
CS302 – Spring 2025 Lec.12.1 - Slide 1

CS302

GPU: Memory part II
and Parallel Reduction

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi,
Andreas Moshovos, and from the companion material of the book “Programming Massively Parallel
Processors”
Copyright 2025

CS302 – Spring 2025 Lec.12.1 - Slide 2

Where are We?

u This lecture
u GPU memory part II
u Use case study: Optimizing

CUDA program

u Thursday exercise session
u Profiling CUDA programs

u Next class
u Advanced synchronization

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.12.1 - Slide 3

Review: CPU vs. GPU memory system

• Limited number of registers
o OS saves/restores registers

• One virtual address space
(per process)

• Large caches for latency
hiding

• Many registers
• H/W saves/restores registers

• Many different address spaces
• Global memory

• Caches
• Local memory
• Constant memory
• Shared memory (scratchpad)

• Small caches – for b/w filtering

CPU GPU

CS302 – Spring 2025 Lec.12.1 - Slide 4

Review: CPU vs. GPU memory system

• Limited number of registers
o OS saves/restores registers

• One virtual address space
(per process)

• Large caches for latency
hiding

• Many registers
• H/W saves/restores registers

• Many different address spaces
• Global memory

• Caches
• Local memory
• Constant memory
• Shared memory (scratchpad)

• Small caches – for b/w filtering

CPU GPU

CS302 – Spring 2025 Lec.12.1 - Slide 5

GPU Memory Hierarchy: Local Memory

u Local memory (per thread):
u Private to each GPU thread

u Each thread can have different data for
the same virtual address in local memory

u 24-bit virtual address space
vs. 48-bit Global memory address space

u Everything on the stack that can’t fit in registers
u Register spilling
u Allocation of array variables

u Physically stored in global memory
u Local memory is a logical address space
u Same latency as global memory
u Accesses to the local memory are always coalesced
u Much slower than registers!

Thread

Local Memory

__global__ void example(char* global_mem) {
 char local_mem[10];
 local_mem = global_mem;
}

CS302 – Spring 2025 Lec.12.1 - Slide 6

GPU Memory Hierarchy: Constant Memory

u A special type of memory allocation for data that won’t be written
to, i.e., constant
o Immutable during the execution of the kernel

u Hardware cache contents of constant memory in a specialized, fast
cache
o No need for write ports
o No need for write-back data in the constant cache

CS302 – Spring 2025 Lec.12.1 - Slide 7

Constant Cache

GPU

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $

GPU package

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

Private
to each
SM

Logically
shared
across all
SMs of a
GPU

Physically
partioned for
bandwidth

Global
memory

Memory
access
coalescer

Constant ConstantConstant Constant Constant ConstantConstant ConstantConstant Constant Constant Constant
REG REG REG REG REG REG

CS302 – Spring 2025 Lec.12.1 - Slide 8

Allocating Constant Memory

u Declare constant memory array as global variable à accessible to
all threads of a kernel

u Must initialize constant memory from the host
o Cannot be modifies during a kernel’s execution

u Can only allocate up to 64KB
o Otherwise, input is also constant, but it is too large to put in constant

memory

__constant__ float filter_c[FILTER_DIM][FILTER_DIM];

cudaMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM*sizeof(float));

CS302 – Spring 2025 Lec.12.1 - Slide 9

Example use of Constant Memory: Convolution

u Convolution: Widely used operation in video processing, signal
processing, CNNs etc.

u Converts an array (1D/2D/3D)
into another array
o Each output element is a weighted sum

of nearby elements
o Weights are in a filter array
o Weights are constant and

are needed to calculate every output

CS302 – Spring 2025 Lec.12.1 - Slide 10

Example use case of Constant Memory: Convolution

output
(in global
memory)

filter
(in constant

memory)
input

(in global
memory)

An output element computed by one thread looping over input elements and filter weights

CS302 – Spring 2025 Lec.12.1 - Slide 11

Example use case of Constant Memory: Convolution

output
(in global
memory)

An output element computed by one thread looping over input elements and filter weights

filter
(in constant

memory)
input

(in global
memory)

CS302 – Spring 2025 Lec.12.1 - Slide 12

Example use case of Constant Memory: Convolution

static __constant__ float filter_c[FILTER_DIM][FILTER_DIM];

