CS302

SIMD and Vector

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

[Arelic CRAY-1 at EPFL]

Adapted from slides originally developed by Prof. Falsafi
Copyright 2025

CS302 — Spring 2025 Lec.3.2 - Slide 1

Where are We?

M T W T F
17-Feb
24-Feb ¢ SIMD & Vector
3-Mar) ¢ SIMD execution model
Ll 12:Maf ¢ Examples in modern processors
17-Mar
24-Mar
31-Mar ¢ Exercise session
e ¢ Performance debuggin
gging
21-Apr
28-Apr 30-Apr
5-May ¢ Next Tuesday:
12-May 14-May ¢ Message Passing
19-May 21-May |

26-May

CS302 — Spring 2025 Lec.3.2 - Slide 2

Taxonomy of Computer Architectures

¢ Michael J. Flynn — 1966/72

Instruction Streams

Single Multiple
Single SISD MISD
(CPU) (Systolic Arrays)
Data Multiple SIMD MIMD
Streams (CPU SIMD/Vector Units, | (Cellphone/laptop chips
Al Accelerator with CPU/GPU/AL,
SIMD/Vector Units, GPUs) Multicores, Clusters)

CS302 — Spring 2025 Lec.3.2 - Slide 3

SISD: Most Common Model

¢ Single processing element, instruction and data streams

o Uniprocessors
* You will have covered basic CPU architecture in your previous courses

¢ Warmup: is it possible to have concurrency/parallelism in a SISD
processor?

CS302 — Spring 2025 Lec.3.2 - Slide 4

SISD: Most Common Model

¢ Single processing element, instruction and data streams

o Uniprocessors
* You will have covered basic CPU architecture in your previous courses

¢ Warmup: is it possible to have concurrency/parallelism in a SISD
processor?

o Yes!
o Pipelined, superscalar or out-of-order processors

CS302 — Spring 2025 Lec.3.2 - Slide 5

MIMD: Parallel but Independent

¢ Multiple processing elements, instruction and data streams
o Multiprocessors

¢ Previous lecture introduced shared memory programming
o Prog. model is a way to specify the instruction & data streams

|-Stream D-Stream

Shared

CS302 — Spring 2025 Lec.3.2 - Slide 6

SIMD: Data Parallelism

¢ Multiple processing units & data streams, single instruction stream
o Motivation — reduce fetching and writing back operands from/to memory

o Typical scientific computing - iterate over millions-trillions of elements

o First commercial machines — Vector processors in 1960/70s
* ILLIAC IV ('66), Cray-1/XMP48 (‘77)

A relic CRAY-1 at EPFL!

Lec.3.2 - Slide 7

CS302 — Spring 2025

Why SIMD?

¢ Many workloads: simple arithmetic on huge, regular datasets

o E.g., systems of linear equations (LINPACK/LAPACK for supercomputers)

o They reduce to loops similar to the following:
* Double-Precision A.X +Y called DAXPY

CS302 — Spring 2025

void daxpy(int n, double a, double *x, double *y)

{

for(int 1

}

yl[i]

0; i < n; i++) {
a * x[1] + yl[1];

Lec.3.2 - Slide 8

Recall: Basic Scalar Pipeline

Instruction Instruction Execute Memory Write back
Fetch Decode/ Access Result
Operand
Fetch —
I
IF ID - > MEM @ WB
3 EXE
[/

¢ Instructions fetched, decoded

¢ Operands from register file, execution in ALUs (arithmetic logic unit)
¢ Memory access in data cache
¢ Write results back to register file

CS302 — Spring 2025 Lec.3.2 - Slide 9

Scalar Code Hits von Neumann Bottleneck

¢ For every loop iteration:
o Load x][i] and y[i] into registers
o Calculate a*x[i] + y[i]
o Write back register into y]i]

¢ How many instructions for a
DAXPY of size 10247

¢ How many serialized cache
misses? (w/ 64B cache lines)

CS302 — Spring 2025

(Assume a word and a register is 64 bits)
; x[] -> r2, Y[] -> r3

; a —> r4,
; & [n] -> rb5

loop:
1w
1w
mul
add
SW
add
add
bne

rl,
r6,
rl,
r6,
r6,
r2,
r3,
r2,

0(r2)
0(xr3)
rl, r4
rl, ré6
0(xr3)
r2, 8
r3, 8
r5, loop

N~ N~ ~ e oo e

load x[1i]
load y[1i]
a*x[i]

