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Where are We?

u This lecture
u GPU memory part II
u Use case study: Optimizing 

CUDA program

u Thursday exercise session
u Profiling CUDA programs

u Next class
u Advanced synchronization
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Review: CPU vs. GPU memory system 

• Limited number of registers
o OS saves/restores registers 

• One virtual address space 
(per process)

• Large caches for latency 
hiding 

•  Many registers
• H/W saves/restores registers

• Many different address spaces
• Global memory

• Caches
• Local memory
• Constant memory
• Shared memory (scratchpad)

• Small caches – for b/w filtering 

CPU GPU
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GPU Memory Hierarchy: Local Memory

u Local memory (per thread):
u Private to each GPU thread

u Each thread can have different data for 
the same virtual address in local memory

u 24-bit virtual address space 
vs. 48-bit Global memory address space

u Everything on the stack that can’t fit in registers
u Register spilling
u Allocation of array variables

u Physically stored in global memory
u Local memory is a logical address space
u Same latency as global memory
u Accesses to the local memory are always coalesced 
u Much slower than registers!

Thread

Local Memory

__global__ void example(char* global_mem) {
    char local_mem[10];
    local_mem = global_mem;
}
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GPU Memory Hierarchy: Constant Memory

u  A special type of memory allocation for data that won’t be written 
to, i.e., constant 
o  Immutable during the execution of the kernel

u Hardware cache contents of constant memory in a specialized, fast 
cache
o No need for write ports 
o No need for write-back data in the constant cache 
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Constant Cache
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Allocating Constant Memory

u Declare constant memory array as global variable à accessible to 
all threads of a kernel 

u Must initialize constant memory from the host
o Cannot be modifies during a kernel’s execution

u Can only allocate up to 64KB
o Otherwise, input is also constant, but it is too large to put in constant 

memory

__constant__ float filter_c[FILTER_DIM][FILTER_DIM];

cudaMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM*sizeof(float));
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Example use of Constant Memory: Convolution 

u Convolution: Widely used operation in video processing, signal 
processing, CNNs etc.

u Converts an array (1D/2D/3D)
into another array
o Each output element is a weighted sum

of nearby elements 
o Weights are in a filter array 
o Weights are constant and

are needed to calculate every output 
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Example use case of Constant Memory: Convolution 

output
(in global 
memory)

filter
(in constant 

memory)
input

(in global 
memory)

An output element computed by one thread looping over input elements and filter weights
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Example use case of Constant Memory: Convolution 
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Example use case of Constant Memory: Convolution 

static __constant__ float filter_c[FILTER_DIM][FILTER_DIM];

//Allocate input and output arrays using cudaMalloc

//Populate input array

cudaMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM*sizeof(float));

convolution_kernel<<dimGrid, dimBloc>> (input_array, output_array, x_dim, y_dim);
    

Host code 
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Example use case of Constant Memory: Convolution 

__global__ void convolution_kernel(float* input, float* output, unsigned int width,
                                                              unsigned int height) {
    int outRow = blockIdx.y*blockDim.y + threadIdx.y;
    int outCol = blockIdx.x*blockDim.x + threadIdx.x;
    if (outRow < height && outCol < width) {
        float sum = 0.0f;
        for(int filterRow = 0; filterRow < FILTER_DIM; ++filterRow) {
            for(int filterCol = 0; filterCol < FILTER_DIM; ++filterCol) {
                int inRow = outRow - FILTER_RADIUS + filterRow;
                int inCol = outCol - FILTER_RADIUS + filterCol;
                if(inRow >= 0 && inRow < height && inCol >= 0 && inCol < width) {
                    sum += filter_c[filterRow][filterCol]*input[inRow*width + inCol];
                }
            }
        }
        output[outRow*width + outCol] = sum;
    }

}

Device code 
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Review: CPU vs. GPU memory system 

• Limited number of registers
o OS saves/restores registers 
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Shared memory (Scratchpad): A S/W Managed Cache

u H/W Managed Cache  (Traditional Caches):
o Hardware decides what to bring into the cache and what to evict
o Hardware monitors to access patterns for decision-making 
o Example: L1, L2 caches
o Pros: No need to modify applications to use caches
o Cons: Lack of high-level program semantic knowledge 

u S/W Managed Cache: 
o On-chip hardware cache structure 
o Software (program) must direct what to bring into the cache and what to evict
o Use a program’s semantic behaviour to decide cache contents
o Example: GPU scratchpad/shared memory 
o Pros: Use program knowledge for accurate caching 
o Cons: Applications must be modified to use such caches 
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Shared memory (Scratchpad): A S/W Managed (H/W) Cache
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Relative Latencies of Various Memory Types
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Shared memory (Scratchpad): A S/W Managed Cache

