CS302

LWOLW! YOU HAVE THREE

MASTERS DEGREES AND
g A PHDI

www.dilbert.com scobisdame@acl.com

YES,IT'S ALL VERY
IMPRESSIVE, BUT
INTERESTINGLY. I
HAVE NO COMMON
SENSE WHATSOEVER.

22003 United Fealure Syndicals, Inc.

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

i.r'i-?"": i 2003 United Feature Syndicsts, ine.

THAT'S NOT THE SORT
OF THING YOU SHOULD
SAY DURING A JOB
INTERVIELW.

] I DOMN'T SEE
LWHY NOT.

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan

Copyright 2025

CS302 - Spring 2025

Lec.10.1 - Slide 1

Where are We?

¢ RPC + gRPC

o Basics
o Example with “Hello World”

¢ Thursday
o Lecture: HW Multithreading

o Exercise session: Coroutines and
RPC examples

¢ Next Tuesday:
o Intro to GPUs

CS302 - Spring 2025 Lec.10.1 - Slide 2

Midterm Scores

CS302 - Spring 2025

14

12

=
o
1

of students

Histogram of CS5-302 Midterm Scores

o
1

In »

SO RO HRHP PR EERNDL DD P PP

Bins

Average = 63
Maximum = 92
Std Dev = 14.2

Lec.10.1 - Slide 3

Midterm Exam Sheet Viewing Sessions

¢ There are two exam sheet viewing sessions
o Tuesday April 29t 5 pm - 6 pm in BC 229 (Today)
o Wednesday April 30" 5 pm -6 pm in BC 229

¢ Exam regrading request deadline: April 30t 11:59 pm
o Let us know in-person at one of the exam viewing sessions or send an email
o Must have a valid reason

& Exam solutions are on Moodle

April 10t exercise session also went over the exam solutions
o Recording link available on Moodle

¢ A1 grading will be done by end of the day today

CS302 — Spring 2025 Lec.10.1 - Slide 4

Heads Up

& Assignment 2 deadline is on May 4t 11:59 pm

¢ FAQs:
o B1 and B2 are not used for progD (collectives do not transmit data in chunks)

o If you have time limitations for experiments, you can measure the time taken for
5 iterations and multiply by 4 to estimate the time for 20 iterations and report it

o Keep regular backups of your code!

¢ HW 6 is now available on Moodle
o Deadline to submit. Monday May 5" 11:59pm

CS302 — Spring 2025 Lec.10.1 - Slide 5

Recap: Microservices

¢ Microservice architecture: a set of small (micro), independent services
o Isolated services
o Scale services based on their needs
o Heterogenous tech stack

Auth)
service

Hash
service

}[Logging]
service

{ Payment }/
service

CS302 — Spring 2025 Lec.10.1 - Slide 6

File
service

Recap: File & Hash Services

¢ File service

o Serving file-handling related requests
o hash file: Hashes the content of a file

CS302 - Spring 2025

-

~N

hash_file

_

v

File service

Lec.10.1 - Slide 7

Recap: File & Hash Services

¢ Hash service

o Serving hashing requests
o sha: Computes hash

CS302 — Spring 2025

-

~

hash_file

_

v

File service

sha

_

v

Hash service

Lec.10.1 - Slide 8

Recap: File & Hash Services

¢ Want to reuse sha in hash file

o Both file and hash service need sha's definition
o Need a common interface definition language (IDL)

CS302 — Spring 2025

-

~

hash_file

_

v

File service

(v

-/

Hash service

Lec.10.1 - Slide 9

Why IDL?

