
CS302 – Spring 2025 Lec.2.2 - Slide 1

CS302

Hardware Cache Coherence

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Patterson, Wenisch, Fatahalian of CMU/EPFL,
Michigan, UC Berkeley, and CMU
Copyright 2025

Googled “Incoherent”

CS302 – Spring 2025 Lec.2.2 - Slide 2

Where are We?

u Cache Coherence
u Coherence protocols
u Scaling to many cores

u Directories

u Exercise session
u Example OpenMP programs

u Next Tuesday
u Optimizing SW for caches and

coherence

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.2.2 - Slide 3

u Today’s lecture explains how multiprocessor caches share data
 Review of basics + advanced topics

u Next week we will see
u How such sharing can reduce performance
u How we can optimize sharing in software

u Part 2 of Assignment 1 requires such software optimizations for
increasing the performance of parallel programs

Cache Coherence and Assignment 1

CS302 – Spring 2025 Lec.2.2 - Slide 4

u Hierarchy of caches

u Slower but bigger every level

u Principles of locality

Review: Uniprocessor Memory Hierarchy

2 GHz

2 ns/32 KB

10 ns/512KB

30 ns/8MB

150 ns/
128 GB

L1

L2

LLC

P

Memory

CS302 – Spring 2025 Lec.2.2 - Slide 5

uData array keeps cache blocks

uTag array keeps
u Tags ~ addresses
u State of block

u State
u Valid/Invalid
u Dirty for writeback caches

Review: Inside a cache

.

.

.

DataState Tag

.

.

.

CS302 – Spring 2025 Lec.2.2 - Slide 6

u All memory accesses are atomic & in program order

u All cores see all accesses immediately (for now)

u We will just look at coherence in L1 Data Caches
u In reality you have coherence in L1 Data, Instructions, L2, L3, L4,..
u All coherence is maintained at the granularity of a cache block

Assumptions

CS302 – Spring 2025 Lec.2.2 - Slide 7

Incoherence is intrinsically due to sharing data
u More specifically, updating a value and reading a different copy

Shared Memory Expectation:
u Any core P, reading address X, will get the last value written to X

u Fairly intuitive for sequential programs
u Difficult for parallel programs, may have intervening writes

Review: What is Cache Coherence?

CS302 – Spring 2025 Lec.2.2 - Slide 8

u Caches don’t change program semantics
u They just exist for performance optimization (fast data access)

u Goal of cache coherence is to be invisible
u Given a program executing on cores with their own caches
u Make it operate as if the caches are not present, providing the illusion of simple

global memory

Review: What is Cache Coherence?

CS302 – Spring 2025 Lec.2.2 - Slide 9

u Assume a bus connects cores and memory
u Allows global visibility of all memory operations

u Add independent “cache controllers” to each core
u Each controller is a Finite State Machine (FSM)
u The controller sees all remote processor actions
u Takes coherence actions without stopping the processor
u Actions depend on block’s state, and protocol

Mechanism for Basic Coherence

CS302 – Spring 2025 Lec.2.2 - Slide 10

u Modified, Exclusive, Shared, Invalid

u Modified
u This cache has updated the value and holds the authoritative copy
u Memory is stale, needs to be updated on eviction

u Exclusive
u This cache has an exclusive copy
u It can write to the block (and move to M) without telling anyone

u Shared
u One or more caches hold the value, read permission only

u Invalid

The MESI Protocol

CS302 – Spring 2025 Lec.2.2 - Slide 11

u Core Side
u Must obey permissions implied by cache state
u e.g., Cannot write in S

u Cache Controller Side
u Distinguish between read and ”read with intent to modify”

u Load → read → Shared
u Store → “read to modify” → Modified

u On a write to a block in S, send an invalidate to other caches
u When seeing a read to a block in S, raise the “copies” line
u When seeing a read to a block in M, put local data on the bus

