CS302

Parallel ~ Multithreaded p
Computing e o I

rogramming

2 2§ |
[S : i

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Hill, Hoe, Falsafi, Fatahalian and Wenisch of
CMU, EPFL, Michigan, Wisconsin

Copyright 2025

CS302 — Spring 2025 Lec.2.1 - Slide 1

Where are We?

23-Apr

7-May

CS302 — Spring 2025

¢ Parallel Computing
¢ Why parallelism?

¢ Principles of Parallel Computing
¢ OpenMP

¢ Thursday
¢ Lecture: Coherence refresher

¢ Exercise session: Example OpenMP
programs

¢ Friday lab session
¢ Assignment 1 released!

Lec.2.1 - Slide 2

Homeworks & Assignments

¢ Weekly homework
¢ Homework one + solution posted
¢ Homework two is posted

¢ Assignment one is posted
¢ Deadline: March 23 at 23:59

¢ Two more assignments with the following tentative schedule:

¢ March 25t
¢ May 6%

CS302 — Spring 2025 Lec.2.1 - Slide 3

Assignment 1: Shared Memory Programming

¢ Objective:
¢ Learn to parallelize code in a shared memory programming model
¢ Understand the impact of several optimizations on performance

¢ Two parts:
1. Parallelize MCI with OpenMP for two different functions
2. Optimize two different algorithms keeping in mind hardware factors

CS302 — Spring 2025 Lec.2.1 - Slide 4

Review: Why Parallelism?

¢ The free lunch is over

¢ Power Wall
¢ End of frequency scaling

¢ |ILP tapped out

o Little hidden parallelism is left

¢ Moore’s Law reinterpreted
¢ Chip density increases slowly
¢ Clock speed does not

¢ Parallelism is a key solution to achieving

higher performance

CS302 — Spring 2025

10,000,000

1,000,000

1 Dual-Core Itanium 2 -/
B

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

100,000

10,000

1,000

100

10

0

W Transistors (000)
@ Clock Speed (MHz)
[X) APower (W)

@ Perf/Clock (ILP)

1970

1975 1980 1985 1990 1995 2000 2005 2010
Lec.2.1 - Slide 5

Example program

¢ Compute /v using Newton’s method

¢ Find root of function f(x) =x3 —v

)
fr(x)

® Xit1 =X

CS302 — Spring 2025 Lec.2.1 - Slide 6

Example program

¢ Compute /v using Newton’s method

1 1%
® X4 =35 (2x;+3)

Xi

¢ For each element of an array of N floating-point numbers

void my cbrt(float *v, float *result, int N) ({
for (int 1 = 0; 1 < N; ++i) {
float x = 1.f;
for (int jJ = 0; jJ < 10; ++3)
x = (1.£/ 3.£) * (2.£*x + v[i] / (x*x));
result[i] = x;

CS302 — Spring 2025 Lec.2.1 - Slide 7

Example program

¢ Compute /v using Newton’s method

1 1%
® X4 =35 (2x;+3)

Xi

¢ For each element of an array of N floating-point numbers

void my cbrt(float *v, float *result, int N) ({
for (int 1 = 0; 1 < N; ++i) {
float x = 1.f;
for (int jJ = 0; jJ < 10; ++3)
x = (1.£/ 3.£) * (2.£*x + v[i] / (x*x));
result[i] = x;

CS302 — Spring 2025 Lec.2.1 - Slide 8

Example program - Compilation

¢ Compute /v using Newton’s method: x[1]
¢ For each element of an array of N floating-point numbers ‘
for (int i = 0; i < N; ++i) { QI acdrledl
float x = 1.£f; add r2, r0, ro0

x = (1.£/ 3.£) *

(2.f*x + v[i] / (x*x)); ‘

éé. addr[r2], xO
result[i] = x; ‘

result|[1]

CS302 — Spring 2025 Lec.2.1 - Slide 9

Example program - Execution

Simple core: executes one instruction per cycle

CS302 — Spring 2025

ALU
(Execute)

P>

X[1]

4

1d r0, addr[rl] |

mul rl, r0O, xO
add r2, r0, r0

st addr[r2],

4

result[1]

r0

Lec.2.1 - Slide 10

Example program - Execution

Simple core: executes one instruction per cycle

CS302 — Spring 2025

ALU
(Execute)

P>

X[1]

4

1d r0, addr|[r

1]

‘mul rl, r0, r0

]

add r2, r0, r0

st addr[r2],

4

result[1]

r0

Lec.2.1 - Slide 11

Example program - Execution

Simple core: executes one instruction per cycle

CS302 — Spring 2025

ALU
(Execute)

X[1]

4

1d r0, addr|[r
mul rl, r0O, xO

1]

add r2, r0, r0

]

> ..

st addr[r2],

4

result[1]

r0

Lec.2.1 - Slide 12

Pre-multicore Era: One BIG fancy core

Maijority of transistor budget
spent on:

run single instruction stream -

faster Data cache
ALU (a big one)

(Execute)

More transistors means
¢ Wider superscalar
¢ Smarter branch predictor
& Larger cache hierarchy
¢ efc.

