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Where are We?

19-Feb ¢ This week:
26-Feb ¢ GPU hardware

?ZM;; ¢ CUDA programming basics

19-Mar
26-Mar . .
2 Apr ¢ Thursday exercise session:

9-Apr ¢ GPU demo programming

16-Apr ¢ Using the |zar cluster
22-Apr_|23-Apr

0-Apr

¢ Next week:

14-May ¢ Memory optimizations on GPUs
21-May
28-May
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Heads Up

¢ Assignment 3 released!
¢ Implement the RMM algorithm on GPUs
+ Optimise the memory traffic of the algorithm

¢ Deadline to submit A3: Sunday June 1st, 2025 11:59 pm

¢ HWY also released!
¢ Deadline to submit: Sunday May 11th, 2025 11:59 pm
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Even if you are not a video gamer!

WHY CARE ABOUT A GPU?
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Need Big (Parallel) Compute to Draw Knowledge From Big Data

Volume of data being generated worldwide
(zettabytes)*
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*https://www.statista.com/statistics/871513/worldwide-data-created/
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GPU: Accelerator For Parallel Computing

Graph processing

| » Data clustering,
Machine Learning A warehousing

Scientific computing

[ A large swath of today’s software relies on GPUs for their primary computing need ]
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GPUs Are Powering LLMs on Supercomputers
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Zuckerberg's Meta Is Spending Billions to Buy 350,000 Nvidia

H100 GPUs The fastest supercomputer (El

In total, Meta will have the compute power equivalent to 600,000 Nvidia H100 .

GPUs to help it develop next-generation Al, says CEO Mark Zuckerberg. ') By Michael Kan Jan 18, 2024 f Xin® ‘ a p I ta n ) to d a y h a S 4 3 8 O 8 ‘ P | ' S
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Review: Types of Parallelism

¢ Instruction Level Parallelism (ILP)
¢ Example: Out-of-order processor

¢ Memory Level Parallelism (MLP)
+ Example: Non-blocking caches

¢ Thread Level Parallelism (TLP)

¢ Example: Simultaneous Multi-threading

¢ Data Level Parallelism (DLP)
¢ Example: Single Instruction Multiple Data (SIMD), Vector

CS302 - Spring 2025 Lec.11.1 - Slide 8



Why GPUs for Data-Parallel Computing?

=)
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Why GPUs for Data-Parallel Computing?

/LI

Identical, parallel operation on pixels
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Why GPUs for Data-Parallel Computing?

Serendipity: ML/Al needs a lot of matrix and vector arithmetic > GPU boom
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Identical, parallel operation on data items

CS302 - Spring 2025 Lec.11.1 - Slide 11



Arrival of “General Purpose” GPUs (GPGPUs), a.k.a, CUDA

¢ Before 2007, GPUs could only be programmed using Graphics APIs
+ For computation one required to reformulate it as a graphics function on pixels
¢ For example, use OpenGL, Direct3D for computation - Hard to program

¢ In 2007, NVIDIA introduced CUDA
¢ A dialect of C/C++

¢ General purpose programming/computation for GPUs
+ Extensions to the GPU architecture

Hardware is useful only if it is (easily) programmable
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Closer Look: GPU’s Execution Model in Perspective
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Identical, parallel operation on data items
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ldentical Computation on Different Data Items
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f(in) = out
f(in) = out
f(in) = out
f(in) = out
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Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way
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work on

each CPU
core =

o =y
( Core 1
> f(in) = out
 Core 2 .
> f(in) = out
( Core N .
- > f(in) = out

—

Unable to
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Option (1): The Multi-Threading/Multi-Core/Multi-Processor Way

HIW C — Core 0 \\
. rea
Multi- n > f(in) = out ’m |dentical
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Core f Thread 1 : P
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(Thread N ,
n C > f(in) = out

\_ Core K
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Option (1): The Multi- Threading/Multi-Core/Multi-Processor Way

