
CS302 – Spring 2025 Lec.13.2 - Slide 1

CS302

GPU: Streams, UVA

Spring 2025
Babak Falsafi, Arkaprava Basu
parsa.epfl.ch/course-info/cs302

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi,
Andreas Moshovos, and from the companion material of the book “Programming Massively Parallel
Processors”
Copyright 2025

CS302 – Spring 2025 Lec.13.2 - Slide 2

Where are We?

u This lecture
u Streams
u Memory oversubscription

u Exercise session
u Practice sample

questions

u Next class
u Scaling trends
u 29th May is a holiday!

M T W T F
17.Feb 18.Feb 19.Feb 20.Feb 21.Feb
24.Feb 25.Feb 26.Feb 27.Feb 28.Feb
03.Mar 04.Mar 05.Mar 06.Mar 07.Mar
10.Mar 11.Mar 12.Mar 13.Mar 14.Mar
17.Mar 18.Mar 19.Mar 20.Mar 21.Mar
24.Mar 25.Mar 26.Mar 27.Mar 28.Mar
31.Mar 01.Apr 02.Apr 03.Apr 04.Apr
07.Apr 08.Apr 09.Apr 10.Apr 11.Apr
14.Apr 15.Apr 16.Apr 17.Apr 18.Apr
21.Apr 22.Apr 23.Apr 24.Apr 25.Apr
28.Apr 29.Apr 30.Apr 01.May 02.May
05.May 06.May 07.May 08.May 09.May
12.May 13.May 14.May 15.May 16.May
19.May 20.May 21.May 22.May 23.May
26.May 27.May 28.May 29.May 30.May

CS302 – Spring 2025 Lec.13.2 - Slide 3

GPU Is a Co-Processor: Needs a Companion CPU

CPU
GPUPCIe connection

DRAM

cudaMemCopy()

cudaMemCopy()

Data copy across can take long

Data copy and computation are serialized

Can we overlap data copy with kernel execution?

CS302 – Spring 2025 Lec.13.2 - Slide 4

u Data copy and GPU computation are serialized

Serialization in VectorAdd Example

Memcopy H2D X Memcopy H2D Y Kernel Z = X + Y Memcopy D2H Z

time

Only use one direction
of PCIe, GPU idle

GPU busy,
PCIe Idle

Only use one direction
of PCIe, GPU idle

CS302 – Spring 2025 Lec.13.2 - Slide 5

u Partition the vectors in segments
u Pipeline copy and compute of segments
u Overlap data copy with compute on GPU

Pipelining to Overlap Data Copy with Compute

Copy X.1 Z.1= X.1 + Y.1 Copy Z.1Copy Y.1

Copy X.2 Z.2= X.2 + Y.2 Copy Z.2Copy Y.2

Copy X.3 Z.3= X.3 + Y.3 Copy Z.3Copy Y.3

Copy X.4 Z.4= X.4 + Y.4 Copy Z.3Copy Y.4

time

CS302 – Spring 2025 Lec.13.2 - Slide 6

u Streams: Workqueues to queue independent GPU-related tasks
 Need separate queues for independent tasks

u CUDAmemcopyAsync: Asynchronous data transfer over PCIe
 Allows host to proceed without waiting for copy to finish (non-blocking)

CUDA Features for Overlapping Data Transfer and Compute

CS302 – Spring 2025 Lec.13.2 - Slide 7

u A stream is a queue for GPU related tasks
(e.g., kernel launch, memcopy)

u Host (CPU) queue tasks on a stream

u Tasks in the same stream execute sequentially

u Tasks in different streams can execute concurrently

What are Streams?

CS302 – Spring 2025 Lec.13.2 - Slide 8

u GPU related requests are placed in streams (FIFO) by host code
u Queue entries processed asynchronously by GPU driver
u No ordering between entries in different streams

Use Multiple Streams for Overlapping of Copy and Compute

Memcopy Z.1
Z.1 = X.1 + Y.1
Memcopy Y.1
Memcopy X.1

Memcopy Z.2
Z.2 = X.2 + Y.2
Memcopy Y.2
Memcopy X.2

Memcopy Z.2
Z.2 = X.2 + Y.2
Memcopy Y.2
Memcopy X.2

St
re

am
 0

St
re

am
 1

St
re

am
 n

Host code

GPU driver

CS302 – Spring 2025 Lec.13.2 - Slide 9

u Creating a stream
cudaError_t cudaStreamCreate (cudaStream_t * pStream)
pstream à pointer to new stream identifier

u Launching kernels in a specific stream

kernel_name <<<grid, threadblock, smem, stream id>>>

Declaring and Creating Streams

CS302 – Spring 2025 Lec.13.2 - Slide 10

Streams to Overlap Compute and Data copy in VectorAdd
void vecadd(float* x, float* y, float* z, int N) {

 float *x_d, *y_d, *z_d;
 cudaMalloc((void**) &x_d, N*sizeof(float));
 cudaMalloc((void**) &y_d, N*sizeof(float)); // Allocate GPU memory –No change
 cudaMalloc((void**) &z_d, N*sizeof(float));

 cudaStream_t streams[NUM_STREAM]; //Declare multiple streams

 for (unsigned int n; n < NUM_STREAM; n++) // Create multiple streams
 cudaCreateStream(&streams[n]);

