CS302

AGILE PROGRAMMING

WE NEE
> USE DOESNT JUST MEAN

THREE MORE AGILE

O ptl mizin g PROGRAM— pROGRAM— || DOING MORE WIORK

MERS. MING WITH FEWER PEOPLE.

Software Y |)

FIND ME SOME

WORDS THAT DO

MEAN THAT AND
ASK AGAIN.

171 t.

605 \
Lk

1

scottadama® sol com

\

1Ly

s 02008 Scott Adams, Inc/Oist. by UPS. Inc

www.dilbert.com

© Scott Adams, Inc/DistL. by UFS, Inc.
Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Prof. Falsafi
Copyright 2025

CS302 — Spring 2025 Lec.3.1 - Slide 1

Where are We?

CS302 — Spring 2025

¢ Software Optimizations
¢ Locality & Memory access
¢ Scheduling & work distribution

¢ Thursday
¢ Lecture: SIMD and vector instructions

¢ EXxercise session: Performance
debugging

¢ Next Tuesday:
¢ Message Passing

Lec.3.1 - Slide 2

Reminder: Multiprocessor Caching

¢ Modern CPUs have a hierarchy of caches, that are kept coherent
transparently
¢ Eases programmability
¢ ... But, can hurt performance if we're not careful!
¢ e.g., Data going back/forth between two caches

CS302 — Spring 2025

P

L2 Cache

-
-
-
-
-
-
-
-
-
-
-
-
o
-

L3 Cache Directory

Lec.3.1 - Slide 3

Reminder: Multiprocessor Caching

¢ Modern CPUs have a hierarchy of caches, that are kept coherent

transparently
¢ Eases programmability
¢ ... But, can hurt performance if we're not careful!
¢ e.g., Data going back/forth between two caches

CS302 — Spring 2025

P

L1 Cache

L2 Cache

-
2
-’
-’
-
-
-’
-
-
-
-
-
-
Rs
Ka

L3 Cache Directory

Lec.3.1 - Slide 4

Reminder: Multiprocessor Caching

¢ Modern CPUs have a hierarchy of caches, that are kept coherent
transparently
¢ Eases programmability
¢ ... But, can hurt performance if we're not careful!
¢ e.g., Data going back/forth between two caches

P

L2 Cache

CS302 — Spring 2025 Lec.3.1 - Slide 5

Latency Numbers Every Computer Scientist

Should Know (X 1 billion)

Main memory

branch mispredict /

div() / sqrt() - 5s 25s reference — 100s
\(()) ned ’ _” ‘
19 wwu "Q\ —
\ n Q.QD" \)
N S\
sal S X

Network roundtrip
EU <= US -4.8 years

Lec.3.1 - Slide 6

css02-sping2025 from main memory — 3 days from disk — 1 year

This Lecture

¢ First, how to improve program performance
¢ Given that we know size & organization of the cache
¢ It's all about maximizing fraction of cache hits

¢ Second, parallel scheduling optimizations

Hierarchy Latency Latency
Level (cycles) (ns)

L1 2-3 1-3
L2 6-10 5-10
LLC 25-50 15-30

Memory 100-200 S50+

CS302 — Spring 2025 Lec.3.1 - Slide 7

Review: 4C Cache Miss Model

¢ Compulsory: Access data for the first time
¢ Need to actually go get the data from memory

¢ Capacity: When the cache is not big enough
¢ e.g., Our cache is 32kB, we access a 1MB array.

¢ Conflict: When two addresses map to the same set and way of the

cache, evicting one of them
¢ e.g., Evenly striding over an array

¢ Coherence: When a block is removed due to coherence messages
from another core

¢ Reminder: cache block == cache line
¢ In the rest of this lecture we may go back and forth

CS302 — Spring 2025 Lec.3.1 - Slide 8

Coherence Misses

¢ Coherence adds extra misses due to transfers
¢ When two cores access the same cache line

¢ Types of coherence misses
¢ True sharing — e.g., producer/consumer comm.

