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Where are We?

u This week:
u GPU hardware
u CUDA programming basics

u Thursday exercise session:
u GPU demo programming
u Using the Izar cluster

u Next week:
u Memory optimizations on GPUs
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u Assignment 3 released!
◆ Implement the RMM algorithm on GPUs
◆ Optimise the memory traffic of the algorithm

u Deadline to submit A3: Sunday June 1st, 2025 11:59 pm

u HW7 also released!
◆ Deadline to submit: Sunday May 11th, 2025 11:59 pm

Heads Up
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WHY CARE ABOUT A GPU?
Even if you are not a video gamer! 
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Volume of data being generated worldwide 
(zettabytes)*

Need Big (Parallel) Compute to Draw Knowledge From Big Data

*https://www.statista.com/statistics/871513/worldwide-data-created/

https://www.statista.com/statistics/871513/worldwide-data-created/
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GPU: Accelerator For Parallel Computing

A large swath of today’s software relies on GPUs for their primary computing need

Graph processingImage processing

Data clustering, 
warehousingMachine Learning Scientific computing
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GPUs Are Powering LLMs on Supercomputers

The fastest supercomputer (El 
Capitan) today has 43,808 GPUs

Nine out of the ten most 
powerful supercomputers in 
Top500 list rely on GPUs
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u Instruction Level Parallelism (ILP)
◆ Example: Out-of-order processor 

u Memory Level Parallelism  (MLP)
◆ Example: Non-blocking caches

u Thread Level Parallelism (TLP)
◆ Example: Simultaneous Multi-threading 

u Data Level Parallelism (DLP) 
◆ Example: Single Instruction Multiple Data (SIMD), Vector 

Review: Types of Parallelism
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Why GPUs for Data-Parallel Computing?
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Why GPUs for Data-Parallel Computing?

Identical, parallel operation on pixels
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Why GPUs for Data-Parallel Computing?
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0 55 42 9 0

Identical, parallel operation on data items

Serendipity: ML/AI needs a lot of matrix and vector arithmetic à GPU boom
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u Before 2007, GPUs could only be programmed using Graphics APIs
◆ For computation one required to reformulate it as a graphics function on pixels
◆ For example, use OpenGL, Direct3D for computation à Hard to program

u In 2007, NVIDIA introduced CUDA
◆ A dialect of C/C++
◆ General purpose programming/computation for GPUs
◆ Extensions to the GPU architecture  

Arrival of “General Purpose” GPUs (GPGPUs), a.k.a, CUDA

Hardware is useful only if it is (easily) programmable
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Closer Look: GPU’s Execution Model in Perspective 
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Identical, parallel operation on data items
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Identical Computation on Different Data Items

15 31f(in)  = out

3 56f(in)  = out

19 1f(in)  = out

9 40f(in)  = out



CS302 – Spring 2025 Lec.11.1 -  Slide 15

Core 1

Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way

Core 0

Core 2

Core N

Identical, 
independent 
work on 
each CPU 
core à
Unable to 
leverage 
“identical” 
instructions

15 31f(in)  = out

3 56f(in)  = out

19 1f(in)  = out

9 40f(in)  = out
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Thread 1

Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way

Thread 0

Thread 2

Thread N

Identical, 
independent 
work on 
each CPU 
core à
Unable to 
leverage 
“identical” 
instructions

15 31f(in)  = out

3 56f(in)  = out

19 1f(in)  = out

9 40f(in)  = out

Core 0

Core K

H/W
Multi-
threaded
Core
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Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way

Identical, 
independent 
work on 
each CPU 
core à
Unable to 
leverage 
“identical” 
instructions  
à Inefficient

15 31f(in)  = out

3 56f(in)  = out

19 1f(in)  = out

9 40f(in)  = out

Fetch Decode Execute Memory WB

Fetch Decode Execute Memory WB

Fetch Decode Execute Memory WB

Fetch Decode Execute Memory WB

Duplicate work!