H/W
Multi-
threaded
Core

*ﬂ |dentical,

iIndependent
work on

each CPU
core =

: 7 coke 0
n Fetch | Decode ||[Execute | Memory | WB
n Fetch | Decode ||[Execute | Memory | WB
Fetch | Decode ||[Execute | Memory | WB
° Duplicate work!
0
Fetch | Decode ||[Execute | Memory | WB
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Option (2): Single Instruction Multiple Data (SIMD)

CS302 - Spring 2025

Execute

Memory

g

i

Fetch

Execute

Memory

WB

Decode

Execute

Memory

WB

Execute

Memory

Eliminates
redundant
fetch and
decode -
Efficient

Lec.11.1 - Slide 18



Option (2): Single Instruction Multiple Data (SIMD)
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Single Instruction Multiple Thread (SIMT) Execution Model

SIMT = SIMD with H/W Multi-threading Multiple
o threads
— Execute\ Memoyy | WB execute in
lockstep
— Execute\ Memagry | WB (almost
Fetch | Decode @/ always) =2
— Executey Memoy>y WB Efficient
0]
0 0 Separate
— Executey Memoyy | WB context -2
N @ M Better
Programma
Independent thread context
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Summary of Execution Model

MII\%D%SPMD SIMDéVector S%
Good for TLP Good for DLP Good for DLP

but not for DLP Limited Programmability Better Programmability
Easiest Programming Harder to scale up Easier to scale up
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A Conceptual View of a GPU: SIMT on Steroids!

GPU “Core” GPU “Core”

Conceptually,
it's like a

kathdhild GPU architecture is built to enable this efficient
multi-core

CPU

GPU “Core” GPU “Core”
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A More Realistic Picture of GPU Hardware

memory

Fetch/Decode SIMD lane
(“CUDA core”)

Va
\ GDDR/HBM
Executes
LTI e e eI [T | threads in
¢ g ole s gle g ol jockstep
222883283833 8\8%
|| ||| x|||c I_1 Cache L1 Cache
1= —
n %)
GPU “Core” GPU “Core”
A\ A\ \ N\ N\ Y Y \\ v - "
%%&%&%& 0 0 %&%&%&% Registers
Scrathpad Scrathpad

Unit of a GPU compute resource  10s-100s of SMs in a GPU
NVIDIA - Streaming (current max 192 on NVIDIA
Multiprocessor (SM) GPUs)

AMD - Compute Unit (CU)

A typical SM can have 4 SIMT

units with 128 total lanes

CS302 - Spring 2025 Lec.11.1 - Slide 23



A More Realistic Picture of GPU Hardware

Fetch/Decode SIMD lane GPU l memory

(“CUDA core”)

Executes

NARNBYRAR
Q

Register —
Register —
Register —
Register —

GPU “Core”
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Registers

. /|

A typical SM can have 4 SIMT Multiprocessor (SM)
units with 128 total lanes AMD - Compute Unit (CU)
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Unit of a GPU compute resource  10s-100s of SMs in a GPU
NVIDIA - Streaming (current max 192 on NVIDIA

GPUs)
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CPU vs. GPU : A Bird’s Eye View

Control — Control —1
ALU ALU ALU ALU

Cache Cache

Cache

Control ALU ALU ALU ALU
ALU ALU ALU ALU

Cache Cache

CPU: Latency-Oriented Design

¢ A few, large ALUs
¢ Large caches

¢ Branch prediction, speculation, OoO

¢ High clock frequency

¢ Limited multithreading

CS302 - Spring 2025

GPU: Throughput-Oriented Design

¢ Sea of small ALUs

¢ Small, shallow cache hierarchy

¢ Simple control logic, in-order
¢ Massive multi-threading
¢ High memory bandwidth
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Transistor Technology Trends Encourage GPU Architecture

108
_ _ » Transistors
¢ Chip density 107 oo (thousands)
increases 109 ke
105 ..‘....o.:. @ e
. . 104 .‘.%‘ .‘. $ oo ©
¢ Power wall limits ve w170 s dVigmady S0 Frequency
- 103 ° (X °s ?. ) o ° (MHZ)
frequency scaling 2 Co e Tt et A T Typical Powe
10 . o et s o‘o%p 3-: e (Watts)
_ 101
¢ Scaling frequency o &
harder
1970 1980 1990 2000 2010 2020