Write X

Cache 2
Read X

CS302 — Spring 2025 Lec.3.1 - Slide 9

Coherence Misses

& Coherence adds extra misses due to transfers
& \When two cores access the same cache line

¢ Types of coherence misses

¢ True sharing — Producer/consumer communication when processors read
and write the same variable

¢ False sharing — Processors updating different data which are placed in the
same cache block

¢ We will address each issue with examples

CS302 — Spring 2025 Lec.3.1 - Slide 10

Histogram Example

¢ Count num. of ASCII characters in an input text
¢ Input: ASCII characters in array format
¢ Output: Histogram w. each bucket, # occurrences

A

I like to develop efficient
software for multicores,
GPUs and multiprocessors.
As such, I find this course
of great use for my future
academic and professional
career.

Furthermore, I like to learn
about the parallel hardware
and software in my

cellphone. 7

Occurrences

abcd -

CS302 — Spring 2025 Lec.3.1 - Slide 11

Histogram Example

¢ Simple work division

¢ Partition the text array across threads
¢ OpenMP’s parallel for does this automatically

CS302 — Spring 2025

Thread 0 =<
Thread 1 =

Thread 2 4
Thread 3

II like to develop efficient

software for multicores,
GPUs and multiprocessors.

s such, [find this course
of great use for my future
academic and professional

Furthermore, I like to learn
about the parallel hardware

and software in my
cellphone.

!

Occurrences

abcd -

Lec.3.1 - Slide 12

Histogram Example #1

int histogram[N BUCKETS] ;
int in data[INPUT SIZE];

#pragma omp parallel for shared (in _data, histogram)
for(int i = 0; i < INPUT SIZE;i++) {
unsigned bucket = calc hist(in data[i]);

#pragma omp critical
histogram[bucket] ++;
}

¢ Characters are mapped to buckets by calc hist

¢ Input array divided between threads (by OMP)
¢ Protect the output array with a critical section

CS302 — Spring 2025 Lec.3.1 - Slide 13

Histogram: True Sharing

¢ Assume histogram IS mapped to
cache block X

¢ True sharing when processors
modify the histogram:

histogram[‘a’]++;

CS302 — Spring 2025

Po

P4

Write X é Write X !

—t 1

‘ X— Memory \

Lec.3.1 - Slide 14

Histogram: True Sharing

¢ Assume histogram is mapped to P, P,
cache block X

¢ True sharing when processors
modify the histogram:

BusRd X 1 1

histogram[‘a’]++; t

‘ X— Memory \

CS302 — Spring 2025 Lec.3.1 - Slide 15

Histogram: True Sharing

¢ Assume histogram IS mapped to
cache block X

¢ True sharing when processors
modify the histogram:

histogram[‘a’]++;

‘ X— Memory \

CS302 — Spring 2025 Lec.3.1 - Slide 16

Histogram: True Sharing

¢ Assume histogram is mapped to P, P,
cache block X

¢ True sharing when processors
modify the histogram:

1 BusRd X 1

histogram[‘a’]++; t

‘ X— Memory \

CS302 — Spring 2025 Lec.3.1 - Slide 17

Histogram: True Sharing

¢ Assume histogram is mapped to P, P,
cache block X

¢ True sharing when processors
modify the histogram:

DataWB 1 1

histogram[‘a’]++; t

‘ X— Memory \

CS302 — Spring 2025 Lec.3.1 - Slide 18

Histogram: True Sharing

¢ Assume histogram IS mapped to
cache block X

¢ True sharing when processors
modify the histogram:

histogram[‘a’]++;

‘ X S Memory \

CS302 — Spring 2025 Lec.3.1 - Slide 19

Exercise: Reducing True Sharing
¢ Given that we have to preserve correct value...

¢ How can we eliminate the coherence activity from repeatedly
accessing the histogram array?

