
CS302 – Spring 2025 Lec.11.1 - Slide 1

Introduction to GPUs
and CUDA

Spring 2025
Babak Falsafi, Arkaprava Basu
parsa.epfl.ch/course-info/cs302

CS302

Some of the slides are from Derek R Hower, Adwait Jog, Wen-Mei Hwu, Steve Lumetta, Babak Falsafi,
Andreas Moshovos, and from the companion material of the book “Programming Massively Parallel
Processors”
Copyright 2025

CS302 – Spring 2025 Lec.11.1 - Slide 2

Where are We?

u This week:
u GPU hardware
u CUDA programming basics

u Thursday exercise session:
u GPU demo programming
u Using the Izar cluster

u Next week:
u Memory optimizations on GPUs

M T W T F
17-Feb 18-Feb 19-Feb 20-Feb 21-Feb
24-Feb 25-Feb 26-Feb 27-Feb 28-Feb
3-Mar 4-Mar 5-Mar 6-Mar 7-Mar
10-Mar 11-Mar 12-Mar 13-Mar 14-Mar
17-Mar 18-Mar 19-Mar 20-Mar 21-Mar
24-Mar 25-Mar 26-Mar 27-Mar 28-Mar
31-Mar 1-Apr 2-Apr 3-Apr 4-Apr
7-Apr 8-Apr 9-Apr 10-Apr 11-Apr
14-Apr 15-Apr 16-Apr 17-Apr 18-Apr
21-Apr 22-Apr 23-Apr 24-Apr 25-Apr
28-Apr 29-Apr 30-Apr 1-May 2-May
5-May 6-May 7-May 8-May 9-May
12-May 13-May 14-May 15-May 16-May
19-May 20-May 21-May 22-May 23-May
26-May 27-May 28-May 29-May 30-May

CS302 – Spring 2025 Lec.10.2 - Slide 3

u Assignment 3 released!
◆ Implement the RMM algorithm on GPUs
◆ Optimise the memory traffic of the algorithm

u Deadline to submit A3: Sunday June 1st, 2025 11:59 pm

u HW7 also released!
◆ Deadline to submit: Sunday May 11th, 2025 11:59 pm

Heads Up

CS302 – Spring 2025 Lec.11.1 - Slide 4

WHY CARE ABOUT A GPU?
Even if you are not a video gamer!

CS302 – Spring 2025 Lec.11.1 - Slide 5

0

20

40

60

80

100

120

140

160

180

200

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

In
 Z

et
ta

by
te

s
(1

09
TB

s)

Volume of data being generated worldwide
(zettabytes)*

Need Big (Parallel) Compute to Draw Knowledge From Big Data

*https://www.statista.com/statistics/871513/worldwide-data-created/

https://www.statista.com/statistics/871513/worldwide-data-created/

CS302 – Spring 2025 Lec.11.1 - Slide 6

GPU: Accelerator For Parallel Computing

A large swath of today’s software relies on GPUs for their primary computing need

Graph processingImage processing

Data clustering,
warehousingMachine Learning Scientific computing

CS302 – Spring 2025 Lec.11.1 - Slide 7

GPUs Are Powering LLMs on Supercomputers

The fastest supercomputer (El
Capitan) today has 43,808 GPUs

Nine out of the ten most
powerful supercomputers in
Top500 list rely on GPUs

CS302 – Spring 2025 Lec.11.1 - Slide 8

u Instruction Level Parallelism (ILP)
◆ Example: Out-of-order processor

u Memory Level Parallelism (MLP)
◆ Example: Non-blocking caches

u Thread Level Parallelism (TLP)
◆ Example: Simultaneous Multi-threading

u Data Level Parallelism (DLP)
◆ Example: Single Instruction Multiple Data (SIMD), Vector

Review: Types of Parallelism

CS302 – Spring 2025 Lec.11.1 - Slide 9

Why GPUs for Data-Parallel Computing?

CS302 – Spring 2025 Lec.11.1 - Slide 10

Why GPUs for Data-Parallel Computing?

Identical, parallel operation on pixels

CS302 – Spring 2025 Lec.11.1 - Slide 11

Why GPUs for Data-Parallel Computing?

