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Where are We?

u This lecture
u Control flow divergence
u Basic synchronization
u GPU memory part I

u Exercise session:
u GPU demo programming
u Using the Izar cluster

u Next week:
u Memory optimizations on GPUs

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May



CS302 – Spring 2025 Lec.11.2 -  Slide 3

Review: GPU is a Co-Processor

CPU
GPU

PCIe connection

Typical connection:
PCIe 5.0 x16: 128 
GB/sec
~150 ns latencyDRAM

Operating system, 
GPU driver

S/W running on CPU 
controls what runs on GPU

Discrete GPULaunch work

get back results
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Review: Launching Kernel and Thread Grids

Serial Code (host/CPU)

. . .

. . .

Data parallel function (device/GPU)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelB<<< nBlk, nTid >>>(args);

Kernels written 
as SPMD 
programs
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Beware of Pitfalls of GPU’s SIMT Execution

u Recall: SIMT à One PC multiple thread operating on multiple data
o Benefits à Fetch and decode one instruction, 

multiple concurrent execution

u But what if the code (kernel/device) code has a conditional branch?

if (x <= 0) 
 y = 0;
else
 y = x;

?
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A Pitfall of GPU’s SIMT Execution: Control Flow Divergence

u Threads in warp run in lockstep
o Observation: Not all have to commit

u Support conditional branch through predication
o All threads execute, but some discard their result (wasted compute)
o A predication mask determines whose results to keep (discard)
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Performance Loss due to Control-Flow Divergence

u Execute one path at a time
u Diverging threads will be disabled
u Limits parallelism à lower performance

50% Performance Loss

Programs with many conditional 
branches are not well-suited for 
GPU’s SIMT execution 

Active lane Inactive lane

1 1 1 1 1 1

1 1 1 1 1 1

0 0 1 1 0 1

1 1 0 0 1 0

1 1 1 1 1 1

Predication 
mask

Control flow divergence
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Limiting Control-Flow Divergence

u Observation: SIMT (lock-step) execution only within a warp 
o It’s okay if different warps take different paths 

uTwo different control paths for threads in a warp
u Avoiding control flow divergence:

u Two different control paths, but different warps
u All threads in a given warp follow the same path
u Divergence across warps is OK!

if (threadIdx.x > 2) {. . .}
else {.  .  .}

if (threadIdx.x / WARP_SIZE > 2) {. . .}
else {.  .  . }
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BASIC SYNCHRONIZATION 
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u Commonly used synchronization: Threadblock barrier (_ _syncthreads)

u All threads of a given threadblock must reach the barrier before any of 
them can proceed past the barrier

u Threads from different threadblocks are not synchronized
NOT a global synchronization across all threads of a threadblock 

u Suitable for bulk synchronous programs
  Threads execute concurrently most of the time
 Infrequently synchronize many threads together at certain points in the program

Barrier Synchronization in CUDA
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Barrier Synchronization in CUDA
Threadblock n

__syncthreads

Threadblock 0

__syncthreads

Time
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u A threadblock barrier = execution barrier + a memory barrier 
u Execution barrier: All threads of a threadblock reach the barrier before 

any of them can proceed forward
u Memory barrier: A write by any thread before the barrier is guaranteed 

to be visible to all threads in the threadblock after the barrier 

Barrier Synchronization in CUDA

__global void test_syncthread(unsigned* x, int N) {
  int tid = blockIdx.x*blockDim.x + threadIdx.x; 
  x[tid] = tid;  
  __syncthreads(); 
    if (tid < N-1 && x[tid +1] ! = tid +1 ) {
  printf(“syncthreads not enough\n”);
  }
}  

When do you expect the 
statement be printed?
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Barrier Synchronization in CUDA

