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Where are We?

u SIMD & Vector
u SIMD execution model
u Examples in modern processors

u Exercise session
u Performance debugging

u Next Tuesday:
u Message Passing 
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Taxonomy of Computer Architectures

Instruction Streams
Single Multiple

Data 
Streams

Single SISD
(CPU)

MISD
(Systolic Arrays)

Multiple SIMD
(CPU SIMD/Vector Units, 

AI Accelerator 
SIMD/Vector Units, GPUs)

MIMD
(Cellphone/laptop chips 

with CPU/GPU/AI, 
Multicores, Clusters)

u Michael J. Flynn – 1966/72
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SISD: Most Common Model

u Single processing element, instruction and data streams
o Uniprocessors
• You will have covered basic CPU architecture in your previous courses

u Warmup: is it possible to have concurrency/parallelism in a SISD 
processor?
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SISD: Most Common Model

u Single processing element, instruction and data streams
o Uniprocessors
• You will have covered basic CPU architecture in your previous courses

u Warmup: is it possible to have concurrency/parallelism in a SISD 
processor?
o Yes!
o Pipelined, superscalar or out-of-order processors 
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MIMD: Parallel but Independent

u Multiple processing elements, instruction and data streams
o Multiprocessors

u Previous lecture introduced shared memory programming
o Prog. model is a way to specify the instruction & data streams

C

Mem

I-Stream D-Stream
C

Mem
…

Shared
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SIMD: Data Parallelism

u Multiple processing units & data streams, single instruction stream
o Motivation – reduce fetching and writing back operands from/to memory
o Typical scientific computing - iterate over millions-trillions of elements
o First commercial machines → Vector processors in 1960/70s
• ILLIAC IV (’66), Cray-1/XMP48 (‘77)

A relic CRAY-1 at EPFL!
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Why SIMD?

u Many workloads: simple arithmetic on huge, regular datasets
o E.g., systems of linear equations (LINPACK/LAPACK for supercomputers)
o They reduce to loops similar to the following:
• Double-Precision A.X + Y called DAXPY

void daxpy(int n, double a, double *x, double *y)
{
 for(int i = 0; i < n; i++) {
  y[i] = a * x[i] + y[i];
 }
} 
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Recall: Basic Scalar Pipeline

u Instructions fetched, decoded
u Operands from register file, execution in ALUs (arithmetic logic unit)
u Memory access in data cache
u Write results back to register file

IDIF
EXE

WB

Instruction 
Fetch

Instruction 
Decode/
Operand

Fetch

Execute Memory
Access

Write back
Result

re
g

re
g re

gMEMre
g
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Scalar Code Hits von Neumann Bottleneck

u For every loop iteration:
o Load x[i] and y[i] into registers
o Calculate a*x[i] + y[i]
o Write back register into y[i]

u How many instructions for a 
DAXPY of size 1024?

u How many serialized cache 
misses? (w/ 64B cache lines)

; x[] -> r2, y[] -> r3 
; a -> r4,
; &x[n] -> r5

loop:
  lw   r1, 0(r2)  ; load x[i]
  lw   r6, 0(r3)  ; load y[i]
  mul   r1, r1, r4 ; a*x[i]
  add   r6, r1, r6 ; … + y[i]
  sw    r6, 0(r3)  ; store y[i]
  add   r2, r2, 8
  add   r3, r3, 8
  bne   r2, r5, loop

(Assume a word and a register is 64 bits)
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Scalar Code Hits von Neumann Bottleneck

u For every loop iteration:
o Load x[i] and y[i] into registers
o Calculate a*x[i] + y[i]
o Write back register into y[i]

u How many instructions for a 
DAXPY of size 1024?
o 8 * 1024 = 8192

u How many serialized cache 
misses? (w/ 64B cache lines)

; x[] -> r2, y[] -> r3 
; a -> r4,
; &x[n] -> r5

loop:
  lw   r1, 0(r2)  ; load x[i]
  lw   r6, 0(r3)  ; load y[i]
  mul   r1, r1, r4 ; a*x[i]
  add   r6, r1, r6 ; … + y[i]
  sw    r6, 0(r3)  ; store y[i]
  add   r2, r2, 8
  add   r3, r3, 8
  bne   r2, r5, loop