CS302 — Spring 2025 Lec.3.1 - Slide 20

Reducing True Sharing: Example #2

int histogram[N BUCKETS];
int tmp hist[N THREADS] [N BUCKETS] ;
int in data[INPUT SIZE];

#ipragma omp parallel for shared (in data, tmp hist)
for(int i = 0; i < INPUT SIZE;i++) ({

int tid = omp get thread num() ;

unsigned bucket = calc hist(in data[i]);

tmp hist[tid] [bucket]++;
}

¢ Partition the data structures
¢ Threads update theirown tmp hist and merge later
¢ Requires another loop (next slide)

CS302 — Spring 2025 Lec.3.1 - Slide 21

Reducing True Sharing: Example #2

int histogram[N BUCKETS];

int tmp hist[N THREADS] [N BUCKETS] ;

int in data[INPUT SIZE];

#ipragma omp parallel for shared (in data, tmp hist)

{...}

// Merge loop
#ipragma omp parallel shared (tmp hist, histogram)
for(int i = 0; 1 < N BUCKETS; i++) {
int tid = omp get thread num() ;
#pragma omp critical
histogram[i] += tmp hist[tid] [i];
}

¢ Merge loop
¢ Does not use parallel for, all threads need to add all buckets up
¢ Note both loops declare tmp hist as shared

CS302 — Spring 2025 Lec.3.1 - Slide 22

Difference in Performance

¢ Example #1:
o Critical section (lock/unlock) INPUT SIZE times
¢ Read/Write histogram[bucket] INPUT SIZE times

¢ Example #2:
¢ Read/Write tmp hist[] [bucket] INPUT SIZE times
o Critical section (lock/unlock) N BUCKET * # of threads
¢ Read/Write histogram[bucket] N BUCKET * # of threads

¢ If INPUT SIZE >> N BUCKET * # of threads, we eliminate a lot of
critical sections & true sharlng

¢ Can we do better?

CS302 — Spring 2025 Lec.3.1 - Slide 23

Reducing True Sharing: Example #3

int histogram[N BUCKETS];
int tmp hist[N THREADS] [N BUCKETS];
int in data[INPUT SIZE];
#pragma omp parallel for shared (in data, tmp hist)
{...}
// Merge loop
#pragma omp parallel for shared (tmp hist, histogram)
for(int i = 0; i < N BUCKETS; i++) {
int tid;
for (tid = 0; tid < omp get num threads(); tid++) ({
histogram[i] += tmp hist[tid] [i]:’
}
}

¢ Merge loop
¢ Divides the buckets by the threads

¢ Eliminates all critical sections, but every thread accesses a fraction of
everyone’s histogram

CS302 — Spring 2025

Lec.3.1 - Slide 24

True Sharing Summary

¢ True sharing is inherent to the algorithm
¢ Can only optimize it
¢ Can not eliminate it

¢ In general, approaches for optimization:

1. Divide up input data in advance
2. Privatize results when possible, reduce communication

CS302 — Spring 2025 Lec.3.1 - Slide 25

Coherence Misses Continued

& Coherence adds extra misses due to transfers
¢ \When two cores access the same cache line

¢ Types of coherence misses

¢ False sharing — Processors updating different data which happen to be in
the same cache block

CS302 — Spring 2025 Lec.3.1 - Slide 26

Counting Odd Numbers Example

int counters[NTHREADS] ;
int in data[INPUT SIZE];

#ipragma omp parallel for shared (in data,counters)
for(int i = 0; i1 < INPUT SIZE;i++) {
int tid = omp get thread num() ;

if(in data[i] % 2) {
counters|[tid] ++;

}
}

¢ No true sharing, threads update own counter
¢ Therefore, no need to use #pragma omp critical as we did previously
¢ Assume counters[] stored in Block X

CS302 — Spring 2025 Lec.3.1 - Slide 27

Problem: False Sharing

Assumptions:

¢ Two processors, two words per cache block
¢ Block X is initially shared by both processors

Notation:

¢ X, and X;: least and most significant words of block X

CS302 — Spring 2025

Xo

X1

A

Block X

Lec.3.1 - Slide 28

Problem: False Sharing

¢ Thread-private counters reside in same blocks!

