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Schedule for this semester

u Class intro
 Performance
 Power
Metrics

u Exercise session
 Intro and examples of Amdahl’s law
 Roofline model example

u Next Tuesday
 Parallel programming
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Grading/Regrading [Please note the update]

u Grades (curved)
Assignments 30%

Homework 20%

Midterm 20%

Final 30%

u Regrading for up to a week after the grade release
 Please contact TAs to ask for a regrade
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u Biweekly (sometimes weekly) homeworks
uHomework one (non-grade) + solution posted
uCheck Moodle announcements for next homework

u Assignment one will be posted next Monday

u Two more assignments with the following tentative schedule:
uMarch 25
uMay 6

Homeworks & Assignments
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Review: Why Parallelism?

u Ran out of free lunch (c.a. ~2005)
uPower Wall

u End of frequency scaling
u ILP tapped out

u Little hidden parallelism is left

u Moore’s Law reinterpreted 
uChip density increases slowly
uClock speed does not

u Parallelism is a key solution to achieving 
higher performance
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uNeed performance metrics
How fast is a program running on multiple processors?
What do we measure to help improve the speed?

uNeed cost metrics
How much are we paying for a particular speed

uHow do we balance cost with performance?

When is parallel computing effective?
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The “Iron Law” of Processor Performance

Compiler          Architecture          Circuit

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01
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Instructions/Program

Compiler

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01

 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
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u Compilers
 # of machine instructions per line of code

u Runtime system
 Interpreted languages (e.g., Python) 
 Interpretation + dynamic compilation + runtime overhead (e.g., garbage collection)
 Number of machine instructions per line of application code

u Example: Multiplying two 1000x1000 matrices
 50B x86 instructions in C
 2.3T x86 instructions in Python (47x higher!)

Instructions/Program
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Cycles/Instruction

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01

 

Compiler          Architecture          Circuit

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
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CPI = 1/ (pipeline width) + front-end stalls + back-end stalls

Example:
 4-way superscalar with no stalls → CPI = 0.25

u Pipeline width: Maximum number of instructions fetch, executed, and 
retired

u Instruction-level parallelism (ILP): the measure of parallelism in the 
binary (mix of instructions)

u Memory-level parallelism (MLP): the measure of parallelism available 
in memory instructions

Cycles/Instruction
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u Front-end cycles
 control-flow hazards: branch predictor, BTB
 instruction cache
 Instruction TLB

u Back-end cycles
 structural hazards: arithmetic units, pipeline buffers
 data cache
 data TLB

Cycles/Instruction (Cont.)
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u Branch predictors
 Branch (condition) misprediction rate
 BTB miss rate

u Cache hierarchies & TLBs
 Hit latency
 Miss rate
 Miss penalty
 Bandwidth (how many accesses per cycle)

u Memory
 Latency
 Bandwidth

Cycles/Instruction (Cont.)
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Seconds/Cycle

Compiler          Architecture          Circuit

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01

 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
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u Also, known as frequency (F)

u Measure of how fast the circuits are
 # of gates traversed per clock tick

u Dictates power (P = CV2F)

u Frequencies
 went up from 1970s to 2005 but stopped due to power
 are going up again since 2019 because there is no other way of improving chip performance

Seconds/Cycle
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Beware of pitfalls of using CPI in evaluating parallel processors
u Uniprocessor: Cycles per instruction (CPI) is a good metric
u Multiprocessor: CPI is not necessarily proportional to perf.

 Threads often synchronize through spinning
 Waiting for others to catch up 
 Or allowing access to shared data one at a time

u Spinning threads have low CPI (i.e., better) !!!!
 Averaging across threads would lead to misleading results

u In the limit, if all threads are waiting all the time
 Average CPI is really low
 But not doing useful work
 Not all instructions make forward progress; User cares about execution time
 Frequent spins on I/O and locks
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Example: CPI may not be useful for Parallel Programs
Core 0 Core 1

CPI = 2 CPI = 1

Spinning on a lock 
held by Core 0

CPI = 2
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Example: CPI may not be useful for Parallel Programs

