CS302

Message
Passing

Spring 2025

Co

Cy

Co

C

Co

Cy

Mymy " emon HT

Network

Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Prof. Falsafi

Copyright 2025

CS302 — Spring 2025

Lec.4.1 - Slide 1

Where are We?

CS302 — Spring 2025

¢ Message Passing

¢ Message passing model
¢ MPI overview

¢ Exercise session
¢ Example MPI programs

¢ Next Tuesday:
¢ Memory Consistency

Lec.4.1 - Slide 2

Overview of Parallel Programming Models

¢ Two classes of parallel programming:
o Shared memory
o Message passing

¢ So far, we have only looked at the shared memory model
o OpenMP usage and optimizations

¢ This lecture will focus on the message passing model
o Advantages and disadvantages compared to shared memory
o MPI programming in C
o Brief intro to hybrid programming models

CS302 — Spring 2025 Lec.4.1 - Slide 3

Memory: A Hardware Perspective

¢ Conventional CPUs use shared
physical memory . [
0 1

¢ Cores use physical addresses to
reference memory

¢ Unified physical address space for 1 1

all cores t

¢ Coherence and consistency rules ‘ Memory \
apply

CS302 — Spring 2025 Lec.4.1 - Slide 4

Memory: A Programmer’'s Perspective

¢ Threads communicate by reading/writing to shared vars
¢ Shared variables are like a big bulletin board
¢ Any thread can read or write

Thread 1
Memory
shared
between
threads
Thread 2
Thread 1: Thread 2:
int x = 0;
x =1;

int x;
while (x == 0) {}

CS302 — Spring 2025 Lec.4.1 - Slide 5

print x;

Memory: A Systems Perspective

Physical address space

of address space

same physical location |

Option 1: threads share Virtual address spaces P private
an address space Load .
¢ All data is sharable L7/ Common physical
P, [PZ | ? addresses
Po[o //
Option 2: each thread has ST\' e
its own virtual address Shared portion / F2 private
of address space
space _
Py private
¢ Shared part maps to the Private portion \\\ tprivet

Po private

Image credit: Culler, Singh, and Gupta
CS302 — Spring 2025 Lec.4.1- Slide 6

Beyond a Few CPUs Memory is Distributed

¢ Each node has its own memory
¢ A Network Interface Card (NIC) connects nodes to a network

Network

¢ Nodes communicate through message passing

CS302 — Spring 2025

Lec.4.1 - Slide 7

Distributed Memory: Multiple Physical Address Spaces

Memory

Pp private

{
\
A\

Shared portion
of address space

7

Common physical
addresses

P> private

Private portion ||

of address space
— — |

CS302 — Spring 2025

Py private

L

Po private

Po

Store

Load

Memory

Pn private

\

a7
]

Shared portion
of address space

s

Common physical

Private portion ||
of address space

|

addresses
/
//
/ P> private
Py private
—
_\ Po private

Po

Store

Memory

Pn private

s

Common physical
addresses

Shared portion
of address space

P, private

Private portion ||

Py private

L]

of address space

Ik

———————— |

Po private

Lec.4.1 - Slide 8

Distributed Memory: Multiple Physical Address Spaces

‘ Memory \ | Memory I ‘ Memory \

Pn private

Load F I

Pr Y/

‘\—@ Common physical
/

addresses

e
P> private
Shared portion
of address spac

P; private

X
W

Private portion
of address space
[

Po private

C830 Spring 2095 Multiple processes share memory on a single node

Lec.4.1- Slide 9

Distributed Memory: Multiple Physical Address Spaces

CS302 — Spring 2025

‘ Memory \

‘ Memory \

Pn private Pn private

| v | ¥

' A ' A

| Common physical | Common physical
addresses addresses
P> private P2 privat

| Py private

| Po private

Multiple nodes have disjoint physical memory

‘ Memory \

P, private

v/

Common physical
addresses

P> private

P; private

Po private

Lec.4.1 - Slide 10

Message Passing Advantages

¢ Cost scalability
o Cache-coherent (distributed) shared memory is possible but expensive
o E.g., HPE Superdome
o Distributed memory w/o cache coherence is common
o Requires message passing for software

