CS302

Hardware Cache Coherence

It's coffee and | need
some Tuesday.

Please excuse my

Spring 2025 incoherence it's early. @
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302 LoveThisPic.com

Googled “Incoherent”

Adapted from slides originally developed by Profs. Falsafi, Patterson, Wenisch, Fatahalian of CMU/EPFL,
Michigan, UC Berkeley, and CMU
Copyright 2025

CS302 — Spring 2025 Lec.2.2 - Slide 1

Where are We?

¢ Cache Coherence

>] & Coherence protocols
_a ¢ Scaling to many cores

5-Mar)_
ng to
¢ Directories

S
2 . .
¢ Exercise session
1

¢ Example OpenMP programs
5

6
0

-3 -Apr
¢ Next Tuesday

o Optimizing SW for caches and
coherence

CS302 — Spring 2025 Lec.2.2 - Slide 2

Cache Coherence and Assignment 1

¢ Today’s lecture explains how multiprocessor caches share data
@® Review of basics + advanced topics

¢ Next week we will see
¢ How such sharing can reduce performance
¢ How we can optimize sharing in software

¢ Part 2 of Assignment 1 requires such software optimizations for
increasing the performance of parallel programs

CS302 — Spring 2025 Lec.2.2 - Slide 3

Review: Uniprocessor Memory Hierarchy

P_|

2 GHz

¢ Hierarchy of caches

2 ns/32 KB

¢ Slower but bigger every level

10 ns/512KB
¢ Principles of locality

30 ns/8MB

150 ns/ M
128 GB %ﬂmw

CS302 — Spring 2025 Lec.2.2 - Slide 4

Review: Inside a cache

¢ Data array keeps cache blocks State Tag Data

¢ Tag array keeps l -
¢ Tags ~ addresses

¢ State of block

¢ State

¢ Valid/Invalid - -

+ Dirty for writeback caches

CS302 — Spring 2025 Lec.2.2 - Slide 5

Assumptions

¢ All memory accesses are atomic & in program order
¢ All cores see all accesses immediately (for now)

¢ We will just look at coherence in L1 Data Caches
+ In reality you have coherence in L1 Data, Instructions, L2, L3, L4,..
¢ All coherence is maintained at the granularity of a cache block

CS302 — Spring 2025 Lec.2.2 - Slide 6

Review: What is Cache Coherence?

Incoherence is intrinsically due to sharing data
¢ More specifically, updating a value and reading a different copy

Shared Memory Expectation:

¢ Any core P, reading address X, will get the last value written to X
¢ Fairly intuitive for sequential programs
+ Difficult for parallel programs, may have intervening writes

CS302 — Spring 2025 Lec.2.2 - Slide7

Review: What is Cache Coherence?

¢ Caches don't change program semantics
¢ They just exist for performance optimization (fast data access)

¢ Goal of cache coherence is to be invisible
¢ Given a program executing on cores with their own caches

¢ Make it operate as if the caches are not present, providing the illusion of simple
global memory

CS302 — Spring 2025 Lec.2.2 - Slide 8

Mechanism for Basic Coherence

¢ Assume a bus connects cores and memory
¢ Allows global visibility of all memory operations

¢ Add independent “cache controllers” to each core
¢ Each controller is a Finite State Machine (FSM)
¢ The controller sees all remote processor actions
¢ Takes coherence actions without stopping the processor
¢ Actions depend on block’s state, and protocol

CS302 — Spring 2025 Lec.2.2 - Slide 9

The MESI Protocol

¢ Modified, Exclusive, Shared, Invalid

¢ Modified

¢ This cache has updated the value and holds the authoritative copy
¢ Memory is stale, needs to be updated on eviction

¢ Exclusive
¢ This cache has an exclusive copy
+ It can write to the block (and move to M) without telling anyone

¢ Shared

¢ One or more caches hold the value, read permission only
¢ Invalid

CS302 — Spring 2025 Lec.2.2 - Slide 10

The MESI Protocol

¢ Core Side
¢ Must obey permissions implied by cache state
¢ e.g., Cannot write in S

& Cache Controller Side

¢ Distinguish between read and "read with intent to modify”
¢ Load — read — Shared
¢ Store — “read to modify” — Modified

¢ On a write to a block in S, send an invalidate to other caches
¢ When seeing a read to a block in S, raise the “copies” line
¢ When seeing a read to a block in M, put local data on the bus