(Assume a word and a register is 64 bits)
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Scalar Code Hits von Neumann Bottleneck

u For every loop iteration:
o Load x[i] and y[i] into registers
o Calculate a*x[i] + y[i]
o Write back register into y[i]

u How many instructions for a 
DAXPY of size 1024?

u How many serialized cache 
misses? (w/ 64B cache lines)
o Size of double = 8B
o 64B, 8 elements per block, 2 blocks 

→ 2 * 1024 / 8 = 256 

; x[] -> r2, y[] -> r3 
; a -> r4,
; &x[n] -> r5

loop:
  lw   r1, 0(r2)  ; load x[i]
  lw   r6, 0(r3)  ; load y[i]
  mul   r1, r1, r4 ; a*x[i]
  add   r6, r1, r6 ; … + y[i]
  sw    r6, 0(r3)  ; store y[i]
  add   r2, r2, 8
  add   r3, r3, 8
  bne   r2, r5, loop

(Assume a word and a register is 64 bits)
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Hardware Limits ILP for Scalar Loops

u Each iteration of the DAXPY loop is completely independent
u Out-of-order (OoO) processors unroll loop and begin new iterations

o DAXPY loop is memory bound
o Rough estimate of re-order buffer (ROB) size is ~500
o Loop contains 8192 instructions, only ~6% in ROB at a time

u ROB cannot hold all instructions even with a very small vector (1k)

u Silicon area & power scales quadratically for bigger OoO windows
o Problem: our ISA is only letting us specify a single operation at a time
o No need to duplicate control for such simple programs
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Enter Vector Supercomputers (1970s)

u First generation of commercial SIMD machines
u Vector ISAs define operations on arrays of numbers: "vectors"

*

r1 r2

r3

mul r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3
*

vector
length

mul.v v3, v1, v2

VECTOR
(N operations)
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Basic Vector Pipeline
Execute Memory

Access
Write back

Result
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Instruction 
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Instruction 
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Fetch

MEM
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Basic Vector Pipeline
Execute Memory

Access
Write back

Result

WB
IF

Instruction 
Fetch

ID

Instruction 
Decode/
Operand

Fetch

MEM

u One instruction, for an array of register operands
o E.g., 8 vector registers each with 64x64-bit elements in Cray-1
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Basic Vector Pipeline
Execute Memory

Access
Write back

Result

WB
IF

Instruction 
Fetch

ID

Instruction 
Decode/
Operand

Fetch

MEM

u Multiple execution units
u Wider memory to read/write multiple data
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Vector Processors Address CPU Limitations

u Single instruction represents many computations
o Greatly reduces instruction bloat

u Simplifies dependency checking
o Only check data hazards for vector operands, not each sub-element
o No more complex than scalar code

u Known access patterns potentially reduce cache misses
o e.g., vector load of 64x 8B entries brings 8 cache blocks simultaneously

u Reduced control hazards due to fewer branches
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A Basic Vector Processing Architecture

Memory

Scalar Registers

Common Data Bus

Functional Units

FP Add/Sub

FP Mul/Div

Integer

…
Vector

Load & Store

Vector Registers
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Vector Functional Unit Design

u Choice 1 - each functional unit is pipelined
o Begins processing a new vector element every clock cycle

u Choice 2 - multiple lanes in a single functional unit
o Multiple hardware units, each executing independent elements of the vector

u How is the design of vector register file & common buses affected?
o Multi-lane design increases num. ports required
o Pipelined designs consume 2 elements/cycle BW in total
o Multi-lane designs multiply BW by the lane-width
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Example Vector Instructions

Each vector register contains many scalar values
o e.g., a vector register V has 64 scalars