//Allocate input and output arrays using cudaMalloc

//Populate input array

cudaMemcpyToSymbol(filter_c, filter, FILTER_DIM*FILTER_DIM*sizeof(float));

convolution_kernel<<dimGrid, dimBloc>> (input_array, output_array, x_dim, y_dim);

Host code

CS302 – Spring 2025 Lec.12.1 - Slide 13

Example use case of Constant Memory: Convolution

__global__ void convolution_kernel(float* input, float* output, unsigned int width,
 unsigned int height) {
 int outRow = blockIdx.y*blockDim.y + threadIdx.y;
 int outCol = blockIdx.x*blockDim.x + threadIdx.x;
 if (outRow < height && outCol < width) {
 float sum = 0.0f;
 for(int filterRow = 0; filterRow < FILTER_DIM; ++filterRow) {
 for(int filterCol = 0; filterCol < FILTER_DIM; ++filterCol) {
 int inRow = outRow - FILTER_RADIUS + filterRow;
 int inCol = outCol - FILTER_RADIUS + filterCol;
 if(inRow >= 0 && inRow < height && inCol >= 0 && inCol < width) {
 sum += filter_c[filterRow][filterCol]*input[inRow*width + inCol];
 }
 }
 }
 output[outRow*width + outCol] = sum;
 }

}

Device code

CS302 – Spring 2025 Lec.12.1 - Slide 14

Review: CPU vs. GPU memory system

• Limited number of registers
o OS saves/restores registers

• One virtual address space
(per process)

• Large caches for latency
hiding

• Many registers
• H/W saves/restores registers

• Many different address spaces
• Global memory

• Caches
• Local memory
• Constant memory
• Shared memory (scratchpad)

• Small caches – for b/w filtering

CPU GPU

CS302 – Spring 2025 Lec.12.1 - Slide 15

Shared memory (Scratchpad): A S/W Managed Cache

u H/W Managed Cache (Traditional Caches):
o Hardware decides what to bring into the cache and what to evict
o Hardware monitors to access patterns for decision-making
o Example: L1, L2 caches
o Pros: No need to modify applications to use caches
o Cons: Lack of high-level program semantic knowledge

u S/W Managed Cache:
o On-chip hardware cache structure
o Software (program) must direct what to bring into the cache and what to evict
o Use a program’s semantic behaviour to decide cache contents
o Example: GPU scratchpad/shared memory
o Pros: Use program knowledge for accurate caching
o Cons: Applications must be modified to use such caches

CS302 – Spring 2025 Lec.12.1 - Slide 16

Shared memory (Scratchpad): A S/W Managed (H/W) Cache

GPU

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1$

GPU package

SM
L1$

SM
L1$

SM
L1$

SM
L1$

SM
L1$

Private
to each
SM

Logically
shared
across all
SMs of a
GPU

Physically
partioned for
bandwidth

Global
memory

Memory
access
coalescer

Shared
memory
(per SM)

Shared memory/Scratchpad shares the same physical structure as L1 $

Constant ConstantConstant Constant Constant Constant
REGREG REG REG REG REG

CS302 – Spring 2025 Lec.12.1 - Slide 17

Relative Latencies of Various Memory Types

GPU

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1$

GPU package

SM
L1$

SM
L1$

SM
L1$

SM
L1$

SM
L1$ 192-256KB

(per SM)

10s of GBs to
200 GBs

Shared memory/Scratchpad shares the same physical structure as L1 $

Constant ConstantConstant Constant Constant Constant

~ 5 cycles

~ 5 cycles

~ 500
cycles

~ 30
cycles

~40 MB

A few KBs
(per SM)

REG REG REG REG REG REG 256KB
(per SM)~ 1 cycles

CS302 – Spring 2025 Lec.12.1 - Slide 18

Shared memory (Scratchpad): A S/W Managed Cache

u Private to each threadblock
o Called “Shared” memory because it is

shared amongst all threads if a threadblock

u Each threadblock has its own copy of shared memory variables
o # of copies of each shared memory variable allocated == # of threadblocks

u Contents deleted after a threadblock finishes execution

Block

Shared
Memory

CS302 – Spring 2025 Lec.12.1 - Slide 19

Steps of using Shared Memory (Scratchpad)

u Allocate shared memory

u Load data into shared memory from global memory

u Repeatedly access data from shared memory à Leverage reuse
o Use of shared memory is useful only if there is significant data reuse
o Programmer must be aware of the data reuse

u Once computation is done, write results back to global memory

1

2

3

4

CS302 – Spring 2025 Lec.12.1 - Slide 20

Allocating and Populating Shared Memory

u Two ways to allocate shared memory

u Static allocation: Allocation size fixed at compile time

u Cons: Maximum up to 48KB per threadblock
 The size of the allocation cannot be input-dependent

