
CS302 – Spring 2025 Lec.11.2 - Slide 1

GPU: Control
divergence,
Synchronization and
Memory part I
Spring 2025
Babak Falsafi, Arkaprava Basu
parsa.epfl.ch/course-info/cs302

CS302

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi,
Andreas Moshovos, and from the companion material of the book “Programming Massively Parallel
Processors”
Copyright 2025

CS302 – Spring 2025 Lec.11.2 - Slide 2

Where are We?

u This lecture
u Control flow divergence
u Basic synchronization
u GPU memory part I

u Exercise session:
u GPU demo programming
u Using the Izar cluster

u Next week:
u Memory optimizations on GPUs

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.11.2 - Slide 3

Review: GPU is a Co-Processor

CPU
GPU

PCIe connection

Typical connection:
PCIe 5.0 x16: 128
GB/sec
~150 ns latencyDRAM

Operating system,
GPU driver

S/W running on CPU
controls what runs on GPU

Discrete GPULaunch work

get back results

CS302 – Spring 2025 Lec.11.2 - Slide 4

Review: Launching Kernel and Thread Grids

Serial Code (host/CPU)

. . .

. . .

Data parallel function (device/GPU)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelB<<< nBlk, nTid >>>(args);

Kernels written
as SPMD
programs

CS302 – Spring 2025 Lec.11.2 - Slide 5

Beware of Pitfalls of GPU’s SIMT Execution

u Recall: SIMT à One PC multiple thread operating on multiple data
o Benefits à Fetch and decode one instruction,

multiple concurrent execution

u But what if the code (kernel/device) code has a conditional branch?

if (x <= 0)
 y = 0;
else
 y = x;

?

CS302 – Spring 2025 Lec.11.2 - Slide 6

A Pitfall of GPU’s SIMT Execution: Control Flow Divergence

u Threads in warp run in lockstep
o Observation: Not all have to commit

u Support conditional branch through predication
o All threads execute, but some discard their result (wasted compute)
o A predication mask determines whose results to keep (discard)

CS302 – Spring 2025 Lec.11.2 - Slide 7

Performance Loss due to Control-Flow Divergence

u Execute one path at a time
u Diverging threads will be disabled
u Limits parallelism à lower performance

50% Performance Loss

Programs with many conditional
branches are not well-suited for
GPU’s SIMT execution

Active lane Inactive lane

1 1 1 1 1 1

1 1 1 1 1 1

0 0 1 1 0 1

1 1 0 0 1 0

1 1 1 1 1 1

Predication
mask

Control flow divergence

CS302 – Spring 2025 Lec.11.2 - Slide 8

Limiting Control-Flow Divergence

u Observation: SIMT (lock-step) execution only within a warp
o It’s okay if different warps take different paths

uTwo different control paths for threads in a warp
u Avoiding control flow divergence:

u Two different control paths, but different warps
u All threads in a given warp follow the same path
u Divergence across warps is OK!

if (threadIdx.x > 2) {. . .}
else {. . .}

if (threadIdx.x / WARP_SIZE > 2) {. . .}
else {. . . }

CS302 – Spring 2025 Lec.11.2 - Slide 9

BASIC SYNCHRONIZATION

CS302 – Spring 2025 Lec.11.2 - Slide 10

u Commonly used synchronization: Threadblock barrier (_ _syncthreads)

u All threads of a given threadblock must reach the barrier before any of
them can proceed past the barrier

u Threads from different threadblocks are not synchronized
NOT a global synchronization across all threads of a threadblock

u Suitable for bulk synchronous programs
 Threads execute concurrently most of the time
 Infrequently synchronize many threads together at certain points in the program

Barrier Synchronization in CUDA

CS302 – Spring 2025 Lec.11.2 - Slide 11

Barrier Synchronization in CUDA
Threadblock n

__syncthreads

Threadblock 0

__syncthreads

Time

CS302 – Spring 2025 Lec.11.2 - Slide 12

u Commonly used synchronization: Threadblock barrier (_ _syncthreads)

u All threads of a given threadblock must reach the barrier before any of
them can proceed past the barrier

u Threads from different threadblocks are not synchronized
 NOT a global synchronization across all threads of a threadblock

u Suitable for bulk synchronous programs
 Threads execute concurrently most of the time
 Infrequently synchronize many threads together at certain points in the program

Barrier Synchronization in CUDA

CS302 – Spring 2025 Lec.11.2 - Slide 13

u A threadblock barrier = execution barrier + a memory barrier
u Execution barrier: All threads of a threadblock reach the barrier before

any of them can proceed forward
u Memory barrier: A write by any thread before the barrier is guaranteed

to be visible to all threads in the threadblock after the barrier

Barrier Synchronization in CUDA

__global void test_syncthread(unsigned* x, int N) {
 int tid = blockIdx.x*blockDim.x + threadIdx.x;
 x[tid] = tid;
 __syncthreads();
 if (tid < N-1 && x[tid +1] ! = tid +1) {
 printf(“syncthreads not enough\n”);
 }
}

When do you expect the
statement be printed?

