
CS302 – Spring 2025 Lec.3.1 - Slide 1

Adapted from slides originally developed by Prof. Falsafi
Copyright 2025

CS302

Optimizing
Software

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

CS302 – Spring 2025 Lec.3.1 - Slide 2

Where are We?

u Software Optimizations
u Locality & Memory access
u Scheduling & work distribution

u Thursday
u Lecture: SIMD and vector instructions
u Exercise session: Performance

debugging

u Next Tuesday:
u Message Passing

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.3.1 - Slide 3

u Modern CPUs have a hierarchy of caches, that are kept coherent
transparently
u Eases programmability
u … But, can hurt performance if we’re not careful!
u e.g., Data going back/forth between two caches

Reminder: Multiprocessor Caching

P
L1 Cache

L2 Cache
L3 Cache Directory

CS302 – Spring 2025 Lec.3.1 - Slide 4

u Modern CPUs have a hierarchy of caches, that are kept coherent
transparently
u Eases programmability
u … But, can hurt performance if we’re not careful!
u e.g., Data going back/forth between two caches

Reminder: Multiprocessor Caching

P

L3 Cache Directory

Data

L1 Cache

L2 Cache

CS302 – Spring 2025 Lec.3.1 - Slide 5

u Modern CPUs have a hierarchy of caches, that are kept coherent
transparently
u Eases programmability
u … But, can hurt performance if we’re not careful!
u e.g., Data going back/forth between two caches

Reminder: Multiprocessor Caching

P

L3 Cache Directory

L1 Cache

L2 Cache

CS302 – Spring 2025 Lec.3.1 - Slide 6

Latency Numbers Every Computer Scientist
Should Know (×1 billion)

CS302 – Spring 2025 Lec.3.1 - Slide 7

u First, how to improve program performance
u Given that we know size & organization of the cache
u It’s all about maximizing fraction of cache hits

u Second, parallel scheduling optimizations

This Lecture

Hierarchy
Level

Latency
(cycles)

Latency
(ns)

L1 2-3 1-3
L2 6-10 5-10

LLC 25-50 15-30
Memory 100-200 50+

CS302 – Spring 2025 Lec.3.1 - Slide 8

u Compulsory: Access data for the first time
u Need to actually go get the data from memory

u Capacity: When the cache is not big enough
u e.g., Our cache is 32kB, we access a 1MB array.

u Conflict: When two addresses map to the same set and way of the
cache, evicting one of them
u e.g., Evenly striding over an array

u Coherence: When a block is removed due to coherence messages
from another core

u Reminder: cache block == cache line
u In the rest of this lecture we may go back and forth

Review: 4C Cache Miss Model

CS302 – Spring 2025 Lec.3.1 - Slide 9

u Coherence adds extra misses due to transfers
u When two cores access the same cache line

u Types of coherence misses
u True sharing → e.g., producer/consumer comm.

Coherence Misses

Cache 1 Cache 2

X

Write X

Read X

CS302 – Spring 2025 Lec.3.1 - Slide 10

u Coherence adds extra misses due to transfers
u When two cores access the same cache line

u Types of coherence misses
u True sharing → Producer/consumer communication when processors read

and write the same variable
u False sharing → Processors updating different data which are placed in the

same cache block

u We will address each issue with examples

Coherence Misses

CS302 – Spring 2025 Lec.3.1 - Slide 11

u Count num. of ASCII characters in an input text
u Input: ASCII characters in array format
u Output: Histogram w. each bucket, # occurrences

Histogram Example

I like to develop efficient
software for multicores,
GPUs and multiprocessors.
As such, I find this course
of great use for my future
academic and professional
career.
Furthermore, I like to learn
about the parallel hardware
and software in my
cellphone. O

cc
ur

re
nc

es

a b c d ...

