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Where are We?

M T w T F _
17-Feb 19-Feb ¢ This lecture
24-Feb 26-Feb ¢ Control flow divergence
3-Mar 5-Mar . . .
V. Y ¢ Basic synchronization
17-Mar 19-Mar ¢ GPU memory part |
24-Mar 26-Mar
31-Mar 2-Apr ] ]
7-Apr 9-Apr ¢ EXxercise session:
14-Apr 16-Apr ¢ GPU demo programming
21-Apr |22-Apr |23-Apr ¢ Using the Izar cluster
28-Apr 30-Ap|§
5-May
12-May : ¢ Next week:
;z'may ¢ Memory optimizations on GPUs
-May

CS302 - Spring 2025 Lec.11.2 - Slide 2



Review: GPU is a Co-Processor

Operating system, Launch work
GPU driver

Discrete GPU

oooooooooooooooooooo
400400000 ss800ss0000

PCle connection

SRS R e

S/W running on CPU GB/sec
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get back results/ypical connection:
PCle 5.0 x16: 128

RAM - controls what runs on GPU  ~150 ns latency
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Review: Launching Kernel and Thread Grids

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelB<<< nBIk, nTid >>>(args);
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|

SOOI

Kernels written
as SPMD
programs
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Beware of Pitfalls of GPU’'s SIMT Execution

¢ Recall: SIMT - One PC multiple thread operating on multiple data

o Benefits 2 Fetch and decode one instruction,
multiple concurrent execution %

¢ But what if the code (kernel/device) code has a conditional branch?

(x <= 0)

b % ‘ 2

Yy = X;
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A Pitfall of GPU’'s SIMT Execution: Control Flow Divergence

¢ Threads in warp run in lockstep
o Observation: Not all have to commit

¢ Support conditional branch through predication

o All threads execute, but some discard their result (wasted compute)
o A predication mask determines whose results to keep (discard)
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Performance Loss due to Control-Flow Divergence

Predication

mask

111111

111111

001101

110010

111111
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50% Performance Loss

¢ Execute one path at a time

¢ Diverging threads will be disabled
¢ Limits parallelism - lower performance

> -

~ Control flow divergence

Programs with many conditional

branches are not well-suited for
GPU’s SIMT execution
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Limiting Control-Flow Divergence

¢ Observation: SIMT (lock-step) execution only within a warp
o It's okay if different warps take different paths

if (threadIdx.x > 2) {. . .}
else {. . . }

¢ Two different control paths for threads in a warp
¢ Avoiding control flow divergence:

if (threadIdx.x / WARP SIZE > 2) {. . .}
else {. . . }

¢ Two different control paths, but different warps

¢ All threads in a given warp follow the same path
¢ Divergence across warps is OK!
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BASIC SYNCHRONIZATION
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Barrier Synchronization in CUDA

¢ Commonly used synchronization: Threadblock barrier (_ _syncthreads)

¢ All threads of a given threadblock must reach the barrier before any of
them can proceed past the barrier

¢ Threads from different threadblocks are not synchronized
@® NOT a global synchronization across all threads of a threadblock
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Barrier Synchronization in CUDA
Threadblock n

w II I _syncthreads l |
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Barrier Synchronization in CUDA

¢ Commonly used synchronization: Threadblock barrier (_ _syncthreads)

¢ All threads of a given threadblock must reach the barrier before any of
them can proceed past the barrier

¢ Threads from different threadblocks are not synchronized
@® NOT a global synchronization across all threads of a threadblock

¢ Suitable for bulk synchronous programs

@® Threads execute concurrently most of the time
@ Infrequently synchronize many threads together at certain points in the program
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Barrier Synchronization in CUDA

¢ A threadblock barrier = execution barrier + a memory barrier

¢ Execution barrier: All threads of a threadblock reach the barrier before
any of them can proceed forward

¢ Memory barrier: A write by any thread before the barrier is guaranteed
to be visible to all threads in the threadblock after the barrier

__global void test syncthread(unsigned* x, int N) ({
When do you e)l(peCt the int tid = blockIdx.x*blockDim.x + threadIdx.x;
statement be printed? x[tid] = tid;

__syncthreads() ;
if (tid < N-1 && x[tid +1] ! = tid +1 ) {
printf (“syncthreads not enough\n”) ;

}
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Barrier Synchronization in CUDA

Threadblock k

x[tid] = tid;

[ 44

Time

Threadblock k+1
x[tid] = tid;
x[tid +1] ! = tid +1 1 vy 3

SRR

__syncthreads
[T

__syncthreads

x[tid +1] ! = tid +1

Vi
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Barrier Synchronization in CUDA