. + y[1i]
store y[i]

Lec.3.2 - Slide 10

Scalar Code Hits von Neumann Bottleneck

¢ For every loop iteration:
o Load x][i] and y[i] into registers
o Calculate a*x[i] + y[i]
o Write back register into y]Ji]

¢ How many instructions for a

DAXPY of size 10247
o 8 %1024 = 8192

¢ How many serialized cache
misses? (w/ 64B cache lines)

CS302 — Spring 2025

(Assume a word and a register is 64 bits)
; x[] -> r2, Y[] -> r3

; a —> r4,
; & [n] -> rb5

loop:
1w
1w
mul
add
SW
add
add
bne

rl,
r6,
rl,
r6,
r6,
r2,
r3,
r2,

0(r2)
0(xr3)
rl, r4
rl, ré6
0(xr3)
r2, 8
r3, 8
r5, loop

N~ N~ ~ e oo e

load x[1i]
load y[1i]
a*x[i]

. + y[1i]
store y[i]

Lec.3.2 - Slide 11

Scalar Code Hits von Neumann Bottleneck

¢ For every loop iteration:
o Load x][i] and y[i] into registers
o Calculate a*x[i] + y[i]
o Write back register into y]Ji]

¢ How many instructions for a
DAXPY of size 10247

¢ How many serialized cache
misses? (w/ 64B cache lines)

o Size of double = 8B

o 64B, 8 elements per block, 2 blocks
—27%1024 / 8 = 256

CS302 — Spring 2025

(Assume a word and a register is 64 bits)
; x[] -> r2, Y[] -> r3

; a —> r4,
; & [n] -> rb5

loop:
1w
1w
mul
add
SW
add
add
bne

rl,
r6,
rl,
r6,
r6,
r2,
r3,
r2,

0(xr2)
0(xr3)
rl, r4

0(xr3)
r2, 8
r3, 8
r5, loop

; load x[1i]
; load y[i]
; a*x[1i]

rl, r6 ; ..

+ yl[1i]

; store y[1i]

Lec.3.2 - Slide 12

Hardware Limits ILP for Scalar Loops

¢ Each iteration of the DAXPY loop is completely independent

¢ Out-of-order (O00Q) processors unroll loop and begin new iterations
o DAXPY loop is memory bound
o Rough estimate of re-order buffer (ROB) size is ~500
o Loop contains 8192 instructions, only ~6% in ROB at a time

¢ ROB cannot hold all instructions even with a very small vector (1k)

¢ Silicon area & power scales quadratically for bigger OoO windows
o Problem: our ISA is only letting us specify a single operation at a time
o No need to duplicate control for such simple programs

CS302 — Spring 2025 Lec.3.2 - Slide 13

Enter Vector Supercomputers (1970s)

¢ First generation of commercial SIMD machines
¢ Vector ISAs define operations on arrays of numbers: "vectors"

SCALAR VECTOR
(1 operation) (N operations)

w 3
?

Actor

length

mul r3, r1, r2 mul.v v3, v1, v2

CS302 — Spring 2025 Lec.3.2 - Slide 14

Basic Vector Pipeline

Instruction Instruction Execute Memory Write back
Fetch Decode/ Access Result
Operand
Fetch
I
|F = |
ID | MEM WB
ol B

CS302 — Spring 2025 Lec.3.2 - Slide 15

Basic Vector Pipeline

Write back
Result

Instruction Instruction Execute Memory
Fetch Decode/ Access
Operand
Fetch
| | 1
III ;é MEM
ol B

¢ One instruction, for an array of register operands
o E.qg., 8 vector registers each with 64x64-bit elements in Cray-1

CS302 — Spring 2025

WB

Lec.3.2 - Slide 16

Basic Vector Pipeline

Instruction Instructio Execute Memory Write back
Fetch Decode/ Access Result
Operand
Fetch
I
|F = |
ID | MEM WB
ol B

