CS302

GPU: Memory part Il
and Parallel Reduction

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi,
Andreas Moshovos, and from the companion material of the book “Programming Massively Parallel

Processors”
Copyright 2025

CS302 - Spring 2025 Lec.12.1 - Slide 1

Where are We?

:
¢ This lecture

¢ GPU memory part Il

¢ Use case study: Optimizing
CUDA program
-26 Mar

¢ Thursday exercise session
¢ Profiling CUDA programs

& Next class

¢ Advanced synchronization

CS302 - Spring 2025 Lec.12.1 - Slide 2

Review: CPU vs. GPU memory system

CPU GPU
 Limited number of registers Many registers
o OS saves/restores registers « H/W saves/restores registers
* One virtual address space * Many different address spaces
(per process) « Global memory
« Caches

* Local memory
e Constant memory
 Large caches for latency Shared memory (scratchpad)

hiding « Small caches — for b/w filtering

CS302 - Spring 2025 Lec.12.1 - Slide 3

Review: CPU vs. GPU memory system

GPU

* Many registers
« H/W saves/restores registers

» Many different address spaces

* Global memory
« Caches

mm) - Local memory
e Constant memory

« Shared memory (scratchpad)
« Small caches — for b/w filtering

CS302 - Spring 2025 Lec.12.1 - Slide 4

GPU Memory Hierarchy: Local Memory

¢ Local memory (per thread):
¢ Private to each GPU thread Thread

¢ Each thread can have different data for
the same virtual address in local memory Local Memory
¢ 24-bit virtual address space

vs. 48-bit Global memory address space

¢ Everything on the stack that can’t fit in registers
¢ Register spilling

¢ Allocation of array variables __global__ void example(char® global_mem) {

. : char local_mem[10];
¢ Physically stored in global memory Tocal mem =

= global_mem;
¢ Local memory is a logical address space }
¢ Same latency as global memory
¢ Accesses to the local memory are always coalesced
¢ Much slower than registers!

CS302 - Spring 2025 Lec.12.1 - Slide 5

GPU Memory Hierarchy: Constant Memory

¢ A special type of memory allocation for data that won't be written

to, i.e., constant
o Immutable during the execution of the kernel

¢ Hardware cache contents of constant memory in a specialized, fast

cache
o No need for write ports
o No need for write-back data in the constant cache

CS302 - Spring 2025 Lec.12.1 - Slide 6

Constant Cache

L e |

| 'GPU | :
Private 1 | L
| Constant Constant Constant Constant Constant | | Constant |! : Memory
tSoMeach I : REG REG REG REG REG REG : access
|
I SM SM SM SM SM SM Irl" coalescer
N e s e Coerae
by : |
: | t t 1 t t t 1 |
I : Interconnection Network : : Logically
: ' } } } |_L shared
L L2$ L2 $ L2$,/:/: across all
: I Partition Partition Partition I ! SMs of a
| A A A |
Bt T ES— f-——----- i GPU
|
Global ! : I Physicall
T——| GDDR6/HBM3 GDDR6/HBM3 Off-chip DRAM GDDR6/HBM3 : Y_ y
memory , partioned for

__ I bandwidth

CS302 - Spring 2025

Lec.12.1 - Slide 7

Allocating Constant Memory

¢ Declare constant memory array as global variable - accessible to
all threads of a kernel

__constant__ float filter_c[FILTER_DIM][FILTER_DIM];

¢ Must initialize constant memory from the host
o Cannot be modifies during a kernel’'s execution

cudamMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM* (float));

¢ Can only allocate up to 64KB

o Otherwise, input is also constant, but it is too large to put in constant
memory

CS302 - Spring 2025 Lec.12.1 - Slide 8

Example use of Constant Memory: Convolution

¢ Convolution: Widely used operation in video processing, signal
processing, CNNs etc.

