

GPU: Memory part II and Parallel Reduction

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi, Andreas Moshovos, and from the companion material of the book “Programming Massively Parallel Processors”
Copyright 2025

Where are We?

M	T	W	T	F
17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
24-Feb	25-Feb	26-Feb	27-Feb	28-Feb
3-Mar	4-Mar	5-Mar	6-Mar	7-Mar
10-Mar	11-Mar	12-Mar	13-Mar	14-Mar
17-Mar	18-Mar	19-Mar	20-Mar	21-Mar
24-Mar	25-Mar	26-Mar	27-Mar	28-Mar
31-Mar	1-Apr	2-Apr	3-Apr	4-Apr
7-Apr	8-Apr	9-Apr	10-Apr	11-Apr
14-Apr	15-Apr	16-Apr	17-Apr	18-Apr
21-Apr	22-Apr	23-Apr	24-Apr	25-Apr
28-Apr	29-Apr	30-Apr	1-May	2-May
5-May	6-May	7-May	8-May	9-May
13-May	14-May	15-May	16-May	
19-May	20-May	21-May	22-May	23-May
26-May	27-May	28-May	29-May	30-May

- ◆ This lecture
 - ◆ GPU memory part II
 - ◆ Use case study: Optimizing CUDA program
- ◆ Thursday exercise session
 - ◆ Profiling CUDA programs
- ◆ Next class
 - ◆ Advanced synchronization

Review: CPU vs. GPU memory system

CPU

- Limited number of registers
 - OS saves/restores registers
- One virtual address space (per process)
- Large caches for latency hiding

GPU

- Many registers
 - H/W saves/restores registers
- Many different address spaces
 - Global memory
 - Caches
 - Local memory
 - Constant memory
 - Shared memory (scratchpad)
- Small caches – for b/w filtering

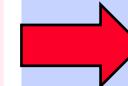
Review: CPU vs. GPU memory system

CPU

- Limited number of registers
 - OS saves/restores registers
- One virtual address space (per process)
- Large caches for latency hiding

GPU

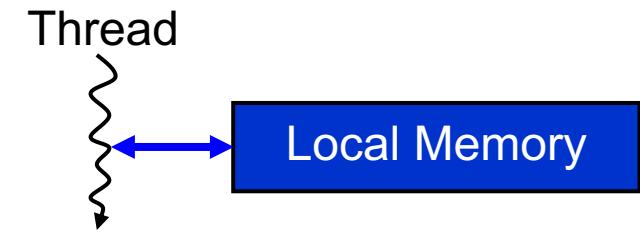
- Many registers
 - H/W saves/restores registers
- Many different address spaces
 - Global memory
 - Caches
 - Local memory
 - Constant memory
 - Shared memory (scratchpad)
- Small caches – for b/w filtering



GPU Memory Hierarchy: Local Memory

- ◆ Local memory (per thread):

- ◆ Private to each GPU thread
 - ◆ Each thread can have different data for the same virtual address in local memory
- ◆ 24-bit virtual address space vs. 48-bit Global memory address space



- ◆ Everything on the stack that can't fit in registers
 - ◆ Register spilling
 - ◆ Allocation of array variables

- ◆ Physically stored in global memory

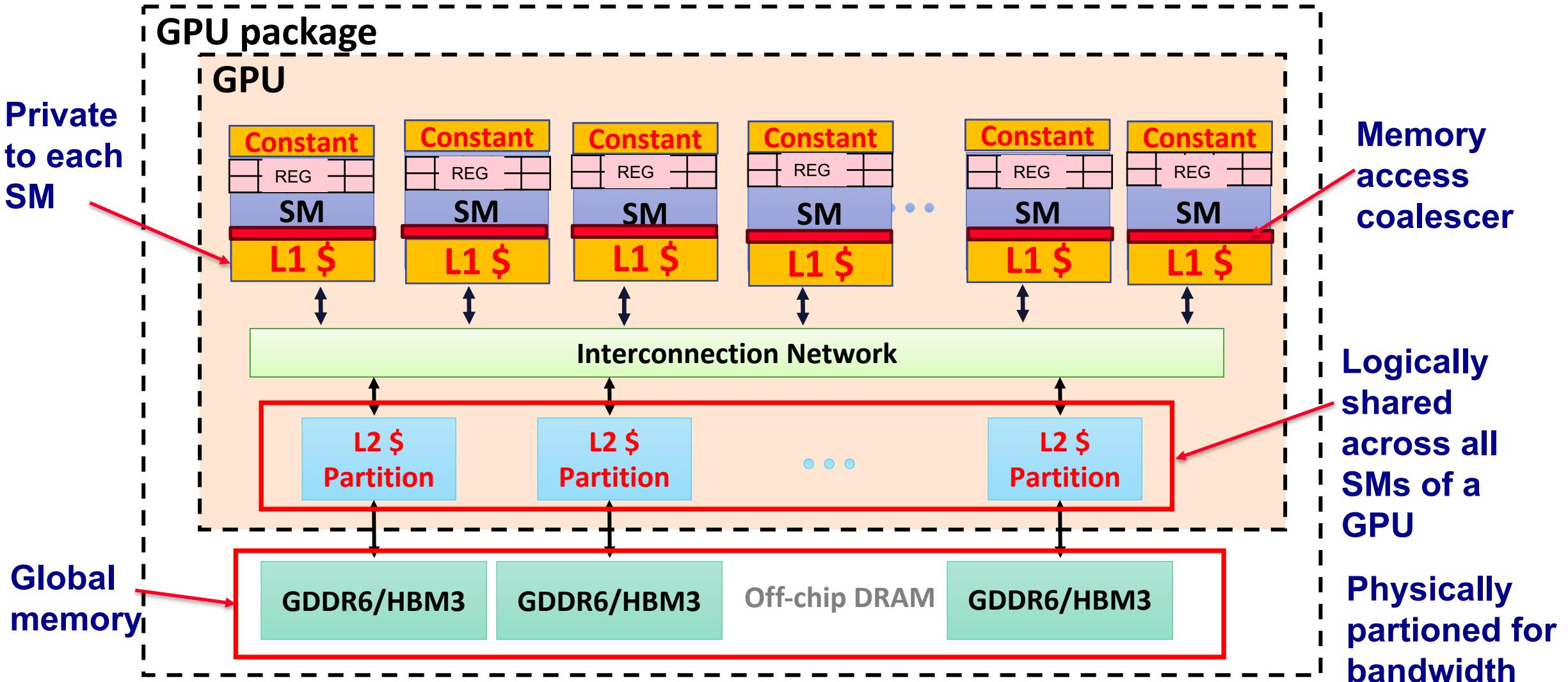
- ◆ Local memory is a logical address space
- ◆ Same latency as global memory
- ◆ Accesses to the local memory are always coalesced
- ◆ Much slower than registers!

```
__global__ void example(char* global_mem) {  
    char local_mem[10];  
    local_mem = global_mem;  
}
```

GPU Memory Hierarchy: Constant Memory

- ◆ A special type of memory allocation for data that won't be written to, i.e., constant
 - Immutable during the execution of the kernel
- ◆ Hardware cache contents of constant memory in a specialized, fast cache
 - No need for write ports
 - No need for write-back data in the constant cache

Constant Cache



Allocating Constant Memory

- ◆ Declare constant memory array as global variable → accessible to all threads of a kernel

```
__constant__ float filter_c[FILTER_DIM][FILTER_DIM];
```

- ◆ Must initialize constant memory from the host
 - Cannot be modified during a kernel's execution

```
cudaMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM*sizeof(float));
```

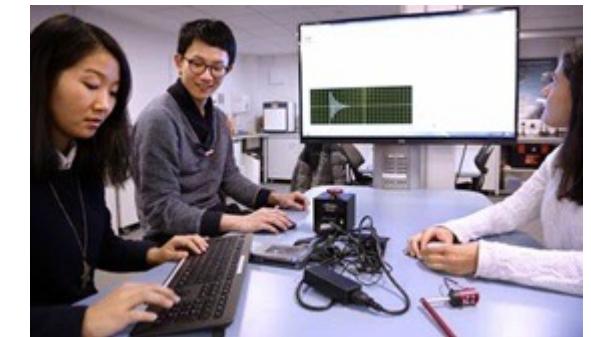
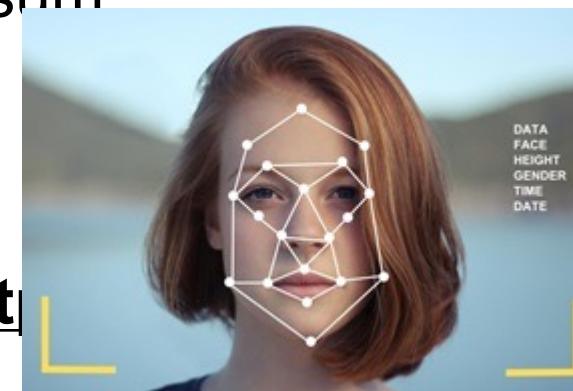
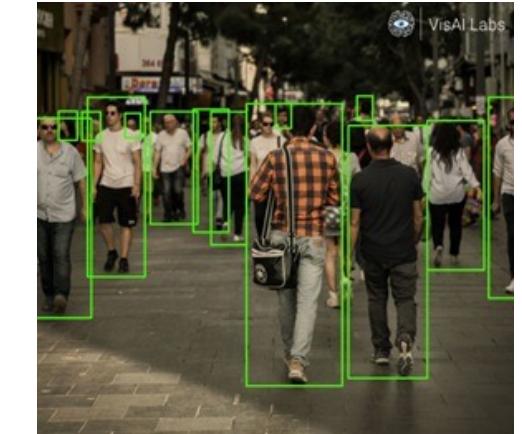
- ◆ Can only allocate up to 64KB
 - Otherwise, input is also constant, but it is too large to put in constant memory

Example use of Constant Memory: Convolution

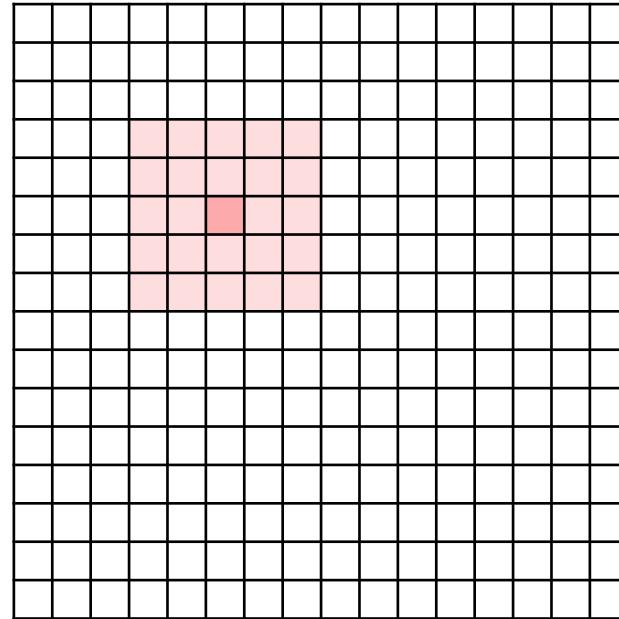
- ◆ Convolution: Widely used operation in video processing, signal processing, CNNs etc.

- ◆ Converts an array (1D/2D/3D) into another array

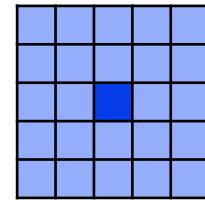
- Each output element is a weighted sum of nearby elements
- Weights are in a filter array
- Weights are constant and are needed to calculate every output



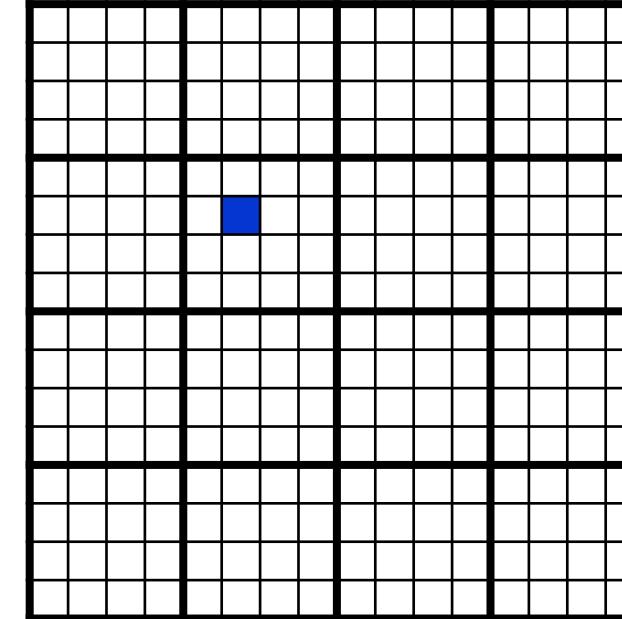
Example use case of Constant Memory: Convolution



input
(in global
memory)



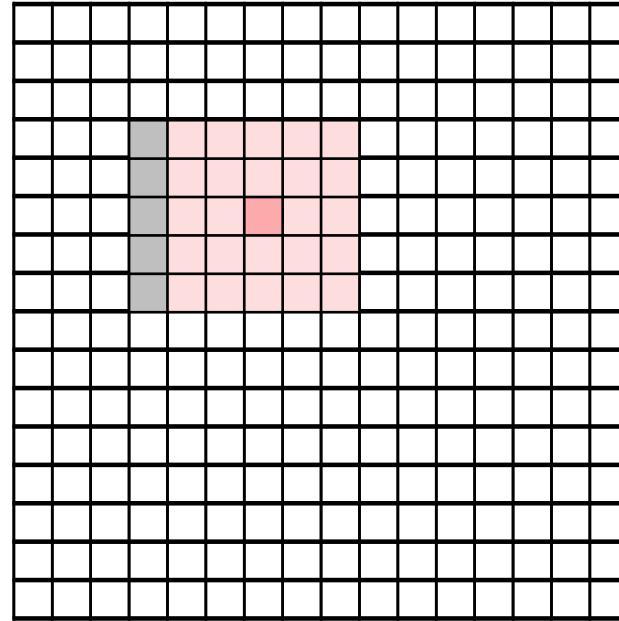
filter
(in constant
memory)



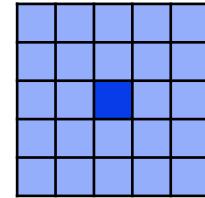
output
(in global
memory)

An **output element** computed by one thread looping over **input elements** and **filter** weights