¢ GPUs turn transistor density into massive parallel compute
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Scale of Parallelism in Modern GPUs .\

30'000 -
- CUDA cores = SIMD execution lane (BZI:;?(\TVSI)
g 25'000 - executing one SIMT (GPU) thread ,6
S /

é "0000 16896 -
O
w 15'000 -
o
é 10'000 -
> : 2048
< 5000 - (K1953I?ar) (Maxwell
epler) o -
0

2012 2014 2016 2018 2020 2022 2024
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Key GPU Characteristics at a Glance

DRAM Layers

R N S e

 EEEE" B BEEE B M | , Nic
emory Coa eSCIng Substrate
muSItIinglgeIe’[ A?:;rgczg?&n Many thread context > High bandwidth
P H/W context switch memory

Feeding the large parallel
compute with high
bandwidth memory systems

The key enabler
of efficient data-
parallel execution

(Next classes/weeks)

Effective latency hiding for high throughput
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Many More Concurrent Threads Than Cores

In a modern GPU, an SM can have 128 “CUDA”
cores but can have 2048 threads ready to ru

5 400K 1 327680
< 270336 (Blagkwell)
- | (Hopper) _ -
5 00K | 221188 --
BMN  163s40  (Ampere)- -7
S 200K - - 114688  (Volta)_ - -~
s il (Pascal) _--"®
= L 49152 o
2 100K 4 30720 (Maxwell) - -~
§ (Kepler) - -
Z o _-"

K e

2012 2014 2016 2018 2020 2022 2024

[ Key for hiding latency — keep many threads ready to run

]
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Hardware Context Switch for Hiding Latency

¢ Recall on the CPU:

¢ OS does context switch of a thread
when blocked/waiting
¢ S/w context switch is slow (5-10 usec) /[ T T |
¢ On the GPU: |
¢ Hardware keeps many groups (SIMT) of L JCe [

threads ready to run

+ Upon long latency events, h/w schedules
another group (SIMT) of thread

+ Many hardware registers
+ Scheduling policy baked into h/w
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Example: Commercial CPU vs. GPU

AMD Epyc 5t gen (Turin) NVIDIA Blackwell

¢ 192 cores/356 threads ¢ 24,576 CUDA cores/ 192 SMs
¢ ~150-200 registers/core ¢ 64K registers per SM (256KB)
¢ Cache hierarchy: ¢ Cache hierarchy:

o 48KB (L1) /1MB (L2) per core o 128KB (L1) per SM

o 384MBLLC o 128MB L2
¢ Memory bandwidth: ¢ Memory bandwidth

o 576 GB/sec o 8TB/sec

o DDR5 o HBM3

¢ TDP 500 Watts ¢ TDP 1000 Watts
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GPU Is a Co-Processor: Needs a Companion CPU

Operating system Launch work
GPU driver

oooooooooooooooooooo
Ssssccsssssscsssesse

Discrete GPU

PCle connection

Typical connection:
PCle 5.0 x16: 128 GB/sec
il ~150 ns latency

Get back results

éuu

:::f;:;fo

DRAM
S/W running on CPU controls what runs on

GPU, allocates GPU memory etc
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Tighter Integration: The Integrated GPU (iGPU)

Memory C

3

troller

v
S

W | ¢ GPU Integrated on-chip (SoC) with CPU

el el | : ¢ For example, Intel core i7

¢ IIlliHIIIIIIIIIII
'31|§|||ﬂ|]|“|"l|l||

System
Agent

=
a

Ring / Interconnec! :

ooy el B o BB 1§ MR || & Same architecture as discrete GPU
e et '8 . || e But much smaller/less resources

: Wl = Pl e No onboard high-bandwidth memory,
Intel Coffee Lake unlike discrete GPU

We will focus on ¢ Typically used for driving graphics in

discrete GPUs and not desktops/laptops
integrated GPUs
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PROGRAMMING THE GPU
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GPU Programming Languages

¢ CUDA - Compute Unified Device Architecture

¢ Developed by Nvidia -- proprietary
+ First serious GPGPU language/environment

¢ OpenCL - Open Computing Language

¢ From makers of OpenGL
¢ Wide industry support: AMD, Apple, Qualcomm, Nvidia, etc.