¢ Converts an array (1D/2D/3D)
iInto another array

of nearby elements
o Weights are in a filter array

o Weights are constant and
are needed to calculate every out

CS302 - Spring 2025 Lec.12.1 - Slide 9

Example use case of Constant Memory: Convolution

]
[
filter
(in constant
memory)
input output
(in global (in global
memory) memory)
An output element computed by one thread looping over and filter weights

CS302 - Spring 2025 Lec.12.1 - Slide 10

Example use case of Constant Memory: Convolution

filter I I I

(in constant | | | | |
memory) 1]]] |
input output
(in global (in global
memory) memory)
An output element computed by one thread looping over and filter weights

CS302 - Spring 2025 Lec.12.1 - Slide 11

Example use case of Constant Memory: Convolution

static __constant__ float filter_c[FILTER_DIM][FILTER_DIM];

//Allocate input and output arrays using cudaMalloc

//Populate input array

cudaMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM* (float));

convolution_kernel<<dimGrid, dimBloc>> (input_array, output_array, x_dim, y_dim);

Host code

CS302 - Spring 2025 Lec.12.1 - Slide 12

Example use case of Constant Memory: Convolution

__global__ void convolution_kernel(float* input, float* output, unsigned int width,
unsigned int height) {
int outRow = blockIdx.y*blockDim.y + threadIdx.y;
int outCol blockIdx.x*blockDim.x + threadIdx.x;
(outRow < height && outCol < width) {
float sum = 0.0f;
(int filterRow = 0; filterRow < FILTER_DIM; ++filterRow) {
(int filtercol = 0; filterCol < FILTER_DIM; ++filtercol) {
int inRow = outRow - FILTER_RADIUS + filterRow;
int inCol = outCol - FILTER_RADIUS + filtercol;
(inRow >= 0 & & inRow < height & & inCol >= 0 & & i1nCol < width) {
sum += filter_c[filterRow][filtercCol]*input[inRow*width + inCol];

}
}

output[outRow*width + outCol] = sum;

Device code

CS302 - Spring 2025 Lec.12.1 - Slide 13

Review: CPU vs. GPU memory system

GPU

* Many registers
« H/W saves/restores registers

» Many different address spaces

* Global memory
« Caches

* Local memory

e Constant memory
« Shared memory (scratchpad)

« Small caches — for b/w filtering

CS302 - Spring 2025 Lec.12.1 - Slide 14

Shared memory (Scratchpad): A S/W Managed Cache

¢ H/W Managed Cache (Traditional Caches):
o Hardware decides what to bring into the cache and what to evict
o Hardware monitors to access patterns for decision-making
o Example: L1, L2 caches
o Pros: No need to modify applications to use caches
o Cons: Lack of high-level program semantic knowledge

¢ S/W Managed Cache:

o On-chip hardware cache structure

o Software (program) must direct what to bring into the cache and what to evict
o Use a program’s semantic behaviour to decide cache contents

o Example: GPU scratchpad/shared memory

o Pros: Use program knowledge for accurate caching

o Cons: Applications must be modified to use such caches

CS302 - Spring 2025 Lec.12.1 - Slide 15

Shared memory (Scratchpad): A S/W Managed (H/W) Cache

L e |

. 1GPU !
. | 1 |
Private 1 | |
t hl Constant Constant Constant Constant Constant | | Constant |! : Memory
O eac | : REG REG REG REG REG REG : access
SM |
: SM SM SM SM ! : coalescer
. s | S E 115 | LIS
|
/% t t : I
| . I .
Shared : : Interconnection Network : . Logically
memoryi | ! ! } |_1-shared
(per SM) | L2$ L2$ L2$ /:/|across all
: : PartAition PartAition PartAition : : SMs of a
N L e e Yy — W L L L M — — — — — — Y/ oo 1
.] : t GPU
Global | . | Phvsicall
T——| GDDR6/HBM3 GDDR6/HBM3 Off-chip DRAM GDDR6/HBM3 , Y_Slca y
memory: | partioned for
—— I bandwidth

cs302-spring 2025 Shared memory/Scratchpad shares the same physical structure as L1 $