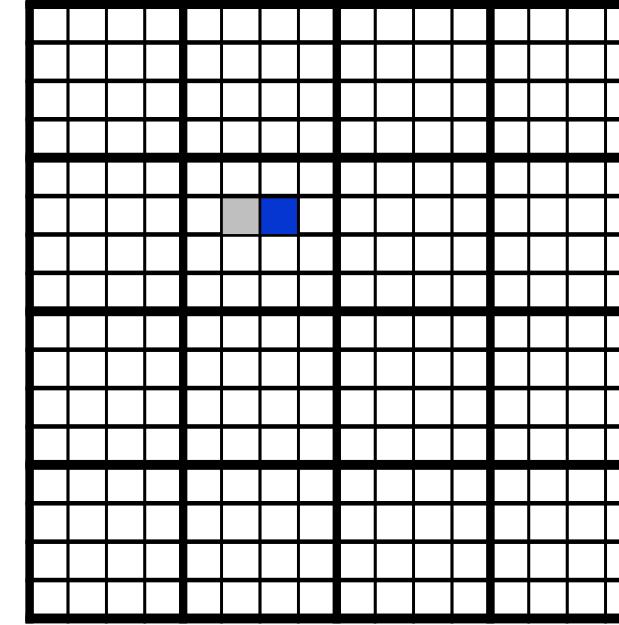
Example use case of Constant Memory: Convolution



input
(in global
memory)



filter
(in constant
memory)



output
(in global
memory)

An **output element** computed by one thread looping over **input elements** and **filter** weights

Example use case of Constant Memory: Convolution

```
static __constant__ float filter_c[FILTER_DIM][FILTER_DIM];  
  
//Allocate input and output arrays using cudaMalloc  
  
//Populate input array  
  
cudaMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM*sizeof(float));  
  
convolution_kernel<<dimGrid, dimBloc>> (input_array, output_array, x_dim, y_dim);
```

Host code

Example use case of Constant Memory: Convolution

```
__global__ void convolution_kernel(float* input, float* output, unsigned int width,
                                  unsigned int height) {
    int outRow = blockIdx.y*blockDim.y + threadIdx.y;
    int outCol = blockIdx.x*blockDim.x + threadIdx.x;
    if (outRow < height && outCol < width) {
        float sum = 0.0f;
        for(int filterRow = 0; filterRow < FILTER_DIM; ++filterRow) {
            for(int filterCol = 0; filterCol < FILTER_DIM; ++filterCol) {
                int inRow = outRow - FILTER_RADIUS + filterRow;
                int inCol = outCol - FILTER_RADIUS + filterCol;
                if(inRow >= 0 && inRow < height && inCol >= 0 && inCol < width) {
                    sum += filter_c[filterRow][filterCol]*input[inRow*width + inCol];
                }
            }
        }
        output[outRow*width + outCol] = sum;
    }
}
```

Device code

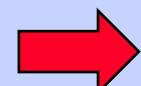
Review: CPU vs. GPU memory system

CPU

- Limited number of registers
 - OS saves/restores registers
- One virtual address space (per process)
- Large caches for latency hiding

GPU

- Many registers
 - H/W saves/restores registers
- Many different address spaces
 - Global memory
 - Caches
 - Local memory
 - Constant memory
 - Shared memory (scratchpad)
- Small caches – for b/w filtering



Shared memory (Scratchpad): A S/W Managed Cache

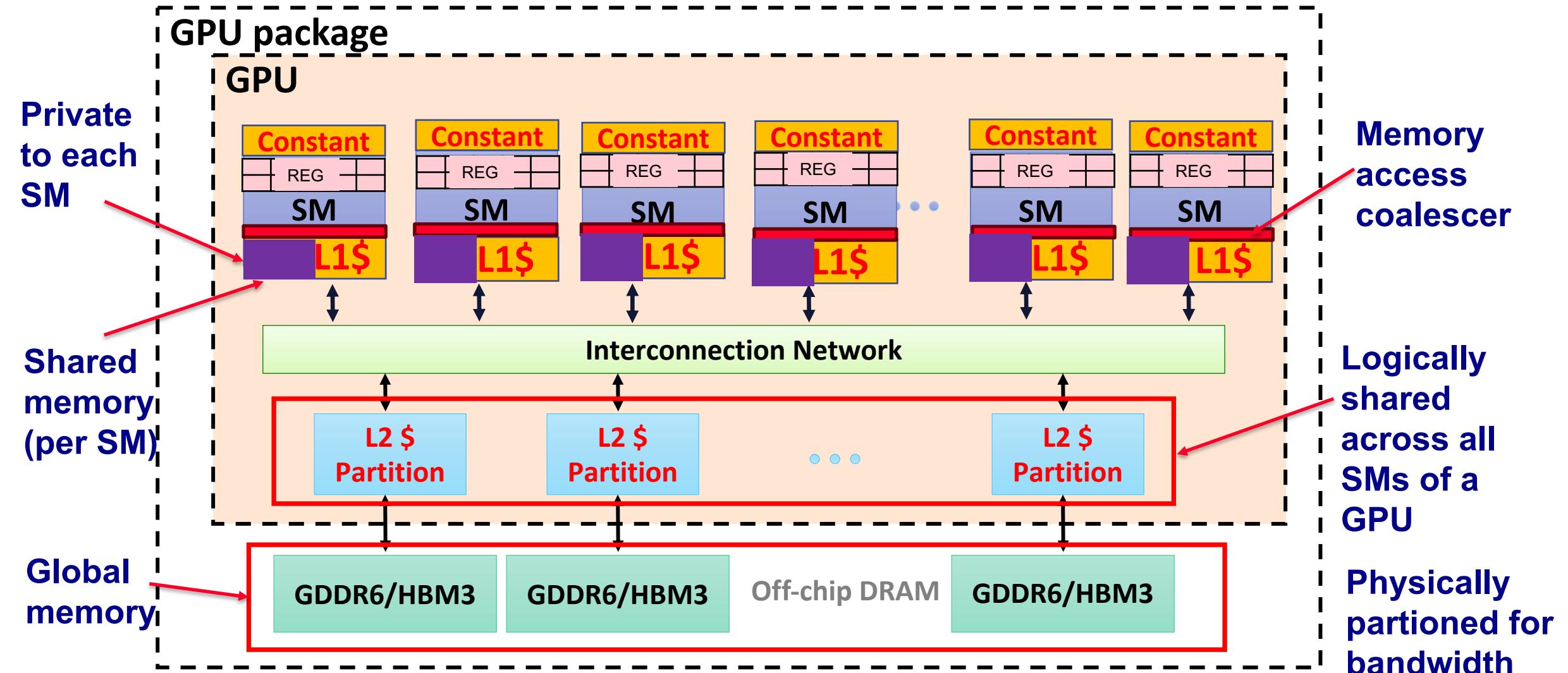
◆ H/W Managed Cache (Traditional Caches):

- Hardware decides what to bring into the cache and what to evict
- Hardware monitors access patterns for decision-making
- Example: L1, L2 caches
- **Pros:** No need to modify applications to use caches
- **Cons:** Lack of high-level program semantic knowledge

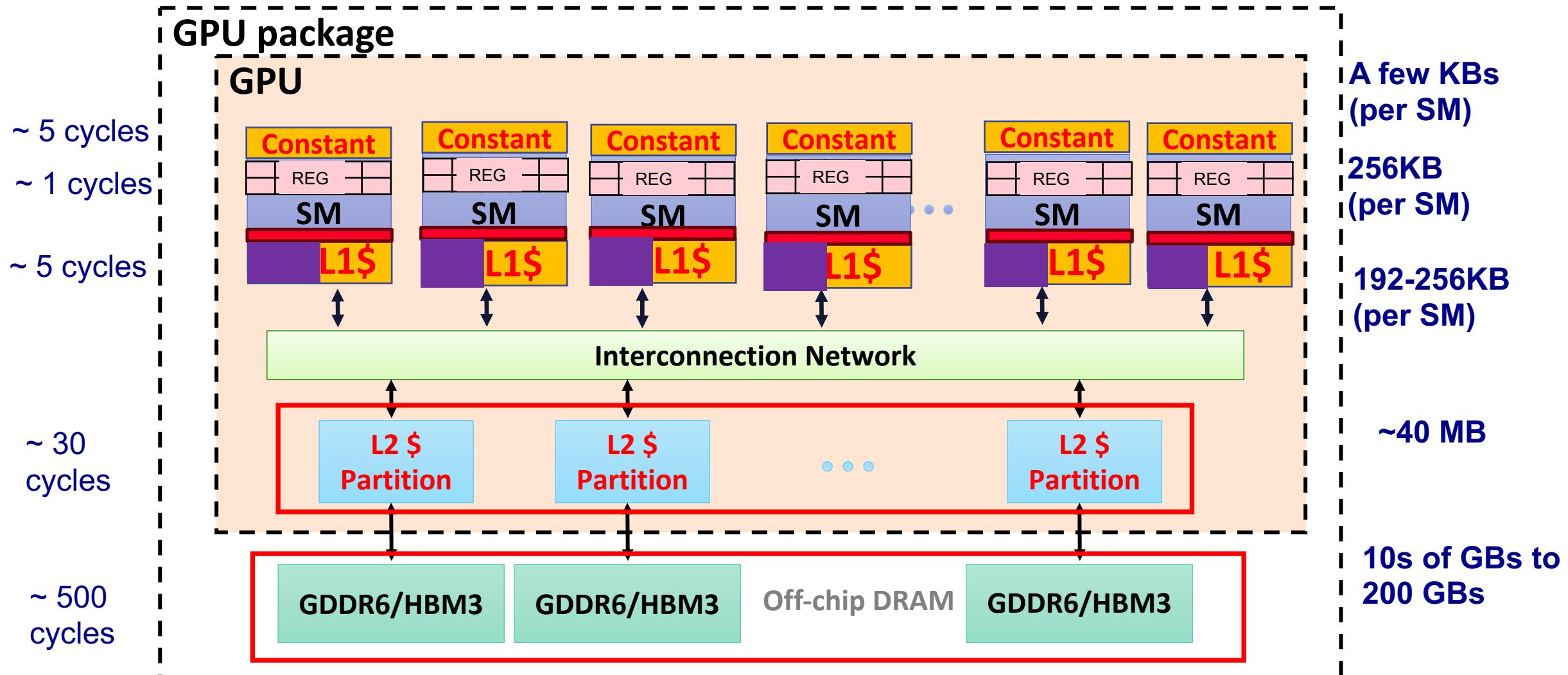
◆ S/W Managed Cache:

- On-chip hardware cache structure
- **Software (program) must direct** what to bring into the cache and what to evict
- Use a program's semantic behaviour to decide cache contents
- Example: GPU scratchpad/shared memory
- **Pros:** Use program knowledge for accurate caching
- **Cons:** Applications must be modified to use such caches

Shared memory (Scratchpad): A S/W Managed (H/W) Cache

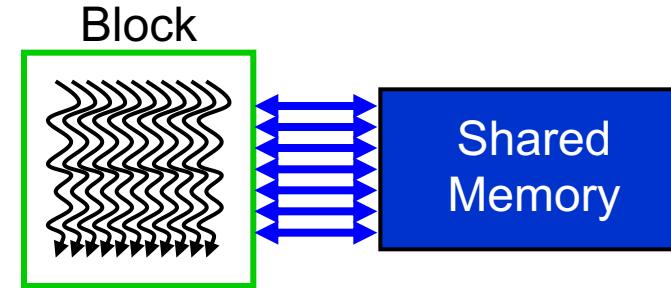


Relative Latencies of Various Memory Types



Shared memory (Scratchpad): A S/W Managed Cache

- ◆ Private to each threadblock
 - Called “Shared” memory because it is shared amongst all threads if a threadblock



- ◆ Each threadblock has its **own copy** of shared memory variables
 - # of copies of each shared memory variable allocated == # of threadblocks
- ◆ Contents deleted after a threadblock finishes execution

Steps of using Shared Memory (Scratchpad)

- 1 Allocate shared memory
- 2 Load data into shared memory from global memory
- 3 Repeatedly access data from shared memory → Leverage reuse
 - Use of shared memory is useful only if there is significant data reuse
 - Programmer must be aware of the data reuse
- 4 Once computation is done, write results back to global memory

Allocating and Populating Shared Memory

- ◆ Two ways to allocate shared memory
- ◆ Static allocation: Allocation size fixed at compile time

```
__shared__ float in_s[IN_TILE_DIM][IN_TILE_DIM][IN_TILE_DIM];  
  
if(i >= 0 && i < N && j >= 0 && j < N && k >= 0 && k < N) {  
    in_s[threadIdx.z][threadIdx.y][threadIdx.x] = in[i*N*N + j*N + k];  
}
```

- ◆ Cons: Maximum up to 48KB per threadblock
The size of the allocation cannot be input-dependent

Allocating and Populating Shared Memory

- ◆ Dynamic allocation: Size of the allocation set during kernel launch

- Can allocate **one** chunk (one variable) → partition if needed
- Pass the size of the chunk during kernel launch
- Can be larger than 48KB

```
//device code
__global__ void alloc_shared () {
```

```
extern __shared__ float in_s[];
float *p1_v = &in_s[0];
float *p2_v = &in_s[N]
.....
}
```

```
//host code
.....
```

```
alloc_shared <<<nBlk, nTh, (2*N*sizeof(float))>>>
```

Allocation size not specified statically
Size (per threadblock) provided during
kernel launch time

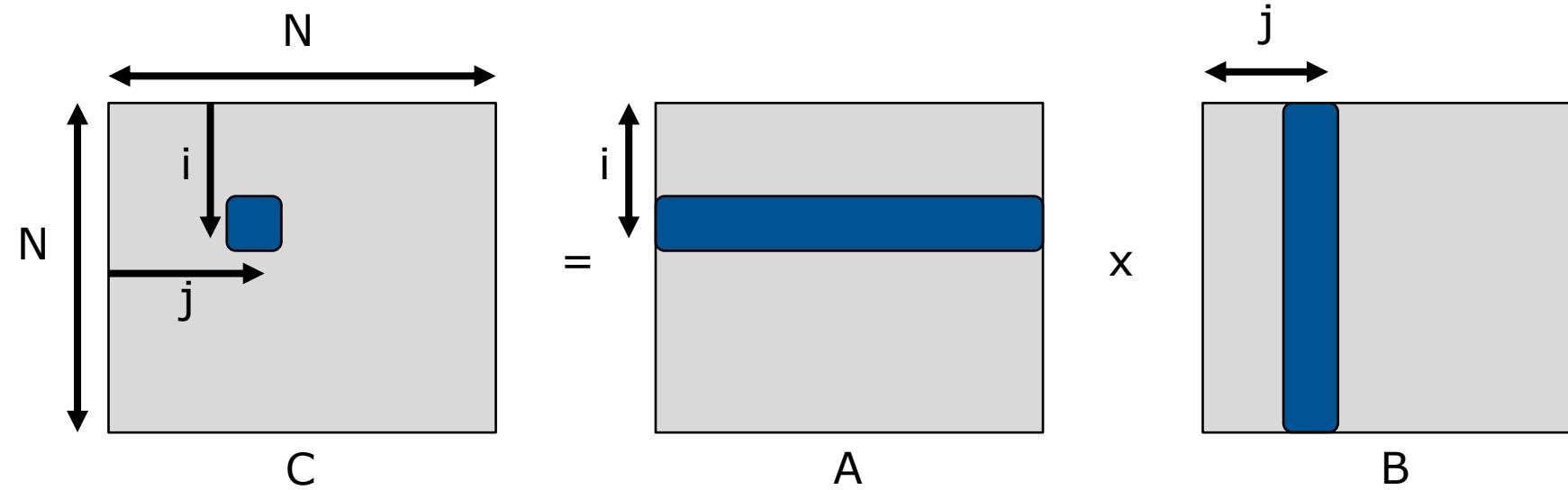
Configuring Shared Memory and L1 Cache sizes

