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Where are We?

u Message Passing
u Message passing model
u MPI overview

u Exercise session
u Example MPI programs

u Next Tuesday:
u Memory Consistency 

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May



CS302 – Spring 2025 Lec.4.1 -  Slide 3

Overview of Parallel Programming Models

u Two classes of parallel programming:
o Shared memory
o Message passing

u  So far, we have only looked at the shared memory model
o OpenMP usage and optimizations

u This lecture will focus on the message passing model
o Advantages and disadvantages compared to shared memory
o MPI programming in C
o Brief intro to hybrid programming models
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Memory: A Hardware Perspective

u Conventional CPUs use shared 
physical memory

u Cores use physical addresses to 
reference memory

u Unified physical address space for 
all cores

u Coherence and consistency rules 
apply
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Memory: A Programmer’s Perspective

int x = 0;
x = 1;

int x;
while (x == 0) {}

print x;

Thread 1: Thread 2:

Thread 1
x

Thread 2

Memory 
shared 

between 
threads

u Threads communicate by reading/writing to shared vars
u Shared variables are like a big bulletin board
u Any thread can read or write
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Memory: A Systems Perspective

Virtual address spaces

Physical address space

Image credit: Culler, Singh, and Gupta 

Option 1: threads share 
an address space

u All data is sharable

Option 2: each thread has 
its own virtual address 
space

u Shared part maps to the 
same physical location
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Beyond a Few CPUs Memory is Distributed

u Each node has its own memory
u A Network Interface Card (NIC) connects nodes to a network
u Nodes communicate through message passing
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Distributed Memory: Multiple Physical Address Spaces
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Distributed Memory: Multiple Physical Address Spaces
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Distributed Memory: Multiple Physical Address Spaces
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Message Passing Advantages

u Cost scalability
o Cache-coherent (distributed) shared memory is possible but expensive
o E.g., HPE Superdome
o Distributed memory w/o cache coherence is common
o Requires message passing for software

u Performance transparency
o Communication is explicit (send/receive messages)

u Fault tolerance
o A single process failure does not crash the entire system
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Message Passing Disadvantages

u Higher communication overhead
o User-level library, syscalls, network communication software for send/receive

u Increased code complexity
o Programmer must explicitly manage data movement
o Bloated in terms of LOC

u Difficult to overlap communication with computation
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Supercomputers use Message Passing

u World’s second fastest supercomputer (present in the US)
u Uses a hybrid programming model based on message passing (MPI)
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What is MPI?

u MPI: Message Passing Interface
u A standardized API for parallel programming using message passing

u The MPI effort involved about 80 people from 40 organizations
u Incorporated the most useful features of several systems
u MPI is the de-facto standard for all high-performance systems

u Code is highly portable
u Write code once, run on any MPI compatible system
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What is MPI?

u MPI is designed for running multiple instances of the same program
u Best for Single Program Multiple Data (SPMD) execution model

u MPI is NOT designed to be used for:
o Communication between different programs
o Client-server communications
o Concurrent execution

u Coroutines and RPCs used for these purposes
o To be covered in later lectures
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MPI Programming Overview 

u Creating parallelism
o SPMD Model

u Communication between processes
o Basic
o Non-blocking
o Collective

u Synchronization
o Point-to-point synchronization by message passing
o Global synchronization by collective communication
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SPMD Model

u Single Program Multiple Data model of programming:
o Each process has a copy of the same program
o All run them at their own rate 
o May take different paths through the code

u Process-specific control through variables like:
o Unique process number
o Total number of processes

u Processes may synchronize, but none is implicit
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MPI Libraries

u MPI is programming language and implementation independent
o Just a standard API specification

u Vendors have various MPI libraries
o MPICH/Open MPI are popular open source and free implementations
o Vendors add features and optimizations for their systems