Lec.12.1 - Slide 16

Relative Latencies of Various Memory Types

L e |

|
1A few KBs

. 1GPU |
! I (per SM)
~ d cycles : Constant Constant | [Constant Constant Constant | | Constant |! :
~1cycles, 1 [IRE REG REG REG REG rec 1| 1256KB
| : SM SM SM SM SM 1 :(per SM)
|
ot | S T B S TR

o } } } . 1(per SM)

| : Interconnection Network : :
~ 30 o 12$ 12 $ 12°$: : ~40 MB
cycles : | Partition Partition Partition L

| A A A | |

N e, Tt oo :

; i i 1- | 10s of GBs to
~500 | GDDR6/HBM3 GDDR6/HBM3 Off-chip DRAM = GDDR6/HBMS3 ' 200 GBs
cycles | I

|

cs302-spring 2025 Shared memory/Scratchpad shares the same physical structure as L1 $ Lec.121 - Slide 17

Shared memory (Scratchpad): A S/W Managed Cache

¢ Private to each threadblock

o Called “Shared” memory because it is
shared amongst all threads if a threadblock

Block

i

Shared
Memory

¢ Each threadblock has its own copy of shared memory variables
o # of copies of each shared memory variable allocated == # of threadblocks

¢ Contents deleted after a threadblock finishes execution

CS302 - Spring 2025

Lec.12.1 - Slide 18

Steps of using Shared Memory (Scratchpad)

@ Allocate shared memory
@ Load data into shared memory from global memory

@ Repeatedly access data from shared memory = Leverage reuse
o Use of shared memory is useful only if there is significant data reuse
o Programmer must be aware of the data reuse

‘Once computation is done, write results back to global memory

CS302 - Spring 2025 Lec.12.1 - Slide 19

Allocating and Populating Shared Memory

¢ Two ways to allocate shared memory

¢ Static allocation: Allocation size fixed at compile time

__shared__ float in_s[IN_TILE_DIM][IN_TILE_DIM][IN_TILE_DIM];

(1 >08&% 1 < N&& J > 08&% J < N&& k >= 0 &% k < N) {
in_s[threadIdx.z][threadIdx.y][threadIdx.x] = 1n[1*N*N + J*N + k];
}

¢ Cons: Maximum up to 48KB per threadblock
The size of the allocation cannot be input-dependent

CS302 - Spring 2025 Lec.12.1 - Slide 20

Allocating and Populating Shared Memory

¢ Dynamic allocation: Size of the allocation set during kernel launch
o Can allocate one chunk (one variable) - partition if needed

o Pass the size of the chunk during kernel launch
o Can be larger than 48KB

//device code
_global__ void alloc_shared () {

extern __shared__ float in_s[];

float *pl_v = &in_s[0]; “ — Allocaiton size not specified statically
float *p2_v = &in_s[N]
- Size (per threadblock) provided during

kernel launch time

//host code
;¥¥oc_shared <<<nBlk, nTh, (ZEEE%izeof(f1oat))> >

CS302 - Spring 2025 Lec.12.1 - Slide 21

Configuring Shared Memory and L1 Cache sizes

¢ Can provide hints to the CUDA runtime on preference of L1 cache
vs. Shared memory

cudaFuncSetCacheConfig (kernel name, enum cacheConfig)

¢ Example cacheConfig options:

o cudaFuncCachePreferShared
o cudaFuncCachePreferl]
o cudaFuncCachePreferNone

CS302 - Spring 2025 Lec.12.1 - Slide 22

Example use of Shared Memory: Titled Matrix Multiplication

N]
< > Gy

|l | —

ﬁ_ - X

]