 //To continue to the next slide

CS302 – Spring 2025 Lec.13.2 - Slide 11

Streams to Overlap Compute and Data copy in VectorAdd
unsigned int segmentSize = (N + NUM_STREAM – 1)/ NUM_STREAM; //Segment of data

 for (unsigned int n = 0; n < NUM_STREAM; n++) {
 unsigned int start = n*segmentSize;
 unsigned int end = (start + segmentSize < N)?: (start + segmentSize) : N;
 unsigned int Nsegment = end – start;

 cudaMemcpy(&x_d[start], &x[start], Nsegment*sizeof(float),
 cudaMemcpyHostToDevice, stream[s]); //Memcpy to different streams
 cudaMemcpy(&y_d[start], &y[start], Nsegment*sizeof(float),
 cudaMemcpyHostToDevice, stream[s]);

 numThreadsPerBlock = 512;
 numBlocks = (N + numThreadsPerBlock – 1)/numThreadsPerBlock;
 vecadd_kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>>
 (&x_d[start], &y_d[start], &z_d[start], Nsegment); //Kernels to streams

 cudaMemcpy(&z[start], &z_d[start], Nsegment*sizeof(float),
 cudaMemcpyDeviceToHost, stream[s]);
 } //End of loop

Will block until the computation is complete!

CS302 – Spring 2025 Lec.13.2 - Slide 12

u cudaMemcpy() is a blocking
u Host code cannot proceed until the data copy is done
u Host code will not enqueue tasks to streams until the previous

segment finishes!

u cudaMemcpyAsync: Asynchronous version of cudaMemcpy
Does not wait for the copy to complete
Control returns to the host code immediately after queuing the call

 cudaError_t cudaMemcpyAsync (void * dst, void * src, size_t count,
 cudaMemcpyKind, cudaStream_t);

cudaMemcpyAsync: Need Asynchronous Data Copy

CS302 – Spring 2025 Lec.13.2 - Slide 13

Streams to Overlap Compute and Data copy in VectorAdd
unsigned int segmentSize = (N + NUM_STREAM – 1)/ NUM_STREAM; //Segment of data

 for (unsigned int n=0; n < NUM_STREAM; n++) {
 unsigned int start = n*segmentSize;
 unsigned int end = (start + segmentSize < N)?: (start + segmentSize) : N;
 unsigned int Nsegment = end – start;

 cudaMemcpyAsync(&x_d[start], &x[start], Nsegment*sizeof(float),
 cudaMemcpyHostToDevice, stream[s]); //Memcpy to different streams
 cudaMemcpyAsync(&y_d[start], &y[start], Nsegment*sizeof(float),
 cudaMemcpyHostToDevice, stream[s]);

 numThreadsPerBlock = 512;
 numBlocks = (N + numThreadsPerBlock – 1)/numThreadsPerBlock;
 vecadd_kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>>
 (&x_d[start], &y_d[start], &z_d[start], Nsegment); //Kernels to streams

 cudaMemcpyAsync(&z[start], &z_d[start], Nsegment*sizeof(float),
 cudaMemcpyDeviceToHost, stream[s]);
 } //End of loop

CS302 – Spring 2025 Lec.13.2 - Slide 14

u The host code only queued work on streams
u Ultimately, the host must wait for the entire work to complete

Need to Wait for Streams to Finish Work

 …..
 vecadd_kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>>
 (&x_d[start], &y_d[start], &z_d[start], Nsegment); //Kernels to streams

 cudaMemcpyAsync(&z[start], &z_d[start], Nsegment*sizeof(float),
 cudaMemcpyDeviceToHost, stream[s]);
 } //End of loop

 cudaDeviceSynchronize(); //Ensures ALL streams finish their work

 //Free the memory using cudaFree();

CS302 – Spring 2025 Lec.13.2 - Slide 15

u All GPU-related tasks that do not specify stream (NULL) use the
“default” stream

u Default (NULL) stream synchronizes all streams
 Allows no concurrency across other streams

The “Null” (default) Stream

Stream 0

Stream 1

Default stream

CS302 – Spring 2025 Lec.13.2 - Slide 16

u Streams allow concurrency in GPU-related tasks

u Streams are queues of GPU-related tasks

u Tasks in separate queues execute in order

u No ordering amongst tasks in different streams

Summary of Streams

CS302 – Spring 2025 Lec.13.2 - Slide 17

UNIFIED VIRTUAL MEMORY (UVM)

CS302 – Spring 2025 Lec.13.2 - Slide 18

Review: Traditional GPU Memory Allocation and Copy

CPU
GPU

PCIe connection

DRAM

Operating system,
GPU driver Launch work

1. Allocate (CUDAMalloc) GPU memory
2. Copy data to GPU memory
3. Launch kernel on the GPU
4. Perform computation on GPU
5. Copy results from GPU memory
6. Deallocate GPU memory