__shared__ float in_s[IN_TILE_DIM][IN_TILE_DIM][IN_TILE_DIM];

if(i >= 0 && i < N && j >= 0 && j < N && k >= 0 && k < N) {
 in_s[threadIdx.z][threadIdx.y][threadIdx.x] = in[i*N*N + j*N + k];
 }

CS302 – Spring 2025 Lec.12.1 - Slide 21

Allocating and Populating Shared Memory

u Dynamic allocation: Size of the allocation set during kernel launch
o Can allocate one chunk (one variable) à partition if needed
o Pass the size of the chunk during kernel launch
o Can be larger than 48KB
//device code
__global__ void alloc_shared () {

extern __shared__ float in_s[];
float *p1_v = &in_s[0];
float *p2_v = &in_s[N]
…….
}

//host code
……….
alloc_shared <<<nBlk, nTh, (2*N*sizeof(float))>>>

Allocaiton size not specified statically

Size (per threadblock) provided during
kernel launch time

CS302 – Spring 2025 Lec.12.1 - Slide 22

Configuring Shared Memory and L1 Cache sizes

u Can provide hints to the CUDA runtime on preference of L1 cache
vs. Shared memory

 cudaFuncSetCacheConfig (kernel_name, enum cacheConfig)

u Example cacheConfig options:
o cudaFuncCachePreferShared
o cudaFuncCachePreferL1
o cudaFuncCachePreferNone

CS302 – Spring 2025 Lec.12.1 - Slide 23

Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Naïve matrix multiplication causes too many $ miss

C A B

= xN

N

i

j

i

j

CS302 – Spring 2025 Lec.12.1 - Slide 24

Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Naïve matrix multiplication causes too many $ miss

A

…

B

…

Miss
Miss

Hit

CS302 – Spring 2025 Lec.12.1 - Slide 25

Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Tiling to improve data reuse à less cache misses
o Compute the partial results of each submatrices (tile) before moving to the

next

C A B

= xN

N

n

CS302 – Spring 2025 Lec.12.1 - Slide 26

Example use of Shared Memory: Titled Matrix Multiplication

u Review (Week 3): Tiling to improve data reuse à less cache misses
o Compute the partial results of each submatrices (tile) before moving to the next
o Limitations: Cache hits are not guaranteed.

 L1 cache is shared amongst all threadblocks of a SM
 L2 cache is shared amongst all threadblocks of a grid

C A B

= xN

N

n

CS302 – Spring 2025 Lec.12.1 - Slide 27

Example use of Shared Memory: Titled Matrix Multiplication

u One threadblock to compute results of one tile of the output matrix

C A B

= xN

N

n = Tile Width

n

n

CS302 – Spring 2025 Lec.12.1 - Slide 28

Example use of Shared Memory: Titled Matrix Multiplication

u Threads of a threadblock load one tile each from two operand
matrices to its copy of shared memory variables

C A B

= xN

N

n

n

n = Tile Width

CS302 – Spring 2025 Lec.12.1 - Slide 29

Example use of Shared Memory: Titled Matrix Multiplication

u Threads of a threadblocks computes partial results for a tile

Ctile

= x

Atile Btile

CS302 – Spring 2025 Lec.12.1 - Slide 30

Example use of Shared Memory: Titled Matrix Multiplication

u Repeat for next tiles ..