§ Intel MPI, Microsoft MPI, etc.
o Bindings exist for high level languages such as Java, Python, etc

u In this course, we focus on MPI programming using C and C++
u Programming using MPI is independent of the library used
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MPI Hello World (Trivial)

u A simple, but not very interesting, SPMD program

    #include "mpi.h"
    #include <stdio.h>

    int main( int argc, char *argv[] )
    {  
        MPI_Init( &argc, &argv);
        printf( "Hello, world!\n" );
        MPI_Finalize();
        return 0;
    }
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MPI Hello World (Trivial)

u A simple, but not very interesting, SPMD program

    #include "mpi.h"
    #include <stdio.h>

    int main( int argc, char *argv[] )
    {  
        MPI_Init( &argc, &argv);
        printf( "Hello, world!\n" );
        MPI_Finalize();
        return 0;
    }

u Each process simply prints “Hello, world!” and exits

Include the MPI Libraries

Initializes the MPI environment

End of MPI section (no MPI calls 
allowed after this line) 
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MPI Communicators

u MPI processes can be collected into 
groups

u MPI identifies groups by their context
u A communicator is a combination of a 

group and its context
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MPI Communicators

u On starting an MPI program there is one predefined communicator
o MPI_COMM_WORLD
o Contains the group of all processes

u A process is identified by a unique number within each communicator
o This is the rank of a process
o The same process can have different ranks in different communicators

u Communicators are used to minimize unnecessary communications
u However, simple programs generally only use MPI_COMM_WORLD
u More complex use-cases to be discussed later
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MPI Hello World (Process specific)

u Individual processes can be made to process-specific tasks
   
   #include "mpi.h"
   #include <stdio.h>

   int main( int argc, char *argv[] )
   {
       int rank, size;
       MPI_Init( &argc, &argv );
       MPI_Comm_rank( MPI_COMM_WORLD, &rank );
       MPI_Comm_size( MPI_COMM_WORLD, &size );
       printf("I am process %d of %d.\n", rank, size);
       MPI_Finalize();
       return 0;
   }
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MPI Hello World (Process specific)

u Individual processes can be made to process-specific tasks
   
   #include "mpi.h"
   #include <stdio.h>

   int main( int argc, char *argv[] )
   {
       int rank, size;
       MPI_Init( &argc, &argv );
       MPI_Comm_rank( MPI_COMM_WORLD, &rank );
       MPI_Comm_size( MPI_COMM_WORLD, &size );
       printf("I am process %d of %d.\n", rank, size);
       MPI_Finalize();
       return 0;
   }

u Each process can now identify itself and print a custom hello world statement

Variables to identify a process

Get the rank of the process
Get the # of processes
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Components of a MPI program

u Sender and receiver processes
u Messages
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MPI Basic Send/Receive

u  “Two sided” – both sender and receiver must take action

u Things that need specifying:
o How will processes be identified? (through rank inside the communicator)
o How will “data” be described?
o How will the receiver recognize/screen messages?
o What will it mean for these operations to complete?

Process 0 Process 1
Send(data)

Receive(data)
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MPI Send

u Function signature to send data:

  MPI_Send(
  void* message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm communicator);
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MPI Send

u Function signature to send data:

  MPI_Send(
  void* message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm communicator);

The buffer of data to send
Number of elements in the buffer
Datatype of the elements in the buffer
Rank of the receiver

An identifying number like the subject of an email
Communicator of the receiver



CS302 – Spring 2025 Lec.4.1 -  Slide 29

Things to note

u MPI_Send is a blocking function call
u When MPI_Send returns, message has been delivered to the system

o The buffer can be reused
o Does not imply that the message has been received by the target process

u Three other variants of MPI_Send:
o MPI_Bsend: Returns when the message is buffered in an application buffer
o MPI_Ssend: Returns only when receiver has started to receive the message
o MPI_Rsend: Assuming receiver is ready, message is sent as soon as possible 
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MPI Receive

u Function signature to receive data:

  MPI_Recv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Status* status)
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MPI Receive

u Function signature to receive data:

  MPI_Recv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Status* status)

