
CS302 – Spring 2025 Lec.3.1 -  Slide 1

Adapted from slides originally developed by Prof. Falsafi
Copyright 2025

CS302

Optimizing
Software 

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302



CS302 – Spring 2025 Lec.3.1 -  Slide 2

Where are We?

u Software Optimizations
u Locality & Memory access
u Scheduling & work distribution

u Thursday
u Lecture: SIMD and vector instructions
u Exercise session: Performance 

debugging

u Next Tuesday:
u Message Passing 
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u Modern CPUs have a hierarchy of caches, that are kept coherent 
transparently
u Eases programmability
u … But, can hurt performance if we’re not careful!
u e.g., Data going back/forth between two caches

Reminder: Multiprocessor Caching

P
L1 Cache

L2 Cache
L3 Cache Directory
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Latency Numbers Every Computer Scientist
Should Know (×1 billion)
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u First, how to improve program performance
u Given that we know size & organization of the cache
u It’s all about maximizing fraction of cache hits

u Second, parallel scheduling optimizations

This Lecture

Hierarchy 
Level

Latency
(cycles)

Latency 
(ns)

L1 2-3 1-3
L2 6-10 5-10

LLC 25-50 15-30
Memory 100-200 50+
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u Compulsory: Access data for the first time
u Need to actually go get the data from memory

u Capacity: When the cache is not big enough
u e.g., Our cache is 32kB, we access a 1MB array.

u Conflict: When two addresses map to the same set and way of the 
cache, evicting one of them
u e.g., Evenly striding over an array

u Coherence: When a block is removed due to coherence messages 
from another core

u Reminder: cache block == cache line
u In the rest of this lecture we may go back and forth

Review: 4C Cache Miss Model
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u Coherence adds extra misses due to transfers
u When two cores access the same cache line

u Types of coherence misses
u True sharing → e.g., producer/consumer comm.

Coherence Misses

Cache 1 Cache 2

X

Write X

Read X
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u Coherence adds extra misses due to transfers
u When two cores access the same cache line

u Types of coherence misses
u True sharing → Producer/consumer communication when processors read 

and write the same variable
u False sharing → Processors updating different data which are placed in the 

same cache block

u We will address each issue with examples

Coherence Misses
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u Count num. of ASCII characters in an input text
u Input: ASCII characters in array format
u Output: Histogram w. each bucket, # occurrences

Histogram Example

I like to develop efficient 
software for multicores, 
GPUs and multiprocessors. 
As such, I find this course 
of great use for my future 
academic and professional 
career.
Furthermore, I like to learn 
about the parallel hardware 
and software in my 
cellphone. O

cc
ur

re
nc

es

a b c d ...
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u Simple work division
u Partition the text array across threads
u OpenMP’s parallel for does this automatically

Histogram Example

I like to develop efficient 
software for multicores, 
GPUs and multiprocessors. 
As such, I find this course 
of great use for my future 
academic and professional 
career.
Furthermore, I like to learn 
about the parallel hardware 
and software in my 
cellphone. O

cc
ur

re
nc

es

a b c d

Thread 0 
Thread 1 

Thread 2 
Thread 3 

...
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u Characters are mapped to buckets by calc_hist
u Input array divided between threads (by OMP)
u Protect the output array with a critical section

Histogram Example #1
int histogram[N_BUCKETS];
int in_data[INPUT_SIZE];

#pragma omp parallel for shared (in_data, histogram)
for(int i = 0; i < INPUT_SIZE;i++) {  

unsigned bucket = calc_hist(in_data[i]);

#pragma omp critical
histogram[bucket]++;

}
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Histogram: True Sharing

MemoryX

P0

Cache

P1

Cache

Write X Write X

u Assume histogram is mapped to 
cache block X

u True sharing when processors 
modify the histogram:
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Histogram: True Sharing

MemoryX

P0

Cache

P1

Cache
BusRd X

Write X

u Assume histogram is mapped to 
cache block X

u True sharing when processors 
modify the histogram:
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Histogram: True Sharing

MemoryX

P0 P1

Cache

Write X

X(M)

u Assume histogram is mapped to 
cache block X

u True sharing when processors 
modify the histogram:
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Histogram: True Sharing

MemoryX

P0 P1

CacheX(M)

BusRd X

u Assume histogram is mapped to 
cache block X

u True sharing when processors 
modify the histogram:



CS302 – Spring 2025 Lec.3.1 -  Slide 18

Histogram: True Sharing

MemoryX

P0 P1

CacheX(M)

DataWB

u Assume histogram is mapped to 
cache block X

u True sharing when processors 
modify the histogram:
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u Assume histogram is mapped to 
cache block X

u True sharing when processors 
modify the histogram:

Histogram: True Sharing

MemoryX

P0 P1

X(M)



CS302 – Spring 2025 Lec.3.1 -  Slide 20

u Given that we have to preserve correct value…
u How can we eliminate the coherence activity from repeatedly 

accessing the histogram array?