¢ Below, X,-X\.4 represent counters for N threads

¢ As cores update them, coherence messages repeatedly sent around

the chip

CS302 — Spring 2025

Xo

X1

T Block X

Lec.3.1 - Slide 29

False Sharing in Hardware

1. PO Read XO — E
2. P,Read X; —» S

!

‘ Xy Memory \

CS302 — Spring 2025 Lec.3.1 - Slide 30

False Sharing in Hardware

1. PO Read XO — E

2. P,Read X; — S Po
3. Py Write X,

a) Need to invalidate A in P,

by Send Businv, P, — | BusIny

!

‘ Xy Memory \

Lec.3.1 - Slide 31

CS302 — Spring 2025

False Sharing in Hardware

1. PO Read XO — E
2. P,Read X; —» S
3. PO Write XO —> M

!

‘ Xy Memory \

Lec.3.1 - Slide 32

CS302 — Spring 2025

False Sharing in Hardware

1. PO Read XO — E

2. PyRead X, —» S Py
3. Py Write Xo— M
4. Py Write X,

a) Need to invalidate X in P, BusRdX

by Send BusRdX, Py— | t

‘ Xy Memory \

CS302 — Spring 2025 Lec.3.1 - Slide 33

False Sharing in Hardware

1. PO Read XO — E
2. P,Read X; — S Po
3. PO Write XO —> M

4. Py Write X,
a) Need to invalidate X in P, DataWB
by Send BusRdX, Py— | t

c) Pysends datato P, & Mem
‘ X Memory \

Lec.3.1 - Slide 34

CS302 — Spring 2025

False Sharing in Hardware

1. PoRead X; — E
P,Read X; —» S
Py Write X;— M
P, Write X;— M

s W N

CS302 — Spring 2025 Lec.3.1 - Slide 35

False Sharing in Hardware

1. PoRead X; — E
2. P,Read X; —» S
3. Py Write Xo— M
4. Py Write X;—> M

¢ Block A continues bouncing
between caches!

¢ Excess invalidations, and
memory updates

CS302 — Spring 2025 Lec.3.1 - Slide 36

False Sharing Solution: Data Padding

typedef struct {

unsigned c;

unsigned padding[BLK SIZE/ UNSIG SIZE - 1];
} PaddedCounter;
PaddedCounter counters[NTHREADS] ;

#pragma omp parallel for
{

counters[tid] . c++;

}

¢ Move the counters into different cache blocks
¢ Introduce “excess” variables that are never used

CS302 — Spring 2025 Lec.3.1 - Slide 37

Data Padding Layout

¢ Assuming aligned data padding:
¢ P represents the miscellaneous padded data

¢ Now we have one counter per cache block
¢ No coherence messages during parallel loop

N -

T Block X

CS302 — Spring 2025

T Block X+1

PD

Lec.3.1 - Slide 38

Software Tradeoffs: Data Padding

¢ Behavior depends on underlying hardware

¢ For example, how does data padding perform with different cache

block sizes?

¢ Assuming 4B counters

64B

512B

CS302 — Spring 2025

PD,

PD;s

N

Xo

PD,

T Block X

PDis

PDi¢

PD 127

Lec.3.1 - Slide 39

Software Tradeoffs: Data Padding

B Capacity/Conflict
Cold
B False sharing

B True sharing

Miss Ratio

Base Opt. Base Opt. Baseline suffers from

64B 512B false sharing
Cache Block Size

CS302 — Spring 2025 Lec.3.1 - Slide 40

Software Tradeoffs: Data Padding

Why does the number of C/C misses increase?

A 'm

B Capacity/Conflict
Cold
B False sharing

B True sharing

Miss Ratio

Base Opt. Base Opt.

