
CS302 – Spring 2025 Lec.2.1 - Slide 1

CS302

Parallel
Computing

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Copyright 2025

Adapted from slides originally developed by Profs. Hill, Hoe, Falsafi, Fatahalian and Wenisch of
CMU, EPFL, Michigan, Wisconsin

CS302 – Spring 2025 Lec.2.1 - Slide 2

Where are We?

u Parallel Computing
u Why parallelism?
u Principles of Parallel Computing
u OpenMP

u Thursday
u Lecture: Coherence refresher
u Exercise session: Example OpenMP

programs

u Friday lab session
u Assignment 1 released!

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.2.1 - Slide 3

u Weekly homework
u Homework one + solution posted
u Homework two is posted

u Assignment one is posted
u Deadline: March 23rd at 23:59

u Two more assignments with the following tentative schedule:
u March 25th
u May 6th

Homeworks & Assignments

CS302 – Spring 2025 Lec.2.1 - Slide 4

u Objective:
u Learn to parallelize code in a shared memory programming model
u Understand the impact of several optimizations on performance

u Two parts:
1. Parallelize MCI with OpenMP for two different functions
2. Optimize two different algorithms keeping in mind hardware factors

Assignment 1: Shared Memory Programming

CS302 – Spring 2025 Lec.2.1 - Slide 5

Review: Why Parallelism?

u The free lunch is over
u Power Wall

u End of frequency scaling
u ILP tapped out

u Little hidden parallelism is left

u Moore’s Law reinterpreted
u Chip density increases slowly
u Clock speed does not

u Parallelism is a key solution to achieving
higher performance

CS302 – Spring 2025 Lec.2.1 - Slide 6

Example program

u Compute ! 𝑣 using Newton’s method
u Find root of function 𝑓 𝑥 = 𝑥! − 𝑣	

u 𝑥"#$ = 𝑥" 	−
% &
%'(&)

CS302 – Spring 2025 Lec.2.1 - Slide 7

void my_cbrt(float *v, float *result, int N) {
for (int i = 0; i < N; ++i) {

float x = 1.f;
for (int j = 0; j < 10; ++j)

x = (1.f / 3.f) * (2.f*x + v[i] / (x*x));
result[i] = x;

}
}

Example program

u Compute ! 𝑣 using Newton’s method

u 𝑥"#$ =
$
! 	(2𝑥" +

*
&!
")

u For each element of an array of N floating-point numbers

CS302 – Spring 2025 Lec.2.1 - Slide 8

Example program

u Compute ! 𝑣 using Newton’s method

u 𝑥"#$ =
$
! 	(2𝑥" +

*
&!
")

u For each element of an array of N floating-point numbers

void my_cbrt(float *v, float *result, int N) {
for (int i = 0; i < N; ++i) {

float x = 1.f;
for (int j = 0; j < 10; ++j)

x = (1.f / 3.f) * (2.f*x + v[i] / (x*x));
result[i] = x;

}
}

CS302 – Spring 2025 Lec.2.1 - Slide 9

Example program - Compilation

u Compute ! 𝑣 using Newton’s method:
u For each element of an array of N floating-point numbers

Compile

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
...
...
...
...
...
...
st addr[r2], r0

x[i]

result[i]

for (int i = 0; i < N; ++i) {
float x = 1.f;

for (int j = 0; j < 10; ++j)
x = (1.f / 3.f) *

(2.f*x + v[i] / (x*x));

result[i] = x;
}

CS302 – Spring 2025 Lec.2.1 - Slide 10

Example program - Execution

Simple core: executes one instruction per cycle

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
...
...
...
...
...
...
st addr[r2], r0

x[i]

result[i]

CS302 – Spring 2025 Lec.2.1 - Slide 11

Simple core: executes one instruction per cycle

Example program - Execution

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
...
...
...
...
...
...
st addr[r2], r0

x[i]

result[i]

CS302 – Spring 2025 Lec.2.1 - Slide 12

Simple core: executes one instruction per cycle

Example program - Execution

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
...
...
...
...
...
...
st addr[r2], r0

x[i]

result[i]

CS302 – Spring 2025 Lec.2.1 - Slide 13

Pre-multicore Era: One BIG fancy core

Majority of transistor budget
spent on:

u run single instruction stream
faster

More transistors means
u Wider superscalar
u Smarter branch predictor
u Larger cache hierarchy
u etc.