- ◆ Can provide hints to the CUDA runtime on preference of L1 cache vs. Shared memory

`cudaFuncSetCacheConfig (kernel_name, enum cacheConfig)`

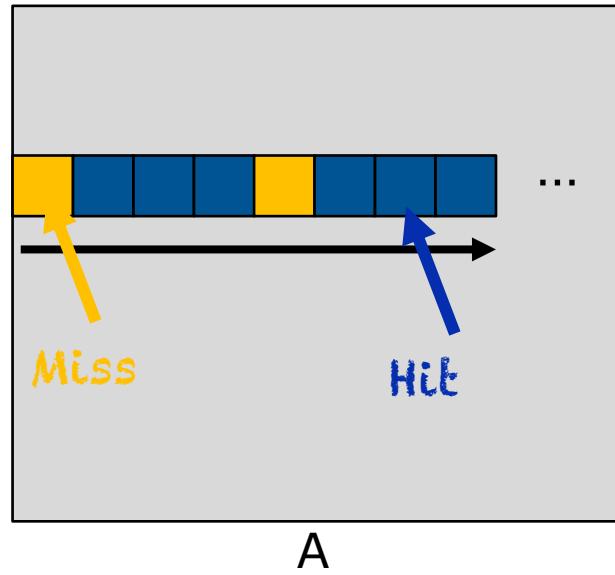
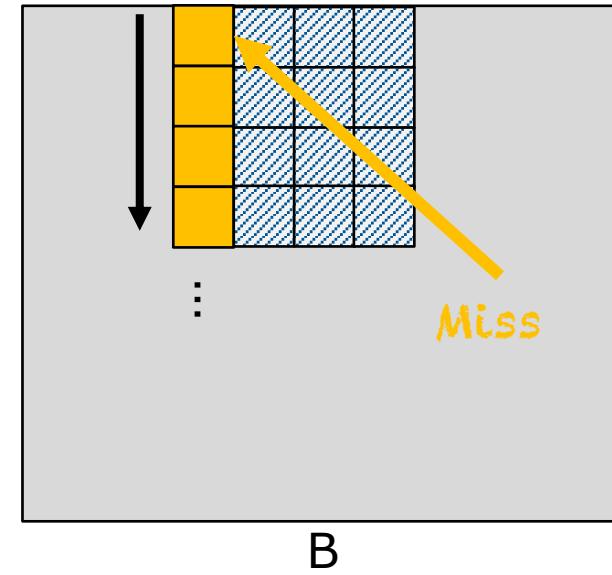
- ◆ Example cacheConfig options:
 - `cudaFuncCachePreferShared`
 - *cudaFuncCachePreferL1*
 - *cudaFuncCachePreferNone*

Example use of Shared Memory: Tiled Matrix Multiplication



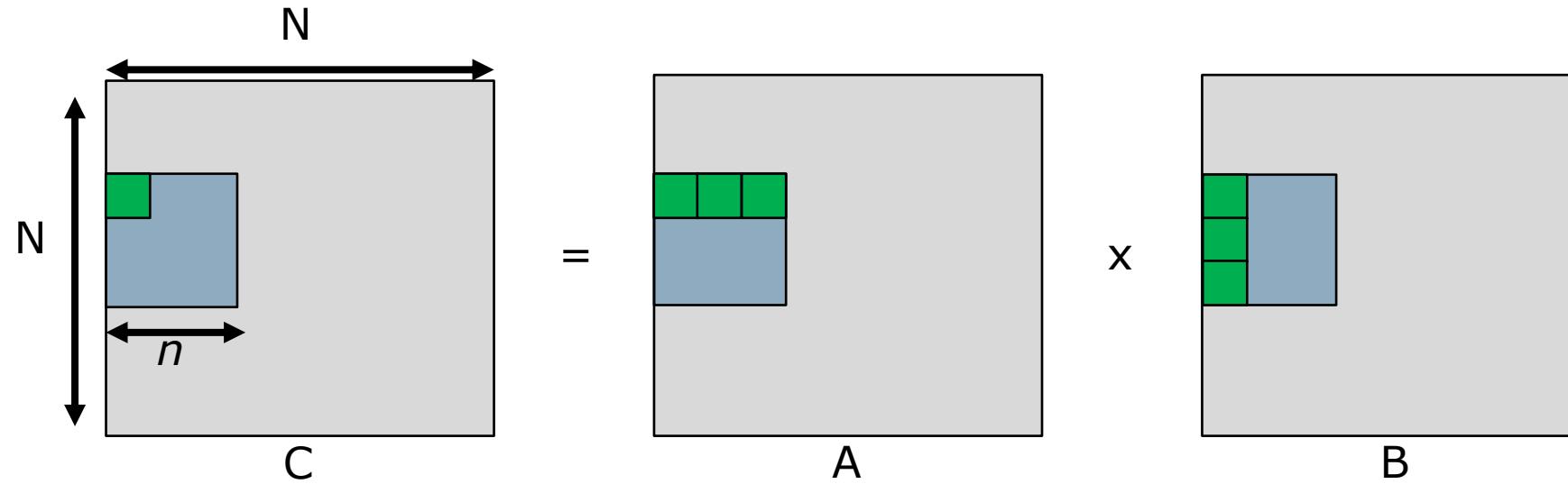
- ◆ Review (Week 3): Naïve matrix multiplication causes too many \$ miss

Example use of Shared Memory: Titled Matrix Multiplication



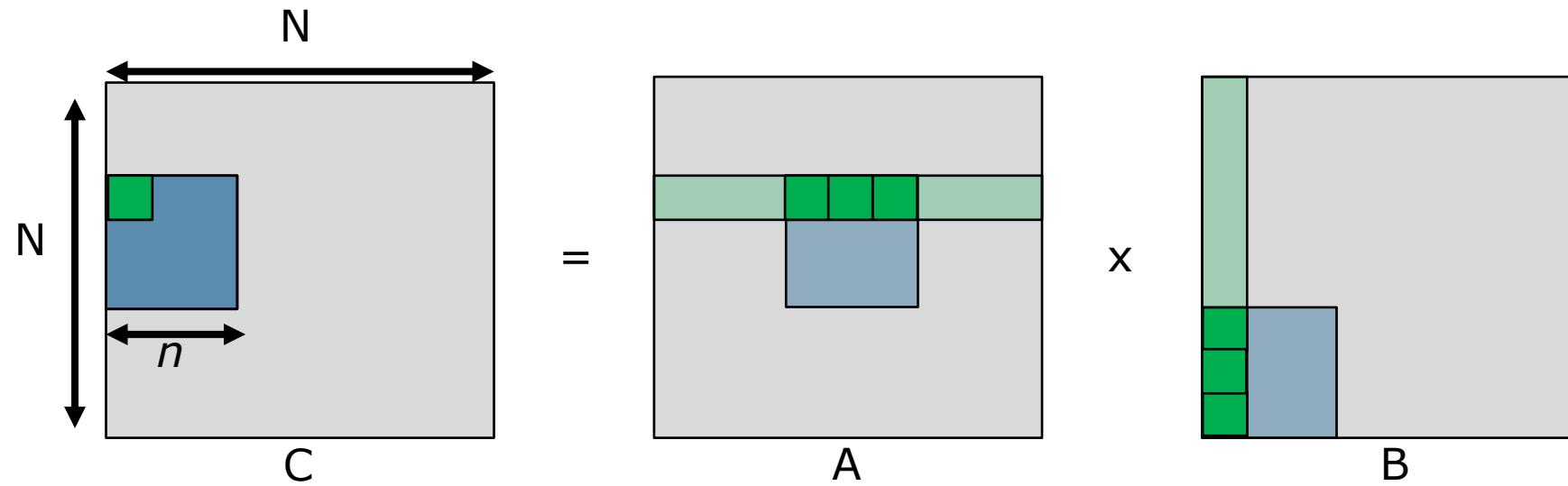
- ◆ Review (Week 3): Naïve matrix multiplication causes too many \$ miss

Example use of Shared Memory: Titled Matrix Multiplication



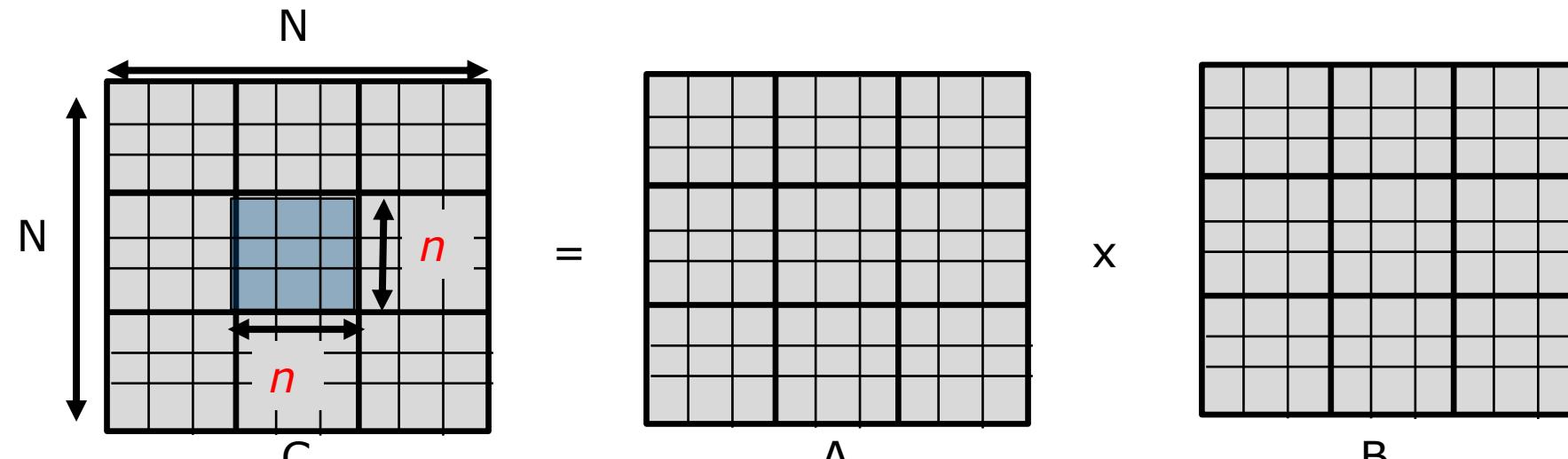
- ◆ Review (Week 3): Tiling to improve data reuse → less cache misses
 - Compute the partial results of each submatrices (tile) before moving to the next

Example use of Shared Memory: Tiled Matrix Multiplication



- ◆ Review (Week 3): Tiling to improve data reuse → less cache misses
 - Compute the partial results of each submatrices (tile) before moving to the next
 - Limitations: Cache hits are not guaranteed.
 - L1 cache is shared amongst all threadblocks of a SM
 - L2 cache is shared amongst all threadblocks of a grid

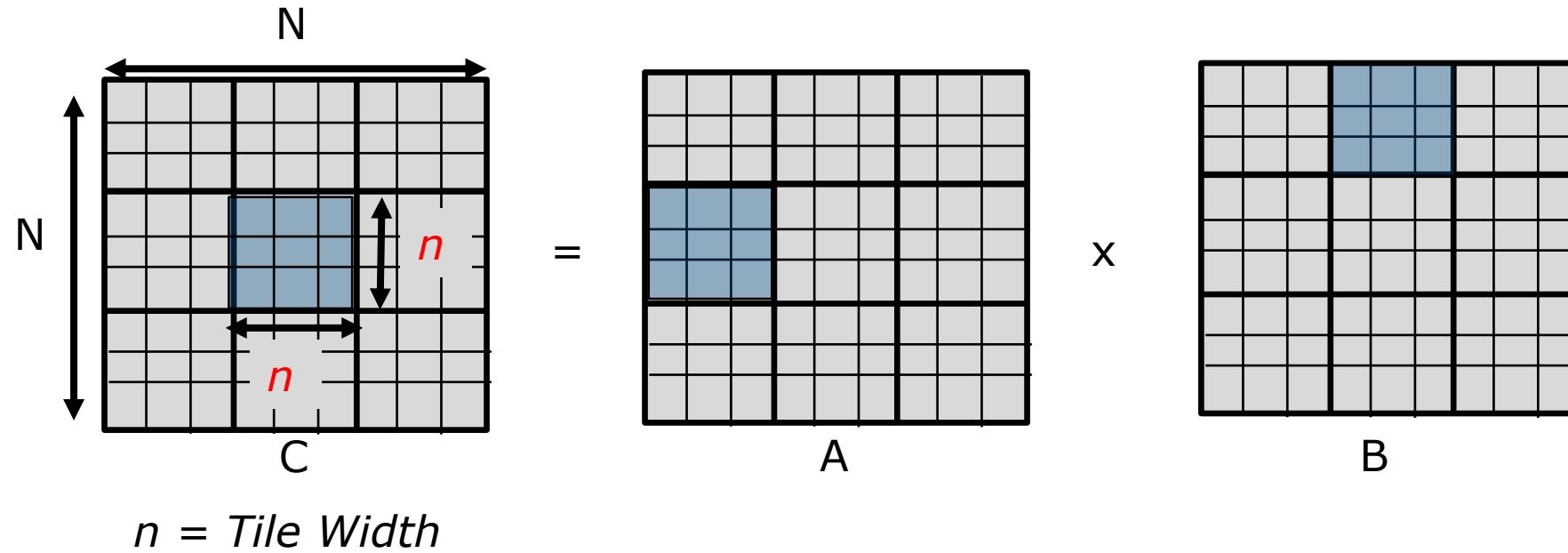
Example use of Shared Memory: Tiled Matrix Multiplication