¢ Review (Week 3): Naive matrix multiplication causes too many $ miss

CS302 - Spring 2025 Lec.12.1 - Slide 23

Example use of Shared Memory: Titled Matrix Multiplication

¢ Review (Week 3): Naive matrix multiplication causes too many $ miss

CS302 - Spring 2025 Lec.12.1 - Slide 24

Example use of Shared Memory: Titled Matrix Multiplication

N

< >

) -
N = X

¢ Review (Week 3): Tiling to improve data reuse - less cache misses

o Compute the partial results of each submatrices (tile) before moving to the
next

CS302 - Spring 2025 Lec.12.1 - Slide 25

Example use of Shared Memory: Titled Matrix Multiplication

| T

¢ Review (Week 3): Tiling to improve data reuse - less cache misses
o Compute the partial results of each submatrices (tile) before moving to the next

o Limitations: Cache hits are not guaranteed.
L1 cache is shared amongst all threadblocks of a SM
L2 cache is shared amongst all threadblocks of a grid

CS302 - Spring 2025 Lec.12.1 - Slide 26

Example use of Shared Memory: Titled Matrix Multiplication

N

<

2

i

n

C

n = Tile Width

¢ One threadblock to compute results of one tile of the output matrix

CS302 - Spring 2025

Lec.12.1 - Slide 27

Example use of Shared Memory: Titled Matrix Multiplication

N
~ >

n
v L

C A B
n = Tile Width

¢ Threads of a threadblock load one tile each from two operand
matrices to its copy of shared memory variables

CS302 - Spring 2025 Lec.12.1 - Slide 28

Example use of Shared Memory: Titled Matrix Multiplication

¢ Threads of a threadblocks computes partial results for a tile

CS302 - Spring 2025 Lec.12.1 - Slide 29

Example use of Shared Memory: Titled Matrix Multiplication

N

<

2

i

]

n

C

¢ Repeat for next tiles ..

CS302 - Spring 2025

Lec.12.1 - Slide 30

Example use of Shared Memory: Titled Matrix Multiplication

¢ Repeat for next tiles

CS302 - Spring 2025

N

<

2

|

n
L

C

Lec.12.1 - Slide 31

Example use of Shared Memory: Tiled Matrix Multiplication

__shared__ float A_S[TILE_DIM][TILE_DIM]; _ .
" chared__ float B.s ETILE_DIM% ETILE_DIM% ./l Each threadblock his its copy of shared mem variables

blockIdx.y*blockDim.y + threadIdx.y;
blockIdx.x*blockDim.x + threadIdx.x;

unsigned int row

unsigned int col // The element of the output matrix to be

computed by a given thread

float sum = 0.0f;
(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) { [/ Repeat N/TILE DIM (# phases)
// Load tile to shared memory

A_s[threadidx.y][threadIdx.x]
B_s[threadIdx.y][threadIdx.x]

A[row*N + tile*TILE_DIM + threadIdx.x];

B[(tile*TILE_DIM + threadTdx.y)*N + col]; | -0ads a tile to shared

memory from global mem.

—syncthreads(); //Wait for loading to be compete

// Compute with tile

(unsigned int 1 = 0; 1 < TILE_DIM; ++1) { :
sum += A_s[threadTdx.y][11*B_s[i][threadTdx.x]; //Each thread calculates partial result
}

__syncthreads(); . .
} [/Wait for threads in a threadblock to complete

computation before next round/phase

Clrow*N + col] = sum; i L
CS302 - Spring 2025 /[Final result of individual output element LecA2.1 - Slide 32

Advantage of using Shared Memory

¢ Saves global memory access
¢ Access to shared memory is as fast as L1 cache

¢ Unlike caches, reductions in global memory access are guaranteed
o Not dependent on hardware’s cache replacement policies

¢ Every threadblock has its own copy of shared memory variables

CS302 - Spring 2025 Lec.12.1 - Slide 33

Performance pitfall: Beware of Shared Memory Bank Conflicts

0x00
0x80

4 bytes/

BANKO BANK1

BANK2 BANK3

¢ Shared memory is organized in 32 banks
¢ Each bank can service one address at a time