CS302 – Spring 2025 Lec.3.1 - Slide 12

u Simple work division
u Partition the text array across threads
u OpenMP’s parallel for does this automatically

Histogram Example

I like to develop efficient
software for multicores,
GPUs and multiprocessors.
As such, I find this course
of great use for my future
academic and professional
career.
Furthermore, I like to learn
about the parallel hardware
and software in my
cellphone. O

cc
ur

re
nc

es

a b c d

Thread 0
Thread 1

Thread 2
Thread 3

...

CS302 – Spring 2025 Lec.3.1 - Slide 13

u Characters are mapped to buckets by calc_hist
u Input array divided between threads (by OMP)
u Protect the output array with a critical section

Histogram Example #1
int histogram[N_BUCKETS];
int in_data[INPUT_SIZE];

#pragma omp parallel for shared (in_data, histogram)
for(int i = 0; i < INPUT_SIZE;i++) {

unsigned bucket = calc_hist(in_data[i]);

#pragma omp critical
histogram[bucket]++;

}

CS302 – Spring 2025 Lec.3.1 - Slide 14

Histogram: True Sharing

MemoryX

P0

Cache

P1

Cache

Write X Write X

u Assume histogram is mapped to
cache block X

u True sharing when processors
modify the histogram:

CS302 – Spring 2025 Lec.3.1 - Slide 15

Histogram: True Sharing

MemoryX

P0

Cache

P1

Cache
BusRd X

Write X

u Assume histogram is mapped to
cache block X

u True sharing when processors
modify the histogram:

CS302 – Spring 2025 Lec.3.1 - Slide 16

Histogram: True Sharing

MemoryX

P0 P1

Cache

Write X

X(M)

u Assume histogram is mapped to
cache block X

u True sharing when processors
modify the histogram:

CS302 – Spring 2025 Lec.3.1 - Slide 17

Histogram: True Sharing

MemoryX

P0 P1

CacheX(M)

BusRd X

u Assume histogram is mapped to
cache block X

u True sharing when processors
modify the histogram:

CS302 – Spring 2025 Lec.3.1 - Slide 18

Histogram: True Sharing

MemoryX

P0 P1

CacheX(M)

DataWB

u Assume histogram is mapped to
cache block X

u True sharing when processors
modify the histogram:

CS302 – Spring 2025 Lec.3.1 - Slide 19

u Assume histogram is mapped to
cache block X

u True sharing when processors
modify the histogram:

Histogram: True Sharing

MemoryX

P0 P1

X(M)

CS302 – Spring 2025 Lec.3.1 - Slide 20

u Given that we have to preserve correct value…
u How can we eliminate the coherence activity from repeatedly

accessing the histogram array?

Exercise: Reducing True Sharing

CS302 – Spring 2025 Lec.3.1 - Slide 21

int histogram[N_BUCKETS];
int tmp_hist[N_THREADS][N_BUCKETS];
int in_data[INPUT_SIZE];

#pragma omp parallel for shared (in_data, tmp_hist)
for(int i = 0; i < INPUT_SIZE;i++) {

int tid = omp_get_thread_num();
unsigned bucket = calc_hist(in_data[i]);
tmp_hist[tid][bucket]++;

}

u Partition the data structures
u Threads update their own tmp_hist and merge later
u Requires another loop (next slide)

Reducing True Sharing: Example #2

CS302 – Spring 2025 Lec.3.1 - Slide 22

int histogram[N_BUCKETS];
int tmp_hist[N_THREADS][N_BUCKETS];
int in_data[INPUT_SIZE];
#pragma omp parallel for shared (in_data, tmp_hist)
{...}

// Merge loop
#pragma omp parallel shared (tmp_hist, histogram)
for(int i = 0; i < N_BUCKETS; i++) {

int tid = omp_get_thread_num();
#pragma omp critical
histogram[i] += tmp_hist[tid][i];

}

u Merge loop
u Does not use parallel for, all threads need to add all buckets up
u Note both loops declare tmp_hist as shared

Reducing True Sharing: Example #2

CS302 – Spring 2025 Lec.3.1 - Slide 23

u Example #1:
u Critical section (lock/unlock) INPUT_SIZE times
u Read/Write histogram[bucket] INPUT_SIZE times

u Example #2:
u Read/Write tmp_hist[][bucket] INPUT_SIZE times
u Critical section (lock/unlock) N_BUCKET * # of threads
u Read/Write histogram[bucket] N_BUCKET * # of threads

u If INPUT_SIZE >> N_BUCKET * # of threads, we eliminate a lot of
critical sections & true sharing

u Can we do better?

