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Where are We?

u This lecture
u Streams
u Memory oversubscription

u Exercise session
u Practice sample 

questions

u Next class
u Scaling trends
u 29th May is a holiday!
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GPU Is a Co-Processor: Needs a Companion CPU

CPU
GPUPCIe connection

DRAM

cudaMemCopy()

cudaMemCopy()

Data copy across can take long

Data copy and computation are serialized

Can we overlap data copy with kernel execution?
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u Data copy and GPU computation are serialized 

Serialization in VectorAdd Example

Memcopy H2D X Memcopy H2D Y Kernel Z = X + Y Memcopy D2H Z

time

Only use one direction 
of PCIe, GPU idle

GPU busy,
PCIe Idle

Only use one direction 
of PCIe, GPU idle
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u Partition the vectors in segments 
u Pipeline copy and compute of segments
u Overlap data copy with compute on GPU 

Pipelining to Overlap Data Copy with Compute

Copy X.1 Z.1= X.1 + Y.1 Copy Z.1Copy Y.1

Copy X.2 Z.2= X.2 + Y.2 Copy Z.2Copy Y.2

Copy X.3 Z.3= X.3 + Y.3 Copy Z.3Copy Y.3

Copy X.4 Z.4= X.4 + Y.4 Copy Z.3Copy Y.4

time
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u Streams: Workqueues to queue independent GPU-related tasks
 Need separate queues for independent tasks

u CUDAmemcopyAsync: Asynchronous data transfer over PCIe
 Allows host to proceed without waiting for copy to finish (non-blocking)

 

CUDA Features for Overlapping  Data Transfer and Compute
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u A stream is a queue for GPU related tasks 
(e.g., kernel launch, memcopy)

u Host (CPU) queue tasks on a stream

u Tasks in the same stream execute sequentially 

u Tasks in different streams can execute concurrently  

What are Streams?
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u GPU related requests are placed in streams (FIFO) by host code
u Queue entries processed asynchronously by GPU driver
u No ordering between entries in different streams

Use Multiple Streams for Overlapping of Copy and Compute

Memcopy Z.1
Z.1 = X.1 + Y.1
Memcopy Y.1
Memcopy X.1

Memcopy Z.2
Z.2 = X.2 + Y.2
Memcopy Y.2
Memcopy X.2

Memcopy Z.2
Z.2 = X.2 + Y.2
Memcopy Y.2
Memcopy X.2

St
re

am
 0

St
re

am
 1

St
re

am
 n

Host code

GPU driver 
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u Creating a stream
cudaError_t cudaStreamCreate (cudaStream_t * pStream)
pstream à pointer to new stream identifier

u Launching kernels in a specific stream 

kernel_name <<<grid, threadblock, smem, stream id>>>

Declaring and Creating Streams
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Streams to Overlap Compute and Data copy in VectorAdd
void vecadd(float* x, float* y, float* z, int N) {

    float *x_d, *y_d, *z_d;
    cudaMalloc((void**) &x_d, N*sizeof(float));
    cudaMalloc((void**) &y_d, N*sizeof(float));   // Allocate GPU memory –No change
    cudaMalloc((void**) &z_d, N*sizeof(float));

    cudaStream_t streams[NUM_STREAM];  //Declare multiple streams

    for (unsigned int n; n < NUM_STREAM; n++) // Create multiple streams
  cudaCreateStream(&streams[n]);  