CS302 – Spring 2025 Lec.2.1 - Slide 14

CPU in Multicore Era – Idea #1

Use more transistors, but in simpler cores
u Each core is slower than original “fat” core (e.g., 25% slower)
u But there are now two: 2 × 0.75 = 1.5 (potential for speedup!)

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
...
...
...
...
...
...
st addr[r2], r0

x[i]

result[i]

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
...
...
...
...
...
...
st addr[r2], r0

x[j]

result[j]

CS302 – Spring 2025 Lec.2.1 - Slide 15

But what about our program?

No parallelism is expressed in our code
u It will be only executed on one of the cores
u 25% slower than the original one

void my_cbrt(float *v, float *result, int N) {
for (int i = 0; i < N; ++i) {

float x = 1.f;
for (int j = 0; j < 10; ++j)

x = (1.f / 3.f) * (2.f*x + v[i] / (x*x));
result[i] = x;

}
}

CS302 – Spring 2025 Lec.2.1 - Slide 16

Expressing Parallelism
Programmer

u Use existing parallel code through libraries
u Spiral, ScaLAPACK, BLISS

u Writing in a parallel programming language
u HPF, CAF, UPC, CxC, Cilk, Java, Scala

u Writing in compiler directives
u OpenMP, Intel Threading Building Blocks

u Writing using a threading library
u MPI, PVM, Pthreads

u Domain Specific Languages (DSLs)
u Spiral, Halide, CUDA

CS302 – Spring 2025 Lec.2.1 - Slide 17

Software layering

Single node:
multicore, GPU

Multinode:
cluster, datacenter

C/C++, Java, Scala, Python, …

Cilk, OpenMP, TBBs, Pthreads, CUDA, MPI …

Hadoop, Spark, Pregel, GraphLab,
FaRM, TensorFlow…

High-level
frameworks

Libraries /
Language
extensions

Programming
languages

Hardware

CS302 – Spring 2025 Lec.2.1 - Slide 18

PThreads
typedef struct {
 int N; float* v; float* result;
} my_args;

void my_thread_start(void* thread_arg) {
 my_args* thread_args = (my_args*)thread_arg;
 my_cbrt(args->v, args->result, args->N);
}

CS302 – Spring 2025 Lec.2.1 - Slide 19

PThreads
typedef struct {
 int N; float* v; float* result;
} my_args;

void my_thread_start(void* thread_arg) {
 my_args* thread_args = (my_args*)thread_arg;
 my_cbrt(args->v, args->result, args->N);
}

void parallel_cbrt(float* v, float* result, int N) {
 pthread_t thread_id;
 my_args args;
 args.N = N/2;
 args.v = v;
 args.result = result;
 pthread_create(&thread_id, NULL, my_thread_start, &args);
 my_cbrt(v + args.N, result + args.N, N - args.N);
 pthread_join(thread_id, NULL);
}

CS302 – Spring 2025 Lec.2.1 - Slide 20

Expressing Parallelism Using OpenMP

Loop iterations are independent of each other
u Compiler can automatically generate parallel threaded code

void my_cbrt(float *v, float *result, int N) {
#pragma omp parallel for
for (int i = 0; i < N; ++i) {

float x = 1.f;
for (int j = 0; j < 10; ++j)

x = (1.f / 3.f) * (2.f*x + v[i] / (x*x));
result[i] = x;

}
}

CS302 – Spring 2025 Lec.2.1 - Slide 21

Four Cores: Compute 4 Elements in Parallel

CS302 – Spring 2025 Lec.2.1 - Slide 22

CPU in Multicore Era – Idea #2

Add ALUs to increase compute capability
u Amortize cost of managing an inst. stream

across many ALUs
u SIMD Processing:

Single Instruction, Multiple Data
u Same inst. broadcast to all ALUs, executed

in parallel on all ALUs

CS302 – Spring 2025 Lec.2.1 - Slide 23

Scalar Program

Recall our original compiled program:
u Processes one element using scalar insts on scalar registers