0 71 3 15 88

5 0 8 24 0

1 0 21 0 6

0 23 10 16 0

66 0 23 0 4

35 2 0 30 0

44 0 27 19 0

0 0 22 39 81

0 33 72 4 13

9 0 66 25 8

36 22 0 13 15

0 23 17 5 0

21 0 1 0 12

6 97 0 45 23

4 0 65 0 43

0 55 42 9 0

Identical, parallel operation on data items

Serendipity: ML/AI needs a lot of matrix and vector arithmetic à GPU boom

CS302 – Spring 2025 Lec.11.1 - Slide 12

u Before 2007, GPUs could only be programmed using Graphics APIs
◆ For computation one required to reformulate it as a graphics function on pixels
◆ For example, use OpenGL, Direct3D for computation à Hard to program

u In 2007, NVIDIA introduced CUDA
◆ A dialect of C/C++
◆ General purpose programming/computation for GPUs
◆ Extensions to the GPU architecture

Arrival of “General Purpose” GPUs (GPGPUs), a.k.a, CUDA

Hardware is useful only if it is (easily) programmable

CS302 – Spring 2025 Lec.11.1 - Slide 13

Closer Look: GPU’s Execution Model in Perspective

0 71 3 15 88

5 0 8 24 0

1 0 21 0 6

0 23 10 16 0

66 0 23 0 4

35 2 0 30 0

44 0 27 19 0

0 0 22 39 81

0 33 72 4 13

9 0 66 25 8

36 22 0 13 15

0 23 17 5 0

21 0 1 0 12

6 97 0 45 23

4 0 65 0 43

0 55 42 9 0

Identical, parallel operation on data items

CS302 – Spring 2025 Lec.11.1 - Slide 14

Identical Computation on Different Data Items

15 31f(in) = out

3 56f(in) = out

19 1f(in) = out

9 40f(in) = out

CS302 – Spring 2025 Lec.11.1 - Slide 15

Core 1

Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way

Core 0

Core 2

Core N

Identical,
independent
work on
each CPU
core à
Unable to
leverage
“identical”
instructions

15 31f(in) = out

3 56f(in) = out

19 1f(in) = out

9 40f(in) = out

CS302 – Spring 2025 Lec.11.1 - Slide 16

Thread 1

Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way

Thread 0

Thread 2

Thread N

Identical,
independent
work on
each CPU
core à
Unable to
leverage
“identical”
instructions

15 31f(in) = out

3 56f(in) = out

19 1f(in) = out

9 40f(in) = out

Core 0

Core K

H/W
Multi-
threaded
Core

CS302 – Spring 2025 Lec.11.1 - Slide 17

Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way

Identical,
independent
work on
each CPU
core à
Unable to
leverage
“identical”
instructions
à Inefficient

15 31f(in) = out

3 56f(in) = out

19 1f(in) = out

9 40f(in) = out

Fetch Decode Execute Memory WB

Fetch Decode Execute Memory WB

Fetch Decode Execute Memory WB

Fetch Decode Execute Memory WB

Duplicate work!

Core 0

Core K

H/W
Multi-
threaded
Core

CS302 – Spring 2025 Lec.11.1 - Slide 18

Option (2): Single Instruction Multiple Data (SIMD)

Eliminates
redundant
fetch and
decode à
Efficient

15 31

3 56

19 1

9 40

Execute Memory WB
Execute Memory WB
Execute Memory WB

Fetch Decode

Execute Memory WB

CS302 – Spring 2025 Lec.11.1 - Slide 19

Option (2): Single Instruction Multiple Data (SIMD)

Register File

Eliminates
redundant
fetch and
decode à
Efficient

Single thread,
parallel ops
à Limited
programm-
ability

15 31

3 56

19 1

9 40

Execute Memory WB
Execute Memory WB
Execute Memory WB

Fetch Decode

Execute Memory WB

CS302 – Spring 2025 Lec.11.1 - Slide 20

Single Instruction Multiple Thread (SIMT) Execution Model
Multiple
threads
execute in
lockstep
(almost
always) à
Efficient

Separate
context à
Better
Programma
bility

15 31

3 56

19 1

9 40

Execute Memory WB

Execute Memory WB

Execute Memory WB
Fetch Decode

Execute Memory WB

Independent thread context

SIMT ≈ SIMD with H/W Multi-threading

CS302 – Spring 2025 Lec.11.1 - Slide 21

Good for TLP Good for DLP Good for DLP
but not for DLP Limited Programmability Better Programmability
Easiest Programming Harder to scale up Easier to scale up

Summary of Execution Model

MIMD/SPMD SIMD/Vector SIMT

CS302 – Spring 2025 Lec.11.1 - Slide 22

A Conceptual View of a GPU: SIMT on Steroids!

