parallel programming using MPI

¢ If your partner has left/will leave the course, send us an email!
o We will pair up these unpaired students for A2 and A3
o Your partner must have officially dropped the course
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Reminder: Hardware Cache Coherence

¢ Solves the problem of multiprocessors transparently sharing a single

memory location
& All processors agree on R/W order to address X

¢ Coherence makes caches appear invisible

¢ Programmer can have the illusion of uniform memory with reduced latency
due to the cache(s)

¢ But what about different memory locations?
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Coherence vs. Consistency

¢ Memory consistency defines the behavior of R/W operations across
different addresses

¢ Best illustrated with an example:
¢ Assume A & B are addresses, r, are registers

Thread 0 Thread 1
// A =1r,=0 // B=1xr, =0
(Sp) A = 1; (S;) B = 1;
(Ly) o = B; (L) r; = ;

print (xr,) ; print(r,);
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Cache Coherence Guarantees?

¢ After A=1, the cache block will propagate to T,
¢ Same for B=1

¢ So what values are possible for (r,, r{)?
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Thread 0

//A:roz

print(xr,);

0

Thread 1

//B=r1=

print(r;);
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Thread 0 “Executes” First

| ____r____| Execution Order

0
Thread 0
// A = ro - 0
(SO) A = 1/

print(xr,);
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(So) (Lo) (S1) (Ly)

Thread 1
// B = r, = 0

print(r;);
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Thread 1 "Executes” First

| ____r____| Execution Order

0 1 (So) (Lo) (S1) (Ly)
1 0 (S1) (L1) (So) (Lo)
Thread 0 Thread 1
// A =1r,=0 // B=1xr, =0
(Sp) A = 1; (S;) B = 1;
(Ly) o = B; (L) r; = ;

print (xr,) ; print(r,);
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Stores “Execute” First

| ____r____| Execution Order

0 1
1 0
1 1
Thread 0
// A = Yo = 0
(SO) A = 1/

print(xr,);
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(So) (Lo) (S1) (Ly)
(S1) (L1) (So) (Lo)
(S1) (So) (L1) (Lo)

Thread 1

//B=r1=

print(r;);
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Loads “Execute” First??

| ____r____| Execution Order

0
1
1
0
Thread O
// A = Yo = 0
(SO) A = 1/

print (ry) ;
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1
0
1
0

(So) (Lo) (S1) (Ly)
(S1) (L1) (So) (Lo)
(S1) (So) (L1) (Lo)
(L1) (Lo) (S1) (So)

Thread 1
// B = r, = 0

print(r;);
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Loads “Execute” First??

¢ Yes, reading (0,0) is possible in the majority of today’'s CPUs
¢ And, furthermore, this still satisfies cache coherence!

¢ How?

Thread 0
// A = g =

print(xr,);
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Thread 1
// B = r, = 0

print(r;);
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A Sample Cache-Coherent Execution

¢ Both processors begin 2 & B in
shared state
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A Sample Cache-Coherent Execution

¢ Both processors begin 2 & B in
shared state

1. CPUs issue the stores

simultaneously
¢ Generate 2x Writes

¢ Requests injected into network,
headed for the directory
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A Sample Cache-Coherent Execution

¢ Both processors begin 2 & B in
shared state Po P,

1. CPUs issue the stores Read B Read A
simultaneously

2. CPUs issue reads

¢ Non-blocking caches proceed while 4 o A
msgs. are in network g LHILF

¢ Reads hit LHOHF

¢ Return:a = B = 0 \ i /

‘ Directory \ A Mem.
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Why Allow this Behavior?

¢ All system stakeholders have different needs!

¢ Programmers:

¢ Want memory to behave like everything happens in program order, and
atomically — Easy to reason about

¢ But.... they want it to be fast!
¢ H/W Designers:

¢ Want the ability to re-order operations for performance
¢ e.g., the example we just saw

¢ Therefore, we must define a rigorous memory model to tell each layer
what can and can’t happen
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Intuitive Expectation for Shared Memory

¢ Called Sequential Consistency (SC)
¢ MP should behave like “multitasked” single core
¢ (Earned Leslie Lamport the Turing Award in 2013!)