Compile

ld r0, addr[r1]
mul r1, r0, r0
add r2, r0, r0
...
...
...
...
...
...
st addr[r2], r0

x[i]

result[i]

for (int i = 0; i < N; ++i) {
float x = 1.f;

for (int j = 0; j < 10; ++j)
x = (1.f / 3.f) *

(2.f*x + v[i] / (x*x));

result[i] = x;
}

CS302 – Spring 2025 Lec.2.1 - Slide 24

Vector Program (Using AVX Instructions): Detail Next Week

#include <immintrin.h>

__m256 my_cbrt_vec(__m256 v) {
__m256 x = _mm256_set1_ps(1.f);

for (int j = 0; j < 10; ++j) {
__m256 tmp = _mm256_add_ps(_mm256_add_ps(x, x),

_mm256_div_ps(v, _mm256_mul_ps(x, x)));
x = _mm256_mul_ps(_mm256_set1_ps(1.f / 3.f), tmp);

}

return x;
}

CS302 – Spring 2025 Lec.2.1 - Slide 25

Example: _mm512_mul_ps

Processor intrinsics (e.g., on Intel Processors)

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

SIMD Width
(e.g., 512 bits = 16 floats)

Operation

Operand type

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

CS302 – Spring 2025 Lec.2.1 - Slide 26

Vector Program (Using AVX Instructions)
Our vector program:

u Processes 8 elements using vector instructions on 256-bit
vector registers

vloadps xmm0, addr[r1]
vmulps xmm1, xmm0, xmm0
vaddps xmm2, xmm0, xmm0
...
...
...
...
...
...
vstoreps addr[xmm2], xmm0

#include <immintrin.h>

__m256 my_cbrt_vec(__m256 v) {
__m256 x = _mm256_set1_ps(1.f);

for (int j = 0; j < 10; ++j) {
__m256 tmp = _mm256_add_ps(
_mm256_add_ps(x, x),
_mm256_div_ps(v, _mm256_mul_ps(x, x)));
x = _mm256_mul_ps(

_mm256_set1_ps(1.f / 3.f), tmp);
}

return x;
}

CS302 – Spring 2025 Lec.2.1 - Slide 27

16 SIMD Cores: 128 Elements in Parallel

8 elements (256 bits) per SIMD core

CS302 – Spring 2025 Lec.2.1 - Slide 28

SIMD Execution on Modern CPUs

Generated by compiler (or assembly programmer)
x86:

u SSE2 instructions: 128-bit operations (2x64, 4x32, 8x16, 16x8)
u AVX instructions: 256-bit operations (8x32 or 4x64 bits)
u NEW: AVX512 instructions: 512-bit operations (16x32 or 8x64 bits)

ARM:
u Neon instructions: 64-bit operations (2x32, 4x16, 8x8)

Parallelism:
u explicitly requested by programmer using intrinsics
u conveyed using parallel language semantics
u inferred by dependence analysis of loops (hard problem)

CS302 – Spring 2025 Lec.2.1 - Slide 29

Example: Intel Core i7 (Sandy Bridge)

4 Cores
8 SIMD ALUs per core

CS302 – Spring 2025 Lec.2.1 - Slide 30

GPUs: SIMD Execution at Massive Scale

How to scale SIMD to thousands of ALUs?

Use single instruction stream and no OoO execution
u One instruction controls hundreds of simultaneous ALUs

CPU Core GPU Core

CS302 – Spring 2025 Lec.2.1 - Slide 31

Example: NVIDIA TITAN RTX

72 Cores
32 ALUs
 /core

NVIDIA Marketing:

4608 CUDA “cores”

(not really cores,
just ALUs!)

CS302 – Spring 2025 Lec.2.1 - Slide 32

Principles of Parallel Computing

CS302 – Spring 2025 Lec.2.1 - Slide 33

Principles of Parallel Computing

u Finding enough parallelism

u Division of work (granularity & load balancing)

u Scaling

u Communication & synchronization

CS302 – Spring 2025 Lec.2.1 - Slide 34

Finding Enough Parallelism

u Amdahl’s law
u In English: if you speed up only a small fraction of the execution time of a

computation, the speedup you achieve on the whole computation is limited!

u Example: 10 s 90 s

1 s 90 s

A 10x
speedup
on this part!

