
CS302 – Spring 2025 Lec.1.2 - Slide 1

CS302

Performance, power and
metrics

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Copyright 2025

CS302 – Spring 2025 Lec.1.2 - Slide 2

Schedule for this semester

u Class intro
 Performance
 Power
Metrics

u Exercise session
 Intro and examples of Amdahl’s law
 Roofline model example

u Next Tuesday
 Parallel programming

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.1.2 - Slide 3

Grading/Regrading [Please note the update]

u Grades (curved)
Assignments 30%

Homework 20%

Midterm 20%

Final 30%

u Regrading for up to a week after the grade release
 Please contact TAs to ask for a regrade

CS302 – Spring 2025 Lec.1.2 - Slide 4

u Biweekly (sometimes weekly) homeworks
uHomework one (non-grade) + solution posted
uCheck Moodle announcements for next homework

u Assignment one will be posted next Monday

u Two more assignments with the following tentative schedule:
uMarch 25
uMay 6

Homeworks & Assignments

CS302 – Spring 2025 Lec.1.2 - Slide 5

Review: Why Parallelism?

u Ran out of free lunch (c.a. ~2005)
uPower Wall

u End of frequency scaling
u ILP tapped out

u Little hidden parallelism is left

u Moore’s Law reinterpreted
uChip density increases slowly
uClock speed does not

u Parallelism is a key solution to achieving
higher performance

CS302 – Spring 2025 Lec.1.2 - Slide 6

uNeed performance metrics
How fast is a program running on multiple processors?
What do we measure to help improve the speed?

uNeed cost metrics
How much are we paying for a particular speed

uHow do we balance cost with performance?

When is parallel computing effective?

CS302 – Spring 2025 Lec.1.2 - Slide 7

The “Iron Law” of Processor Performance

Compiler Architecture Circuit

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01

CS302 – Spring 2025 Lec.1.2 - Slide 8

Instructions/Program

Compiler

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =

CS302 – Spring 2025 Lec.1.2 - Slide 9

u Compilers
 # of machine instructions per line of code

u Runtime system
 Interpreted languages (e.g., Python)
 Interpretation + dynamic compilation + runtime overhead (e.g., garbage collection)
 Number of machine instructions per line of application code

u Example: Multiplying two 1000x1000 matrices
 50B x86 instructions in C
 2.3T x86 instructions in Python (47x higher!)

Instructions/Program

CS302 – Spring 2025 Lec.1.2 - Slide 10

Cycles/Instruction

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01

Compiler Architecture Circuit

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =

CS302 – Spring 2025 Lec.1.2 - Slide 11

CPI = 1/ (pipeline width) + front-end stalls + back-end stalls

Example:
 4-way superscalar with no stalls → CPI = 0.25

u Pipeline width: Maximum number of instructions fetch, executed, and
retired

u Instruction-level parallelism (ILP): the measure of parallelism in the
binary (mix of instructions)

u Memory-level parallelism (MLP): the measure of parallelism available
in memory instructions

Cycles/Instruction

CS302 – Spring 2025 Lec.1.2 - Slide 12

u Front-end cycles
 control-flow hazards: branch predictor, BTB
 instruction cache
 Instruction TLB

u Back-end cycles
 structural hazards: arithmetic units, pipeline buffers
 data cache
 data TLB

Cycles/Instruction (Cont.)

CS302 – Spring 2025 Lec.1.2 - Slide 13

u Branch predictors
 Branch (condition) misprediction rate
 BTB miss rate

u Cache hierarchies & TLBs
 Hit latency
 Miss rate
 Miss penalty
 Bandwidth (how many accesses per cycle)

u Memory
 Latency
 Bandwidth

Cycles/Instruction (Cont.)