CS302 – Spring 2025 Lec.11.2 - Slide 14

Barrier Synchronization in CUDA

Threadblock k+1

__syncthreads

Threadblock k

__syncthreads

Time

x[tid] = tid;

x[tid] = tid;

x[tid +1] ! = tid +1

x[tid +1] ! = tid +1

CS302 – Spring 2025 Lec.11.2 - Slide 15

u A threadblock barrier = execution barrier + a memory barrier
u Execution barrier: All threads of a threadblock reach the barrier before

any of them can proceed forward
u Memory barrier: A write by any thread before the barrier is guaranteed

to be visible to all threads in the threadblock after the barrier

Barrier Synchronization in CUDA

__global void test_syncthread(unsigned* x, int N) {
 int tid = blockIdx.x*blockDim.x + threadIdx.x;
 x[tid] = tid;
 __syncthreads();
 if (tid < N-1 && x[tid +1] ! = tid +1) {
 printf(“syncthreads not enough\n”);
 }
}

When do you expect the
statement be printed?

Ans: When threads tid and
tid+1 belongs to different
threadblocks

CS302 – Spring 2025 Lec.11.2 - Slide 16

u What do you think can happen to this code?
u Be careful when using barriers within conditional statements
Works only if all threads of a threadblock are guaranteed to either hit the barrier

or none would

Interactions Between Barriers and Conditionals

__global void test_syncthread(unsigned* x, int N) {
 ……
 if(threadIdx % 2 == 0) {
 ………
 __syncthreads();
 }
 else {
 ………
 __syncthreads();
 }
}

Distinct barriers – not all threads of a
threadblock will execute the same
barrier à Possible deadlock

CS302 – Spring 2025 Lec.11.2 - Slide 17

u No explicit global barrier across all threads of a kernel
u Not all thread blocks of a kernel may execute simultaneously
No specific order of execution amongst the thread blocks
Enforcing a barrier can deadlock if only some thread blocks are running

Synchronizing across All Threads of a Kernel?

GPU-2 (H/W - 2)

SM SM

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel’s thread grid
Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU-1 (H/W - 1)
SM SM SM SM

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Ti
m

e

Ti
m

e

CS302 – Spring 2025 Lec.11.2 - Slide 18

Kernel Decomposition for Global Synchronization

. . .

. . .
KernelA<<< nBlk, nTid >>>(args)

. . .

KernelA1<<< nBlk, nTid >>>(args)

KernelA2<<< nBlk, nTid >>>(args)
Desired “global” barrierImplicit “global” barrier

u Implicit “global” barrier at each kernel boundary
When a kernel completes, all threads have completed their operations

CS302 – Spring 2025 Lec.11.2 - Slide 19

Kernel Launch is Asynchronous

Serial Code (host/CPU)

. . .

. . .

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

KernelB<<< nBlk, nTid >>>(args);

Would not wait for the
kernel to finish

Note: KernelB will only start
executing after KernelA finishes
execution even without
cudaDeviceSynchronize

cudaDeviceSynchronize to wait for a
kernel to finish before the host code
proceeds

cudaMemcpy((void*)host_array, (void*)gpu_array,
NBYTES, cudaMemcpyDeviceToHost);

cudaMemcpy is blocking --- no need for cudaDeviceSynchronize

CS302 – Spring 2025 Lec.11.2 - Slide 20

GPU MEMORY SYSTEM

CS302 – Spring 2025 Lec.11.2 - Slide 21

Overview: CPU vs. GPU memory system

• Limited number of registers
o OS saves/restores registers

• One virtual address space
(per process)

• Large caches for latency
hiding

CPU GPU
• Many registers

o H/W saves/restores registers

• Many different address spaces
o Global memory

§ Caches
o Local memory
o Constant memory
o Shared memory (scratchpad)

• Small caches – for b/w filtering

CS302 – Spring 2025 Lec.11.2 - Slide 22

Many Registers for Fast Context Switch

CPU GPU

Registers/thread 16-32 32 (up to 256)

Num physical registers/per “core” (or
SM)

~150-256 ~64K

Registers provide the fastest access
u 1 Cycle latency
u 100s of TBs of bandwidth
u Per-thread variables declared in

kernels are kept in registers

__global__ void vecadd_kernel(float* x, float* y, float* z, int N) {
 int i = blockDim.x*blockIdx.x + threadIdx.x;
 z[i] = x[i] + y[i];
}