 //To continue to the next slide
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Streams to Overlap Compute and Data copy in VectorAdd
unsigned int segmentSize = (N + NUM_STREAM – 1)/ NUM_STREAM; //Segment of data

    for (unsigned int n = 0; n < NUM_STREAM; n++) {
  unsigned int start = n*segmentSize;
  unsigned int end = (start + segmentSize < N)?: (start + segmentSize) : N;
  unsigned int Nsegment = end – start;

  cudaMemcpy(&x_d[start], &x[start], Nsegment*sizeof(float),   
     cudaMemcpyHostToDevice, stream[s]); //Memcpy to different streams
  cudaMemcpy(&y_d[start], &y[start], Nsegment*sizeof(float), 
     cudaMemcpyHostToDevice, stream[s]);
  
 numThreadsPerBlock = 512;
     numBlocks = (N + numThreadsPerBlock – 1)/numThreadsPerBlock;
  vecadd_kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>> 
  (&x_d[start], &y_d[start], &z_d[start], Nsegment);  //Kernels to streams

    cudaMemcpy(&z[start], &z_d[start], Nsegment*sizeof(float), 
    cudaMemcpyDeviceToHost, stream[s]);
 } //End of loop

Will block until the computation is complete!
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u cudaMemcpy() is  a blocking
u Host code cannot proceed until the data copy is done
u Host code will not enqueue tasks to streams until the previous 

segment finishes!

u cudaMemcpyAsync: Asynchronous version of cudaMemcpy
Does not wait for the copy to complete
Control returns to the host code immediately after queuing the call

 cudaError_t cudaMemcpyAsync (void * dst, void * src, size_t count,  
  cudaMemcpyKind, cudaStream_t); 

cudaMemcpyAsync: Need Asynchronous Data Copy
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Streams to Overlap Compute and Data copy in VectorAdd
unsigned int segmentSize = (N + NUM_STREAM – 1)/ NUM_STREAM; //Segment of data

    for (unsigned int n=0; n < NUM_STREAM; n++) {
  unsigned int start = n*segmentSize;
  unsigned int end = (start + segmentSize < N)?: (start + segmentSize) : N;
  unsigned int Nsegment = end – start;

  cudaMemcpyAsync(&x_d[start], &x[start], Nsegment*sizeof(float),   
     cudaMemcpyHostToDevice, stream[s]); //Memcpy to different streams
  cudaMemcpyAsync(&y_d[start], &y[start], Nsegment*sizeof(float), 
     cudaMemcpyHostToDevice, stream[s]);
  
 numThreadsPerBlock = 512;
     numBlocks = (N + numThreadsPerBlock – 1)/numThreadsPerBlock;
  vecadd_kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>> 
  (&x_d[start], &y_d[start], &z_d[start], Nsegment);  //Kernels to streams

    cudaMemcpyAsync(&z[start], &z_d[start], Nsegment*sizeof(float), 
    cudaMemcpyDeviceToHost, stream[s]);
 } //End of loop
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u The host code only queued work on streams
u Ultimately, the host must wait for the entire work to complete 

Need to Wait for Streams to Finish Work

 
  …..
  vecadd_kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>> 
  (&x_d[start], &y_d[start], &z_d[start], Nsegment);  //Kernels to streams

    cudaMemcpyAsync(&z[start], &z_d[start], Nsegment*sizeof(float), 
    cudaMemcpyDeviceToHost, stream[s]);
 } //End of loop

   cudaDeviceSynchronize();  //Ensures ALL streams finish their work

   //Free the memory using cudaFree(); 



CS302 – Spring 2025 Lec.13.2 -  Slide 15

u All GPU-related tasks that do not specify stream (NULL) use the 
“default” stream

u Default (NULL) stream synchronizes all streams
 Allows no concurrency across other streams 

The “Null” (default) Stream  

Stream 0

Stream 1

Default stream
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u Streams allow concurrency in GPU-related tasks

u Streams are queues of GPU-related tasks

u Tasks in separate queues execute in order

u No ordering amongst tasks in different streams

Summary of Streams



CS302 – Spring 2025 Lec.13.2 -  Slide 17

UNIFIED VIRTUAL MEMORY (UVM)
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Review: Traditional GPU Memory Allocation and Copy

CPU
GPU

PCIe connection

DRAM

Operating system, 
GPU driver Launch work

1. Allocate (CUDAMalloc) GPU memory
2. Copy data to GPU memory
3. Launch kernel on the GPU
4. Perform computation on GPU
5. Copy results from GPU memory
6. Deallocate GPU memory

