
CS302 – Spring 2025 Lec.5.1 - Slide 1

Adapted from slides originally developed by Prof. Falsafi
Copyright 2025

CS302

Memory
Consistency I

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

CS302 – Spring 2025 Lec.5.1 - Slide 2

Where are We?

u Memory Consistency
u Ordering reads/writes
u ISA level

u Exercise session
u MPI demo continued

u Next Tuesday:
u Taking consistency to the compiler

and PL

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.5.1 - Slide 3

FAQs on Ed

u Cannot diagnose the source of scalability bottleneck?
o Time the different parts (e.g., for loops) of your program
o All parallel parts should scale close to linearly with number of cores

u Optimizations for false sharing do not work?
o Make sure padding is applied to the correct variables
o Use performance counters to check if padding is working

u Recording problems for Week 3 Thursday:
o Older version of lecture recording uploaded on Moodle

u Questions on Ed should be answered within a day (email us if urgent)

CS302 – Spring 2025 Lec.5.1 - Slide 4

u Assignment 1 deadline is this Sunday at 23:59!
o Submit report and code in a single zip file on Moodle
o No extensions!

u Assignment 2 to be released next Monday
o Parallel programming using MPI

u If your partner has left/will leave the course, send us an email!
o We will pair up these unpaired students for A2 and A3
o Your partner must have officially dropped the course

Assignment 1 and Assignment 2

CS302 – Spring 2025 Lec.5.1 - Slide 5

u Solves the problem of multiprocessors transparently sharing a single
memory location
u All processors agree on R/W order to address X

u Coherence makes caches appear invisible
u Programmer can have the illusion of uniform memory with reduced latency

due to the cache(s)

u But what about different memory locations?

Reminder: Hardware Cache Coherence

CS302 – Spring 2025 Lec.5.1 - Slide 6

u Memory consistency defines the behavior of R/W operations across
different addresses

u Best illustrated with an example:
u Assume A & B are addresses, rx are registers

Coherence vs. Consistency

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 7

u After A=1, the cache block will propagate to T1
u Same for B=1

u So what values are possible for (r0,r1)?

Cache Coherence Guarantees?

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 8

Thread 0 “Executes” First
r0 r1 Execution Order
0 1 (S0) (L0) (S1) (L1)

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 9

Thread 1 “Executes” First
r0 r1 Execution Order
0 1 (S0) (L0) (S1) (L1)
1 0 (S1) (L1) (S0) (L0)

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 10

Stores “Execute” First
r0 r1 Execution Order
0 1 (S0) (L0) (S1) (L1)
1 0 (S1) (L1) (S0) (L0)
1 1 (S1) (S0) (L1) (L0)

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 11

r0 r1 Execution Order
0 1 (S0) (L0) (S1) (L1)
1 0 (S1) (L1) (S0) (L0)
1 1 (S1) (S0) (L1) (L0)
0 0 (L1) (L0) (S1) (S0)

Loads “Execute” First??

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 12

CS302 – Spring 2025 Lec.5.1 - Slide 13

Loads “Execute” First??

u Yes, reading (0,0) is possible in the majority of today’s CPUs
u And, furthermore, this still satisfies cache coherence!

u How?

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 14

A Sample Cache-Coherent Execution

u Both processors begin A & B in
shared state

Mem.A

P0 P1

Directory B

A(S)
B(S)

A(S)
B(S)

CS302 – Spring 2025 Lec.5.1 - Slide 15

A Sample Cache-Coherent Execution

u Both processors begin A & B in
shared state

1. CPUs issue the stores
simultaneously

u Generate 2x Writes
u Requests injected into network,

headed for the directory

Write A Write B

Mem.A

P0 P1

Directory B

A(S)
B(S)

A(S)
B(S)

CS302 – Spring 2025 Lec.5.1 - Slide 16

A Sample Cache-Coherent Execution

u Both processors begin A & B in
shared state

1. CPUs issue the stores
simultaneously

2. CPUs issue reads
u Non-blocking caches proceed while

msgs. are in network
u Reads hit
u Return: A = B = 0

Read B Read A

Mem.A

P0 P1

Directory B

A(S)
B(S)