100s

91s

CS302 – Spring 2025 Lec.2.1 - Slide 35

Amdahl’s Law

Example:
 Program runs for 100 seconds on a uniprocessor
 50% of the program can be parallelized on a multiprocessor.

 Assume a multiprocessor with 10 processors:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

CS302 – Spring 2025 Lec.2.1 - Slide 36

Amdahl’s Law

Example:
 Program runs for 100 seconds on a uniprocessor
 50% of the program can be parallelized on a multiprocessor.

 Assume a multiprocessor with 10 processors:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

0.5
10 + (1 − 0.5)

=
1

0.05 + 0.5
=

1
0.55

= 1.82

CS302 – Spring 2025 Lec.2.1 - Slide 37

Amdahl’s Law

Example:
 Assume that 10% of the program cannot be parallelized. What is the maximum

achievable speedup?

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

CS302 – Spring 2025 Lec.2.1 - Slide 38

Amdahl’s Law

Example:
 Assume that 10% of the program cannot be parallelized. What is the maximum

achievable speedup?

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = lim
'→)

1
0.9
𝑠 + (1 − 0.9)

=
1

0 + 0.1
= 10

CS302 – Spring 2025 Lec.2.1 - Slide 39

Implications of Amdahl’s Law

CS302 – Spring 2025 Lec.2.1 - Slide 40

Terminology

u A Task is a piece of work
u Deep learning: one tensor product in the neural net
u Social networks: one graph node in graph processing

u Task grain
u small ➔ fewer instructions executed per task
u large ➔ more instructions executed per task

u Process (thread) performs tasks
u According to OS: process = thread(s) + address space

u Process (threads) executed on processor(s)

CS302 – Spring 2025 Lec.2.1 - Slide 41

Division of Work: It’s about Performance

u Balance workload
u Give each parallel task the same rough amount of work

u Reduce communication
u Balance computation time with communication time
u Computation ➔ useful work, Communication ➔ overhead

u Reduce extra work
u Scheduling tasks on processors, OS, etc.

u These are at odds with each other

CS302 – Spring 2025 Lec.2.1 - Slide 42

Division of Work: Granularity

u Granularity: ratio of computation to communication

u Fine-grained parallelism:
u Less work between communication events
u Better load imbalance
u Favors faster communication

u Coarse-grained parallelism:
u Less likely to suffer from system delays (e.g., $/TLB misses)
u Potentially higher load imbalance
u Can live with slow/bulk communication

CS302 – Spring 2025 Lec.2.1 - Slide 43

Example: Division of Work

}

} Frequent Communication
Frequent Scheduling

} {Load imbalance

Small tasks
Large tasks

CS302 – Spring 2025 Lec.2.1 - Slide 44

Take a Break!

CS302 – Spring 2025 Lec.2.1 - Slide 45

Communication & Synchronization

Sync at:

Model:

P P P

M M M

IO IO IO

I/O

Message Passing
(e.g., datacenter)

P P P

M M M

IO IO IO

Memory

Shared Memory
(e.g., CPU)

P P P

M M M

IO IO IO

Processor

Dataflow
(e.g., TPU)

CS302 – Spring 2025 Lec.2.1 - Slide 46

System layers:
Abstractions, Interfaces & Implementations

Parallel Applications

Language or library
primitives/mechanisms

Abstractions for describing
concurrent, parallel, or

independent computation

Abstractions for describing
communication

Compiler and/or parallel runtime

Operating system

HW Architecture
(HW/SW boundary)

Micro-architecture (HW implementation)

OS system call API

“Programming model”
(way of thinking about
things)

Blue italic text: abstraction/concept
Red italic text: system interface
Black text: system implementation

CS302 – Spring 2025 Lec.2.1 - Slide 47

pthread_create()

Example: Expressing Parallelism (Pthreads)

Abstraction for describing parallel computation:
thread

OS support: kernel thread management
System call API

Programming
model

Pthread library implementation

x86-64
Modern multi-core CPU

Blue italic text: abstraction/concept
Red italic text: system interface
Black text: system implementation