¢ Performance transparency
o Communication is explicit (send/receive messages)

¢ Fault tolerance
o A single process failure does not crash the entire system

CS302 — Spring 2025 Lec.4.1 - Slide 11

Message Passing Disadvantages

¢ Higher communication overhead
o User-level library, syscalls, network communication software for send/receive

¢ Increased code complexity

o Programmer must explicitly manage data movement
o Bloated in terms of LOC

¢ Difficult to overlap communication with computation

CS302 — Spring 2025 Lec.4.1 - Slide 12

Supercomputers use Message Passing

¢ World’s second fastest supercomputer (present in the US)
¢ Uses a hybrid programming model based on message passing (MPI)

CS302 — Spring 2025 Lec.4.1 - Slide 13

What is MPI1?

¢ MPI: Message Passing Interface
¢ A standardized API for parallel programming using message passing

¢ The MPI effort involved about 80 people from 40 organizations
¢ Incorporated the most useful features of several systems
¢ MPI is the de-facto standard for all high-performance systems

¢ Code is highly portable
¢ Write code once, run on any MP| compatible system

CS302 — Spring 2025 Lec.4.1 - Slide 14

What is MPI1?

¢ MPI is designed for running multiple instances of the same program
¢ Best for Single Program Multiple Data (SPMD) execution model

¢ MPI is NOT designed to be used for:

o Communication between different programs
o Client-server communications
o Concurrent execution

¢ Coroutines and RPCs used for these purposes
o To be covered in later lectures

CS302 — Spring 2025 Lec.4.1 - Slide 15

MP| Programming Overview

¢ Creating parallelism
o SPMD Model

¢ Communication between processes

o Basic
o Non-blocking
o Collective

¢ Synchronization

o Point-to-point synchronization by message passing
o Global synchronization by collective communication

CS302 — Spring 2025 Lec.4.1 - Slide 16

SPMD Model

¢ Single Program Multiple Data model of programming:
o Each process has a copy of the same program

o All run them at their own rate
o May take different paths through the code

¢ Process-specific control through variables like:
o Unique process number
o Total number of processes

¢ Processes may synchronize, but none is implicit

CS302 — Spring 2025 Lec.4.1 - Slide 17

MPI Libraries

¢ MPI is programming language and implementation independent
o Just a standard API specification

& VVendors have various MPI libraries

o MPICH/Open MPI are popular open source and free implementations

o Vendors add features and optimizations for their systems
" |ntel MPI, Microsoft MPI, etc.

o Bindings exist for high level languages such as Java, Python, etc

¢ In this course, we focus on MPI programming using C and C++
¢ Programming using MPI is independent of the library used

CS302 — Spring 2025

Lec.4.1 - Slide 18

MPI| Hello World (Trivial)

¢ A simple, but not very interesting, SPMD program

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
MPI Init(&argc, &argv);
printf("Hello, world'!\n");
MPI Finalize();

return O;

CS302 — Spring 2025 Lec.4.1 - Slide 19

MPI| Hello World (Trivial)

¢ A simple, but not very interesting, SPMD program

l#include "mpi.h"| » Include the MPI Libraries
#include <stdio.h>

int main(int argc, char *argv[])

{

|MPI_Init(sargc, sargv); | > Initializes the MPI environment
rintf("Hello, world'\n");

[EIPI_Finalize() ; } > End of MPI section (no MPI calls

return 0; allowed after this line)

}
¢ Each process simply prints “Hello, world!” and exits

CS302 — Spring 2025 Lec.4.1 - Slide 20

MP| Communicators

¢ MPI processes can be collected into
groups

¢ MPI identifies groups by their context

¢ A communicator is a combination of a
group and its context

CS302 — Spring 2025 Lec.4.1 - Slide 21

MPI| Communicators

¢ On starting an MPI program there is one predefined communicator
o MPI_COMM WORLD

o Contains the group of all processes

¢ A process is identified by a unique number within each communicator
o This is the rank of a process
o The same process can have different ranks in different communicators

¢ Communicators are used to minimize unnecessary communications
¢ However, simple programs generally only use MPI_COMM WORLD