So,
mul.v v1, v2, v1 Vector dot product v1*v2
mul.sv v1, r1, v1 multiplies scalar r1 to all elements of v1
lw.v v1, 0(r1) loads vector v1 from address r1
sw.v v1, 0(r1) stores vector v1 at address r1
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Vectorized DAXPY Loop

u Assumption:
o Compute 64 elements at a time

u How many instructions for 
N = 1024?

u How many serialized cache 
misses? (w/ 64B cache lines)

; x[] -> r2, y[] -> r3 
; a -> r4,
; &x[n] -> r5

loop:
  lw.v     v1, 0(r2)   ; load x[i]
  lw.v     v2, 0(r3)   ; load y[i]
  mul.sv   v1, r4, v1  ; a*x[i]
  add.v    v1, v1, v2  ; … + y[i]
  sw.v     v1, 0(r3)   ; store y[i]
  add      r2, r2, 512 ; 64*8
  add      r3, r3, 512
  bne      r2, r5, loop
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Vectorized DAXPY Loop

u Assumption:
o Compute 64 elements at a time

u How many instructions for 
N = 1024?
o 8 * (1024 / 64) = 128
o 64x reduction over scalar

u How many serialized cache 
misses? (w/ 64B cache lines)
o Vector load brings 64 elements at 

a time, equivalent to 8 cache lines
o 2 * (1024 / 64) = 32

; x[] -> r2, y[] -> r3 
; a -> r4,
; &x[n] -> r5

loop:
  lw.v     v1, 0(r2)   ; load x[i]
  lw.v     v2, 0(r3)   ; load y[i]
  mul.sv   v1, r4, v1  ; a*x[i]
  add.v    v1, v1, v2  ; … + y[i]
  sw.v     v1, 0(r3)   ; store y[i]
  add      r2, r2, 512 ; 64*8
  add      r3, r3, 512
  bne      r2, r5, loop
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Evolution of Vector Processors
u Vector processors for supercomputers died in 1980s

o Require a completely different architecture/hardware
o Compilers can help vectorize code 
o But not all code is vectorizable

u Vector execution in CPUs
o use SIMD principles with regular registers
• E.g., a 64-bit wide scalar register becomes a 16-elem. 4-bit vector register

o Historical perspective: ”SIMD within a register” proposed in 1950s
• Intel MMX extensions released 1997

u Custom Vector processors on chip
o Tensor cores in GPUs (covered later)
o AI accelerator units in CPUs (e.g., Intel Sapphire Rapid)
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CPU Vector vs. SIMD Extensions?

u Vector and SIMD extensions in CPU ISAs
o ”Vector” and “SIMD” as words are used interchangeably
o Marketing/branding (similar to CPU vs. GPU cores) except for RISC-V

u Idea: use SIMD principles with regular registers
o E.g., a 64-bit wide scalar register becomes a 16-elem. 4-bit vector register
• Limited changes required to existing processors
• Allow vector computation on these short-width vectors

o Regular registers referred to as “vector” registers
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Basic SIMD Pipeline: ”Poor man’s” Vector processor

IF WB

Instruction 
Fetch

Write back
Result

ID

Instruction 
Decode/
Operand

Fetch

Memory
Access

MEM

Execute
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Basic SIMD Pipeline: ”Poor man’s” Vector processor

IF WB

Instruction 
Fetch

Write back
Result

ID

Instruction 
Decode/
Operand

Fetch

Memory
Access

MEM

Execute

u Use existing register operands, divide them into smaller operands
o E.g., one 64-bit registers → four 16-bit registers
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Basic SIMD Pipeline: ”Poor man’s” Vector processor

IF WB

Instruction 
Fetch

Write back
Result

ID

Instruction 
Decode/
Operand

Fetch

Memory
Access

MEM

Execute

u Use existing register file, memory, data path
o Execution units are “bit-sliced”: designed to operate on smaller operands
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SIMD in Modern CPUs

x86:
o SSE2 instructions: 128-bit operations (2x64, 4x32, 8x16, 16x8)
o AVX instructions: 256-bit operations (8x32 or 4x64 bits)
o AVX512 instructions: 512-bit operations (16x32 or 8x64 bits)

