CS302

GPU: Streams, UVA

Spring 2025

Babak Falsafi, Arkaprava Basu
parsa.epfl.ch/course-info/cs302

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi,
Andreas Moshovos, and from the companion material of the book “Programming Massively Parallel
Processors”

Copyright 2025

CS302 - Spring 2025 Lec.13.2 - Slide 1

Where are We?

Lok ¢ This lecture
05.Mar |

05.Mar ¢ Streams
¢ Memory oversubscription

¢ Exercise session

¢ Practice sample
18.Apr questions
25 Apr

& Next class

_
¢ Scaling trends

f ¢ 29" May is a holiday!
y

CS302 - Spring 2025 Lec.13.2 - Slide 2

GPU Is a Co-Processor: Needs a Companion CPU

vencep Y

> s

PCle connection Q
CE— =
cudaMemCopy()

Data copy across can take long

Data copy and computation are serialized

Can we overlap data copy with kernel execution?

CS302 - Spring 2025 Lec.13.2 - Slide 3

Serialization in VectorAdd Example

time

Only use one direction GPU bus Only use one direction
of PCle, GPU idle DCTe Tl of PCle, GPU idle

¢ Data copy and GPU computation are serialized

CS302 - Spring 2025 Lec.13.2 - Slide 4

Pipelining to Overlap Data Copy with Compute

_
comxa ||
comyxa_|cony |

Copy Z.2

time
¢ Partition the vectors in segments

¢ Pipeline copy and compute of segments
¢ Overlap data copy with compute on GPU

CS302 - Spring 2025

Copy Z.3

Lec.13.2 - Slide 5

CUDA Features for Overlapping Data Transfer and Compute

¢ Streams: Workqueues to queue independent GPU-related tasks
@® Need separate queues for independent tasks

¢ CUDAmemcopyAsync: Asynchronous data transfer over PCle
@® Allows host to proceed without waiting for copy to finish (non-blocking)

CS302 - Spring 2025 Lec.13.2 - Slide 6

What are Streams?

¢ A stream is a queue for GPU related tasks
(e.g., kernel launch, memcopy)

¢ Host (CPU) queue tasks on a stream

¢ Tasks in the same stream execute sequentially

¢ Tasks in different streams can execute concurrently

CS302 - Spring 2025 Lec.13.2 - Slide 7

Use Multiple Streams for Overlapping of Copy and Compute

Host code
o — C
c Memcopy Z.1 c | Memcopy Z.2 c | Memcopy Z.2
O [Z1=X1+Y.1 S |Z2=X2+Y2| @@ @ O |Z2=X2+Y2
2 Memcopy V.1 | Memcopy Y.2 9 | Memcopy Y.2
Memcopy X.1 Memcopy X.2 Memcopy X.2
GPU driver

¢ GPU related requests are placed in streams (FIFO) by host code
¢ Queue entries processed asynchronously by GPU driver
¢ No ordering between entries in different streams

CS302 - Spring 2025 Lec.13.2 - Slide 8

Declaring and Creating Streams

¢ Creating a stream
cudaEkrror t cudaStreamCreate (cudaStream_t * pStream)
pstream - pointer to new stream identifier

¢ Launching kernels in a specific stream

kernel name <<<grid, threadblock, smem, stream id>>>

CS302 - Spring 2025 Lec.13.2 - Slide 9

Streams to Overlap Compute and Data copy in VectorAdd

void vecadd(float* x, float* y, float* z, int N) {

float *x d, *y d, *z d;

cudaMalloc((void**) &x d, N¥* (float)) ;
cudaMalloc((void**) &y d, N* (float)) ; // Allocate GPU memory -No change
cudaMalloc((void**) &z d, N¥* (float)) ;

cudaStream t streams[NUM STREAM]; //Declare multiple streams

for (unsigned int n; n < NUM STREAM; n++) // Create multiple streams
cudaCreateStream(&streams|[n]) ;

//To continue to the next slide

CS302 - Spring 2025 Lec.13.2 - Slide 10

Streams to Overlap Compute and Data copy in VectorAdd

unsigned int segmentSize = (N + NUM STREAM - 1)/ NUM STREAM; //Segment of data
for (unsigned int n = 0; n < NUM STREAM; n++) {

unsigned int start = n*segmentSize;
unsigned int end = (start + segmentSize < N)?: (start + segmentSize) : N;

unsigned int Nsegment = end - start;

cudaMemcpy (#x d[start], &x[start], Nsegment*sizeof(float),
cudaMemcpyHostToDevice, stream[s]); //Memcpy to different streams

cudaMemcpy (ky d[start], &y[start], Nsegment*sizeof(float),
cudaMemcpyHostToDevice, stream|[s]);

numThreadsPerBlock = 512;

numBlocks = (N + numThreadsPerBlock - 1)/numThreadsPerBlock;
vecadd kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>>