¢ More complex use-cases to be discussed later

CS302 — Spring 2025 Lec.4.1 - Slide 22

MPI| Hello World (Process specific)

¢ Individual processes can be made to process-specific tasks

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
int rank, size;
MPI Init(&argc, &argv);
MPI Comm rank(MPI_COMM WORLD, &rank);
MPI Comm size(MPI_COMM WORLD, &size);
printf ("I am process %d of %d.\n", rank, size);
MPI Finalize();
return O;

CS302 — Spring 2025 Lec.4.1 - Slide 23

MPI Hello World (Process specific)

¢ Individual processes can be made to process-specific tasks

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])

{

int rank, size; > VVariables to |dent|fy d Process

MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &rank) ; > Get the rank of the process
MPI Comm size(MPI_COMM WORLD, &size); » Get the # of processes

printf ("1 am process %d of %d.\n"'", rank, size);
MPI Finalize();
return O;

}

¢ Each process can now identify itself and print a custom hello world statement

CS302 — Spring 2025 Lec.4.1 - Slide 24

Components of a MPI program

¢ Sender and receiver processes
¢ Messages

CS302 — Spring 2025 Lec.4.1 - Slide 25

MPI| Basic Send/Receive

¢ “Two sided” — both sender and receiver must take action

Process O Process 1

Send (data)
Receive (data)

¢ Things that need specifying:
o How will processes be identified? (through rank inside the communicator)
o How will “data” be described?
o How will the receiver recognize/screen messages?
o What will it mean for these operations to complete?

CS302 — Spring 2025 Lec.4.1 - Slide 26

MPI| Send

¢ Function signature to send data:

MPI_Send (
void* message,
int count,
MPI Datatype datatype,
int dest,
int tag,

MPI Comm communicator) ;

CS302 — Spring 2025 Lec.4.1 - Slide 27

MPI Send

¢ Function signature to send data:

MPI_ Send (
void* messagef > The buffer of data to send
int count| > Number of elements in the buffer
MPI Datatype datatypej—— Datatype of the elements in the buffer
int destf » Rank of the receiver
int tagj > An identifying number like the subject of an email
MPI Comm communicatory—— Communicator of the receiver

CS302 — Spring 2025

Lec.4.1 - Slide 28

Things to note

¢ MPI Send is a blocking function call

¢ When MPI_Send returns, message has been delivered to the system
o The buffer can be reused
o Does not imply that the message has been received by the target process

¢ Three other variants of MPI_Send:

o MPI_Bsend: Returns when the message is buffered in an application buffer
o MPI_Ssend: Returns only when receiver has started to receive the message
o MPI_Rsend: Assuming receiver is ready, message is sent as soon as possible

CS302 — Spring 2025 Lec.4.1 - Slide 29

MPI| Recelve

¢ Function signature to receive data:

MPI_Recv (

CS302 — Spring 2025

void* data,

int count,

MPI Datatype datatype,
int source,

int tag,

MPI Comm communicator,
MPI Status* status)

Lec.4.1 - Slide 30

MPI| Recelive

¢ Function signature to receive data:

MPI_ Recv (
void* data} » Buffer to store the received data in
int county > Receive at most this many elements
MPI Datatype datatypej> Datatype of the received elements
int source} » Rank of the sender from whom it expects data
int tagp > The expected tag of the message

IMPI Comm communicatorp— Communicator of the sender
IMPI Status* statusp— Metadata assosciated with the message

CS302 — Spring 2025 Lec.4.1 - Slide 31

Things to note

¢ MPI Recv is also a blocking function call
¢ source can be MPI_ANY SOURCE to accept data from any sender

¢ tag can be MPI_ANY TAG to accept messages with any tag

& status contains further information:

o Who sent the message (can be used with MPI_ANY SOURCE)
o How much data was actually received (using MPI_GET COUNT)
o Tag of the message (can be used with MPI_ANY TAG)

o MPI_STATUS IGNORE can be used to ignore these additional information

CS302 — Spring 2025 Lec.4.1 - Slide 32

Using Message Status

& Status is a data structure allocated in the user’ s program.
¢ Especially useful with wild-cards to find out what matched:

int recvd tag, recvd from, recvd count;

