CS302

Performance, power and
metrics

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Copyright 2025

CS302 — Spring 2025 e ‘ Lec.1.2 - Slide 1

Schedule for this semester

28-Apr @® Roofline model example
5-May

12-May
19-May
26-May

CS302 — Spring 2025 Lec.1.2 - Slide 2

o

¢ Next Tuesday
@ Parallel programming

M T wh| T F

17-Feb _

24-Feb ¢ Class intro

3-Mar ® Performance

10-Mar ® Power

1Mar @ Metrics

24-Mar

31-Mar

oe & Exercise session

14-Apr

21-Apr @® Intro and examples of Amdahl’s law
21-May
28-May

Grading/Regrading [Please note the update]

¢ Grades (curved)
@ Assignments 30%

@® Homework 20%
@® Midterm 20%
@®Final 30%

¢ Regrading for up to a week after the grade release
@® Please contact TAs to ask for a regrade

CS302 — Spring 2025 Lec.1.2 - Slide 3

Homeworks & Assignments

¢ Biweekly (sometimes weekly) homeworks
€ Homework one (non-grade) + solution posted
€ Check Moodle announcements for next homework

¢ Assignment one will be posted next Monday

¢ Two more assignments with the following tentative schedule:
€ March 25
& May 6

CS302 — Spring 2025 Lec.1.2 - Slide 4

Review: Why Parallelism?

10,000,000

¢ Ran out of free lunch (c.a. ~2005)

} Dual-Core Itanium 2 -/
B

¢ Power Wall | - Intel CPU Trends At
¢ ENd of frequency Scallng 100000 (sources: Intel, Wikipedia, K. Olukotun) »

@ ILP tapped out
o Little hidden parallelism is left 10,000

1,000

¢ Moore’s Law reinterpreted
€ Chip density increases slowly
@ Clock speed does not

10

¢ Parallelism is a key solution to achieving S g il
higher performance te A

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

CS302 — Spring 2025 Lec.1.2 - Slide 5

When is parallel computing effective?

¢ Need performance metrics

@® How fast is a program running on multiple processors?
® \What do we measure to help improve the speed?

¢ Need cost metrics
@® How much are we paying for a particular speed

¢ How do we balance cost with performance?

CS302 — Spring 2025

Lec.1.2 - Slide 6

The “lron Law” of Processor Performance

Processor Performance =

Instructions Cycles Seconds

X X
Program Instruction Cycle

Compiler Architecture Circuit

CS302 — Spring 2025 Lec.1.2 - Slide 7

Instructions/Program

Processor Performance =

Instructions

Program

Compiler

CS302 — Spring 2025 Lec.1.2 - Slide 8

Instructions/Program

¢ Compilers
@ # of machine instructions per line of code

¢ Runtime system

@ Interpreted languages (e.g., Python)
@ Interpretation + dynamic compilation + runtime overhead (e.g., garbage collection)
@® Number of machine instructions per line of application code

¢ Example: Multiplying two 1000x1000 matrices

® 50B x86 instructions in C
® 2.3T x86 instructions in Python (47x higher!)

CS302 — Spring 2025 Lec.1.2 - Slide 9

Cycles/Instruction

Processor Performance =

Cycles

Instruction

Architecture

CS302 — Spring 2025 Lec.1.2 - Slide 10

Cycles/Instruction

CPIl = 1/ (pipeline width) + front-end stalls + back-end stalls

Example:
@® 4-way superscalar with no stalls — CPIl = 0.25

¢ Pipeline width: Maximum number of instructions fetch, executed, and
retired

¢ Instruction-level parallelism (ILP): the measure of parallelism in the
binary (mix of instructions)

¢ Memory-level parallelism (MLP): the measure of parallelism available
IN memory instructions

CS302 — Spring 2025 Lec.1.2 - Slide 11

Cycles/Instruction (Cont.)

¢ Front-end cycles

@® control-flow hazards: branch predictor, BTB
@® instruction cache
@® Instruction TLB

¢ Back-end cycles

@ structural hazards: arithmetic units, pipeline buffers
® data cache
® data TLB

CS302 — Spring 2025 Lec.1.2 - Slide 12

Cycles/Instruction (Cont.)