¢ More formally, a MP is SC if:

¢ “the result of any execution is the same as if the operations of all processors
(cores) were executed in some sequential order, and the operations of each
individual processor (core) appear in this sequence in the order specified by its
program.”
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Sequential Consistency

¢ Memory appears like it has a “switch” in front

¢ Executes each processor's memory accesses
atomically and in program order

¢ Therefore:

¢ Memory has one seq. order

¢ It represents some interleaving of each processor’s
operations

v’ Therefore, we are SC
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Exercise: Same Example With SC

¢ Assuming SC, what values can be printed now?
¢ Hint, definition says:
¢ Operations from all threads happen sequentially
¢ The memory sees the operations in program order

Thread 0 Thread 1
// A =1r,=0 // B=1xr, =0
(Sp) A = 1; (S;) B = 1;
(Ly) o = B; (L) r; = ;

print (xr,) ; print(r,);
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Exercise: Same Example With SC

¢ Answer:
| r,| ExecutionOrder
0 1 (So) (Lo) (S1) (Ly1)
1 0 (S1) (L1) (So) (Lo)
1 1 (S1) (So) (L1) (Lo)
Thread O Thread 1
// A =1r,=0 // B=1xr, =0
(Sg) A = 1; (S;) B = 1;
(Lyp) ry = B; (L) r; = A;

print (xr,) ; print(r,);

CS302 — Spring 2025
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Implementing SC

¢ We have to ensure two things for SC:
1. Memory accesses happen in program order

2. Memory operations appear atomic (i.e., instantaneous to other processors
in the system)

¢ Single core program order
¢ Ensure that Load(A) reads the last Stored value
¢ We will focus on this problem first
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Reminder: Basic Out-of-Order CPU

& Enables instructions to execute out of order
¢ Why? Expose instruction-level-parallelism (ILP)

¢ In following example, assume |, |; miss in LLC:

¢ Loads take 100 cycles, adds take 1 cycle
# In an in-order core, have to wait for the values in r,,r,

Inst.____Code ___| In-Order Cycle

1 load r2, [r3] 100

2 addr2,r2, 4 101

3 load r4, [rd] 201

4 addrd, r4, 4 202

S add ro, r2, r4 203 oo - Siide 23
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Reminder: Basic Out-of-Order CPU

& Enables instructions to execute out of order
¢ Why? Expose instruction-level-parallelism (ILP)

¢ In following example, assume |, |; miss in LLC:

¢ Loads take 100 cycles, adds take 1 cycle

¢ O00 core overlaps the loads, as they are independent
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m In-Order Cycle | 000 Cycle

2
3
4
)

load r2, [r3]
add r2,r2, 4
load r4, [r9]
addr4d, r4, 4
add ro, r2, r4

100
101
201
202
203

100
101
102
103
104
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Reminder: Inside CPU

¢ Fetch/Decode, Execute, Keep context
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Reminder: OoO CPU Pipeline

¢ Fetch instructions in order, execute out of order, but reconstruct order

when retiring
¢ Why? Preserve CPU state on trap or exception

U
U
U

Simplified CPU /*
(Lec.2)

- In Order
(Execute) [ Execute ]
[ Memoy e
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Reminder: OoO CPU Pipeline

¢ Central structure called the “Reorder Buffer”
# Instructions enter in order and exit (retire) in order
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Reminder: Register Dependences

¢ Register names are encoded in the instruction

¢ Register dependences are established at decode
¢ All dependences among instructions are established in program order

_Inst.____Code | Dependence ___

load r2, [r3] produces r2
add r2,r2, 4 gets r2 from |,, produces r2
load r4, [r5] produces r4

addr4, r4, 4 gets r4 from |;, produces r4

add r6, r2, rd gets r2 from |,, gets r4 from
l,, produces r6

g B~ W DN -
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But What About Memory Dependence?