¢ At most 32 simultaneous accesses

Ox7F

BANK 29 BANK 30 BANK 31

¢ Successive 32-bit (4 bytes) words are assigned to successive banks

CS302 - Spring 2025

Lec.12.1 - Slide 34

Performance pitfall: Beware of Shared Memory Bank Conflicts

0x00
0x80

|
4 bytes/

BANKO BANK1

0

—

3

33

BANK2 BANK3

__shared int arr[64]

¢ Shared memory is organized in 32 banks
¢ Each bank can service one address at a time

¢ At most 32 simultaneous accesses

30

62

BANK 29 BANK 30 BANK 31

Ox7F

¢ Successive 32-bit (4 bytes) words are assigned to successive banks

CS302 - Spring 2025

Lec.12.1 - Slide 35

Performance pitfall: Beware of Shared Memory Bank Conflicts

S S N IR S

v v v

4 bytes

BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31

¢ Multiple simultaneous accesses to the same bank
¢ Different 4-byte words:
¢ Bank conflict! - Conflicting accesses are serialized

¢ The same 4-byte word:
¢ Multicast — 1 fetch (could be different bytes within the word)

CS302 - Spring 2025 Lec.12.1 - Slide 36

Performance pitfall: Beware of Shared Memory Bank Conflicts

T~ v

o0 o T~

4 bytes

BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31

¢ Multiple simultaneous accesses to the same bank
¢ Different 4-byte words:
¢ Bank conflict! - Conflicting accesses are serialized

¢ The same 4-byte word:
¢ Multicast — 1 fetch (could be different bytes within the word)

CS302 - Spring 2025 Lec.12.1 - Slide 37

Performance pitfall: Beware of Shared Memory Bank Conflicts

2 Y
{/ ! \)(/ 4
SN
\
l\ IH o0 o \\'L
4bytes | _|//
BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31

¢ Multiple simultaneous accesses to the same bank
¢ Different 4-byte words:
¢ Bank conflict! - Conflicting accesses are serialized

¢ The same 4-byte word:
¢ Multicast — 1 fetch (could be different bytes within the word)

CS302 - Spring 2025 Lec.12.1 - Slide 38

Performance pitfall: Beware of Shared Memory Bank Conflicts

/ v
A 4 <

o0 o T~

4 bytes

BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31

¢ Multiple simultaneous accesses to the same bank
¢ Different 4-byte words:
¢ Bank conflict! - Conflicting accesses are serialized

¢ The same 4-byte word:
¢ Multicast — 1 fetch (could be different bytes within the word)

CS302 - Spring 2025 Lec.12.1 - Slide 39

Performance pitfall: Beware of Shared Memory Bank Conflicts

S S N IR S

v v v

4 bytes

BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31
¢ When would you have bank conflicts?

¢ Allocation (element) size
¢ Index expression into the data structure

__shared int arr[64]
arr[threadldx.x]++;

CS302 - Spring 2025 Lec.12.1 - Slide 40

Performance pitfall: Beware of Shared Memory Bank Conflicts

: HI

NO conflict
|
o 0 o0
4 bytes
BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31
¢ When would you have bank conflicts?

__shared int arr[64]

¢ Allocation (element) size ArTblockldx x]++;

¢ Index expression into the data structure

CS302 - Spring 2025 Lec.12.1 - Slide 41

Performance pitfall: Beware of Shared Memory Bank Conflicts

Z_Wa'ryhread 0 g Thread 16 Thread 31
conflict \/% Thread 15
VS -

A 1 N || LAE Vi
(1T -~ INEd
[‘o NEEY,

4bytes | _| / N NIP%

BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31

¢ When would you have bank conflicts?

__shared int arr[64]

Allocation (element) size arthreadldx x 2 ++

¢ Index expression into the data structure

CS302 - Spring 2025 Lec.12.1 - Slide 42

Performance pitfall: Beware of Shared Memory Bank Conflicts

Thread 0 g Threy Thread 16 Thread 24
4-way /#\ T /

flict | / T

conflic - |

rd 7 7
— P

-~ // e 0 0

4 bytes |\ P

B 0 BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31
¢ When would you have bank conflicts?