Difference in Performance

CS302 – Spring 2025 Lec.3.1 - Slide 24

u Merge loop
u Divides the buckets by the threads
u Eliminates all critical sections, but every thread accesses a fraction of

everyone’s histogram

Reducing True Sharing: Example #3
int histogram[N_BUCKETS];
int tmp_hist[N_THREADS][N_BUCKETS];
int in_data[INPUT_SIZE];
#pragma omp parallel for shared (in_data, tmp_hist)
{...}
// Merge loop
#pragma omp parallel for shared (tmp_hist, histogram)
for(int i = 0; i < N_BUCKETS; i++) {

int tid;
for (tid = 0; tid < omp_get_num_threads(); tid++) {

histogram[i] += tmp_hist[tid][i];
 }
}

CS302 – Spring 2025 Lec.3.1 - Slide 25

u True sharing is inherent to the algorithm
u Can only optimize it
u Can not eliminate it

u In general, approaches for optimization:
1. Divide up input data in advance
2. Privatize results when possible, reduce communication

True Sharing Summary

CS302 – Spring 2025 Lec.3.1 - Slide 26

u Coherence adds extra misses due to transfers
u When two cores access the same cache line

u Types of coherence misses
u False sharing → Processors updating different data which happen to be in

the same cache block

Coherence Misses Continued

CS302 – Spring 2025 Lec.3.1 - Slide 27

u No true sharing, threads update own counter
u Therefore, no need to use #pragma omp critical as we did previously
u Assume counters[] stored in Block X

Counting Odd Numbers Example
int counters[NTHREADS];
int in_data[INPUT_SIZE];

#pragma omp parallel for shared (in_data,counters)
for(int i = 0; i < INPUT_SIZE;i++) {

int tid = omp_get_thread_num();

if(in_data[i] % 2) {
counters[tid]++;

}
}

CS302 – Spring 2025 Lec.3.1 - Slide 28

Assumptions:
u Two processors, two words per cache block
u Block X is initially shared by both processors

Notation:
u X0 and X1: least and most significant words of block X

Problem: False Sharing

Block X

X1X0

CS302 – Spring 2025 Lec.3.1 - Slide 29

u Thread-private counters reside in same blocks!
u Below, X0-XN-1 represent counters for N threads

u As cores update them, coherence messages repeatedly sent around
the chip

Problem: False Sharing

Block X

X1X0 XN-1…

CS302 – Spring 2025 Lec.3.1 - Slide 30

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S

X(S) X(S)

X

CS302 – Spring 2025 Lec.3.1 - Slide 31

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0

a) Need to invalidate A in P1

b) Send BusInv, P1 → I BusInv

X(S) X(S)

X

CS302 – Spring 2025 Lec.3.1 - Slide 32

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M

X

X(I)X(M)

CS302 – Spring 2025 Lec.3.1 - Slide 33

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1

a) Need to invalidate X in P0

b) Send BusRdX, P0 → I
BusRdX

X

X(I)X(M)

CS302 – Spring 2025 Lec.3.1 - Slide 34

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1

a) Need to invalidate X in P0

b) Send BusRdX, P0 → I
c) P0 sends data to P1 & Mem

DataWB

X(I) X(M)

X

CS302 – Spring 2025 Lec.3.1 - Slide 35

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1 → M X(I) X(M)

X

CS302 – Spring 2025 Lec.3.1 - Slide 36

False Sharing in Hardware

Memory

P0 P1
1. P0 Read X0 → E
2. P1 Read X1 → S
3. P0 Write X0 → M
4. P1 Write X1 → M X(I) X(M)