CS302 — Spring 2025 Lec.2.2 - Slide 11

MESI Protocol State Diagram

¢ Terminology for all coherence diagrams:
¢ { Event — Response }

¢ Core Actions
¢ PRd - Processor attempts to read a line
¢ PWr — Processor attempts to write a line

¢ Remote Actions
¢ BusRd — Obtain copy of a line with no intent to modify
¢ BusRdX — Obtain copy of a line with intent to modify
¢ Buslnv — Get rid of other copies
¢ DataWWB — Put updated value of a line on the bus

CS302 — Spring 2025 Lec.2.2 - Slide 12

Review: MESI Protocol State Diagram

() ()

{ Event — Response }
Warning!! <+— Locally initiated
The following diagrams are arrow-overload. <---- Remotely initiated

The best approach to understanding them is
to think through the state transitions
yourself.

CS302 — Spring 2025 Lec.2.2 - Slide 13

Review: MESI Protocol State Diagram

PRd/PWr — -- PRd — --

PWr — --
E
&
\\\06)?
N .
] N et i { Event — Response }
| A h . S
N 4
AR o <+— Locally initiated
I S s 1
S | N N . SO <---- Remotely initiated
I S <, S I
PWr — BusRdX | © | RN ! B usRd
I o N\ | BUSRA = =
x : ,’, \\\ :
§ : O o’ \\\ :
R RN
= | \)/' RN 1
Sl I BusRdX — -- Ny !
/% Businv — -- < TN
———————————————————————— \\\
PRd — BusRd PRd — -- :| BusRd — --
| (copies = yes) el |
CS302 — Spring 2025 ’ Lec.2.2 - Slide 14

-y
———————————

Review: Remaining Arcs (when the block is not in the cache)

PRd — BusRd

> B (copies = no)

PWr — BusRdX

PRd — BusRd
(copies = yes)

Example: MESI Protocol (Read)

1. PygRead X

‘ x— Memory \

CS302 — Spring 2025 Lec.2.2 - Slide 16

Example: MESI Protocol (Read)

1. PygRead X

a) Cache controller issues a read on bus

CS302 — Spring 2025 Lec.2.2 - Slide 17

Example: MESI Protocol (Read)

1. PygRead X

a) Cache controller issues a read on bus
b) Xreturned (copies=no) — E

CS302 — Spring 2025 Lec.2.2 - Slide 18

Example: MESI Protocol (Read)

1. PpRead X — E
2. Py Read X

‘ x— Memory \

CS302 — Spring 2025 Lec.2.2 - Slide 19

Example: MESI Protocol (Read)

1. PpRead X — E
2. Py Read X

a) Cache controller issues a read on bus

BusRd

!

‘ x— Memory \

BusRd — --

CS302 — Spring 2025 Lec.2.2 - Slide 20

Example: MESI Protocol (Read)

1. PpRead X — E
2. Py Read X

a) Cache controller issues a read on bus
b) Xreturned (copies=yes) — S

CS302 — Spring 2025 Lec.2.2 - Slide 21

Example: MESI Protocol (Write)

1. PpRead X — E
2. P Read X — S
3. Py Write X

!
‘ x— Memory \

CS302 — Spring 2025 Lec.2.2 - Slide 22

Example: MESI Protocol (Write)

1. PopRead X - E P, P,
2. PRead X — S Write X
3. Py Write X

a) Cannot write, as we do not have
permissions.

!

‘ Xx— Memory \

CS302 — Spring 2025 Lec.2.2 - Slide 23

Example: MESI Protocol (Write)

1. PoRead X — E Po P1
2. P,Read X — S
3. Py Write X
a) Cannot write, as we do not have BusInv
permissions.
b) Send Businv t

‘ x— Memory \
O—()

PWr — Buslnv Lec.2.2- Slide 24

CS302 — Spring 2025

Example: MESI Protocol (Write)

1. PpRead X - E Py Py
2. PRead X — S Write X
3. Py Write X
a) Cannot write, as we do not have
permissions
b) Send Businv —- M t

c) Other caches remove the block — | M
d) Allow write to proceed X cmory

BusRdX — --

CS302 — Spring 2025 Lec.2.2 - Slide 25

Example: MESI Protocol (Writeback)

1. PopRead X - E P, P,
P,Read X — S
Py Write X - M
P, Read X

s W N

!