¢ Multiple execution units
¢ Wider memory to read/write multiple data

CS302 — Spring 2025 Lec.3.2 - Slide 17

Vector Processors Address CPU Limitations

¢ Single instruction represents many computations
o Greatly reduces instruction bloat

¢ Simplifies dependency checking

o Only check data hazards for vector operands, not each sub-element
o No more complex than scalar code

¢ Known access patterns potentially reduce cache misses
o €.g., vector load of 64x 8B entries brings 8 cache blocks simultaneously

¢ Reduced control hazards due to fewer branches

CS302 — Spring 2025 Lec.3.2 - Slide 18

A Basic Vector Processing Architecture

Scalar Registers

CS302 — Spring 2025

Vector Registers

|_I_

Memory [«—

Vector
Load & Store

Functional Units

FP Add/Sub

FP Mul/Div

M

Integer

Common Data Bus

Lec.3.2 - Slide 19

Vector Functional Unit Design

¢ Choice 1 - each functional unit is pipelined
o Begins processing a new vector element every clock cycle

¢ Choice 2 - multiple lanes in a single functional unit
o Multiple hardware units, each executing independent elements of the vector

¢ How is the design of vector register file & common buses affected?
o Multi-lane design increases num. ports required
o Pipelined designs consume 2 elements/cycle BW in total
o Multi-lane designs multiply BW by the lane-width

CS302 — Spring 2025 Lec.3.2 - Slide 20

Example Vector Instructions

Each vector register contains many scalar values
o e.g., a vector register V has 64 scalars

So,
mul.v v1l,v2,v1l Vector dot product v1*v2
mul.sv v1,r1, vl multiplies scalar r1 to all elements of v1
lw.v v1, 0(r1) loads vector v1 from address r1
SW.V v1, 0(r1) stores vector v1 at address r1

CS302 — Spring 2025 Lec.3.2 - Slide 21

Vectorized DAXPY Loop

¢ Assumption:
o Compute 64 elements at a time

¢ How many instructions for
N =10247

¢ How many serialized cache
misses? (w/ 64B cache lines)

CS302 — Spring 2025

;o x[]1 -> r2, Y[] -> r3

; a —-—> r4,

; & [n] -> r5

loop:
lw.v
lw.v
mul.sv
add.v
SW.V
add
add
bne

vl,
v2,
vl,
vl,
vl,
r2,
r3,
r2,

0(r2)
0(xr3)
rd, vl
vl, v2
0(xr3)
r2, 512
r3, 512
r5, loop

Ne Ne Ne Ne Ne Ne

load x[1i]
load y[1i]
a*x[i]

. + y[i]
store y[i]
64*8

Lec.3.2 - Slide 22

Vectorized DAXPY Loop

¢ Assumption:
o Compute 64 elements at a time

¢ How many instructions for
N =10247
o 8*(1024 /64) =128
o 64x reduction over scalar

¢ How many serialized cache
misses? (w/ 64B cache lines)

o Vector load brings 64 elements at
a time, equivalent to 8 cache lines

o27(1024 /64) =32

CS302 — Spring 2025

;o x[]1 -> r2, Y[] -> r3

; a —-—> r4,

; & [n] -> r5

loop:
lw.v
lw.v
mul.sv
add.v
SW.V
add
add
bne

vl,
v2,
vl,
vl,
vl,
r2,
r3,
r2,

0(r2)
0(xr3)
rd, vl
vl, v2
0(xr3)
r2, 512
r3, 512
r5, loop

14

. Ne Ne Ne Ne Ne

load x[1i]
load y[1i]
a*x[i]

. + y[i]
store y[i]
64*8

Lec.3.2 - Slide 23

Evolution of Vector Processors

¢ Vector processors for supercomputers died in 1980s
o Require a completely different architecture/hardware

o Compilers can help vectorize code
o But not all code is vectorizable

¢ Vector execution in CPUs

o use SIMD principles with regular registers
* E.g., a 64-bit wide scalar register becomes a 16-elem. 4-bit vector register

o Historical perspective: "SIMD within a register” proposed in 1950s
* Intel MMX extensions released 1997

¢ Custom Vector processors on chip

o Tensor cores in GPUs (covered later)
o Al accelerator units in CPUs (e.g., Intel Sapphire Rapid)

CS302 — Spring 2025 Lec.3.2 - Slide 24

CPU Vector vs. SIMD Extensions?