C A B

= xN

N

n

n

CS302 – Spring 2025 Lec.12.1 - Slide 31

Example use of Shared Memory: Titled Matrix Multiplication

u Repeat for next tiles

C A B

= xN

N

n

n

CS302 – Spring 2025 Lec.12.1 - Slide 32

Example use of Shared Memory: Tiled Matrix Multiplication
__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

 // Load tile to shared memory
 A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
 B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];

 __syncthreads();

 // Compute with tile
 for(unsigned int i = 0; i < TILE_DIM; ++i) {
 sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
 }
 __syncthreads();
}

C[row*N + col] = sum;

// Each threadblock his its copy of shared mem variables

// The element of the output matrix to be
computed by a given thread

// Repeat N/TILE_DIM (# phases)

//Loads a tile to shared
memory from global mem.

//Wait for loading to be compete

//Each thread calculates partial result

//Final result of individual output element

//Wait for threads in a threadblock to complete
computation before next round/phase

CS302 – Spring 2025 Lec.12.1 - Slide 33

Advantage of using Shared Memory

u Saves global memory access

u Access to shared memory is as fast as L1 cache

u Unlike caches, reductions in global memory access are guaranteed
o Not dependent on hardware’s cache replacement policies

u Every threadblock has its own copy of shared memory variables

CS302 – Spring 2025 Lec.12.1 - Slide 34

Performance pitfall: Beware of Shared Memory Bank Conflicts

u Shared memory is organized in 32 banks
u Each bank can service one address at a time
u At most 32 simultaneous accesses

u Successive 32-bit (4 bytes) words are assigned to successive banks

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

0x00 0x7F
0x80

BANK 3 BANK 29

CS302 – Spring 2025 Lec.12.1 - Slide 35

Performance pitfall: Beware of Shared Memory Bank Conflicts

u Shared memory is organized in 32 banks
u Each bank can service one address at a time
u At most 32 simultaneous accesses

u Successive 32-bit (4 bytes) words are assigned to successive banks

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

0x00 0x7F
0x80

__shared int arr[64]

0
32

31
63

1
33

2
34

30
62

BANK 3 BANK 29

CS302 – Spring 2025 Lec.12.1 - Slide 36

Performance pitfall: Beware of Shared Memory Bank Conflicts

u Multiple simultaneous accesses to the same bank
u Different 4-byte words:

u Bank conflict! - Conflicting accesses are serialized
u The same 4-byte word:

u Multicast – 1 fetch (could be different bytes within the word)

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

NO conflict

BANK 3 BANK 29

CS302 – Spring 2025 Lec.12.1 - Slide 37

Performance pitfall: Beware of Shared Memory Bank Conflicts

u Multiple simultaneous accesses to the same bank
u Different 4-byte words:

u Bank conflict! - Conflicting accesses are serialized
u The same 4-byte word:

u Multicast – 1 fetch (could be different bytes within the word)

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

NO conflict

BANK 3 BANK 29

CS302 – Spring 2025 Lec.12.1 - Slide 38

Performance pitfall: Beware of Shared Memory Bank Conflicts

u Multiple simultaneous accesses to the same bank
u Different 4-byte words:

u Bank conflict! - Conflicting accesses are serialized
u The same 4-byte word:

u Multicast – 1 fetch (could be different bytes within the word)

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

Conflict

BANK 3 BANK 29

CS302 – Spring 2025 Lec.12.1 - Slide 39

Performance pitfall: Beware of Shared Memory Bank Conflicts

u Multiple simultaneous accesses to the same bank
u Different 4-byte words:

u Bank conflict! - Conflicting accesses are serialized
u The same 4-byte word:

u Multicast – 1 fetch (could be different bytes within the word)

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

NO conflict

BANK 3 BANK 29

CS302 – Spring 2025 Lec.12.1 - Slide 40

Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts?
u Allocation (element) size
u Index expression into the data structure

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[64]
arr[threadIdx.x]++;

NO conflict

CS302 – Spring 2025 Lec.12.1 - Slide 41

Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts?
u Allocation (element) size
u Index expression into the data structure

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[64]
arr[blockIdx.x]++;

NO conflict

CS302 – Spring 2025 Lec.12.1 - Slide 42

Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts?
u Allocation (element) size
u Index expression into the data structure

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[64]
arr[threadIdx.x*2]++;

2-way
conflict

Thread 16 Thread 31Thread 0

Thread 15

CS302 – Spring 2025 Lec.12.1 - Slide 43

Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts?
u Allocation (element) size
u Index expression into the data structure

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared int arr[128]
arr[threadIdx.x*4]++;