CS302 — Spring 2025 Lec.2.1 - Slide 13

CPU in Multicore Era — Idea #1

Use more transistors, but in simpler cores
¢ Each core is slower than original “fat” core (e.g., 25% slower)
¢ But there are now two: 2 X 0.75 =1.5 (potential for speedup!)

x[1]

y

1d r0, addr[rl]
mul rl, r0O, rO
add r2, r0, ro0

st addr[r2], rO

y

result[i]
CS302 — Spring 2025

ALU
(Execute)

ALU
(Execute)

x[7]

y

1d r0, addr[rl]
mul rl, rO, rO
add r2, r0, ro0

st addr[r2], xO

y

result[]]
Lec.2.1 - Slide 14

But what about our program?

No parallelism is expressed in our code
¢ It will be only executed on one of the cores
¢ 25% slower than the original one

void my cbrt(float *v, float *result, int N) ({
for (int 1 = 0; 1 < N; ++i) {
float x = 1.f;
for (int jJ = 0; jJ < 10; ++3)
x = (1.£/ 3.£) * (2.£*x + v[i] / (x*x));
result[i] = x;

}

CS302 — Spring 2025 Lec.2.1 - Slide 15

Expressing Parallelism

Programmer

¢ Use existing parallel code through libraries
o Spiral, ScaLAPACK, BLISS

¢ Writing in a parallel programming language
¢ HPF, CAF, UPC, CxC, Cilk, Java, Scala

& Writing in compiler directives
¢ OpenMP, Intel Threading Building Blocks

& Writing using a threading library
¢ MPI, PVM, Pthreads

¢ Domain Specific Languages (DSLSs)
¢ Spiral, Halide, CUDA

CS302 — Spring 2025 Lec.2.1 - Slide 16

Software layering

High-level
frameworks

Libraries /

[] Language
extensions

Programming
languages

Single node: Multinode: Hardware
multicore, GPU cluster, datacenter

CS302 — Spring 2025 Lec.2.1 - Slide 17

C/C++, Java, Scala, Python, ...

PThreads

typedef struct ({
int N; float* v; float* result;

} my args;

void my thread start(void* thread arg) ({
my args* thread args = (my_args¥*)thread arg;
my cbrt(args->v, args->result, args->N);

}

CS302 — Spring 2025 Lec.2.1 - Slide 18

PThreads

typedef struct ({
int N; float* v; float* result;

} my args;

void my thread start(void* thread arg) ({
my args* thread args = (my_args¥*)thread arg;
my cbrt(args->v, args->result, args->N);

}

void parallel cbrt(float* v, float* result, int N) {
pthread t thread id;
my args args;
args.N = N/2;
args.v = v;
args.result = result;
pthread create (&thread id, NULL, my thread start, &args);
my cbrt(v + args.N, result + args.N, N - args.N);
pthread join(thread id, NULL) ;

CS302 — Spring 2025 Lec.2.1 - Slide 19

Expressing Parallelism Using OpenMP

Loop iterations are independent of each other
¢ Compiler can automatically generate parallel threaded code

void my cbrt(float *v, float *result, int N) ({
#pragma omp parallel for
for (int 1 = 0; 1 < N; ++i) {
float x = 1.£;
for (int jJ = 0; jJ < 10; ++3)
x = (1.£/ 3.£) * (2.£*x + v[i] / (x*x));
result[i] = x;

}

CS302 — Spring 2025 Lec.2.1 - Slide 20

Four Cores: Compute 4 Elements in Parallel

CS302 — Spring 2025

u
!

=] |)=

| | =

]
!

=] | e

R

ALU
(Execute)

ALU
(Execute)

ALU
(Execute)

ALU
(Execute)

Lec.2.1 - Slide 21

CPU in Multicore Era — Idea #2

Add ALUs to increase compute capability

¢ Amortize cost of managing an inst. stream
across many ALUs

¢ SIMD Processing:
Single Instruction, Multiple Data

¢ Same inst. broadcast to all ALUs, executed
in parallel on all ALUs

Shared Ctx Data

CS302 — Spring 2025 Lec.2.1 - Slide 22

Scalar Program

Recall our original compiled program: x[1]
¢ Processes one element using scalar insts on scalar registers ‘
for (int i = 0; i < N; ++i) { o DDy addrlxdl
float x = 1.£f; add r2, r0, ro0

x = (1.£/ 3.£) *

(2.f*x + v[i] / (x*x)); ‘

st addr[r2], xO
result[i] = x;

} 4

result|[1]

CS302 — Spring 2025 Lec.2.1 - Slide 23

Vector Program (Using AVX Instructions): Detail Next Week

#include <immintrin.h>

__m256 my cbrt vec(m256 v) {
__m256 x = mm256 setl ps(l.f);

for (int j = 0; jJ < 10; ++3j) {
__m256 tmp = mm256 add ps(mm256 add ps(x, x),
mm256 _div ps(v, mm256 mul ps(x, x)));

x = mm256 mul ps(mm256 setl ps(l.f / 3.f), tmp);
}

return x;

}

CS302 — Spring 2025 Lec.2.1 - Slide 24

Processor intrinsics (e.g., on Intel Processors)

Example: mm512 mul ps

Intel® Intrinsics Guide

(i@ Intrinsics Guide

Technologies
MMX

SIMD Width

SSSE3

SSE4.1

(e.g., 912 bits = 16 floats)

SSE4.2

AvX

AVX2

FMA

AVX-512
KNC

SVML

Operation

Categories
Application-Targeted
Arithmetic

\ Bit Manipulation

Cast

Compare

Convert

Operand type oz

p y p Elementary Math

Functions
General Support
Load

|ngical

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

CS302 — Spring 2025

X +

https://software.intel.com/sites/landingpage/Intrinsics

The Intel Intrinsics Guide is an interactive reference tool for Intel intrinsic instructions, which are C style *
functions that provide access to many Intel instructions - including Intel® SSE, AVX, AVX-512, and more -
without the need to write assembly code.