Exercise: Reducing True Sharing
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int histogram[N_BUCKETS];
int tmp_hist[N_THREADS][N_BUCKETS];
int in_data[INPUT_SIZE];

#pragma omp parallel for shared (in_data, tmp_hist)
for(int i = 0; i < INPUT_SIZE;i++) {  

int tid = omp_get_thread_num();
unsigned bucket = calc_hist(in_data[i]);
tmp_hist[tid][bucket]++;

}

u Partition the data structures
u Threads update their own  tmp_hist and merge later
u Requires another loop (next slide)

Reducing True Sharing: Example #2
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int histogram[N_BUCKETS];
int tmp_hist[N_THREADS][N_BUCKETS];
int in_data[INPUT_SIZE];
#pragma omp parallel for shared (in_data, tmp_hist)
{...}

// Merge loop
#pragma omp parallel shared (tmp_hist, histogram)
for(int i = 0; i < N_BUCKETS; i++) {  

int tid = omp_get_thread_num();
#pragma omp critical
histogram[i] += tmp_hist[tid][i];

}

u Merge loop
u Does not use parallel for, all threads need to add all buckets up
u Note both loops declare tmp_hist as shared

Reducing True Sharing: Example #2
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u Example #1:
u Critical section (lock/unlock) INPUT_SIZE times
u Read/Write histogram[bucket] INPUT_SIZE times

u Example #2:
u Read/Write tmp_hist[][bucket] INPUT_SIZE times
u Critical section (lock/unlock) N_BUCKET * # of threads
u Read/Write histogram[bucket] N_BUCKET * # of threads

u If INPUT_SIZE >> N_BUCKET * # of threads, we eliminate a lot of 
critical sections & true sharing

u Can we do better?

Difference in Performance



CS302 – Spring 2025 Lec.3.1 -  Slide 24

u Merge loop
u Divides the buckets by the threads
u Eliminates all critical sections, but every thread accesses a fraction of 

everyone’s histogram

Reducing True Sharing: Example #3
int histogram[N_BUCKETS];
int tmp_hist[N_THREADS][N_BUCKETS];
int in_data[INPUT_SIZE];
#pragma omp parallel for shared (in_data, tmp_hist)
{...}
// Merge loop
#pragma omp parallel for shared (tmp_hist, histogram)
for(int i = 0; i < N_BUCKETS; i++) {  

int tid;
for (tid = 0; tid < omp_get_num_threads(); tid++) {

histogram[i] += tmp_hist[tid][i];
    }
}
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u True sharing is inherent to the algorithm
u Can only optimize it
u Can not eliminate it

u In general, approaches for optimization:
1. Divide up input data in advance
2. Privatize results when possible, reduce communication

True Sharing Summary
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u Coherence adds extra misses due to transfers
u When two cores access the same cache line

u Types of coherence misses
u False sharing → Processors updating different data which happen to be in 

the same cache block

Coherence Misses Continued
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u No true sharing, threads update own counter
u Therefore, no need to use #pragma omp critical as we did previously
u Assume counters[] stored in Block X

Counting Odd Numbers Example
int counters[NTHREADS];
int in_data[INPUT_SIZE];

#pragma omp parallel for shared (in_data,counters)
for(int i = 0; i < INPUT_SIZE;i++) {  

int tid = omp_get_thread_num();

if( in_data[i] % 2 ) {
counters[tid]++;

}
}
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Assumptions:
u Two processors, two words per cache block
u Block X is initially shared by both processors

Notation:
u X0 and X1: least and most significant words of block X

Problem: False Sharing

Block X

X1X0
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u Thread-private counters reside in same blocks!
u Below, X0-XN-1 represent counters for N threads

u As cores update them, coherence messages repeatedly sent around 
the chip

Problem: False Sharing

Block X

X1X0 XN-1…
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False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S

X(S) X(S)

X
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False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0

a) Need to invalidate A in P1

b) Send BusInv, P1 → I BusInv

X(S) X(S)

X
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False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M

X

X(I)X(M)