Allocated on
register
for each thread

Large register file key to latency hiding
u Keep register state of many warps

(threads) ready
u “Zero cycle” H/W context switch

when a warp hits long latency event

CS302 – Spring 2025 Lec.11.2 - Slide 23

Global Memory of GPU

u Off chip memory on the GPU board
u Goal is to provide high bandwidth – H100 supports 3.5 TB/sec
u Latency is a lessor concern
u But, low capacity (typically, in 10s of GBs, e.g., 80 GB)

GDDR (Graphics DDR):
Lower bandwidth
Cheaper
Less power-efficient

HBM (High Bandwidth
Memory):
Higher bandwidth
Costlier
Power-efficient

CS302 – Spring 2025 Lec.11.2 - Slide 24

Global Memory of GPU

u Global memory (per application):
u Accessible to all threads in a grid
u Remains live (unless freed) across

kernel launched in an application
u Enables inter-grid communication

Grid 0

. . .
Global

Memory

. . .

Grid 1
Sequential
Grids
in Time

void vecadd(float* x, float* y, float* z,
 int N) {
 // Allocate GPU memory
 float *x_d, *y_d, *z_d;

cudaMalloc((void**) &x_d, N*sizeof(float));
N*sizeof(float));

Allocates global GPU
memory

Host code

CS302 – Spring 2025 Lec.11.2 - Slide 25

u GPUs have plenty of compute (FLOPS)
 Max FLOPS of H100 GPU: 51 Teraflops (FP32)

u (Global) Memory bandwidth is relatively limited (GB/sec)
 Max Mem. Bandwidth of H100 GPU: 2TB/sec

u Remember the roofline model?
 Needs very high arithmetic intensity to achieve the FLOPs
 How much airth. Intensity needed to leverage full TFLOPS?

Ans: 25.5

u GPU memory hierarchy built to help
bridge this gap between FLOPS and GB/sec
 Caching as a bandwidth filter
 Memory access coalescing
 Specialized memory

Bridging the Gap between Compute and (Global) Memory B/W

Max. FLOPs/sec

A
tta

in
ab

le
 F

LO
Ps

/s
ec

Want to be here. But needs high
arithmetic intensity

Arithmetic intensity

CS302 – Spring 2025 Lec.11.2 - Slide 26

GPU Cache Hierarchy

GPU

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $

GPU package

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

Private
to each
SM

Logically
shared
across all
SMs of a
GPU

Physically
partioned for
bandwidth

Global
memory

NO hardware
cache
coherence

CS302 – Spring 2025 Lec.11.2 - Slide 27

GPU vs CPU Cache Hierarchy
Typical CPU vs GPU caches CPU GPU
L1 data cache capacity 32KB 16 KB
Active threads sharing L1 D Cache 2 (2-way

SMT)
2048

L1 D Cache capacity / thread 16KB 8 bytes

Last level cache (LLC) capacity 8MB 1MB
Active threads sharing LLC 8 163,840
LLC capacity / thread (4 cores) 1MB 6.4

bytes
Cache line size 64B 128B

The primary purpose of
the GPU cache hierarchy
is to act as a bandwidth
filter.

In comparison, the
purpose of CPU caches
is latency hiding.

CS302 – Spring 2025 Lec.11.2 - Slide 28

u Threads in a warp executing in lock-step often simultaneously
access different words within the same cache line

u GPU cache line size 128 bytes
u If all 32 threads of warp access contiguous 4 bytes

then they map to the same cache line

Memory Access Coalescing

Cache line

CS302 – Spring 2025 Lec.11.2 - Slide 29

u Threads in a warp executing in lock-step often simultaneously
access different words within the same cache line

u GPU cache line size 128 bytes
u If all 32 threads of warp access contiguous 4 bytes,

they map to the same cache line

u Hardware coalescer: Zap accesses from threads of a warp to
a single cache access
 Up to 32X reduction in the number of cache accesses/memory accesses!