CS302 – Spring 2025 Lec.1.2 - Slide 14

Seconds/Cycle

Compiler Architecture Circuit

!"#$%&'$()"#
*%)+%,-

 𝘅 ./'01#
!"#$%&'$()"

	𝘅 21')"3#
./'01

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =

CS302 – Spring 2025 Lec.1.2 - Slide 15

u Also, known as frequency (F)

u Measure of how fast the circuits are
 # of gates traversed per clock tick

u Dictates power (P = CV2F)

u Frequencies
 went up from 1970s to 2005 but stopped due to power
 are going up again since 2019 because there is no other way of improving chip performance

Seconds/Cycle

CS302 – Spring 2025 Lec.1.2 - Slide 16

Beware of pitfalls of using CPI in evaluating parallel processors
u Uniprocessor: Cycles per instruction (CPI) is a good metric
u Multiprocessor: CPI is not necessarily proportional to perf.

 Threads often synchronize through spinning
 Waiting for others to catch up
 Or allowing access to shared data one at a time

u Spinning threads have low CPI (i.e., better) !!!!
 Averaging across threads would lead to misleading results

u In the limit, if all threads are waiting all the time
 Average CPI is really low
 But not doing useful work
 Not all instructions make forward progress; User cares about execution time
 Frequent spins on I/O and locks

CS302 – Spring 2025 Lec.1.2 - Slide 17

Example: CPI may not be useful for Parallel Programs
Core 0 Core 1

CPI = 2 CPI = 1

Spinning on a lock
held by Core 0

CPI = 2

CS302 – Spring 2025 Lec.1.2 - Slide 18

Example: CPI may not be useful for Parallel Programs

Core 0 Core 1 Core 3Core 2

If every thread is
doing independent
useful work, i.e.,
not waiting for
others then average
CPI is fine. But
how do you know?

CS302 – Spring 2025 Lec.1.2 - Slide 19

Example: CPI may not be useful for Parallel Programs

u Bottom-line that users see is execution time
u If spinning (useless work) can be counted out, then CPI works
u Need metric for “useful work”

 Could depend on the program semantics

u Example: Transactions completed per second
 Widely used in databases

u Example: Requests serviced per second
 Widely used in webservcies

CS302 – Spring 2025 Lec.1.2 - Slide 20

u Latency = time it takes for an event to complete
 Time to complete execution of a program
 Memory/disk access time: time for an access to complete
 Network traversal: time for a message to arrive at the destination

u Bandwidth = how many events per unit time (a throughput metric)
 Instructions per cycle, Transactions per seconds, Requests per seconds
 How many bits per second from memory, disk, network
 How many access per cycle in the cache hierarchy/TLBs (e.g., L1D, L2)

u Reducing latency increases bandwidth but not vice versa

Review: Latency vs. Bandwidth

CS302 – Spring 2025 Lec.1.2 - Slide 21

Review: Latency vs. Bandwidth

BA

Distance: 100 KM

Speed: 50 KM/hr
Latency: 2 hr
Bandwidth: 0.5 cars/hr

BA

BA

Add two more lanes à
Bandwidth improves

Latency: 2 hr
Bandwidth: 0.5 cars/hr à
1.5 cars/hr

CS302 – Spring 2025 Lec.1.2 - Slide 22

Review: Latency vs. Bandwidth

BA

Distance: 100 KM

Speed: 100 KM/hr
Latency: 1 hr
Bandwidth: 1car/hr

BA

BA

Reducing latency
improves bandwidth. But
not other way around.

Latency: 1 hr
Bandwidth: 1 car/hr à 3
cars/hr

Caveat: Improving
bandwidth can sometime
reduce latency by reducing
congestion (queueing)

CS302 – Spring 2025 Lec.1.2 - Slide 23

Finding Enough Parallelism

u Amdahl’s law
u In English: if you speed up only a small fraction of the execution time of a

computation, the speedup you achieve on the whole computation is limited!

u Example: 10 s 90 s

1 s 90 s

A 10x
speedup
on this part!