¢ Branch predictors
@® Branch (condition) misprediction rate
@® BTB miss rate

¢ Cache hierarchies & TLBs
@® Hit latency
@® Miss rate
@® Miss penalty
@® Bandwidth (how many accesses per cycle)

¢ Memory
@® Latency
@® Bandwidth

CS302 — Spring 2025 Lec.1.2 - Slide 13

Seconds/Cycle

Processor Performance =

Seconds

Cycle

Circuit

CS302 — Spring 2025 Lec.1.2 - Slide 14

Seconds/Cycle

¢ Also, known as frequency (F)

¢ Measure of how fast the circuits are
@ # of gates traversed per clock tick

Dictates power (P = CV2F)

¢ Frequencies

@® went up from 1970s to 2005 but stopped due to power
@ are going up again since 2019 because there is no other way of improving chip performance

CS302 — Spring 2025 Lec.1.2 - Slide 15

Beware of pitfalls of using CPI in evaluating parallel processors

¢ Uniprocessor: Cycles per instruction (CPI) is a good metric

¢ Multiprocessor: CPl is not necessarily proportional to pert.

® Threads often synchronize through spinning
@® Waiting for others to catch up
® Or allowing access to shared data one at a time

¢ Spinning threads have low CPI (i.e., better) I

@® Averaging across threads would lead to misleading results

¢ In the limit, if all threads are waiting all the time
® Average CPl is really low
@® But not doing useful work
@® Not all instructions make forward progress; User cares about execution time
@® Frequent spins on I/O and locks

CS302 — Spring 2025 Lec.1.2 - Slide 16

Example: CPl may not be useful for Parallel Programs

CS302 — Spring 2025

Core 0 Core 1

CPI=2

Spinning on a lock

.— || heldby Core 0

CPI=1

Lec.1.2 - Slide 17

Example: CPl may not be useful for Parallel Programs
Core0 Corel Core2 Core3

If every thread 1s
doing independent
useful work, 1.e.,
not waiting for
others then average
CPI 1s fine. But

how do you know?

CS302 — Spring 2025 Lec.1.2 - Slide 18

Example: CPl may not be useful for Parallel Programs

¢ Bottom-line that users see is execution time
¢ If spinning (useless work) can be counted out, then CPI works

¢ Need metric for “useful work”™
@® Could depend on the program semantics

¢ Example: Transactions completed per second
@® Widely used in databases

¢ Example: Requests serviced per second
@® Widely used in webservcies

CS302 — Spring 2025 Lec.1.2 - Slide 19

Review: Latency vs. Bandwidth

¢ Latency = time it takes for an event to complete

® Time to complete execution of a program
® Memory/disk access time: time for an access to complete
@® Network traversal: time for a message to arrive at the destination

¢ Bandwidth = how many events per unit time (a throughput metric)

@ Instructions per cycle, Transactions per seconds, Requests per seconds
@® How many bits per second from memory, disk, network
@® How many access per cycle in the cache hierarchy/TLBs (e.g., L1D, L2)

¢ Reducing latency increases bandwidth but not vice versa

CS302 — Spring 2025 Lec.1.2 - Slide 20

Review: Latency vs. Bandwidth

Add two more lanes =2
Bandwidth improves

CS302 — Spring 2025

Speed: 50 KM/hr

Latency: 2 hr

Bandwidth: 0.5 cars/hr

B
1

Y
Distance: 100 KM

Latency: 2 hr
Bandwidth: 0.5 cars/hr =2
1.5 cars/hr

B

Lec.1.2 - Slide 21

Review: Latency vs. Bandwidth

Speed: 100 KM/hr
ngaw. Latency: | hr
=S8 Bandwidth: 1car/hr

Reducing latency S — B
improves bandwidth. But ‘ Y ’
not other way around. Distance: 100 KM

Latency: 1 hr
Bandwidth: 1 car/hr 2 3

cars/hr
Caveat: Improving A—_ — R
bandwidth can sometime Y
reduce latency by reducing
congestion (queueing) A— = @ B

CS302 — Spring 2025 Lec.1.2 - Slide 22

Finding Enough Parallelism

¢ Amdahl’s law

€ In English: if you speed up only a small fraction of the execution time of a
computation, the speedup you achieve on the whole computation is limited!

¢ Example: 10s 90s
— < >
100s
$
speedup 91s
on this part!