¢ Note: This is non-trivial with the memory ops!
¢ Inst. 1 is a load miss (will take 100 cycles)

¢ Don’'t know addresses of 4(r1) and 8(r5) until execute
¢ Addresses are not known at decode time

1 load r1, O(r4
oad r1, 0(r4) Is 4(rl) the same

2 store r2, 4(r1) address as 8(r5)?
3 load r3, 8(r5)
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But What About Memory Dependence?

case #1 4(r1) = 8(rd)

case #2 4(r1) = 8(rd)

load r1, 0(r4)
2 store r2, 4(r1) waiting for r1
3 load r3, 8(r5)

¢ load has to wait for store to
complete

¢ r3 will get the same value stored in r2

CS302 — Spring 2025

load r1, 0(r4)
2 store r2, 4(r1) waiting for r1
3 load r3, 8(r5)

¢ Inst. 3 is independent of Inst. 2

¢ Inst. 2 could go ahead but does not
know until Inst. 1 finishes and
4 (rl) becomes known at execute
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Need to Order Memory Instructions

¢ Need to do the following things:
¢ Track the FIFO program order of loads & stores
¢ Resolve addresses when they are ready
¢ On a load, check for the youngest store to this address

& Use a structure called a “Load-Store Queue” (LSQ)
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Multiprocessor Memory Consistency

¢ Need a uniprocessor memory order

¢ Make sure that a load and store in program order pass their values correctly
(even in sequential, single-threaded programs)

¢ Need multiprocessor memory order
¢ Programmers want all memory accesses to be atomic & in-program order

¢ Memory consistency model affects performance
¢ Dictates acceptable memory re-orderings
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Types of Memory Dependences

St A ¢ Read After Write (RAW)
Ld B ¢ Store must complete before Load
St A + Notation: W — R (write blocks read)

St B )
Ld A RAW

St A
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Types of Memory Dependences

St A ¢ Read After Write (RAW)

Ld B ¢ Store must complete before Load
St A WAR ¢ Notation: W — R (write blocks read)
StB

¢ Write After Read (WAR)

Ld A RAW ¢ Load must complete before Store
StA ¢ Notation: R — W (read blocks write)

CS302 — Spring 2025
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Types of Memory Dependences

St A WAW
Ld B
St A WAR
St B
Ld A RAW
St A

CS302 — Spring 2025

¢ Read After Write (RAW)

¢ Store must complete before Load
¢ Notation: W — R (write blocks read)

¢ Write After Read (WAR)

¢ Load must complete before Store
¢ Notation: R — W (read blocks write)

¢ Write After Write (WAW)

¢ Store must complete before Store
¢ Notation: W — W (write blocks write)
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Specification for Solving Memory Dependences

¢ Given Storg(A, V) << Load;(A)
¢ Loadi(A) must return V if there isn’t a Store,() where:
Storei(A, V) << Storey(A, V') << Load(A)

¢ Can guarantee by observing these dependences:
¢ RAW: Store(A,V) — Load(A)
o WAW: Store(A,V) — Store(A,V')
¢ WAR: Load(A) — Store(A,V’)
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Take a break!
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Load Store Queue Functionality

¢ LSQ accomplishes the following two key tasks:
1. Resolve which Ld/St addresses overlap
2. Hold all store operations until they retire

¢ Address resolution necessary to forward values

¢ Cannot write “speculative” values to caches
¢ Speculative values are those that ran out of order

¢ They wait until all prior accesses are complete
¢ Otherwise, they may corrupt the system’s state
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Load Store Queue Address Resolution

¢ Address Resolution in LSQ

+ Use an NxN half-matrix of Index Addr
comparators, cross checks A 0 |
every entry against all older 1
ones Older 2

3
4
A
LSQ[O][1][2][3][4]
A 4
Address
Calculation
(registers)
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Load Store Queue Address Resolution

¢ Address Resolution in LSQ

¢ Load sets bits for all older
Index Addr.
stores they depend on A 0 St(A)
1 St(B)
3 Ld(C)
41 Ld@) Set 1
LSQ[O][1][2][3][4]
\ 4
Address
Calculation
(reqisters)
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Load Store Queue Address Resolution