GPU “Core” GPU “Core”

GPU “Core” GPU “Core”

GPU architecture is built to enable this efficient
and programmable SIMT execution model

Conceptually,
it’s like a
“core” of a
multi-core
CPU

CS302 – Spring 2025 Lec.11.1 - Slide 23

A More Realistic Picture of GPU Hardware

GPU “Core”
GPU

GPU

L2 Cache

GDDR/HBM

L1 Cache

Scrathpad

SI
M

T

SI
M

T

SI
M

T

SI
M

T

GPU “Core”

Unit of a GPU compute resource
NVIDIA à Streaming
Multiprocessor (SM)
AMD à Compute Unit (CU)

Scheduler

L1 Cache

Scrathpad

SI
M

T

SI
M

T

SI
M

T

SI
M

T

Scheduler

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

Fetch/Decode

10s-100s of SMs in a GPU
(current max 192 on NVIDIA

GPUs)

SIMD lane
(“CUDA core”)

Executes
threads in
lockstep

A typical SM can have 4 SIMT
units with 128 total lanes

GPU’s onboard
memory

CS302 – Spring 2025 Lec.11.1 - Slide 24

A More Realistic Picture of GPU Hardware

GPU “Core”
GPU

GPU

L2 Cache

GDDR/HBM

L1 Cache

Scrathpad

SI
M

T

SI
M

T

SI
M

T

SI
M

T

GPU “Core”

Unit of a GPU compute resource
NVIDIA à Streaming
Multiprocessor (SM)
AMD à Compute Unit (CU)

Scheduler

L1 Cache

Scrathpad

SI
M

T

SI
M

T

SI
M

T

SI
M

T

Scheduler

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

R
eg

is
te

r
R

eg
is

te
r

Fetch/Decode

10s-100s of SMs in a GPU
(current max 192 on NVIDIA

GPUs)

SIMD lane
(“CUDA core”)

Executes
threads in
lockstep

A typical SM can have 4 SIMT
units with 128 total lanes

GPU’s onboard
memory

CS302 – Spring 2025 Lec.11.1 - Slide 25

CPU vs. GPU : A Bird’s Eye View

u A few, large ALUs
u Large caches
u Branch prediction, speculation, OoO
u High clock frequency
u Limited multithreading

u Sea of small ALUs
u Small, shallow cache hierarchy
u Simple control logic, in-order
u Massive multi-threading
u High memory bandwidth

Cache

ALUControl
ALU

ALU
ALU

CPU: Latency-Oriented Design GPU: Throughput-Oriented Design

Cache

Cache

ALUControl
ALU

ALU
ALU

Cache

ALUControl
ALU

ALU
ALU

Cache

ALUControl
ALU

ALU
ALU

CS302 – Spring 2025 Lec.11.1 - Slide 26

u GPUs turn transistor density into massive parallel compute

Transistor Technology Trends Encourage GPU Architecture

Transistors
(thousands)

Frequency
(MHz)
Typical Power
(Watts)

1970 1980 1990 2000 2010 2020

100
101
102
103
104
105
106
107

108

u Chip density
increases

u Power wall limits
frequency scaling

u Scaling frequency
harder

CS302 – Spring 2025 Lec.11.1 - Slide 27

Scale of Parallelism in Modern GPUs

1536
(Kepler)

2048
(Maxwell)

3584
(Pascal)

5120
(Volta)

10752
(Ampere)

16896
(Hopper)

24576
(Blackwell)