The MESI Protocol

CS302 – Spring 2025 Lec.2.2 - Slide 12

u Terminology for all coherence diagrams:
u { Event → Response }

u Core Actions
u PRd – Processor attempts to read a line
u PWr – Processor attempts to write a line

u Remote Actions
u BusRd – Obtain copy of a line with no intent to modify
u BusRdX – Obtain copy of a line with intent to modify
u BusInv – Get rid of other copies
u DataWB – Put updated value of a line on the bus

MESI Protocol State Diagram

CS302 – Spring 2025 Lec.2.2 - Slide 13

Review: MESI Protocol State Diagram

M

SI

E

{ Event → Response }

Locally initiated
Remotely initiated

Warning!!
The following diagrams are arrow-overload.
The best approach to understanding them is
to think through the state transitions
yourself.

CS302 – Spring 2025 Lec.2.2 - Slide 14

Review: MESI Protocol State Diagram

PRd → BusRd
(copies = yes)

BusRdX → --
BusInv → --

PWr → BusInv

BusRd → DataWB

PWr → BusRdX

Bu
sR

dX
→

 D
at

aW
B

PRd/PWr → --

PRd → -- BusRd → --

M

SI

E

PRd → BusR
d

(co
pies =

 no)

BusRd → --

PWr → --

PRd → --

{ Event → Response }

Locally initiated
Remotely initiated

BusR
dX → --

CS302 – Spring 2025 Lec.2.2 - Slide 15

{ Event → Response }

Locally initiated
Remotely initiated

Review: Remaining Arcs (when the block is not in the cache)

PRd → BusRd
(copies = yes)

BusRdX → --
BusInv → --

PWr → BusInv

BusRd → DataWBPWr → BusRdX

BusRdX → DataWB

PRd/PWr → --

PRd → -- BusRd → --

M

SI

E

PRd → BusR
d

(co
pies =

 no)

BusRd → --

PRd → --

PWr → --

PWr → BusRdX

PRd → BusRd
(copies = yes)

PRd → BusRd
(copies = no)

CS302 – Spring 2025 Lec.2.2 - Slide 16

1. P0 Read X

Example: MESI Protocol (Read)

MemoryX

P0

Cache

P1

Cache
Read X

CS302 – Spring 2025 Lec.2.2 - Slide 17

1. P0 Read X
a) Cache controller issues a read on bus

Example: MESI Protocol (Read)

MemoryX

P0

Cache

P1

Cache
BusRd

CS302 – Spring 2025 Lec.2.2 - Slide 18

Example: MESI Protocol (Read)

MemoryX

P0 P1

Cache

1. P0 Read X
a) Cache controller issues a read on bus
b) X returned (copies=no) → E

X(E)

CS302 – Spring 2025 Lec.2.2 - Slide 19

Example: MESI Protocol (Read)

MemoryX

P0 P1

Cache
Read X

1. P0 Read X → E
2. P1 Read X

X(E)

CS302 – Spring 2025 Lec.2.2 - Slide 20

Example: MESI Protocol (Read)

MemoryX

P0 P1

Cache

1. P0 Read X → E
2. P1 Read X

a) Cache controller issues a read on bus
X(E)

BusRd

SE

BusRd → --

CS302 – Spring 2025 Lec.2.2 - Slide 21

Example: MESI Protocol (Read)

MemoryX

P0 P11. P0 Read X → E
2. P1 Read X

a) Cache controller issues a read on bus
b) X returned (copies=yes) → S X(S) X(S)

CS302 – Spring 2025 Lec.2.2 - Slide 22

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

Example: MESI Protocol (Write)

MemoryX

P0 P1

X(S) X(S)

Write X

CS302 – Spring 2025 Lec.2.2 - Slide 23

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Cannot write, as we do not have
permissions.