¢ Address Resolution in LSQ

¢ Load sets bits for all older
stores they depend on A In((j)ex 'AS‘?(%
& Store resets its column when 1 St(B)
updating the cache Older 2 Ld(A)
3 Ld(C)
4 Ld(B)
A
LSQIO][1][2][3][
A 4
Address

Calculation
(registers)

CS302 — Spring 2025 Lec.5.1 - Slide 41



Load Store Queue Address Resolution

¢ Address Resolution in LSQ
¢ Load sets bits for all older

St(A)
stores they depend on N SHB)
¢ Store resets its column when 1 Ld(A)
updating the cache Older 2 Ld(C)
3 Ld(B)
4
A
LSQ[O][1][2][3][4]
\ 4
Address
Calculation
(registers)

CS302 — Spring 2025
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Load Store Queue Functionality

¢ Hold speculative stores until they resolve
¢ O00 processors predict branches and speculate
¢ e.g., Store r3, 0(r4) but preceding branch was mispredicted!

¢ May corrupt memory if store allowed to complete

LOOP:

test r2,0 # test loop counter
jmp_nz LOOP # loop if not zero yet
store r3,0(r4) # offending store
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How to Block Speculative Stores

¢ Integrate LSQ operation w. Reorder Buffer (ROB)

¢ Reminder: Instructions get an ROB entry at rename, and release it when they
commit

¢ In-order fetch, In-order commit, OoO execute

¢ Only remove an LSQ entry when store exits ROB
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How to Block Speculative Stores

¢ Memory Operation (blue) at head of ROB
¢ Retires from ROB and de-allocates LSQ entry
¢ Has not triggered exception or page walk
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Execute
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Problem: Why wait for stores?

¢ Currently, processor waits for stores to complete

¢ What if it misses in L1/L2/LLC? 100+ cycle stali
¢ LSQ entries are scarce due to NxN address dep. check

¢ Stores do not generate operands for the core
¢ Loads and arithmetic operations do

¢ Processor should continue while store pending!
¢ Reclaim LSQ entry for new memory operations
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Solution: Add Store Buffer

¢ Store buffer (SB) sits between core and L1 cache
¢ Holds committed stores, which cannot be rolled back

¢ Note: Now loads must check SB as well as L1
¢ No guarantee on when values will be written

ROB LSQ

E Speculative State

Store Buffer
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Return to Conditions for SC

¢ Maintain program order in the CPU
¢ Use LSQ/SB, in the fashion we just demonstrated

¢ Must maintain atomicity in the memory system
¢ In small-scale systems, use a shared bus
& At larger scale, explicit completion acknowledgements
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Problems with the SC Model

¢ True SC would be painfully slow
¢ Can only issue one memory operation at a time

¢ Modern processors are:
¢ Superscalar
¢ Out of order

¢ Caches are:
¢ Non-blocking, multi-ported
¢ Buffered at input/output
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Example

¢ To quantify SC performance, use this code:

Store X ' missesin L1 & L2
Store B : hits in L1

Load A : hits in L1

Add

Store A

Load Y 'misses in L1 & L2

Store Z ' missesin L1 & L2
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Execution with Naive SC

CS302 — Spring 2025

ROB

Older

. = Long latency

L)

¢ Store X blocks ROB

¢ Cannot overlap Load Y & Store Z (other misses)

Add LSQ
Load A Load A
Store B Store B
ore Miss
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Execution with SC + Store Buffer

. = Long latency

ROB —
Load Y LSQ
Store A Load Y Wait
Add Store A Wait
Load A Load A Wait
Store Store B
Buffer Store X

¢ Store buffer frees up two slots in ROB/LSQ

& All ops still need to wait on Store X

CS302 — Spring 2025

Lec.5.1 - Slide 52



Performance Comparison

¢ Assume all misses take 100 cycles, hits 1 cycle

| behavior | Naive SC

Store X L2 miss 100
Store B L1 hit 1
Load A L1 hit 1

Add - 1
Store A L1 hit 1
Load Y L2 miss 100
Store Z L2 miss 100

“Total |- | 304
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Using Stalled Operations in LSQ