A(S)
B(S)

CS302 – Spring 2025 Lec.5.1 - Slide 17

u All system stakeholders have different needs!
u Programmers:

u Want memory to behave like everything happens in program order, and
atomically → Easy to reason about

u But…. they want it to be fast!
u H/W Designers:

u Want the ability to re-order operations for performance
u e.g., the example we just saw

u Therefore, we must define a rigorous memory model to tell each layer
what can and can’t happen

Why Allow this Behavior?

CS302 – Spring 2025 Lec.5.1 - Slide 18

u Called Sequential Consistency (SC)
u MP should behave like “multitasked” single core
u (Earned Leslie Lamport the Turing Award in 2013!)

u More formally, a MP is SC if:
u “the result of any execution is the same as if the operations of all processors

(cores) were executed in some sequential order, and the operations of each
individual processor (core) appear in this sequence in the order specified by its
program.”

Intuitive Expectation for Shared Memory

CS302 – Spring 2025 Lec.5.1 - Slide 19

Sequential Consistency

u Memory appears like it has a “switch” in front
u Executes each processor’s memory accesses

atomically and in program order

u Therefore:
u Memory has one seq. order
u It represents some interleaving of each processor’s

operations
üTherefore, we are SC

Shared Memory

....

Memory

P0 P1 PN

CS302 – Spring 2025 Lec.5.1 - Slide 20

u Assuming SC, what values can be printed now?
u Hint, definition says:

u Operations from all threads happen sequentially
u The memory sees the operations in program order

Exercise: Same Example With SC

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 21

u Answer:

Exercise: Same Example With SC

// A = r0 = 0

(S0) A = 1;
(L0) r0 = B;

print(r0);

// B = r1 = 0

(S1) B = 1;
(L1) r1 = A;

print(r1);

Thread 0 Thread 1

r0 r1 Execution Order
0 1 (S0) (L0) (S1) (L1)
1 0 (S1) (L1) (S0) (L0)
1 1 (S1) (S0) (L1) (L0)

CS302 – Spring 2025 Lec.5.1 - Slide 22

Implementing SC

u We have to ensure two things for SC:
1. Memory accesses happen in program order
2. Memory operations appear atomic (i.e., instantaneous to other processors

in the system)

u Single core program order
u Ensure that Load(A) reads the last Stored value
u We will focus on this problem first

CS302 – Spring 2025 Lec.5.1 - Slide 23

Reminder: Basic Out-of-Order CPU

u Enables instructions to execute out of order
u Why? Expose instruction-level-parallelism (ILP)

u In following example, assume I1,I3 miss in LLC:
u Loads take 100 cycles, adds take 1 cycle
u In an in-order core, have to wait for the values in r2,r4

Inst. Code In-Order Cycle
1 load r2, [r3] 100
2 add r2, r2, 4 101
3 load r4, [r5] 201
4 add r4, r4, 4 202
5 add r6, r2, r4 203

CS302 – Spring 2025 Lec.5.1 - Slide 24

Reminder: Basic Out-of-Order CPU

u Enables instructions to execute out of order
u Why? Expose instruction-level-parallelism (ILP)

u In following example, assume I1,I3 miss in LLC:
u Loads take 100 cycles, adds take 1 cycle
u OoO core overlaps the loads, as they are independent

Inst. Code In-Order Cycle OoO Cycle
1 load r2, [r3] 100 100
2 add r2, r2, 4 101 101
3 load r4, [r5] 201 102
4 add r4, r4, 4 202 103
5 add r6, r2, r4 203 104

CS302 – Spring 2025 Lec.5.1 - Slide 25

u Fetch/Decode, Execute, Keep context

Reminder: Inside CPU

Simplified CPU
(Lec. 2)