¢ A threadblock barrier = execution barrier + a memory barrier

¢ Execution barrier: All threads of a threadblock reach the barrier before
any of them can proceed forward

¢ Memory barrier: A write by any thread before the barrier is guaranteed
to be visible to all threads in the threadblock after the barrier

__global void test syncthread(unsigned* x, int N) ({
When do you expect the int tid = blocklIdx.x*blockDim.x + threadIlIdx.x;

statement be printed? x[tid] = tid;
__syncthreads() ;
Ans: When threads tid and if (tid < N-1 && x[tid +1] ! = tid +1 ) ({

printf (“syncthreads not enough\n”) ;

tid+1 belongs to different }

threadblocks }
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Interactions Between Barriers and Conditionals

__global void test syncthread(unsigned* x, int N) {

if (threadIdx % 2 == 0) {

__syncthreads() ;

} \ Distinct barriers — not all threads of a

,,,,,,,,, threadblock will execute the same

__syncthreads() ; barrier - Possible deadlock
}
}

¢ What do you think can happen to this code?

¢ Be careful when using barriers within conditional statements

@® \Works only if all threads of a threadblock are guaranteed to either hit the barrier
or none would
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Synchronizing across All Threads of a Kernel?

¢ No explicit global barrier across all threads of a kernel

¢ Not all thread blocks of a kernel may execute simultaneously
@® No specific order of execution amongst the thread blocks
@ Enforcing a barrier can deadlock if only some thread blocks are running

Kernel’s thread grid

Block 0 Block 1
Block 2 Block 3
, Block 4 Block 5

Block 6 Block 7 GPU-2 (H/W - 2)
SM SM
GPU-1 (HIW - 1)
SM SM SM SM Block 0 Block 1

Block 2 Block 3

Time
Time

Block 4  Block 5
Block4 Block5 Block6 Block7

l Block 0 Block 1 Block2 Block 3

v Block 6 Block7
CS302 - Spring 2025
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Kernel Decomposition for Global Synchronization

KernelA1<<< nBlk, nTid >>>(args)| | 3223

KernelA<<< nBIk, nTid >>>(args)

Depiieit “glotbal” barmier

KernelA2<<< nBlk, nTid >>>(args)

¢ Implicit “global” barrier at each kernel boundary
@® \When a kernel completes, all threads have completed their operations
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Kernel Launch is Asynchronous

Serial Code (host/CPU)

KernelA<<< nBIk, nTid >>>(args);

Would not wait for the
kernel to finish

@ial Code (host/CPU)

KernelB<<< nBlIk, nTid >>>(args);

|

)))))))

SOOI

&

kernel to finish before the host code

g cudaDeviceSynchronize to wait for a

proceeds

DO

D

DO D))
4/) /)

cudaMemcpy ( (void*) host array, (void*)gpu array,

NBYTES, cudaMemcpyDeviceToHost) ;

cudaMemcpy is blocking --- no need for cudaDeviceSynchronize
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Note: KernelB will only start
executing after KernelA finishes
execution even without
cudaDeviceSynchronize
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GPU MEMORY SYSTEM
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Overview: CPU vs. GPU memory system

CPU GPU
* Limited number of registers « Many registers
o OS saves/restores registers o H/W saves/restores registers

* Many different address spaces
o Global memory
» Caches
o Local memory
o Constant memory

o Shared memory (scratchpad)

* One virtual address space
(per process)

 Large caches for latency
hiding « Small caches — for b/w filtering
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Many Registers for Fast Context Switch

I CPU . eu

Registers/thread 16-32 32 (up to 256)
Num physical registers/per “core” (or ~150-256 ~64K
SM)

Registers provide the fastest access Large register file key to latency hiding

¢ 1 Cycle latency ¢ Keep register state of many warps
¢ 100s of TBs of bandwidth (threads) ready
¢ Per-thread variables declared in & “Zero cycle” H/W context switch
kernels are kept in registers when a warp hits long latency event
Allocated on __global void vecadd kernel (float* x, float* y, float* z, int N) ({
register = blockDim.x*blockIdx.x + threadIdx.x;

for each thread z = x[1i] + yl[i];
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Global Memory of GPU

¢ Off chip memory on the GPU board

¢ Goal is to provide high bandwidth — H100 supports 3.5 TB/sec
¢ Latency is a lessor concern

¢ But, low capacity (typically, in 10s of GBs, e.g., 80 GB)

HBM (High Bandwidth
Memory):

Higher bandwidth
Costlier
Power-efficient

Lower bandwidth
Cheaper

Less power-efficient ‘.
GDDR5 ‘

GDDR (Graphics DDR): ”
\ 2
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Global Memory of GPU

¢ Global memory (per application):