Buffer to store the received data in
Receive at most this many elements
Datatype of the received elements
Rank of the sender from whom it expects data
The expected tag of the message
Communicator of the sender
Metadata assosciated with the message
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Things to note

u MPI_Recv is also a blocking function call
u source can be MPI_ANY_SOURCE to accept data from any sender

u tag can be MPI_ANY_TAG to accept messages with any tag

u status contains further information:
o Who sent the message (can be used with MPI_ANY_SOURCE)
o How much data was actually received (using MPI_GET_COUNT)
o Tag of the message (can be used with MPI_ANY_TAG)
o MPI_STATUS_IGNORE can be used to ignore these additional information
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Using Message Status

u Status is a data structure allocated in the user’s program.
u Especially useful with wild-cards to find out what matched:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )
recvd_tag  = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count( &status, datatype, &recvd_count );
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MPI Datatypes

u An MPI datatype is recursively defined as:
o predefined, corresponding to a data type from the language (e.g., MPI_INT)
o a contiguous array of MPI datatypes
o a strided block of datatypes
o an indexed array of blocks of datatypes
o an arbitrary structure of datatypes

u There are MPI functions to construct custom datatypes, such an array 
of (int, float) pairs, or a row of a matrix stored columnwise.
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Point-to-Point Communication Example

#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
{
 int rank, size;
 MPI_Init( &argc, &argv );
 MPI_Comm_rank( MPI_COMM_WORLD, &rank );
 MPI_Comm_size( MPI_COMM_WORLD, &size );

 
 MPI_Finalize();
 return 0;
}

Standard MPI 
Boilerplate
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Point-to-Point Communication Example (1)

#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
{
 ...

 int data, tag = 1;
 if(rank == 0){
  data = 42;
  MPI_Send(&data, 1, MPI_INT, 1, tag, MPI_COMM_WORLD);
  printf("Message Sent: %d\n", data); 
 } else if(rank == 1){
  MPI_Recv(&data, 1, MPI_INT, 0, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
  printf("Message Received: %d\n", data);
 }

 ...
}
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Point-to-Point Communication Example (2)

#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
{
 ...

 int data, tag = 1;
 if(rank == 0){
  data = 42;
  MPI_Send(&data, 1, MPI_INT, 1, tag, MPI_COMM_WORLD);
  printf("Message Sent: %d\n", data); 
 } else if(rank == 1){
  MPI_Recv(&data, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
    MPI_COMM_WORLD, MPI_STATUS_IGNORE);
  printf("Message Received: %d\n", data);
 }
 ...
}
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Compiling and Running MPI Programs

u Compilation:
o Regular applications: gcc prog.c -o prog
o MPI applications: mpicc prog.c -o prog

u Execution:
o Regular applications: ./prog
o MPI applications: mpiexec -np <nprocs> ./prog

u mpiexec acts as runtime system coordinating amongst all processes
u Exact commands will differ depending on the compiler used
u Examples on SCITAS during exercise session
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Communicating Arrays

u Approach 1:
 int A[1000];
 for(int i = 0; i < 1000; i++) {
  MPI_Send(&A[i], 1, MPI_INT, rank, tag, MPI_COMM_WORLD);
 }

u Approach 2:
 int A[1000];
 MPI_Send(A, 1000, MPI_INT, rank, tag, MPI_COMM_WORLD);

u Which approach is better?
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Communicating Arrays

u Approach 1: Sending elements one by one
o Each message has to be acknowledged by the receiver
o Overheads associated with each function call

u Approach 2: Sending entire array at once
o Overheads amortized over a single large function call
o However, large amount of data needs to be buffered and transmitted

u A hybrid approach is often best (e.g, chunks of 100 elements)
u Optimization knob in programs
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Latency and Bandwidth

u For short messages, latency dominates transfer time

u For long messages, the bandwidth term dominates transfer time

u Latency * bandwidth is the amount of buffer that exists in the 
system → also referred to as critical message size

u Example: 50 us * 50 MB/s = 2500 bytes
o messages > 2500 bytes are bandwidth dominated
o messages < 2500 bytes are latency dominated
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Example: ping-pong (mpitutorial.com) 2 processes

int ping_pong_count = 0;
int partner_rank = (rank + 1) % 2;
while (ping_pong_count < PING_PONG_LIMIT) {
    if (rank == ping_pong_count % 2) {
        // Increment the ping pong count before you send it
        ping_pong_count++;
        MPI_Send(&ping_pong_count, 1, MPI_INT, partner_rank, 0, MPI_COMM_WORLD);
        printf("%d sent and incremented ping_pong_count %d to %d\n", rank,   
                 ping_pong_count, partner_rank);