¢ Services can be in various languages
¢ Languages define functions differently
¢ Define using IDL once, generate code in different languages

Python client // C++ server

def sha(input: str)->str: char* sha (char* input) {

CS302 — Spring 2025 Lec.10.1 - Slide 10

RPC Overview

¢ RPC generates code from interface definition language (IDL)
o Client stub: Code generated for the service calling a function (client)
o Server stub: Code generated for the service serving a function (server)
o Client and server stub can be in different languages

- N\ (A)

sha client sha server
hash fil — —p h
ash_tile stub stub sha

_ - O\ - J

File service Hash service

CS302 - Spring 2025 Lec.10.1 - Slide 11

RPC Overview

¢ Can we transfer data directly between stubs?

o memcpy the input and the output
o Needs data to be in the same format in memory, for all languages

- — ()
sha client sha server

] h
hash_f:l.le —p stub stub B sha

_ - NS - J

File service Hash service

CS302 — Spring 2025 Lec.10.1 - Slide 12

Data Memory Representation

¢ Languages store types in various formats in memory
o Let's consider the variable “input” which is a string
o Python has a hierarchical structure to define a string

Python str
class str:
data: PyASCIIObject

class PyASCIIObject:
char *utfs8;

CS302 — Spring 2025 Lec.10.1 - Slide 13

Data Memory Representation

¢ Languages store types in various formats in memory
o Let's consider the variable “input” which is a string
o Python has a hierarchical structure to define a string
o C++ has a flat structure

¢ Therefore, we can not do a memcpy

Python str // C++ std::string
class str: class basic string ({
data: PyASCIIObject size t size;

... size t capacity;
class PyASCIIObject: char* data;

char *utf8; }

CS302 — Spring 2025 Lec.10.1 - Slide 14

Marshalling/Unmarshalling

¢ Marshalling: Turn data from a memory representation into a
representation that can be sent over the network

¢ RPC unifies marshalling data for all services
o Once received, RPC needs to be able to save it to memory again

Python # RPC _
input: str > representation
B 010...... 010

Marshalling

CS302 — Spring 2025 Lec.10.1 - Slide 15

Marshalling/Unmarshalling

¢ Marshalling: Turn data from a memory representation of one
language into an IDL representation sent over the network

¢ RPC unifies marshalling data for all services

¢ Unmarshalling: Turn data received from the network in an IDL
representation into a memory representation of the receiving language

Python # RPC _ // C++
input: str S Ee ol o tatiae dmaeias
put: 010...... 010 - g tnput,

Marshalling Unmarshalling

CS302 — Spring 2025 Lec.10.1 - Slide 16

Marshalling/Unmarshalling

¢ Marshalling: Turn data from a memory representation of one
language into an IDL representation sent over the network

¢ RPC unifies marshalling data for all services

¢ Unmarshalling: Turn data received from the network in an IDL
representation into a memory representation of the receiving language

¢ We will see how RPC uses this

Python # RPC _ // C++
input: str S Ee ol o tatiae dmaeias
put: 010...... 010 - g tnput,

Marshalling Unmarshalling

CS302 — Spring 2025 Lec.10.1 - Slide 17

RPC

¢ Color coding for the following slides (red remains as before)
o Client code
O
o Server code

- R)

sha client sha server
hash fil —_— —_— h
ash_tile stub stub sha

_ - NS - J

File service Hash service

CS302 - Spring 2025 Lec.10.1 - Slide 18

RPC Function Call

¢ File service calls the client stub

Function Function Run Prepare Receive return
definition call function return and continue

CS302 - Spring 2025 Lec.10.1 - Slide 19

RPC Function Call

¢ hash file calls the client stub’s sha function with its inputs

-

hash_file

ﬁ

_

~

sha client

stub

File service

CS302 — Spring 2025

-

sha server
stub

—

sha

J

Hash service

Lec.10.1 - Slide 20

RPC Function Call

¢ Client stub’s sha function takes the input

generated client stub by rpc
library for file service
class HashService:
sha (self, input):
req = marshall (input)
resp = send(req)

CS302 — Spring 2025

Lec.10.1 - Slide 21

RPC Function Call

¢ Client stub’s sha function takes the input

¢ It marshalls data from memory into a representation that can be sent
over the network

generated client stub by rpc
library for file service
class HashService:
sha (self, input):
req = marshall (input)
resp = send(req)