¢ Vector and SIMD extensions in CPU ISAs

o "Vector” and “SIMD” as words are used interchangeably
o Marketing/branding (similar to CPU vs. GPU cores) except for RISC-V

¢ ldea: use SIMD principles with regular registers

o E.g., a 64-bit wide scalar register becomes a 16-elem. 4-bit vector register
* Limited changes required to existing processors
* Allow vector computation on these short-width vectors

o Regular registers referred to as “vector” registers

CS302 — Spring 2025 Lec.3.2 - Slide 25

Basic SIMD Pipeline: "Poor man’s™ Vector processor

Instruction Instruction Execute Memory Write back
Fetch Decode/ Access Result
Operand
Fetch \‘_

IF 1D MEM WB

P

CS302 — Spring 2025 Lec.3.2 - Slide 26

Basic SIMD Pipeline: "Poor man’s” Vector processor

Instruction Instruction Execute Memory Write back
Fetch Decode/ Access Result
Operand
Fetch
IF ID MEM WB

¢ Use existing register operands, divide them into smaller operands
o E.g., one 64-bit registers — four 16-bit registers

CS302 — Spring 2025 Lec.3.2 - Slide 27

Basic SIMD Pipeline: "Poor man’s” Vector processor

Instruction Instruction Execute Memory Write back
Fetch Decode/ Access Result
Operand
Fetch

1D

¢ Use existing reqister file, memory, data path
o Execution units are “bit-sliced”. designed to operate on smaller operands

CS302 — Spring 2025 Lec.3.2 - Slide 28

SIMD in Modern CPUs

X806:
o SSEZ2 instructions: 128-bit operations (2x64, 4x32, 8x16, 16x8)
o AVX instructions: 256-bit operations (8x32 or 4x64 bits)
o AVX512 instructions: 512-bit operations (16x32 or 8x64 bits)

ARM: Neon instructions: 64-bit operations (2x32, 4x16, 8x8)

RISC-V: Vector extensions: implementation specific
o LMUL * VLEN bit operations, each element SEW bits
o VLEN is a hardware parameter and LMUL and SEW can be configured by

software
o Designed this way to prevent ISA bloat

CS302 — Spring 2025 Lec.3.2 - Slide 29

History of x86 SIMD Extensions

CS302 — Spring 2025

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

width 64 bit

4 singles = 128 bit

2 doubles = 128 bit
SSE family

4 doubles = 256 bit
AVX/AVX2

8 doubles = 512 bit
AVX-512

Intel x86

integer only

x86-16

x86-32

MMX

SSE

SSE2
SSE3

Xx86-64

SSE4

AVX
AVX2

AVX-512

Processors (subset)

8086
286

386

486

Pentium
Pentium MMX
Pentium Il
Pentium 4
Pentium 4E

Pentium 4F

Core 2
Penryn

Core i3/5/7
Sandy Bridge
Haswell

Skylake-X

time

[Credit: Markus Pischel, ETHZ]

Lec.3.2 - Slide 30

What do we need from the hardware?

¢ Vector Registers
o To store multiple elements of a vector in a single register

¢ Replicated functional units inside the pipeline of a core
o To operate on the elements of a vector register in parallel

¢ Support for decoding new instructions
¢ Memory system changes to load and store variable bitwidth elements

CS302 — Spring 2025 Lec.3.2 - Slide 31

AV X Registers: 16 256-bit reqgisters

Integer vectors

32-way byte
16-way 2 bytes
8-way 4 bytes
4-way 8 bytes

Floating-point vectors

8-way single
4-way double

Floating-point scalars

single
double

CS302 — Spring 2025 Lec.3.2 - Slide 32

AV X Registers: 16 256-bit registers

Integer vectors

32-way byte
16-way 2 bytes
8-way 4 bytes
4-way 8 bytes

Floating-point vectors

8-way single
4-way double

Unused

Floating-point scalars
single
double

CS302 — Spring 2025 Lec.3.2 - Slide 33

AV X Instructions

¢ AV X instructions operate on the vector registers
¢ Instructions define how the hardware interprets register contents