‘ x— Memory \

CS302 — Spring 2025 Lec.2.2 - Slide 26

Example: MESI Protocol (Writeback)

1. PyRead X - E Py Py
2. PRead X — S
3. PoWrite X > M
4. Py Read X BusRd
a) Issue read on the bus t

‘ x— Memory \
(O—

PRd — BusRd Lec.2.2 - Slide 27

CS302 — Spring 2025

Example: MESI Protocol (Writeback)

1. PpRead X — E Py Py
2. PRead X — S
3. PoWrite X > M

4. Py Read X DataWB
a) Issue read on the bus t
by Pysends new value of X —» S
c) Memory is updated X Memory

d) P,caches the value —» S

BusRd — DataWB Lec.2.2 - Slide 28

CS302 — Spring 2025

Summary

¢ Coherence
¢ Keeps values at an address up-to-date across parallel processors
¢ Do not confuse with consistency: order of loads/stores to multiple addresses

¢ MESI protocol
¢ Optimizes interconnect traffic, uses write-back caches
¢ More complex cache controller and protocol

¢ 3Cs for misses are now 4Cs (coherence)

CS302 — Spring 2025 Lec.2.2 - Slide 29

Limitations on Interconnect Scaling

¢ MESI protocol reduces bus contention by eliminating unnecessary
Businv messages

¢ But the bus is a globally shared substrate
¢ Tech. limitations mean it can only support a handful of cores
¢ e.g., Physical size, electrical capacitance, conflict resolution

CS302 — Spring 2025 Lec.2.2 - Slide 30

Exercise: Buses & Cores

¢ Buses have long wires and high capacitance
¢ Bus cycle times could be 3x core cycle time

¢ Assume:
¢ 4.8 GB/s traffic on the backside of L1 (L1 miss traffic)

¢ 64-byte blocks
¢ 2 GHz cores
¢ How many cores can the bus support, assuming 40% maximum
utilization?
¢ Answer: Bus clock is 0.5ns x 3 = 1.5ns
¢ Bus bandwidth = 64 bytes/1.5 ns =43 GB/s, at 40% = 17.06 GB/s
& # of cores = 17.06/4.8 ~ 3 cores

CS302 — Spring 2025 Lec.2.2 - Slide 31

Centralized Structures w/ Utilization are a Bottleneck!

Buses are M/M/1 Queues

Memory bus

Flash/disk bus

Network router queues

Real life examples

(restaurants, movie theaters, elevators)

Waiting Time

10% 20% 30% 40% 50% 60% 70% 80% 90%
CS302 — Spring 2025 U t| I |Zat| on Lec.2.2 - Slide 32

Point to Point Network Organization

¢ More scalable systems use point-to-point network
¢ Messages have an explicit source and destination

¢ e.g., Intel Skylake uses a ring

¢ Problem for our coherence protocols
¢ Each core no longer sees all of the messages
¢ Need to introduce another protocol controller into the system...

CS302 — Spring 2025

P

4)
S >

Cache

«—

_

Msg. Buffers

Lec.2.2 - Slide 33

Point to Point Network Organization

e

Lec.2.2 - Slide 34

¥aa ¥aaq

usby sWwoH

o8
s <
og NS T NS T og
9199 2100 «ito[511 | | 0T [+ as0p | 9199
og aneT anNeT og
2103 5105 x| oM | | o |0 aicp |20
og BNST SNS T og
8103 aiop apto | o1 | [o1 [o®% aop | 2400
o8
o8 ansz| |awsz o8
810D .0n awto| o1 | | 211 |=Peo ason | 249D
avs ; L[avs
og anes T SNST og
8103|005 asto| o1 | [0T [=w%o 2105 (810
e ol waby |40
- oo e | i1odzy ||| 1doew |
(53) #x|[8X o1LX |[91X Hui 3ur
3 1dO

CS302 — Spring 2025

Directory-Based Protocol

¢ Previously, the bus served as a global “ordering point” for all
coherence activity

¢ Instead, we use a coherence directory
¢ The directory tracks all caches that contain a particular block

¢ All messages leaving the core are first sent to the directory

¢ The directory takes the appropriate actions, and then responds to the original
cache’s request

¢ The directory serves as a per-block address “ordering point”

¢ For now, directory is just another node in the interconnection network
(other structures later)