64B 512B
Cache Block Size

CS302 — Spring 2025 Lec.3.1 - Slide 41

Software Tradeoffs: Data Padding

¢ Application performance depends on the underlying hardware

¢ Number of coherence misses affected by:
¢ Cache size
¢ Number of processors
¢ Cache block size

CS302 — Spring 2025 Lec.3.1 - Slide 42

False Sharing in Netflix's JAVA Microservice

PerfSpect Metrics

CPU utilization %

CPU uitilization% in kernel mode
CPI

L1D MPI (includes data+rfo w/ pri
L2 MPI (includes code+data+rfo \
L2 demand data read MPI

L2 demand code MPI
TMAM_Frontend_Bound(%)
TMAM_Backend_bound(%)
TMAM_..Memory_Bound(%)
TMAM_....L1_Bound(%)
TMAM_......L3_Bandwidth(%)
TMAM_Retiring(%)
MACHINE_CLEARS.COUNT

| Fast node | Slow node | Delta | |
v 32 mm hotspot/src/share/vm/oops/klass.hpp @
X @@ -143,6 +143,8 @@ class Klass : public Metadata {
143 143
144 144 Cache of last observed secondary supertype
145 145 Klass” _secondary_super_cache;
146 + // Used only to make sure adjacent fields fall into
147 + jbyte padding[64],
146 148 // Array of all secondary supertypes
147 149 Array<Klass*>* _secondary_supers;
148 150 Ordered list of all primary supertypes

I 27,921,321 I 100,005,518 I 287.4%0 I

hotspot/src/share/vm/oops/klass.hpp
:ondary supertype
cache;
ertypes
Jers;
'macroAssembler_x86.c
dary-super array.
; _addr) ;

separate CPU cache lines Positive movl does right thing on LP64.)
<Klass*>::length_offset_in_bytes())):
ase_offset_in tes()
=90
we found and proceed in triumph.

| 1+@ movptr(super_cache_addr, super_klass);

¢ In a blog post, Netflix reported how false sharing had been degrading
the performance of one of their services by 3x !

Source:

CS302 — Spring 2025

Lec.3.1 - Slide 43

https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822

The Locality Principle

¢ Originally came from the first VM systems in 60’s

¢ Problem: Bad page replacement policies led to swapping and unusable
machines

¢ Solution: Design memory to prioritize the “working set” of the currently
executing applications

¢ A cache operates on the same principle

¢ Keep frequently accessed data closer to the CPU
¢ For maximum performance, make sure we are using it effectively

CS302 — Spring 2025 Lec.3.1 - Slide 44

Example: Matrix Multiplication

¢ Output element (i,j) = Row i * Column |
¢ Assume N is large (~ 10°), 4-byte elements

CS302 — Spring 2025

>

|

iI

Lec.3.1 - Slide 45

Matrix Multiplication Locality

HLt

A B

& For each element in C:

Cache line size
elements

¢ A array, 1 miss for every
¢ B array, miss on every element

CS302 — Spring 2025 Lec.3.1 - Slide 46

Matrix Multiplication Locality

¢ Problem: Arrays are too large to fit in caches!
¢ How many misses for every element in C (N2 of them)?

¢ Cachemisses~1+ N [Cache :ne Size] + N
A\'&O\ C \ mav ®
’ J Array A

¢ Most misses come from A&B (C doesn’t count)

¢ For the multiplication as a whole:
¢ Assume generalized element size
¢ Roughly (N3(1 + ¢) + N?) which is O(N3) misses

. element size in bytes
¢ CIS

Cache line size
CS302 — Spring 2025 Lec.3.1 - Slide 47

Blocking For Locality
N

< >

.

¢ Divide the matrix into sub-matrices, small enough to fit in the cache

¢ Reuse them on every “block iteration”

¢ Sub-matrix size: n?

CS302 — Spring 2025

Lec.3.1 - Slide 48

Blocking Correctness

¢ Output sums in C gradually accumulate
¢ A and B tiles slide over the large arrays

.