Core 0 Core 1 Core 3Core 2

If every thread is 
doing independent  
useful work, i.e., 
not waiting for 
others then average 
CPI is fine. But 
how do you know?
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Example: CPI may not be useful for Parallel Programs

u Bottom-line that users see is execution time
u If spinning (useless work) can be counted out, then CPI works
u Need metric for “useful work” 

 Could depend on the program semantics

u Example: Transactions completed per second
 Widely used in databases

u Example: Requests serviced per second
 Widely used in webservcies 
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u Latency = time it takes for an event to complete
 Time to complete execution of a program
 Memory/disk access time: time for an access to complete
 Network traversal: time for a message to arrive at the destination

u  Bandwidth = how many events per unit time (a throughput metric)
 Instructions per cycle, Transactions per seconds, Requests per seconds
 How many bits per second from memory, disk, network
 How many access per cycle in the cache hierarchy/TLBs (e.g., L1D, L2)

u Reducing latency increases bandwidth but not vice versa

Review: Latency vs. Bandwidth
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Review: Latency vs. Bandwidth

BA

Distance: 100 KM

Speed: 50 KM/hr
Latency: 2 hr
Bandwidth: 0.5 cars/hr

BA

BA

Add two more lanes à
Bandwidth improves 

Latency: 2 hr
Bandwidth:  0.5 cars/hr à
1.5 cars/hr
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Review: Latency vs. Bandwidth

BA

Distance: 100 KM

Speed: 100 KM/hr
Latency: 1 hr
Bandwidth: 1car/hr

BA

BA

Reducing latency
improves bandwidth. But 
not other way around. 

Latency: 1 hr
Bandwidth:  1 car/hr à 3 
cars/hr

Caveat: Improving 
bandwidth can sometime 
reduce latency by reducing 
congestion (queueing)
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Finding Enough Parallelism

u Amdahl’s law
u In English: if you speed up only a small fraction of the execution time of a 

computation, the speedup you achieve on the whole computation is limited!

u Example: 10 s 90 s

1 s 90 s

A 10x
speedup
on this part!

100s

91s
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Amdahl’s Law

Example:
 Program runs for 100 seconds on a uniprocessor
 50% of the program can be parallelized on a multiprocessor.

 Assume a multiprocessor with 10 processors:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)
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Amdahl’s Law

Example:
 Program runs for 100 seconds on a uniprocessor
 50% of the program can be parallelized on a multiprocessor.

 Assume a multiprocessor with 10 processors:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

0.5
10 + (1 − 0.5)

=
1

0.05 + 0.5
=

1
0.55

= 1.82



CS302 – Spring 2025 Lec.1.2 -  Slide 26

Amdahl’s Law

Example:
 Assume that 10% of the program cannot be parallelized. What is the maximum 

achievable speedup? 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)
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Amdahl’s Law

Example:
 Assume that 10% of the program cannot be parallelized. What is the maximum 

achievable speedup? 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = lim
'→)

1
0.9
𝑠 + (1 − 0.9)

=
1

0 + 0.1
= 10
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Visualize Implications of Amdahl’s Law

If an application 
does not have 
enough parallelism, 
using many 
processors will not 
help speed it up!
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u Processor advertises their compute throughput in max. FLOP/sec
o Floating Point Operations/sec 
o For example, NVIDIA’s H100 GPU has max. compute throughput of 60 teraflops (1012)

u Max. compute throughput may not be attainable in practice

u Factors that affect achievable compute throughput:
 Memory system throughput, expressed in (Giga) bytes/sec
 For example, NVIDIA H100 GPU’s max. memory bandwidth ~ 2TB/sec
 Program/application characteristics: How much computation is performed for every byte brought 

from memory?

Metrics of Computing and Memory Capabilities 
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u A simple analytical model and visualization of attainable FLOPs/sec
 Help identify key system bottlenecks for different 

u Operational (Arithmetic) intensity: FLOPs/bytes
 Property of the program/algorithm 
 For example, sparse matrix-vector multiplication (SpMV) has low operational intensity 
 FFT (Fast Fourier Transformation) has a relatively high operational intensity 

Roofline Model for Attainable Max. FLOPs/sec

for (i = 0; i < N; ++i)  

z[i] = x[i]+y[i]

1 Add
3 * 8 bytes of Load/Store
Intensity = 1/24 

Arith. Intensity

for (i = 0; i < N; ++i)  
z[i] = x[i]+y[i]*x[i]