Get results

CS302 – Spring 2025 Lec.13.2 - Slide 19

Unified Virtual Memory (UVM): Simplifying Programming

CPU
GPU

PCIe connection

DRAM

Operating system,
GPU driver Launch work

1. Allocate (CUDAMalloc) GPU memory
2. Copy data to GPU memory
3. Launch kernel on the GPU
4. Perform computation on GPU
5. Copy results from GPU memory
6. Deallocate GPU memory

Get results

Joint CPU +GPU
allocation

No need for
cudaMemcpy()

CS302 – Spring 2025 Lec.13.2 - Slide 20

Unified Virtual Memory (UVM): Simplifying Programming

CPU
GPU

PCIe connection

DRAM

u CUDA runtime and GPU hardware work together to enable UVM

Unified Virtual Memory

CS302 – Spring 2025 Lec.13.2 - Slide 21

Simple Example of Using UVM’s Programming Interface
void sortFile(FILE *fp, int N) {
 char *data, *d_data;
 data = malloc (char*) malloc(N);
 cudaMalloc(&d_data, N);
 fread(data, 1, N, fp);
 cudaMemcpy(d_data, data, N,..);
 sortOnGPU <<<…>>> (d_data, N, 1);
 cudaMemcpy(data, d_data, N…);
 useSortedData(data);
 cudaFree(d_data);
 free(data);
}

void sortFile(FILE *fp, int N) {
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 sortOnGPU <<<…>>> (data, N, 1);
 cudaDeviceSynchronize();
 useSortedData(data);
 cudaFree(data);

}WITHOUT UVM WITH UVM

CS302 – Spring 2025 Lec.13.2 - Slide 22

Programming Pointer-based Data Structures Hard Without UVM

CPU address space

Key Pointer Data
Example: Map data-structure

CS302 – Spring 2025 Lec.13.2 - Slide 23

Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

GPU address space

Key Pointer Data

CPU address space

CS302 – Spring 2025 Lec.13.2 - Slide 24

Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

Key Pointer Data

CS302 – Spring 2025 Lec.13.2 - Slide 25

Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

DataKey Pointer

CS302 – Spring 2025 Lec.13.2 - Slide 26

Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

Key Pointe
r

Data

Pointers
rendered stale

CS302 – Spring 2025 Lec.13.2 - Slide 27

Programming Pointer-based Data Structures Hard Without UVM

Example: Map data-structure

CPU address space GPU address space

Pointers need to
be updated

Key Pointer Data

CS302 – Spring 2025 Lec.13.2 - Slide 28

Programming Pointer-based Data Structures Hard With UVM

Example: Map data-structure

No need for explicit
memcopy

Key Pointer Data

Unified address

No need for pointer
update

No need for
separate memory
allocation

CS302 – Spring 2025 Lec.13.2 - Slide 29

Under the Hood: How Does UVM Work?

CPU
GPU

DRAM
GPU retries the faulting instruction

GPU Diver
for UVM

GPU page fault

GPU hardware detects access
to unmapped memory
UVM driver migrates the
requested data and maps it
GPU raises page faultUVM driver notifies GPU

CS302 – Spring 2025 Lec.13.2 - Slide 30

u GPU’s global memory limited to a few 10s of GBs

u CUDAmalloc fails if you try to allocate beyond Global memory capacity

u UVM on-demand migration to oversubscribe Global memory capacity

Additional Benefits of UVM: Oversubscribing Global Memory

CS302 – Spring 2025 Lec.13.2 - Slide 31

GPU Memory Oversubscription Through On-Deman Migration

CPU
GPU

DRAM

GPU Diver
for UVM

GPU page fault

GPU global memory is full
Migrate requested Data to Global MemoryEvict Data (Page) from Global Memory to DRAM Retry access

CS302 – Spring 2025 Lec.13.2 - Slide 32

u UVM simplify programming

u UVM enables oversubscription of limited global memory capacity

u UVM uses a combination of hardware and driver to perform on-
demand page migration

Summary of Unified Virtual Memory (UVM)

CS302 – Spring 2025 Lec.13.2 - Slide 33

u GPUs are accelerator for massive data-parallel processing

u CPU allocates GPU memory, copies data and launches work

u GPU follows Single Instruction Multiple Thread (SIMT) execution

u GPU is programmed using Single Program Multiple Data (SPMD)

u GPU programs must try avoid control flow divergence

Key Takeaways of GPU Lectures

CS302 – Spring 2025 Lec.13.2 - Slide 34

u GPUs have plenty of compute but relatively limited memory capacity
and bandwidth

u GPU programs must leverage shared memory, memory access
coalescing for performance

u GPUs allows both barrier and fine-grain synchronizations, e.g.,
atomics, fence

u Tensor cores are specialized to accelerate matrix multiplication

Key Takeaways of GPU Lectures