ARM: Neon instructions: 64-bit operations (2x32, 4x16, 8x8)

RISC-V: Vector extensions: implementation specific
o LMUL * VLEN bit operations, each element SEW bits
o VLEN is a hardware parameter and LMUL and SEW can be configured by 

software
o Designed this way to prevent ISA bloat
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History of x86 SIMD Extensions

[Credit: Markus Püschel, ETHZ]
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What do we need from the hardware?

u Vector Registers
o To store multiple elements of a vector in a single register

u Replicated functional units inside the pipeline of a core
o To operate on the elements of a vector register in parallel

u Support for decoding new instructions
u Memory system changes to load and store variable bitwidth elements



CS302 – Spring 2025 Lec.3.2 -  Slide 32

AVX Registers: 16 256-bit registers

32-way byte
16-way 2 bytes
8-way 4 bytes
4-way 8 bytes

8-way single
4-way double

Floating-point vectors

Integer vectors

Floating-point scalars
single
double
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AVX Registers: 16 256-bit registers

32-way byte
16-way 2 bytes
8-way 4 bytes
4-way 8 bytes

8-way single
4-way double

Floating-point vectors

Integer vectors

Floating-point scalars
single
double

Unused
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AVX Instructions

u AVX instructions operate on the vector registers
u Instructions define how the hardware interprets register contents

u Six categories of instructions:
o Arithmetic
o Logical/Bitwise
o Data Movement
o Shuffle/Permute
o Blend/Mask
o Scatter/Gather
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Interpreting AVX Instructions

vaddpd

AVX add packed
double-

precision
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Interpreting AVX Instructions

vaddps

AVX add packed
single-

precision
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Interpreting AVX Instructions

vaddss

AVX add scalar
single-

precision
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How to use AVX instructions?

u Use libraries with support for AVX instructions
u E.g., Intel MKL, OpenBLAS, etc

u Auto-compile code with AVX support
u E.g., using -O3 when compiling C code

u Manually use intrinsics in code
u Function-like macros that directly map to AVX instructions

u Write assembly code J



CS302 – Spring 2025 Lec.3.2 -  Slide 39

Auto-Compilation Challenge 1: Aliasing

u To allow easy detection and optimization by the compiler, loop 
iterations need to be independent of each other

u Does the compiler know if pointers x and y point to different memory 
locations?

void daxpy(int n, double a, double *x, double *y)
{
 for(int i = 0; i < n; i++) {
  y[i] = a * x[i] + y[i];
 }
} 
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Auto-Compilation Challenge 1: Aliasing

u Any overlap between pointers x and y can result in the loop iterations 
not being independent of each other.

u For example:

void daxpy(int n, double a, double *x, double *y)
{
 for(int i = 0; i < n; i++) {
  y[i] = a * x[i] + y[i];
 }
} 

x[0] x[1] x[2] x[3] x[4] x[5] … x[n-1]

y[0] y[1] y[2] y[3] y[4] y[5] … y[n-1]

Memory locations
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Solutions to Overcome Aliasing

u Solution 1: Use compiler flags
o Flags like -fstrict-aliasing reinforce the C99 aliasing rules

u Solution 2: Declare pointers with the restrict keyword
o Tells the compiler that these pointers do not overlap in memory

u Programmer’s responsibility to ensure no aliasing can happen
void daxpy(int n, double a, double *restrict x, double *restrict y)
{
 for(int i = 0; i < n; i++) {
  y[i] = a * x[i] + y[i];
 }
} 
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Auto-Compilation Challenge 2: Alignment

u Modern DRAM accesses are per 32-bit words (four bytes)
u For best performance, accesses to vector elements should be aligned
u For example, to load an 8-element 32-bit vector:

o Case 1: Need three loads to load an misaligned vector

o Case 2: Need two loads to load an aligned vector

u This is a performance issue that cannot be optimized by compiler

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]
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Solutions to Overcome Misalignment

u In C use aligned_alloc when allocating arrays
u Use __attribute__((aligned(32))) for static arrays