CS302 – Spring 2025 Lec.3.1 -  Slide 33

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1

a) Need to invalidate X in P0

b) Send BusRdX, P0 → I
BusRdX

X

X(I)X(M)
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False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1

a) Need to invalidate X in P0

b) Send BusRdX, P0 → I
c) P0 sends data to P1 & Mem

DataWB

X(I) X(M)

X
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False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1 → M X(I) X(M)

X
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False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1 → M X(I) X(M)

X

u Block A continues bouncing 
between caches!

u Excess invalidations, and 
memory updates
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u Move the counters into different cache blocks
u Introduce “excess” variables that are never used

False Sharing Solution: Data Padding
typedef struct {

unsigned _c;
unsigned _padding[ BLK_SIZE/ UNSIG_SIZE - 1];

} PaddedCounter;
PaddedCounter counters[NTHREADS];

#pragma omp parallel for
{ 

...
counters[tid]._c++;

}
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u Assuming aligned data padding:
u P represents the miscellaneous padded data
u Now we have one counter per cache block
u No coherence messages during parallel loop

Data Padding Layout

Block X

PDX0 PD…

Block X+1

PDX1 PD…
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u Behavior depends on underlying hardware
u For example, how does data padding perform with different cache 

block sizes?
u Assuming 4B counters

Software Tradeoffs: Data Padding

PD1X0 PD15…

Block X

PD1X0 PD15… PD127…PD16

64B

512B
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Software Tradeoffs: Data Padding

Capacity/Conflict
Cold
False sharing
True sharingM

is
s R

at
io

Cache Block Size
64B 512B

Base Opt. Base Opt. Baseline suffers from 
false sharing



CS302 – Spring 2025 Lec.3.1 -  Slide 41

Software Tradeoffs: Data Padding

M
is

s R
at

io

Cache Block Size
64B 512B

Base Opt. Base Opt.

Why does the number of C/C misses increase?

Capacity/Conflict
Cold
False sharing
True sharing
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u Application performance depends on the underlying hardware

u Number of coherence misses affected by: 
u Cache size
u Number of processors
u Cache block size

Software Tradeoffs: Data Padding
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False Sharing in Netflix’s JAVA Microservice 

u In a blog post, Netflix reported how false sharing had been degrading 
the performance of one of their services by 3x !

Source: https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822

https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822


CS302 – Spring 2025 Lec.3.1 -  Slide 44

u Originally came from the first VM systems in 60’s
u Problem: Bad page replacement policies led to swapping and unusable 

machines
u Solution: Design memory to prioritize the “working set” of the currently 

executing applications

u A cache operates on the same principle
u Keep frequently accessed data closer to the CPU
u For maximum performance, make sure we are using it effectively

The Locality Principle
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u Output element (i,j) = Row i * Column j
u Assume N is large ( ~ 105 ), 4-byte elements

Example: Matrix Multiplication

C A B

= xN

N

i

j

i

j
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u For each element in C:
u A array, 1 miss for every !"#$% &'(% )'*%

+
elements

u B array, miss on every element

Matrix Multiplication Locality

A

…

B

…

Miss Miss
Hit
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u Problem: Arrays are too large to fit in caches!
u How many misses for every element in C (N2 of them)?

u Cache misses ~	1 + 	𝑁 +
!"#$% &'(% )'*% + N

u Most misses come from A&B (C doesn’t count)
u For the multiplication as a whole:

u Assume generalized element size
u Roughly 𝑁, 1 + 𝑐 + 𝑁- which is 𝑂 𝑁, misses

u c is %&%.%(/	)'*%	'(	12/%)!"#$%	&'(%	)'*%

Matrix Multiplication Locality

Array C Array A
Array B
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u Divide the matrix into sub-matrices, small enough to fit in the cache
u Reuse them on every “block iteration”
u Sub-matrix size: 𝑛-

Blocking For Locality

C A B

= xN

N

n
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u Output sums in C gradually accumulate
u A and B tiles slide over the large arrays
u e.g., The green element in C will eventually get all of row i and column j as 

the tiles move

Blocking Correctness

C A B

= xN
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Blocking Correctness

C A B

= xN

u Output sums in C gradually accumulate
u A and B tiles slide over the large arrays
u e.g., The green element in C will eventually get all of row i and column j as 

the tiles move
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u For each tile in both A & B
u A:

+ ∗ (
!"#$% &'(% )'*% misses every new row due to spatial locality

u B: same as A, similar spatial locality in next column
u C block remains in cache (no new misses)

Blocking Locality

A B

…

n

Access 1
Access 2

Access 1
Access 2

n
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u For the whole array, !
"