P0

$

P1

$

CS302 – Spring 2025 Lec.5.1 - Slide 26

u Fetch instructions in order, execute out of order, but reconstruct order
when retiring
u Why? Preserve CPU state on trap or exception

Reminder: OoO CPU Pipeline

Simplified CPU
(Lec. 2)

Fetch/
Decode

Execute

Memory

Retire

In Order

In Order

Out of Order

CS302 – Spring 2025 Lec.5.1 - Slide 27

u Central structure called the “Reorder Buffer”
u Instructions enter in order and exit (retire) in order

Reminder: OoO CPU Pipeline

Execute

Memory

Retire

Fetch/
Decode

ROB

L1

CS302 – Spring 2025 Lec.5.1 - Slide 28

Reminder: Register Dependences

u Register names are encoded in the instruction
u Register dependences are established at decode
u All dependences among instructions are established in program order

Inst. Code Dependence
1 load r2, [r3] produces r2
2 add r2, r2, 4 gets r2 from I1, produces r2
3 load r4, [r5] produces r4
4 add r4, r4, 4 gets r4 from I3, produces r4
5 add r6, r2, r4 gets r2 from I2, gets r4 from

I4, produces r6

CS302 – Spring 2025 Lec.5.1 - Slide 29

But What About Memory Dependence?

u Note: This is non-trivial with the memory ops!
u Inst. 1 is a load miss (will take 100 cycles)
u Don’t know addresses of 4(r1) and 8(r5) until execute
u Addresses are not known at decode time

Inst. Original
1 load r1, 0(r4)
2 store r2, 4(r1)
3 load r3, 8(r5)

Is 4(r1) the same
address as 8(r5)?

CS302 – Spring 2025 Lec.5.1 - Slide 30

But What About Memory Dependence?

u load has to wait for store to
complete

u r3 will get the same value stored in r2

case #1 4(r1) = 8(r5) case #2 4(r1) != 8(r5)

Inst. Original
1 load r1, 0(r4)
2 store r2, 4(r1) waiting for r1
3 load r3, 8(r5)

Inst. Original
1 load r1, 0(r4)
2 store r2, 4(r1) waiting for r1
3 load r3, 8(r5)

u Inst. 3 is independent of Inst. 2
u Inst. 2 could go ahead but does not

know until Inst. 1 finishes and
4(r1) becomes known at execute

CS302 – Spring 2025 Lec.5.1 - Slide 31

Need to Order Memory Instructions

u Need to do the following things:
u Track the FIFO program order of loads & stores
u Resolve addresses when they are ready
u On a load, check for the youngest store to this address

u Use a structure called a “Load-Store Queue” (LSQ)

CS302 – Spring 2025 Lec.5.1 - Slide 32

Multiprocessor Memory Consistency

u Need a uniprocessor memory order
u Make sure that a load and store in program order pass their values correctly

(even in sequential, single-threaded programs)

u Need multiprocessor memory order
u Programmers want all memory accesses to be atomic & in-program order

u Memory consistency model affects performance
u Dictates acceptable memory re-orderings

CS302 – Spring 2025 Lec.5.1 - Slide 33

u Read After Write (RAW)
u Store must complete before Load
u Notation: W → R (write blocks read)

Types of Memory Dependences

St A
Ld B
St A
St B
Ld A
St A

RAW

CS302 – Spring 2025 Lec.5.1 - Slide 34

u Read After Write (RAW)
u Store must complete before Load
u Notation: W → R (write blocks read)

u Write After Read (WAR)
u Load must complete before Store
u Notation: R → W (read blocks write)

Types of Memory Dependences

St A
Ld B
St A
St B
Ld A
St A

RAW

WAR

CS302 – Spring 2025 Lec.5.1 - Slide 35

u Read After Write (RAW)
u Store must complete before Load
u Notation: W → R (write blocks read)

u Write After Read (WAR)
u Load must complete before Store
u Notation: R → W (read blocks write)

u Write After Write (WAW)
u Store must complete before Store
u Notation: W → W (write blocks write)