¢ Six categories of instructions:
o Arithmetic
o Logical/Bitwise
o Data Movement
o Shuffle/Permute
o Blend/Mask
o Scatter/Gather

CS302 — Spring 2025 Lec.3.2 - Slide 34

Interpreting AVX Instructions

double-
precision

CS302 — Spring 2025 Lec.3.2 - Slide 35

Interpreting AVX Instructions

single-
precision

CS302 — Spring 2025 Lec.3.2 - Slide 36

Interpreting AVX Instructions

single-
porecision

CS302 — Spring 2025 Lec.3.2 - Slide 37

How to use AVX instructions?

¢ Use libraries with support for AVX instructions
¢ E.g., Intel MKL, OpenBLAS, etc

¢ Auto-compile code with AVX support
¢ E.g., using -O3 when compiling C code

¢ Manually use intrinsics in code
¢ Function-like macros that directly map to AVX instructions

¢ Write assembly code ©

CS302 — Spring 2025 Lec.3.2 - Slide 38

Auto-Compilation Challenge 1: Aliasing

void daxpy(int n, double a, double *x, double *y)
{

for(int 1
yl[i]

0; 1 < n; i++) {
a * x[1] + yl[1];

}
}

¢ To allow easy detection and optimization by the compiler, loop
iterations need to be independent of each other

¢ Does the compiler know if pointers x and y point to different memory
locations?

CS302 — Spring 2025 Lec.3.2 - Slide 39

Auto-Compilation Challenge 1: Aliasing

void daxpy(int n, double a, double *x, double *y)

{

}

for(int 1

}

yl[i]

0;

i < n;
= a * x[1] + yl[1]’

i++) {

¢ Any overlap between pointers x and y can result in the loop iterations
not being independent of each other.

¢ For example:

CS302 — Spring 2025

x[0] x[1] x[2] x[3] x[4] x[5] x[n-1]
y[0] y[1] y[2] y[3] y[4] y[5] y[n-1]
Memory locations —

Lec.3.2 - Slide 40

Solutions to Overcome Aliasing

¢ Solution 1: Use compiler flags
o Flags like -fstrict-aliasing reinforce the C99 aliasing rules

¢ Solution 2: Declare pointers with the restrict keyword
o Tells the compiler that these pointers do not overlap in memory

¢ Programmer’s responsibility to ensure no aliasing can happen

void daxpy(int n, double a, double *restrict x, double *restrict y)

{

for(int i

O; i < n; i++) {
yl[i] a

* x[1] + yl[i];

}
}

CS302 — Spring 2025 Lec.3.2 - Slide 41

Auto-Compilation Challenge 2: Alignment

¢ Modern DRAM accesses are per 32-bit words (four bytes)

¢ For best performance, accesses to vector elements should be aligned
¢ For example, to load an 8-element 32-bit vector:

o Case 1: Need three loads to load an misaligned vector

| | =rol [xr11 | =x[2] | x[3] | x(4] | x[5] | x[6] |=[71] | |
o Case 2: Need two loads to load an aligned vector

101 [%121 | (21 [<031 [=041 [151 | %61 | w071

¢ This is a performance issue that cannot be optimized by compiler

CS302 — Spring 2025 Lec.3.2 - Slide 42

Solutions to Overcome Misalignment

¢ In C use aligned alloc when allocating arrays
¢ Use attribute ((aligned(32))) for static arrays

¢ If arrays are not aligned, compiler will try to “peel” the loop:

double *x = (double *) malloc(n * sizeof (double)) ;
peel = (unsigned long) x & Ox1f; /* x mod 32 */
if (peel !'= 0) {

peel = (32 - peel)/sizeof (double);

for (int i = 0; i < peel; i++) { /* initial segment */
<code>
}
}
for (int i = peel; i < n; i++) { /* 32-byte aligned access */

<code>
}

CS302 — Spring 2025

Lec.3.2 - Slide 43

Miscellaneous Issues to Take Care Of

¢ Loops with number of iterations known at runtime
o Compiler may be able to generate code to deal with corner cases

¢ No if-else statements or diverging conditions inside loops
¢ However, can be cleverly implemented using bitmasks