$n = \text{Tile Width}$

- ◆ One threadblock to compute results of one tile of the output matrix

Example use of Shared Memory: Tiled Matrix Multiplication



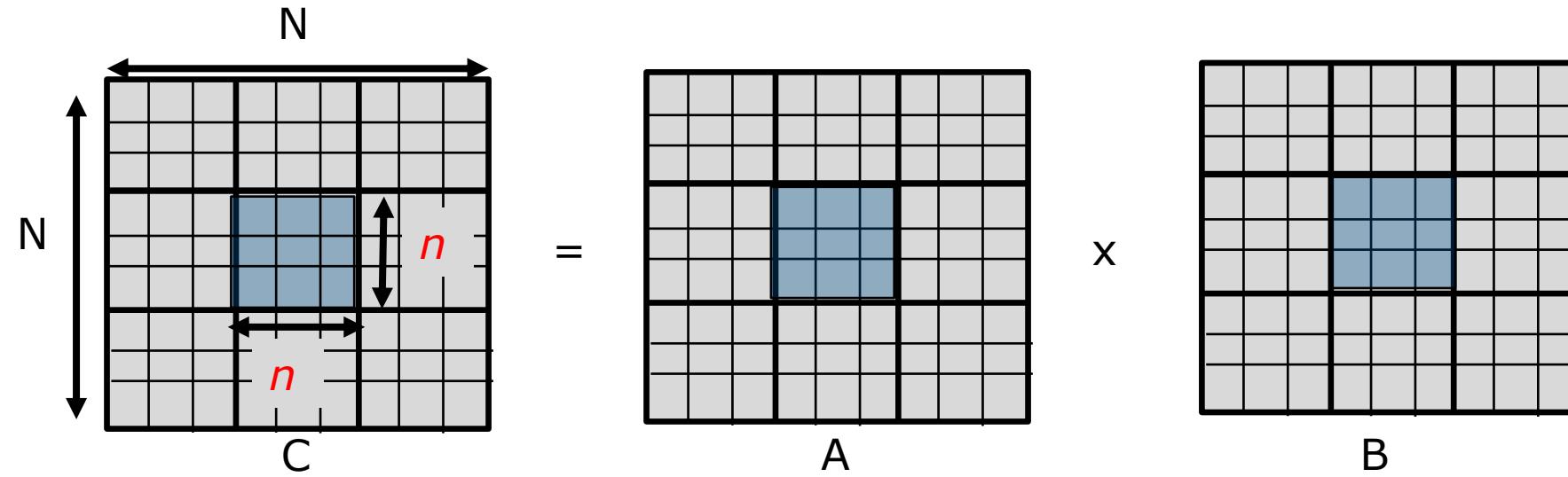
- ◆ Threads of a threadblock load one tile each from two operand matrices to its copy of shared memory variables

Example use of Shared Memory: Titled Matrix Multiplication

$$\begin{matrix} \text{C}_{\text{tile}} \\ = \\ \text{A}_{\text{tile}} \\ \times \\ \text{B}_{\text{tile}} \end{matrix}$$

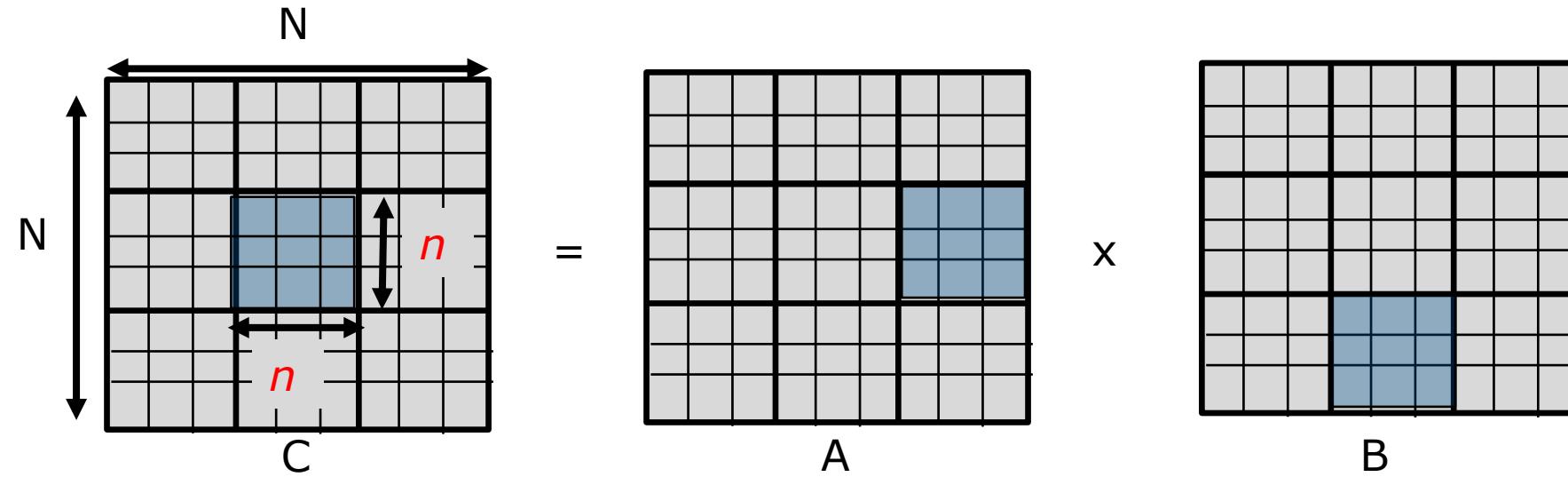
- ◆ Threads of a threadblocks computes partial results for a tile

Example use of Shared Memory: Tiled Matrix Multiplication



- ◆ Repeat for next tiles ..

Example use of Shared Memory: Tiled Matrix Multiplication



- ◆ Repeat for next tiles

Example use of Shared Memory: Tiled Matrix Multiplication

```
__shared__ float A_s[TILE_DIM][TILE_DIM];      // Each threadblock has its copy of shared mem variables
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x; // The element of the output matrix to be
                                                        // computed by a given thread

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) { // Repeat N/TILE_DIM (# phases)

    // Load tile to shared memory
    A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
    B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col]; //Loads a tile to shared
                                                                // memory from global mem.

    __syncthreads(); //Wait for loading to be complete

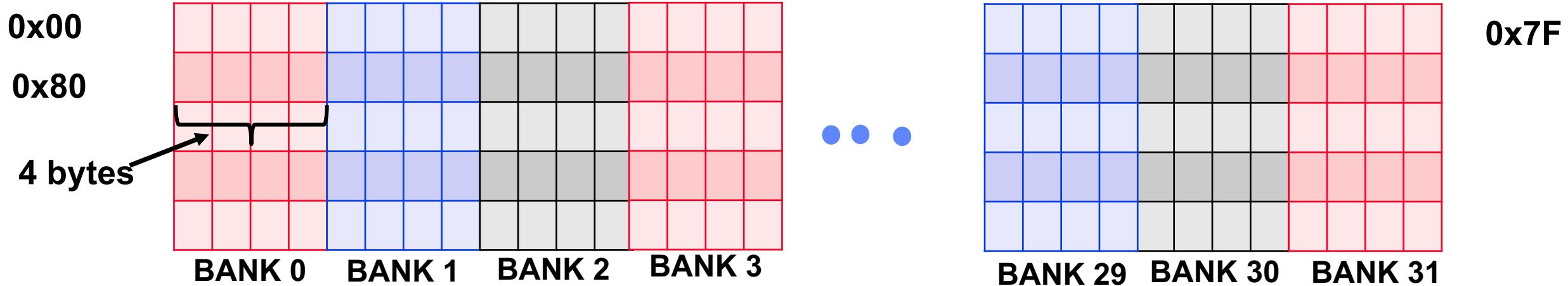
    // Compute with tile
    for(unsigned int i = 0; i < TILE_DIM; ++i) {
        sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x]; //Each thread calculates partial result
    }
    __syncthreads(); //Wait for threads in a threadblock to complete
                    // computation before next round/phase
}

C[row*N + col] = sum; //Final result of individual output element
```

Advantage of using Shared Memory

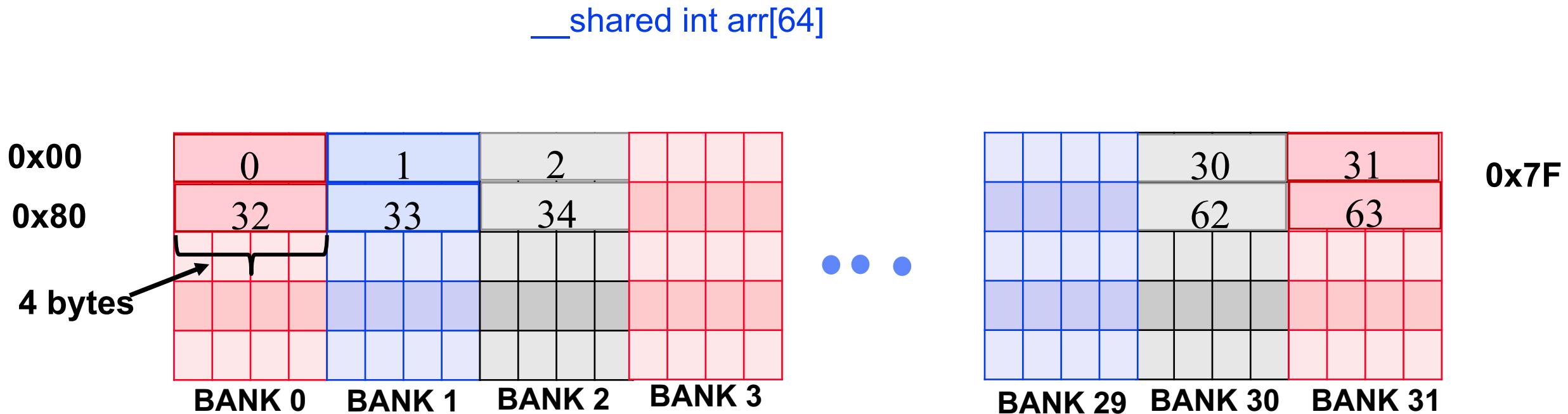
- ◆ Saves global memory access
- ◆ Access to shared memory is as fast as L1 cache
- ◆ Unlike caches, reductions in global memory access are guaranteed
 - Not dependent on hardware's cache replacement policies
- ◆ Every threadblock has its own copy of shared memory variables

Performance pitfall: Beware of Shared Memory Bank Conflicts



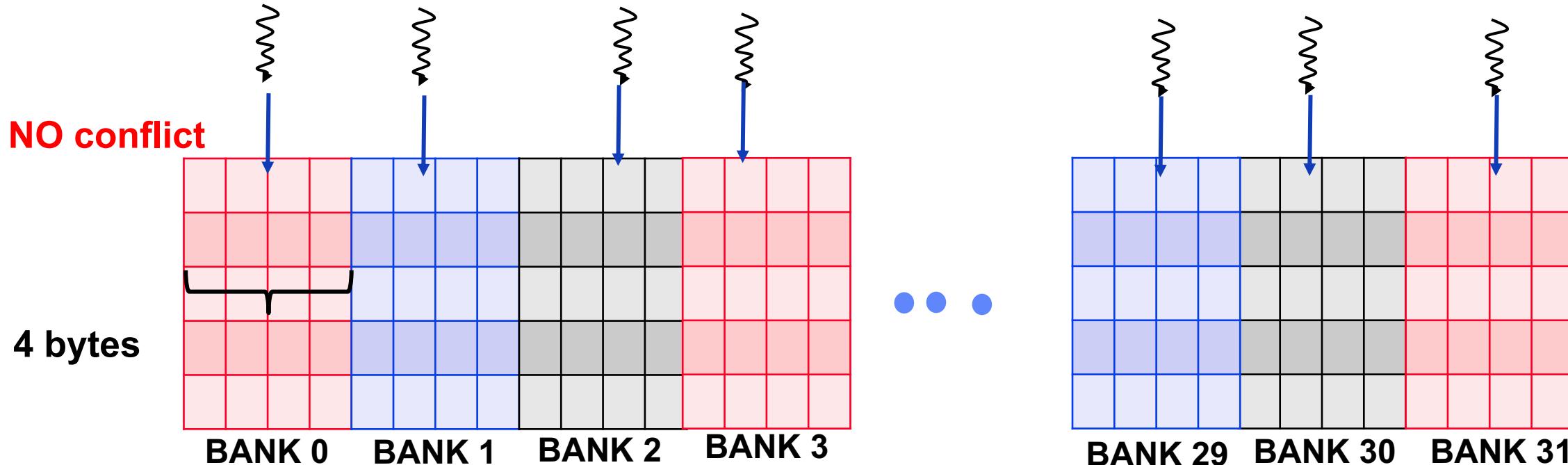
- ◆ Shared memory is organized in 32 banks
 - ◆ Each bank can service one address at a time
 - ◆ At most 32 simultaneous accesses
- ◆ Successive 32-bit (4 bytes) words are assigned to successive banks

Performance pitfall: Beware of Shared Memory Bank Conflicts



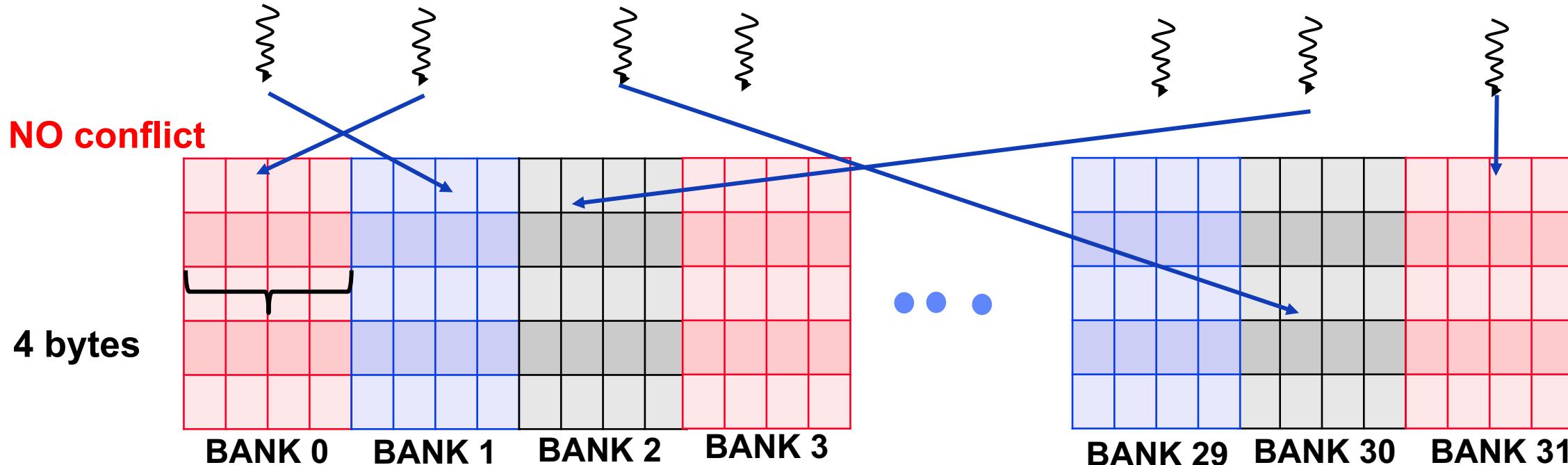
- ◆ Shared memory is organized in 32 banks
 - ◆ Each bank can service one address at a time
 - ◆ At most 32 simultaneous accesses
- ◆ Successive 32-bit (4 bytes) words are assigned to successive banks