#
tiles are created

u Each has 2* + ∗ (
!"#$% &'(% )'*% misses

u Total cache misses: 𝑂 𝑁-

u Miss results collected from cachegrind
u N = 512

Blocking Locality

Algorithm Predicted Misses Observed Misses
Naïve ~151M ~168M

Blocked 524k 650k
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Blocking Performance

u Using cachegrind, miss rate of Naïve ~ 33%
u Tiled miss rate 1.7%, 22.5x speedup for N = 8k

0.01

0.1

1
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10000

128 256 512 1024 2048 4096 8192
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m

e 
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Single Array Dimension
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Tiled (Block 64)
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Optimizations Part II:
Scheduling & Work Distribution
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u Fork/join model
u Initially only the master thread is active

u Master thread executes until a parallel region is encountered
u Fork: master thread creates a team of parallel threads

u Statements in parallel region are executed in parallel
u Join: team threads sync & terminate at the end of parallel region

u Master thread continues executing sequentially

Review: OpenMP Execution Model
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Fork/Joins Come with an Overhead

u What if n turns out to be small (e.g., 100)?

#pragma omp parallel for
for (i = 0; i < n; i++)
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u What if n turns out to be small (e.g., 100)?
u If loop has too few iterations:

u Fork/join overhead >= savings from parallel execution
u There is no need to parallelize the loop

u The if clause:
u instructs compiler to insert code that checks whether loop should be executed in 

parallel
u Parallelize the loop only if it’s worth it

Fork/Joins Come with an Overhead
#pragma omp parallel for
for (i = 0; i < n; i++)

#pragma omp parallel for if(n > 5000)
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u What’s wrong with this code?

Fork/Joins Come with an Overhead
for (i=1; i<n; i++)
  #pragma omp parallel for
  for(j=0; j<m; j++)
    a[i][j]=2*a[i-1][j];
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u What’s wrong with this code?
u The inner loop does fork/join every iteration (n times)

u Excess fork/joins lowers performance
u Inverting loops helps performance:

Fork/Joins Come with an Overhead
for (i=1; i<n; i++)
  #pragma omp parallel for
  for(j=0; j<m; j++)
    a[i][j]=2*a[i-1][j];

#pragma omp parallel for private(i)
for (j=0; j<m; j++)
  for(i=1; i<n; i++) 
    a[i][j]=2*a[i-1][j];
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u What’s wrong with this code?
u Excess fork/joins
u Each loop does fork/join

Fork/Joins Come with an Overhead
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)
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u What’s wrong with this code?
u Excess fork/joins
u Each loop does fork/join

u Maximize parallel regions
u Avoids excess fork/joins

Fork/Joins Come with an Overhead
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)

#pragma omp parallel
{
  #pragma omp for
  for (. . .)
  #pragma omp for
  for (. . .)
  #pragma omp for
  for (. . .)
}
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for Loop Itself Has an Overhead

Compile loop: ld   r2, addr[r1]
      add  r2, r2, 10
      st   addr[r1], r2
      add  r1, r1, 1
      bne  r1, r3, loop

#pragma omp parallel for
for (i=0; i<n; i++)
  a[i] = a[i] + 10;
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for Loop Itself Has an Overhead

Compile loop: ld   r2, addr[r1]
      add  r2, r2, 10
      st   addr[r1], r2
      add  r1, r1, 1
      bne  r1, r3, loop

#pragma omp parallel for
for (i=0; i<n; i++)
  a[i] = a[i] + 10;

Loop Overhead
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for Loop Itself Has an Overhead

Compile loop: ld   r2, addr[r1]
      add  r2, r2, 10
      st   addr[r1], r2
      add  r1, r1, 1
      bne  r1, r3, loop

#pragma omp parallel for
for (i=0; i<n; i++)
  a[i] = a[i] + 10;

Loop Overhead

u Loop unrolling
u Perform multiple loop iterations in one
u Reduce loop overhead
u Compilers do this for simple patterns