u Private to each threadblock
o Called “Shared” memory because it is 

shared amongst all threads if a threadblock

u Each threadblock has its own copy of shared memory variables
o # of copies of each shared memory variable allocated == # of threadblocks

u Contents deleted after a threadblock  finishes execution

Block

Shared
Memory
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Steps of using Shared Memory (Scratchpad)

u Allocate shared memory

u Load data into shared memory from global memory

u Repeatedly access data from shared memory à Leverage reuse 
o Use of shared memory is useful only if there is significant data reuse
o Programmer must be aware of the data reuse

u Once computation is done, write results back to global memory

1

2

3

4
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Allocating and Populating Shared Memory 

u Two ways to allocate shared memory

u Static allocation: Allocation size fixed at compile time

u Cons: Maximum up to 48KB per threadblock 
           The size of the allocation cannot be input-dependent 

__shared__ float in_s[IN_TILE_DIM][IN_TILE_DIM][IN_TILE_DIM];

if(i >= 0 && i < N && j >= 0 && j < N && k >= 0 && k < N) {
        in_s[threadIdx.z][threadIdx.y][threadIdx.x] = in[i*N*N + j*N + k];
    }
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Allocating and Populating Shared Memory 

u Dynamic allocation: Size of the allocation set during kernel launch
o Can allocate one chunk  (one variable) à partition if needed
o Pass the size of the chunk during kernel launch
o Can be larger than 48KB
//device code 
__global__ void alloc_shared () {

extern __shared__ float in_s[];
float *p1_v = &in_s[0];
float *p2_v = &in_s[N]
…….
}

//host code
……….
alloc_shared <<<nBlk, nTh, (2*N*sizeof(float))>>>

Allocaiton size not specified statically 

Size (per threadblock) provided during 
kernel launch time
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Configuring Shared Memory and L1 Cache sizes

u Can provide hints to the CUDA runtime on preference of L1 cache 
vs. Shared memory

  cudaFuncSetCacheConfig (kernel_name, enum cacheConfig)

u Example cacheConfig options: 
o cudaFuncCachePreferShared 
o cudaFuncCachePreferL1
o cudaFuncCachePreferNone
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Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Naïve matrix multiplication causes too many $ miss 

C A B

= xN

N

i

j

i

j
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Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Naïve matrix multiplication causes too many $ miss 

A

…

B

…

Miss
Miss

Hit
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Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Tiling to improve data reuse à less cache misses
o Compute the partial results of each submatrices (tile) before moving to the 

next

C A B

= xN

N

n
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Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Tiling to improve data reuse à less cache misses
o Compute the partial results of each submatrices (tile) before moving to the next
o Limitations:  Cache hits are not guaranteed.

                     L1 cache is shared amongst all threadblocks of a SM
                     L2 cache is shared amongst all threadblocks of a grid

C A B

= xN

N

n
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Example use of Shared Memory: Titled Matrix Multiplication

u One threadblock to compute results of one tile of the output matrix

C A B

= xN

N

n = Tile Width 

n

n
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Example use of Shared Memory: Titled Matrix Multiplication

u Threads of a threadblock load one tile each from two operand 
matrices to its copy of shared memory variables 

C A B

= xN

N

n

n

n = Tile Width 
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Example use of Shared Memory: Titled Matrix Multiplication

u Threads of a threadblocks computes partial results for a tile

Ctile

= x

Atile Btile
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Example use of Shared Memory: Titled Matrix Multiplication

u Repeat for next tiles ..

C A B

= xN

N

n

n
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Example use of Shared Memory: Titled Matrix Multiplication

u Repeat for next tiles 

C A B

= xN

N

n

n
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Example use of Shared Memory: Tiled Matrix Multiplication 
__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

    // Load tile to shared memory
    A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
    B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
    
     __syncthreads();

    // Compute with tile
    for(unsigned int i = 0; i < TILE_DIM; ++i) {
        sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
    }
    __syncthreads();
}

C[row*N + col] = sum;

// Each threadblock his its copy of shared mem variables

// The element of the output matrix to be 
computed by a given thread

// Repeat N/TILE_DIM (# phases)

//Loads a tile to shared 
memory from global mem.