CS302 — Spring 2025 Lec.2.2 - Slide 35

Directory-Based Protocol Messages

Bus-based: Bus Actions
¢ BusRd ¢ Businv

¢ BusRdX ¢ DataWB

Directory-based: Messages

¢ Cache to directory: ¢ Directory to cache
¢ GetRd — Get copy to read ¢ DwnGrd — Go from E/M — S
¢ GetWr — Get copy to modify (if in M, write back a copy)
¢ UpGrd — Get rid of other copies ¢ Inv — Get rid of your copy
¢ DataWB — Write back a line ¢ Fill — Here is a copy of the line

¢ Ack — Acknowledge message ¢ Ack — Acknowledge message

CS302 — Spring 2025 Lec.2.2 - Slide 36

Example: Directory-Based MESI Protocol

¢ Bus replaced by a generic point-
to-point network

P0
¢ Directory sits near memory
¢ We will just show the state for X...
4 il

¢ But it stores entries for all cache
blocks in the cores T T

Py
~

[

! !

‘ Directory H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 37

Example: Directory-Based MESI Protocol

P, P,
Read X % %
4 L] L]])

[

1. PygRead X

[[

[l

[l
1T

[Ll

[

! !

‘ Directory H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 38

Example: Directory-Based MESI Protocol

1. PygRead X Py Py
a) Cache controller
forwards to directory
4 N II__ II__ II_ R
: H: H: H:
\ A H— ll— ll_
P, GetRd X | {

‘ X(E): P, H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 39

Example: Directory-Based MESI Protocol

1. PyRead X

P0
a) Cache controller
forwards to directory
b) Directory responds with
a fill message, which .
has Data X — E Fill X
4 il

[[[

P
L L)

[

! !

‘ X(E): P, H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 40

Example: Directory-Based MESI Protocol

1. PpRead X - E
2. P,Read X

[l

[l
1T

[[[

[Ll

[

! !

‘ X(E): P, H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 41

Example: Directory-Based MESI Protocol

1. PpRead X - E
2. P,Read X

a) Cache controller
forwards to directory

[[

[l
1T

T 1

[Ll

. J

I
P, GetRd X 1§

‘ X(E): P, H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 42

Example: Directory-Based MESI Protocol

1. P,Read X — E Py
2. P,Read X

a) Cache controller
forwards to directory

b) Directory responds by DwnGrd X
downgrading PO to S 4)

! !

‘ X(E): P, H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 43

Example: Directory-Based MESI Protocol

1. PpRead X - E
2. P,Read X

a) Cache controller
forwards to directory

b) Directory responds by Ack X
downgrading PO to S 4)

Ack\Xl)

‘ X(E): P, H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 44

Example: Directory-Based MESI Protocol

1. PpRead X - E
2. P,Read X —» S

a) Cache controller
forwards to directory

b) Directory responds by
downgrading PO to S

c) Directory responds with
a fill message, which
has Data X —» S

CS302 — Spring 2025

Fill
TRl

Py
4 I

[[[

Py
X
N

[

! !

‘ X(S): [Py P4] H X Memory\

Lec.2.2 - Slide 45

Example: Directory-Based MESI Protocol

1. PpRead X - E

Py Py
2. P,Read X —> S Write X
3. Py Write X
a) Forward the write miss
4 il il |l R

to directory

[[[

[l

[l
1T

[Ll

[

! !

‘ X(S): [Py P4] H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 46

Example: Directory-Based MESI Protocol

1. PpRead X — E

Py
2. P,Read X —> S
3. Py Write X
a) Forward the write miss to
-
il

directory

b) Directory sends inv’s to
other sharers — M s s s o

[

P, UpGrgxl {

X(M): [Py] ‘ X Memory\

Lec.2.2 - Slide 47

Py
~

CS302 — Spring 2025

Example: Directory-Based MESI Protocol

1. PpRead X — E

Py
2. P,Read X —> S
3. Py Write X
a) Forward the write miss to
-
il

directory

b) Directory sends inv’s to
other sharers — M s s s o

c) Pjinv'sblock X — | T T
- J
P, Inv X | {

X(M): [Py] ‘ X Memory\

Lec.2.2 - Slide 48

P,
Inv X I
II_ II_: A

CS302 — Spring 2025

Example: Directory-Based MESI Protocol

1. PoRead X — E
2. P,Read X —» S
3. Py Write X

a) Forward the write miss to
directory - ~

b) Directory sends inv’s to 1T H H E

other sharers - M T L

c) P;inv'sblock X — | L T T
d) P, acknowledges invalidate

! Ack x |)