Threadblock k+1

__syncthreads

Threadblock k

__syncthreads

Time

x[tid] = tid;

x[tid] = tid;

x[tid +1] ! = tid +1

x[tid +1] ! = tid +1
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u A threadblock barrier = execution barrier + a memory barrier 
u Execution barrier: All threads of a threadblock reach the barrier before 

any of them can proceed forward
u Memory barrier: A write by any thread before the barrier is guaranteed 

to be visible to all threads in the threadblock after the barrier 

Barrier Synchronization in CUDA

__global void test_syncthread(unsigned* x, int N) {
  int tid = blockIdx.x*blockDim.x + threadIdx.x; 
  x[tid] = tid;  
  __syncthreads(); 
    if (tid < N-1 && x[tid +1] ! = tid +1 ) {
  printf(“syncthreads not enough\n”);
  }
}  

When do you expect the 
statement be printed?

Ans: When threads tid and 
tid+1 belongs to different 
threadblocks 
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u What do you think can happen to this code? 
u Be careful when using barriers within conditional statements 
Works only if all threads of a threadblock are guaranteed to either hit the barrier 

or none would 

Interactions Between Barriers and Conditionals 

__global void test_syncthread(unsigned* x, int N) {
   …… 
 if(threadIdx % 2 == 0) {
  ………
  __syncthreads(); 
 }
    else {
       ………
  __syncthreads(); 
 }  
}   

Distinct barriers – not all threads of a 
threadblock will execute the same 
barrier à Possible deadlock 
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u No explicit global barrier across all threads of a kernel 
u Not all thread blocks of a kernel may execute simultaneously 
No specific order of execution amongst the thread blocks
Enforcing a barrier can deadlock if only some thread blocks are running  

Synchronizing across All Threads of a Kernel?

GPU-2 (H/W - 2)

SM SM

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel’s thread grid
Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU-1 (H/W - 1)
SM SM SM SM

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Ti
m

e

Ti
m

e
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Kernel Decomposition for Global Synchronization

. . .

. . .
KernelA<<< nBlk, nTid >>>(args)

. . .

KernelA1<<< nBlk, nTid >>>(args)

KernelA2<<< nBlk, nTid >>>(args)
Desired “global” barrierImplicit “global” barrier

u Implicit “global” barrier at each kernel boundary 
When a kernel completes, all threads have completed their operations  
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Kernel Launch is Asynchronous 

Serial Code (host/CPU)

. . .

. . .

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

KernelB<<< nBlk, nTid >>>(args);

Would not wait for the 
kernel to finish

Note: KernelB will only start 
executing after KernelA finishes 
execution even without 
cudaDeviceSynchronize 

cudaDeviceSynchronize to wait for a 
kernel to finish before the host code 
proceeds   

cudaMemcpy((void*)host_array, (void*)gpu_array, 
NBYTES, cudaMemcpyDeviceToHost);

cudaMemcpy is blocking --- no need for cudaDeviceSynchronize
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GPU MEMORY SYSTEM
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Overview: CPU vs. GPU memory system 

• Limited number of registers
o OS saves/restores registers 

• One virtual address space 
(per process)

• Large caches for latency 
hiding 

CPU GPU
•  Many registers

o H/W saves/restores registers

• Many different address spaces
o Global memory

§ Caches
o Local memory
o Constant memory
o Shared memory (scratchpad)

• Small caches – for b/w filtering 
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Many Registers for Fast Context Switch

CPU GPU

Registers/thread 16-32 32 (up to 256)

Num physical registers/per “core” (or 
SM)

~150-256 ~64K 

Registers provide the fastest access
u 1 Cycle latency
u 100s of TBs of bandwidth 
u Per-thread variables declared in 

kernels are kept in registers 

__global__ void vecadd_kernel(float* x, float* y, float* z, int N) {
    int i = blockDim.x*blockIdx.x + threadIdx.x;
    z[i] = x[i] + y[i];
}