CS302 — Spring 2025 Lec.10.1 - Slide 22

RPC Function Call

¢ Client stub’s sha function takes the input

¢ It marshalls data from memory into a representation that can be sent
over the network

¢ RPC provides the send function to send marshalled data

generated client stub by rpc
library for file service
class HashService:
sha (self, input):
req = marshall (input)
resp = send(req)

CS302 — Spring 2025 Lec.10.1 - Slide 23

RPC Function Call

¢ Marshalled data is sent to hash service

¢ RPC libraries include a built-in server that listens for RPC requests
coming in from the network

- e)

sha client sha server
hash fil —_— —_— h
ash_tile stub stub sha

K / \ RPC server D /

File service Hash service

CS302 - Spring 2025 Lec.10.1 - Slide 24

RPC Running Function

& RPC server runs the server stub

Function Function Run Prepare Receive return
definition call function return and continue

CS302 - Spring 2025 Lec.10.1 - Slide 25

RPC Running Function

¢ Server stub’s sha function takes the input

-

hash_file

—

_

sha client
stub

-

File service

CS302 — Spring 2025

_

sha server
stub

|

RPC server

—

sha

9)

Hash service

Lec.10.1 - Slide 26

RPC Running Function

¢ Server stub’s sha function takes the input

¢ It unmarshalls the data into variables that can be used by functions
¢ It calls the function sha

-

hash_file

—

_

sha client
stub

-

File service

CS302 — Spring 2025

_

sha server
stub

|

RPC server

ﬁ

sha

9)

Hash service

Lec.10.1 - Slide 27

RPC Preparing Result

¢ Server stub prepares the result to return

Function Function Run Prepare Receive return
definition call function return and continue

CS302 - Spring 2025 Lec.10.1 - Slide 28

RPC Preparing Result

¢ Server stub marshalls the result

-

hash_file

—

_

sha client
stub

-

File service

CS302 — Spring 2025

_

sha server
stub

|

RPC server

—

—

sha

9)

Hash service

Lec.10.1 - Slide 29

RPC Preparing Result

¢ Server stub marshalls the result
¢ Sends it back to the caller

- e)

sha client sha server
ash_ti2€ stub stub — =he

i

K / \ RPC server D /

File service Hash service

CS302 - Spring 2025 Lec.10.1 - Slide 30

RPC Processing Returned Result

¢ Client receives the marshalled result

Function Function Run Prepare Receive return
definition call function return and continue

CS302 - Spring 2025 Lec.10.1 - Slide 31

RPC Processing Returned Result

¢ Client stub unmarshalls the result and returns it to hash file

-

hash_file

—
—

_

sha client
stub

-

File service

CS302 — Spring 2025

_

sha server
—

stub —

sha

]

RPC server

9)

Hash service

Lec.10.1 - Slide 32

RPC Processing Returned Result

¢ Client stub unmarshalls the result and returns it to hash file
¢ All these steps are generated by RPC

generated client stub by rpc library for file service
class HashService:
sha (self, input):
req = marshall (input)
resp = send(req)
return unmarshall (resp)

CS302 — Spring 2025 Lec.10.1 - Slide 33

RPC Basics Summary

¢ RPC abstracts away the complexities of remote procedure calls

¢ On the client side
o client only needs to call the client stub
o stub marshalls and sends the inputs, waits for and unmarshalls the result

¢ On the server side

o server only needs to start the RPC server

o stub listens to requests, unmarshalls the input, calls the function, marshalls and
sends the result back

CS302 — Spring 2025 Lec.10.1 - Slide 34

RPC Implementation

¢ Various libraries implement RPC
o Apache Thrift: uses Thrift as IDL (Facebook)
o gRPC: uses protobuf as IDL (Google)

¢ When choosing an RPC library consider:

o Interface definition language (IDL)
o Supported programming languages
o Performance

o Community and project backers

¢ We focus on gRPC

CS302 - Spring 2025

Lec.10.1 - Slide 35

gRPC Hello World

¢ Imagine a simple “greeter’ adds “Hello,” to the input it receives

o E.g., service called with “World” returns “Hello, World”
¢ How can a client Python script use this service to get "Hello World™?