Parallel Applications

CS302 – Spring 2025 Lec.2.1 - Slide 48

1.Shared address space

2.Message passing

3.Data parallel

Three Models of Communication (Abstractions)

CS302 – Spring 2025 Lec.2.1 - Slide 49

Shared Address Space: Abstraction

int x = 0;
x = 1;

int x;
while (x == 0) {}

print x;

Thread 1: Thread 2:

Thread 1
x

Thread 2

Memory
shared

between
threads

u Threads communicate by reading/writing to shared vars
u Shared variables are like a big bulletin board
u Any thread can read or write

CS302 – Spring 2025 Lec.2.1 - Slide 50

Shared Address Space: Abstraction

Threads communicate by:
u Reading/writing to shared variables

u Communication is implicit in memory operations
u Thread 1 stores to X, later, thread 2 reads X (observes update)

u Manipulating synchronization primitives
u e.g., mutual exclusion using locks

Natural extension of sequential programming model
u In fact, all our discussions have assumed a shared address space so far

CS302 – Spring 2025 Lec.2.1 - Slide 51

Shared Address Space: Implementation

Virtual address spaces

Physical mapping

Image credit: Culler, Singh, and Gupta

Option 1: threads share
an address space

u All data is sharable

Option 2: each thread has
its own virtual address
space

u Shared part maps to the
same physical location

CS302 – Spring 2025 Lec.2.1 - Slide 52

Any processor can directly reference any memory location

Shared Address Space: HW Implementation

P
$

P
$

P
$

P
$

Interconnect

Memory I/O

“Dance-hall”
organization P P P P

Mem Mem

P
P
P
P

Mem

P P P P

Mem MemMem Mem

Interconnect examples

Mem

Bus

Multi-stage network

Crossbar

CS302 – Spring 2025 Lec.2.1 - Slide 53

Shared Address Space Architectures: x86 examples
Intel Core i7 (quad core) AMD Phenom II (six core)

On chip
network

Core 2

Core 4

Core 1

Core 3

M
em

 C
ontroller

M
em

ory

CS302 – Spring 2025 Lec.2.1 - Slide 54

Shared Address Space Architectures: SPARC example

Eight cores

Note size of crossbar: about die area of one coreSun (Oracle) Niagara 2
Memory

Memory

Memory

Memory

L2

L2

L2

L2

P

P

P

P

P

P

P

P

Crossbar
Switch

CS302 – Spring 2025 Lec.2.1 - Slide 55

All processors can access any memory location, but... cost of memory access is
different for different processors

Non-uniform Memory Access (NUMA)

P

$

Memory

P

$

Memory

P

$

Memory

P

$

Memory

Interconnect

u Problem with uniform access time: scalability
u GOOD: costs are uniform, BAD: but memory is

uniformly far away
u NUMA designs are more scalable

u High bandwidth & low latency access to local memory
u BW scales with # of nodes if most accesses are local

u Increased programmer effort:
performance tuning
u Finding, exploiting locality

CS302 – Spring 2025 Lec.2.1 - Slide 56

Example: modern dual-socket configuration

Latency to access location x from cores 5-8 is higher than cores 1-4!

Non-uniform Memory Access (NUMA)

On chip
network

Core 1 Core 2

Core 3 Core 4

Memory Controller

Memory

Core 5 Core 6

Core 7 Core 8

Memory Controller

Memory

AMD Hyper-transport /
Intel QuickPath

x
E.g., Microsoft’s
Open CloudServer

CS302 – Spring 2025 Lec.2.1 - Slide 57

SGI Altix UV 1000

Fat tree
Image credit: Pittsburgh Supercomputing Center

u 256 blades, 2 CPUs per blade, 8 cores per CPU = 4096 cores
u Single shared address space
u Interconnect: fat tree

CS302 – Spring 2025 Lec.2.1 - Slide 58

Communication Model: Message Passing

Variable Y

Variable X

Message Passing
u Different address spaces
u Communicate explicitly via sending/receiving messages
u Synchronization is implicit in the messages
u Arguably harder to program, but easier to scale