Allocated on 
register
for each thread

Large register file key to latency hiding
u Keep register state of many warps 

(threads) ready 
u “Zero cycle”  H/W context switch 

when a warp hits long latency event
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Global Memory of GPU

u Off chip memory on the GPU board
u Goal is to provide high bandwidth – H100 supports 3.5 TB/sec
u Latency is a lessor concern
u But, low capacity  (typically, in 10s of GBs, e.g., 80 GB)

GDDR (Graphics DDR):
Lower bandwidth 
Cheaper
Less power-efficient  

HBM (High Bandwidth 
Memory):
Higher bandwidth 
Costlier
Power-efficient  
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Global Memory of GPU

u Global memory (per application):
u Accessible to all threads in a grid 
u Remains live (unless freed) across 

kernel launched  in an application 
u Enables inter-grid communication

Grid 0

. . .
Global

Memory

. . .

Grid 1
Sequential
Grids
in Time

void vecadd(float* x, float* y, float* z, 
      int N) {
    // Allocate GPU memory
    float *x_d, *y_d, *z_d;

cudaMalloc((void**) &x_d, N*sizeof(float));
N*sizeof(float));

Allocates global GPU 
memory

Host code
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u GPUs have plenty of compute (FLOPS)
 Max FLOPS of H100 GPU: 51 Teraflops (FP32)

u (Global) Memory bandwidth is relatively limited (GB/sec)
 Max Mem. Bandwidth of H100 GPU: 2TB/sec

u Remember the roofline model? 
 Needs very high arithmetic intensity to achieve the FLOPs
 How much airth. Intensity needed to leverage full TFLOPS?

Ans: 25.5 

u GPU memory hierarchy built to help 
bridge this gap between FLOPS and GB/sec
 Caching as a bandwidth filter 
 Memory access coalescing 
 Specialized memory

Bridging the Gap between Compute and (Global) Memory B/W

Max. FLOPs/sec

A
tta

in
ab

le
 F

LO
Ps

/s
ec

Want to be here. But needs high 
arithmetic intensity

Arithmetic intensity
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GPU Cache Hierarchy 

GPU

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $

GPU package

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

Private 
to each 
SM

Logically 
shared 
across all 
SMs of a 
GPU

Physically 
partioned for 
bandwidth

Global 
memory

NO hardware 
cache 
coherence 
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GPU vs CPU Cache Hierarchy
Typical CPU vs GPU caches CPU GPU 
L1 data cache capacity 32KB 16 KB
Active threads sharing L1 D Cache 2 (2-way 

SMT)
2048

L1 D Cache capacity / thread 16KB 8 bytes

Last level cache (LLC) capacity 8MB 1MB
Active threads  sharing LLC 8 163,840
LLC capacity / thread (4 cores) 1MB 6.4 

bytes
Cache line size 64B 128B

The primary purpose of 
the GPU cache hierarchy 
is to act as a bandwidth 
filter. 

In comparison, the 
purpose of CPU caches 
is latency hiding. 
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u Threads in a warp executing in lock-step often simultaneously 
access different words within the same cache line 

u GPU cache line size 128 bytes
u If all 32 threads of warp access contiguous 4 bytes

then they map to the same cache line

Memory Access Coalescing

Cache line 
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u Threads in a warp executing in lock-step often simultaneously 
access different words within the same cache line 

u GPU cache line size 128 bytes
u If all 32 threads of warp access contiguous 4 bytes,

they map to the same cache line

u Hardware coalescer: Zap accesses from threads of a warp to 
a single cache access
 Up to 32X reduction in the number of cache accesses/memory accesses!