CS302 - Spring 2025

hello_world_client.py

greeter_server.py

Lec.10.1 - Slide 36

gRPC Hello World

¢ It's time to create the stubs
¢ gRPC uses protobuf 3.0 or proto3 as the IDL

main

SayHello

_> .
) client stub

(,» SayHello
—
server stub «—

~

SayHello

hello_world_client.py

CS302 — Spring 2025

L

gRPC server [/

greeter_server.py

Lec.10.1 - Slide 37

gRPC Hello World Protobuf

¢ Define the service
o Similar to creating an entry in a header file

// hello.proto
syntax = "proto3";

service Greeter {
rpc SayHello (HelloRequest) returns (HelloReply)
}

CS302 - Spring 2025 Lec.10.1 - Slide 38

gRPC Hello World Protobuf

¢ Define the service
o Then define the functions of the service

// hello.proto
syntax = "proto3";

service Greeter {
rpc SayHello (HelloRequest) returns (HelloReply)
}

CS302 - Spring 2025 Lec.10.1 - Slide 39

gRPC Hello World Protobuf

¢ Define the inputs and outputs needed for the functions

// hello.proto
message HelloRequest {
string name = 1;

}

message HelloReply {
string message = 1;

}

CS302 - Spring 2025 Lec.10.1 - Slide 40

gRPC Hello World Protobuf

¢ Define the inputs and outputs needed for the functions

o Define the attributes of the input and the output
o To keep marshalling consistent each attribute is given a field number

// hello.proto
message HelloRequest {
string name = 1;

}

message HelloReply ({
string message = 1;

}

CS302 - Spring 2025 Lec.10.1 - Slide 41

gRPC Hello World Protobuf

¢ Define the inputs and outputs needed for the functions
o Define the attributes of the input and the output
o To keep marshalling consistent each attribute is given a field number
o Numbers are assigned to parameters in numerical order

// hello.proto
message HelloRequest {
string name = 1;

}

message HelloReply ({
string message = 1;

}

CS302 - Spring 2025 Lec.10.1 - Slide 42

gRPC Hello World Protobuf Compilation

¢ Use Protocol Buffers compiler

o Called protoc
o grpc_tools comes with protoc for compiling to Python

python -m grpc tools.protoc \
-I . --pyi out=. \
--python out=. \
--grpc_python out=. \
hello.proto

CS302 - Spring 2025 Lec.10.1 - Slide 43

gRPC Hello World Protobuf Compilation

¢ Protoc generates file containing:
o the classes for both client and server stub

proto3

\

hello_pb2 grpc.py

CS302 - Spring 2025 Lec.10.1 - Slide 44

gRPC Hello World Protobuf Compilation

¢ Protoc generates file containing:

o the classes for both client and server stub
o all the messages and how to marshall and unmarshall them

¢ Note: pb.py is a popular ending for Python files so they use pb2.py

proto3

4/\>

hello pb2.py ' ' hello_pb2 grpc.py

CS302 - Spring 2025 Lec.10.1 - Slide 45

gRPC Hello World Protobuf Compilation

¢ Protoc generated stubs include:
o Python class defining the service
o GreeterServicer with a to-be-implemented service

rest of hello pb2 grpc.py
class GreeterServicer (object):
def SayHello (self, request, context):
context.set code (grpc.StatusCode.UNIMPLEMENTED)
context.set details('Method not implemented!’)
raise NotImplementedError ('Method not implemented!')