Core 0

Core K

H/W
Multi-
threaded
Core



CS302 – Spring 2025 Lec.11.1 -  Slide 18

Option (2): Single Instruction Multiple Data (SIMD)

Eliminates 
redundant 
fetch and 
decode à
Efficient

15 31

3 56

19 1

9 40

Execute Memory WB
Execute Memory WB
Execute Memory WB

Fetch Decode

Execute Memory WB
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Option (2): Single Instruction Multiple Data (SIMD)

Register File

Eliminates 
redundant 
fetch and 
decode à
Efficient

Single thread, 
parallel ops 
à Limited 
programm-
ability

15 31

3 56

19 1

9 40

Execute Memory WB
Execute Memory WB
Execute Memory WB

Fetch Decode

Execute Memory WB
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Single Instruction Multiple Thread (SIMT) Execution Model
Multiple 
threads 
execute in 
lockstep 
(almost 
always) à
Efficient 

Separate 
context à
Better 
Programma
bility  

15 31

3 56

19 1

9 40

Execute Memory WB

Execute Memory WB

Execute Memory WB
Fetch Decode

Execute Memory WB

Independent thread context 

SIMT ≈ SIMD with H/W Multi-threading 
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Good for TLP Good for DLP Good for DLP
but not for DLP Limited Programmability        Better Programmability
Easiest Programming Harder to scale up Easier to scale up

Summary of Execution Model 

MIMD/SPMD SIMD/Vector SIMT
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A Conceptual View of a GPU: SIMT on Steroids!

GPU “Core” GPU “Core”

GPU “Core” GPU  “Core”

GPU architecture is built to enable this efficient 
and programmable SIMT execution model

Conceptually, 
it’s like a 
“core” of a 
multi-core 
CPU
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A More Realistic Picture of GPU Hardware 

GPU “Core”
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Unit of a GPU compute resource
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Fetch/Decode

10s-100s of SMs in a GPU 
(current max 192 on NVIDIA 

GPUs)

SIMD lane
(“CUDA core”)

Executes 
threads in 
lockstep

A typical SM can have 4 SIMT 
units with 128 total lanes

GPU’s onboard 
memory
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A More Realistic Picture of GPU Hardware 
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CPU vs. GPU : A Bird’s Eye View 

u A few, large ALUs
u Large caches 
u Branch prediction, speculation, OoO
u High clock frequency 
u Limited multithreading 

u Sea of small ALUs
u Small, shallow cache hierarchy
u Simple control logic, in-order
u Massive multi-threading 
u High memory bandwidth 

Cache

ALUControl
ALU

ALU
ALU

CPU: Latency-Oriented Design GPU: Throughput-Oriented Design

Cache

Cache

ALUControl
ALU

ALU
ALU

Cache

ALUControl
ALU

ALU
ALU

Cache

ALUControl
ALU

ALU
ALU
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u GPUs turn transistor density into massive parallel compute

Transistor Technology Trends Encourage GPU Architecture

Transistors 
(thousands)

Frequency
(MHz)
Typical Power
(Watts)

1970 1980 1990 2000 2010 2020

100
101
102
103
104
105
106
107

108

u Chip density
increases

u Power wall limits
frequency scaling

u Scaling frequency 
harder
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Scale of Parallelism in Modern GPUs

1536
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executing one SIMT (GPU) thread
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Key GPU Characteristics at a Glance 

Single-instruction 
multiple thread (SIMT)

Memory coalescing 
High bandwidth 
memory

Many thread context à 
H/W context switch

The key enabler 
of efficient data-
parallel execution

Effective latency hiding for high throughput

Feeding the large parallel 
compute with high 
bandwidth memory systems

(Next classes/weeks)
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Many More Concurrent Threads Than Cores

30720
(Kepler)
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Key for hiding latency – keep many threads ready to run

In a modern GPU, an SM can have 128 “CUDA” 
cores but can have 2048 threads ready to run
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Hardware Context Switch for Hiding Latency

u Recall on the CPU:
◆ OS does context switch of a thread 

when blocked/waiting 
◆ S/w context switch is slow (5-10 usec)

u On the GPU:
◆ Hardware keeps many groups (SIMT) of 

threads ready to run
◆ Upon long latency events, h/w schedules 

another group (SIMT) of thread 
◆ Many hardware registers
◆ Scheduling policy baked into h/w