} else {
MPI_Recv(&ping_pong_count, 1, MPI_INT, partner_rank, 0, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);
printf("%d received ping_pong_count %d from %d\n", rank, ping_pong_count, 

partner_rank);
}

}
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Example: ping-pong (mpitutorial.com) 2 processes

P0 P1

first iteration

P1 P0

second iteration

1 2
…..
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Example: ring (mpitutorial.com) n processes

int token;
if (rank != 0) {
    MPI_Recv(&token, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
    printf("Process %d received token %d from process %d\n", rank, token, rank - 1);
} else {

token = -1; // Set the token's value if you are process 0
}

MPI_Send(&token, 1, MPI_INT, (rank + 1) % size, 0, MPI_COMM_WORLD);

// Now process 0 can receive from the last process.
if (rank == 0) {
    MPI_Recv(&token, 1, MPI_INT, size - 1, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
    printf("Process %d received token %d from process %d\n", rank, token, size - 1);
}
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Example: ring (mpitutorial.com) n processes

P
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-1 -1

-1
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MPI Functions So Far

u MPI_Init()
u MPI_Comm_rank()
u MPI_Comm_size()
u MPI_Send()
u MPI_Recv()
u MPI_Get_count()
u MPI_Finalize()

u These functions are enough to write most MPI programs
u But need to consider other features for extracting performance
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Revisiting MPI_Send and MPI_Recv

u MPI_Send(void* message, ...)
u MPI_Recv(void* data, ...)

u MPI_Send is a blocking function call
o Does not return until the data in the message buffer has been copied
o Return of the call implies completion of the send procedure
o The memory location referenced by message cannot be reused until return

u MPI_Recv is also a blocking function call
o Execution cannot continue until data is completely received
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Problems with Blocking Function Calls

u Problem 1: Deadlocks can happen if program not written correctly
o This is a correctness problem, not a performance problem

u For example, consider two processes communicating as follows:
 ...
 if(rank == 0){
    MPI_Send(...);
    MPI_Recv(...); 
 } else if(rank == 1){
    MPI_Send(...);
    MPI_Recv(...);
 }
 ...
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Deadlocks due to Blocking Function Calls

u Consider two processes communicating as follows:
 ...
 if(rank == 0){
    MPI_Send(...);
    MPI_Recv(...); 
 } else if(rank == 1){
    MPI_Send(...);
    MPI_Recv(...);
 }
 ...

u Both processes stuck sending data to each other
u Neither process can invoke MPI_Recv to receive the data

Process 0 stuck sending data

Process 1 also stuck sending data
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Simple Fix

u If order is known, simply order MPI_Send and MPI_Recv correctly
 ...
 if(rank == 0){
    MPI_Send(...);
     MPI_Recv(...); 
 } else if(rank == 1){
    MPI_Recv(...);
    MPI_Send(...);
 }
 ...

u Not applicable to scenarios with variable communication patterns
u Requires programmer effort to ensure deadlocks do not arise
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Problems with Blocking Function Calls

u Problem 2: Performance penalty
o Note that this is not a correctness problem

u On calling MPI_Send/MPI_Recv, a process cannot do anything else

u Need to wait before transfer finishes before doing useful work

u Big performance penalty for programs with sparse communication
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Performance Problem due to Blocking 
Process 0 Process 1

Sender Receiver

MPI_Recv

MPI_Send

MPI_Send

returns Transfer finishes
MPI_Recv

returns

Time
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Performance Problem due to Blocking 
Process 0 Process 1

Sender Receiver

MPI_Recv

MPI_Send

MPI_Send

returns Transfer finishes
MPI_Recv

returns

Time

Wasted time
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Non-Blocking Calls

u Non-blocking function calls return immediately after invocation
o Does not provide any guarantee on the status of the message
o Programmer needs to manually check for completion of mesage transfer

u Requires more programmer effort BUT
o Allows to overlap communication with computation
o Increase the efficiency and performance of the entire program

u This mode of communication is called asynchronous communication
u Critical to improve the performance of any message passing system
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Non-Blocking Send