(&x_d[;tart], &y d[start], &z d[start], Nsegment); //Kernels to streams

cudaMemcpy (&z[start] , &z d[start], Nsegment*sizeof (fldoat),
cudaMemcpyDeviceToHost, stream|[s]);

CS302 s}' /2{2§:nd of looP " I . .
- spring Will block until the computation is complete!

cudaMemcpyAsync: Need Asynchronous Data Copy

¢ cudaMemcpy() is a blocking
¢ Host code cannot proceed until the data copy is done

¢ Host code will not enqueue tasks to streams until the previous
segment finishes!

¢ cudaMemcpyAsync: Asynchronous version of cudaMemcpy
Does not wait for the copy to complete
Control returns to the host code immediately after queuing the call

cudaError_t cudaMemcpyAsync (void * dst, void * src, size t count,
cudaMemcpyKind, cudaStream t);

CS302 - Spring 2025 Lec.13.2 - Slide 12

Streams to Overlap Compute and Data copy in VectorAdd

unsigned int segmentSize = (N + NUM STREAM - 1)/ NUM STREAM; //Segment of data
for (unsigned int n=0; n < NUM STREAM; n++) {
unsigned int start = n*segmentSize;
unsigned int end = (start + segmentSize < N)?: (start + segmentSize) : N;
unsigned int Nsegment = end - start;

cudaMemcpyAsync (&x d[start], &x[start], Nsegment*sizeof (float),
cudaMemcpyHostToDevice, stream[s]); //Memcpy to different streams

cudaMemcpyAsync (&y d[start], &y[start], Nsegment*sizeof (float),
cudaMemcpyHostToDevice, stream|[s]);

numThreadsPerBlock = 512;

numBlocks = (N + numThreadsPerBlock - 1)/numThreadsPerBlock;
vecadd kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>>
(&x d[start], &y d[start], &z d[start], Nsegment); //Kernels to streams

cudaMemcpyAsync (&z[start], &z d[start], Nsegment*sizeof (float),

cudaMemcpyDeviceToHost, stream|[s]);
//End of loop

CS302 - Spring 2025 Lec.13.2 - Slide 13

Need to Walit for Streams to Finish Work

¢ The host code only queued work on streams
¢ Ultimately, the host must wait for the entire work to complete

vecadd kernel <<< numBlocks, numThreadsPerBlock, 0, stream[s] >>>
(&x d[start], &y d[start], &z d[start], Nsegment); //Kernels to streams

cudaMemcpyAsync (&z[start], &z _d[start], Nsegment*sizeof(float),
cudaMemcpyDeviceToHost, stream|[s]);
} //End of loop

cudaDeviceSynchronize(); //Ensures ALL streams finish their work

//Free the memory using cudaFree() ;

CS302 - Spring 2025 Lec.13.2 - Slide 14

The “Null” (default) Stream

¢ All GPU-related tasks that do not specify stream (NULL) use the
“default” stream

¢ Default (NULL) stream synchronizes all streams
@® Allows no concurrency across other streams

Stream 0

stream 1 [
Default stream I

CS302 - Spring 2025 Lec.13.2 - Slide 15

Summary of Streams

¢ Streams allow concurrency in GPU-related tasks
¢ Streams are queues of GPU-related tasks
¢ Tasks in separate queues execute in order

¢ No ordering amongst tasks in different streams

CS302 - Spring 2025 Lec.13.2 - Slide 16

UNIFIED VIRTUAL MEMORY (UVM)

CS302 - Spring 2025

Review: Traditional GPU Memory Allocation and Copy

Operating system,
GPU driver ﬂ”"h work

oooooooooooooooooooo
LU R Ry Y

PCle connection

T . ©
C \
© J £ J

S fese- WRIEERC

Get results A/Kn/
- ocate (CUDAMalloc) GPU memory

Copy data to GPU memory
Launch kernel on the GPU
Perform computation on GPU
Copy results from GPU memory
Deallocate GPU memory