¢ e.g., The green element in C will eventually get all of row 1 and column j as

the tiles move

CS302 — Spring 2025

Lec.3.1 - Slide 49

Blocking Correctness

=

A

¢ Output sums in C gradually accumulate

¢ A and B tiles slide over the large arrays
¢ e.g., The green element in C will eventually get all of row 1 and column j as

the tiles move

CS302 — Spring 2025

=

Lec.3.1 - Slide 50

Blocking Locality

Access 1
Access 2

n

A

Access 2
Access 1

¢ For each tile in both A & B
. 4 xn

* A [Cache line size

¢ B: same as A, similar spatial locality in next column

¢ C block remains in cache (no new misses)

CS302 — Spring 2025 Lec.3.1 - Slide 51

] misses every new row due to spatial locality

Blocking Locality

2
¢ For the whole array, (%) tiles are created

Cache line size
& Total cache misses: 0(N?)

¢ Each has 2*[2 n] misses

¢ Miss results collected from cachegrind
¢ N=512

m Predicted Misses | Observed Misses

Naive ~151M ~168M
Blocked 524K 650k

CS302 — Spring 2025 Lec.3.1 - Slide 52

Blocking Performance

10000
1000
100
10
-e-Naive
1 —Tiled (Block 64)

Time (seconds)

I
—

0.01
128 256 512 1024 2048 4096 8192

Single Array Dimension

¢ Using cachegrind, miss rate of Naive ~ 33%
¢ Tiled miss rate 1.7%, 22.5x speedup for N = 8k

CS302 — Spring 2025 Lec.3.1 - Slide 53

Optimizations Part |l
Scheduling & Work Distribution

CS302 — Spring 2025

Review: OpenMP Execution Model

¢ Fork/join model
¢ Initially only the master thread is active
¢ Master thread executes until a parallel region is encountered

¢ Fork: master thread creates a team of parallel threads
¢ Statements in parallel region are executed in parallel

¢ Join: team threads sync & terminate at the end of parallel region
¢ Master thread continues executing sequentially

master thread /TR - -
a2 B el threads

threads - _,

. threads .

parallel region parallel region parallel region

Slide 55

Fork/Joins Come with an Overhead

#pragma omp parallel for
for (i = 0; i < n; i++)

¢ What if n turns out to be small (e.g., 100)?

CS302 — Spring 2025 Lec.3.1 - Slide 56

Fork/Joins Come with an Overhead

#pragma omp parallel for
for (i = 0; i < n; i++)

¢ What if n turns out to be small (e.g., 100)?

¢ If loop has too few iterations:
¢ Fork/join overhead >= savings from parallel execution
¢ There is no need to parallelize the loop

¢ The if clause:

instructs compiler to insert code that checks whether loop should be executed in
parallel

¢ Parallelize the loop only if it's worth it

#pragma omp parallel for if(n > 5000)

CS302 — Spring 2025 Lec.3.1 - Slide 57

Fork/Joins Come with an Overhead

for (i=1l; i<n; 1i++)
#pragma omp parallel for
for (j=0; j<m; J++)
a[i] [J]1=2*a[i-1][3]]"

¢ What's wrong with this code?

CS302 — Spring 2025 Lec.3.1 - Slide 58

Fork/Joins Come with an Overhead

for (i=1l; i<n; 1i++)
#pragma omp parallel for
for (j=0; j<m; J++)
a[i] [J]1=2*a[i-1][3]]"

¢ \What's wrong with this code?
¢ The inner loop does fork/join every iteration (n times)

¢ Excess fork/joins lowers performance
¢ Inverting loops helps performance:
#pragma omp parallel for private (i)
for (j=0; j<m; J++)
for(i=1l; i<n; 1i++)
6302 - Spring 2025 ali][J]1=2*a[1i-1]1[3]~ Lecs1 - Side 56

Fork/Joins Come with an Overhead

#pragma omp parallel for

¢ What's wrong with this code? for (. . .)
¢ Excess fork/joins #pragma omp parallel for
¢ Each loop does fork/join for (. . .)