¢ C++ AMP - C++ Accelerated Massive Parallelism

+ Microsoft
+ Much higher abstraction that CUDA/OpenCL

¢ OpenACC - Open Accelerator

+ Like OpenMP for GPUs (semi-auto-parallelize serial code)
+ Much higher abstraction than CUDA/OpenCL
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GPU Programming Model

¢ There exists no “pure” GPU program
¢ Host or CPU program that launches work on GPU

¢ A function is accelerated on the GPU - a.k.a., GPU kernel (not to be
confused with Linux kernel)

¢ GPU kernels follow the Single Program Multiple Thread/Data model
¢ GPU kernel code specifies what each thread must do
¢ Thread index specifies which data the thread must operate on
+ Kernel is launched by the CPU, specifying how many threads should execute the kernel
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Division of Labor Between CPU (Host) and the GPU (Device)

Function arguments
g SIMT group

/ of threads

Serial Code (host/CPU)

Data parallel function (device/GP
KernelA<<< nBIk, nTid >>>(args);

Kernel Iaundﬁ;de (hostiCPU) g
parameters
Data paralel function (device/GPU) D | | KRS | | S SRS
KernelB<<< nB¥, nTid >>>(args); ; ; ERIE
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Review: Don't Forget Amdahl's Law

¢ Consider a CPU application before using GPU.:

¢ The sequential execution time is S
+ The fraction of execution that is parallelizable is 80%
¢ GPU can speedup the parallelizable part by 100 X

¢ What is the overall speedup of the application?

0.8 * S
tparallel = (1 — 0. 8) * S + 100 = 20.8s
t ; S
speedup = sequential _ = 481X

tparallel 20.8s

CS302 - Spring 2025
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Recall: Scale of Parallelism in Modern GPUs \

30'000 -
2 CUDA cores = SIMD execution lane : BZI:;?(\?vSII)
L 25'000 - executing one SIMT (GPU) thread 6
S /

V4
g 20'000 -
>
O
w 15000 -
o
2 10000 - i} -7
:E; . -
P 2048
< 5000 - (K1953I?ar) (Maxwell
0

2012 2014 2016 2018 2020 2022 2024
Hierarchical execution and programming model for scaling parallelism
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The Hierarchy in GPU Thread Organization

Application Kernel Thread Block
(¢ ~ /= : : Threads
Thread Block 1 _Warp 1 |
\Kernel 1) QYR | SIMT
) . Thread Block 2 “Warp 3 | (32 threads)
Kernel 2 | Warp 4 |
L ) Thread Block 3 ‘ Wa.p4 ' Note: Not possible to
) . . : schedule threads individually
\Kernel 3) X Up to 32 warps Warp is the smallest unit of
o ) per thread block scheduling work on a GPU
AN Y,
o Typically, max. 1024
® ) threads per block Thread Warp Common PC
TypicaIIy, up to 64K*64K Thr1ead Thrzead Thr3ead Thrfad

blocks per kernel

CS302 - Spring 2025 Lec.11.1 - Slide 40



Summary of Thread Hierarchy and Terminologies

A GPU thread runs
on a SIMD lane
(CUDA core)

A SIMT thread group
executing in lockstep

A group of SIMT thread

groups executing on the

same SM/CU

%

&

A group of a group of
SIMT thread groups
executing on GPU

o

B

Group

i &

CUDA

Thread

Warp

Block

Grid
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OpenCL

Work-item

Wavefront

Workgroup

NDRange
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Mapping the Thread Hierarchy onto the Hardware