CS302 – Spring 2025 Lec.2.1 - Slide 59

u Popular software library: MPI (message passing interface)

u System-wide LD/ST interface is expensive at massive scale
u Connect commodity systems together to form large parallel machine

u E.g., Swiss “ALPS” comprised of
~3.7K server nodes
u 2.7K hybrid CPU/GPU NVIDIA nodes
u 1K AMD CPU nodes
u Using MPI, can program all as one

Message Passing Implementation (Swiss Supercomputer)

CS302 – Spring 2025 Lec.2.1 - Slide 60

Programming Models vs Machine Types

u Correspondence between programming models and machine types is fuzzy

u Common to implement message passing abstractions on machines that support
a shared address space in HW

u Implement shared address space on machines that do not support it in HW
u Mark all pages with shared variables as invalid
u Page-fault handler issues appropriate network requests

u Keep in mind what is the programming model (abstractions used to specific
program) and what is the HW implementation

CS302 – Spring 2025 Lec.2.1 - Slide 61

Communication Model: Data Parallel
u Rigid computation structure

u Same function on all data elements

u Historically: same operation on each element of an array
u E.g., Cray vector supercomputers of the 80’s
u add(A, B, n)← one inst. on vectors A, B of length n

u Now, functions can be arbitrarily large
u Communication implied after the function terminates

u Today platforms can range from
u SIMD: One instruction multiple data (in a single core)
u SPMD: One program multiple data in a cluster

CS302 – Spring 2025 Lec.2.1 - Slide 62

u You have already seen this in our first example:
u No order implied between parallel iterations
u All threads converge at the termination of the parallel for

Data Parallel Example

void my_cbrt(float *v, float *result, int N) {
#pragma omp parallel for
for (int i = 0; i < N; ++i) {

float x = 1.f;
for (int j = 0; j < 10; ++j)

x = (1.f / 3.f) * (2.f*x + v[i] / (x*x));
result[i] = x;

}
}

CS302 – Spring 2025 Lec.2.1 - Slide 63

u Shared Memory (aka Shared Address Space)
u Communication is unstructured, implicit in loads and stores
u Arguably easier to program, but harder to scale

u Message Passing
u Structure all communication as messages
u Arguably harder to program, but easier to scale

u Data Parallel
u Structure computation as a big “map” over a collection
u Severely limits communication between iterations of the map (goal: preserve

independent processing of iterations)

Communication Models Summary

CS302 – Spring 2025 Lec.2.1 - Slide 64

Shared Memory Parallel Programming
Using OpenMP

CS302 – Spring 2025 Lec.2.1 - Slide 65

Introduction to OpenMP

u What is OpenMP?
u Open specification for Multi-Processing
u Standard API for defining multithreaded shared-memory programs
u openmp.org – Talks, examples, forums, etc.

u High-level API
u Preprocessor (compiler) directives (~ 80%)
u Library Calls (~ 19%)
u Environment Variables (~ 1%)

http://www.openmp.org/

CS302 – Spring 2025 Lec.2.1 - Slide 66

A Programmer’s View of OpenMP

u Portable, threaded, shared-memory programming specification with “light” syntax
u Exact behavior depends on OpenMP implementation!
u Requires compiler support (C or Fortran)

u OpenMP will:
u Allow a programmer to divide a program into serial & parallel regions
u Hide stack management
u Provide synchronization constructs

u OpenMP will not:
u Parallelize automatically
u Guarantee speedup
u Provide freedom from data races

CS302 – Spring 2025 Lec.2.1 - Slide 67

OpenMP Execution Model

u Fork/join model
u Initially only the master thread is active

u Master thread executes until a parallel region is encountered
u Fork: master thread creates a team of parallel threads

u Statements in parallel region are executed in parallel
u Join: threads sync & terminate at the end of parallel region

u Master thread continues executing sequentially

CS302 – Spring 2025 Lec.2.1 - Slide 68

u Simple “Hello World!” example:

Hello World!

int main() {
 printf("Hello, World!\n");
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 69

u Simple “Hello World!” example:

u Parallelized using OpenMP:

Hello World!