void _mm_2intersect_epi32 (__m128i a, __m128i b, __mmask8* k1,
__mmask8* k2)

void _mm256_2intersect_epi32 (__m256i a, __m256i b, __mmask8* k1,
__mmask8* k2)

void _mm512_2intersect_epi32 (__m512i a, __m512i b, __mmaskl1léx k1,
__mmask1é* k2)

void _mm_2intersect_epié4 (__m128i a, __m128i b, __mmask8* k1,
__mmask8x k2)
void _mm256_2intersect_epié4 (__m256i a, __m256i b, __mmask8* k1,
__mmask8* k2)

, _.m512i b, __mmask8x k1,

_mmask8*x k2)
_m512i _mm512_4dpwssd_epi32 (_m512i src, _m512i a0
a2, _m512i a3, _m128i * b)
__m512i _mm512_mask_4dpwssd_epi32 (_m512i src, _mmasklé k, _m512i a0,
_m512i al, _m512i a2, _m512i a3, _m128i * b)
__m512i _mm512_maskz_4dpwssd_epi32 (_mmasklé k, _m512i src, _m512i a0,
_m512i al, _m512i a2, _m512i a3, _m128i * b)
__m512i _mm512_4dpwssds_epi32 (_m512i src, _m512i a@, _m512i al, _m512i
a2, _m512i a3, _m128i * b)
__m512i _mm512_mask_4dpwssds_epi32 (_m512i src, _mmaskl1é k, _m512i a0,
_m512i al, _m512i a2, _m512i a3, _m128i * b)

mR121 mmB12 maclks Adnweccdec ani?2 (mB124i _cre mmack14A Ll mR124i _an

m512i al, _m512i

- =

Ivoid _mm512_2intersect_epié4 (__m512i a
[|

Lec.2.1 - Slide 25

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Vector Program (Using AVX Instructions)

Our vector program:

¢ Processes 8 elements using vector instructions on 256-bit
vector registers

#include <immintrin.h> ‘
m256 my cbrt vec(m256 v) { Vl°i‘dps xmmg, add;[rll .
— -_— _— — . vmulps Xmml , XmmU, Xmm
__m256 x = mm256_setl ps(l.f); vaddps xmm2, xmm0, xmmO
for (int j = 0; j < 10; ++j) {
__m256 tmp = mm256 add ps(
_mm256_add ps(x, x), »
_mm256_div ps(v, mm256 mul ps(x, x)));
X = mm256 mul_ps(vstoreps addr[xmm2], xmmO
mm256 setl ps(l1.£f / 3.f), tmp); ‘
) — —

return x;

}

CS302 — Spring 2025 Lec.2.1 - Slide 26

16 SIMD Cores: 128 Elements in Parallel

00
00

OO

OO0
00

OO

00
00
00

00
00
00

00

00
OO

00

00
OO

00
00

O

e
&

00
00
00

o B | e | B
&

Lec.2.1 - Slide 27

8 elements (256 bits) per SIMD core

CS302 — Spring 2025

SIMD Execution on Modern CPUs

Generated by compiler (or assembly programmer)

X806:
¢ SSE2 instructions: 128-bit operations (2x64, 4x32, 8x16, 16x8)
¢ AVX instructions: 256-bit operations (8x32 or 4x64 bits)
¢ NEW: AVX512 instructions: 512-bit operations (16x32 or 8x64 bits)

ARM:
¢ Neon instructions: 64-bit operations (2x32, 4x16, 8x8)

Parallelism:
¢ explicitly requested by programmer using intrinsics

¢ conveyed using parallel language semantics
¢ inferred by dependence analysis of loops (hard problem)

CS302 — Spring 2025 Lec.2.1 - Slide 28

Example: Intel Core i7 (Sandy Bridge)

4 Cores
8 SIMD ALUs per core

CS302 - Spring 2025 Lec.2.1 - Slide 29

GPUs: SIMD Execution at Massive Scale

How to scale SIMD to thousands of ALUs?

Use single instruction stream and no OoQO execution
¢ One instruction controls hundreds of simultaneous ALUs

CS302 — Spring 2025

ALU 1

ALU 2

ALU3

ALU 4

ALUS

ALU 6

ALU7

ALUS

CPU Core

—

GPU Core

Lec.2.1 - Slide 30

NVIDIA TITAN RTX

Example

Lec.2.1 - Slide 31

[E=l===]
)

[=]=]=]=]
===

| | |1

t ALUs!)

jus
Il

(not really cores,

4608 CUDA “cores”

- oo|og || - - - 0o|og || - -
—] [— - —] 00|00 | — -
= oo|oo [- = —] = = —]
= Oo|oo — - = — =l —]
L) |Do/oo | . | - - | - | - i -

CS302 — Spring 2025

Principles of Parallel Computing

CS302 — Spring 2025 Lec.2.1 - Slide 32

Principles of Parallel Computing

¢ Finding enough parallelism

Division of work (granularity & load balancing)

¢ Scaling

¢ Communication & synchronization

CS302 — Spring 2025 Lec.2.1 - Slide 33

Finding Enough Parallelism

¢ Amdahl’'s law

¢ In English: if you speed up only a small fraction of the execution time of a
computation, the speedup you achieve on the whole computation is limited!