&> - -

1s 90 s

CS302 — Spring 2025 Lec.1.2 - Slide 23

Amdahl’'s Law

Speedup =

Fraction, nanced
Spee dupenhanced

+ (1 — Fractiongnngnced)

Example:

Program runs for 100 seconds on a uniprocessor
50% of the program can be parallelized on a multiprocessor.

Assume a multiprocessor with 10 processors:

CS302 — Spring 2025 Lec.1.2 - Slide 24

Amdahl’'s Law

Speedup — Fractionenhanced

S peedupenhanced

+ (1 — Fractiongnngnced)

Example:

Program runs for 100 seconds on a uniprocessor
50% of the program can be parallelized on a multiprocessor.

Assume a multiprocessor with 10 processors:

1 1 1
= —— = 1.82

%Jr (1—05) 005+05 055

Speedup =

CS302 — Spring 2025

Lec.1.2 - Slide 25

Amdahl’'s Law

Speedup =

Fractiongnhanced
SpeeduPennanced

+ (1 — Fractiongnngnced)

Example:

Assume that 10% of the program cannot be parallelized. What is the maximum
achievable speedup?

CS302 — Spring 2025 Lec.1.2 - Slide 26

Amdahl’'s Law

Speedup — Fractionenhanced

S peedupenhanced

+ (1 — Fractiongnngnced)

Example:

Assume that 10% of the program cannot be parallelized. What is the maximum
achievable speedup?

1 1
Speedup = lim 10

S%oosﬁJr (1—09) 0+01

CS302 — Spring 2025 Lec.1.2 - Slide 27

Visualize Implications of Amdahl’s Law

s\
\
0.9 —
0.8 \}\ 10% If an application
0.7 \ 50%
- N SN o does not have
g 2: A) 80% enough parallelism,
= NS 00% using many
0.3 processors will not
N N
0.2 ~ help speed it up!
0.1 ' —
0

1 2 4 8 16 32 64 128
of Processors

CS302 — Spring 2025 Lec.1.2 - Slide 28

Metrics of Computing and Memory Capabilities

¢ Processor advertises their compute throughput in max. FLOP/sec

o Floating Point Operations/sec
o For example, NVIDIA’s H100 GPU has max. compute throughput of 60 teraflops (10'2?)

¢ Max. compute throughput may not be attainable in practice

¢ Factors that affect achievable compute throughput:
® Memory system throughput, expressed in (Giga) bytes/sec
@® For example, NVIDIA H100 GPU’s max. memory bandwidth ~ 2TB/sec

@® Program/application characteristics: How much computation is performed for every byte brought
from memory?

CS302 — Spring 2025 Lec.1.2 - Slide 29

Roofline Model for Attainable Max. FLOPs/sec

¢ A simple analytical model and visualization of attainable FLOPs/sec
@® Help identify key system bottlenecks for different

¢ Operational (Arithmetic) intensity: FLOPs/bytes
@® Property of the program/algorithm
@® For example, sparse matrix-vector multiplication (SpMV) has low operational intensity
® FFT (Fast Fourier Transformation) has a relatively high operational intensity

for (i=0; i < N; ++i) 1 Add
. o el 3 * 8 bytes of Load/Store
z[] = Xi]+yli] Intensity = 1/24
for (i = 0; i < N; ++i) - 1 Add + 1 Mult
Z[i] = X[i]+y[i]*x[i] Arith. Intensity 3 * 8 bytes of Load/Store

Intensity = 2/24 = 1/12

CS302 — Spring 2025 Lec.1.2 - Slide 30

Roofline Model for Attainable Max. FLOPs/sec

CS302 — Spring 2025

Attainable FLOPs/sec

Max. FLOPs/sec

e ——————— >— — —
em. bound Compute

Operational/Arithmetic intensity (FLOPS/byte)

. {Peak GFLOPS
Performance = min
3 Bandwidth * Intensity
Bound by memory
bandwidth

Appl - Memory
bandwidth bound

App2 - Compute
bound

Lec.1.2 - Slide 31

Practical Usefulness of Roofline

Provides a high-level visualization of potential bottlenecks and optimization
opportunities for both systems and applications

1000

- Difterent

— | | — hardware
Different —=— — i R et

Applications

scale)

o

o

|
w'

J
o

TeraOperations/Sec

-
—
=

-
o I

50 100 500 1000
Operational Intensity (log scale)

Picture from: TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings

CS302 — Spring 2025 Lec.1.2 - Slide 32

Parallel Efficiency

¢ How much performance do we get from additional cores?