X(M): [Py] ‘ X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 49

Example: Directory-Based MESI Protocol

1. PpRead X — E

Py
2. P,Read X —> S
3. Py Write X
a) Forward the write miss to Ack X
directory e
L

b) Directory sends inv’s to
other sharers — M T T T

Py
~

c) P,inv'sblock X — I L T T o
d) P, acknowledges invalidate Ack X T t
e) Directory responds to Py C

transitions state — M X(M): [P,] ‘ X Memory \

CS302 — Spring 2025 Lec.2.2 - Slide 50

J

Example: Directory-Based MESI Protocol

1. PpRead X — E

Py Py
P, Read X —> S Read X
Py Write X - M
P, Read X . .

a) Send request to directory

s W DN

[[[

[]
[Tl

L
[l

L

P1 Geth\Xl {

‘ X(M): [Py] H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 51

Example: Directory-Based MESI Protocol

1. PpRead X — E

Py
?1 Read X — &
Po Write X — M
P, Read X DwnG;d X

a) Send request to directory

b) Directory sees P,has the s s s o
most updated copy, and L
forwards P,’s request — S - /

DwnGrd X T t

‘ X(S): [Py,P4] H X Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 52

s W DN

Py
~

Example: Directory-Based MESI Protocol

1. PpRead X — E

P, P,
P, Read X — S
Py Write X - M
P, Read X DataWB X Fill X
4 il il |l)

a) Send request to directory
b) Directory sees P, has the T T o

most updated copy, and B
forwards P,’s request — S

c) P,sendsP,the data — S 1 DataWB X 1

and writes back to memory
‘ X(S): [Py,P4] H XS Memory\

CS302 — Spring 2025 Lec.2.2 - Slide 53

s W DN

[

Anatomy of a Directory Entry

¢ Each entry stores:

1. Bits storing the MESI coherence state
2. Cache tag
3. Bits identifying the core associated with this entry

L2 39 loga(Cores)
MESI Cache Tag Core ID
Entry n T
Directory
e

CS302 — Spring 2025 Lec.2.2 - Slide 54

Duplicate Tag Directory

¢ Stores all tags that are present in the L1 caches
¢ Means that the set-mapping functions must be identical

¢ e.g., 2 processors, with 4-way associative caches, means that each directory
set must be 8-way associative

Way 0 Way 1 Way 2 Way 3

W0 wyi wyz wys JEL

Cache O I Cache 11

Way 0 Way 1 Way 2 Way 3 Way 4 Way 5 Way 6 Way 7

Directory

CS302 — Spring 2025 Lec.2.2 - Slide 55

Distributed Duplicate Tag Directories

¢ Centralized directory can also be a source of contention, just like a bus
¢ Insight: L2 caches are multi-banked and distributed across chip
¢ Solution: Distribute the directory with the L2 banks

¢ Each block has a home node determined by address interleaving
¢ Each directory still requires associativity equal to sum of L1 caches

||: ||: ||:
{ - H: H: H: J

CS302 — Spring 2025 Lec.2.2 - Slide 56

Reminder: Set Mapping in Caches

¢ Assume a 32-bit address space

¢ 2KB cache, 4-way associative, 4-byte blocks
¢ 2KB with 4B per block = 512 blocks in the cache

¢ Organization is 128 sets x 4 ways

Tag Data

128 sets

n |
™]
n]
< >

CS302 - Spring 2025 4 ways

Lec.2.2 - Slide 57

Reminder: Set Mapping in Caches

¢ Assume a 32-bit address space
¢ 2KB cache, 4-way associative, 4B blocks

31

TAG

IDX

BO

8 210

0100

0101

0000001

00

CS302 — Spring 2025

Set1i_,

Way 0

4B block, B. Offset = 2 bits

128 sets, IDX =7 bits
TAG = rest of the bits

Way 3

Lec.2.2 - Slide 58

How are the Caches Accessed?

¢ Simpler example for illustrative purposes

¢ L1 Caches: 4B blocks, 4-way associative, 4 sets
¢ Note: Different address than previous slide

TAG IDX BO
31 43210
0011...1110010101 [10]11

CS302 — Spring 2025

L1-D Caches

o

Core0

=

Core1

i

Core2 Core3

Lec.2.2 - Slide 59

How is the Directory Accessed?

¢ Assume a centralized directory

¢ Simple solution:

¢ Use the same set mapping index to pick the directory set

L1-D Caches

TAG

31

IDX

BO
43210

0011...1110010101 10

11

] =

CoreQ Coret

CS302 — Spring 2025

]

Core2

=

Cored

Directory

Lec.2.2 - Slide 60

How is the Directory Accessed?