¢ Example: 10s 90s
— < >
100s
$
speedup 91s
on this part!

&> - -

1s 90 s

CS302 — Spring 2025 Lec.2.1 - Slide 34

Amdahl’'s Law

Speedup =

Fraction, nanced
Spee dupenhanced

+ (1 — Fractiongnngnced)

Example:

Program runs for 100 seconds on a uniprocessor
50% of the program can be parallelized on a multiprocessor.

Assume a multiprocessor with 10 processors:

CS302 — Spring 2025 Lec.2.1 - Slide 35

Amdahl’'s Law

Speedup — Fractionenhanced

S peedupenhanced

+ (1 — Fractiongnngnced)

Example:

Program runs for 100 seconds on a uniprocessor
50% of the program can be parallelized on a multiprocessor.

Assume a multiprocessor with 10 processors:

1 1 1
= —— = 1.82

%Jr (1—05) 005+05 055

Speedup =

CS302 — Spring 2025

Lec.2.1 - Slide 36

Amdahl’'s Law

Speedup =

Fractiongnhanced
SpeeduPennanced

+ (1 — Fractiongnngnced)

Example:

Assume that 10% of the program cannot be parallelized. What is the maximum
achievable speedup?

CS302 — Spring 2025 Lec.2.1 - Slide 37

Amdahl’'s Law

Speedup — Fractionenhanced

S peedupenhanced

+ (1 — Fractiongnngnced)

Example:

Assume that 10% of the program cannot be parallelized. What is the maximum
achievable speedup?

1 1
Speedup = lim 10

S%oosﬁJr (1—09) 0+01

CS302 — Spring 2025 Lec.2.1 - Slide 38

Implications of Amdahl’s Law

0.8 \s\\ 10%
0.7 \ -50%
0.6 \ = \\ 700/2

0.5 N\ - o - 80%

04 --90%
0:3 N
0.2 e

0.1

Time

1 2 4 8 16 32 64 128
CS302 — Spring 2025 # Of P ro cessors Lec.2.1 - Slide 39

Terminology

¢ A Task is a piece of work

¢ Deep learning: one tensor product in the neural net
¢ Social networks: one graph node in graph processing

¢ Task grain
¢ small = fewer instructions executed per task
¢ large = more instructions executed per task

& Process (thread) performs tasks
¢ According to OS: process = thread(s) + address space

& Process (threads) executed on processor(s)

CS302 — Spring 2025

Lec.2.1 - Slide 40

Division of Work: It's about Performance

¢ Balance workload
¢ Give each parallel task the same rough amount of work

¢ Reduce communication
¢ Balance computation time with communication time
¢ Computation = useful work, Communication = overhead

¢ Reduce extra work
¢ Scheduling tasks on processors, OS, etc.

¢ These are at odds with each other

CS302 — Spring 2025

Lec.2.1 - Slide 41

Division of Work: Granularity

¢ Granularity: ratio of computation to communication

¢ Fine-grained parallelism:
¢ Less work between communication events
¢ Better load imbalance
¢ Favors faster communication

¢ Coarse-grained parallelism:
¢ Less likely to suffer from system delays (e.g., $/TLB misses)
¢ Potentially higher load imbalance
¢ Can live with slow/bulk communication

CS302 — Spring 2025 Lec.2.1 - Slide 42

Example: Division of Work

Small tasks
Large tasks

Frequent Communication
Frequent Scheduling

g —— —

Load imbalance

2

CS302 — Spring 2025 Lec.2.1 - Slide 43

Take a Break!

CS302 — Spring 2025 Lec.2.1 - Slide 44

Communication & Synchronization

e

Sync at: /O

Model: Message Passing
(e.g., datacenter)

CS302 — Spring 2025

Memory

Shared Memory

(e.g., CPU)

£ Scala

et
olioTio

Processor

Dataflow
(e.g., TPU)

1F TensorFlow

Slide 45

System layers:
Abstractions, Interfaces & Implementations

CS302 — Spring 2025

Parallel Applications

Abstractions for describing Abstractions for describing

“Programming model”

|
| -
I . concurrent, parallel, c?r communication . (w_ay of thinking about
g independent computation . things)
I---------------------------I

Language or library

primitives/mechanisms

Compiler and/or parallel runtime

OS system call API
Operating system

T HW Architecture

(HW/SW boundary)
Micro-architecture (HW implementation)

Blue italic text: abstraction/concept
Red italic text: system interface

Black text: system implementation Lec.2.1
€C..L.