0

5'000

10'000

15'000

20'000

25'000

30'000

2012 2014 2016 2018 2020 2022 2024

N
um

be
r o

f “
C

U
D

A
co

re
s” CUDA cores ≈ SIMD execution lane

executing one SIMT (GPU) thread

CS302 – Spring 2025 Lec.11.1 - Slide 28

Key GPU Characteristics at a Glance

Single-instruction
multiple thread (SIMT)

Memory coalescing
High bandwidth
memory

Many thread context à
H/W context switch

The key enabler
of efficient data-
parallel execution

Effective latency hiding for high throughput

Feeding the large parallel
compute with high
bandwidth memory systems

(Next classes/weeks)

CS302 – Spring 2025 Lec.11.1 - Slide 29

Many More Concurrent Threads Than Cores

30720
(Kepler)

49152
(Maxwell)

114688
(Pascal)

163840
(Volta)

221184
(Ampere)

270336
(Hopper)

327680
(Blackwell)

K

100K

200K

300K

400K

2012 2014 2016 2018 2020 2022 2024

N
um

be
r o

f c
on

cu
rr

en
tt

hr
ea

ds

Key for hiding latency – keep many threads ready to run

In a modern GPU, an SM can have 128 “CUDA”
cores but can have 2048 threads ready to run

CS302 – Spring 2025 Lec.11.1 - Slide 30

Hardware Context Switch for Hiding Latency

u Recall on the CPU:
◆ OS does context switch of a thread

when blocked/waiting
◆ S/w context switch is slow (5-10 usec)

u On the GPU:
◆ Hardware keeps many groups (SIMT) of

threads ready to run
◆ Upon long latency events, h/w schedules

another group (SIMT) of thread
◆ Many hardware registers
◆ Scheduling policy baked into h/w

SMSM SM SM

…
…

SM SM

SMSMSM SM

…
…

…
… …
…

L2$

CS302 – Spring 2025 Lec.11.1 - Slide 31

Example: Commercial CPU vs. GPU

NVIDIA Blackwell
u 24,576 CUDA cores/ 192 SMs
u 64K registers per SM (256KB)
u Cache hierarchy:

o 128KB (L1) per SM
o 128MB L2

u Memory bandwidth
o 8TB/sec
o HBM3

u TDP 1000 Watts

AMD Epyc 5th gen (Turin)
u 192 cores/356 threads
u ~150-200 registers/core
u Cache hierarchy:

o 48KB (L1) /1MB (L2) per core
o 384MB LLC

u Memory bandwidth:
o 576 GB/sec
o DDR5

u TDP 500 Watts

CS302 – Spring 2025 Lec.11.1 - Slide 32

GPU Is a Co-Processor: Needs a Companion CPU

CPU
GPU

PCIe connection

Typical connection:
PCIe 5.0 x16: 128 GB/sec
~150 ns latency

DRAM

Operating system
GPU driver

S/W running on CPU controls what runs on
GPU, allocates GPU memory etc

Discrete GPULaunch work

Get back results~100sGB/sec
TBs/sec

CS302 – Spring 2025 Lec.11.1 - Slide 33

u GPU Integrated on-chip (SoC) with CPU
◆ For example, Intel core i7

u Same architecture as discrete GPU
u But much smaller/less resources
u No onboard high-bandwidth memory,

unlike discrete GPU
u Typically used for driving graphics in

desktops/laptops

Tighter Integration: The Integrated GPU (iGPU)

Intel core i7

We will focus on
discrete GPUs and not
integrated GPUs

Intel Coffee Lake

CS302 – Spring 2025 Lec.11.1 - Slide 34

PROGRAMMING THE GPU

CS302 – Spring 2025 Lec.11.1 - Slide 35

u CUDA – Compute Unified Device Architecture
◆ Developed by Nvidia -- proprietary
◆ First serious GPGPU language/environment

u OpenCL – Open Computing Language
◆ From makers of OpenGL
◆ Wide industry support: AMD, Apple, Qualcomm, Nvidia, etc.

u C++ AMP – C++ Accelerated Massive Parallelism
◆ Microsoft
◆ Much higher abstraction that CUDA/OpenCL

u OpenACC – Open Accelerator
◆ Like OpenMP for GPUs (semi-auto-parallelize serial code)
◆ Much higher abstraction than CUDA/OpenCL