SMSM SM SM

…
…

SM SM

SMSMSM SM

…
…

…
… …
…

L2$
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Example: Commercial CPU vs. GPU

NVIDIA Blackwell
u 24,576 CUDA cores/ 192 SMs
u 64K registers per SM (256KB) 
u Cache hierarchy: 

o 128KB (L1) per SM
o 128MB L2

u Memory bandwidth
o 8TB/sec
o HBM3

u TDP 1000 Watts

AMD Epyc 5th gen (Turin)
u 192 cores/356 threads
u ~150-200 registers/core
u Cache hierarchy: 

o 48KB (L1) /1MB (L2) per core
o 384MB LLC

u Memory bandwidth:
o 576 GB/sec
o DDR5

u TDP 500 Watts
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GPU Is a Co-Processor: Needs a Companion CPU

CPU
GPU

PCIe connection

Typical connection:
PCIe 5.0 x16: 128 GB/sec
~150 ns latency

DRAM

Operating system
GPU driver

S/W running on CPU controls what runs on 
GPU, allocates GPU memory etc

Discrete GPULaunch work

Get back results~100sGB/sec
TBs/sec
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u GPU Integrated on-chip (SoC) with CPU
◆ For example, Intel core i7

u Same architecture as discrete GPU
u But much smaller/less resources
u No onboard high-bandwidth memory, 

unlike discrete GPU
u Typically used for driving graphics in 

desktops/laptops 

Tighter Integration: The Integrated GPU (iGPU)

Intel core i7

We will focus on 
discrete GPUs and not 
integrated GPUs

Intel Coffee Lake
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PROGRAMMING THE GPU
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u CUDA – Compute Unified Device Architecture
◆ Developed by Nvidia -- proprietary
◆ First serious GPGPU language/environment

u OpenCL – Open Computing Language
◆ From makers of OpenGL
◆ Wide industry support: AMD, Apple, Qualcomm, Nvidia, etc.

u C++ AMP – C++ Accelerated Massive Parallelism
◆ Microsoft
◆ Much higher abstraction that CUDA/OpenCL

u OpenACC – Open Accelerator
◆ Like OpenMP for GPUs (semi-auto-parallelize serial code)
◆ Much higher abstraction than CUDA/OpenCL

GPU Programming Languages 
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u There exists no “pure” GPU program
u Host or CPU program that launches work on GPU

u A function is accelerated on the GPU à a.k.a., GPU kernel (not to be 
confused with Linux kernel)

u GPU kernels follow the Single Program Multiple Thread/Data model
◆ GPU kernel code specifies what each thread must do 
◆ Thread index specifies which data the thread must operate on
◆ Kernel is launched by the CPU, specifying how many threads should execute the kernel 

GPU Programming Model
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Division of Labor Between CPU (Host) and the GPU (Device)

Serial Code (host/CPU)

. . .

. . .

Data parallel function (device/GPU)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelB<<< nBlk, nTid >>>(args);

SIMT group 
of threads

Kernel launch 
parameters 

Function arguments
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u Consider a CPU application before using GPU:
◆ The sequential execution time is 100s
◆ The fraction of execution that is parallelizable is 80%
◆ GPU can speedup the parallelizable part by 100×

u What is the overall speedup of the application?

𝑡!"#"$$%$ = 1 − 𝟎. 𝟖 ∗ 𝟏𝟎𝟎𝑠 +
𝟎. 8 ∗ 𝟏𝟎𝟎𝑠

𝟏𝟎𝟎
= 20.8𝑠

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡&%'(%)*+"$
𝑡!"#"$$%$

=
𝟏𝟎𝟎𝑠
20.8𝑠

= 4.81×

Review: Don’t Forget Amdahl’s Law
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Recall: Scale of Parallelism in Modern GPUs
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Hierarchical execution and programming model for scaling parallelism

CUDA cores ≈ SIMD execution lane 
executing one SIMT (GPU) thread
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The Hierarchy in GPU Thread Organization

Thread Block 1

Thread Block 2
Kernel 1

KernelApplication

Kernel 2

Kernel 3

Thread Block 3

Warp 1

Thread Block

Warp 2

Warp 3

Warp 4

Threads

Warp is the smallest unit of 
scheduling work on a GPU

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

SIMT 
(32 threads)