Types of Memory Dependences

St A
Ld B
St A
St B
Ld A
St A

RAW

WAR

WAW

CS302 – Spring 2025 Lec.5.1 - Slide 36

u Given Storei(A, V) << Loadj(A)
u Loadj(A) must return V if there isn’t a Storek() where:

 Storei(A, V) << Storek(A, V’) << Loadj(A)

u Can guarantee by observing these dependences:
u RAW: Store(A,V) → Load(A)
u WAW: Store(A,V) → Store(A,V’)
u WAR: Load(A) → Store(A,V’)

Specification for Solving Memory Dependences

(“<<“ means precedes)

CS302 – Spring 2025 Lec.5.1 - Slide 37

Take a break!

CS302 – Spring 2025 Lec.5.1 - Slide 38

Load Store Queue Functionality

u LSQ accomplishes the following two key tasks:
1. Resolve which Ld/St addresses overlap
2. Hold all store operations until they retire

u Address resolution necessary to forward values
u Cannot write “speculative” values to caches

u Speculative values are those that ran out of order
u They wait until all prior accesses are complete
u Otherwise, they may corrupt the system’s state

CS302 – Spring 2025 Lec.5.1 - Slide 39

Load Store Queue Address Resolution

u Address Resolution in LSQ
u Use an NxN half-matrix of

comparators, cross checks
every entry against all older
ones

=
=
=
=

=
=
=

=
= =

Address
Calculation
(registers)

0
1
2
3
4

LSQ[0]

Addr.Index

[1][2][3][4]

Older

CS302 – Spring 2025 Lec.5.1 - Slide 40

Load Store Queue Address Resolution

u Address Resolution in LSQ
u Load sets bits for all older

stores they depend on

Address
Calculation
(registers)

0 St(A)
1 St(B)
2 Ld(A)
3 Ld(C)
4 Ld(B)

LSQ[0]

Addr.Index

[1][2][3][4]

Set 0

Set 1
Older

CS302 – Spring 2025 Lec.5.1 - Slide 41

Load Store Queue Address Resolution

u Address Resolution in LSQ
u Load sets bits for all older

stores they depend on
u Store resets its column when

updating the cache

Address
Calculation
(registers)

0 St(A)
1 St(B)
2 Ld(A)
3 Ld(C)
4 Ld(B)

LSQ[0]

Addr.Index

[1][2][3][4]

Reset 0

Older

CS302 – Spring 2025 Lec.5.1 - Slide 42

Load Store Queue Address Resolution

u Address Resolution in LSQ
u Load sets bits for all older

stores they depend on
u Store resets its column when

updating the cache

Address
Calculation
(registers)

0 St(B)
)1 Ld(A)

2 Ld(C)
3 Ld(B)
4

LSQ[0][1][2][3][4]

St(A)

Older

CS302 – Spring 2025 Lec.5.1 - Slide 43

Load Store Queue Functionality

u Hold speculative stores until they resolve
u OoO processors predict branches and speculate
u e.g., Store r3, 0(r4) but preceding branch was mispredicted!

u May corrupt memory if store allowed to complete

LOOP:
…
test r2,0 # test loop counter
jmp_nz LOOP # loop if not zero yet
store r3,0(r4) # offending store

CS302 – Spring 2025 Lec.5.1 - Slide 44

How to Block Speculative Stores

u Integrate LSQ operation w. Reorder Buffer (ROB)
u Reminder: Instructions get an ROB entry at rename, and release it when they

commit
u In-order fetch, In-order commit, OoO execute

u Only remove an LSQ entry when store exits ROB

CS302 – Spring 2025 Lec.5.1 - Slide 45

How to Block Speculative Stores
u Memory Operation (blue) at head of ROB

u Retires from ROB and de-allocates LSQ entry
u Has not triggered exception or page walk

Speculative State

Retired State
L1

ROB LSQ

Execute

Memory

Retire

Fetch/
Decode

CS302 – Spring 2025 Lec.5.1 - Slide 46

Problem: Why wait for stores?