//Wait for loading to be compete

//Each thread calculates partial result

//Final result of individual output element 

//Wait for threads in a threadblock to complete 
computation before next round/phase 
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Advantage of using Shared Memory 

u Saves global memory access

u Access to shared memory is as fast as L1 cache

u Unlike caches, reductions in global memory access are guaranteed
o Not dependent on hardware’s cache replacement policies

u Every threadblock has its own copy of shared memory variables
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u Shared memory is organized in 32 banks
u Each bank can service one address at a time
u At most 32 simultaneous accesses

u Successive 32-bit (4 bytes) words are assigned to successive banks 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

0x00 0x7F
0x80

BANK 3 BANK 29
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u Shared memory is organized in 32 banks
u Each bank can service one address at a time
u At most 32 simultaneous accesses

u Successive 32-bit (4 bytes) words are assigned to successive banks 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

0x00 0x7F
0x80

__shared int arr[64]

0
32

31
63

1
33

2
34

30
62

BANK 3 BANK 29
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u Multiple simultaneous accesses to the same bank
u Different 4-byte words:

u Bank conflict! - Conflicting accesses are serialized
u The same 4-byte word:

u Multicast – 1 fetch (could be different bytes within the word)

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

NO conflict

BANK 3 BANK 29
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u Multiple simultaneous accesses to the same bank
u Different 4-byte words:

u Bank conflict! - Conflicting accesses are serialized
u The same 4-byte word:

u Multicast – 1 fetch (could be different bytes within the word)

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

Conflict

BANK 3 BANK 29
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u Multiple simultaneous accesses to the same bank
u Different 4-byte words:

u Bank conflict! - Conflicting accesses are serialized
u The same 4-byte word:

u Multicast – 1 fetch (could be different bytes within the word)

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts? 
u Allocation (element) size
u Index expression into the data structure 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[64]
arr[threadIdx.x]++;

NO conflict
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts? 
u Allocation (element) size
u Index expression into the data structure 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[64]
arr[blockIdx.x]++;

NO conflict
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts? 
u Allocation (element) size
u Index expression into the data structure 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[64]
arr[threadIdx.x*2]++;

2-way 
conflict

Thread 16 Thread 31Thread 0

Thread 15
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts? 
u Allocation (element) size
u Index expression into the data structure 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[128]
arr[threadIdx.x*4]++;

4-way 
conflict

Thread 24Thread 0 Thread 8 Thread 16

Worst case: 32-way conflict
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Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts? 
u Allocation (element) size
u Index expression into the data structure 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared d4 arr[128]
arr[threadIdx.x]++;

4-way 
conflict

Thread 24Thread 0 Thread 8 Thread 16

struct d4{
int x, y, z, w;
};
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Avoiding Shared Memory Conflicts through Padding 

u When would you have bank conflicts? 
u Allocation (element) size
u Index expression into the data structure 

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared d4 arr[128]
arr[threadIdx.x]++;

NO conflict

Thread 24Thread 0 Thread 8 Thread 16

struct d4{
int x, y, z, w, pad;
};

BANK 16BANK 8
BANK 24

Alternative: Change indexing strategy (if possible)
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Impact of Shared Memory on Occupancy 

u Recall how occupancy is affected by various GPU resources
o Max. 64 warps per SM 
o Max. 2048 threads per SM
o Max. 32 threadblocks per SM
o Max. 64K registers per SM
o Up to 164KB per SM

u  The amount of shared memory allocation can limit occupancy 

Resource limitations on 
NVIDIA A100 GPU
Number of warp schedulable is 
limited by whichever resource 
hits limit first
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Impact of Shared Memory on Occupancy 

Constraints in scheduling threadblock:

u All threads of a threadblock must execute on the same SM

u Each threadblock has own copy of the shared memory allocations

u Shared memory capacity on an SM must accommodate the needs 
of all threadblocks on the SM
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Impact of Shared Memory on Occupancy 

u  Example: Maximum number of threads per SM 2048

u Maximum shared memory capacity per SM: 164 KB

u A kernel allocates 32KB of shared memory (per threadblock)

u Each threadblock launched with 256 threads 

u What is the maximum occupancy? Ans: 1280/2048 (62.5%)
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Summary: Different Memory Types of GPU

Variable declaration Memory Scope Lifetime
__device__ 
/cudaMalloc   int 
globalVar;

global grid application

__device__ 
__constant__ int 
constantVar;

constant grid application

__device__ 
__shared__   int 
sharedVar;

shared block block

int localVar;
register thread thread

int localArr[N];
global thread thread

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Constant Memory
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PARALLEL REDUCTION IN CUDA
END-TO-END EXAMPLE
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Reduction Operations

u Reduce multiple values to a single value
u ADD, MUL, AND, OR, …

u Useful primitive when operating on large datasets

10 11 12 13

46

ADD
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Sequential Reduction

u Process first two elements, produce partial result
u Every level takes intermediate, and adds 1 element

u O(N) steps

10 11

21

33

46

12 13
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Parallel Reduction

u Pair-wise reduction in tree-like steps
u log2(N) where N is the number of elements