¢ But now 16-way (4 cores x 4-way)
¢ Associativity is bad for latency & power!

TAG IDX BO
31 43210
0011...1110010101 [10]11

L1-D Caches
I I I I i ! Directory
|

Core0 Corel Core2 Cored

CS302 — Spring 2025

Lec.2.2 - Slide 61

Sparse Directories

¢ Can continue splitting

¢ But, will run into low associativity
¢ Contention in sets 0010 and 1110

L1-D Caches

Directory |

TAG IDX BO

31 43210

0011...1110010101)[10]11
——

IDX

=

Core0

CS302 — Spring 2025

]

Core1 Core2

>

Cored

Directory

r=>

Lec.2.2 - Slide 62

Sparse Directories

¢ Duplicate tags require massive associativity, equal to the sum of all

L1's in the system

¢ Insight: Split the L1 ways across multiple directory sets, allows us to reduce
associativity. Sets are easier to add than ways!

CS302 — Spring 2025

L1-D Caches

TAG

31

IDX BO

43210

0011...111001010(1)[10]11

=

Core0

=

Core1

]

Core2

=

Cored

=

4

‘_7_’ Directory

Directory

IDX
!

- - = >

Lec.2.2 - Slide 63

Sparse Directories

¢ By reducing associativity, we introduce conflicts
¢ Eviction policy? e.g., Least recently used (LRU)

¢ Now we need a mechanism to handle directory conflicts while

maintaining coherence

1. Recall the block from all upper-level caches
2. Fall back to broadcast (if conflicts are rare)

L1-D Caches

=

Core0

CS302 — Spring 2025

=

Core1

]

Core2

=

Cored

Directory

Lec.2.2 - Slide 64

Sparse Directories

¢ Over-provision number of sets Directory
¢ Use more tag bits to index S— il ug
& Pro: low conflict rate | 2
¢ Con: Large area overhead! _____________ Quan §
2x sets | >§

i

L1-D Caches ﬁ ------------- SE-m é

] o]] >]|

Core0 Core1 Core2 Core3 >) S

CS302 — Spring 2025 Lec.2.2 - Slide 65

Back to Distributed Directories

¢ Divide the L1 sets across L2 banks

¢ Use L1 low-order index bits to find the directory
¢ Rest of the L1 index bits + tag bits for directory

¢ E.g., for two L2 banks TAG DX BO
31 8 210
0100 11100(@00

\ J
|

e Directory IDX
» H_ H_ H_ |
h ||_ ||_ ||_ L2 bank 1

|
|
|
|
B L '
CS302 — Spring 2025 0

L 2 n _____ J
1 Lec.2.2 - Slide 66

Bit Vector Directory Entries

¢ Before, we stored all of the L1 cache tags

¢ Core ID’s were explicitly stored
2 39 logy(Cores)

MESI Cache Tag Core ID

¢ Instead, store a bit vector (1b per core) w. each tag
¢ If a bitis 1, that core shares this cache block

) 2 . 39 9 # Cores
MESI Cache Tag Bit Vector
eg. | 0000101

= Shared by C,,C,

CS302 — Spring 2025 Lec.2.2 - Slide 67

Real-World Directory Structure

¢ e.g., AMD Opteron "Magny Cours” Processor
¢ 4 x 12 core multi-chip modules, with hierarchy shown below

———
——
——
——

P

.2 Cache

L3 Cache Directory

HyperTransport

L3 Cache Directory

CS302 — Spring 2025 Lec.2.2 - Slide 68

Real-World Directory Structure

¢ L2 caches:
¢ 512kB capacity, 64B lines
¢ Inclusive of 64KB L1 caches

¢ L3 cache tracks which of the L2s share a block
¢ 48 possible locations (4 chips, 12 cores each)

L3 Cache Directory

~~~~~~~~~ ;}
i | HyperTransport

CS302 — Spring 2025 Lec.2.2 - Slide 69



Summary

¢ Cache coherence ensures a unified view of each memory location in
Isolation
¢ All cores will see the same sequence of values

¢ Sample coherence protocols
¢ Bus-based MSI, optimized MESI

¢ Scalable interconnects demand directory protocol

¢ Most common directory is bit vector, use limited ptr. for scalability
¢ Scaling exact coherence is an ongoing and active research area!

CS302 — Spring 2025 Lec.2.2 - Slide 70