GPU Programming Languages

CS302 – Spring 2025 Lec.11.1 - Slide 36

u There exists no “pure” GPU program
u Host or CPU program that launches work on GPU

u A function is accelerated on the GPU à a.k.a., GPU kernel (not to be
confused with Linux kernel)

u GPU kernels follow the Single Program Multiple Thread/Data model
◆ GPU kernel code specifies what each thread must do
◆ Thread index specifies which data the thread must operate on
◆ Kernel is launched by the CPU, specifying how many threads should execute the kernel

GPU Programming Model

CS302 – Spring 2025 Lec.11.1 - Slide 37

Division of Labor Between CPU (Host) and the GPU (Device)

Serial Code (host/CPU)

. . .

. . .

Data parallel function (device/GPU)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelB<<< nBlk, nTid >>>(args);

SIMT group
of threads

Kernel launch
parameters

Function arguments

CS302 – Spring 2025 Lec.11.1 - Slide 38

u Consider a CPU application before using GPU:
◆ The sequential execution time is 100s
◆ The fraction of execution that is parallelizable is 80%
◆ GPU can speedup the parallelizable part by 100×

u What is the overall speedup of the application?

𝑡!"#"$$%$ = 1 − 𝟎. 𝟖 ∗ 𝟏𝟎𝟎𝑠 +
𝟎. 8 ∗ 𝟏𝟎𝟎𝑠

𝟏𝟎𝟎
= 20.8𝑠

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡&%'(%)*+"$
𝑡!"#"$$%$

=
𝟏𝟎𝟎𝑠
20.8𝑠

= 4.81×

Review: Don’t Forget Amdahl’s Law

CS302 – Spring 2025 Lec.11.1 - Slide 39

Recall: Scale of Parallelism in Modern GPUs

1536
(Kepler)

2048
(Maxwell)

3584
(Pascal)

5120
(Volta)

10752
(Ampere)

16896
(Hopper)

24576
(Blackwell)

0

5'000

10'000

15'000

20'000

25'000

30'000

2012 2014 2016 2018 2020 2022 2024

N
um

be
r o

f “
C

U
D

A
co

re
s”

Hierarchical execution and programming model for scaling parallelism

CUDA cores ≈ SIMD execution lane
executing one SIMT (GPU) thread

CS302 – Spring 2025 Lec.11.1 - Slide 40

The Hierarchy in GPU Thread Organization

Thread Block 1

Thread Block 2
Kernel 1

KernelApplication

Kernel 2

Kernel 3

Thread Block 3

Warp 1

Thread Block

Warp 2

Warp 3

Warp 4

Threads

Warp is the smallest unit of
scheduling work on a GPU

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

SIMT
(32 threads)

Typically, max. 1024
threads per block

Typically, up to 64K*64K
blocks per kernel

Up to 32 warps
per thread block

Note: Not possible to
schedule threads individually

CS302 – Spring 2025 Lec.11.1 - Slide 41

Summary of Thread Hierarchy and Terminologies

Thread Work-item

Warp Wavefront

Block Workgroup

NDRangeGrid

CUDA OpenCLA GPU thread runs
on a SIMD lane
(CUDA core)

A SIMT thread group
executing in lockstep

A group of SIMT thread
groups executing on the
same SM/CU

A group of a group of
SIMT thread groups
executing on GPU

CS302 – Spring 2025 Lec.11.1 - Slide 42

1) All warps of a thread block are scheduled on the same SM
2) Different thread blocks can execute on the same or different SMs
3) Different thread blocks can execute concurrently; no ordering

Mapping the Thread Hierarchy onto the Hardware

SM

GPU architecture

SM

Kernel

Thread block Thread block

WarpSIMT units

Scheduling rules in a CUDA/GPU

CS302 – Spring 2025 Lec.11.1 - Slide 43

u Decoupling hardware resources in a given GPU from kernel threads
u Threads within a thread block can collaborate more efficiently than

those from different thread blocks à helps scaling up !