CS302 - Spring 2025 Lec.13.2 - Slide 18

U_.
X
>
=

S O B N

Unified Virtual Memory (UVM): Simplifying Programming

Operating system,
GPU driver ﬂ”"h work

oooooooooooooooooooo
LU R Ry Y

PCle connection

.
N J

S fese- WRIEERC

Get results o
ory

No need for
I cudaMemcpy() 3. Launch kernel on the GPU

-y P 4. Perform computation on GPU

_ : ry
Joint CPU +GPU
allocation 6. Deallocate GPU memory

CS302 - Spring 2025 Lec.13.2 - Slide 19

Unified Virtual Memory (UVM): Simplifying Programming

PCle connection

Unified Virtual Memory

¢ CUDA runtime and GPU hardware work together to enable UVM

CS302 - Spring 2025 Lec.13.2 - Slide 20

Simple Example of Using UVM’s Programming Interface

void sortFile(FILE *fp, int N) { void sortFile(FILE *fp, int N) {
char *data, *d_data; char *data;
data = malloc (char*) malloc(N); cudaMallocManaged(&data, N);
cudaMalloc(&d_data, N);
fread(data, 1, N, fp); fread(data, 1, N, fp);
cudaMemcpy(d_data, data, N,..);
sortOnGPU <<<...>>> (d_data, N, 1); sortOnGPU <<<...>>> (data, N, 1);
cudaMemcpy(data, d_data, N...); cudaDeviceSynchronize();
useSortedData(data); useSortedData(data);
cudaFree(d_data); cudaFree(data);
free(data);

) WITHOUT UVM } WITH UVM

Programming Pointer-based Data Structures Hard Without UVM

Key Pointer Data

Example: Map data-structure

n

CPU address space

CS302 - Spring 2025 Lec.13.2 - Slide 22

Programming Pointer-based Data Structures Hard Without UVM

Key Pointer Data

Example: Map data-structure

n

CPU address space GPU address space

CS302 - Spring 2025 Lec.13.2 - Slide 23

Programming Pointer-based Data Structures Hard Without UVM

Key Pointer Data

Example: Map data-structure

n

CPU address space GPU address space

CS302 - Spring 2025 Lec.13.2 - Slide 24

Programming Pointer-based Data Structures Hard Without UVM

Key Pointer Data

Example: Map data-structure

n

CPU address space GPU address space

CS302 - Spring 2025 Lec.13.2 - Slide 25

Programming Pointer-based Data Structures Hard Without UVM

Key Pointe Data

Example: Map data-structure Ll
CPU address space GPU address space
Pointers
X , rendered stale

=t

CS302 - Spring 2025 Lec.13.2 - Slide 26

Programming Pointer-based Data Structures Hard Without UVM

Key Pointer Data

Example: Map data-structure

n

CPU address space GPU address space

Pointers need to
, , be updated

CS302 - Spring 2025 Lec.13.2 - Slide 27

Programming Pointer-based Data Structures Hard With UVM

Example: Map data-structure

CS302 - Spring 2025

Key Pointer Data

n

n
=

Unified address

No need for
separate memory
allocation

No need for pointer
update

No need for explicit
memcopy

Lec.13.2 - Slide 28

Under the Hood: How Does UVM Work?

g':gle\i/lver GPU page fault {\\\\\\J

Logic Layer
Substrate

CS302 - Spring 2025 Lec.13.2 - Slide 29

Additional Benefits of UVM: Oversubscribing Global Memory

¢ GPU’s global memory limited to a few 10s of GBs
¢ CUDAmalloc fails if you try to allocate beyond Global memory capacity

¢ UVM on-demand migration to oversubscribe Global memory capacity

CS302 - Spring 2025 Lec.13.2 - Slide 30

GPU Memory Oversubscription Through On-Deman Migration

g':gle\i/lver . GPU page fault {\\\\\\J

RFte drioatGlossiobiaiMvienta D RAM
GPU global memory is full

CS302 - Spring 2025 Lec.13.2 - Slide 31

Summary of Unified Virtual Memory (UVM)

¢ UVM simplify programming

¢ UVM enables oversubscription of limited global memory capacity

¢ UVM uses a combination of hardware and driver to perform on-
demand page migration

CS302 - Spring 2025 Lec.13.2 - Slide 32

Key Takeaways of GPU Lectures

¢ GPUs are accelerator for massive data-parallel processing

¢ CPU allocates GPU memory, copies data and launches work

¢ GPU follows Single Instruction Multiple Thread (SIMT) execution
¢ GPU is programmed using Single Program Multiple Data (SPMD)

¢ GPU programs must try avoid control flow divergence

CS302 - Spring 2025 Lec.13.2 - Slide 33

Key Takeaways of GPU Lectures

¢ GPUs have plenty of compute but relatively limited memory capacity
and bandwidth

¢ GPU programs must leverage shared memory, memory access
coalescing for performance

¢ GPUs allows both barrier and fine-grain synchronizations, e.g.,
atomics, fence

¢ Tensor cores are specialized to accelerate matrix multiplication

CS302 - Spring 2025 Lec.13.2 - Slide 34