MPI_Send(
  void* message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm communicator)

MPI_Isend(
  void* message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm communicator,
 MPI_Request* req)
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Non-Blocking Send

MPI_Send(
  void* message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm communicator)

MPI_Isend(
  void* message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm communicator,
 MPI_Request* req)

The current sending status is available through 
the request variable
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Non-Blocking Receive

MPI_Recv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Status* status)

MPI_Irecv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Request* req)
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Non-Blocking Receive

MPI_Recv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Status* status)

MPI_Irecv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Request* req)

Along with status, contains information on completion



CS302 – Spring 2025 Lec.4.1 -  Slide 59

Status of Non-blocking Calls

u Non blocking calls return immediately
o Do not wait for completion of data transfers
o Allows processes to make forward progress

u While data transfer is going on,
o Safe to compute on data not being used in the asynchronous communication
o Unsafe to compute on data being communicated

u Only compute on communicated data once transfer is complete
u We need a way to know if the data transfer has completed
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Example Benefit with Asynchronous Transfers

*buf1 = 3;
MPI_Send(buf1, 1, MPI_INT, …)
*buf2 = 4;

/* Process waits before 
operating on different data */

*buf1 = 3;
MPI_Isend(buf1, 1, MPI_INT, …)
*buf2 = 4;

/* Process does not wait before 
moving on to different data */
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Example Problem with Asynchronous Transfers

*buf1 = 3;
MPI_Send(buf1, 1, MPI_INT, …)
*buf1 = 4;

/* This is ok, receiver will 
always receive 3 */

*buf1 = 3;
MPI_Isend(buf1, 1, MPI_INT, …)
*buf1 = 4;

/* This is non-deterministic, 
receiver can get either 3 or 4 
*/
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Testing the Status of Non-Blocking Calls

MPI_Test(
 MPI_Request* request,
 int* flag,
 MPI_Status* status)

The request variable returned by a 
non-blocking call

Whether operation is complete or not

The associated metadata of the 
operation, same as seen before

u Returns (immediately) the status of a non-blocking function call
u If flag == 0, then the operation is not yet complete
u If flag == 1, then the operation is complete
u status contains valid information only when flag == 1
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Testing the Status of Non-Blocking Calls

MPI_Wait(
 MPI_Request* request,
 MPI_Status* status)

The request variable returned by a 
non-blocking function

The assosciated metadata of the 
operation, same as seen before

u This function waits until the operation is completed
u Once complete, the function returns the status of the operation
u Note that a non-blocking function followed by MPI_Wait is equivalent 

to its blocking variant.
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Testing Multiple Completions

u It is sometimes desirable to wait on multiple requests:
o MPI_Waitall(count, array_of_requests, array_of_statuses)
o MPI_Waitany(count, array_of_requests, &index, &status)
o MPI_Waitsome(count, array_of_requests, array_of_indices, 
array_of_statuses)

u There are corresponding versions of MPI_Test for each of these.
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Example Program Using Non-Blocking Calls 
#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
{
 ...
 if(rank == 0){
  for(i = 0; i < 100; i++) {
   data[i] = compute(i);
   MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &request[i]);
  }
  MPI_Waitall(100, request, MPI_STATUSES_IGNORE);
 } else {
  for(i = 0; i < 100; i++)
   MPI_Irecv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &resp[i]);
  MPI_Waitall(100, resp, MPI_STATUSES_IGNORE);
 }
 ...
}
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Example Program Using Non-Blocking Calls
#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
{
 ...
 if(rank == 0){
  for(i = 0; i < 100; i++) {
   data[i] = compute(i);
   MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &request[i]);
  }
  MPI_Waitall(100, request, MPI_STATUSES_IGNORE);
 } else {
  for(i = 0; i < 100; i++)
   MPI_Irecv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &resp[i]);
  MPI_Waitall(100, resp, MPI_STATUSES_IGNORE);
 }
 ...
}

compute of i=2 can start before 
sending i=1 completes
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Example Program Using Non-Blocking Calls
#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
{
 ...
 if(rank == 0){
  for(i = 0; i < 100; i++) {
   data[i] = compute(i);
   MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &request[i]);
  }
  MPI_Waitall(100, request, MPI_STATUSES_IGNORE);
 } else {
  for(i = 0; i < 100; i++)
   MPI_Irecv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &resp[i]);
  MPI_Waitall(100, resp, MPI_STATUSES_IGNORE);
 }
 ...
}

Wait once all data has 
been sent out
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Communication Patterns

u So far, we have only looked at point-to-point communication
u What if processes need to communicate to all ?