MPI Status status;

MPI _Recv(..., MPI ANY SOURCE, MPI ANY TAG, ..., &status)
recvd tag = status.MPI TAG;

recvd from = status.MPI SOURCE;

MPI Get count(&status, datatype, &recvd count);

CS302 — Spring 2025 Lec.4.1 - Slide 33

MPI Datatypes

¢ An MPI datatype is recursively defined as:
o predefined, corresponding to a data type from the language (e.g., MPI_INT)

o a contiguous array of MPI datatypes

o a strided block of datatypes

o an indexed array of blocks of datatypes
o an arbitrary structure of datatypes

¢ There are MPI functions to construct custom datatypes, such an array
of (int, float) pairs, or a row of a matrix stored columnwise.

CS302 — Spring 2025 Lec.4.1 - Slide 34

Point-to-Point Communication Example

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{
int rank, size;
MPI Init(&argc, &argv);
MPI Comm rank(MPI_COMM WORLD, &rank);
MPI Comm size(MPI_COMM WORLD, &size); Standard MPl

Boilerplate

MPI Finalize();
return O;

}

CS302 — Spring 2025 Lec.4.1 - Slide 35

Point-to-Point Communication Example (1)

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])

{

int data, tag = 1;

if (rank == 0){
data = 42;
MPI_Send(&data, 1, MPI INT, 1, tag, MPI_COMM WORLD) ;
printf ("Message Sent: %d\n", data);

} else if(rank == 1) {

MPI_Recv(&data, 1, MPI_INT, O, tag, MPI_COMM WORLD, MPI_ STATUS IGNORE) ;
printf ("Message Received: %d\n", data);

}

CS302 — Spring 2025 Lec.4.1 - Slide 36

Point-to-Point Communication Example (2)

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])

{

int data, tag = 1;
if (rank == 0){
data = 42;
MPI_Send(&data, 1, MPI_INT, 1, tag, MPI_COMM WORLD) ;
printf ("Message Sent: %d\n", data);
} else if(rank == 1) {
MPI Recv(&data, 1, MPI_INT, MPI_ANY SOURCE, MPI_ANY TAG,
MPI_COMM WORLD, MPI_STATUS_IGNORE) ;
printf ("Message Received: %d\n", data);

}

CS302 — Spring 2025 Lec.4.1 - Slide 37

Compiling and Running MPI Programs

¢ Compilation:
o Regular applications: gcc prog.c -o prog
o MPI applications: mpicc prog.c -o prog

¢ Execution:
o Regular applications: . /prog
o MPI applications: mpiexec -np <nprocs> ./prog

¢ mpiexec acts as runtime system coordinating amongst all processes
¢ Exact commands will differ depending on the compiler used
¢ Examples on SCITAS during exercise session

CS302 — Spring 2025 Lec.4.1 - Slide 38

Communicating Arrays

¢ Approach 1:
int A[1000];
for(int i = 0; i < 1000; i++) {
MPI_Send(&A[i], 1, MPI_INT, rank, tag, MPI_COMM WORLD) ;

¢ Approach 2:
int A[1000];
MPI Send(A, 1000, MPI INT, rank, tag, MPI_COMM WORLD) ;

¢ Which approach is better?

CS302 — Spring 2025 Lec.4.1 - Slide 39

Communicating Arrays

¢ Approach 1: Sending elements one by one
o Each message has to be acknowledged by the receiver
o Overheads associated with each function call

¢ Approach 2: Sending entire array at once
o Overheads amortized over a single large function call
o However, large amount of data needs to be buffered and transmitted

¢ A hybrid approach is often best (e.g, chunks of 100 elements)
¢ Optimization knob in programs

CS302 — Spring 2025 Lec.4.1 - Slide 40

Latency and Bandwidth

¢ For short messages, latency dominates transfer time
¢ For long messages, the bandwidth term dominates transfer time

¢ Latency * bandwidth is the amount of buffer that exists in the
system — also referred to as critical message size

¢ Example: 50 us * 50 MB/s = 2500 bytes

o messages > 2500 bytes are bandwidth dominated
o messages < 2500 bytes are latency dominated