int main() {
 printf("Hello, World!\n");
 return 0;
}

#include <omp.h>
int main() {
 omp_set_num_threads(4);
 // Do this part in parallel
 #pragma omp parallel
 {
 printf("Hello, World!\n");
 }
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 70

u Simple “Hello World!” example:

u Parallelized using OpenMP:

Hello World!

int main() {
 printf("Hello, World!\n");
 return 0;
}

#include <omp.h>
int main() {
 omp_set_num_threads(4);
 // Do this part in parallel
 #pragma omp parallel
 {
 printf("Hello, World!\n");
 }
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 71

u Simple “Hello World!” example:

u Parallelized using OpenMP:

Hello World!

int main() {
 printf("Hello, World!\n");
 return 0;
}

#include <omp.h>
int main() {
 omp_set_num_threads(4);
 // Do this part in parallel
 #pragma omp parallel
 {
 printf("Hello, World!\n");
 }
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 72

u Simple “Hello World!” example:

u Parallelized using OpenMP:

Hello World!

int main() {
 printf("Hello, World!\n");
 return 0;
}

#include <omp.h>
int main() {
 omp_set_num_threads(4);
 // Do this part in parallel
 #pragma omp parallel
 {
 printf("Hello, World!\n");
 }
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 73

Parallelizing for Loops

OpenMP easily parallelizes for loops
u Race free (reads/write or write/write pairs) between iterations!
u for loop must have canonical shape

u No break, return, exit or goto statements
Preprocessor calculates loop bounds for each thread from serial source

#pragma omp parallel for

for(i=0; i < 25; i++) {

 printf(“Hello World!”);

}

Canonical Shape

CS302 – Spring 2025 Lec.2.1 - Slide 74

Recall Our Earlier Example

Loop iterations are independent of one another
u Compiler can automatically generate parallel threaded code

#pragma omp parallel for
for (int i = 0; i < N; ++i) {

float x = 1.f;

for (int j = 0; j < 10; ++j)
x = (1.f / 3.f) * (2.f*x + v[i] / (x*x));

result[i] = x;
}

CS302 – Spring 2025 Lec.2.1 - Slide 75

Division of Work – Controlling Granularity

#pragma omp parallel if (expression)
u Can be used to disable parallelization some cases
u E.g., if the input size is too small to be beneficially multithreaded

#pragma omp num_threads (expression)
u Control the number of threads used for this parallel region

#pragma omp parallel for if (n > 5000)

for(i=0; i < n; i++) {

 printf(“Hello World!”);

}

CS302 – Spring 2025 Lec.2.1 - Slide 76

Division of Work – Load Balancing
Schedule clause determines how loop iterations are divided among a thread team:
schedule(<type>[,<chunk>])

u static([chunk]) divides iterations statically between threads
u Each thread receives [chunk] iterations, rounding as necessary to account for all iterations
u Default [chunk] is ceil(# iterations / # threads)

u dynamic([chunk]) allocates [chunk] iterations per thread, allocating an
additional [chunk] iterations when a thread finishes
u Forms a logical work queue, consisting of all loop iterations
u Default [chunk] is 1

u guided([chunk]) allocates dynamically, but [chunk] is exponentially reduced
with each allocation

CS302 – Spring 2025 Lec.2.1 - Slide 77

Execution Context (EC)

u Every thread has its own execution context
u Address space containing all the variables a thread may access

u Contents of the execution context:
u Static variables
u Dynamically allocated data structures in the heap
u Variables on the run-time stack
u Additional run-time stack for functions invoked by the thread

CS302 – Spring 2025 Lec.2.1 - Slide 78

Shared vs. Private Variables

u Parallel programs often employ two types of data
u Shared data, visible to all threads, similarly named
u Private data, visible to a single thread (often stack-allocated)

u Shared var: has same address in EC of every thread

u Private var: has different address in EC of every thread

u A thread cannot access the private vars of another thread

u In parallel region, all vars are shared by default

u Private vars must be declared in the pragma statement
u private (<variable list>)

CS302 – Spring 2025 Lec.2.1 - Slide 79

Example: Shared vs. Private Variables

int b[3];
char *cptr;
int i;

cptr = malloc(1);