X

u Block A continues bouncing
between caches!

u Excess invalidations, and
memory updates

CS302 – Spring 2025 Lec.3.1 - Slide 37

u Move the counters into different cache blocks
u Introduce “excess” variables that are never used

False Sharing Solution: Data Padding
typedef struct {

unsigned _c;
unsigned _padding[BLK_SIZE/ UNSIG_SIZE - 1];

} PaddedCounter;
PaddedCounter counters[NTHREADS];

#pragma omp parallel for
{

...
counters[tid]._c++;

}

CS302 – Spring 2025 Lec.3.1 - Slide 38

u Assuming aligned data padding:
u P represents the miscellaneous padded data
u Now we have one counter per cache block
u No coherence messages during parallel loop

Data Padding Layout

Block X

PDX0 PD…

Block X+1

PDX1 PD…

CS302 – Spring 2025 Lec.3.1 - Slide 39

u Behavior depends on underlying hardware
u For example, how does data padding perform with different cache

block sizes?
u Assuming 4B counters

Software Tradeoffs: Data Padding

PD1X0 PD15…

Block X

PD1X0 PD15… PD127…PD16

64B

512B

CS302 – Spring 2025 Lec.3.1 - Slide 40

Software Tradeoffs: Data Padding

Capacity/Conflict
Cold
False sharing
True sharingM

is
s R

at
io

Cache Block Size
64B 512B

Base Opt. Base Opt. Baseline suffers from
false sharing

CS302 – Spring 2025 Lec.3.1 - Slide 41

Software Tradeoffs: Data Padding

M
is

s R
at

io

Cache Block Size
64B 512B

Base Opt. Base Opt.

Why does the number of C/C misses increase?

Capacity/Conflict
Cold
False sharing
True sharing

CS302 – Spring 2025 Lec.3.1 - Slide 42

u Application performance depends on the underlying hardware

u Number of coherence misses affected by:
u Cache size
u Number of processors
u Cache block size

Software Tradeoffs: Data Padding

CS302 – Spring 2025 Lec.3.1 - Slide 43

False Sharing in Netflix’s JAVA Microservice

u In a blog post, Netflix reported how false sharing had been degrading
the performance of one of their services by 3x !

Source: https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822

https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822

CS302 – Spring 2025 Lec.3.1 - Slide 44

u Originally came from the first VM systems in 60’s
u Problem: Bad page replacement policies led to swapping and unusable

machines
u Solution: Design memory to prioritize the “working set” of the currently

executing applications

u A cache operates on the same principle
u Keep frequently accessed data closer to the CPU
u For maximum performance, make sure we are using it effectively

The Locality Principle

CS302 – Spring 2025 Lec.3.1 - Slide 45

u Output element (i,j) = Row i * Column j
u Assume N is large (~ 105), 4-byte elements

Example: Matrix Multiplication

C A B

= xN

N

i

j

i

j

CS302 – Spring 2025 Lec.3.1 - Slide 46

u For each element in C:
u A array, 1 miss for every !"#$% &'(%)'*%

+
elements

u B array, miss on every element

Matrix Multiplication Locality

A

…

B

…

Miss Miss
Hit

CS302 – Spring 2025 Lec.3.1 - Slide 47

u Problem: Arrays are too large to fit in caches!
u How many misses for every element in C (N2 of them)?

u Cache misses ~	1 + 	𝑁 +
!"#$% &'(%)'*% + N

u Most misses come from A&B (C doesn’t count)
u For the multiplication as a whole:

u Assume generalized element size
u Roughly 𝑁, 1 + 𝑐 + 𝑁- which is 𝑂 𝑁, misses

u c is %&%.%(/)'*%	'(12/%)!"#$%	&'(%)'*%

Matrix Multiplication Locality

Array C Array A
Array B

CS302 – Spring 2025 Lec.3.1 - Slide 48

u Divide the matrix into sub-matrices, small enough to fit in the cache
u Reuse them on every “block iteration”
u Sub-matrix size: 𝑛-