1 Add + 1 Mult
3 * 8 bytes of  Load/Store
Intensity = 2/24  = 1/12

Arith. Intensity
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Roofline Model for Attainable Max. FLOPs/sec

Operational/Arithmetic intensity (FLOPS/byte)

Max. FLOPs/sec

Bound by memory 
bandwidth

App1 

App2 

App1 à Memory 
bandwidth bound

App2 à Compute 
bound

A
tta

in
ab

le
 F

LO
Ps

/s
ec

Performance = min Peak GFLOPS

Bandwidth * Intensity

Mem. bound Compute 
bound
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Practical Usefulness of Roofline 

Different 
hardware

Different 
Applications 

Provides a high-level visualization of potential bottlenecks and optimization 
opportunities for both systems and applications

Picture from: TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings



CS302 – Spring 2025 Lec.1.2 -  Slide 33

Parallel Efficiency

u How much performance do we get from additional cores?

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝
#	𝑜𝑓	𝑐𝑜𝑟𝑒𝑠
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u Power is measured in Watts

u Power efficiency is measured as Performance/Watt

u Energy is measured in Joules (in smaller platforms) and kWh (in 
servers) 

Power vs. Energy
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Cost

u Economic cost:
 How much does it cost to make a parallel computer (IoT, phone, laptop, server)?

100 CHF (IoT) to 100,000 CHF (GPU server)
 How much does it cost to operate a parallel computer (electricity)?

Residential electricity to commercial electricity cost 35 cents – 1 CHF/kWh

u Environmental cost:
 Measured in CO2 or in CO2-eq (normalized CO2 across many gasses)
 Emissions from building a platform
 Emissions from operating the platform
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Cost-Effective Parallel Computing

u What is the incremental cost of a core?
 Your cell phone has an 8-core CPU? 
 A core (with all additional resources needed including memory, network, I/O) is only a fraction of 

a server cost

u Speedup (n) = Performance improvement of n cores over 1 core
u Costup (n) = Cost increase of n cores over 1 core

u Computing is cost-effective if Speedup (n) > Costup (n) for a given n
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u Programs often come various inputs

u What is the average performance for a program?

u How do we average metrics?
 Example: You drove first 60km at 60km/h and next 60km at 120km/h. 
 What is your average speed?

Averaging
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Arithmetic and Harmonic Mean

u Arithmetic mean:
 An average of individual times that tracks total execution time

u Harmonic mean:
 An average of individual rates that tracks total execution time

∑ =

!

" "#"$%! !

!

∑ =

!

"

"#$%&

!

!

!

This is the
definition for “average” 
you are most
familiar with

This is a different
definition for “average” 
you are probably less
familiar with
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Geometric Mean

u Used for relative rate or normalized performance

u Geometric mean
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Why does the choice of the mean matter?

Benchmark FP ops 
(millions)

Computer 1 Computer 2 Speedup
(C2 vs C1)

Absolute performance (Time)
Program 1 100 1 20
Program 2 100 1000 20
Total time 1001 40 25
Arithmetic mean 500 20 25
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Why does the choice of the mean matter?

Benchmark FP ops 
(millions)

Computer 1 Computer 2 Speedup
(C2 vs C1)

Absolute performance (Time)
Program 1 100 1 20
Program 2 100 1000 20
Total time 1001 40 25
Arithmetic mean 500 20 25
Performance in MFLOPS (Rate)
Program 1 100 5
Program 2 0.1 5
Arithmetic mean 50.1 5 0.1
Geometric mean 3.2 5 1.6
Harmonic mean 0.2 5 25
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u Practical demo in exercise session on March 6

u Example metrics of interest on real programs
 Both hardware and software metrics
 Their impact on program performance

u Tools and techniques to capture several metrics

u Impact of optimizations on the metrics of a parallel program 

Measuring Metrics
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Summary

u The “Iron Law”: Performance depends on various factors from 
compiler, architecture to circuit

u Amdahl’s Law captures the impact of the serial portion of a 
program on speedups from parallelization

u The Roofline model is useful in visualizing attainable FLOPs/sec

u Choosing the “right” average is important in summarizing results