__shared int arr[128]

Allocation (element) size arthreadidx x*d]++

¢ Index expression into the data structure
Worst case: 32-way conflict

CS302 - Spring 2025 Lec.12.1 - Slide 43

Performance pitfall: Beware of Shared Memory Bank Conflicts

Thread 0 g Threy Thread 16 Thread 24
4-way /#\ T /

L~
= L~
conflict / - // __—
1]
— —
-~ /// o 0 o
4 bytes |\ P
1\
B 0 BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31
¢ When would you have bank conflicts? struct d4{
] _ intx,y, z, w;
¢ Allocation (element) size)
¢ Index expression into the data structure __shared d4 arr[128]

arr[threadldx.x]++;

CS302 - Spring 2025 Lec.12.1 - Slide 44

Avoiding Shared Memory Conflicts through Padding

Thread 0 g Thread 8 § Thread 16 Thread 24§
BANK 24
BANK 16
NO conflict——{ BANM\ \ ,/
SN //
~~
0 0
4 bytes
BANKO BANK1 BANK2 BANK3 BANK 29 BANK 30 BANK 31
¢ When would you have bank conflicts? struct d4{
: : int x, y, z, w, pad;
Allocation (element) size)
¢ Index expression into the data structure __shared d4 arr{128]

Alternative: Change indexing strategy (if possible) arr[threadldx.x]++;

CS302 - Spring 2025 Lec.12.1 - Slide 45

Impact of Shared Memory on Occupancy

¢ Recall how occupancy is affected by various GPU resources
o Max. 64 warps per SM

Resource limitations on

o Max. 2048 threads per SM NVIDIAA100 GPU

o Max. 32 threadblocks per S Number of warp schedulable is
o Max. 64K registers per SM limited by whichever resource
o Up to 164KB per SM hits limit first

¢ The amount of shared memory allocation can limit occupancy

CS302 - Spring 2025 Lec.12.1 - Slide 46

Impact of Shared Memory on Occupancy

Constraints in scheduling threadblock:
¢ All threads of a threadblock must execute on the same SM
¢ Each threadblock has own copy of the shared memory allocations

¢ Shared memory capacity on an SM must accommodate the needs
of all threadblocks on the SM

CS302 - Spring 2025 Lec.12.1 - Slide 47

Impact of Shared Memory on Occupancy

¢ Example: Maximum number of threads per SM 2048

¢ Maximum shared memory capacity per SM: 164 KB

¢ A kernel allocates 32KB of shared memory (per threadblock)
¢ Each threadblock launched with 256 threads

¢ What is the maximum occupancy? Ans: 1280/2048 (62.5%)

CS302 - Spring 2025 Lec.12.1 - Slide 48

Summary: Different Memory Types of GPU

Variable declaration Memory Scope Lifetime
__device global grid application
/cudaMalloc int
globalVar;

__device constant grid application
__constant int
constantVar;
__device shared block block
__shared int
sharedVar;

register thread thread
int localVar;

global thread thread

int localArr|[N];

Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0)

Thread (1, 0)

Thread (0,

0) Thread (1, 0)

Z'N

'S

'S

7' N

CS302 - Spring 2025

Lec.12.1 - Slide 49

END-TO-END EXAMPLE

PARALLEL REDUCTION IN CUDA

CS302 - Spring 2025

Reduction Operations

¢ Reduce multiple values to a single value

¢ ADD, MUL, AND, OR, ...