Example: MESI Protocol (Write)

MemoryX

P0 P1

X(S) X(S)

Write X

CS302 – Spring 2025 Lec.2.2 - Slide 24

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Cannot write, as we do not have
permissions.

b) Send BusInv

Example: MESI Protocol (Write)

MemoryX

P0 P1

X(S) X(S)
BusInv

MS

PWr → BusInv

CS302 – Spring 2025 Lec.2.2 - Slide 25

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Cannot write, as we do not have
permissions

b) Send BusInv → M
c) Other caches remove the block → I
d) Allow write to proceed

Example: MESI Protocol (Write)

MemoryX

P0 P1

X(M) X(I)

Write X

IS

BusRdX → --

CS302 – Spring 2025 Lec.2.2 - Slide 26

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X → M
4. P1 Read X

Example: MESI Protocol (Writeback)

MemoryX

P0 P1

X(M) X(I)

Read X

CS302 – Spring 2025 Lec.2.2 - Slide 27

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X → M
4. P1 Read X

a) Issue read on the bus

Example: MESI Protocol (Writeback)

MemoryX

P0 P1

X(M) X(I)
BusRd

SI

PRd → BusRd

CS302 – Spring 2025 Lec.2.2 - Slide 28

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X → M
4. P1 Read X

a) Issue read on the bus
b) P0 sends new value of X → S
c) Memory is updated
d) P1 caches the value → S

Example: MESI Protocol (Writeback)

MemoryX

P0 P1

X(S) X(S)
DataWB

SM

BusRd → DataWB

CS302 – Spring 2025 Lec.2.2 - Slide 29

Summary

u Coherence
u Keeps values at an address up-to-date across parallel processors
u Do not confuse with consistency: order of loads/stores to multiple addresses

u MESI protocol
u Optimizes interconnect traffic, uses write-back caches
u More complex cache controller and protocol

u 3Cs for misses are now 4Cs (coherence)

CS302 – Spring 2025 Lec.2.2 - Slide 30

u MESI protocol reduces bus contention by eliminating unnecessary
BusInv messages

u But the bus is a globally shared substrate
u Tech. limitations mean it can only support a handful of cores
u e.g., Physical size, electrical capacitance, conflict resolution

Limitations on Interconnect Scaling

CS302 – Spring 2025 Lec.2.2 - Slide 31

u Buses have long wires and high capacitance
u Bus cycle times could be 3x core cycle time
u Assume:

u 4.8 GB/s traffic on the backside of L1 (L1 miss traffic)
u 64-byte blocks
u 2 GHz cores

u How many cores can the bus support, assuming 40% maximum
utilization?
u Answer: Bus clock is 0.5ns x 3 = 1.5ns
u Bus bandwidth = 64 bytes/1.5 ns = 43 GB/s, at 40% = 17.06 GB/s
u # of cores = 17.06/4.8 ~ 3 cores

Exercise: Buses & Cores

CS302 – Spring 2025 Lec.2.2 - Slide 32

Centralized Structures w/ Utilization are a Bottleneck!

Buses are M/M/1 Queues

10% 20% 30% 40% 50% 60% 70% 80% 90%
Utilization

Memory bus
Flash/disk bus
Network router queues
Real life examples
 (restaurants, movie theaters, elevators)

W
ai

tin
g

Ti
m

e

CS302 – Spring 2025 Lec.2.2 - Slide 33

u More scalable systems use point-to-point network
u Messages have an explicit source and destination
u e.g., Intel Skylake uses a ring

u Problem for our coherence protocols
u Each core no longer sees all of the messages
u Need to introduce another protocol controller into the system…

Point to Point Network Organization

P

Cache
Msg. Buffers

CS302 – Spring 2025 Lec.2.2 - Slide 34

Point to Point Network Organization

CS302 – Spring 2025 Lec.2.2 - Slide 35

u Previously, the bus served as a global “ordering point” for all
coherence activity

u Instead, we use a coherence directory
u The directory tracks all caches that contain a particular block
u All messages leaving the core are first sent to the directory
u The directory takes the appropriate actions, and then responds to the original

cache’s request
u The directory serves as a per-block address “ordering point”

u For now, directory is just another node in the interconnection network
(other structures later)