Typically, max. 1024 
threads per block 

Typically, up to 64K*64K 
blocks per kernel

Up to 32 warps 
per thread block

Note: Not possible to 
schedule threads individually 
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Summary of Thread Hierarchy and Terminologies 

Thread Work-item

Warp Wavefront

Block Workgroup

NDRangeGrid

CUDA OpenCLA GPU thread runs 
on a SIMD lane 
(CUDA core)

A SIMT thread group 
executing in lockstep

A group of SIMT thread 
groups executing on the 
same SM/CU 

A group of a group of 
SIMT thread groups 
executing on GPU
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1) All warps of a thread block are scheduled on the same SM
2) Different thread blocks can execute on the same or different SMs
3) Different thread blocks can execute concurrently; no ordering 

Mapping the Thread Hierarchy onto the Hardware 

SM

GPU architecture

SM

Kernel

Thread block Thread block 

WarpSIMT units

Scheduling rules in a CUDA/GPU
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u Decoupling hardware resources in a given GPU from kernel threads
u Threads within a thread block can collaborate more efficiently than 

those from different thread blocks à helps scaling up ! 

Advantages of Breaking the Set of Threads into Thread Blocks

GPU-2 (H/W - 2)

SM SM

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel’s thread grid
Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU-1 (H/W - 1)
SM SM SM SM

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7Ti
m

e

Ti
m

e

GPU hardware can run any thread 
block in any order and on any SM

Program

Hardware
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u A kernel is launched with a grid of threads
u A grid is a 3D array of thread blocks and threads

Logical Thread Hierarchy in CUDA

grid

thread blocks

threads
Each thread has 
a unique identifier

Recall that kernel 
follows SPMD

Must uniquely identify 
each thread and 
thread block

Each thread 
computes on 
different data items 
based on its identity 
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Number of Thread Blocks in a Grid (gridDim) 

grid

thread blocks

◆ gridDim.x … 
◆ gridDim.y …
◆ gridDim.z …

X

Y

Z

For 2D (and 1D grids), simply use 
grid dimension 1 for Z (and Y). 

Intrinsic variables: 
Available to each thread 
automatically à No need 
to allocate/initialize.

H/W returns the correct 
value for the calling thread
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Uniquely Identifying Thread block 

grid

thread blocks

Each thead block has a 
unique index tuple

◆ blockIdx.x [from 0 to 
(gridDim.x – 1) ] 

◆ blockIdx.y [from 0 to 
(gridDim.y – 1) ]

◆ blockIdx.z [from 0 to 
(gridDim.z – 1) ]

X

Y

Z

For 2D (and 1D grids), simply use 
grid dimension 1 for Z (and Y). 
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Finding the Number of Threads in a Thread Block

◆ The number of threads in each 
dimension in a thread block
◆ blockDim.x …
◆ blockDim.y …
◆ blockDim.z …

For 2D (and 1D grids), simply use 
grid dimension 1 for Z (and Y). 

threads

X

Y

Z
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Finding the Number of Threads in a Thread Block

Each thread has a unique index 
tuple

◆ threadIdx.x (from 0 to 
(blockDim.x – 1) ) 

◆ threadIdx.y (from 0 to 
(blockDim.y – 1) )

◆ threadIdx.z (from 0 to 
(blockDim.z – 1) )

threadIdx tuple is unique within 
a threadblock

threads

X

Y

Z

Why a 3D grid 
instead of a 
linear array of 
threads?
◆ Historical reason 

stemming from 
graphics

◆ Easier for image 
processing, 
PDEs on 
volumes 
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u Next: The life cycle of a GPU-accelerated program with an example

Review: What Have We Learnt So Far?

Serial Code (host/CPU)

. . .

. . .