Blocking For Locality

C A B

= xN

N

n

CS302 – Spring 2025 Lec.3.1 - Slide 49

u Output sums in C gradually accumulate
u A and B tiles slide over the large arrays
u e.g., The green element in C will eventually get all of row i and column j as

the tiles move

Blocking Correctness

C A B

= xN

CS302 – Spring 2025 Lec.3.1 - Slide 50

Blocking Correctness

C A B

= xN

u Output sums in C gradually accumulate
u A and B tiles slide over the large arrays
u e.g., The green element in C will eventually get all of row i and column j as

the tiles move

CS302 – Spring 2025 Lec.3.1 - Slide 51

u For each tile in both A & B
u A:

+ ∗ (
!"#$% &'(%)'*% misses every new row due to spatial locality

u B: same as A, similar spatial locality in next column
u C block remains in cache (no new misses)

Blocking Locality

A B

…

n

Access 1
Access 2

Access 1
Access 2

n

CS302 – Spring 2025 Lec.3.1 - Slide 52

u For the whole array, !
"

#
tiles are created

u Each has 2* + ∗ (
!"#$% &'(%)'*% misses

u Total cache misses: 𝑂 𝑁-

u Miss results collected from cachegrind
u N = 512

Blocking Locality

Algorithm Predicted Misses Observed Misses
Naïve ~151M ~168M

Blocked 524k 650k

CS302 – Spring 2025 Lec.3.1 - Slide 53

Blocking Performance

u Using cachegrind, miss rate of Naïve ~ 33%
u Tiled miss rate 1.7%, 22.5x speedup for N = 8k

0.01

0.1

1

10

100

1000

10000

128 256 512 1024 2048 4096 8192

Ti
m

e
(s

ec
on

ds
)

Single Array Dimension

Naïve
Tiled (Block 64)

CS302 – Spring 2025 Lec.3.1 - Slide 54

Optimizations Part II:
Scheduling & Work Distribution

CS302 – Spring 2025 Lec.3.1 - Slide 55

u Fork/join model
u Initially only the master thread is active

u Master thread executes until a parallel region is encountered
u Fork: master thread creates a team of parallel threads

u Statements in parallel region are executed in parallel
u Join: team threads sync & terminate at the end of parallel region

u Master thread continues executing sequentially

Review: OpenMP Execution Model

CS302 – Spring 2025 Lec.3.1 - Slide 56

Fork/Joins Come with an Overhead

u What if n turns out to be small (e.g., 100)?

#pragma omp parallel for
for (i = 0; i < n; i++)

CS302 – Spring 2025 Lec.3.1 - Slide 57

u What if n turns out to be small (e.g., 100)?
u If loop has too few iterations:

u Fork/join overhead >= savings from parallel execution
u There is no need to parallelize the loop

u The if clause:
u instructs compiler to insert code that checks whether loop should be executed in

parallel
u Parallelize the loop only if it’s worth it

Fork/Joins Come with an Overhead
#pragma omp parallel for
for (i = 0; i < n; i++)

#pragma omp parallel for if(n > 5000)

CS302 – Spring 2025 Lec.3.1 - Slide 58

u What’s wrong with this code?

Fork/Joins Come with an Overhead
for (i=1; i<n; i++)
 #pragma omp parallel for
 for(j=0; j<m; j++)
 a[i][j]=2*a[i-1][j];

CS302 – Spring 2025 Lec.3.1 - Slide 59

u What’s wrong with this code?
u The inner loop does fork/join every iteration (n times)

u Excess fork/joins lowers performance
u Inverting loops helps performance:

Fork/Joins Come with an Overhead
for (i=1; i<n; i++)
 #pragma omp parallel for
 for(j=0; j<m; j++)
 a[i][j]=2*a[i-1][j];

#pragma omp parallel for private(i)
for (j=0; j<m; j++)
 for(i=1; i<n; i++)
 a[i][j]=2*a[i-1][j];

CS302 – Spring 2025 Lec.3.1 - Slide 60

u What’s wrong with this code?
u Excess fork/joins
u Each loop does fork/join

Fork/Joins Come with an Overhead
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)

CS302 – Spring 2025 Lec.3.1 - Slide 61

u What’s wrong with this code?
u Excess fork/joins
u Each loop does fork/join

u Maximize parallel regions
u Avoids excess fork/joins

Fork/Joins Come with an Overhead
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)
#pragma omp parallel for
for (. . .)