#pragma omp parallel for
for (i=0; i<n; i+=4){
  a[i]   = a[i]   + 10;
  a[i+1] = a[i+1] + 10;
  a[i+2] = a[i+2] + 10;
  a[i+3] = a[i+3] + 10;
}
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Other Loop Optimizations

u Loop fusion
u Combine two back-to-back loops with exactly the same iteration pattern (e.g., 

for (i=0; i<n; i++))
u Reduces loop overhead

u Loop fission
u Split a big loop into smaller loops
u Can improve L1 data and instruction cache miss rate

u Compilers can do these for simple loop bodies
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Schedule clause determines how loop iterations are divided among thread team: 
schedule(<type>[,<chunk> ]) 

u static([chunk]) divides iterations statically between threads
u Each thread receives [chunk] iterations, rounding as necessary to account for all 

iterations
u Default [chunk] is ceil( # iterations / # threads )

u dynamic([chunk]) allocates [chunk] iterations per thread, allocating an 
additional [chunk] iterations when a thread finishes
u Forms a logical work queue, consisting of all loop iterations 
u Default [chunk] is 1

u guided([chunk]) allocates dynamically, but [chunk] is exponentially reduced 
with each allocation

Reminder: Division of Work – Load Balancing
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u Static:
u Low overhead
u May exhibit high workload imbalance

u Dynamic:
u High overhead
u Can reduce workload imbalance

u Guided:
u Less overhead than dynamic
u Comparable to dynamic in reducing imbalance

Static vs. Dynamic vs. Guided Scheduling
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u Dynamic work scheduling using a task queue
u Processing items from a list of tasks to do (task queue)

u As long as there is a task in the queue:
u Each thread picks up a task from the queue
u Processes it (might lead to adding new tasks to the queue)

u The program stops when there is no more task to process 

More General Work Scheduling
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u Model the queue as a linked-list of elements

u Each element is a task-wrapper (wrapper_struct)

u Task-wrapper includes:
u A pointer to the task (which is task_struct)
u A pointer to the next element

More General Work Scheduling
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More General Work Scheduling

task_ptr

Thread 0

wrapper_ptr

Heap

task_ptr

Thread 1

Shared Variables

Pointer
Task

Task Wrapper
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Task Queue: Sequential Code (1/2)

int main (int argc, char *argv[]){
  wrapper_struct *wrapper_ptr;
  task_struct *task_ptr;
  ...
  task_ptr = get_next_task(&wrapper_ptr);
  while (task_ptr != NULL) {
    complete_task(task_ptr);
    task_ptr = get_next_task(&wrapper_ptr);
  }
...
}
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Task Queue: Sequential Code (2/2)

task_struct *get_next_task(wrapper_struct **wrapper_ptr){
  task_struct *next_task;

  if (*wrapper_ptr == NULL) next_task = NULL;
  else {
    next_task = (*wrapper_ptr)->task;
    *wrapper_ptr = (*wrapper_ptr)->next;
  }
  return next_task;
}
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u Every thread should repeat (until no more tasks):
u Taking next task from the queue
u Completing the task

u Ensure no two threads take the same task
u Must declare a critical section

Task Queue: Parallelization Strategy
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int main (int argc, char *argv[]){
  wrapper_struct *wrapper_ptr;
  task_struct *task_ptr;
  ...
  #pragma omp parallel private(task_ptr)
  {
    task_ptr = get_next_task(&wrapper_ptr);
    while (task_ptr != NULL) {
      complete_task(task_ptr);
      task_ptr = get_next_task(&wrapper_ptr);
    }
  }
...
}

Task Queue: Parallel Code (1/2)
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Task Queue: Parallel Code (2/2)

task_struct *get_next_task(wrapper_struct **wrapper_ptr){
  task_struct *next_task;
  #pragma omp critical
  {
    if (*wrapper_ptr == NULL) next_task = NULL;
    else {
      next_task = (*job_ptr)->task;
      *wrapper_ptr = (*wrapper_ptr)->next;
    }
  }
  return next_task;
}
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u Performing distinct computations (tasks) at the same time

u Independent tasks can be executed in parallel
u E.g., A, B, and D

Functional (or Task) Parallelism

A B

C D

E

a = A();
b = B();
c = C(a, b);
d = D();
e = E(c, d);
printf (”Result=%d\n", e);
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u parallel sections 
Pragma
u Precedes a block of k blocks of 

code
u Each block is preceded by a 
section pragma

u Blocks may be executed 
concurrently by k threads

Functional (or Task) Parallelism
#pragma omp parallel sections
{
  #pragma omp section /*Optional*/
  a = A();
  #pragma omp section  
  b = B();
  #pragma omp section  
  d = D();
}
c = C(a, b);
e = E(c, d);
printf (”Result=%d\n", e);
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u Writing fast parallel programs is not easy
u Access pattern & locality makes a big difference

u Remove false sharing
u Use blocking to increase locality 

u Load balancing is important
u Dynamic work distribution works better 

u Maximize parallel regions in your code
u Unroll loops to reduce the loop overhead
u Exploit functional parallelism when there are several independent 

tasks

Summary