#pragma omp parallel for
for (. . .)

CS302 — Spring 2025 Lec.3.1 - Slide 60

Fork/Joins Come with an Overhead

¢ What's wrong with this code?
¢ Excess fork/joins
¢ Each loop does fork/join

¢ Maximize parallel regions
¢ Avoids excess fork/joins

CS302 — Spring 2025

#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)

#pragma omp parallel

{
#pragma omp for

for (. . .)
#pragma omp for
for (. . .)

#pragma omp for
for (. . .)

le 61

for Loop Itself Has an Overhead

#pragma omp parallel for Compile loop: 1d r2, addr[rl]
for (i=0; i<n; i++) add r2, r2, 10

af[i] = a[i] + 10; ‘ st addr[rl], r2
add rl, rl, 1

bne rl, r3, loop

CS302 — Spring 2025 Lec.3.1 - Slide 62

for Loop Itself Has an Overhead

#pragma omp parallel for Compile loop: 1d r2, addr[rl]

for (i=0; i<n; i++) add r2, r2, 10
af[i] = a[i] + 10; - st addr[rl], r2

add rl, rl, 1

bne rl, r3, loop

Loop Overhead

CS302 — Spring 2025 Lec.3.1 - Slide 63

for Loop Itself Has an Overhead

#pragma omp parallel for Compile loop: 1d r2, addr[rl]

for (i=0; i<n; i++) add r2, r2, 10
af[i] = a[i] + 10; ‘ st addr[rl], r2

add rl, rl, 1

bne rl, r3, loop

Loop Overhead

¢ Loop unrolling #pragma omp parallel for
& Perform multiple loop iterations in one f°r[_(T=°" 1<‘[‘f]1+=4)i0
ali = al1i + ;
¢ Reduce loop overhead

_ _ _ a[i+l] = a[i+1] + 10;
¢ Compilers do this for simple patterns a[i+2] = a[i+2] + 10;
a[i+3] = a[i+3] + 10;

CS302 — Spring 2025 Lec.3.1 - Slide 64

Other Loop Optimizations

¢ Loop fusion

¢ Combine two back-to-back loops with exactly the same iteration pattern (e.g.,
for (i=0; i<n; i++))
¢ Reduces loop overhead

¢ Loop fission

¢ Split a big loop into smaller loops
¢ Can improve L1 data and instruction cache miss rate

¢ Compilers can do these for simple loop bodies

CS302 — Spring 2025 Lec.3.1 - Slide 65

Reminder: Division of Work — Load Balancing

Schedule clause determines how loop iterations are divided among thread team:
schedule (<type>[, <chunk> 1)

¢ static([chunk]) divides iterations statically between threads

¢ Each thread receives [chunk] iterations, rounding as necessary to account for all
iterations

¢ Default [chunk] is ceil(# iterations / # threads)

¢ dynamic([chunk]) allocates [chunk] iterations per thread, allocating an
additional [chunk] iterations when a thread finishes
¢ Forms a logical work queue, consisting of all loop iterations
¢ Default [chunk] is 1

¢ guided([chunk]) allocates dynamically, but [chunk] is exponentially reduced
with each allocation

CS302 — Spring 2025 Lec.3.1 - Slide 66

Static vs. Dynamic vs. Guided Scheduling

¢ Static:
¢ Low overhead
¢ May exhibit high workload imbalance

¢ Dynamic:
¢ High overhead
¢ Can reduce workload imbalance

¢ Guided:

¢ Less overhead than dynamic
¢ Comparable to dynamic in reducing imbalance

CS302 — Spring 2025 Lec.3.1 - Slide 67

More General Work Scheduling

¢ Dynamic work scheduling using a task queue
¢ Processing items from a list of tasks to do (task queue)