#pragma omp parallel
{
 #pragma omp for
 for (. . .)
 #pragma omp for
 for (. . .)
 #pragma omp for
 for (. . .)
}

CS302 – Spring 2025 Lec.3.1 - Slide 62

for Loop Itself Has an Overhead

Compile loop: ld r2, addr[r1]
 add r2, r2, 10
 st addr[r1], r2
 add r1, r1, 1
 bne r1, r3, loop

#pragma omp parallel for
for (i=0; i<n; i++)
 a[i] = a[i] + 10;

CS302 – Spring 2025 Lec.3.1 - Slide 63

for Loop Itself Has an Overhead

Compile loop: ld r2, addr[r1]
 add r2, r2, 10
 st addr[r1], r2
 add r1, r1, 1
 bne r1, r3, loop

#pragma omp parallel for
for (i=0; i<n; i++)
 a[i] = a[i] + 10;

Loop Overhead

CS302 – Spring 2025 Lec.3.1 - Slide 64

for Loop Itself Has an Overhead

Compile loop: ld r2, addr[r1]
 add r2, r2, 10
 st addr[r1], r2
 add r1, r1, 1
 bne r1, r3, loop

#pragma omp parallel for
for (i=0; i<n; i++)
 a[i] = a[i] + 10;

Loop Overhead

u Loop unrolling
u Perform multiple loop iterations in one
u Reduce loop overhead
u Compilers do this for simple patterns

#pragma omp parallel for
for (i=0; i<n; i+=4){
 a[i] = a[i] + 10;
 a[i+1] = a[i+1] + 10;
 a[i+2] = a[i+2] + 10;
 a[i+3] = a[i+3] + 10;
}

CS302 – Spring 2025 Lec.3.1 - Slide 65

Other Loop Optimizations

u Loop fusion
u Combine two back-to-back loops with exactly the same iteration pattern (e.g.,

for (i=0; i<n; i++))
u Reduces loop overhead

u Loop fission
u Split a big loop into smaller loops
u Can improve L1 data and instruction cache miss rate

u Compilers can do these for simple loop bodies

CS302 – Spring 2025 Lec.3.1 - Slide 66

Schedule clause determines how loop iterations are divided among thread team:
schedule(<type>[,<chunk>])

u static([chunk]) divides iterations statically between threads
u Each thread receives [chunk] iterations, rounding as necessary to account for all

iterations
u Default [chunk] is ceil(# iterations / # threads)

u dynamic([chunk]) allocates [chunk] iterations per thread, allocating an
additional [chunk] iterations when a thread finishes
u Forms a logical work queue, consisting of all loop iterations
u Default [chunk] is 1

u guided([chunk]) allocates dynamically, but [chunk] is exponentially reduced
with each allocation

Reminder: Division of Work – Load Balancing

CS302 – Spring 2025 Lec.3.1 - Slide 67

u Static:
u Low overhead
u May exhibit high workload imbalance

u Dynamic:
u High overhead
u Can reduce workload imbalance

u Guided:
u Less overhead than dynamic
u Comparable to dynamic in reducing imbalance

Static vs. Dynamic vs. Guided Scheduling

CS302 – Spring 2025 Lec.3.1 - Slide 68

u Dynamic work scheduling using a task queue
u Processing items from a list of tasks to do (task queue)

u As long as there is a task in the queue:
u Each thread picks up a task from the queue
u Processes it (might lead to adding new tasks to the queue)

u The program stops when there is no more task to process

More General Work Scheduling

CS302 – Spring 2025 Lec.3.1 - Slide 69

u Model the queue as a linked-list of elements

u Each element is a task-wrapper (wrapper_struct)

u Task-wrapper includes:
u A pointer to the task (which is task_struct)
u A pointer to the next element