- Slide 46

Example: Expressing Parallelism (Pthreads)

CS302 — Spring 2025

Parallel Applications

Abstraction for describing parallel computation:
thread

pthread create()

Pthread library implementation

System call API
OS support: kernel thread management

x86-64
Modern multi-core CPU

Blue italic text: abstraction/concept
Red italic text: system interface
Black text: system implementation

Programming
model

Lec.2.1 - Slide 47

Three Models of Communication (Abstractions)

1.Shared address space
2.Message passing

3. Data parallel

CS302 — Spring 2025 Lec.2.1 - Slide 48

Shared Address Space: Abstraction

¢ Threads communicate by reading/writing to shared vars
¢ Shared variables are like a big bulletin board
¢ Any thread can read or write

Thread 1
Memory
shared
between
threads
Thread 2
Thread 1: Thread 2:
int x = 0;
x =1;

int x;
while (x == 0) {}

CS302 — Spring 2025 Lec.2.1 - Slide 49

print x;

Shared Address Space: Abstraction

Threads communicate by:

¢ Reading/writing to shared variables
¢ Communication is implicit in memory operations
¢ Thread 1 stores to X, later, thread 2 reads X (observes update)

¢ Manipulating synchronization primitives
¢ e.g., mutual exclusion using locks

Natural extension of sequential programming model
¢ In fact, all our discussions have assumed a shared address space so far

CS302 — Spring 2025 Lec.2.1 - Slide 50

Shared Address Space: Implementation

Physical mapping

Option 1: threads share Virtual address spaces P private
an address §pace Load 7
¢ A” data IS Sharable p ‘\—@/ Common physical
2 | addresses
P /
Po[o //
Option 2: each thread has ST\' A
its own virtual address Shared portion / P2 private
of address space
space _
P; private
¢ Shared part maps to the Privateportion || tprivel
same physical location | : \ Po private
CS302 — Spring 2025 Lec.2.1 - Slide 51

Image credit: Culler, Singh, and Gupta

Shared Address Space: HW Implementation

Any processor can directly reference any memory location

“Dance-hall”
organization

P P P P
$ $ $ $
| | | |

(| Interconnect |

Memory I/0

CS302 — Spring 2025

Interconnect examples

P P P P
Bus =————t—F——
Mem| |[Mem
Crossbar

P P P P P
P
P
P

Mem| [Mem Mem| [Mem| [Mem| [Mem

Multi-stage network

Lec.2.1 - Slide 52

Shared Address Space Architectures: x86 examples
AMD Phenom Il (six core)

Intel Core i7 (quad core)

3 b 1 ¥ 3 Memory Controller

ore 2

ICore 1
On chip _
network —>
ICore 3

CS302 — Spring 2025

ore 4

19]|0J3U0D WA\

Aowa

Lec.2.1 - Slide 53

Shared Address Space Architectures: SPARC example

Sun (Oracle) Niagara 2

-

| WA _ 3.0 o .LE ,7.
12 Data preiii ?‘] "
Hank 0 EETrse
[+ t

i 11 1)

.
-~

PREBrYvS

tie g i . i1 . I S -
L280 » SPARC % .SPARC SPARC o, SPARC &
Tor='¥ 43 ‘Cor= ¥ Coe S Core &7

cuSPARC W }F?A'tﬁ‘iz W SPARC,. M EPARGL
= Core 2 3 B Corell | ' Core 18 [T Corgé o
] ELEa O

5
P
bo

= ; =
- =

T | g
B gt 2ot it e Dot - 8w S s g

' PEU

H - gy

H
= =

Eight cores

£ 1.

e

"P?"r-’!‘?

14
v

'
Y

-

CS302 — Spring 2025

i
s o o o
53

| . % g,

" S » - .
N

Yei
T i

By

A .,,,‘.,01,,5
e ol

TR R

2 .
¢

ik B
LR -

i “I'
S Sl o AR, OF
'.. -

T e
JOL LGN G

die area of one core

of crossbar: about
P
P \
P

Switch

Crossbar

L2 | Memory

L2 — | Memory

=

L2 [| Memory

L2 [| Memory

Lec.2.1 - Slide 54

Non-uniform Memory Access (NUMA)

All processors can access any memory location, but... cost of memory access is
different for different processors

P P P P
$ - $ $ $
Interconnect
Memory Memory Memory Memory
¢ Problem jwith m acgess scalgbility
¢ GOOD] costs|lare upiformj BAD:|but memorylis
uniformly far away ¢ Increased prpgrammer effort:
¢ NUMA designs are!more scalable perfprmanc tqmng |
¢ High bandwidth & low latency access to local memory ¢ Finding, exploiting locality

¢ BW scales with # of nodes if most accesses are local

CS302 — Spring 2025 Lec.2.1 - Slide 55

Non-uniform Memory Access (NUMA)

Example: modern dual-socket configuration

Latency to access location x from cores 5-8 is higher than cores 1-4!

. Memory Memory
E.g., Microsoft's | |
Ope n CloudServer Memory Controller Memory Controller

—
Core 8 On chip

network

Core 3

Core 4 Core7

l
AMD Hyper-transport /
CS302 — Spring 2025 |nt9| QUiCkPath Lec.2.1 - Slide 56

SGI Altix UV 1000

¢ 256 blades, 2 CPUs per blade, 8 cores per CPU = 4096 cores
¢ Single shared address space
¢ Interconnect: fat tree

Image credit: Pittsburgh Supercomputing Center

CS302 — Spring 2025 Lec.2.1 - Slide 57

Communication Model: Message Passing

Message Passing
¢ Different address spaces
¢ Communicate explicitly via sending/receiving messages
¢ Synchronization is implicit in the messages
¢ Arguably harder to program, but easier to scale

Thread 1 address space Thread 2 address space

X

gsend(x, 2, my_msg_id)

Variable X semantics: send contexts of local :
: variable X as message to thread2 recv(Y, 1, my msg id)

: and tag message with the id - . ith id
:“my_msq_id" 5 semantics: .recelve message with id : X
g”my_msg_.d”fromthread1and :

: store contents in local variableY Variable Y

(Communication operations shown in red)
CS302 — Spring 2025

Lec.2.1 - Slide 58

Message Passing Implementation (Swiss Supercomputer)