¢ If operation in LSQ has address, why not issue it?
¢ Violates order or atomicity

¢ ldea: Peek at L1, see if address is already there
¢ If not (miss), fetch the block from lower level into L1
+ If so, do not load the value into the core

¢ Insight:

¢ Fetching blocks into L1 from lower levels (or other L1’s) does not impact order
or atomicity

¢ No values move between the core & L1

¢ Helps overlap latency
¢ Can fetch as many blocks in parallel into L1 as needed
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New SC Interpretation

¢ Memory appears program order and atomic
¢ All loads/stores still execute with no re-ordering

¢ But, we add the ability to peek into L1 cache
¢ No ordering or atomicity constraints
¢ Other cores may see coherence messages!
¢ e.g., Load(A) invalidates A in remote core
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Exercise: Does Peeking Violate SC?

¢ Same example as before, with SC + L1 peeking
¢ Assume 2 cores, private L1 caches, w. bus interconnect

¢ Can we possibly observer; =r, =0 ?

Thread 0 Thread 1
// A =1r, =0 // B=1xr, =0
(Sp) A = 1; (S;) B =1;
(L) r; = B; (L;) r, = A;
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Exercise: Does Peeking Violate SC?

¢ Same example as before, with SC + L1 peeking
¢ Assume 2 cores, private L1 caches, w. bus interconnect

¢ Can we possibly observer; =r, =0 ?

& Answer: No.

¢ If Load(B) peeks, value brought into cache is B =1 or B = 0 (depending on
T1). Still needs to read B when it executes (S1 may have invalidated it)

Thread 0 Thread 1
// A =1r, =0 // B=1xr, =0
(Sy) A = 1; (S;) B =1;
(L) r; = B; (L;) r, = A;
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Exercise: Does Peeking Violate SC?

Highly Recommended
Do the same exercise for a general non-atomic
interconnect w. directory protocol, convince
yourself that we still cannot see r; = r, = 0!

Thread 0 Thread 1
// A =1r, =0 // B=1xr, =0
(Sp) A = 1; (S;) B =1;
(L) r; = B; (L;) r, = A;

CS302 — Spring 2025 Print (rl) ’ Print (rz) ’
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Execution with SC + SB + L1 Peeking

ROB — e . = Long latency
Store A Peek
Add Store A In L1
Load A Load A In L1
Store Store é
Buffer Store X

¢ While waiting, peek on all waiting ops. in LSQ
¢ Ais in cache, Y is not — Overlap latency of Load Y
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Performance Comparison Continued

¢ Loading Y in advance converts miss latency to hit

| behavior | NaiveSC__| SC+Peek

Store X L2 miss 100 100
Store B L1 hit 1 1
Load A L1 hit 1 1

Add - 1 1
Store A L1 hit 1 1
Load Y L2 miss 100 1
Store Z L2 miss 100

—mm
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Unblocking the LSQ and ROB

¢ Peeking in L1 does not let ops. proceed in CPU

¢ ROB is completely full, no instructions can fetch
¢ Why? Load A waits for Store X, Store B

¢ To keep the CPU running, need to free up Load A
¢ Unfortunately, cannot do with SC
¢ Violates program order constraint

¢ ldea: Relax W — R (write blocks younger read)

¢ If address is the same, result comes from LSQ or SB
¢ If different, let it pass and unblock the processor

CS302 — Spring 2025
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Relaxed Consistency Models

¢ Defining a relaxed model requires the following:
1. What specific orders are relaxed?
2. Detectable by the programmer or compiler?
3. Are there methods provided to disallow the behavior?

¢ |In our idea to unblock independent reads:
1. We relax W — R serialization
2. Yes, it is detectable (try first example on your laptop!)
3. Yes, but semantics depend...
¢ e.g., MFence instructions (to come later)
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Formally: Processor Consistency (PC)

¢ In VAX processors ('70s) before being defined

¢ Specification:

¢ "Before a load is performed with respect to other processors, all preceding
loads must be performed.”

¢ “Before a store is performed with respect to other processors, all preceding
operations (L & S) must be performed.”