Advantages of Breaking the Set of Threads into Thread Blocks

GPU-2 (H/W - 2)

SM SM

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel’s thread grid
Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU-1 (H/W - 1)
SM SM SM SM

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7Ti
m

e

Ti
m

e

GPU hardware can run any thread
block in any order and on any SM

Program

Hardware

CS302 – Spring 2025 Lec.11.1 - Slide 44

u A kernel is launched with a grid of threads
u A grid is a 3D array of thread blocks and threads

Logical Thread Hierarchy in CUDA

grid

thread blocks

threads
Each thread has
a unique identifier

Recall that kernel
follows SPMD

Must uniquely identify
each thread and
thread block

Each thread
computes on
different data items
based on its identity

CS302 – Spring 2025 Lec.11.1 - Slide 45

Number of Thread Blocks in a Grid (gridDim)

grid

thread blocks

◆ gridDim.x …
◆ gridDim.y …
◆ gridDim.z …

X

Y

Z

For 2D (and 1D grids), simply use
grid dimension 1 for Z (and Y).

Intrinsic variables:
Available to each thread
automatically à No need
to allocate/initialize.

H/W returns the correct
value for the calling thread

CS302 – Spring 2025 Lec.11.1 - Slide 46

Uniquely Identifying Thread block

grid

thread blocks

Each thead block has a
unique index tuple

◆ blockIdx.x [from 0 to
(gridDim.x – 1)]

◆ blockIdx.y [from 0 to
(gridDim.y – 1)]

◆ blockIdx.z [from 0 to
(gridDim.z – 1)]

X

Y

Z

For 2D (and 1D grids), simply use
grid dimension 1 for Z (and Y).

CS302 – Spring 2025 Lec.11.1 - Slide 47

Finding the Number of Threads in a Thread Block

◆ The number of threads in each
dimension in a thread block
◆ blockDim.x …
◆ blockDim.y …
◆ blockDim.z …

For 2D (and 1D grids), simply use
grid dimension 1 for Z (and Y).

threads

X

Y

Z

CS302 – Spring 2025 Lec.11.1 - Slide 48

Finding the Number of Threads in a Thread Block

Each thread has a unique index
tuple

◆ threadIdx.x (from 0 to
(blockDim.x – 1))

◆ threadIdx.y (from 0 to
(blockDim.y – 1))

◆ threadIdx.z (from 0 to
(blockDim.z – 1))

threadIdx tuple is unique within
a threadblock

threads

X

Y

Z

Why a 3D grid
instead of a
linear array of
threads?
◆ Historical reason

stemming from
graphics

◆ Easier for image
processing,
PDEs on
volumes

CS302 – Spring 2025 Lec.11.1 - Slide 49

u Next: The life cycle of a GPU-accelerated program with an example

Review: What Have We Learnt So Far?

Serial Code (host/CPU)

. . .

. . .

Data parallel function (device/GPU)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelB<<< nBlk, nTid >>>(args);

Kernels
written as
SPMD
programs

Thread
grid size

CS302 – Spring 2025 Lec.11.1 - Slide 50

Visualization of Thread Organization and Indexing in 1D

gridDim.x

blockIdx.x

blockDim.x

threadIdx.x

of blocks in grid

position of block in grid

threads in block

position of thread in block

CS302 – Spring 2025 Lec.11.1 - Slide 51

Visualization of Thread Organization and Indexing in 2D

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝ ⇝
gridDim.x

blockIdx.x threadIdx.x

gridDim.yblockIdx.y

threadIdx.y

blockDim.y

blockDim.x

CS302 – Spring 2025 Lec.11.1 - Slide 52

u Recall: GPU kernel specifies program (instructions) that each thread
must execute

u Each thread will execute the same program on different data items
based on its unique identity

Identifying Data Item That Each Thread Must Work On

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Threadblock 0

…
1 2 254 255

Threadblock 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Threadblock N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];
…

…… …

CS302 – Spring 2025 Lec.11.1 - Slide 53

Key Steps in the Lifecycle of a GPU-Accelerated Program

CPU
GPU

PCIe connection

DRAM

Operating system,
GPU driver

Launch work

1. Allocate GPU memory
2. Copy data to GPU memory
3. Launch kernel on the GPU
4. Perform computation on GPU
5. Copy results from GPU memory
6. Deallocate GPU memory