¢ Useful primitive when operating on large datasets

CS302 - Spring 2025

10

11

12

13

ADD ¥

46

Lec.12.1 - Slide 51

Sequential Reduction

¢ Process first two elements, produce partial result
¢ Every level takes intermediate, and adds 1 element

¢ O(N) steps

CS302 - Spring 2025

10

11

12

13

N

21

N

33

N

46

Lec.12.1 - Slide 52

Parallel Reduction

¢ Pair-wise reduction in tree-like steps
¢ log,(N) where N is the number of elements

CS302 - Spring 2025

6

I

8|9

10| 11

12

13

N/

13

N

30

N/

17

N/

21

SN

N/

25

46

\/

/6

Lec.12.1 - Slide 53

Parallel Reduction with Higher Degree

¢ Process x elements per step

¢ log,(N)

& Forx=4:

CS302 - Spring 2025

10

11

12

13

76

Lec.12.1 - Slide 54

Reduction: The Big Picture

8 blocks

S '-.\\\ f/// -
"1:223;5?’ Level 1:
1 block

¢ Use the same code for all reduction levels

¢ The same kernel is launched multiple times with different
numbers of TBs

¢ This example uses 128 threads per TB...

¢ For every 128 elements, there is one TB

¢ In this graphic, smaller scale:
¢ 8 elements per TB, 8 blocks = 64 elements total

CS302 - Spring 2025

Lec.12.1 - Slide 55

Reduction Optimization

¢ Reduction has low arithmetic intensity
¢ One Flop / output element (add, compare, etc...)
¢ All input elements are loaded from memory

¢ Therefore, we must optimize for bandwidth

¢ Goal: reduce global memory accesses
¢ Since partial sums reused, load to shared memory first

CS302 - Spring 2025 Lec.12.1 - Slide 56

Reduction 1: Interleaved Addressing

¢ Load Data
¢ Loads 1 element/thread from global to shared memory

¢ Reduction: proceed in log,N steps
¢ Athread reduces two elements
¢ The first two elements by the first thread
¢ The next two by the next thread and so on

¢ At the end of each step
¢ Deactivate half of the threads

¢ Terminate when one thread left
¢ Write back to global memory, visible to next kernel

CS302 - Spring 2025 Lec.12.1 - Slide 57

Reduction 1: Visualization

CS302 - Spring 2025

Values (shared memory)| 10

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

1

N

o

Thread
IDs

Values | 11 | 1 -1 -2 -2 5|-3|9 11 | 11
Thread

Values | 18 | 1 -1 6 |-2 4 -39 13 | 11
Thread

Values | 24 | 1 -1 6 | -2 17 -3 1 9 13 | 11
Thread _

IDs

Values | 41 | 1 -1 6 | -2 17 -3 1 9 13 | 11

Lec.12.1 - Slide 58

Reduction 1: Interleaved Addressing

CS302 - Spring 2025

__global void reduceO(int *g idata, int *g odata, int n) {

extern shared int sdatal]l;

// each thread loads one element from global to shared mem
unsigned int tid = threadIldx.x;

unsigned int 1 = blockIdx.x*blockDim.x + threadIdx.x
sdatal[tid] = (1 < n) ? g idata[i] : 0;

__syncthreads () ;

// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {

// step = 2*s

if (tid % (2*s) == 0) {
// only threadIDs divisible by the step do work
sdata[tid] += sdatal[tid + s];

}

__syncthreads () ;

// write result for this block to global mem
1f (tid == 0) g odata[blockIdx.x] = sdatal[0];

Lec.12.1 - Slide 59

Reduction 1: Divergence Problem

CS302 - Spring 2025

__global void reduceO(int *g idata, int *g odata, int n) {
extern shared 1int sdatal];

// each thread loads one element from global to shared mem
unsigned int tid = threadIldx.x;

unsigned int 1 = blockIdx.x*blockDim.x + threadIdx.x
sdatal[tid] = (1 < n) ? g idata[i] : 0;

__syncthreads () ;

// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {

Highly
divergentcodef if (tid % (2*s) == 0) {

leads to poor // only threadIDs divisible by the step participate
performance sdata[tid] += sdatal[tid + s];

__syncthreads () ;

// write result for this block to global mem
1f (tid == 0) g odata[blockIdx.x] = sdatal[0];