Memory Access Coalescing

Cache line

CS302 – Spring 2025 Lec.11.2 - Slide 30

GPU Memory Access Coalescer

GPU

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $

GPU package

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

Private
to each
SM

Logically
shared
across all
SMs of a
GPU

Physically
partioned for
bandwidth

Global
memory

Memory
access
coalescer

CS302 – Spring 2025 Lec.11.2 - Slide 31

Opportunities for Memory Access Coalescing

u Whether memory accesses can be coalesced depends on software
o e.g., how the array is indexed

u Example of coalescing: Vector addition

o Accesses to x, y, and z are coalesced
o E.g., threads 0 to 31 access elements 0 to 31, resulting in one memory

transaction to service warp 0

__global__ void vecadd_kernel(float* x, float* y, float* z, int N)
{
 int i = blockDim.x*blockIdx.x + threadIdx.x;
 z[i] = x[i] + y[i];
}

A warp contains consecutive threads in
the x dimension followed by the y
dimension

CS302 – Spring 2025 Lec.11.2 - Slide 32

Coalesced Memory Accesses - Example

u Warp requests 32 aligned, consecutive 4-byte words
u Addresses fall within one cache line

u Warp needs 128 bytes
u 128 bytes move across the bus on a miss
u Bus transfer utilization: 100%

i = (blockIdx.x * blockDim.x) + threadIdx.x ;
A[i]

Full coalescing – 1
memory access per warp

CS302 – Spring 2025 Lec.11.2 - Slide 33

Coalesced Memory Accesses - Example

u Warp requests 32 aligned, permuted 4-byte words
u Addresses fall within one cache line

u Warp needs 128 bytes
u 128 bytes move across the bus on a miss
u Bus transfer utilization: 100%

t32 = (threadIdx.x / 32) * 32;
i = (blockIdx.x * blockDim.x) + t32 + (31 - threadIdx.x %32);
A[i]

Full coalescing – 1
memory access per warp

CS302 – Spring 2025 Lec.11.2 - Slide 34

Coalesced Memory Accesses - Example

u All threads in a warp request the same 4-byte word
u Addresses fall within a single cache line

u Warp needs four bytes
u 128 bytes move across the bus on a miss
u Bus transfer utilization: 3.125%

i = blockidx.x * BlockDim.x;
A[i]

Full coalescing – 1
memory access per warp

CS302 – Spring 2025 Lec.11.2 - Slide 35

Partially Coalesced Memory Accesses - Example

u Warp requests 32 misaligned, consecutive 4-byte words
u Addresses fall within two cache lines

u Warp needs 128 bytes
u 256 bytes move across the bus on a miss
u Bus transfer utilization: 50%

// OFFSET = 64
i = blockidx.x * BlockDim.x + threadIdx.x + OFFSET;
A[i]

Partial coalescing – 2
memory accesses per warp

CS302 – Spring 2025 Lec.11.2 - Slide 36

Uncoalesced Memory Accesses - Example

u Warp requests 32 scattered 4-byte words
u Addresses fall within N cache lines

u Warp needs 128 bytes
u N*128 bytes move across the bus on a miss
u Bus utilization: 128 / (N*128), for N=32 à 3.125%

i = blockidx.x * BlockDim.x + threadidx.x * 32;
A[i]

Worst case scenario –
32 threads in a warp
generates 32 accesses

CS302 – Spring 2025 Lec.11.2 - Slide 37

Indirect Memory Accesses – Unpredictable Coalescing

u Memory dependent indexing causes uncoalesced access
u Also called irregular memory access

u Addresses may not fall within a single cache line
u In the worst case each thread in a warp will access

different cache line
u Bus transfer utilization: Unpredictable

i = Index[j];
A[i]

Unpredictable
scenario -- but
memory dependent
addressing leads to
uncoalesced access

Depends upon content of the Index array

CS302 – Spring 2025 Lec.11.2 - Slide 38

Indirect Memory Accesses – Unpredictable Coalescing

u Memory dependent indexing causes uncoalesced access
u Also called irregular memory access

u Addresses may not fall within a single cache line
u In the worst case each thread in a warp will access

different cache line
u Bus transfer utilization: Unpredictable

i = Index[j];
A[i]

Unpredictable
scenario -- but
memory dependent
addressing leads to
uncoalesced access

Depends upon content of the Index array

CS302 – Spring 2025 Lec.11.2 - Slide 39

Coalesced or Uncoalesced Memory Accesses?

u Would the following indexing coalesce?

u Accesses to A and B are coalesced
o E.g., threads 0 to 31 access element 0 of A on the first iteration, resulting in one access to

service warp 0
o E.g., threads 0 to 31 access elements 0 to 31 of B on the first iteration, resulting in one

access to service warp 0

int row = blockDim.y*blockIdx.y + threadIdx.y;
int col = blockDim.x*blockIdx.x + threadIdx.x;
for(unsigned int i = 0; i < N; ++i) {
 sum += A[row*N + i]*B[i*N + col];
}

CS302 – Spring 2025 Lec.11.2 - Slide 40

Divergence Kills GPU Program Performance

u Uncoalesced Memory Accesses à Memory Access Divergence

u Beware of Divergences in the GPU program

u Control flow divergence
u Memory access divergence