Performance pitfall: Beware of Shared Memory Bank Conflicts



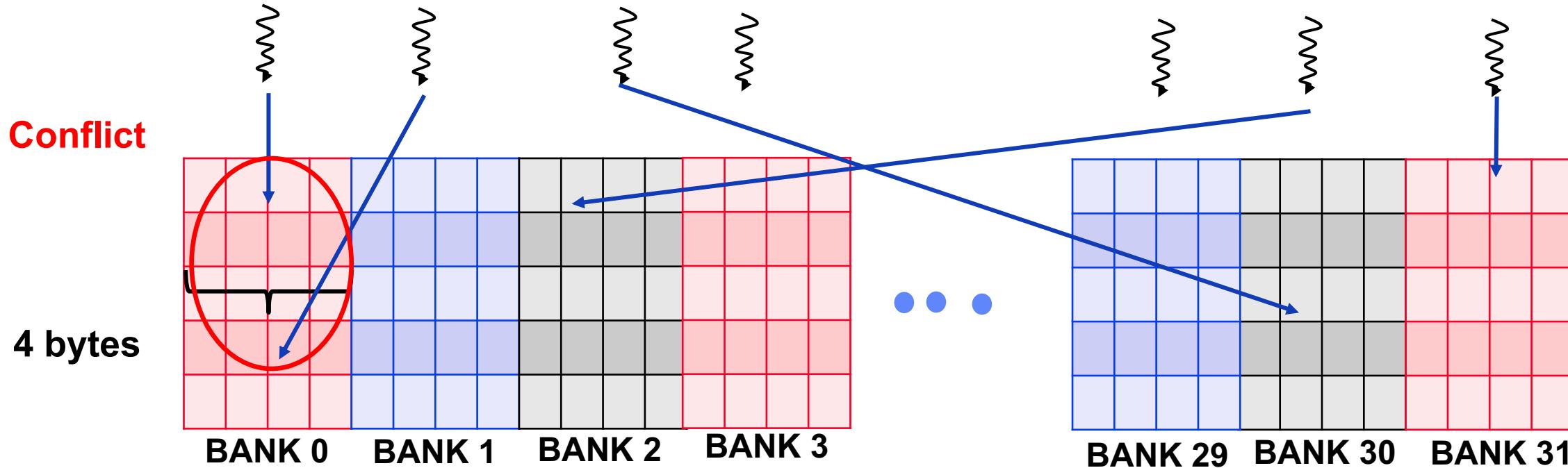
- ◆ Multiple simultaneous accesses to the same bank
 - ◆ Different 4-byte words:
 - ◆ **Bank conflict!** - Conflicting accesses are serialized
 - ◆ The same 4-byte word:
 - ◆ Multicast – 1 fetch (could be different bytes within the word)

Performance pitfall: Beware of Shared Memory Bank Conflicts



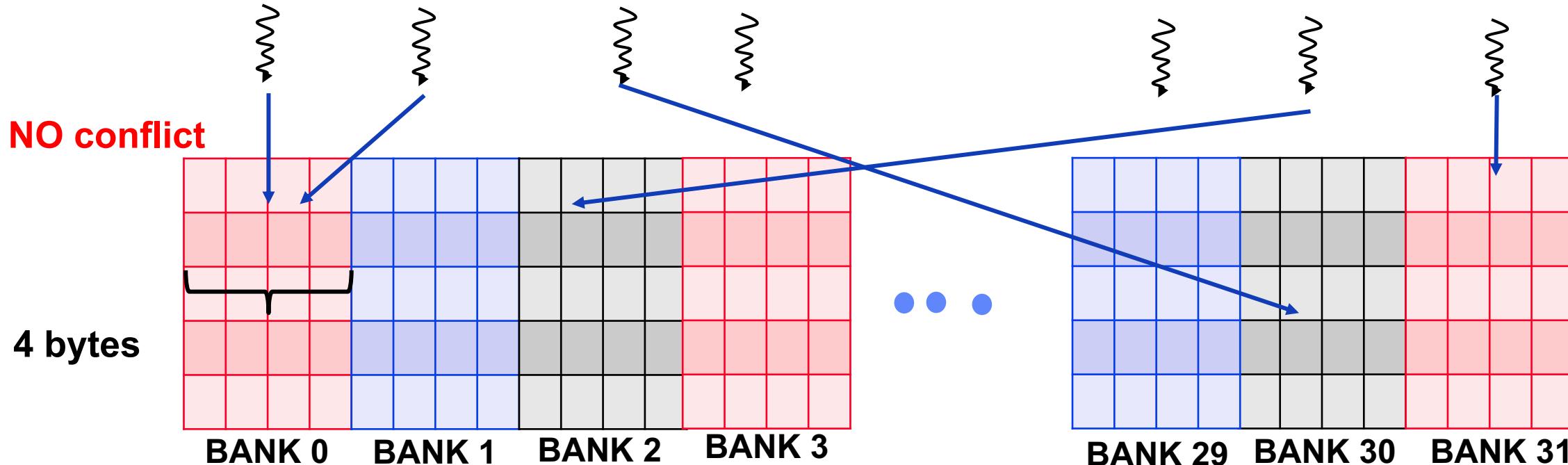
- ◆ Multiple simultaneous accesses to the same bank
 - ◆ Different 4-byte words:
 - ◆ **Bank conflict!** - Conflicting accesses are serialized
 - ◆ The same 4-byte word:
 - ◆ Multicast – 1 fetch (could be different bytes within the word)

Performance pitfall: Beware of Shared Memory Bank Conflicts



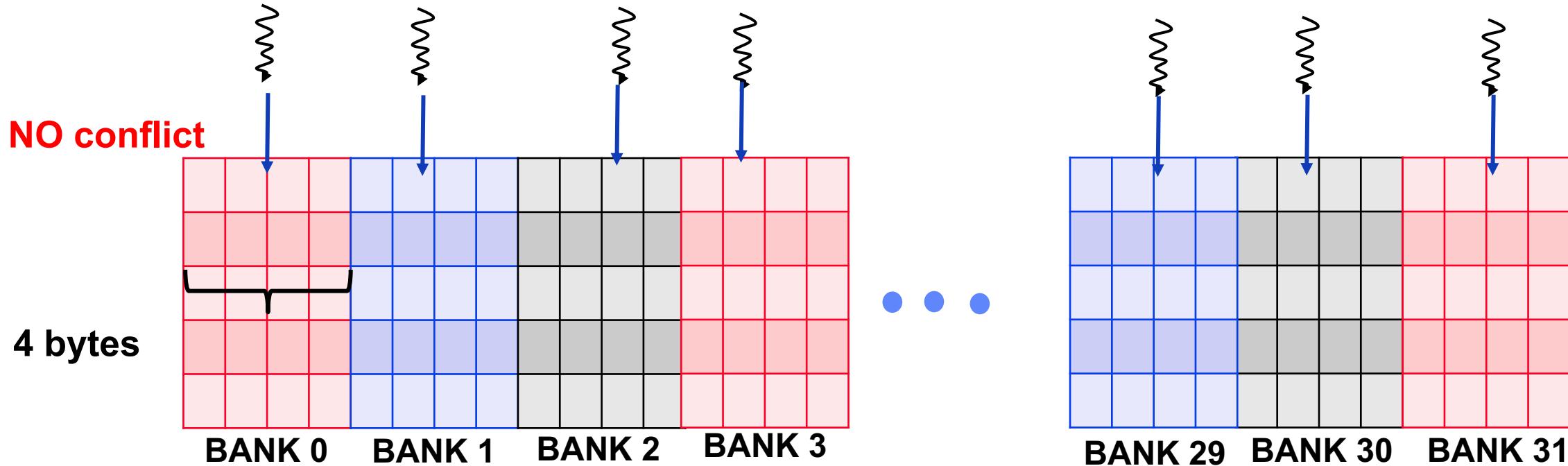
- ◆ Multiple simultaneous accesses to the same bank
 - ◆ Different 4-byte words:
 - ◆ **Bank conflict!** - Conflicting accesses are serialized
 - ◆ The same 4-byte word:
 - ◆ Multicast – 1 fetch (could be different bytes within the word)

Performance pitfall: Beware of Shared Memory Bank Conflicts



- ◆ Multiple simultaneous accesses to the same bank
 - ◆ Different 4-byte words:
 - ◆ **Bank conflict!** - Conflicting accesses are serialized
 - ◆ The same 4-byte word:
 - ◆ Multicast – 1 fetch (could be different bytes within the word)

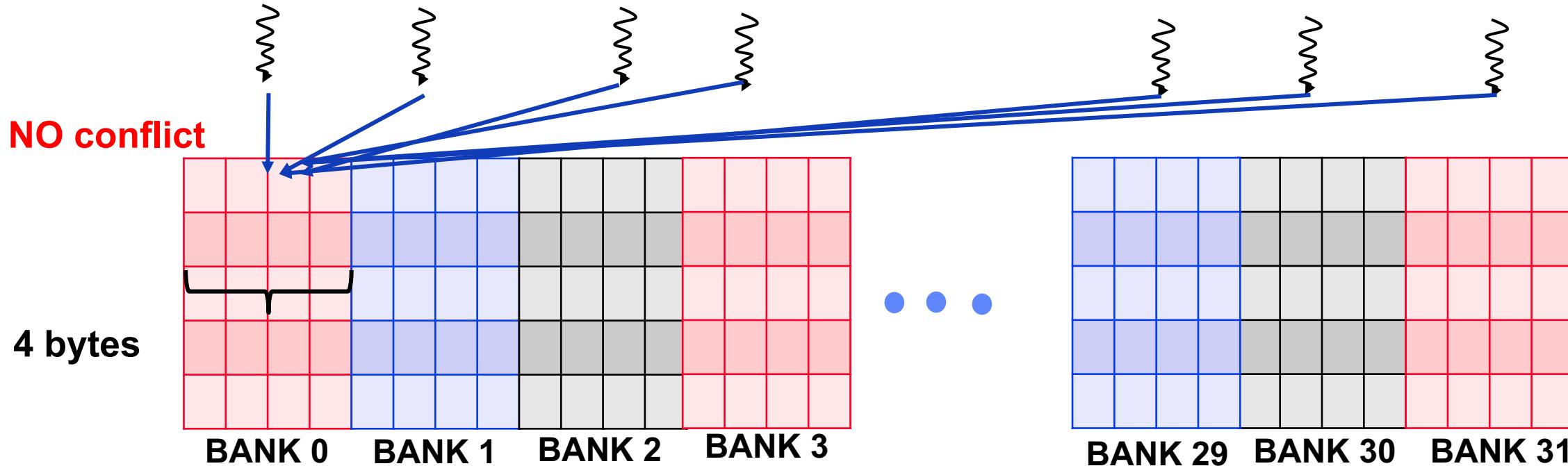
Performance pitfall: Beware of Shared Memory Bank Conflicts



- ◆ When would you have bank conflicts?
- ◆ Allocation (element) size
- ◆ Index expression into the data structure

`shared int arr[64]
arr[threadIdx.x]++;`

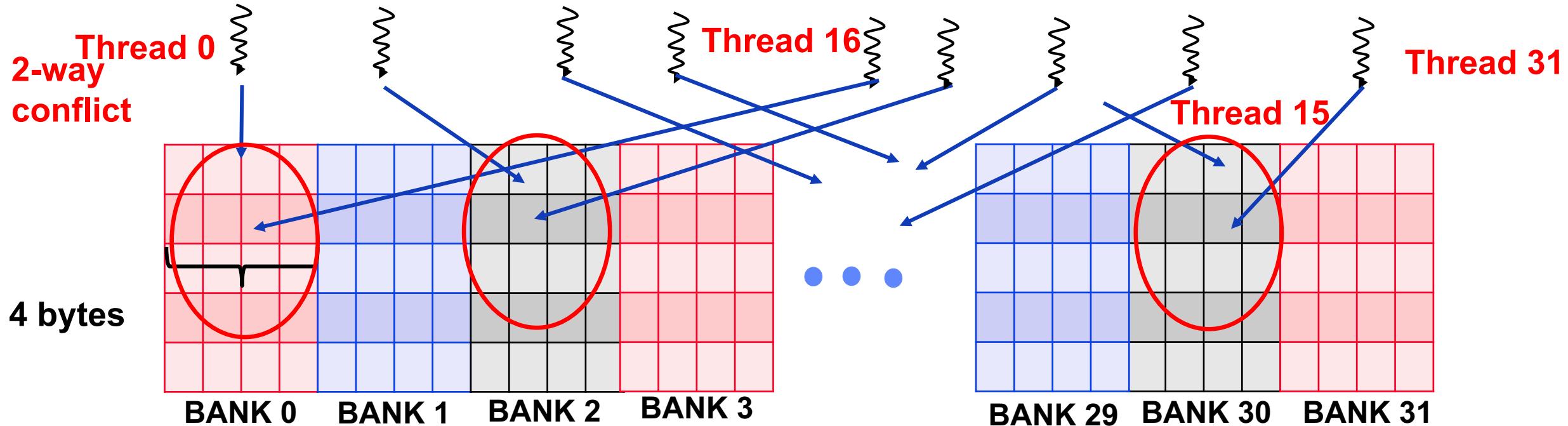
Performance pitfall: Beware of Shared Memory Bank Conflicts



- ◆ When would you have bank conflicts?
- ◆ Allocation (element) size
- ◆ Index expression into the data structure