¢ Accessible to all threads in a grid
¢ Remains live (unless freed) across

kernel launched in an application
¢ Enables inter-grid communication

Grid O
IS p SIS p I p SOSNTH
<
Grid 1
) \}\\ p ) \}K D) (“ 3 ,}: DY p ‘s}}}‘\\
( ‘( ))( ) ] ‘( ): ) ‘( ]))){ ) ]
> . .o
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void vecadd(float* x, float* y, float* z,
int N) {
// Allocate GPU memory
float *x d, *y d, *z d;

Global

Memory

cudaMalloc Q(void**) &x d, N¥ (float));

(float)) ;

Host code
__Allocates global GPU
memory
Sequential
Grids
in Time
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Bridging the Gap between Compute and (Global) Memory B/W

¢ GPUs have plenty of compute (FLOPS)
@® Max FLOPS of H100 GPU: 51 Teraflops (FP32)

¢ (Global) Memory bandwidth is relatively limited (GB/sec)
® Max Mem. Bandwidth of H100 GPU: 2TB/sec A Max. FLOPs/sec

¢ Remember the roofline model?

@® Needs very high arithmetic intensity to achieve the FLOPs
@® How much airth. Intensity needed to leverage full TFLOPS?
A Ans: 25.5

¢ GPU memory hierarchy built to help Arithmetic intensin\

bridge this gap between FLOPS and GB/seC  wantto be here. But needs high
@® Caching as a bandwidth filter arithmetic intensity

@® Memory access coalescing
® Specialized memory
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GPU Cache Hierarchy

|

TGPU . TTTTTTTTTTTTToootoossoooso--os-oooo b NO hardware
Private 1 | : ' cache
to each | ! B coherence

|
SM —!' | sm Y SM._ SM_ _SM_ SM_ 1!
[ L1$ 118 || L1$ 115 L1 || L1s i v >

I : Interconnection Network ' : Logically

| | $ $ } | L shared

L 12$ L2$ L2$ /:/| across all

: : PartAition PartAition PartAition : : SMs of a

e = ECEEEECECECECEEE SECELESS P
Global T—— GDDR6/HBM3 GDDR6/HBM3  Off-chip DRAM GDDR6/HBMS3 : Physically
memory: | partioned for

____________________________________________ I bandwidth
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GPU vs CPU Cache Hierarchy
Typical CPU vs GPU caches m The primary purpose of

L1 data cache capacity 32KB 16 KB fh‘: GPltJ cach: hijra_gmy

Active threads sharing L1 D Cache 2 (2-way 2048 o oo 2 A SAIEHEE
SMT) ilter.

L1 D Cache capacity / thread 16KB 8 bytes

Last level cache (LLC) capacity 8MB 1MB In comparison, the

Active threads sharing LLC 8 163,840  purpose of CPU caches
LLC capacity / thread (4 cores) 1MB 6.4 is latency hiding.
bytes

Cache line size 64B 128B
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Memory Access Coalescing

¢ Threads in a warp executing in lock-step often simultaneously
access different words within the same cache line

¢ GPU cache line size 128 bytes Y

¢ If all 32 threads of warp access contiguous 4 bytes G isrs
then they map to the same cache line Cache line

- -
" ——
T ——
———
 ——
T ——
- ——
e
~——

CS302 - Spring 2025 Lec.11.2 - Slide 28



Memory Access Coalescing

¢ Threads in a warp executing in lock-step often simultaneously
access different words within the same cache line

¢ GPU cache line size 128 bytes %%%

¢ If all 32 threads of warp access contiguous 4 bytes, s ma—

they map to the same cache line —
Cache line

¢ Hardware coalescer: Zap accesses from threads of a warp to

a single cache access
@® Up to 32X reduction in the number of cache accesses/memory accesses!
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GPU Memory Access Coalescer

L e e e e e e e e e e e e e e e e e e e e e e e e e |

\  'GPU ]
Private 1 | R Memo
to each | 5 acces;'y
SM ' | | sm )
L e s s s conlescer
SN L1$ L1$ L1S [[L1S i ¢
I
L ! ! ! ! b
I : Interconnection Network ' : Logically
b t t t I L shared
! |_L share
L L2$ L2'$ L2 $ ,/:/: across all
: : PartAition PartAition PartAition : : SMs of a
L e JOUCUOTOToTOTeTee SR Gy
Global 1 | © copRe/HBM3 ~ GDDRe/HBMZ  Off-chip DRAM  GDDRE/HBMS3 | Physically
memory: | partioned for

____________________________________________ I bandwidth
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Opportunities for Memory Access Coalescing

¢ Whether memory accesses can be coalesced depends on software
o e.g., how the array is indexed