Get results

On CPU/driven by CPU

On GPU

CS302 – Spring 2025 Lec.11.1 - Slide 54

Example Program for Walkthrough: Vectoradd

Input Vector x:

Input Vector y:

Output Vector z:

+

=

void vecadd(float* x, float* y, float* z, int N) {
 for(unsigned int i = 0; i < N; ++i) {
 z[i] = x[i] + y[i];
 }
} Sequential C Code

CS302 – Spring 2025 Lec.11.1 - Slide 55

u Allocating memory:
cudaError_t cudaMalloc(void **devPtr, size_t size)
◆ devPtr: Pointer to a pointer to allocated device (GPU) memory
◆ size: Requested allocation size in bytes

u Deallocating memory:
cudaError_t cudaFree(void *devPtr)
◆ devPtr: Pointer to device memory to free

u Return type: cudaError_t
◆ Helps with error checking

APIs for (1) GPU Memory Allocation and (6) De-Allocation

CS302 – Spring 2025 Lec.11.1 - Slide 56

APIs for (1) GPU Memory Allocation and (6) De-Allocation

int main(...)
{

int host_array[N];
int* gpu_array;
cudaMalloc((void**)&gpu_array, SIZE_N);

}

CPU GPU

N
host_array

N

cudaMalloc(...);

gpu_array

A CUDA
runtime
routine that
ultimate calls
the GPU
driver running
on CPU to
allocate GPU
memory

CS302 – Spring 2025 Lec.11.1 - Slide 57

How Does gpu_array Pointer Work?

u Disclaimer: It is not a regular C pointer!
u If you dereference it, the behavior is undefined

u The host pointer is on the CPU’s stack
u But, it serves as a simple name for the CUDA library
u When calling cudaMalloc(…), device driver tells the GPU to “please

allocate SIZE_N bytes of memory”

CS302 – Spring 2025 Lec.11.1 - Slide 58

u cudaError_t cudaMemcpy(void *dst, const void *src,
 size_t count, enum cudaMemcpyKind kind)

◆ dst: Destination memory address
◆ src: Source memory address
◆ count: Size in bytes to copy
◆ kind: Type of transfer

◆ cudaMemcpyHostToHost
◆ cudaMemcpyHostToDevice
◆ cudaMemcpyDeviceToHost
◆ cudaMemcpyDeviceToDevice

API for (2) Copying Data to and from (6) GPU Memory

◆ cudaMemcpy is a CUDA runtime routine
that ultimately invokes the GPU driver

CS302 – Spring 2025 Lec.11.1 - Slide 59

void vecadd(float* x, float* y, float* z, int N) {

 // Allocate GPU memory
 float *x_d, *y_d, *z_d;
 const unsigned int numThreadsPerBlock, numBlocks;
 cudaMalloc((void**) &x_d, N*sizeof(float));
 cudaMalloc((void**) &y_d, N*sizeof(float)); // Step (1)
 cudaMalloc((void**) &z_d, N*sizeof(float));

 // Copy data to GPU memory
 cudaMemcpy(x_d, x, N*sizeof(float), cudaMemcpyHostToDevice); // Step (2)
 cudaMemcpy(y_d, y, N*sizeof(float), cudaMemcpyHostToDevice);

 // Perform computation on GPU
 numThreadsPerBlock = 512;
 numBlocks = (N + numThreadsPerBlock – 1)/numThreadsPerBlock;

 vecadd_kernel <<< numBlocks, numThreadsPerBlock >>> (x_d, y_d, z_d, N); //Step (3). Note warp is not specified

 // Copy data from GPU memory
 cudaMemcpy(z, z_d, N*sizeof(float), cudaMemcpyDeviceToHost); //Step (5)

 // Deallocate GPU memory
 cudaFree(x_d);
 cudaFree(y_d); //Step (6)
 cudaFree(z_d);

}

Vector Addition (CPU/Host Side Code)

CS302 – Spring 2025 Lec.11.1 - Slide 60

Vector Add (Device/GPU Code)
//Step (4)
__global__ void vecadd_kernel(float* x, float* y, float* z, int N) {
 int i = blockDim.x*blockIdx.x + threadIdx.x;
 if (i < N)
 z[i] = x[i] + y[i];
}