¢ In plain language: Reads can bypass writes
¢ x86 (Intel/AMD) uses a variant of PC

CS302 — Spring 2025 Lec.5.1 - Slide 63



Execution with PC

ROB =

Store Z

LSQ

Store Z

Load Y
Store A

. = Long latency

Peek

L1 miss

SB full

Store A
Store Store é
Buffer Store X

¢ Let Load A and Add retire from CPU
¢ Fetch, rename, and execute Store Z

CS302 — Spring 2025
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Differences Between SC+Peek and PC

SC+Peek PC
Peek Store Z
Store A In L1 Load Y
Load A In L1 Store A

Peek

L1 miss

SB full

Compare the two LSQs:
¢ In SC+Peek, Load A hits L1, but still had to walit

¢ PC allows it to bypass the ordered Stores to X, B, and A

¢ In PC, why is Load Y an L1 miss, not a Peek?
¢ Independent addresses, so the load is actually issued
¢ If it hit the L1, another instruction could read the result

CS302 — Spring 2025
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Performance Comparison Continued

¢ Assume all misses take 100 cycles, hits 1 cycle

| behavior | Naive SC | SC+Peek | _PC___

Store X L2 miss 100 100 100
Store B L1 hit 1 1 1
Load A L1 hit 1 1 1 (overlap)

Add - 1 1 1 (overlap)
Store A L1 hit 1 1 1
Load Y L2 miss 100 1 1
Store Z L2 miss 100

——mm
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PC Summary

¢ Ordering constraints relaxed: W — R

¢ PC provides a relaxed model whose semantics are relatively easy to

reason about
¢ Variants in most real CPUs (AMD, Intel, Oracle/Sun)

¢ How to enforce order in a relaxed memory model?
¢ All ISAs have special atomic instructions (x86 — xchq)

¢ We will study these in detail later in the course

¢ Functionally, they transit the CPU, drain the entire store buffer, and the whole
system can see them immediately
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Further Ordering Relaxation

¢ Recall that PC blocks if SB is full or on an atomic
¢ Given that SB size is limited, can only take PC so far

¢ Key constraint preserved in PC: R - RW
¢ Reads block other reads and writes

¢ New idea: Relax everything, only obey uniprocessor constraints for
correctness
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Weak Consistency

¢ Memory ops. classified as data or synchronization
¢ Only synchronization operations have any ordering
¢ Data ops. have no order enforced among themselves

¢ Synch. instructions are called Fences
¢ Enforces program order for operations before/after

¢ Weak Consistency is used in ARM, RISC-V
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Conceptual Model for Weak Consistency

CS302 — Spring 2025

Read X

Write Y

Read 7%

Write X

Read Y

Write Y

Write Y
guaranteed visible

Write X
guaranteed visible
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Example w. Weak Consistency

& Note: there are no fences!

Store X ' missesin L1 & L2
Store B : hits in L1

Load A : hits in L1

Add

Store A

Load Y 'misses in L1 & L2

Store Z ' missesin L1 & L2
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Execution with WC

ROB

LSQ

. = Long latency

Peek

L1 miss

¢ Store B and Store A retired, and overtook Store X

¢ All long latency operations happening in parallel
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Example w. Weak Consistency and Fence

Store X ' missesin L1 & L2
___fence

Store B : hits in L1

Load A : hits in L1

Add

Store A

Load Y 'misses in L1 & L2

Store Z ' missesin L1 & L2
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Execution with WC + Fence

ROB

. = Long latency

LSQ
Load A Peek
Store B Peek

Store
Buffer

¢ When fence reaches head of ROB, the CPU blocks
¢ Wait for SB to drain and Store X to finish
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Summary

¢ Cache coherence is not memory consistency

¢ Memory models dictate what behavior can be observed across different
memory locations

¢ Uniprocessor memory ordering

¢ Ensure program order and access atomicity
¢ Use a Load Store Queue to solve address overlap

¢ Basic consistency models: SC, PC, Weak

¢ Consistency is a very meticulous topic, and mistakes are often made!
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