Data parallel function (device/GPU)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelB<<< nBlk, nTid >>>(args);

Kernels 
written as 
SPMD 
programs

Thread 
grid size
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Visualization of Thread Organization and Indexing in 1D

gridDim.x

blockIdx.x

blockDim.x

threadIdx.x

# of blocks in grid

position of block in grid

# threads in block

position of thread in block
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Visualization of Thread Organization and Indexing in 2D

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝
gridDim.x

blockIdx.x threadIdx.x

gridDim.yblockIdx.y

threadIdx.y

blockDim.y

blockDim.x
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u Recall: GPU kernel specifies program (instructions) that each thread 
must execute

u Each thread will execute the same program on different data items 
based on its unique identity 

Identifying Data Item That Each Thread Must Work On

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Threadblock 0

…
1 2 254 255

Threadblock 1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Threadblock N-1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];
…

…… …
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Key Steps in the Lifecycle of a GPU-Accelerated Program  

CPU
GPU

PCIe connection

DRAM

Operating system, 
GPU driver

Launch work

1. Allocate GPU memory
2. Copy data to GPU memory
3. Launch kernel on the GPU
4. Perform computation on GPU
5. Copy results from GPU memory
6. Deallocate GPU memory

Get results

On CPU/driven by CPU

On GPU
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Example Program for Walkthrough: Vectoradd

Input Vector x:

Input Vector y:

Output Vector z:

+

=

void vecadd(float* x, float* y, float* z, int N) {
    for(unsigned int i = 0; i < N; ++i) {
        z[i] = x[i] + y[i];
    }
} Sequential C Code
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u Allocating memory:
cudaError_t cudaMalloc(void **devPtr, size_t size)
◆ devPtr: Pointer to a pointer to allocated device (GPU) memory
◆ size: Requested allocation size in bytes

u Deallocating memory:
cudaError_t cudaFree(void *devPtr)
◆ devPtr: Pointer to device memory to free

u Return type: cudaError_t
◆ Helps with error checking 

APIs for (1) GPU Memory Allocation and (6) De-Allocation 



CS302 – Spring 2025 Lec.11.1 -  Slide 56

APIs for (1) GPU Memory Allocation and (6) De-Allocation 

int main(...)
{

int host_array[N];
int* gpu_array;
cudaMalloc( (void**)&gpu_array, SIZE_N);

}

CPU GPU

N
host_array

N

cudaMalloc(...);

gpu_array

A CUDA 
runtime 
routine that 
ultimate calls 
the GPU 
driver running 
on CPU to 
allocate GPU 
memory
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How Does gpu_array Pointer Work?

u Disclaimer: It is not a regular C pointer!
u If you dereference it, the behavior is undefined

u The host pointer is on the CPU’s stack
u But, it serves as a simple name for the CUDA library
u When calling cudaMalloc(…), device driver tells the GPU to “please 

allocate SIZE_N bytes of memory”
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u cudaError_t cudaMemcpy(void *dst, const void *src,
             size_t count, enum cudaMemcpyKind kind)

◆ dst: Destination memory address
◆ src: Source memory address
◆ count: Size in bytes to copy
◆ kind: Type of transfer

◆ cudaMemcpyHostToHost
◆ cudaMemcpyHostToDevice
◆ cudaMemcpyDeviceToHost
◆ cudaMemcpyDeviceToDevice

API for (2) Copying Data to and from (6) GPU Memory

◆ cudaMemcpy is a CUDA runtime routine 
that ultimately invokes the GPU driver 
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void vecadd(float* x, float* y, float* z, int N) {

    // Allocate GPU memory
    float *x_d, *y_d, *z_d;
    const unsigned int numThreadsPerBlock, numBlocks;
    cudaMalloc((void**) &x_d, N*sizeof(float));
    cudaMalloc((void**) &y_d, N*sizeof(float));      // Step (1) 
    cudaMalloc((void**) &z_d, N*sizeof(float));

    // Copy data to GPU memory
    cudaMemcpy(x_d, x, N*sizeof(float), cudaMemcpyHostToDevice);   // Step (2)
    cudaMemcpy(y_d, y, N*sizeof(float), cudaMemcpyHostToDevice);

    // Perform computation on GPU
     numThreadsPerBlock = 512;
     numBlocks = (N + numThreadsPerBlock – 1)/numThreadsPerBlock;

     vecadd_kernel <<< numBlocks, numThreadsPerBlock >>> (x_d, y_d, z_d, N);  //Step (3). Note warp is not specified