Directory-Based Protocol

CS302 – Spring 2025 Lec.2.2 - Slide 36

u BusRd
u BusRdX

Directory-Based Protocol Messages

u BusInv
u DataWB

Bus-based: Bus Actions

Directory-based: Messages
u Cache to directory:

u GetRd – Get copy to read
u GetWr – Get copy to modify
u UpGrd – Get rid of other copies
u DataWB – Write back a line
u Ack – Acknowledge message

u Directory to cache
u DwnGrd – Go from E/M → S
 (if in M, write back a copy)
u Inv – Get rid of your copy
u Fill – Here is a copy of the line
u Ack – Acknowledge message

CS302 – Spring 2025 Lec.2.2 - Slide 37

u Bus replaced by a generic point-
to-point network

u Directory sits near memory
u We will just show the state for X…
u But it stores entries for all cache

blocks in the cores

Example: Directory-Based MESI Protocol

MemoryX

P0

Cache

P1

Cache

Directory

CS302 – Spring 2025 Lec.2.2 - Slide 38

1. P0 Read X

Example: Directory-Based MESI Protocol

MemoryX

P0

Cache

P1

Cache
Read X

Directory

CS302 – Spring 2025 Lec.2.2 - Slide 39

1. P0 Read X
a) Cache controller

forwards to directory

Example: Directory-Based MESI Protocol

MemoryX

P0

Cache

P1

Cache

P0 GetRd X

X(E): P0

CS302 – Spring 2025 Lec.2.2 - Slide 40

1. P0 Read X
a) Cache controller

forwards to directory
b) Directory responds with

a fill message, which
has Data X → E

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

Cache
Fill X

X(E): P0

X(E)

CS302 – Spring 2025 Lec.2.2 - Slide 41

1. P0 Read X → E
2. P1 Read X

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

Cache

X(E): P0

X(E)
Read X

CS302 – Spring 2025 Lec.2.2 - Slide 42

1. P0 Read X → E
2. P1 Read X

a) Cache controller
forwards to directory

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

Cache

X(E): P0

X(E)

P1 GetRd X

CS302 – Spring 2025 Lec.2.2 - Slide 43

1. P0 Read X → E
2. P1 Read X

a) Cache controller
forwards to directory

b) Directory responds by
downgrading P0 to S

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

Cache

X(E): P0

X(S)

DwnGrd X

CS302 – Spring 2025 Lec.2.2 - Slide 44

1. P0 Read X → E
2. P1 Read X

a) Cache controller
forwards to directory

b) Directory responds by
downgrading P0 to S

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

Cache

X(E): P0

X(S)

Ack X

Ack X

CS302 – Spring 2025 Lec.2.2 - Slide 45

1. P0 Read X → E
2. P1 Read X → S

a) Cache controller
forwards to directory

b) Directory responds by
downgrading P0 to S

c) Directory responds with
a fill message, which
has Data X → S

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

Fill X

X(S): [P0 P1]

X(S)X(S)

CS302 – Spring 2025 Lec.2.2 - Slide 46

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Forward the write miss
to directory

Example: Directory-Based MESI Protocol

MemoryX

P0 P1
Write X

X(S): [P0 P1]

X(S) X(S)

CS302 – Spring 2025 Lec.2.2 - Slide 47

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Forward the write miss to
directory

b) Directory sends inv’s to
other sharers → M

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

P0 UpGrd X

X(M): [P0]

X(S) X(S)

CS302 – Spring 2025 Lec.2.2 - Slide 48

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Forward the write miss to
directory

b) Directory sends inv’s to
other sharers → M

c) P1 inv’s block X → I

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

P1 Inv X

X(M): [P0]

Inv X

X(I)X(S)

CS302 – Spring 2025 Lec.2.2 - Slide 49

Ack X

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Forward the write miss to
directory

b) Directory sends inv’s to
other sharers → M

c) P1 inv’s block X → I
d) P1 acknowledges invalidate

Example: Directory-Based MESI Protocol

Ack X

MemoryX

P0 P1

X(M): [P0]

X(I)X(S)