GPU architecture Kernel
Thread block
SM SM Thread block
AN LY NN W AN LY N W A L) NN W AN LMY NN W
//Z //Z //Z // ' ' //2 //2 /// /// //2 //2 //2 //Z . . //Z //Z //Z //2
(S CEC KK (G CKS CEC KK (S CEC K TS
WD D)) MDD D)) 0D ) ) M) D))

SIMT units Warp
Scheduling rules in a CUDA/GPU

1) All warps of a thread block are scheduled on the same SM
2) Different thread blocks can execute on the same or different SMs
3) Different thread blocks can execute concurrently; no ordering
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Advantages of Breaking the Set of Threads into Thread Blocks

GPU hardware can run any thread enels tesdarid | Program
block in any order and on any SM — 1 s
Block 4 Block 5
Block 6 Block 7 GPU-2 (H/W - 2)
GPU-1 (H/W - 1) i)
Hardware SM SM SM SM o Block 0  Block 1
qé Block 0 Block1 Block2 Block3 E —
— Block4 Block5 Block6 Block?7 — L

v Block 6 Block 7

¢ Decoupling hardware resources in a given GPU from kernel threads

¢ Threads within a thread block can collaborate more efficiently than
those from different thread blocks = helps scaling up !
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Logical Thread Hierarchy in CUDA

Recall that kernel

/’ i e e iy e follows SPMD

Must uniquely identify

\ each thread and

thread blocks thread block

Each thread has
a unique identifier threads Each thread
computes on
different data items
based on its identity

¢ A kernel is launched with a grid of threads
¢ A grid is a 3D array of thread blocks and threads
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Number of Thread Blocks in a Grid (gridDim)

X
[l J J/ [ [ [ [ [/
/ IY ¢ gridDim.x ...
- ¢ gridDim.y ...

¢ gridDim.z ...
\ /Z

thread blocks Intrinsic variables:

Available to each thread

For.2D .(and 1.D grids), simply use automatically = No need
grid dimension 1 for Z (and Y). to allocate/initialize.

H/W returns the correct
value for the calling thread
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Uniquely ldentifying Thread block

—x

/ A A A Each thead block has a
IY unique index tuple
+ blockldx.x [from O to
\ (gridDim.x — 1) ]
blockldx.y [from O to
thread blocks /Z * (gridDir)r(l.))//[— ]

+ blockldx.z [from O to
For 2D (and 1D grids), simply use (gridDim.z — 1) ]

grid dimension 1 for Z (and Y).
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Finding the Number of Threads in a Thread Block

X ¢ The number of threads in each
I dimension in a thread block
Y

¢ blockDim.x ...
threads ¢ blockDim.y ...
/7 ¢ blockDim.z ...

For 2D (and 1D grids), simply use
grid dimension 1 for Z (and Y).
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Finding the Number of Threads in a Thread Block

Why a 3D grid X Each thread has a unique index
instead of a tuple
linear array of IY o threadldx.x (from 0 to
threads? threads (blockDim.x — 1))
« Historical reason /7 ¢ threadldx.y (from 0O to
stemming from (blockDim.y — 1))
graphics ¢ threadldx.z (from O to
¢ Easier for image (blockDim.z - 1))
processing, threadldx tuple is unique within
PDEs on a threadblock

volumes
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Review: What Have We Learnt So Far?

Serial Code (host/CPU)

Data parallel function (device/GPU)
KernelA<<< nBlIk, nTid >>>(args);

Thread /

grid size Serial Code (host/CPU)

Data paraltel function (device/GPU)
KernelB<<< nBIk, nTid >>>(args);

¢ Next: The life cycle of a GPU-acce

CS302 - Spring 2025

SRS || K || RS | Kernels
written as

SPMD
g programs

O S D DO

OO

erated program wit

N an example
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Visualization of Thread Organization and Indexing in 1D

gridDim.x
# of blocks in grid

N
A4

blockIdx.x
position of block in grid

AN
\

—
threadIdx.x
position of thread in block

pd

blockDim.x
# threads in block
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Visualization of Thread Organization and Indexing in 2D

CS302 - Spring 2025
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ldentifying Data Item That Each Thread Must Work On