u If arrays are not aligned, compiler will try to “peel” the loop:
double *x = (double *) malloc(n * sizeof(double));
peel = (unsigned long) x & 0x1f;   /* x mod 32 */
if (peel != 0) {
    peel = (32 – peel)/sizeof(double);
    for (int i = 0; i < peel; i++) {  /* initial segment */
        <code>    
    }
}
for (int i = peel; i < n; i++) {    /* 32-byte aligned access */
        <code>
}
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Miscellaneous Issues to Take Care Of

u Loops with number of iterations known at runtime
o Compiler may be able to generate code to deal with corner cases

u No if-else statements or diverging conditions inside loops
u However, can be cleverly implemented using bitmasks

u Loop iterations should be independent of each other

u Avoid function calls from within loop body
u Compiler may skip vectorization depending on the function 

u Ideally, use unit stride in innermost loop
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AVX Intrinsics

u In some cases, auto-compilation with AVX support not enough
u Developers must manually optimize code with “intrinsics”

u What are intrinsics?
u Specialized, function-like calls that directly map to specific CPU instructions
u Inlined upon compilation: no runtime overhead
u Include custom datatypes that map to vector registers
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AVX Intrinsics Data Types

Type Meaning
__m256 8x single-precision floats
__m256d 4x double-precision floats
__m256i 32x 8-bit / 16x 16-bit / 8x 32-bit / 4x 64-bit integers
__m128 4x single-precision floats
__m128d 2x double-precision floats
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AVX Intrinsics Functions

_mm256_op_suffix(type param1, type param2, type param3) 

Prefix for working on the 256-bit registers

Operation to do, eg, add, sub, load, mul, etc

Type of the returned vector
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AVX Intrinsics Functions

_mm256_op_suffix(type param1, type param2, type param3) 

suffix Meaning
ps/pd/sd Packed single / packed double / scalar double
epi{X}|X = 8, 16, 32, 64 Packed 8-bit / 16-bit / 32-bit / 64-bit signed integers
epu{X}|X = 8, 16, 32 64 Packed 8-bit / 16-bit / 32-bit / 64-bit unsigned integers
si256 Scalar 256-bit integer
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AVX Intrinsics Functions: Example

void daxpy(int n, double a, double *x, double *y)
{
 for(int i = 0; i < n; i++) {
  y[i] = a * x[i] + y[i];
 }
} 
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AVX Intrinsics Functions: Example

void daxpy(int n, double a, double *x, double *y)
{
 // Convert a to vector
 double vecA[4] = {a, a, a, a};

 // Process in chunks of 4 doubles
 for(int i = 0; i < n; i+=4) { // Assume n is div by 4
  y[i]   = vecA[i]   * x[i]   + y[i];
  y[i+1] = vecA[i+1] * x[i+1] + y[i+1];
  y[i+2] = vecA[i+2] * x[i+2] + y[i+2];
  y[i+3] = vecA[i+3] * x[i+3] + y[i+3];
 }
} 
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AVX Intrinsics Functions: Example

__m256d vecA = _mm256_set_pd(a, a, a, a);

for(int i = 0; i < n; i+=4) {
 __m256d vecX = _mm256_load_pd(&x[i]); // Load x[i]…x[i+3] 
 __m256d vecY = _mm256_load_pd(&y[i]); // Load y[i]…y[i+3]

 __m256d vecZ = _mm256_mul_pd(vecA, vecX); // Compute a*x
 vecY = _mm256_add_pd(vecZ, vecY);    // … + y

 // Store result back to y
 _mm256_store_pd(&y[i], vecY);
}
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AVX Intrinsics Functions: Speedup

4.6x
speedup!
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Summary

u SIMD: Data-level parallelism (one instruction, multiple data)
u Occurs inside a single core with hardware support
u Fine-grained parallelism on array/vector elements
u No synchronization overhead
u Vector and SIMD in CPU are used interchangeably

u Compiler can help generate code
u Not all code is vectorizable by compilers

u Developers often directly write their own vector code