`shared int arr[64]
arr[blockIdx.x]++;`

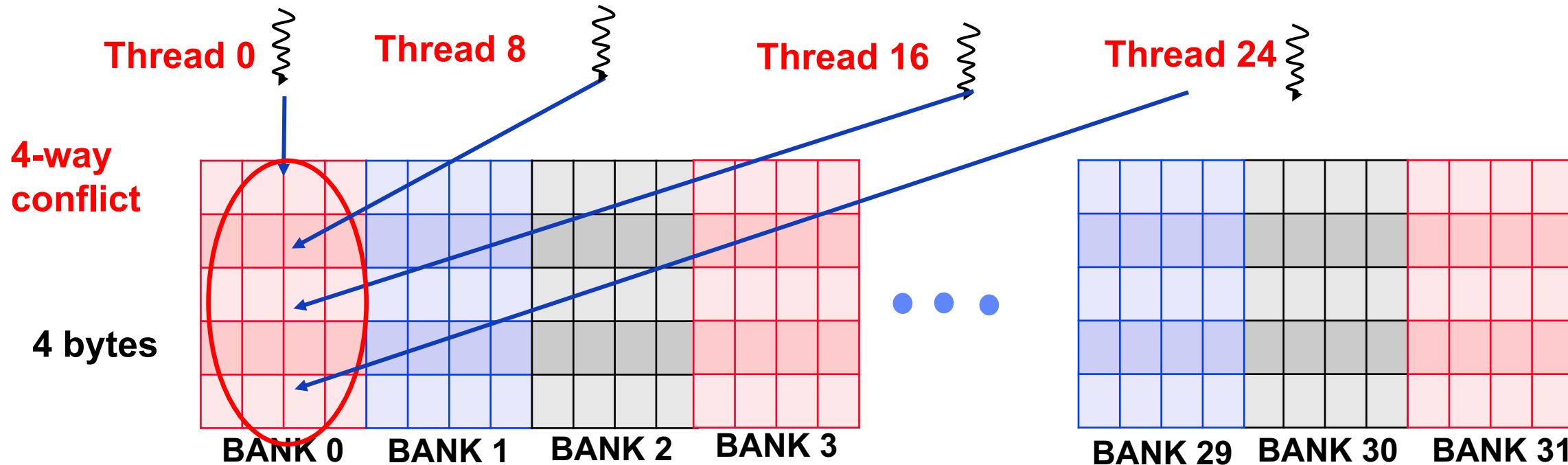
Performance pitfall: Beware of Shared Memory Bank Conflicts



- ◆ When would you have bank conflicts?
- ◆ Allocation (element) size
- ◆ Index expression into the data structure

```
__shared int arr[64]
arr[threadIdx.x*2]++;
```

Performance pitfall: Beware of Shared Memory Bank Conflicts

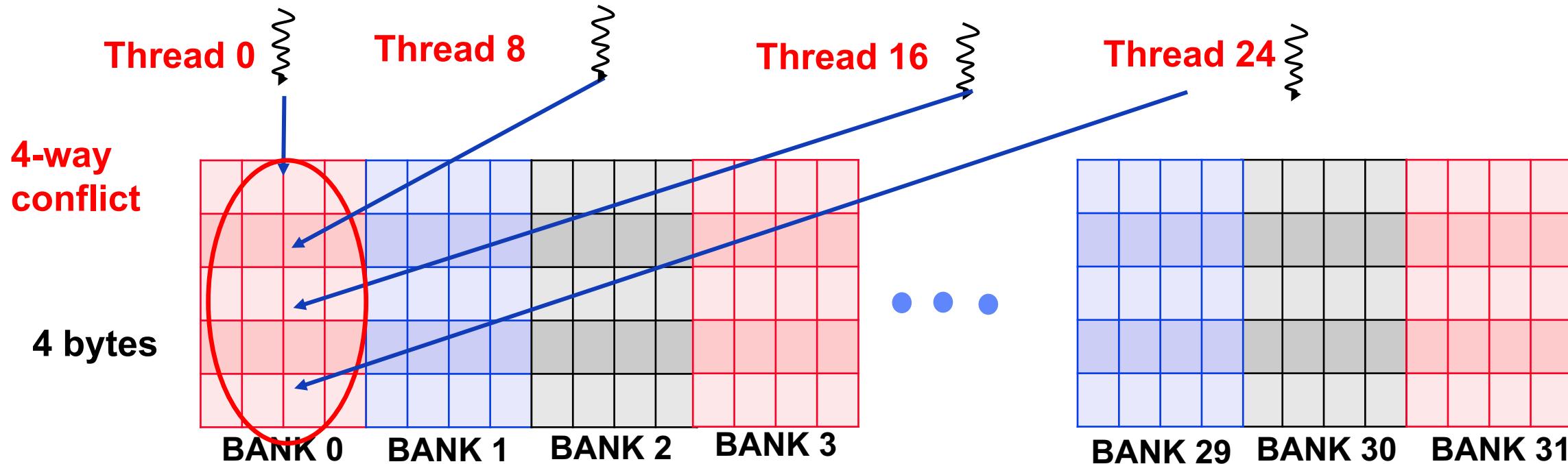


- ◆ When would you have bank conflicts?
- ◆ Allocation (element) size
- ◆ Index expression into the data structure

shared int arr[128]
arr[threadIdx.x*4]++;

Worst case: 32-way conflict

Performance pitfall: Beware of Shared Memory Bank Conflicts

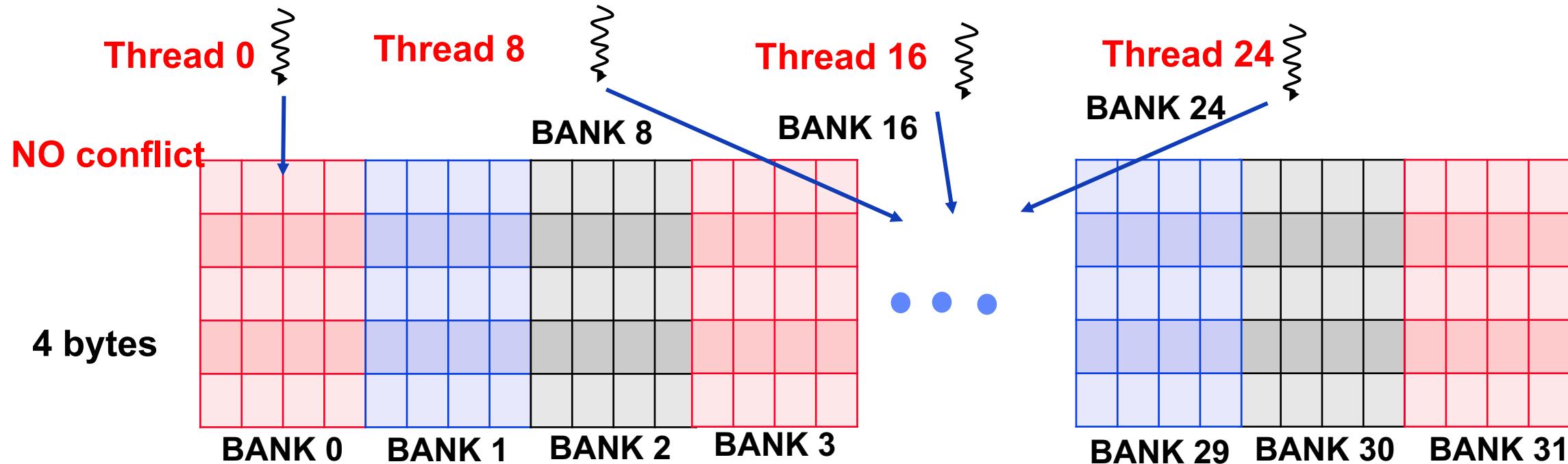


- ◆ When would you have bank conflicts?
- ◆ Allocation (element) size
- ◆ Index expression into the data structure

```
struct d4{  
    int x, y, z, w;  
};
```

```
__shared d4 arr[128]  
arr[threadIdx.x]++;
```

Avoiding Shared Memory Conflicts through Padding



- ◆ When would you have bank conflicts?
- ◆ Allocation (element) size
- ◆ Index expression into the data structure

Alternative: Change indexing strategy (if possible)

```
struct d4{  
    int x, y, z, w, pad;  
};
```

```
shared d4 arr[128]  
arr[threadIdx.x]++;
```

Impact of Shared Memory on Occupancy

- ◆ Recall how occupancy is affected by various GPU resources

- Max. 64 warps per SM
- Max. 2048 threads per SM
- Max. 32 threadblocks per SM
- Max. 64K registers per SM
- **Up to 164KB per SM**

Resource limitations on
NVIDIA A100 GPU

Number of warp schedulable is
limited by whichever resource
hits limit first

- ◆ The amount of shared memory allocation can limit occupancy

Impact of Shared Memory on Occupancy

Constraints in scheduling threadblock:

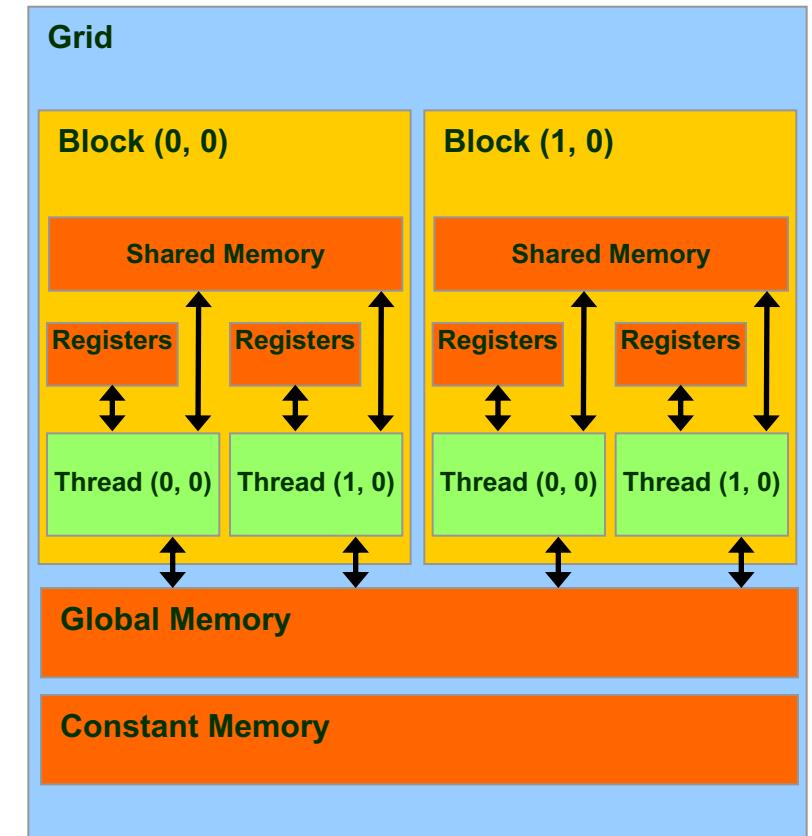
- ◆ All threads of a threadblock must execute on the same SM
- ◆ Each threadblock has own copy of the shared memory allocations
- ◆ Shared memory capacity on an SM must accommodate the needs of all threadblocks on the SM

Impact of Shared Memory on Occupancy

- ◆ Example: Maximum number of threads per SM 2048
- ◆ Maximum shared memory capacity per SM: 164 KB
- ◆ A kernel allocates 32KB of shared memory (per threadblock)
- ◆ Each threadblock launched with 256 threads
- ◆ What is the maximum occupancy? Ans: $1280/2048$ (62.5%)

Summary: Different Memory Types of GPU

Variable declaration	Memory	Scope	Lifetime
<pre>__device__ /cudaMalloc int globalVar;</pre>	global	grid	application
<pre>__device__ __constant__ int constantVar;</pre>	constant	grid	application
<pre>__device__ __shared__ int sharedVar;</pre>	shared	block	block
<pre>int localVar;</pre>	register	thread	thread
<pre>int localArr[N];</pre>	global	thread	thread

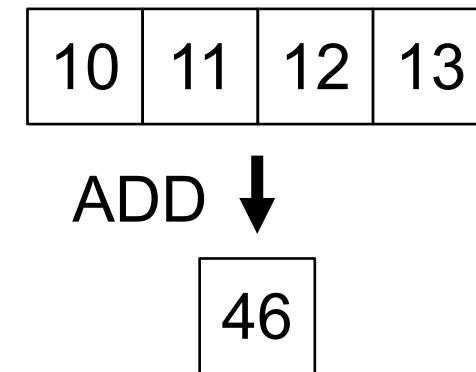


END-TO-END EXAMPLE

PARALLEL REDUCTION IN CUDA

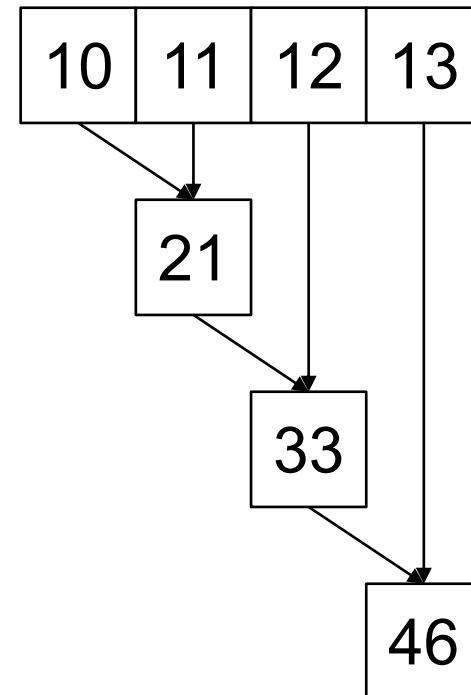
Reduction Operations

- ◆ Reduce multiple values to a single value
 - ◆ ADD, MUL, AND, OR, ...
- ◆ Useful primitive when operating on large datasets



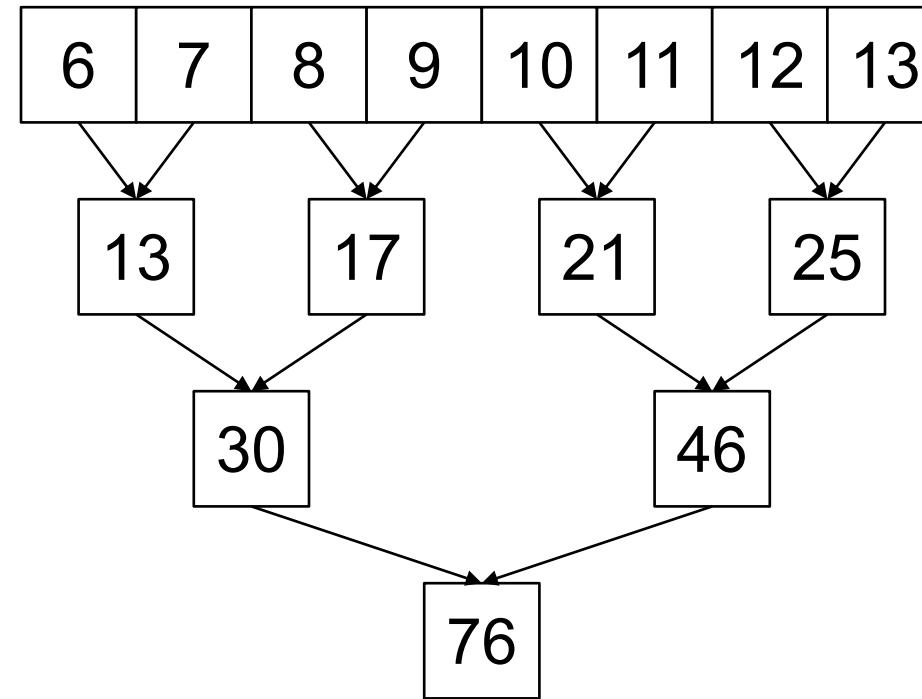
Sequential Reduction

- ◆ Process first two elements, produce partial result
 - ◆ Every level takes intermediate, and adds 1 element
- ◆ $O(N)$ steps