¢ Example of coalescing: Vector addition

__global  void vecadd kernel (float* x, float* y, float* z, int N)
{
int 1 = blockDim.x*blockIdx.x + threadIdx.x;

z[1i] = x[i] + y[il]’ A warp contains consecutive threads in

the x dimension followed by the y

dimension
o Accesses to x, y, and z are coalesced
o E.g., threads 0 to 31 access elements 0 to 31, resulting in one memory
transaction to service warp 0
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Coalesced Memory Accesses - Example

¢ Warp requests 32 aligned, consecutive 4-byte words

& Addresses fall within one cache line Full coalescing — 1
¢ \Warp needs 128 bytes memory access per warp
¢ 128 bytes move across the bus on a miss
¢ Bus transfer utilization: 100%

1 = (blockIdx.x * blockDim.x) + threadIdx.x ;
Ali]

addresses from a warp

Vi

128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Coalesced Memory Accesses - Example

¢ Warp requests 32 aligned, permuted 4-byte words

& Addresses fall within one cache line Full coalescing — 1
¢ \Warp needs 128 bytes memory access per warp
¢ 128 bytes move across the bus on a miss
¢ Bus transfer utilization: 100%

t32 = (threadlIdx.x / 32) * 32;
i = (blockIdx.x * blockDim.x) + t32 + (31 - threadIdx.x $%$32);
Ali]

128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Coalesced Memory Accesses - Example

¢ All threads in a warp request the same 4-byte word

& Addresses fall within a single cache line Full coalescing — 1
& Warp needs four bytes Memaory access per warp
¢ 128 bytes move across the bus on a miss
¢ Bus transfer utilization: 3.125%

1 = blockidx.x * BlockDim.x;
A[i]

addresses from a warp

\Q¢L44543”

128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Partially Coalesced Memory Accesses - Example

¢ Warp requests 32 misaligned, consecutive 4-byte words

¢ Addresses fall within two cache lines Partial coalescing — 2
& Warp needs 128 bytes memaory accesses per warp

¢ 256 bytes move across the bus on a miss
¢ Bus transfer utilization: 50%

// OFFSET = 64
1 = blockidx.x * BlockDim.x + threadlIdx.x + OFFSET;
Ali]

addresses from a warp

128 160 192 224 256 288 320 352 384 416 448
Memory addresses
Lec.11.2 - Slide 35

CS302 - Spring 2025



Uncoalesced Memory Accesses - Example

¢ Warp requests 32 scattered 4-byte words

¢ Addresses fall within N cache lines Worst Case_scenario —
¢ Warp needs 128 bytes 32 threads in a warp

¢ N*128 bytes move across the bus on a miss generates 32 accesses
¢ Bus utilization: 128 / (N*128), for N=32 = 3.125%

i = blockidx.x * BlockDim.x + threadidx.x * 32;
A[1]

addresses from a warp

s A

64 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Indirect Memory Accesses — Unpredictable Coalescing

¢ Memory dependent indexing causes uncoalesced access

¢ Also called irreqular memory access _
J Y Unpredictable

¢ Addresses may not fall within a single cache line scenario -- but
¢ In the worst case each thread in a warp will access memory dependent
different cache line addressing leads to
& Bus transfer utilization: Unpredictable uncoalesced access
i =
A[i Depends upon content of the Index array

addresses from a warp

s A

0 32 64 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Indirect Memory Accesses — Unpredictable Coalescing

¢ Memory dependent indexing causes uncoalesced access

¢ Also called irreqular memory access _
J Y Unpredictable

¢ Addresses may not fall within a single cache line scenario -- but
¢ In the worst case each thread in a warp will access memory dependent
different cache line addressing leads to
& Bus transfer utilization: Unpredictable uncoalesced access
i =
A[i Depends upon content of the Index array

addresses from a warp

bl

0 32 64 9 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Coalesced or Uncoalesced Memory Accesses?

¢ Would the following indexing coalesce?

int row = blockDim.y*blockIdx.y + threadIdx.y;
int col = blockDim.x*blockIdx.x + threadIdx.x;
(unsigned int 1 = 0; 1 < N; ++i) {
sum += A[row*N + 1i]*B[1*N + col];

& Accesses to A and B are coalesced

o E.g., threads 0 to 31 access element 0 of A on the first iteration, resulting in one access to
service warp 0

o E.g., threads 0 to 31 access elements 0 to 31 of B on the first iteration, resulting in one
access to service warp 0
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Divergence Kills GPU Program Performance

¢ Uncoalesced Memory Accesses > Memory Access Divergence

¢ Beware of Divergences in the GPU program

¢ Control flow divergence
¢ Memory access divergence
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