CS302 – Spring 2025 Lec.2.2 - Slide 50

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X

a) Forward the write miss to
directory

b) Directory sends inv’s to
other sharers → M

c) P1 inv’s block X → I
d) P1 acknowledges invalidate
e) Directory responds to P0,

transitions state → M

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

X(M): [P0]

X(M)

Ack X

Ack X

X(I)

CS302 – Spring 2025 Lec.2.2 - Slide 51

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X → M
4. P1 Read X

a) Send request to directory

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

X(M): [P0]

Read X

P1 GetRd X

X(I)X(M)

CS302 – Spring 2025 Lec.2.2 - Slide 52

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

X(S): [P0,P1]

DwnGrd X

X(I)X(M)

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X → M
4. P1 Read X

a) Send request to directory
b) Directory sees P0 has the

most updated copy, and
forwards P1’s request → S

DwnGrd X

CS302 – Spring 2025 Lec.2.2 - Slide 53

1. P0 Read X → E
2. P1 Read X → S
3. P0 Write X → M
4. P1 Read X

a) Send request to directory
b) Directory sees P0 has the

most updated copy, and
forwards P1’s request → S

c) P0 sends P1 the data → S
and writes back to memory

Example: Directory-Based MESI Protocol

MemoryX

P0 P1

X(S): [P0,P1]

DataWB X

DataWB X

X(S) X(S)

Fill X

CS302 – Spring 2025 Lec.2.2 - Slide 54

u Each entry stores:
1. Bits storing the MESI coherence state
2. Cache tag
3. Bits identifying the core associated with this entry

Anatomy of a Directory Entry

Cache TagMESI Core ID

2 39 log2(Cores)

Directory
Entry 0

CS302 – Spring 2025 Lec.2.2 - Slide 55

u Stores all tags that are present in the L1 caches
u Means that the set-mapping functions must be identical
u e.g., 2 processors, with 4-way associative caches, means that each directory

set must be 8-way associative

Duplicate Tag Directory

Way 0 Way 1 Way 2 Way 3

Way 0 Way 1 Way 2 Way 3

… …

Cache 0 Cache 1

Directory

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

CS302 – Spring 2025 Lec.2.2 - Slide 56

u Centralized directory can also be a source of contention, just like a bus
u Insight: L2 caches are multi-banked and distributed across chip
u Solution: Distribute the directory with the L2 banks

u Each block has a home node determined by address interleaving
u Each directory still requires associativity equal to sum of L1 caches

Distributed Duplicate Tag Directories

D L20 DL2N…

CS302 – Spring 2025 Lec.2.2 - Slide 57

u Assume a 32-bit address space
u 2KB cache, 4-way associative, 4-byte blocks

u 2KB with 4B per block = 512 blocks in the cache
u Organization is 128 sets x 4 ways

Reminder: Set Mapping in Caches

4 ways

128 sets

DataTag
…

… …

…

CS302 – Spring 2025 Lec.2.2 - Slide 58

u Assume a 32-bit address space
u 2KB cache, 4-way associative, 4B blocks

Reminder: Set Mapping in Caches

1 031 8 2

TAG IDX BO

0100 …….. 0101 0000001 00

4B block, B. Offset = 2 bits
128 sets, IDX = 7 bits
TAG = rest of the bits

Way 0 Way 3

Set 1

CS302 – Spring 2025 Lec.2.2 - Slide 59

u Simpler example for illustrative purposes
u L1 Caches: 4B blocks, 4-way associative, 4 sets
u Note: Different address than previous slide

How are the Caches Accessed?

Core0 Core3Core1 Core2

L1-D Caches

1 031 4

TAG IDX BO

0011…1110010101 10 11
3 2

CS302 – Spring 2025 Lec.2.2 - Slide 60

u Assume a centralized directory
u Simple solution:

u Use the same set mapping index to pick the directory set

How is the Directory Accessed?