& Popular software library: MP| (message passing interface)

¢ System-wide LD/ST interface is expensive at massive scale
¢ Connect commodity systems together to form large parallel machine

¢ E.g., Swiss “ALPS” comprised of

~3.7K server nodes
¢ 2.7K hybrid CPU/GPU NVIDIA nodes

¢ 1K AMD CPU nodes
¢ Using MPI, can program all as one

CS302 — Spring 2025

ﬂ - ‘ e ,__1&;_;;,“[_ = . H o s l
e 2 f e | B T
. \ e) = . = ‘v 5 !!!_ fz_a__,_,._.‘;::l' 7

Programming Models vs Machine Types

¢ Correspondence between programming models and machine types is fuzzy

¢ Common to implement message passing abstractions on machines that support
a shared address space in HW

¢ Implement shared address space on machines that do not support it in HW

¢ Mark all pages with shared variables as invalid
& Page-fault handler issues appropriate network requests

¢ Keep in mind what is the programming model (abstractions used to specific
program) and what is the HW implementation

CS302 — Spring 2025 Lec.2.1 - Slide 60

Communication Model: Data Parallel

¢ Rigid computation structure
¢ Same function on all data elements

¢ Historically: same operation on each element of an array
¢ E.g., Cray vector supercomputers of the 80’s
¢ add(A, B, n)<— one inst. on vectors A, B of length n

¢ Now, functions can be arbitrarily large
¢ Communication implied after the function terminates

¢ Today platforms can range from
¢ SIMD: One instruction multiple data (in a single core)
¢ SPMD: One program multiple data in a cluster

CS302 — Spring 2025 Lec.2.1 - Slide 61

Data Parallel Example

¢ You have already seen this in our first example:
¢ No order implied between parallel iterations
¢ All threads converge at the termination of the parallel for

void my cbrt(float *v, float *result, int N) {
#pragma omp parallel for
for (int 1 = 0; 1 < N; ++i) {
float x = 1.f;
for (int j = 0; j < 10; ++3)
x = (1.£/ 3.£) * (2.£*x + v[i] / (x*x));
result[i] = x;

}

CS302 — Spring 2025 Lec.2.1 - Slide 62

Communication Models Summary

¢ Shared Memory (aka Shared Address Space)
¢ Communication is unstructured, implicit in loads and stores
¢ Arguably easier to program, but harder to scale

¢ Message Passing
& Structure all communication as messages
¢ Arguably harder to program, but easier to scale

¢ Data Parallel

¢ Structure computation as a big “map” over a collection

¢ Severely limits communication between iterations of the map (goal: preserve
independent processing of iterations)

CS302 — Spring 2025 Lec.2.1 - Slide 63

Shared Memory Parallel Programming
Using OpenMP

OpenVIP

CS302 — Spring 2025

Introduction to OpenMP

¢ What is OpenMP?

¢ Open specification for Multi-Processing
¢ Standard API for defining multithreaded shared-memory programs
¢ openmp.org — Talks, examples, forums, etc.

¢ High-level API

& Preprocessor (compiler) directives (~80%)
¢ Library Calls (~19%)
¢ Environment Variables (~1%)

CS302 — Spring 2025 Lec.2.1 - Slide 65

http://www.openmp.org/

A Programmer’'s View of OpenMP

o Portable, threaded, shared-memory programming specification with “light” syntax
¢ Exact behavior depends on OpenMP implementation!
¢ Requires compiler support (C or Fortran)

¢ OpenMP will:

¢ Allow a programmer to divide a program into serial & parallel regions
¢ Hide stack management

¢ Provide synchronization constructs

¢ OpenMP will not:

¢ Parallelize automatically
¢ Guarantee speedup
¢ Provide freedom from data races

CS302 — Spring 2025 Lec.2.1 - Slide 66

OpenMP Execution Model

¢ Fork/join model
+ Initially only the master thread is active
¢ Master thread executes until a parallel region is encountered
¢ Fork: master thread creates a team of parallel threads
¢ Statements in parallel region are executed in parallel
¢ Join: threads sync & terminate at the end of parallel region
¢ Master thread continues executing sequentially

master thread - -
e 2 B el threads

hroads - EE

. threads .

parallel region parallel region parallel region

CS:

1 - Slide 67

Hello World!

¢ Simple “Hello World!” example:

int main() {
printf("Hello, World!'\n");
return O;

CS302 — Spring 2025 Lec.2.1 - Slide 68

Hello World!

¢ Simple “Hello World!” example:

int main() {

printf("Hello, World!\n");
return O;

}

¢ Parallelized using OpenMP:

#include <omp.h>
int main() {
omp set num threads(4);
// Do this part in parallel
#pragma omp parallel
{
printf("Hello, World!\n");
}

return 0;

}

CS302 — Spring 2025 Lec.2.1 - Slide 69

Hello World!

¢ Simple “Hello World!” example:

int main() {

printf("Hello, World!\n");
return O;

}

¢ Parallelized using OpenMP:

#include <omp.h>
int main() {

omp set num threads(4);

// Do this part in parallel

#pragma omp parallel
{

printf("Hello, World!'\n");
}

return 0;

}

CS302 — Spring 2025 Lec.2.1 - Slide 70

Hello World!