Input Vector x:

Input Vector y:

CS302 – Spring 2025 Lec.11.1 - Slide 61

__host__ keyword can be added for
functions that can be executed on both
CPU and GPU

Keywords for Function Declaration

__host__ __device__ float f(float a, float b) {
 return a + b;
}
__global__ void vecadd_kernel(float* x, float* y, float* z, int N) {
 int i = blockDim.x*blockIdx.x + threadIdx.x;
 if (i < N) {
 z[i] = f(x[i], y[i]);
 }
}

CS302 – Spring 2025 Lec.11.1 - Slide 62

u Recall that a thread block can have up to 1024 threads
◆ Programmer has the option of choosing from a range

u A key step in GPU programming
◆ Dividing up the work between thread blocks

u For max perf., GPU should be fully occupied à leverage as much
parallelism as the hardware allows
◆ Every cycle should have a warp ready to issue
◆ Requires you to think about your kernel’s operations

◆ Which ones are long latency?
◆ How many warps can be swapped in while the current warp is waiting?

How to Decide Thread Block Size?

CS302 – Spring 2025 Lec.11.1 - Slide 63

Occupancy Example

u Assume that we want to compute on an image of size 64x48
◆ One thread per pixel means we need ~3k threads
◆ But, how to arrange them?

u Example resources available in a GPU and constraints
◆ 15 SMs, max 64 warps per SM
◆ 2048 threads max per SM
◆ 16 thread blocks max per SM
◆ 1 warp is 32 threads
◆ 960 concurrently scheduled warps/GPU

◆ You can launch more, but they will serialize

Whichever limit hits
first constraints parallelism

CS302 – Spring 2025 Lec.11.1 - Slide 64

Occupancy Example: Big Blocks

u 4 large thread blocks of 1024 threads each
◆ Only 4 of 15 SMs occupied
◆ Absolute max occupancy is 26%, not using all HW Why?

CS302 – Spring 2025 Lec.11.1 - Slide 65

Occupancy Example: Smaller Blocks

u 48 thread blocks of 64 threads each
◆ SMs have 3 or 4 threadblocks, each with 2 warps

CS302 – Spring 2025 Lec.11.1 - Slide 66

Another Example (2): Occupancy in an SM

u Constraints:
◆ 15 SMs, max 64 warps per SM
◆ 2048 threads max per SM
◆ 16 thread blocks max per SM
◆ 1 warp is 32 threads

u Assume that there are many threads available to run
u Goal: Schedule as many threads as possible in each SM
u If thread block set to 768 threads, each SM can accommodate only

two thread blocks à Maximum 1536 threads in each SM 75%
(1536/2048) max occupancy

CS302 – Spring 2025 Lec.11.1 - Slide 67

Another Example (3): Occupancy in an SM

u Constraints:
◆ 15 SMs, max 64 warps per SM
◆ 2048 threads max per SM
◆ 16 thread blocks max per SM
◆ 64K register per SM
◆ 1 warp is 32 threads

u Assume that there are many threads available to run
u Goal: Schedule as many threads as possible in each SM
u If each thread uses 64 registers, up to 1024 threads can be

scheduled in each SM

CS302 – Spring 2025 Lec.11.1 - Slide 68

CUDA Compilation Flow
C/C++ and CUDA code

NVIDIA CUDA Compiler (NVCC)

Host C/C++
Compiler

Host C/C++ Code PTX (Virtual) ISA code

Device Just-in-
Time Compiler

Device Assembly
(e.g., SASS)

Host Assembly
(e.g., x86, Power, ARM)

.cu

.ptx.c

CPU GPU

Many libraries: cuDNN,
CUBLAS, CUTLAS, etc

CS302 – Spring 2025 Lec.11.1 - Slide 69

Summary: GPUs Are Accelerators for Massive Data-Parallelism

u Originally designed for graphics but emerged as a platform of
choice for data-parallel computing

u GPU follows SIMT execution model while the GPU kernels are
specified in SPMD fashion

u The host (CPU) code is responsible for allocating memory in GPU,
copying data to GPU memory, launching kernels with a grid of
threads, copying results back and de-allocate GPU memory