CS302 — Spring 2025 Lec.4.1 - Slide 41

Example: ping-pong (mpitutorial.com) 2 processes

int ping pong count = 0;
int partner rank = (rank + 1) % 2;
while (ping pong count < PING PONG LIMIT) ({
if (rank == ping pong count % 2) ({
// Increment the ping pong count before you send it
ping _pong count++;
MPI Send(&ping pong count, 1, MPI INT, partner rank, 0, MPI COMM WORLD) ;
printf ("%d sent and incremented ping pong count %d to %d\n", rank,
ping pong count, partner rank);
} else {
MPI Recv(&ping pong count, 1, MPI INT, partner rank, 0, MPI COMM WORLD,
MPI_STATUS IGNORE) ;
printf ("%d received ping pong count %d from %d\n", rank, ping pong count,
partner rank);

CS302 — Spring 2025 Lec.4.1 - Slide 42

Example: ping-pong (mpitutorial.com) 2 processes

first iteration second iteration

Q ! .Q G 2.@

CS302 — Spring 2025 Lec.4.1 - Slide 43

Example: ring (mpitutorial.com) n processes

int token;
if (rank !'= 0) {

MPI Recv(&token, 1, MPI INT, rank - 1, 0, MPI COMM WORLD, MPI_STATUS IGNORE) ;

printf ("Process %d received token %d from process %d\n", rank, token, rank - 1);
} else {
token = -1; // Set the token's value if you are process 0

MPI Send(&token, 1, MPI INT, (rank + 1) % size, 0, MPI_COMM WORLD) ;

// Now process 0 can receive from the last process.
if (rank == 0) {

MPI Recv(&token, 1, MPI INT, size - 1, 0, MPI_COMM WORLD, MPI STATUS IGNORE) ;
printf ("Process %d received token %d from process %d\n", rank, token, size - 1);

CS302 — Spring 2025 Lec.4.1 - Slide 44

Example: ring (mpitutorial.com) n processes

-1

é ! ,a ! ,a_,_.

CS302 — Spring 2025 Lec.4.1 - Slide 45

MPI| Functions So Far

¢ MPI Init()

¢ MPI Comm rank ()
¢ MPI Comm size()
¢ MPI Send()

¢ MPI Recv()

¢ MPI Get count()
¢ MPI Finalize()

¢ These functions are enough to write most MPI programs
¢ But need to consider other features for extracting performance

CS302 — Spring 2025 Lec.4.1 - Slide 46

Revisiting MP|l_Send and MPI_Recv

¢ MPI Send(void* message, ...)
¢ MPI Recv(void* data, ...)

¢ MPI_ Send is a blocking function call

o Does not return until the data in the message buffer has been copied
o Return of the call implies completion of the send procedure
o The memory location referenced by message cannot be reused until return

¢ MPI Recv is also a blocking function call
o Execution cannot continue until data is completely received

CS302 — Spring 2025 Lec.4.1 - Slide 47

Problems with Blocking Function Calls

¢ Problem 1: Deadlocks can happen if program not written correctly
o This is a correctness problem, not a performance problem

¢ For example, consider two processes communicating as follows:

if (rank == 0) {
MPI_Send(...);
MPI Recv(...);

} else i1if(rank == 1) {
MPI_Send(...);
MPI Recv(...);

CS302 — Spring 2025 Lec.4.1 - Slide 48

Deadlocks due to Blocking Function Calls

¢ Consider two processes communicating as follows:

ifkrank == 0) {

» Process 0 stuck sending data

(MPI_Send(...)s5

MPI Recv(...);
} else if(rank == 1) {

MPI Send(...)