Parallel Reduction

- ◆ Pair-wise reduction in tree-like steps
- ◆ $\log_2(N)$ where N is the number of elements

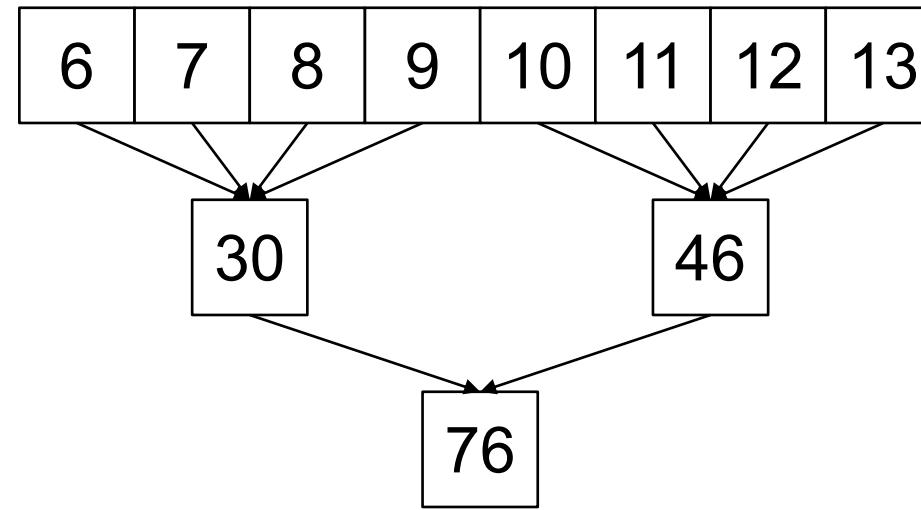


Parallel Reduction with Higher Degree

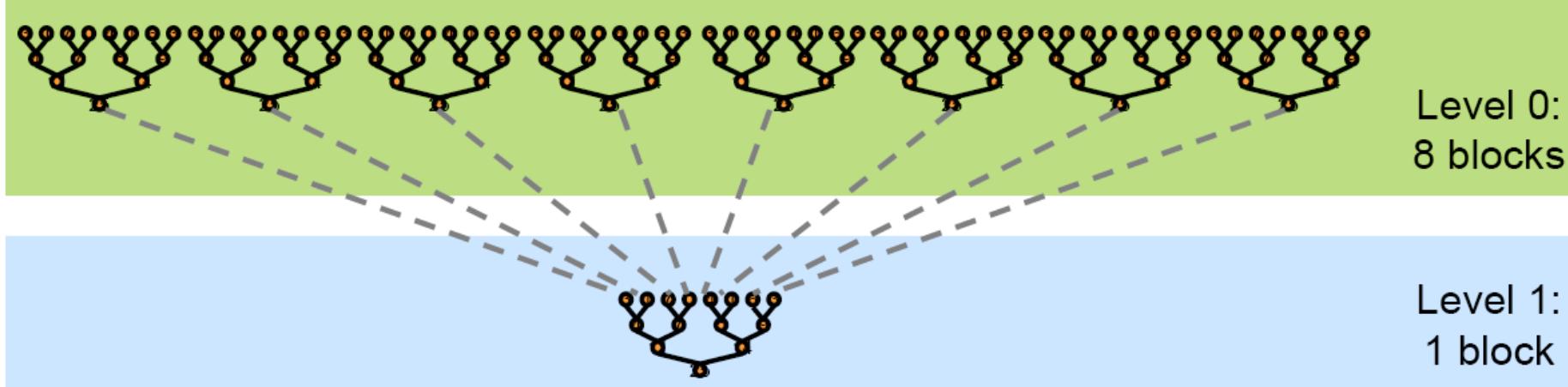
- ◆ Process x elements per step

- ◆ $\log_x(N)$

- ◆ For $x = 4$:



Reduction: The Big Picture



- ◆ Use the same code for all reduction levels
- ◆ The same kernel is launched multiple times with different numbers of TBs
- ◆ This example uses 128 threads per TB...
 - ◆ For every 128 elements, there is one TB
 - ◆ In this graphic, smaller scale:
 - ◆ 8 elements per TB, 8 blocks = 64 elements total

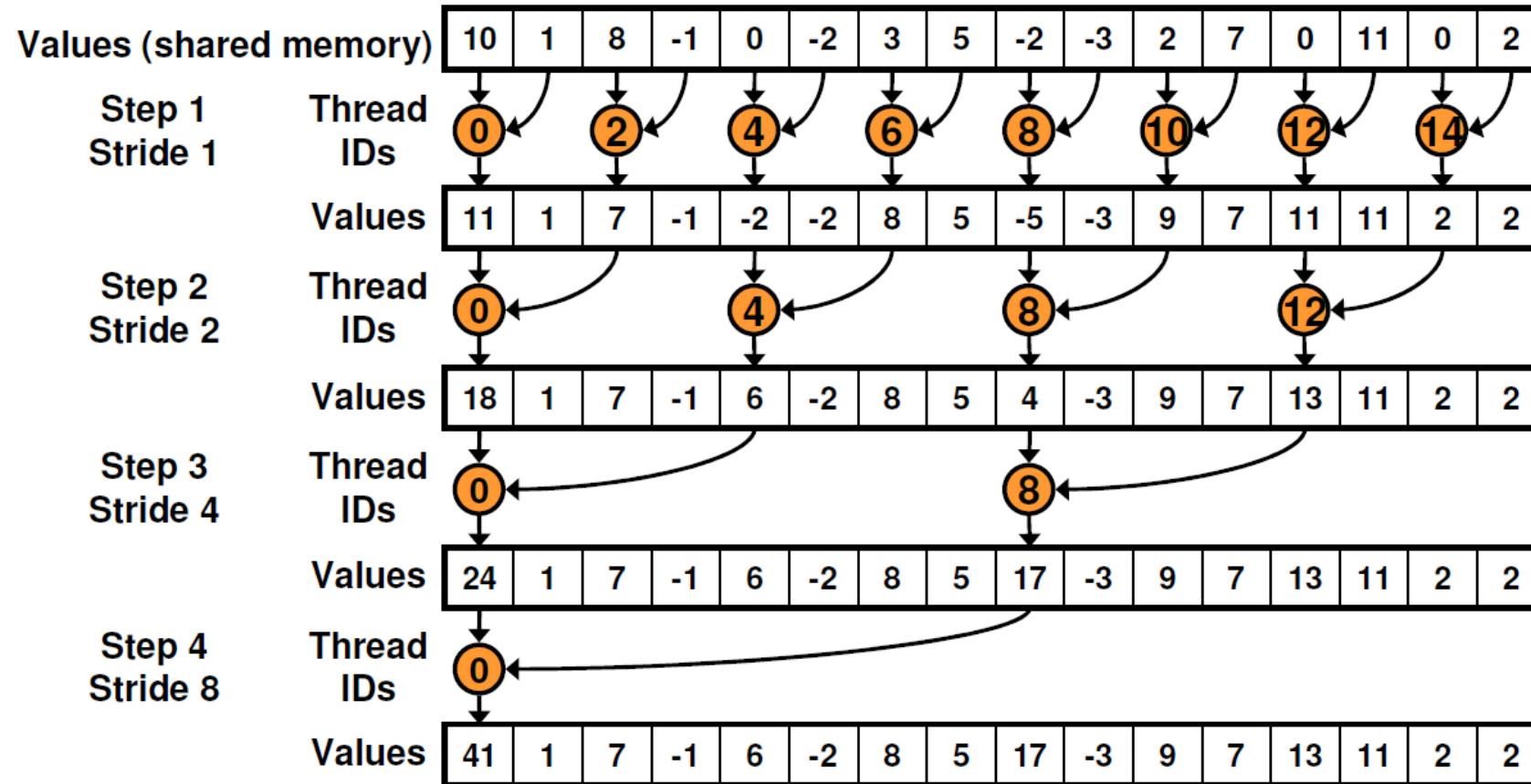
Reduction Optimization

- ◆ Reduction has low arithmetic intensity
 - ◆ One Flop / output element (add, compare, etc...)
 - ◆ All input elements are loaded from memory
- ◆ Therefore, we must optimize for bandwidth
 - ◆ Goal: reduce global memory accesses
 - ◆ Since partial sums reused, load to **shared memory** first

Reduction 1: Interleaved Addressing

- ◆ Load Data
 - ◆ Loads 1 element/thread from **global** to **shared** memory
- ◆ Reduction: proceed in $\log_2 N$ steps
 - ◆ A thread reduces two elements
 - ◆ The first two elements by the first thread
 - ◆ The next two by the next thread and so on
 - ◆ At the end of each step
 - ◆ Deactivate half of the threads
 - ◆ Terminate when one thread left
- ◆ Write back to global memory, visible to next kernel

Reduction 1: Visualization



Reduction 1: Interleaved Addressing

```
__global__ void reduce0(int *g_idata, int *g_odata, int n) {
    extern __shared__ int sdata[];

    // each thread loads one element from global to shared mem
    unsigned int tid = threadIdx.x;
    unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
    sdata[tid] = (i < n) ? g_idata[i] : 0;
    __syncthreads();

    // do reduction in shared mem
    for (unsigned int s=1; s < blockDim.x; s *= 2) {
        // step = 2*s
        if (tid % (2*s) == 0) {
            // only threadIDs divisible by the step do work
            sdata[tid] += sdata[tid + s];
        }
        __syncthreads();
    }

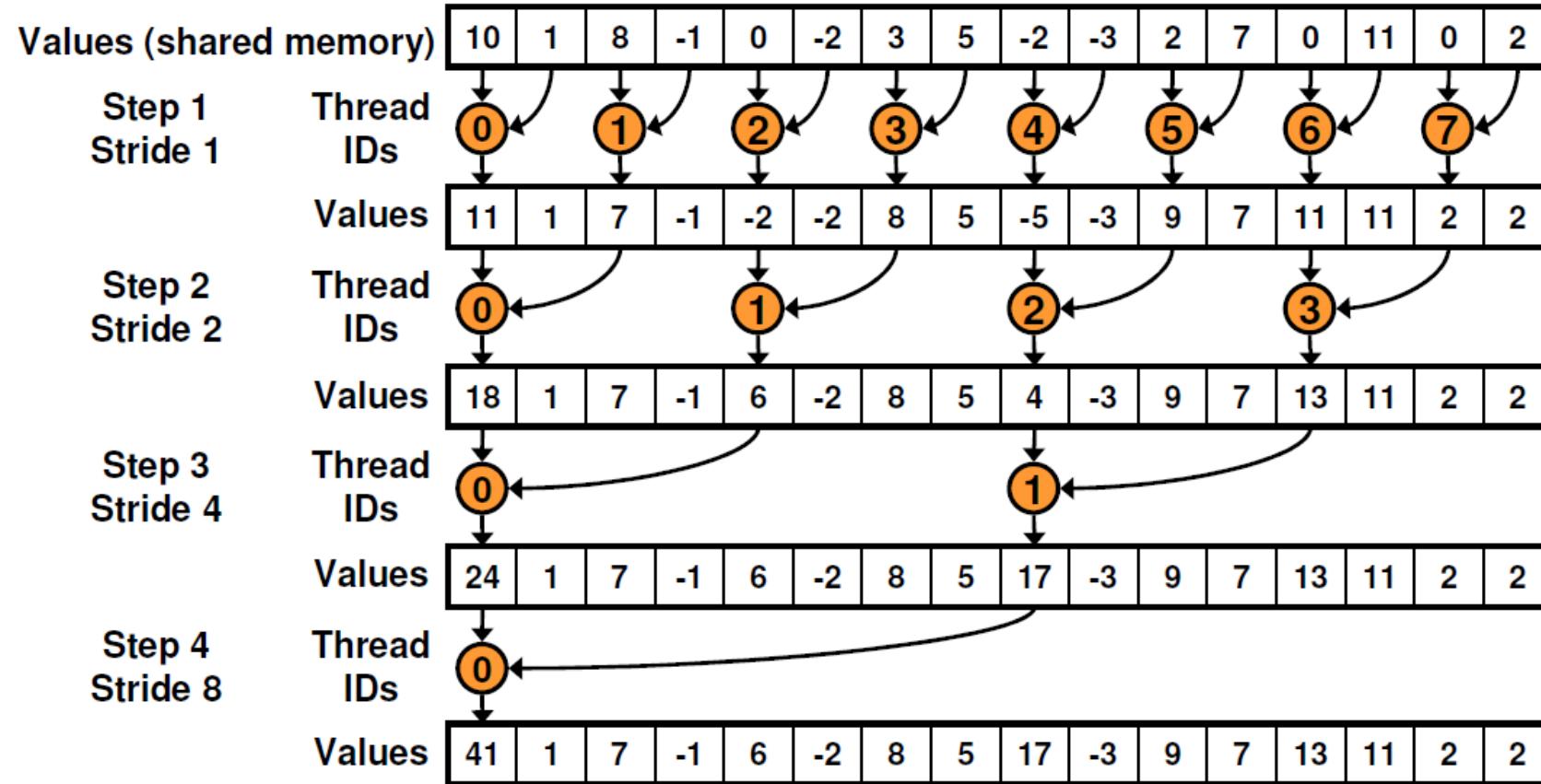
    // write result for this block to global mem
    if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
```

Reduction 1: Divergence Problem

```
__global__ void reduce0(int *g_idata, int *g_odata, int n){  
    extern __shared__ int sdata[];  
  
    // each thread loads one element from global to shared mem  
    unsigned int tid = threadIdx.x;  
    unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;  
    sdata[tid] = (i < n) ? g_idata[i] : 0;  
    __syncthreads();  
  
    // do reduction in shared mem  
    for (unsigned int s=1; s < blockDim.x; s *= 2) {  
        // step = s x 2  
        if (tid % (2*s) == 0) {  
            // only threadIDs divisible by the step participate  
            sdata[tid] += sdata[tid + s];  
        }  
        __syncthreads();  
    }  
  
    // write result for this block to global mem  
    if (tid == 0) g_odata[blockIdx.x] = sdata[0];
```