¢ Recall: GPU kernel specifies program (instructions) that each thread
must execute

¢ Each thread will execute the same program on different data items
based on its unique identity

Threadblock 0 Threadblock 1 Threadblock N-1
| = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +
threadldx.x; threadldx.x; *e threadldx.x;
C[i] = Ali] + BI[il; C[i] = Ali] + BI[il; C[i] = Ali] + BI[il;

I A R N R
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Key Steps in the Lifecycle of a GPU-Accelerated Program

Operating system Launch work
GPU driver

oooooooooooooooooooo
400400000 ss800ss0000

PCle connection

S fese- WRIEERC

Get results J/Kn/
- ocate GPU memory

. Copy data to GPU memory

3. Launch kernel on the GPU
"DRAM g Perform computation on GPU ~ On GPU
6

. Copy results from GPU memory
. Deallocate GPU memory
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Example Program for Walkthrough: Vectoradd

Input Vector x:

Input Vector y:

Output Vector z:

void vecadd(float* x, float* y, float* z, int N) {
(unsigned int 1 = 0; 1 < N; ++1) {
z[1] = x[1] + yl[1];

} Sequential C Code
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APls for (1) GPU Memory Allocation and (6) De-Allocation

¢ Allocating memory:
cudakError t cudaMalloc(void **devPtr, size t size)

¢ devPtr: Pointer to a pointer to allocated device (GPU) memory
¢ size: Requested allocation size in bytes

¢ Deallocating memory:
cudakError t cudaFree (void *devPtr)
¢ devPtr: Pointer to device memory to free

¢ Return type: cudaError t
+ Helps with error checking
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APls for (1) GPU Memory Allocation and (6) De-Allocation

int main(...) A CUDA

{ | runtime
int host array|[N]; routine that

int* gpu array;: ultimate calls
}<cudaMalloc( (void**) &gpu_array, SIZE N); > the GPU

driver running

on CPU to
allocate GPU
CPU memory
cudaMalloc(...); t

host array
u arra
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How Does gpu array Pointer Work?

¢ Disclaimer: It is not a regular C pointer!
¢ If you dereference it, the behavior is undefined

¢ The host pointer is on the CPU’s stack
¢ But, it serves as a simple name for the CUDA library

¢ When calling cudaMalloc (...), device driver tells the GPU to “please
allocate STZE N bytes of memory”
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API for (2) Copying Data to and from (6) GPU Memory

¢ cudaError t cudaMemcpy (void *dst, const void *src,
size t count, enum cudaMemcpyKind kind)

¢ dst: Destination memory address ¢ cudaMemcpy is a CUDA runtime routine
¢ src: Source memory address that ultimately invokes the GPU driver

¢ count: Size in bytes to copy

¢ kind: Type of transfer
¢ cudaMemcpyHostToHost

cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost

¢ cudaMemcpyDeviceToDevice
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Vector Addition (CPU/Host Side Code)

void vecadd(float* x, float* y, float* z, int N) {

// Allocate GPU memory
float *x d, *y d, *z d;
const unsigned int numThreadsPerBlock, numBlocks;

cudaMalloc((void**) &x d, N¥* (float));
cudaMalloc((void**) &y d, N¥* (float)) ; // Step (1)
cudaMalloc((void**) &z d, N¥* (float));

// Copy data to GPU memory
cudaMemcpy (x_d, x, N* (float), ) ; // Step (2)
cudaMemcpy (y_d, y, N¥ (float), ),

// Perform computation on GPU

numThreadsPerBlock = 512;

numBlocks = (N + numThreadsPerBlock - 1)/numThreadsPerBlock;

vecadd kernel <<< numBlocks, numThreadsPerBlock >>> (x d, y d, z d, N); //Step (3). Note warp is not specified

// Copy data from GPU memory
cudaMemcpy (z, z_d, N¥* (float), ) ; //Step (5)

// Deallocate GPU memory
cudaFree (x_d) ;

cudaFree (y_d); //Step (6)
cudaFree(z_d) ;
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Vector Add (Device/GPU Code)