-—> Process 1 also stuck sending data

MPI Recv(...);

¢ Both processes stuck sending data to each other
Neither process can invoke MPI_Recv to receive the data

CS302 — Spring 2025

Lec.4.1 - Slide 49

Simple Fix
¢ If order is known, simply order MPIl_Send and MPI_Recv correctly

if (rank == 0) {
MPI Send(...);
MPI Recv(...);
} else i1if(rank == 1) {
MPI Recv(...);
MPI Send(...);

}

¢ Not applicable to scenarios with variable communication patterns
¢ Requires programmer effort to ensure deadlocks do not arise

CS302 — Spring 2025

Lec.4.1 - Slide 50

Problems with Blocking Function Calls

¢ Problem 2: Performance penalty
o Note that this is not a correctness problem

¢ On calling MPI_Send/MPI_Recv, a process cannot do anything else

¢ Need to wait before transfer finishes before doing useful work

¢ Big performance penalty for programs with sparse communication

CS302 — Spring 2025 Lec.4.1 - Slide 51

Performance Problem due to Blocking

Process 0 Process 1
MPI_ Recv
Time
MPI_Send)
MPI_ Send
returns ~— Transfer finishes
MPI Recv
returns

v v
Sender Receiver

CS302 — Spring 2025 Lec.4.1 - Slide 52

Performance Problem due to Blocking

Process 0 Process 1
MPI_Recv
Time B

MPI_ Send

' — \/Vasted time
MPI_ Send

returns ——— Transfer finishes
MPI_Recv
returns

v v
Sender Receiver

CS302 — Spring 2025 Lec.4.1 - Slide 53

Non-Blocking Calls

¢ Non-blocking function calls return immediately after invocation
o Does not provide any guarantee on the status of the message
o Programmer needs to manually check for completion of mesage transfer

¢ Requires more programmer effort BUT
o Allows to overlap communication with computation
o Increase the efficiency and performance of the entire program

¢ This mode of communication is called asynchronous communication
¢ Critical to improve the performance of any message passing system

CS302 — Spring 2025 Lec.4.1 - Slide 54

Non-Blocking Send

MPI Send (MPI Isend (
void* message, void* message,
int count, int count,
MPI Datatype datatype, MPI Datatype datatype,
int dest, int dest,
int tag, int tag,
MPI Comm communicator) MPI Comm communicator,

MPI Request* req)

CS302 — Spring 2025 Lec.4.1 - Slide 55

Non-Blocking Send

MPI Send (MPI Isend (
void* message, void* message,
int count, int count,
MPI Datatype datatype, MPI Datatype datatype,
int dest, int dest,
int tag, int tag,
MPI Comm communicator) MPI Comm communicator,

‘////,MPI_Request* req)

The current sending status is available through
the request variable

CS302 — Spring 2025 Lec.4.1 - Slide 56

Non-Blocking Receive

MPI_Recv (

CS302 — Spring 2025

void* data,

int count,

MPI Datatype datatype,
int source,

int tag,

MPI Comm communicator,
MPI Status* status)

MPI Irecv (

void* data,

int count,

MPI Datatype datatype,
int source,

int tag,

MPI Comm communicator,
MPI Request* req)

Lec.4.1

- Slide 57

Non-Blocking Receive

MPI Recv (MPI Irecv (
void* data, void* data,
int count, int count,
MPI Datatype datatype, MPI Datatype datatype,
int source, int source,
int tag, int tag,
MPI Comm communicator, MPI Comm communicator,
MPI Status* status) ‘////,MPI_Request* req)

Along with status, contains information on completion

CS302 — Spring 2025 Lec.4.1 - Slide 58

Status of Non-blocking Calls

¢ Non blocking calls return immediately
o Do not wait for completion of data transfers
o Allows processes to make forward progress

¢ While data transfer is going on,
o Safe to compute on data not being used in the asynchronous communication
o Unsafe to compute on data being communicated

¢ Only compute on communicated data once transfer is complete
¢ We need a way to know if the data transfer has completed

CS302 — Spring 2025 Lec.4.1 - Slide 59

Example Benefit with Asynchronous Transfers

*bufl = 3; *bufl = 3;

MPI_Send(bufl, 1, MPI_INT, ..) MPI Isend(bufl, 1, MPI_INT, ..)
*buf2 = 4; *buf2 = 4;

/* Process waits before /* Process does not wait before

operating on different data */ moving on to different data */

CS302 — Spring 2025 Lec.4.1 - Slide 60

Example Problem with Asynchronous Transfers

*bufl = 3; *bufl = 3;

MPI_Send(bufl, 1, MPI INT, ..) MPI Isend(bufl, 1, MPI INT, ..)
*bufl = 4; *bufl = 4;