¢ Simple “Hello World!” example:

int main() {

printf("Hello, World!'\n");
return O;

}

¢ Parallelized using OpenMP:

#include <omp.h>

int main() {

omp set num threads(4);
// Do this part in parallel
#pragma omp parallel

{

printf("Hello, World!\n");
}

return 0O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 71

Hello World!

¢ Simple “Hello World!” example:

int main() {

printf("Hello, World!'\n");
return O;

}

¢ Parallelized using OpenMP:

#include <omp.h>

int main() {

omp set num threads(4);

// Do this part in parallel
#pragma omp parallel

{

printf("Hello, World!\n");
}

return O0;

}

CS302 — Spring 2025 Lec.2.1 - Slide 72

Parallelizing for Loops

OpenMP easily parallelizes for loops

¢ Race free (reads/write or write/write pairs) between iterations!
¢ for loop must have canonical shape
¢ No break, return, exit or goto statements

Preprocessor calculates loop bounds for each thread from serial source

Canonical Shape index + +

#pragma omp parallel for +-+index
2 index ——
for(1=0; i < 25; 1i++) { — —index
y . for(index = start;index = < rend;y index+ =inc >)

printf (Hello World!) ; = index — =inc

== index = index +inc

} index = inc +index

\index = index — inc |

CS302 — Spring 2025 Lec.2.1 - Slide 73

Recall Our Earlier Example

Loop iterations are independent of one another
¢ Compiler can automatically generate parallel threaded code

#pragma omp parallel for
for (int 1 = 0; 1 < N; ++i) {
float x = 1.£;

for (int j = 0; jJ < 10; ++3)
x = (1.£/ 3.£) * (2.£*x + v[i] / (x*x));

result[i] = x;

CS302 — Spring 2025 Lec.2.1 - Slide 74

Division of Work — Controlling Granularity

fprragma omp parallel if (expression)

¢ Can be used to disable parallelization some cases
¢ E.g., if the input size is too small to be beneficially multithreaded

#pragma omp parallel for if (n > 5000)
for(i=0; i < n; i++) {

printf (“Hello World!”) ;
}

#pragma omp num threads (expression)
¢ Control the number of threads used for this parallel region

CS302 — Spring 2025 Lec.2.1 - Slide 75

Division of Work — Load Balancing

Schedule clause determines how loop iterations are divided among a thread team:
schedule (<type>[, <chunk> 1)

¢ static([chunk]) divides iterations statically between threads
¢ Each thread receives [chunk] iterations, rounding as necessary to account for all iterations
o Default [chunk] is ceil(# iterations / # threads)

¢ dynamic([chunk]) allocates [chunk] iterations per thread, allocating an
additional [chunk] iterations when a thread finishes

¢ Forms a logical work queue, consisting of all loop iterations
¢ Default [chunk] is 1

¢ guided([chunk]) allocates dynamically, but [chunk] is exponentially reduced
with each allocation

CS302 — Spring 2025 Lec.2.1 - Slide 76

Execution Context (EC)

¢ Every thread has its own execution context
¢ Address space containing all the variables a thread may access

¢ Contents of the execution context:
¢ Static variables
¢ Dynamically allocated data structures in the heap
¢ Variables on the run-time stack
& Additional run-time stack for functions invoked by the thread

CS302 — Spring 2025 Lec.2.1 - Slide 77

Shared vs. Private Variables

& Parallel programs often employ two types of data
¢ Shared data, visible to all threads, similarly named
¢ Private data, visible to a single thread (often stack-allocated)
¢ Shared var. has same address in EC of every thread
& Private var: has different address in EC of every thread
¢ A thread cannot access the private vars of another thread

¢ In parallel region, all vars are shared by default

¢ Private vars must be declared in the pragma statement
& private (<variable list>)

CS302 — Spring 2025 Lec.2.1 - Slide 78

Example: Shared vs. Private Variables

int b[3]; Heap _ - N\
char *cptr; * k
int i; Stack .
b Ccp tr |1

cptr = malloc(1l) ; n\
#pragma omp parallel for oL \\y// 1
for (i=0; i<3; i++) N 4

b[i] = 1; Master Thread Thread 1

(Thread 0)

CS302 — Spring 2025 Lec.2.1 - Slide 79

Fancier Hello World!

#include <omp.h>
int main () {
int nthreads, tid;
printf ("There are %d processors\n", omp get num procs())

omp set num threads(4);

#pragma omp parallel private (nthreads, tid)

{
tid = omp get thread num();
printf ("Hello World from thread = %d\n", tid);

if (tid == 0)
{

nthreads = omp get num threads();

printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);
}

} /* All threads join master thread and terminate */
return O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 80

More Sophisticated Hello World!

#include <omp.h>
int main () {
int nthreads, tid;
printf ("There are %d processors\n", omp get num procs());

omp set num threads(4);

#pragma omp parallel private (nthreads, tid)

{
tid = omp get thread num();
printf ("Hello World from thread = %d\n", tid);

if (tid == 0)
{

nthreads = omp get num threads();

printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);
}

} /* All threads join master thread and terminate */
return O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 81

More Sophisticated Hello World!

#include <omp.h>
int main () {
int nthreads, tid;
printf ("There are %d processors\n", omp get num procs());

omp set num threads (4) ; Check how many

#pragma omp parallel private (nthreads, tid) proces_sors are
{ available

tid = omp get thread num();
printf ("Hello World from thread = %d\n", tid);

if (tid == 0)
{

nthreads = omp get num threads();

printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);
}

} /* All threads join master thread and terminate */
return O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 82

More Sophisticated Hello World!