Speedup

Parallel Ef ficiency = % of cores

CS302 — Spring 2025 Lec.1.2 - Slide 33

Power vs. Energy

& Power is measured in Watts

¢ Power efficiency is measured as Performance/\Watt

¢ Energy is measured in Joules (in smaller platforms) and k\Wh (in
servers)

CS302 — Spring 2025 Lec.1.2 - Slide 34

Cost

¢ Economic cost:

@® How much does it cost to make a parallel computer (loT, phone, laptop, server)?
A 100 CHF (loT) to 100,000 CHF (GPU server)

@® How much does it cost to operate a parallel computer (electricity)?
A Residential electricity to commercial electricity cost 35 cents — 1 CHF/kWh

¢ Environmental cost:

@® Measured in CO, or in CO,-eq (normalized CO, across many gasses)
@® Emissions from building a platform
@® Emissions from operating the platform

CS302 — Spring 2025 Lec.1.2 - Slide 35

Cost-Effective Parallel Computing

¢ \What is the incremental cost of a core?
@® Your cell phone has an 8-core CPU?

@® A core (with all additional resources needed including memory, network, 1/O) is only a fraction of
a server cost

¢ Speedup (n) = Performance improvement of n cores over 1 core
¢ Costup (n) = Cost increase of n cores over 1 core

¢ Computing is cost-effective if Speedup (n) > Costup (n) for a given n

CS302 — Spring 2025 Lec.1.2 - Slide 36

Averaging

¢ Programs often come various inputs
¢ What is the average performance for a program??

¢ How do we average metrics?

@® Example: You drove first 60km at 60km/h and next 60km at 120km/h.
® \What is your average speed?

CS302 — Spring 2025 Lec.1.2 - Slide 37

Arithmetic and Harmonic Mean

¢ Arithmetic mean:
@® An average of individual times that tracks total execution time

This is the
definition for “average”

|l <~n .
— Zizl Tlmel you are most
n

familiar with

¢ Harmonic mean:
@® An average of individual rates that tracks total execution time

\
n
This is a different
1 definition for “average”
n you are probably less
i—1 familiar with
CS302 — Spring 2025 l. E a tel -/ Lec.1.2 - Slide 38

Geometric Mean

¢ Used for relative rate or normalized performance

, Rate Time,,
Relative Rate = = !

Rate,, Time

& Geometric mean

\/HRate

Ra e,

J H Relative Rate, =

CS302 — Spring 2025

Lec.1.2 - Slide 39

Why does the choice of the mean matter?

Benchmark FP ops Computer 1 Computer 2 Speedup
(millions) (C2 vs C1)

Absolute performance (Time)

Program 1 100 1 20
Program 2 100 1000 20
Total time 1001 40 25

Arithmetic mean 500 20 25

CS302 — Spring 2025 Lec.1.2 - Slide 40

Why does the choice of the mean matter?

Benchmark FP ops Computer 1 Computer 2 Speedup
(millions) (C2 vs C1)

Absolute performance (Time)

Program 1 100 1 20

Program 2 100 1000 20

Total time 1001 40 25
Arithmetic mean 500 20 25
Performance in MFLOPS (Rate)

Program 1 100 3

Program 2 0.1 3

Arithmetic mean 50.1 3 0.1
Geometric mean 3.2 5 1.6

&)

Harmonic mean 0.2 25

CS302 — Spring 2025 Lec.1.2 - Slide 41

Measuring Metrics

& Practical demo in exercise session on March 6

¢ Example metrics of interest on real programs
® Both hardware and software metrics
@® Their impact on program performance

¢ Tools and techniques to capture several metrics

¢ Impact of optimizations on the metrics of a parallel program

CS302 — Spring 2025 Lec.1.2 - Slide 42

Summary

¢ The “lron Law”: Performance depends on various factors from
compiler, architecture to circuit

¢ Amdahl’s Law captures the impact of the serial portion of a
program on speedups from parallelization

¢ The Roofline model is useful in visualizing attainable FLOPs/sec

¢ Choosing the “right” average is important in summarizing results

CS302 — Spring 2025 Lec.1.2 - Slide 43