    // Copy data from GPU memory
    cudaMemcpy(z, z_d, N*sizeof(float), cudaMemcpyDeviceToHost);     //Step (5)

    // Deallocate GPU memory
    cudaFree(x_d);
    cudaFree(y_d);      //Step (6)
    cudaFree(z_d);

}

Vector Addition (CPU/Host Side Code) 
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Vector Add (Device/GPU Code)
//Step (4)
__global__ void vecadd_kernel(float* x, float* y, float* z, int N) {
    int i = blockDim.x*blockIdx.x + threadIdx.x;
  if (i < N) 
    z[i] = x[i] + y[i];
}

Input Vector x:

Input Vector y:
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__host__ keyword can be added for
functions that can be executed on both 
CPU and GPU

Keywords for Function Declaration

__host__ __device__ float f(float a, float b) {
    return a + b;
}
__global__ void vecadd_kernel(float* x, float* y, float* z, int N) {
    int i = blockDim.x*blockIdx.x + threadIdx.x;
    if (i < N) {
        z[i] = f(x[i], y[i]);
    }
}
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u Recall that a thread block can have up to 1024 threads
◆ Programmer has the option of choosing from a range

u A key step in GPU programming
◆ Dividing up the work between thread blocks

u For max perf., GPU should be fully occupied à leverage as much 
parallelism as the hardware allows
◆ Every cycle should have a warp ready to issue
◆ Requires you to think about your kernel’s operations

◆ Which ones are long latency?
◆ How many warps can be swapped in while the current warp is waiting?

How to Decide Thread Block Size?
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Occupancy Example

u Assume that we want to compute on an image of size  64x48
◆ One thread per pixel means we need ~3k threads
◆ But, how to arrange them?

u Example resources available in a GPU and constraints
◆ 15 SMs, max 64 warps per SM
◆ 2048 threads max per SM
◆ 16 thread blocks max per SM
◆ 1 warp is 32 threads
◆ 960 concurrently scheduled warps/GPU

◆ You can launch more, but they will serialize 

Whichever limit hits
first constraints parallelism
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Occupancy Example: Big Blocks

u 4 large thread blocks of 1024 threads each
◆ Only 4 of 15 SMs occupied
◆ Absolute max occupancy is 26%, not using all HW Why?
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Occupancy Example: Smaller Blocks

u 48 thread blocks of 64 threads each
◆ SMs have 3 or 4 threadblocks, each with 2 warps
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Another Example (2):  Occupancy in an SM

u Constraints:
◆ 15 SMs, max 64 warps per SM
◆ 2048 threads max per SM
◆ 16 thread blocks max per SM
◆ 1 warp is 32 threads

u Assume that there are many threads available to run
u Goal: Schedule as many threads as possible in each SM
u If thread block set to 768 threads, each SM can accommodate only 

two thread blocks à Maximum 1536 threads in each SM 75% 
(1536/2048)  max occupancy
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Another Example (3):  Occupancy in an SM

u Constraints:
◆ 15 SMs, max 64 warps per SM
◆ 2048 threads max per SM
◆ 16 thread blocks max per SM
◆ 64K register per SM
◆ 1 warp is 32 threads

u Assume that there are many threads available to run
u Goal: Schedule as many threads as possible in each SM
u If each thread uses 64 registers, up to 1024 threads can be 

scheduled in each SM
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CUDA Compilation Flow
C/C++ and CUDA code

NVIDIA CUDA Compiler (NVCC)

Host C/C++ 
Compiler

Host C/C++ Code PTX (Virtual) ISA code

Device Just-in-
Time Compiler

Device Assembly
(e.g., SASS)

Host Assembly
(e.g., x86, Power, ARM)

.cu

.ptx.c

CPU GPU

Many libraries: cuDNN, 
CUBLAS, CUTLAS, etc
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Summary: GPUs Are Accelerators for Massive Data-Parallelism 

u Originally designed for graphics but emerged as a platform of 
choice for data-parallel computing

u GPU follows SIMT execution model while the GPU kernels are 
specified in SPMD fashion 

u The host (CPU) code is responsible for allocating memory in GPU, 
copying data to GPU memory, launching kernels with a grid of 
threads, copying results back and de-allocate GPU memory