u Currently, processor waits for stores to complete
u What if it misses in L1/L2/LLC? 100+ cycle stall
u LSQ entries are scarce due to NxN address dep. check

u Stores do not generate operands for the core
u Loads and arithmetic operations do

u Processor should continue while store pending!
u Reclaim LSQ entry for new memory operations

CS302 – Spring 2025 Lec.5.1 - Slide 47

u Store buffer (SB) sits between core and L1 cache
u Holds committed stores, which cannot be rolled back

u Note: Now loads must check SB as well as L1
u No guarantee on when values will be written

Solution: Add Store Buffer

L1

ROB LSQ

Store Buffer

Speculative State

Retired State

CS302 – Spring 2025 Lec.5.1 - Slide 48

u Maintain program order in the CPU
u Use LSQ/SB, in the fashion we just demonstrated

u Must maintain atomicity in the memory system
u In small-scale systems, use a shared bus
u At larger scale, explicit completion acknowledgements

Return to Conditions for SC

CS302 – Spring 2025 Lec.5.1 - Slide 49

u True SC would be painfully slow
u Can only issue one memory operation at a time

u Modern processors are:
u Superscalar
u Out of order

u Caches are:
u Non-blocking, multi-ported
u Buffered at input/output

Problems with the SC Model

P0

L1

L2

LLC

P1

L1

L2

CS302 – Spring 2025 Lec.5.1 - Slide 50

Example

uTo quantify SC performance, use this code:

Store X ; misses in L1 & L2
Store B ; hits in L1
Load A ; hits in L1
Add
Store A
Load Y ; misses in L1 & L2
Store Z ; misses in L1 & L2

CS302 – Spring 2025 Lec.5.1 - Slide 51

u Store X blocks ROB
u Cannot overlap Load Y & Store Z (other misses)

Execution with Naïve SC

LSQ

L1

Load A
Store B
Store X

Add
Load A
Store B
Store X

ROB

Older Miss

= Long latency

B
A

CS302 – Spring 2025 Lec.5.1 - Slide 52

u Store buffer frees up two slots in ROB/LSQ
u All ops still need to wait on Store X

Execution with SC + Store Buffer

L1

Load Y
Store A
Load A

Store
Buffer

Store B
Store X

Load Y
Store A

Add
Load A

ROB

Older

Wait
Wait
Wait

LSQ
= Long latency

B
A

CS302 – Spring 2025 Lec.5.1 - Slide 53

behavior Naïve SC
Store X L2 miss 100
Store B L1 hit 1
Load A L1 hit 1

Add - 1
Store A L1 hit 1
Load Y L2 miss 100
Store Z L2 miss 100
Total - 304

Performance Comparison

u Assume all misses take 100 cycles, hits 1 cycle

CS302 – Spring 2025 Lec.5.1 - Slide 54

u If operation in LSQ has address, why not issue it?
u Violates order or atomicity

u Idea: Peek at L1, see if address is already there
u If not (miss), fetch the block from lower level into L1
u If so, do not load the value into the core

u Insight:
u Fetching blocks into L1 from lower levels (or other L1’s) does not impact order

or atomicity
u No values move between the core & L1

u Helps overlap latency
u Can fetch as many blocks in parallel into L1 as needed

Using Stalled Operations in LSQ

CS302 – Spring 2025 Lec.5.1 - Slide 55

u Memory appears program order and atomic
u All loads/stores still execute with no re-ordering

u But, we add the ability to peek into L1 cache
u No ordering or atomicity constraints
u Other cores may see coherence messages!
u e.g., Load(A) invalidates A in remote core

New SC Interpretation

CS302 – Spring 2025 Lec.5.1 - Slide 56

u Same example as before, with SC + L1 peeking
u Assume 2 cores, private L1 caches, w. bus interconnect

u Can we possibly observe r1 = r2 = 0 ?

Exercise: Does Peeking Violate SC?