Highly
divergent code
leads to poor
performance

Reduction 2: Visualization



Reduction 2: Non-Divergent Branching

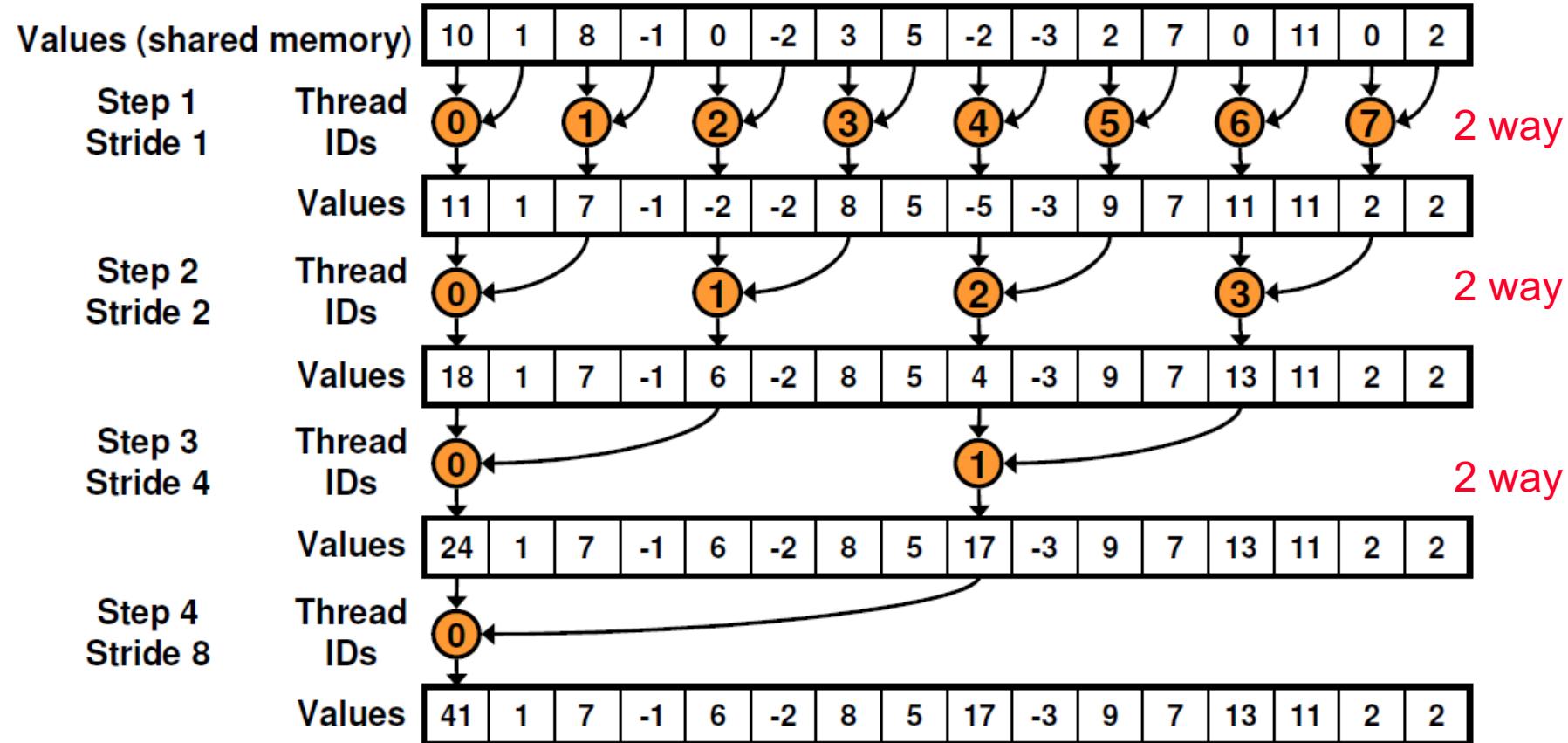
- ◆ Replace divergent branching code

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {  
    if (tid % (2*s) == 0) {  
        sdata[tid] += sdata[tid + s];  
    }  
    __syncthreads();  
}
```

- ◆ With strided index and non-divergent branching

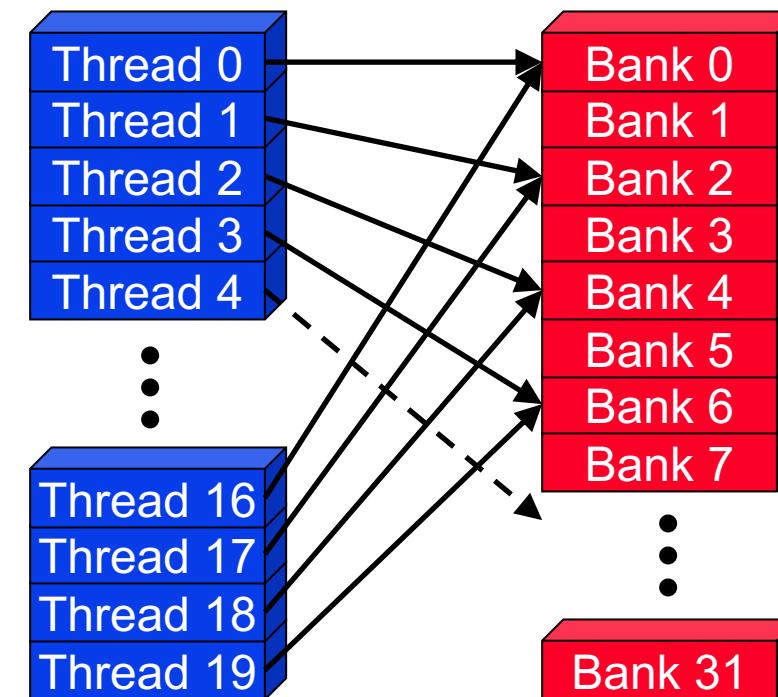
```
for (unsigned int s=1; s < blockDim.x; s *= 2) {  
    int index = 2 * s * tid;  
  
    if (index < blockDim.x) {  
        sdata[index] += sdata[index + s];  
    }  
    __syncthreads();  
}
```

Reduction 2: Bank Conflicts

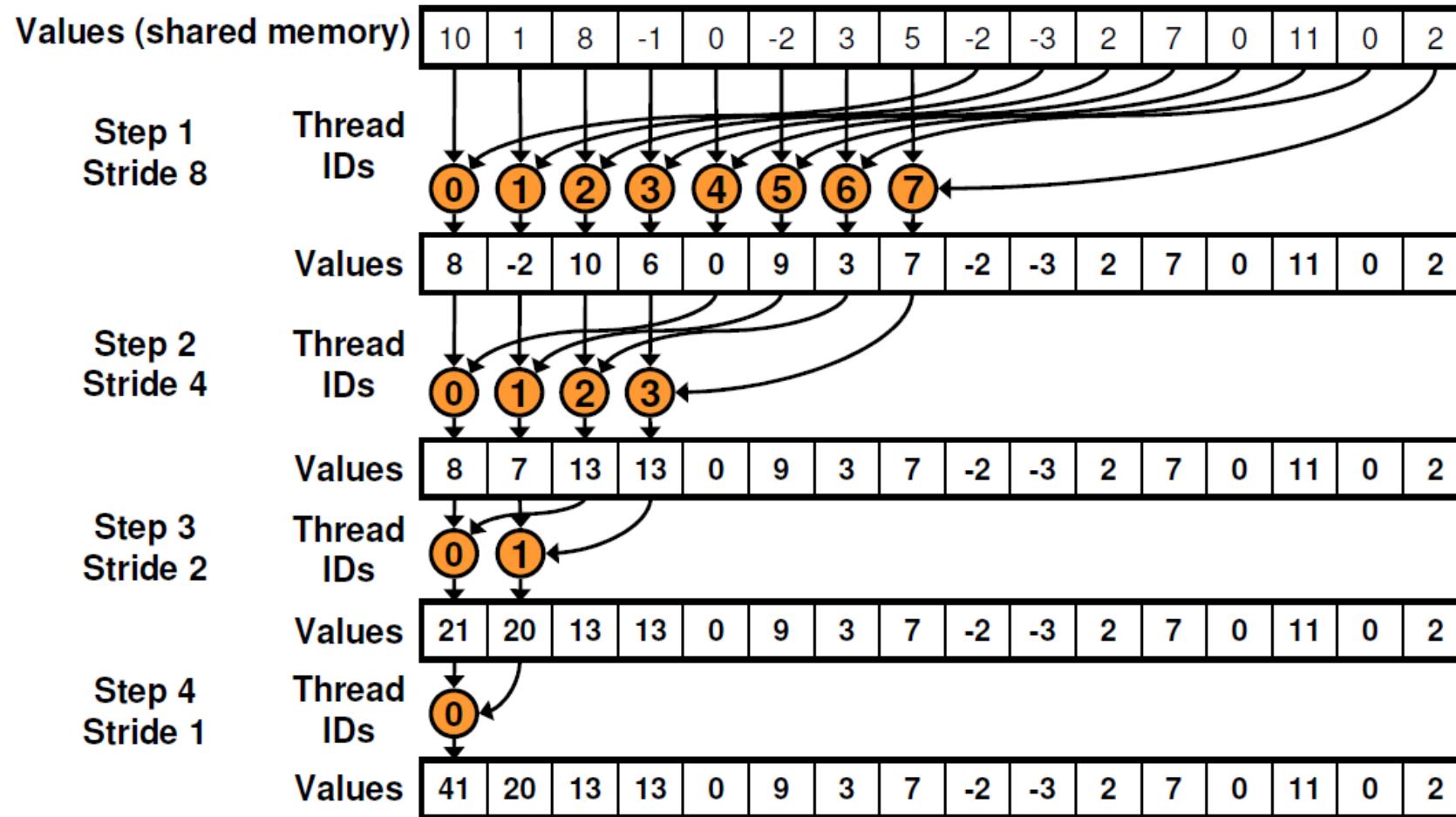


Why Bank Conflicts?

- ◆ First memory access from threads 0 & 1 goes to:
 - ◆ Banks 0 and 2
 - ◆ Keep increasing bank #, thread 16 accesses bank 0
- ◆ Oops, conflict!
 - ◆ These accesses are split into 2 sequential ones
 - ◆ Doubles our shared mem latency → slowdown!



Reduction 3: Visualization



Reduction 3: Sequential Accessing

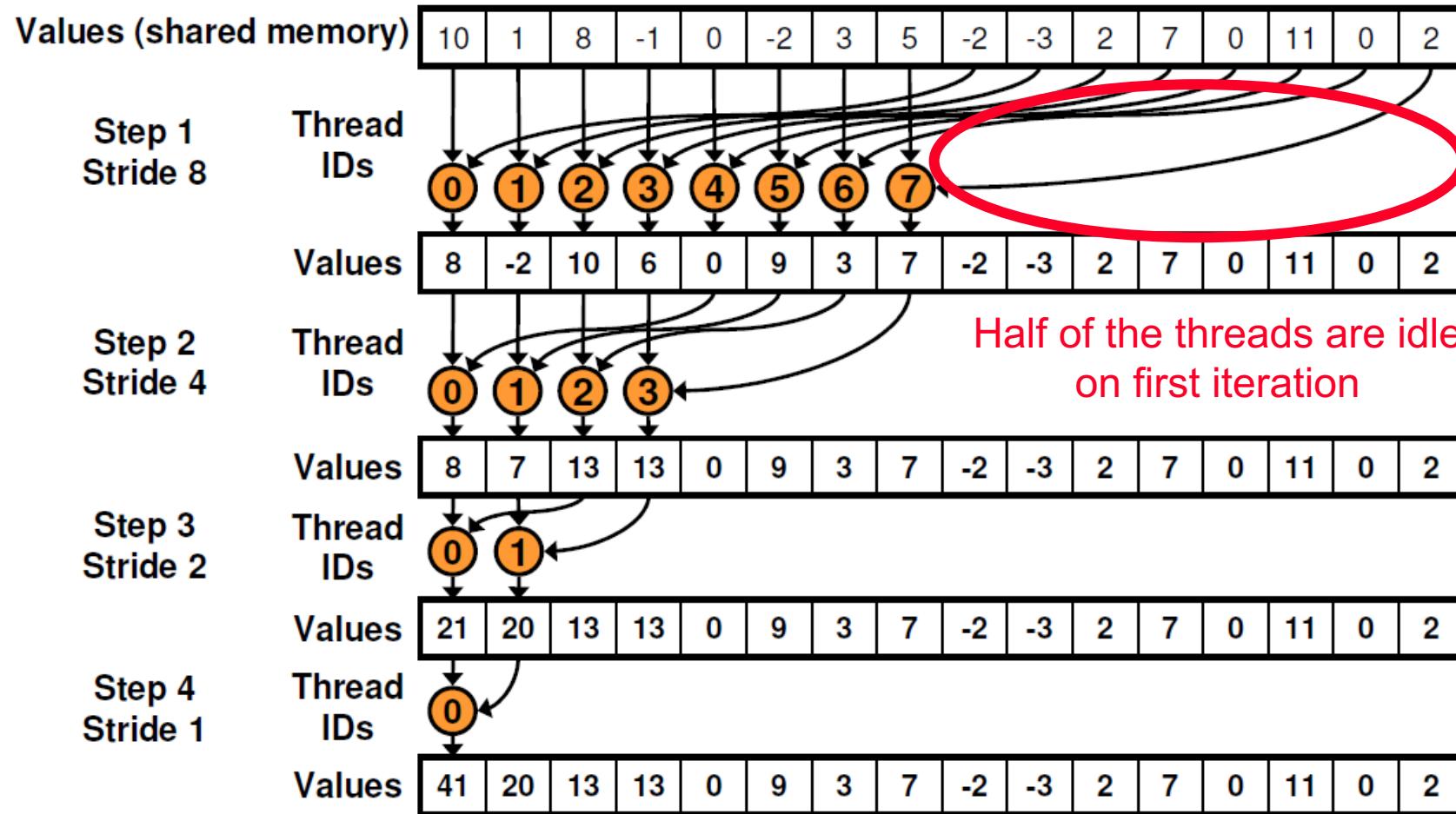
◆ Replace strided indexing

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {  
    int index = 2 * s * tid;  
  
    if (index < blockDim.x) {  
        sdata[index] += sdata[index + s];  
    }  
    __syncthreads();  
}
```

◆ With reversed loop and threadID-based indexing

```
for (unsigned int s = blockDim.x/2; s > 0; s /= 2) {  
    if (tid < s) {  
        sdata[tid] += sdata[tid + s];  
    }  
    __syncthreads();  
}
```

Reduction 3: Idle Threads



Reduction 4: Reduce During Load

- ◆ Instead of each thread loading one element

```
// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads();
```

- ◆ Allow each thread to load two elements

- ◆ Do the first reduction step alongside the load
- ◆ Halves the number of threads in a threadblock

With four optimizations kernel time reduced from 327 ms to 9 ms

```
// each thread loads two elements from global to shared mem
// and performs the first step of the reduction
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x * 2 + threadIdx.x;
sdata[tid] = (i < N) ? ((i + blockDim.x) < N ?
                           (g_idata[i] + g_idata[i + blockDim.x]) : g_idata[i]) : 0
__syncthreads();
```

Summary

- ◆ GPUs have large compute but are often limited by memory system
- ◆ GPUs use large register files to fast context switch for throughput
- ◆ Important to write programs to leverage memory coalescing
- ◆ Important to use shared memory where possible