More General Work Scheduling

CS302 – Spring 2025 Lec.3.1 - Slide 70

More General Work Scheduling

task_ptr

Thread 0

wrapper_ptr

Heap

task_ptr

Thread 1

Shared Variables

Pointer
Task

Task Wrapper

CS302 – Spring 2025 Lec.3.1 - Slide 71

Task Queue: Sequential Code (1/2)

int main (int argc, char *argv[]){
 wrapper_struct *wrapper_ptr;
 task_struct *task_ptr;
 ...
 task_ptr = get_next_task(&wrapper_ptr);
 while (task_ptr != NULL) {
 complete_task(task_ptr);
 task_ptr = get_next_task(&wrapper_ptr);
 }
...
}

CS302 – Spring 2025 Lec.3.1 - Slide 72

Task Queue: Sequential Code (2/2)

task_struct *get_next_task(wrapper_struct **wrapper_ptr){
 task_struct *next_task;

 if (*wrapper_ptr == NULL) next_task = NULL;
 else {
 next_task = (*wrapper_ptr)->task;
 *wrapper_ptr = (*wrapper_ptr)->next;
 }
 return next_task;
}

CS302 – Spring 2025 Lec.3.1 - Slide 73

u Every thread should repeat (until no more tasks):
u Taking next task from the queue
u Completing the task

u Ensure no two threads take the same task
u Must declare a critical section

Task Queue: Parallelization Strategy

CS302 – Spring 2025 Lec.3.1 - Slide 74

int main (int argc, char *argv[]){
 wrapper_struct *wrapper_ptr;
 task_struct *task_ptr;
 ...
 #pragma omp parallel private(task_ptr)
 {
 task_ptr = get_next_task(&wrapper_ptr);
 while (task_ptr != NULL) {
 complete_task(task_ptr);
 task_ptr = get_next_task(&wrapper_ptr);
 }
 }
...
}

Task Queue: Parallel Code (1/2)

CS302 – Spring 2025 Lec.3.1 - Slide 75

Task Queue: Parallel Code (2/2)

task_struct *get_next_task(wrapper_struct **wrapper_ptr){
 task_struct *next_task;
 #pragma omp critical
 {
 if (*wrapper_ptr == NULL) next_task = NULL;
 else {
 next_task = (*job_ptr)->task;
 *wrapper_ptr = (*wrapper_ptr)->next;
 }
 }
 return next_task;
}

CS302 – Spring 2025 Lec.3.1 - Slide 76

u Performing distinct computations (tasks) at the same time

u Independent tasks can be executed in parallel
u E.g., A, B, and D

Functional (or Task) Parallelism

A B

C D

E

a = A();
b = B();
c = C(a, b);
d = D();
e = E(c, d);
printf (”Result=%d\n", e);

CS302 – Spring 2025 Lec.3.1 - Slide 77

u parallel sections
Pragma
u Precedes a block of k blocks of

code
u Each block is preceded by a
section pragma

u Blocks may be executed
concurrently by k threads

Functional (or Task) Parallelism
#pragma omp parallel sections
{
 #pragma omp section /*Optional*/
 a = A();
 #pragma omp section
 b = B();
 #pragma omp section
 d = D();
}
c = C(a, b);
e = E(c, d);
printf (”Result=%d\n", e);

CS302 – Spring 2025 Lec.3.1 - Slide 78

u Writing fast parallel programs is not easy
u Access pattern & locality makes a big difference

u Remove false sharing
u Use blocking to increase locality

u Load balancing is important
u Dynamic work distribution works better

u Maximize parallel regions in your code
u Unroll loops to reduce the loop overhead
u Exploit functional parallelism when there are several independent

tasks

Summary