#pragma omp parallel for
for (i=0; i<3; i++)
 b[i] = i; Master Thread

(Thread 0)
Thread 1

Stack

Heap

CS302 – Spring 2025 Lec.2.1 - Slide 80

Fancier Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 81

More Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 82

More Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

Check how many
processors are

available

CS302 – Spring 2025 Lec.2.1 - Slide 83

More Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

Set the number of
threads to 4

CS302 – Spring 2025 Lec.2.1 - Slide 84

More Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

Get my thread ID

CS302 – Spring 2025 Lec.2.1 - Slide 85

More Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

Fork a team of
threads giving
them their own

copies of variables

CS302 – Spring 2025 Lec.2.1 - Slide 86

More Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

Fork a team of
threads giving
them their own

copies of variables

Results from running on a 8-core machine:
There are 8 processors
Hello World from thread = 0
Hello World from thread = 3
Hello World from thread = 1
Number of threads = 4 and my tid = 0
Hello World from thread = 2

CS302 – Spring 2025 Lec.2.1 - Slide 87

Synchronization

u Critical Section
u A portion of code that only one thread at a time may execute

u Atomic Execution
u Protects a single variable update

#pragma omp critical
{
 /* Critical code here */
}

#pragma omp atomic
/* Update statement here */

CS302 – Spring 2025 Lec.2.1 - Slide 88

Synchronization

u Barrier
u Performs a barrier synchronization among all threads in a team at a given point
u All threads wait at the barrier point
u Continue when all threads have reached the barrier point

#pragma omp parallel {
 int result = heavy_computation_part1();

 #pragma omp atomic
 sum += result;

 #pragma omp barrier
 heavy_computation_part2(sum);
}

CS302 – Spring 2025 Lec.2.1 - Slide 89

Synchronization

u Barrier
u Performs a barrier synchronization among all threads in a team at a given point
u All threads wait at the barrier point
u Continue when all threads have reached the barrier point

#pragma omp parallel {
 int result = heavy_computation_part1();

 #pragma omp atomic
 sum += result;

 #pragma omp barrier
 heavy_computation_part2(sum);
}

CS302 – Spring 2025 Lec.2.1 - Slide 90

Synchronization

u Single-threaded region within a parallel region
u master and single directives

#pragma omp single
{
 /* Only executed once */
}

#pragma omp master
{
 /* Only executed by master*/
}

CS302 – Spring 2025 Lec.2.1 - Slide 91

Our Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }

 } /* All threads join master thread and terminate */
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 92

Our Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 #pragma omp barrier
 /* Only one of the threads does this */
 #pragma omp single
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }
 } /* All threads join master thread and terminate */
 return 0;
}

CS302 – Spring 2025 Lec.2.1 - Slide 93

Our Sophisticated Hello World!
#include <omp.h>
int main () {
 int nthreads, tid;
 printf("There are %d processors\n", omp_get_num_procs());

 omp_set_num_threads(4);

 #pragma omp parallel private(nthreads, tid)
 {
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 #pragma omp barrier

 /* Only one of the threads does this */
 #pragma omp single
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d and my tid = %d\n", nthreads, tid);
 }
 } /* All threads join master thread and terminate */
 return 0;
}

Results from running on the same machine:
There are 8 processors
Hello World from thread = 1
Hello World from thread = 0
Hello World from thread = 3
Hello World from thread = 2
Number of threads = 4 and my tid = 1

Previous results:
There are 8 processors
Hello World from thread = 0
Hello World from thread = 3
Hello World from thread = 1
Number of threads = 4 and my tid = 0
Hello World from thread = 2

CS302 – Spring 2025 Lec.2.1 - Slide 94

OpenMP Summary

u OpenMP is a compiler-based technique to create concurrent code
from (mostly) serial code

u OpenMP can enable (easy) parallelization of loop-based code
u Lightweight syntactic language extensions

u OpenMP performs comparably to manually-coded threading
u Scalable
u Portable

u Not a silver bullet for all applications

CS302 – Spring 2025 Lec.2.1 - Slide 95

More Information

u openmp.org
u OpenMP official site

u www.llnl.gov/computing/tutorials/openMP/
u A handy OpenMP tutorial

http://www.openmp.org/
http://www.llnl.gov/computing/tutorials/openMP/