Get results
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Unified Virtual Memory (UVM): Simplifying Programming 

CPU
GPU

PCIe connection

DRAM

Operating system, 
GPU driver Launch work

1. Allocate (CUDAMalloc) GPU memory
2. Copy data to GPU memory
3. Launch kernel on the GPU
4. Perform computation on GPU
5. Copy results from GPU memory
6. Deallocate GPU memory

Get results

Joint CPU +GPU 
allocation

No need for 
cudaMemcpy()
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Unified Virtual Memory (UVM): Simplifying Programming 

CPU
GPU

PCIe connection

DRAM

u CUDA runtime and GPU hardware work together to enable UVM

Unified Virtual Memory
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Simple Example of Using UVM’s Programming Interface
void sortFile(FILE *fp, int N) {
  char *data, *d_data;
  data = malloc (char*) malloc(N);
  cudaMalloc(&d_data, N);
  fread(data, 1, N, fp);
  cudaMemcpy(d_data, data, N,..);
  sortOnGPU <<<…>>> (d_data, N, 1);
  cudaMemcpy(data, d_data, N…);
  useSortedData(data);
  cudaFree(d_data);
  free(data);
}

void sortFile(FILE *fp, int N) {
  char *data;
  cudaMallocManaged(&data, N);

  fread(data, 1, N, fp);

  sortOnGPU <<<…>>> (data, N, 1);
  cudaDeviceSynchronize();
  useSortedData(data);
  cudaFree(data);

}WITHOUT    UVM WITH    UVM
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Programming Pointer-based Data Structures Hard Without UVM

CPU address space

Key Pointer Data
Example: Map data-structure
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Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

GPU address space

Key Pointer Data

CPU address space
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Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

Key Pointer Data
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Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

DataKey Pointer
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Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

Key Pointe
r

Data

Pointers 
rendered stale 
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Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

Pointers need to 
be updated

Key Pointer Data
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Programming Pointer-based Data Structures Hard With UVM

Example: Map data-structure

No need for explicit 
memcopy

Key Pointer Data

Unified address 

No need for pointer 
update

No need for 
separate memory 
allocation
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Under the Hood: How Does UVM Work?

CPU
GPU

DRAM
GPU retries the faulting instruction 

GPU Diver 
for UVM

GPU page fault

GPU hardware detects access 
to unmapped memory
UVM driver migrates the 
requested data and maps it
GPU raises page faultUVM driver notifies GPU
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u GPU’s global memory limited to a few 10s of GBs

u CUDAmalloc fails if you try to allocate beyond Global memory capacity

u UVM on-demand migration to oversubscribe Global memory capacity

Additional Benefits of UVM: Oversubscribing Global Memory
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GPU Memory Oversubscription Through On-Deman Migration 

CPU
GPU

DRAM

GPU Diver 
for UVM

GPU page fault

GPU global memory is full
Migrate requested Data to Global MemoryEvict Data (Page) from Global Memory to DRAM Retry access
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u UVM simplify programming 

u UVM enables oversubscription of limited global memory capacity

u UVM uses a combination of hardware and driver to perform on-
demand page migration 

Summary of Unified Virtual Memory (UVM)
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u GPUs are accelerator for massive data-parallel processing

u CPU allocates GPU memory, copies data and launches work

u GPU follows Single Instruction Multiple Thread (SIMT) execution

u GPU is programmed using Single Program Multiple Data (SPMD)

u GPU programs must try avoid control flow divergence

Key Takeaways of GPU Lectures
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u GPUs have plenty of compute but relatively limited memory capacity 
and bandwidth 

u GPU programs must leverage shared memory, memory access 
coalescing for performance 

u GPUs allows both barrier and fine-grain synchronizations, e.g., 
atomics, fence

u Tensor cores are specialized to accelerate matrix multiplication

Key Takeaways of GPU Lectures