100s

91s

CS302 – Spring 2025 Lec.1.2 - Slide 24

Amdahl’s Law

Example:
 Program runs for 100 seconds on a uniprocessor
 50% of the program can be parallelized on a multiprocessor.

 Assume a multiprocessor with 10 processors:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

CS302 – Spring 2025 Lec.1.2 - Slide 25

Amdahl’s Law

Example:
 Program runs for 100 seconds on a uniprocessor
 50% of the program can be parallelized on a multiprocessor.

 Assume a multiprocessor with 10 processors:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

0.5
10 + (1 − 0.5)

=
1

0.05 + 0.5
=

1
0.55

= 1.82

CS302 – Spring 2025 Lec.1.2 - Slide 26

Amdahl’s Law

Example:
 Assume that 10% of the program cannot be parallelized. What is the maximum

achievable speedup?

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

CS302 – Spring 2025 Lec.1.2 - Slide 27

Amdahl’s Law

Example:
 Assume that 10% of the program cannot be parallelized. What is the maximum

achievable speedup?

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&
𝑆𝑝𝑒𝑒𝑑𝑢𝑝!"#$"%!&

+ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛!"#$"%!&)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = lim
'→)

1
0.9
𝑠 + (1 − 0.9)

=
1

0 + 0.1
= 10

CS302 – Spring 2025 Lec.1.2 - Slide 28

Visualize Implications of Amdahl’s Law

If an application
does not have
enough parallelism,
using many
processors will not
help speed it up!

CS302 – Spring 2025 Lec.1.2 - Slide 29

u Processor advertises their compute throughput in max. FLOP/sec
o Floating Point Operations/sec
o For example, NVIDIA’s H100 GPU has max. compute throughput of 60 teraflops (1012)

u Max. compute throughput may not be attainable in practice

u Factors that affect achievable compute throughput:
 Memory system throughput, expressed in (Giga) bytes/sec
 For example, NVIDIA H100 GPU’s max. memory bandwidth ~ 2TB/sec
 Program/application characteristics: How much computation is performed for every byte brought

from memory?

Metrics of Computing and Memory Capabilities

CS302 – Spring 2025 Lec.1.2 - Slide 30

u A simple analytical model and visualization of attainable FLOPs/sec
 Help identify key system bottlenecks for different

u Operational (Arithmetic) intensity: FLOPs/bytes
 Property of the program/algorithm
 For example, sparse matrix-vector multiplication (SpMV) has low operational intensity
 FFT (Fast Fourier Transformation) has a relatively high operational intensity

Roofline Model for Attainable Max. FLOPs/sec

for (i = 0; i < N; ++i)

z[i] = x[i]+y[i]

1 Add
3 * 8 bytes of Load/Store
Intensity = 1/24

Arith. Intensity

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]*x[i]

1 Add + 1 Mult
3 * 8 bytes of Load/Store
Intensity = 2/24 = 1/12

Arith. Intensity

CS302 – Spring 2025 Lec.1.2 - Slide 31

Roofline Model for Attainable Max. FLOPs/sec

Operational/Arithmetic intensity (FLOPS/byte)

Max. FLOPs/sec

Bound by memory
bandwidth

App1

App2

App1 à Memory
bandwidth bound

App2 à Compute
bound

A
tta

in
ab

le
 F

LO
Ps

/s
ec

Performance = min Peak GFLOPS

Bandwidth * Intensity

Mem. bound Compute
bound

CS302 – Spring 2025 Lec.1.2 - Slide 32

Practical Usefulness of Roofline

Different
hardware

Different
Applications

Provides a high-level visualization of potential bottlenecks and optimization
opportunities for both systems and applications

Picture from: TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings

CS302 – Spring 2025 Lec.1.2 - Slide 33

Parallel Efficiency

u How much performance do we get from additional cores?