P0 P1 P0

P1

P2

P3

P0

P1

P2

P3
two processes

all processes
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Collective Communications

u Communications involving all processes within a communicator
u May involve computation on intermediate communicated data

u Things to consider:
o Which data to send to which process?
o How to accumulate multiple sources of data?
o How to best optimize for performance?

u Some patterns are common for many AI algorithms
u These patterns have dedicated primitives in all MPI systems
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Broadcast

u Send the same data to all processes in the group

P0

P1 P2 P3P0
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Broadcast

u root process will send the data from buffer
u Other processes in the communicator will receiver the data in buffer

o Note: buffer for each process are all unique

int MPI_Bcast(
 void *buffer,
 int count,
 MPI_Datatype datatype, 

int root,
 MPI_Comm comm )

Pointer to broadcasted data
Number of broadcasted elements

Rank of process that will broadcast
Communicator in which to broadcast
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Scatter

u Send elements in an array to consecutive processes in a group

P0

P1 P2 P3P0
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Scatter
int MPI_Scatter(
 const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)x

Address of send buffer (for root process)
Number of elements to send to each 
process 
Buffer in which to receive data
Number of elements to receive

Rank of sending process
Communicator in which to scatter

u sendcount * num_processes = total count of data to scatter
u Data is transmitted in increasing order of process rank
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Gather

u Gathers elements from consecutive processes in group into an array

P0

P1 P2 P3P0
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Gather
int MPI_Gather(
 const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)

u Same parameters as scatter but works in reverse
u root process receives data from all processes in recvbuf

int MPI_Scatter(
 const void *sendbuf,
 int sendcount,
 MPI_Datatype sendtype,
 void *recvbuf,
 int recvcount,
 MPI_Datatype recvtype,
 int root,
 MPI_Comm comm)x
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Reduce

u Takes an array of input elements on each process
u Returns an array of output elements to the root process

o Given a specific operation

P0

P1 P2 P3P0 5 1 2 3 7 9 2 5

16 18

MPI_Sum
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Reduce
int MPI_Reduce(
 const void *sendbuf,
 void *recvbuf,
 int count,
 MPI_Datatype datatype,
 MPI_Op op,
 int root,
 MPI_Comm comm)

Address of send buffer
Address of receive buffer
Number of elements to be sent for 
reduction by each process
The reduction operation to perform
The rank of the process that receives the 
reduced data

u MPI_Op can be many common operations such as MPI_MAX, 
MPI_MIN, MPI_SUM, MPI_PROD, etc.

u Custom reduction operations can also be defined
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AllReduce

u Similar to reduce but results are distributed to all processes

P1 P2 P3P0 5 1 2 3 7 9 2 5

MPI_Sum

P1 P2 P3P0 16 18 16 18 16 18 16 18
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AllReduce

int MPI_Allreduce(
 const void *sendbuf,
 void *recvbuf,
 int count,
 MPI_Datatype datatype,
 MPI_Op op,
 MPI_Comm comm)

int MPI_Reduce(
 const void *sendbuf,
 void *recvbuf,
 int count,
 MPI_Datatype datatype,
 MPI_Op op,
 int root,
 MPI_Comm comm)

u Same parameters as MPI_Reduce but no root process
u Equivalent to reducing first and then broadcasting result
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Summary

u Message passing model allows multi-node scalability

u MPI provides easy to use functions to parallelize programs
o Higher programmer effort compared to OpenMP
o More control and improved scalability compared to OpenMP

u Non blocking functions can be used for asynchronous communication

u Collectives provide a big benefit for common communication patterns