Memory Access Coalescing

Cache line 
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GPU Memory Access Coalescer

GPU

Interconnection Network

SM

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3

L2 $
Partition

GDDR6/HBM3 Off-chip DRAM

L1 $

GPU package

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

SM
L1 $

Private 
to each 
SM

Logically 
shared 
across all 
SMs of a 
GPU

Physically 
partioned for 
bandwidth

Global 
memory

Memory 
access 
coalescer
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Opportunities for Memory Access Coalescing 

u Whether memory accesses can be coalesced depends on software
o e.g., how the array is indexed

u Example of coalescing:  Vector addition

o Accesses to x, y, and z are coalesced
o E.g., threads 0 to 31 access elements 0 to 31, resulting in one memory 

transaction to service warp 0

__global__ void vecadd_kernel(float* x, float* y, float* z, int N) 
{
    int i = blockDim.x*blockIdx.x + threadIdx.x;
    z[i] = x[i] + y[i];
}

A warp contains consecutive threads in 
the x dimension followed by the y 
dimension
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Coalesced Memory Accesses - Example

u Warp requests 32 aligned, consecutive 4-byte words
u Addresses fall within one cache line

u Warp needs 128 bytes
u 128 bytes move across the bus on a miss
u Bus transfer utilization: 100%

i = (blockIdx.x * blockDim.x) + threadIdx.x ;
A[i]

Full coalescing – 1 
memory access per warp 
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Coalesced Memory Accesses - Example

u Warp requests 32 aligned, permuted 4-byte words
u Addresses fall within one cache line

u Warp needs 128 bytes
u 128 bytes move across the bus on a miss
u Bus transfer utilization: 100%

t32 = (threadIdx.x / 32) * 32;
i = (blockIdx.x * blockDim.x) + t32 + (31 - threadIdx.x %32);
A[i]

Full coalescing – 1 
memory access per warp 
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Coalesced Memory Accesses - Example

u All threads in a warp request the same 4-byte word
u Addresses fall within a single cache line

u Warp needs four bytes
u 128 bytes move across the bus on a miss
u Bus transfer utilization: 3.125%

i = blockidx.x * BlockDim.x;
A[i]

Full coalescing – 1 
memory access per warp 
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Partially Coalesced Memory Accesses - Example

u Warp requests 32 misaligned, consecutive 4-byte words
u Addresses fall within two cache lines

u Warp needs 128 bytes
u 256 bytes move across the bus on a miss
u Bus transfer utilization: 50%

// OFFSET = 64
i = blockidx.x * BlockDim.x + threadIdx.x + OFFSET;
A[i]

Partial coalescing – 2 
memory accesses per warp
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Uncoalesced Memory Accesses - Example

u Warp requests 32 scattered 4-byte words
u Addresses fall within N cache lines

u Warp needs 128 bytes
u N*128 bytes move across the bus on a miss
u Bus utilization: 128 / (N*128), for N=32 à 3.125%

i = blockidx.x * BlockDim.x + threadidx.x * 32;
A[i]

Worst case scenario – 
32 threads in a warp 
generates 32 accesses
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Indirect Memory Accesses – Unpredictable Coalescing

u Memory dependent indexing causes uncoalesced access
u Also called irregular memory access 

u Addresses may not fall within a single cache line
u In the worst case each thread in a warp will access

different cache line
u Bus transfer utilization: Unpredictable

i = Index[j];
A[i]

Unpredictable 
scenario -- but 
memory dependent 
addressing leads to 
uncoalesced access

Depends upon content of the Index array
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Coalesced or Uncoalesced Memory Accesses?

u Would the following indexing coalesce? 

u Accesses to A and B are coalesced
o E.g., threads 0 to 31 access element 0 of A on the first iteration, resulting in one access to 

service warp 0
o E.g., threads 0 to 31 access elements 0 to 31 of B on the first iteration, resulting in one 

access to service warp 0

int row = blockDim.y*blockIdx.y + threadIdx.y;
int col = blockDim.x*blockIdx.x + threadIdx.x;
for(unsigned int i = 0; i < N; ++i) {
    sum += A[row*N + i]*B[i*N + col];
}
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Divergence Kills GPU Program Performance

u Uncoalesced Memory Accesses  à Memory Access Divergence

u Beware of Divergences in the GPU program 

u Control flow divergence 
u Memory access divergence