Lec.12.1 - Slide 60

Reduction 2: Visualization

Values (shared memory)|10(1|8 |10 |-2|3|5|-2[-3[2]|7]0]|11[0 2|

et e & & & & & & ¢

Values1117-1-2-285-5-397111122|

Step 2 Thread

Stride 2 IDs
Values
Step 3 Thread
Stride 4 IDs
Values
Step 4 Thread
Stride 8 IDs

Values4117-16-28517-397131122|

CS302 - Spring 2025 Lec.12.1 - Slide 61

Reduction 2: Non-Divergent Branching

¢ Replace divergent branching code

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdatal[tid] += sdataltid + s];
}

__syncthreads () ;

}

¢ With strided index and non-divergent branching

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads () ;

CS302 - Spring 2025 Lec.12.1 - Slide 62

Reduction 2: Bank Conflicts

Values (shared memory)
Step 1 Thread

Stride 1 IDs
Values
Step 2 Thread
Stride 2 IDs
Values
Step 3 Thread
Stride 4 IDs
Values
Step 4 Thread
Stride 8 IDs
Values

CS302 - Spring 2025

10| 1 35-2-2701102|
v v
2 way
11| 1 85-5-97111122|
2 way
2 |
2 way
2 |
41| 1 8 | 5|17 97131122|

Lec.12.1 - Slide 63

Why Bank Conflicts?

¢ First memory access from threads 0 & 1 goes to:
¢ Banks 0 and 2
¢ Keep increasing bank #, thread 16 accesses bank O

Thread 0

¢ Oops, conflict! Thread 1
: Thread 2

¢ These accesses are split Thread 3

Into 2 sequential ones Thread 4

¢ Doubles our shared mem

latency — slowdown!
Thread 16
Thread 17

Thread 18
Thread 19 Bank 31

CS302 - Spring 2025 Lec.12.1 - Slide 64

CS302 - Spring 2025

Values (shared memory)

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Reduction 3: Visualization

10

11

21

13

13

11

41

13

13

11

Lec.12.1 - Slide 65

Reduction 3: Sequential Accessing

¢ Replace strided indexing

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}

__syncthreads () ;

}
¢ With reversed loop and threadlD-based indexing

for (unsigned int s = blockDim.x/2; s > 0; s /= 2) {
if (tid < s) {
sdatal[tid] += sdataltid + s];
}

__syncthreads () ;

CS302 - Spring 2025 Lec.12.1 - Slide 66

CS302 - Spring 2025

Values (shared memory)

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Reduction 3: Idle Threads

10| 1

Half of the threads are idle
on first iteration

2|1 7(0(11|O0
21 (20|13 |13 2|1 7(0(11| 0
4112013 | 13 2|1 7(0(11| 0

Lec.12.1 - Slide 67

Reduction 4: Reduce During Load

¢ Instead of each thread loading one element

unsigned int tid = threadIldx.x;

unsigned int 1 = blockIdx.x*blockDim.x + threadIdx.x
sdatal[tid] = (1 < n) ? g idata[i] : 0;
__syncthreads () ;

¢ Allow each thread to load two elements {

¢ Do the first reduction step alongside the load

With four optimizaitons kernel J
¢ Halves the number of threads in a threadblock

time reduced from 327 ms to 9 ms

unsigned int tid = threadIldx.x;
unsigned int 1 = blockIdx.x* blockDim.x * 2 + threadIldx.x;
sdata[tid] = (1 < N) ? ((i + blockDim.x) < N ?

(g idatal[i1] + g idatal[i + blockDim.x]) : g idatali]) : O
__syncthreads () ;

CS302 - Spring 2025 Lec.12.1 - Slide 68

Summary

¢ GPUs have large compute but are often limited by memory system
¢ GPUs use large reqister files to fast context switch for throughput
¢ Important to write programs to leverage memory coalescing

¢ Important to use shared memory where possible

CS302 - Spring 2025 Lec.12.1 - Slide 69