¢ Loop iterations should be independent of each other

¢ Avoid function calls from within loop body
¢ Compiler may skip vectorization depending on the function

+ |deally, use unit stride in innermost loop

CS302 — Spring 2025 Lec.3.2 - Slide 44

AV X Intrinsics

¢ In some cases, auto-compilation with AVX support not enough
¢ Developers must manually optimize code with “intrinsics”

¢ What are intrinsics?
¢ Specialized, function-like calls that directly map to specific CPU instructions
¢ Inlined upon compilation: no runtime overhead
¢ Include custom datatypes that map to vector registers

CS302 — Spring 2025 Lec.3.2 - Slide 45

AV X Intrinsics Data Types

Type Meaning

_ _m256 8x single-precision floats

__m256d 4x double-precision floats

__m250i 32x 8-bit / 16x 16-bit / 8x 32-bit / 4x 64-bit integers
~ _m128 4x single-precision floats

~_m128d 2x double-precision floats

CS302 — Spring 2025

Lec.3.2 - Slide 46

AV X Intrinsics Functions

@@@ type paraml, type param2, type param3)

Type of the returned vector

Operation to do, eg, add, sub, load, mul, etc

Prefix for working on the 256-bit registers

CS302 — Spring 2025 Lec.3.2 - Slide 47

AV X Intrinsics Functions

~_mm256 op suffix(type paraml, type param2, type param3)

suffix Meaning

ps/pd/sd Packed single / packed double / scalar double

ep{X}x =3 16, 32, 64 | Packed 8-bit / 16-bit / 32-bit / 64-bit signed integers

epu{X}ix = s, 16, 32 64 | Packed 8-bit / 16-bit / 32-bit / 64-bit unsigned integers

Si256 Scalar 256-bit integer

CS302 — Spring 2025 Lec.3.2 - Slide 48

AVX Intrinsics Functions: Example

void daxpy(int n, double a, double *x, double *y)

{
for(int 1 = 0; 1 < n; i++) {
y[i] = a * x[1] + y[1]:;
}

CS302 — Spring 2025 Lec.3.2 - Slide 49

AV X Intrinsics Functions: Example

void daxpy (int n, double a, double *x, double *y)

{

}

CS302 — Spring 2025

// Convert a to vector

double vecA[4]

// Process in chunks of 4 doubles

for(int 1 =

KKK

(1]

[i+1]
[i+2]
[i+3]

0; i < n; i+=4) { //

= {a, a,

vecA[1]
vecA[i+1]
vecA[i+2]
vecA[i+3]

a,

*

*
*
*

X

I

a};

(1]

(i+1]
[i+2]
[i+3]

Assume n is div by 4

+

+
+
+

y

KK

(1] ;
(1+1];
(1+2] ;

(1+3] ;

Lec.3.2 - Slide 50

AV X Intrinsics Functions: Example

__m256d vecA = mm256 set pd(a, a, a, a);

for(int 1 = 0; 1 < n; i+=4) {
__m256d vecX = mm256 load pd(&x[i]); // Load x[i]..x[i+3]
__m256d vecY = mm256 load pd(&y[i]); // Load y[i]..y[i+3]

__m256d vecZ = mm256 mul pd(vecA, vecX); // Compute a*x
vecY = mm256 add pd(vecZ, vecY); [/ . +y

// Store result back to y
_mm256 store pd(&y[i], vecY);

CS302 — Spring 2025 Lec.3.2 - Slide 51

AVX Intrinsics Functions: Speedup

DAXPY with 1B elements

EeN
1

4.6X
speedup!

W
1

Execution Time (secs)

—
1

302 - Spring 2025 Normal C Code C Code with AVX Intrinsics Lec3.2 . Slide 52

Summary

¢ SIMD: Data-level parallelism (one instruction, multiple data)
¢ Occurs inside a single core with hardware support
¢ Fine-grained parallelism on array/vector elements
¢ No synchronization overhead
¢ Vector and SIMD in CPU are used interchangeably

¢ Compiler can help generate code

¢ Not all code is vectorizable by compilers
¢ Developers often directly write their own vector code

CS302 — Spring 2025 Lec.3.2 - Slide 53