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 57

u Same example as before, with SC + L1 peeking
u Assume 2 cores, private L1 caches, w. bus interconnect

u Can we possibly observe r1 = r2 = 0 ?
u Answer: No.

u If Load(B) peeks, value brought into cache is B = 1 or B = 0 (depending on
T1). Still needs to read B when it executes (S1 may have invalidated it)

Exercise: Does Peeking Violate SC?

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 58

u Same example as before, with SC + L1 peeking
o Assume 2 cores, private L1 caches, w. bus interconnect

u Can we possibly observe r1 = r2 = 0 ?
u Answer: No.

o If Load(B) peeks, value brought into cache is B = 1 or B = 0 (depending on T1).
Still needs to re-read B when it executes (S1 may have invalidated it)

Exercise: Does Peeking Violate SC?

Highly Recommended
Do the same exercise for a general non-atomic

interconnect w. directory protocol, convince
yourself that we still cannot see r1 = r2 = 0!

// A = r1 = 0

(S0) A = 1;
(L0) r1 = B;

print(r1);

// B = r2 = 0

(S1) B = 1;
(L1) r2 = A;

print(r2);

Thread 0 Thread 1

CS302 – Spring 2025 Lec.5.1 - Slide 59

u While waiting, peek on all waiting ops. in LSQ
u A is in cache, Y is not → Overlap latency of Load Y

Execution with SC + SB + L1 Peeking

LSQ

L1

Load Y
Store A
Load A

Store
Buffer

Store B
Store X

Load Y
Store A

Add
Load A

ROB

Older

Peek
In L1
In L1

= Long latency

A
B

CS302 – Spring 2025 Lec.5.1 - Slide 60

behavior Naïve SC SC + Peek

Store X L2 miss 100 100
Store B L1 hit 1 1
Load A L1 hit 1 1

Add - 1 1
Store A L1 hit 1 1
Load Y L2 miss 100 1
Store Z L2 miss 100 97
Total 304 202

Performance Comparison Continued

u Loading Y in advance converts miss latency to hit

CS302 – Spring 2025 Lec.5.1 - Slide 61

u Peeking in L1 does not let ops. proceed in CPU
u ROB is completely full, no instructions can fetch
u Why? Load A waits for Store X, Store B

u To keep the CPU running, need to free up Load A
u Unfortunately, cannot do with SC
u Violates program order constraint

u Idea: Relax W → R (write blocks younger read)
u If address is the same, result comes from LSQ or SB
u If different, let it pass and unblock the processor

Unblocking the LSQ and ROB

CS302 – Spring 2025 Lec.5.1 - Slide 62

u Defining a relaxed model requires the following:
1. What specific orders are relaxed?
2. Detectable by the programmer or compiler?
3. Are there methods provided to disallow the behavior?

u In our idea to unblock independent reads:
1. We relax W → R serialization
2. Yes, it is detectable (try first example on your laptop!)
3. Yes, but semantics depend…

u e.g., MFence instructions (to come later)

Relaxed Consistency Models

CS302 – Spring 2025 Lec.5.1 - Slide 63

u In VAX processors (‘70s) before being defined
u Specification:

u ”Before a load is performed with respect to other processors, all preceding
loads must be performed.”

u “Before a store is performed with respect to other processors, all preceding
operations (L & S) must be performed.”

u In plain language: Reads can bypass writes
u x86 (Intel/AMD) uses a variant of PC

Formally: Processor Consistency (PC)

CS302 – Spring 2025 Lec.5.1 - Slide 64

u Let Load A and Add retire from CPU
u Fetch, rename, and execute Store Z

Execution with PC

LSQ

L1

Store A

Store
Buffer

Store B
Store X

Load Y

…

Store A

ROB

Older

Peek
L1 miss
SB full

= Long latency

A

Load Y
Store Z Store Z

B

CS302 – Spring 2025 Lec.5.1 - Slide 65

Compare the two LSQs:
u In SC+Peek, Load A hits L1, but still had to wait

u PC allows it to bypass the ordered Stores to X, B, and A
u In PC, why is Load Y an L1 miss, not a Peek?