¢ As long as there is a task in the queue:
¢ Each thread picks up a task from the queue
¢ Processes it (might lead to adding new tasks to the queue)

¢ The program stops when there is no more task to process

CS302 — Spring 2025 Lec.3.1 - Slide 68

More General Work Scheduling

¢ Model the queue as a linked-list of elements

& Each element is a task-wrapper (wrapper struct)

¢ Task-wrapper includes:
A pointer to the task (which is task struct)

¢ A pointer to the next element

CS302 — Spring 2025 Lec.3.1 - Slide 69

More General Work Scheduling

CS302 — Spring 2025

Thread O

e
‘. task_ptr

J

\. task_ptr

Thread 1

@ Task Wrapper

Lec.3.1 - Slide 70

Task Queue: Sequential Code (1/2)

int main (int argc, char *argv[]) {
wrapper struct *wrapper ptr;
task struct *task ptr;

task ptr = get next task(&wrapper ptr);
while (task ptr !'= NULL) ({

complete task(task ptr);

task ptr = get next task(&wrapper ptr);

CS302 — Spring 2025 Lec.3.1 - Slide 71

Task Queue: Sequential Code (2/2)

task struct *get next task (wrapper struct **wrapper ptr) {
task struct *next task;

if (*wrapper ptr == NULL) next task = NULL;
else {
next task = (*wrapper ptr)->task;
*wrapper ptr = (*wrapper ptr)->next;
}

return next_task;

CS302 — Spring 2025 Lec.3.1 - Slide 72

Task Queue: Parallelization Strategy

¢ Every thread should repeat (until no more tasks):

¢ Taking next task from the queue
¢ Completing the task

¢ Ensure no two threads take the same task
¢ Must declare a critical section

CS302 — Spring 2025 Lec.3.1 - Slide 73

Task Queue: Parallel Code (1/2)

int main (int argc, char *argv][]) {
wrapper struct *wrapper ptr;
task struct *task ptr;

#pragma omp parallel private (task ptr)
{
task ptr = get next task(&wrapper ptr);
while (task ptr != NULL) ({
complete task(task ptr);

task ptr = get next task(&wrapper ptr);

}

CS302 — Spring 2025

Lec.3.1 - Slide 74

Task Queue: Parallel Code (2/2)

task struct *get next task (wrapper struct **wrapper ptr) {
task struct *next task;
#pragma omp critical
{
if (*wrapper ptr == NULL) next task = NULL;
else {
next task = (*job ptr)->task;
*wrapper ptr = (*wrapper ptr)->next;

}

return next_task;

CS302 — Spring 2025 Lec.3.1 - Slide 75

Functional (or Task) Parallelism

¢ Performing distinct computations (tasks) at the same time

= A();

= B();

C(a, b);

= D();

E(c, d);

printf (”Result=%d\n", e);

® & Q O o
I

¢ Independent tasks can be executed in parallel
¢ Eg.,A B,andD

CS302 — Spring 2025 Lec.3.1 - Slide 76

Functional (or Task) Parallelism

® parallel sections

Pragma

¢ Precedes a block of k blocks of
code

¢ Each block is preceded by a
section pragma

¢ Blocks may be executed
concurrently by k threads

CS302 — Spring 2025

#pragma omp parallel sections
{
#pragma omp section /*Optional*/
a = A();
#pragma omp section
b =B();
#pragma omp section
d = D();

}

CcC = C(al b);

e = E(c, d);

printf (”Result=%d\n", e);

Lec.3.1 - Slide 77

Summary

¢ Writing fast parallel programs is not easy

¢ Access pattern & locality makes a big difference
¢ Remove false sharing
¢ Use blocking to increase locality

¢ Load balancing is important
¢ Dynamic work distribution works better

¢ Maximize parallel regions in your code
¢ Unroll loops to reduce the loop overhead

¢ Exploit functional parallelism when there are several independent
tasks

CS302 — Spring 2025 Lec.3.1 - Slide 78