4-way
conflict

Thread 24Thread 0 Thread 8 Thread 16

Worst case: 32-way conflict

CS302 – Spring 2025 Lec.12.1 - Slide 44

Performance pitfall: Beware of Shared Memory Bank Conflicts

u When would you have bank conflicts?
u Allocation (element) size
u Index expression into the data structure

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared d4 arr[128]
arr[threadIdx.x]++;

4-way
conflict

Thread 24Thread 0 Thread 8 Thread 16

struct d4{
int x, y, z, w;
};

CS302 – Spring 2025 Lec.12.1 - Slide 45

Avoiding Shared Memory Conflicts through Padding

u When would you have bank conflicts?
u Allocation (element) size
u Index expression into the data structure

BANK 0 BANK 1 BANK 2 BANK 30 BANK 31

4 bytes

BANK 3 BANK 29

__shared d4 arr[128]
arr[threadIdx.x]++;

NO conflict

Thread 24Thread 0 Thread 8 Thread 16

struct d4{
int x, y, z, w, pad;
};

BANK 16BANK 8
BANK 24

Alternative: Change indexing strategy (if possible)

CS302 – Spring 2025 Lec.12.1 - Slide 46

Impact of Shared Memory on Occupancy

u Recall how occupancy is affected by various GPU resources
o Max. 64 warps per SM
o Max. 2048 threads per SM
o Max. 32 threadblocks per SM
o Max. 64K registers per SM
o Up to 164KB per SM

u The amount of shared memory allocation can limit occupancy

Resource limitations on
NVIDIA A100 GPU
Number of warp schedulable is
limited by whichever resource
hits limit first

CS302 – Spring 2025 Lec.12.1 - Slide 47

Impact of Shared Memory on Occupancy

Constraints in scheduling threadblock:

u All threads of a threadblock must execute on the same SM

u Each threadblock has own copy of the shared memory allocations

u Shared memory capacity on an SM must accommodate the needs
of all threadblocks on the SM

CS302 – Spring 2025 Lec.12.1 - Slide 48

Impact of Shared Memory on Occupancy

u Example: Maximum number of threads per SM 2048

u Maximum shared memory capacity per SM: 164 KB

u A kernel allocates 32KB of shared memory (per threadblock)

u Each threadblock launched with 256 threads

u What is the maximum occupancy? Ans: 1280/2048 (62.5%)

CS302 – Spring 2025 Lec.12.1 - Slide 49

Summary: Different Memory Types of GPU

Variable declaration Memory Scope Lifetime
__device__
/cudaMalloc int
globalVar;

global grid application

__device__
__constant__ int
constantVar;

constant grid application

__device__
__shared__ int
sharedVar;

shared block block

int localVar;
register thread thread

int localArr[N];
global thread thread

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Constant Memory

CS302 – Spring 2025 Lec.12.1 - Slide 50

PARALLEL REDUCTION IN CUDA
END-TO-END EXAMPLE

CS302 – Spring 2025 Lec.12.1 - Slide 51

Reduction Operations

u Reduce multiple values to a single value
u ADD, MUL, AND, OR, …

u Useful primitive when operating on large datasets

10 11 12 13

46

ADD

CS302 – Spring 2025 Lec.12.1 - Slide 52

Sequential Reduction

u Process first two elements, produce partial result
u Every level takes intermediate, and adds 1 element

u O(N) steps

10 11

21

33

46

12 13

CS302 – Spring 2025 Lec.12.1 - Slide 53

Parallel Reduction

u Pair-wise reduction in tree-like steps
u log2(N) where N is the number of elements

6 7 8 9 10 11 12 13

13 17 21 25

30 46

76

CS302 – Spring 2025 Lec.12.1 - Slide 54

Parallel Reduction with Higher Degree

u Process x elements per step
u logx(N)

u For x = 4:
6 7 8 9 10 11 12 13

30 46

76

CS302 – Spring 2025 Lec.12.1 - Slide 55

Reduction: The Big Picture

u Use the same code for all reduction levels
u The same kernel is launched multiple times with different

numbers of TBs
u This example uses 128 threads per TB…

u For every 128 elements, there is one TB
u In this graphic, smaller scale:

u 8 elements per TB, 8 blocks = 64 elements total

CS302 – Spring 2025 Lec.12.1 - Slide 56

Reduction Optimization

u Reduction has low arithmetic intensity
u One Flop / output element (add, compare, etc…)
u All input elements are loaded from memory

u Therefore, we must optimize for bandwidth
u Goal: reduce global memory accesses
u Since partial sums reused, load to shared memory first