u Independent addresses, so the load is actually issued
u If it hit the L1, another instruction could read the result

Differences Between SC+Peek and PC

Store A

Peek
L1 miss
SB full

Load Y
Store Z

PC
Load Y
Store A
Load A

Peek
In L1
In L1

SC+Peek

CS302 – Spring 2025 Lec.5.1 - Slide 66

behavior Naïve SC SC + Peek PC
Store X L2 miss 100 100 100
Store B L1 hit 1 1 1
Load A L1 hit 1 1 1 (overlap)

Add - 1 1 1 (overlap)
Store A L1 hit 1 1 1
Load Y L2 miss 100 1 1
Store Z L2 miss 100 97 1
Total 304 202 106

Performance Comparison Continued

u Assume all misses take 100 cycles, hits 1 cycle

CS302 – Spring 2025 Lec.5.1 - Slide 67

u Ordering constraints relaxed: W → R
u PC provides a relaxed model whose semantics are relatively easy to

reason about
u Variants in most real CPUs (AMD, Intel, Oracle/Sun)

u How to enforce order in a relaxed memory model?
u All ISAs have special atomic instructions (x86 – xchg)
u We will study these in detail later in the course
u Functionally, they transit the CPU, drain the entire store buffer, and the whole

system can see them immediately

PC Summary

CS302 – Spring 2025 Lec.5.1 - Slide 68

u Recall that PC blocks if SB is full or on an atomic
u Given that SB size is limited, can only take PC so far

u Key constraint preserved in PC: R → RW
u Reads block other reads and writes

u New idea: Relax everything, only obey uniprocessor constraints for
correctness

Further Ordering Relaxation

CS302 – Spring 2025 Lec.5.1 - Slide 69

u Memory ops. classified as data or synchronization
u Only synchronization operations have any ordering
u Data ops. have no order enforced among themselves

u Synch. instructions are called Fences
u Enforces program order for operations before/after

u Weak Consistency is used in ARM, RISC-V

Weak Consistency

CS302 – Spring 2025 Lec.5.1 - Slide 70

Conceptual Model for Weak Consistency

Read X
…

Write Y

Fence

Fence

Read Z
…

Write X

Read Y
…

Write Y

Write Y
guaranteed visible

Write X
guaranteed visible

CS302 – Spring 2025 Lec.5.1 - Slide 71

Example w. Weak Consistency

uNote: there are no fences!

Store X ; misses in L1 & L2
Store B ; hits in L1
Load A ; hits in L1
Add
Store A
Load Y ; misses in L1 & L2
Store Z ; misses in L1 & L2

CS302 – Spring 2025 Lec.5.1 - Slide 72

u Store B and Store A retired, and overtook Store X
u All long latency operations happening in parallel

Execution with WC

LSQ

L1

Load Y

Store
Buffer Store X

Store Z
Load Y

ROB

Older
Peek

L1 miss

= Long latency

A

Store Z

B

CS302 – Spring 2025 Lec.5.1 - Slide 73

Example w. Weak Consistency and Fence

Store X ; misses in L1 & L2
__fence__
Store B ; hits in L1
Load A ; hits in L1
Add
Store A
Load Y ; misses in L1 & L2
Store Z ; misses in L1 & L2

CS302 – Spring 2025 Lec.5.1 - Slide 74

u When fence reaches head of ROB, the CPU blocks
u Wait for SB to drain and Store X to finish

Execution with WC + Fence

LSQ

L1

Store
Buffer Store X

Store B

Add

__fence__

ROB

Older

= Long latency

A

Load A

B

Load A
Store B

Peek
Peek

CS302 – Spring 2025 Lec.5.1 - Slide 75

u Cache coherence is not memory consistency
u Memory models dictate what behavior can be observed across different

memory locations
u Uniprocessor memory ordering

u Ensure program order and access atomicity
u Use a Load Store Queue to solve address overlap

u Basic consistency models: SC, PC, Weak

u Consistency is a very meticulous topic, and mistakes are often made!

Summary