/* This is ok, receiver will /* This is non-deterministic,
always receive 3 */ receiver can get either 3 or 4

*/

CS302 — Spring 2025 Lec.4.1 - Slide 61

Testing the Status of Non-Blocking Calls

The request variable returned by a

MPI Test (.
- non-blocking call
MPI Request* requesty
int* flag, » \Whether operation is complete or not
MPI Status* status) _
The associated metadata of the

operation, same as seen before

¢ Returns (immediately) the status of a non-blocking function call

¢ If £flag == 0, then the operation is not yet complete
¢ If £flag == 1, then the operation is complete
¢ status contains valid information only when £flag ==

CS302 — Spring 2025 Lec.4.1 - Slide 62

Testing the Status of Non-Blocking Calls

MPI Wait (The reque_st varlab_le returned by a
— non-blocking function
MPI Request* requesty
MPI Status* status)

The assosciated metadata of the
operation, same as seen before

¢ This function waits until the operation is completed
¢ Once complete, the function returns the status of the operation

+ Note that a non-blocking function followed by MPI Wait is equivalent
to its blocking variant.

CS302 — Spring 2025 Lec.4.1 - Slide 63

Testing Multiple Completions

¢ It is sometimes desirable to wait on multiple requests:
o MPI Waitall (count, array of requests, array of statuses)
o MPI Waitany(count, array of requests, &index, &status)

o MPI Waitsome (count, array of requests, array of indices,
array of statuses)

¢ There are corresponding versions of MPI_Test for each of these.

CS302 — Spring 2025 Lec.4.1 - Slide 64

Example Program Using Non-Blocking Calls

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])

{

if (rank == 0){
for(i = 0; i < 100; i++) {
data[i] = compute (i)
MPI Isend(&data[i], 1, MPI INT, 1, 0, MPI COMM WORLD, &request[i]);
}
MPI Waitall (100, request, MPI_ STATUSES IGNORE) ;
} else {
for(i = 0; i < 100; i++)
MPI Irecv(&data[i], 1, MPI INT, O, 0, MPI COMM WORLD, &respl[i]);
MPI Waitall (100, resp, MPI_STATUSES IGNORE) ; - B

}

CS302 — Spring 2025 Lec.4.1 - Slide 65

Example Program Using Non-Blocking Calls

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])

{ compute of i=2 can start before
J:.;(rank == 0) { Sending 1=1 Completes
for(i =0, i < 100, i++) {

|data[i] = compute (i) ;

MPI Isend(&data[i], 1, MPI INT, 1, 0, MPI COMM WORLD, &request[i]);

}
MPI Waitall (100, request, MPI_ STATUSES IGNORE) ;

} else {
for(i = 0; i < 100; i++)
MPI Irecv(&data[i], 1, MPI_ INT, O, 0, MPI COMM WORLD, &resp[i]);
MPI Waitall (100, resp, MPI_STATUSES IGNORE) ;

}

CS302 — Spring 2025 Lec.4.1 - Slide 66

Example Program Using Non-Blocking Calls

#include "mpi.h"
#include <stdio.h> _
int main(int argc, char *argv[]) Wait once all data has

{ been sent out

if (rank == 0){
for(i = 0; i < 100; i++) {
data[i] = compute (i)
MPI Isend(&data[i], 1, MPI INT, 1, 0, MPI ¢OMM WORLD, &request[i]);
}
[MPI_Waitall(lOO, request, MPI_ STATUSES IGNORE) ;
} else {
for(i = 0; i < 100; i++)
MPI Irecv(&data[i], 1, MPI INT, O, 0, MPI COMM WORLD, &respl[i]);
MPI Waitall (100, resp, MPI_STATUSES IGNORE) ; - B

}

CS302 — Spring 2025 Lec.4.1 - Slide 67

Communication Patterns

¢ So far, we have only looked at point-to-point communication
¢ What if processes need to communicate to all ?

0O

two processes

Q O

P3 P3

Lec.4.1 - Slide 68

all processes

CS302 — Spring 2025

Collective Communications

¢ Communications involving all processes within a communicator
¢ May involve computation on intermediate communicated data

¢ Things to consider:

o Which data to send to which process?
o How to accumulate multiple sources of data?
o How to best optimize for performance?