#include <omp.h>
int main () {

int nthreads, tid;
printf ("There are %d processors\n", omp get num procs())

omp set num threads(4);

Set the number of
threads to 4

#pragma omp parallel private (nthreads, tid)
{
tid = omp get thread num();
printf ("Hello World from thread = %d\n", tid);

if (tid == 0)
{

nthreads = omp get num threads();

printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);
}

} /* All threads join master thread and terminate */
return O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 83

More Sophisticated Hello World!

#include <omp.h>
int main () {
int nthreads, tid;
printf ("There are %d processors\n", omp get num procs());

omp set num threads(4);

#pragma omp parallel private (nthreads, tid)
{

tid = |omp get thread num() ; Get my thread ID
printf ("Hello World from thread = %d\n", tid);

if (tid == 0)
{

nthreads = omp get num threads();

printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);
}

} /* All threads join master thread and terminate */
return O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 84

More Sophisticated Hello World!

#include <omp.h>
int main () {
int nthreads, tid;
printf ("There are %d processors\n", omp get num procs());

omp set num threads(4);

#pragma omp parallel private (nthreads, tid) |
{ Fork a team of

tid = omp get thread num(); threads giving
printf ("Hello World from thread = %d\n", tid); them their own

if (tid == 0) copies of variables
{

nthreads = omp get num threads();
printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);

}

} /* All threads join master thread and terminate */
return O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 85

More Sophisticated Hello World!

Results from running on a 8-core machine:
There are 8 processors

Hello World from thread = 0
Hello World from thread = 3
Hello World from thread = 1
Number of threads = 4 and my tid =
Hello World from thread = 2

CS302 — Spring 2025

Lec.2.1 - Slide 86

Synchronization

Critical Section
¢ A portion of code that only one thread at a time may execute
#pragma omp critical

{

/* Critical code here */
}

¢ Atomic Execution
¢ Protects a single variable update

#pragma omp atomic
/* Update statement here */

CS302 — Spring 2025 Lec.2.1 - Slide 87

Synchronization

& Barrier
¢ Performs a barrier synchronization among all threads in a team at a given point
¢ All threads wait at the barrier point
¢ Continue when all threads have reached the barrier point

#pragma omp parallel ({
int result = heavy computation partl();

#pragma omp atomic
sum += result;

#pragma omp barrier
heavy computation part2(sum) ;

}

CS302 — Spring 2025 Lec.2.1 - Slide 88

Synchronization

& Barrier
¢ Performs a barrier synchronization among all threads in a team at a given point
¢ All threads wait at the barrier point
¢ Continue when all threads have reached the barrier point

#pragma omp parallel ({
int result = heavy computation partl();

#pragma omp atomic

#pragma omp barrier
heavy computation part2(sum) ;

}

CS302 — Spring 2025 Lec.2.1 - Slide 89

Synchronization

¢ Single-threaded region within a parallel region
¢ master and single directives

#pragma omp single
{

/* Only executed once */
}

#pragma omp master

{
/* Only executed by master*/

CS302 — Spring 2025 Lec.2.1 - Slide 90

Our Sophisticated Hello World!

#include <omp.h>
int main () {
int nthreads, tid;
printf ("There are %d processors\n", omp get num procs());

omp set num threads(4);

#pragma omp parallel private (nthreads, tid)

{
tid = omp get thread num();
printf ("Hello World from thread = %d\n", tid);

if (tid == 0)
{

nthreads = omp get num threads();

printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);
}

} /* All threads join master thread and terminate */
return O;

}

CS302 — Spring 2025 Lec.2.1 - Slide 91

Our Sophisticated Hello World!

#include <omp.h>
int main () {
int nthreads, tid;
printf ("There are %d processors\n", omp get num procs());

omp set num threads(4);

#pragma omp parallel private (nthreads, tid)

{
tid = omp get thread num();
printf ("Hello World from thread = %d\n", tid);

#pragma omp barrier

/* Only one of the threads does this */
#pragma omp single

{

nthreads = omp get num threads();
printf ("Number of threads = %d and my tid = %d\n", nthreads, tid);
}

} /* All threads join master thread and terminate */
return O;

Lec.2.1 - Slide 92

Our Sophisticated Hello World!

Results from running on the same machine:
There are 8 processors

Hello World from thread = 1

Hello World from thread = 0

Hello World from thread = 3

Hello World from thread = 2

Number of threads = 4 and my tid = 1

Previous results:
There are 8 processors

Hello World from thread = 0
Hello World from thread = 3
Hello World from thread =
Number of threads = 4 and my tid = 0
cssz—spring202s | €110 World from thread = 2 Lec21 - Slide 93

OpenMP Summary

¢ OpenMP is a compiler-based technique to create concurrent code
from (mostly) serial code

¢ OpenMP can enable (easy) parallelization of loop-based code
¢ Lightweight syntactic language extensions

¢ OpenMP performs comparably to manually-coded threading
¢ Scalable
¢ Portable

¢ Not a silver bullet for all applications

CS302 — Spring 2025 Lec.2.1 - Slide 94

More Information

2
¢ OpenMP official site

¢
¢ A handy OpenMP tutorial

CS302 — Spring 2025 Lec.2.1 - Slide 95

http://www.openmp.org/
http://www.llnl.gov/computing/tutorials/openMP/