6 7 8 9 10 11 12 13

13 17 21 25

30 46

76
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Parallel Reduction with Higher Degree 

u Process x elements per step
u logx(N)

u For x = 4:
6 7 8 9 10 11 12 13

30 46

76
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Reduction: The Big Picture

u Use the same code for all reduction levels
u The same kernel is launched multiple times with different 

numbers of TBs
u This example uses 128 threads per TB…

u For every 128 elements, there is one TB
u In this graphic, smaller scale:

u 8 elements per TB, 8 blocks = 64 elements total
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Reduction Optimization

u Reduction has low arithmetic intensity
u One Flop / output element (add, compare, etc…)
u All input elements are loaded from memory

u Therefore, we must optimize for bandwidth
u Goal: reduce global memory accesses
u Since partial sums reused, load to shared memory first
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Reduction 1: Interleaved Addressing

u Load Data
u Loads 1 element/thread from global to shared memory

u Reduction: proceed in log2N steps
u A thread reduces two elements

u The first two elements by the first thread
u The next two by the next thread and so on

u At the end of each step
u Deactivate half of the threads

u Terminate when one thread left
u Write back to global memory, visible to next kernel
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Reduction 1: Visualization
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Reduction 1: Interleaved Addressing
__global__ void reduce0(int *g_idata, int *g_odata, int n){
 extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

// do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) {
  // step = 2*s
  if (tid % (2*s) == 0) {
   // only threadIDs divisible by the step do work
   sdata[tid] += sdata[tid + s];
  }
  __syncthreads();
 }

// write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
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Reduction 1: Divergence Problem 
__global__ void reduce0(int *g_idata, int *g_odata, int n){
 extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

// do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) {
  // step = s x 2
  if (tid % (2*s) == 0) {
  // only threadIDs divisible by the step participate
   sdata[tid] += sdata[tid + s];
  }
  __syncthreads();
 }

// write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

Highly 
divergent code 
leads to poor 
performance
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Reduction 2: Visualization
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Reduction 2: Non-Divergent Branching

u Replace divergent branching code

u With strided index and non-divergent branching

for (unsigned int s=1; s < blockDim.x; s *= 2) {
  if (tid % (2*s) == 0) {
   sdata[tid] += sdata[tid + s];
  }
  __syncthreads();
 }

for (unsigned int s=1; s < blockDim.x; s *= 2) {
  int index  = 2 * s * tid;

  if (index < blockDim.x) {
   sdata[index] += sdata[index + s];
  }
  __syncthreads();
 }
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Reduction 2: Bank Conflicts

2 way

2 way

2 way
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Why Bank Conflicts?

u First memory access from threads 0 & 1 goes to:
u Banks 0 and 2
u Keep increasing bank #, thread 16 accesses bank 0

u Oops, conflict!
u These accesses are split

into 2 sequential ones
u Doubles our shared mem

latency → slowdown!

Thread 19
Thread 18
Thread 17
Thread 16

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0
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Reduction 3: Visualization
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Reduction 3: Sequential Accessing

u Replace strided indexing

u With reversed loop and threadID-based indexing

for (unsigned int s=1; s < blockDim.x; s *= 2) {
  int index  = 2 * s * tid;

  if (index < blockDim.x) {
   sdata[index] += sdata[index + s];
  }
  __syncthreads();
 }

for (unsigned int s = blockDim.x/2; s > 0; s /= 2) {
  if (tid < s) {
   sdata[tid] += sdata[tid + s];
  }
  __syncthreads();
 }
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Reduction 3: Idle Threads

Half of the threads are idle 
on first iteration



CS302 – Spring 2025 Lec.12.1 -  Slide 68

Reduction 4: Reduce During Load

u Instead of each thread loading one element
// each thread loads one element from global to shared mem

 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

u Allow each thread to load two elements
u Do the first reduction step alongside the load
u Halves the number of threads in a threadblock

// each thread loads two elements from global to shared mem
 // and performs the first step of the reduction
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x* blockDim.x * 2 + threadIdx.x;
 sdata[tid] = (i < N) ? ((i + blockDim.x) < N ?  

(g_idata[i] + g_idata[i + blockDim.x]) : g_idata[i]) : 0
 __syncthreads();

With four optimizaitons kernel 
time reduced from 327 ms to 9 ms



CS302 – Spring 2025 Lec.12.1 -  Slide 69

Summary

u GPUs have large compute but are often limited by memory system

u GPUs use large register files to fast context switch for throughput

u Important to write programs to leverage memory coalescing

u Important to use shared memory where possible