¢ Some patterns are common for many Al algorithms
¢ These patterns have dedicated primitives in all MPI systems

CS302 — Spring 2025 Lec.4.1 - Slide 69

Broadcast

¢ Send the same data to all processes in the group

CS302 — Spring 2025 Lec.4.1 - Slide 70

Broadcast

int MPI Bcast (

» Pointer to broadcasted data

|[void *buffer,}

» Number of broadcasted elements

|[int count,}

MPI Datatype datatype,

[int root,}
lMPI_Comm comm})

» Rank of process that will broadcast
» Communicator in which to broadcast

¢ root process will send the data from buffer

¢ Other processes in the communicator will receiver the data in buffer
o Note: buffer for each process are all unique

CS302 — Spring 2025

Lec.4.1 - Slide 71

Scatter

¢ Send elements in an array to consecutive processes in a group

CS302 — Spring 2025 Lec.4.1 - Slide 72

Scatter

int MPI Scatter (

lconst void *sendbuf,| > Address of send buffer (for root process)
lint sendcount,} > Number of elements to send to each
MPI Datatype sendtype, Process

void *recvbuf | » Buffer in which to receive data

lint recvcount,} » Number of elements to receive

MPI Datatype recvtype,

int root » Rank of sending process

MPI Comm comm)jpe — Communicator in which to scatter

¢ sendcount * num processes = total count of data to scatter
¢ Data is transmitted in increasing order of process rank

CS302 — Spring 2025 Lec.4.1 - Slide 73

Gather

¢ Gathers elements from consecutive processes in group into an array

CS302 — Spring 2025 Lec.4.1 - Slide 74

Gather

int MPI Gather (

const void *sendbuf,
int sendcount,

MPI Datatype sendtype,
void *recvbuf,

int recvcount,

MPI Datatype recvtype,
int root,

MPI Comm comm)

int MPI Scatter (

const void *sendbuf,
int sendcount,

MPI Datatype sendtype,
void *recvbuf,

int recvcount,

MPI Datatype recvtype,
int root,

MPI Comm comm) X

¢ Same parameters as scatter but works in reverse
¢ root process receives data from all processes in recvbuf

CS302 — Spring 2025

Lec.4.1 - Slide 75

Reduce

¢ Takes an array of input elements on each process

¢ Returns an array of output elements to the root process
o Given a specific operation

MPI_Sum

CS302 — Spring 2025 Lec.4.1 - Slide 76

Reduce

int MPI Reduce (

lconst void *sendbuf,} » Address of send buffer

void *recvbuf,} > Address of receive buffer

lint count, | > Number of elements to be sent for

MPI Datatype datatype, reduction by each process

MPI Op op,} » The reduction operation to perform

lint root, | » The rank of the process that receives the
MPI Comm comm) reduced data

¢ MPI Op can be many common operations such as MPI_MAX,
MPI_ MIN, MPI SUM, MPI PROD, etc.

¢ Custom reduction operations can also be defined

CS302 — Spring 2025 Lec.4.1 - Slide 77

AllIReduce

¢ Similar to reduce but results are distributed to all processes

CS302 — Spring 2025

MPI_Sum

16

18

Lec.4.1 - Slide 78

AllIReduce

int MPI Allreduce (int MPI Reduce (
const void *sendbuf, const void *sendbuf,
void *recvbuf, void *recvbuf,
int count, int count,
MPI Datatype datatype, MPI Datatype datatype,
MPI Op op, MPI Op op,
MPI Comm comm) int root,

MPI Comm comm)

¢ Same parameters as MPI_Reduce but no root process
¢ Equivalent to reducing first and then broadcasting result

CS302 — Spring 2025 Lec.4.1 - Slide 79

Summary

¢ Message passing model allows multi-node scalability

¢ MPI provides easy to use functions to parallelize programs
o Higher programmer effort compared to OpenMP
o More control and improved scalability compared to OpenMP

¢ Non blocking functions can be used for asynchronous communication

¢ Collectives provide a big benefit for common communication patterns

CS302 — Spring 2025 Lec.4.1 - Slide 80