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝
#	𝑜𝑓	𝑐𝑜𝑟𝑒𝑠

CS302 – Spring 2025 Lec.1.2 - Slide 34

u Power is measured in Watts

u Power efficiency is measured as Performance/Watt

u Energy is measured in Joules (in smaller platforms) and kWh (in
servers)

Power vs. Energy

CS302 – Spring 2025 Lec.1.2 - Slide 35

Cost

u Economic cost:
 How much does it cost to make a parallel computer (IoT, phone, laptop, server)?

100 CHF (IoT) to 100,000 CHF (GPU server)
 How much does it cost to operate a parallel computer (electricity)?

Residential electricity to commercial electricity cost 35 cents – 1 CHF/kWh

u Environmental cost:
 Measured in CO2 or in CO2-eq (normalized CO2 across many gasses)
 Emissions from building a platform
 Emissions from operating the platform

CS302 – Spring 2025 Lec.1.2 - Slide 36

Cost-Effective Parallel Computing

u What is the incremental cost of a core?
 Your cell phone has an 8-core CPU?
 A core (with all additional resources needed including memory, network, I/O) is only a fraction of

a server cost

u Speedup (n) = Performance improvement of n cores over 1 core
u Costup (n) = Cost increase of n cores over 1 core

u Computing is cost-effective if Speedup (n) > Costup (n) for a given n

CS302 – Spring 2025 Lec.1.2 - Slide 37

u Programs often come various inputs

u What is the average performance for a program?

u How do we average metrics?
 Example: You drove first 60km at 60km/h and next 60km at 120km/h.
 What is your average speed?

Averaging

CS302 – Spring 2025 Lec.1.2 - Slide 38

Arithmetic and Harmonic Mean

u Arithmetic mean:
 An average of individual times that tracks total execution time

u Harmonic mean:
 An average of individual rates that tracks total execution time

∑ =

!

" "#"$%! !

!

∑ =

!

"

"#$%&

!

!

!

This is the
definition for “average”
you are most
familiar with

This is a different
definition for “average”
you are probably less
familiar with

CS302 – Spring 2025 Lec.1.2 - Slide 39

Geometric Mean

u Used for relative rate or normalized performance

u Geometric mean

!"#

$
$

%
%

$
$

%
% &'("

&'("
'("&")'(%*"+&

∏
∏ =

=

= !

!

!"#$
!"#$

%&'$
%&'$%&'$%$(&'")$ *$+

*$+

==!

CS302 – Spring 2025 Lec.1.2 - Slide 40

Why does the choice of the mean matter?

Benchmark FP ops
(millions)

Computer 1 Computer 2 Speedup
(C2 vs C1)

Absolute performance (Time)
Program 1 100 1 20
Program 2 100 1000 20
Total time 1001 40 25
Arithmetic mean 500 20 25

CS302 – Spring 2025 Lec.1.2 - Slide 41

Why does the choice of the mean matter?

Benchmark FP ops
(millions)

Computer 1 Computer 2 Speedup
(C2 vs C1)

Absolute performance (Time)
Program 1 100 1 20
Program 2 100 1000 20
Total time 1001 40 25
Arithmetic mean 500 20 25
Performance in MFLOPS (Rate)
Program 1 100 5
Program 2 0.1 5
Arithmetic mean 50.1 5 0.1
Geometric mean 3.2 5 1.6
Harmonic mean 0.2 5 25

CS302 – Spring 2025 Lec.1.2 - Slide 42

u Practical demo in exercise session on March 6

u Example metrics of interest on real programs
 Both hardware and software metrics
 Their impact on program performance

u Tools and techniques to capture several metrics

u Impact of optimizations on the metrics of a parallel program

Measuring Metrics

CS302 – Spring 2025 Lec.1.2 - Slide 43

Summary

u The “Iron Law”: Performance depends on various factors from
compiler, architecture to circuit

u Amdahl’s Law captures the impact of the serial portion of a
program on speedups from parallelization

u The Roofline model is useful in visualizing attainable FLOPs/sec

u Choosing the “right” average is important in summarizing results