CS302 – Spring 2025 Lec.12.1 - Slide 57

Reduction 1: Interleaved Addressing

u Load Data
u Loads 1 element/thread from global to shared memory

u Reduction: proceed in log2N steps
u A thread reduces two elements

u The first two elements by the first thread
u The next two by the next thread and so on

u At the end of each step
u Deactivate half of the threads

u Terminate when one thread left
u Write back to global memory, visible to next kernel

CS302 – Spring 2025 Lec.12.1 - Slide 58

Reduction 1: Visualization

CS302 – Spring 2025 Lec.12.1 - Slide 59

Reduction 1: Interleaved Addressing
__global__ void reduce0(int *g_idata, int *g_odata, int n){
 extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

// do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) {
 // step = 2*s
 if (tid % (2*s) == 0) {
 // only threadIDs divisible by the step do work
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

// write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

CS302 – Spring 2025 Lec.12.1 - Slide 60

Reduction 1: Divergence Problem
__global__ void reduce0(int *g_idata, int *g_odata, int n){
 extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

// do reduction in shared mem
 for (unsigned int s=1; s < blockDim.x; s *= 2) {
 // step = s x 2
 if (tid % (2*s) == 0) {
 // only threadIDs divisible by the step participate
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

// write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

Highly
divergent code
leads to poor
performance

CS302 – Spring 2025 Lec.12.1 - Slide 61

Reduction 2: Visualization

CS302 – Spring 2025 Lec.12.1 - Slide 62

Reduction 2: Non-Divergent Branching

u Replace divergent branching code

u With strided index and non-divergent branching

for (unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

for (unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;

 if (index < blockDim.x) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

CS302 – Spring 2025 Lec.12.1 - Slide 63

Reduction 2: Bank Conflicts

2 way

2 way

2 way

CS302 – Spring 2025 Lec.12.1 - Slide 64

Why Bank Conflicts?

u First memory access from threads 0 & 1 goes to:
u Banks 0 and 2
u Keep increasing bank #, thread 16 accesses bank 0

u Oops, conflict!
u These accesses are split

into 2 sequential ones
u Doubles our shared mem

latency → slowdown!

Thread 19
Thread 18
Thread 17
Thread 16

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

CS302 – Spring 2025 Lec.12.1 - Slide 65

Reduction 3: Visualization

CS302 – Spring 2025 Lec.12.1 - Slide 66

Reduction 3: Sequential Accessing

u Replace strided indexing

u With reversed loop and threadID-based indexing

for (unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;

 if (index < blockDim.x) {
 sdata[index] += sdata[index + s];
 }
 __syncthreads();
 }

for (unsigned int s = blockDim.x/2; s > 0; s /= 2) {
 if (tid < s) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

CS302 – Spring 2025 Lec.12.1 - Slide 67

Reduction 3: Idle Threads

Half of the threads are idle
on first iteration

CS302 – Spring 2025 Lec.12.1 - Slide 68

Reduction 4: Reduce During Load

u Instead of each thread loading one element
// each thread loads one element from global to shared mem

 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 sdata[tid] = (i < n) ? g_idata[i] : 0;
 __syncthreads();

u Allow each thread to load two elements
u Do the first reduction step alongside the load
u Halves the number of threads in a threadblock

// each thread loads two elements from global to shared mem
 // and performs the first step of the reduction
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x* blockDim.x * 2 + threadIdx.x;
 sdata[tid] = (i < N) ? ((i + blockDim.x) < N ?

(g_idata[i] + g_idata[i + blockDim.x]) : g_idata[i]) : 0
 __syncthreads();

With four optimizaitons kernel
time reduced from 327 ms to 9 ms

CS302 – Spring 2025 Lec.12.1 - Slide 69

Summary

u GPUs have large compute but are often limited by memory system

u GPUs use large register files to fast context switch for throughput

u Important to write programs to leverage memory coalescing

u Important to use shared memory where possible