//Step (4)
__global  wvoid vecadd kernel (float* x, float* y, float* z, int N) {
int 1 = blockDim.x*blockIdx.x + threadlIdx.x;
if (i < N)
z[i] = x[i] + y[i];

Input Vector x:

Input Vector y:
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Keywords for Function Declaration

hOSt keyword can be added for Ke::;:rd Callable From Executed On
functions that can be executed on both (default) rost rost
CPU and GPU _ global (or:c:/tice) Device
__device Device Device
__host device float f(float a, float b) {

a + b;
}
__global  void vecadd kernel(float* x, float* y, float* z, int N) {
int i = blockDim.x*blockIdx.x + threadIdx.x;
(1 < N) {
z[i] = £(x[1i], yl[i]):

}
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How to Decide Thread Block Size?

¢ Recall that a thread block can have up to 1024 threads
¢ Programmer has the option of choosing from a range

¢ A key step in GPU programming

+ Dividing up the work between thread blocks

¢ For max perf., GPU should be fully occupied - leverage as much
parallelism as the hardware allows

¢ Every cycle should have a warp ready to issue

¢ Requires you to think about your kernel’s operations

+ Which ones are long latency?
+ How many warps can be swapped in while the current warp is waiting?
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Occupancy Example

¢ Assume that we want to compute on an image of size 64x48
¢ One thread per pixel means we need ~3k threads
+ But, how to arrange them?

¢ Example resources available in a GPU and constraints
¢ 15 SMs, max 64 warps per SM

¢ 2048 threads max per SM

+ 16 thread blocks max per SM Whichever limit hits

¢ 1 warp is 32 threads first constraints parallelism
&

960 concurrently scheduled warps/GPU

¢ You can launch more, but they will serialize

CS302 - Spring 2025 Lec.11.1 - Slide 63



Occupancy Example: Big Blocks

¢ 4 large thread blocks of 1024 threads each
¢ Only 4 of 15 SMs occupied
¢ Absolute max occupancy is 26%, not using all HW Why?
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Occupancy Example: Smaller Blocks

¢ 48 thread blocks of 64 threads each

¢ SMs have 3 or 4 threadblocks, each with 2 warps

==s
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Another Example (2): Occupancy in an SM

¢ Constraints:
¢ 15 SMs, max 64 warps per SM
¢ 2048 threads max per SM
¢ 16 thread blocks max per SM
¢ 1 warp is 32 threads

¢ Assume that there are many threads available to run
¢ Goal: Schedule as many threads as possible in each SM

¢ If thread block set to 768 threads, each SM can accommodate only
two thread blocks > Maximum 1536 threads in each SM 75%
(1536/2048) max occupancy
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Another Example (3): Occupancy in an SM

¢ Constraints:
¢ 15 SMs, max 64 warps per SM
¢ 2048 threads max per SM
¢ 16 thread blocks max per SM
¢ 64K register per SM
¢ 1 warp is 32 threads
¢ Assume that there are many threads available to run
¢ Goal: Schedule as many threads as possible in each SM

¢ If each thread uses 64 registers, up to 1024 threads can be
scheduled in each SM
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CUDA Compilation Flow

.cu C/C++ and CUDA code
|

Many libraries: cuDNN, { NVIDIA CUDA Compiler (NVCC) ]

CUBLAS, CUTLAS, etc I I
Host C/C++ Code .c ptx » PTX (Virtual) ISA code
! !
Host C/C++ Device Just-in-
Compiler Time Compiler
Host Assembly Device Assembly
(e.g., x86, Power, ARM) | (e.g., SASS)

CPU GPU
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Summary. GPUs Are Accelerators for Massive Data-Parallelism

¢ Originally designed for graphics but emerged as a platform of
choice for data-parallel computing

¢ GPU follows SIMT execution model while the GPU kernels are
specified in SPMD fashion

¢ The host (CPU) code is responsible for allocating memory in GPU,
copying data to GPU memory, launching kernels with a grid of
threads, copying results back and de-allocate GPU memory
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