Core0 Core3Core1 Core2

L1-D Caches
Directory

1 031 4

TAG IDX BO

0011…1110010101 10 11
3 2

CS302 – Spring 2025 Lec.2.2 - Slide 61

u But now 16-way (4 cores x 4-way)
u Associativity is bad for latency & power!

How is the Directory Accessed?

Core0 Core3Core1 Core2

L1-D Caches
Directory

1 031 4

TAG IDX BO

0011…1110010101 10 11
3 2

CS302 – Spring 2025 Lec.2.2 - Slide 62

u Can continue splitting
u But, will run into low associativity

u Contention in sets 0010 and 1110

Directory

Sparse Directories

Directory
IDX

Core0 Core3Core1 Core2

L1-D Caches

1 031 4

TAG IDX BO

0011…1110010101 10 11
3 2

CS302 – Spring 2025 Lec.2.2 - Slide 63

u Duplicate tags require massive associativity, equal to the sum of all
L1’s in the system
u Insight: Split the L1 ways across multiple directory sets, allows us to reduce

associativity. Sets are easier to add than ways!

Sparse Directories

DirectoryDirectory
IDX

Core0 Core3Core1 Core2

L1-D Caches

1 031 4

TAG IDX BO

0011…1110010101 10 11
3 2

CS302 – Spring 2025 Lec.2.2 - Slide 64

u By reducing associativity, we introduce conflicts
u Eviction policy? e.g., Least recently used (LRU)

u Now we need a mechanism to handle directory conflicts while
maintaining coherence
1. Recall the block from all upper-level caches
2. Fall back to broadcast (if conflicts are rare)

Sparse Directories

Directory

Core0 Core3Core1 Core2

L1-D Caches

CS302 – Spring 2025 Lec.2.2 - Slide 65

u Over-provision number of sets
u Use more tag bits to index
u Pro: low conflict rate
u Con: Large area overhead!

Sparse Directories

Directory

Co
re

 C
ou

nt
×

L1
 A

ss
oc

iat
ivi

ty
×

Ov
er

-p
ro

vis
ion

 F
ac

tor

2x sets

Core0 Core3Core1 Core2

L1-D Caches

CS302 – Spring 2025 Lec.2.2 - Slide 66

u Divide the L1 sets across L2 banks
u Use L1 low-order index bits to find the directory

u Rest of the L1 index bits + tag bits for directory
u E.g., for two L2 banks

Back to Distributed Directories

D L20 DL21

Directory IDX

L2 bank 1

1 031 8 2

TAG IDX BO

0100 …….. ……. 1110001 00

CS302 – Spring 2025 Lec.2.2 - Slide 67

u Before, we stored all of the L1 cache tags
u Core ID’s were explicitly stored

u Instead, store a bit vector (1b per core) w. each tag
u If a bit is 1, that core shares this cache block

Bit Vector Directory Entries

Cache TagMESI Core ID

2 39 log2(Cores)

Cache TagMESI Bit Vector

2 39 # Cores

eg. …. 0000101

= Shared by C0,C2

CS302 – Spring 2025 Lec.2.2 - Slide 68

u e.g., AMD Opteron “Magny Cours” Processor
u 4 x 12 core multi-chip modules, with hierarchy shown below

Real-World Directory Structure

P
L1 Cache

L2 Cache

L3 Cache
HyperTransport

Directory

L3 Cache Directory

CS302 – Spring 2025 Lec.2.2 - Slide 69

u L2 caches:
u 512kB capacity, 64B lines
u Inclusive of 64KB L1 caches

u L3 cache tracks which of the L2s share a block
u 48 possible locations (4 chips, 12 cores each)

Real-World Directory Structure

L3 Cache Directory …
HyperTransport

CS302 – Spring 2025 Lec.2.2 - Slide 70

u Cache coherence ensures a unified view of each memory location in
isolation
u All cores will see the same sequence of values

u Sample coherence protocols
u Bus-based MSI, optimized MESI

u Scalable interconnects demand directory protocol
u Most common directory is bit vector, use limited ptr. for scalability
u Scaling exact coherence is an ongoing and active research area!

Summary