CS302 - Spring 2025 Lec.10.1 - Slide 46

Take a break!

CS302 - Spring 2025 Lec.10.1 - Slide 47

gRPC Hello World Server

proto3

¢ Inherit and implement the abstract —

class (GreeterServicer) generated
by protoc

hello pb2.py hello_pb2 grpc.py

(,> SayHello |
server stub +—

SayHello

~

L

_

gRPC server

8

greeter_server.py

CS302 — Spring 2025

Lec.10.1 - Slide 48

gRPC Hello World Server

proto3
¢ Inherit and implement the abstract —
class (GreeterServicer) generated
by protoc hello pb2.py hello pb2 grpc.py
¢ Import /
’ G N

o the class defining the service SayHello _, SayHello

server stub +—

L

gRPC server
_ 3/

greeter_server.py

CS302 - Spring 2025 Lec.10.1 - Slide 49

gRPC Hello World Server

¢ Inherit and implement the abstract
class (GreeterServicer) generated

by protoc

¢ Import

o the class defining the service
o input and output definition

CS302 — Spring 2025

proto3

—

hello pb2.py hello_pb2 grpc.py

-

_

L —

SayHello
server stub <—

SayHello

L

gRPC server [/

greeter_server.py

Lec.10.1 - Slide 50

gRPC Hello World Server

¢ Inherit and implement the abstract
class (GreeterServicer) generated

by protoc

¢ Import

o the class defining the service
o input and output definition

¢ Implement the abstract class and
connect it to the server

CS302 — Spring 2025

proto3

—

hello pb2.py hello_pb2 grpc.py

-

_

L —

SayHello
server stub <—

SayHello

L

gRPC server [/

greeter_server.py

Lec.10.1 - Slide 51

gRPC Hello World Server

¢ Import the code generated by protoc

o The class that defines the service
o The input and output definition

greeter server.py

from hello pb2 grpc import (
GreeterServicer

)

from hello pb2 import (
HelloRequest,
HelloReply

CS302 - Spring 2025 Lec.10.1 - Slide 52

gRPC Hello World Server

¢ Implement the service

greeter server.py
class GreeterServicelImpl (GreeterServicer) :
def SayHello(self, request: HelloRequest, context):
response = HelloReply ()
response.message = f"Hello, {request.name}!"
return response

CS302 - Spring 2025 Lec.10.1 - Slide 53

gRPC Hello World Server

¢ Create a gRPC server

proto3

—

hello pb2.py hello_pb2 grpc.py

-

_

L —

SayHello
Hell
server stub 4— SayHello

A
gRPC server Dj

CS302 — Spring 2025

greeter_server.py

Lec.10.1 - Slide 54

gRPC Hello World Server

¢ Create a gRPC server

o The server listens for requests while
the stub is running

o We saw in L8.2 and L9.2 this can be
done with spawning new threads

o This is called a thread pool in
Python

CS302 — Spring 2025

proto3

—

hello pb2.py hello_pb2 grpc.py

-

_

SayHello
server stub <—

L —

SayHello

L

gRPC server [/

greeter_server.py

Lec.10.1 - Slide 55

gRPC Hello World Server

¢ Create a thread pool

greeter server.py

from concurrent import futures

requests thread pool =
futures.ThreadPoolExecutor (max workers=10)

CS302 - Spring 2025 Lec.10.1 - Slide 56

gRPC Hello World Server

¢ Create a thread pool
¢ Create a gRPC server with access to the thread pool

greeter server.py

from concurrent import futures

requests thread pool =
futures.ThreadPoolExecutor (max workers=10)

import grpc
Server implemented by gRPC
server = grpc.server (requests thread pool)

CS302 - Spring 2025

Lec.10.1 - Slide 57

gRPC Hello World Server

¢ gRPC server calls the service

we implemented
(GreeterServiceImpl)

¢ gRPC generates a function to
connect implemented services
to the server

CS302 — Spring 2025

proto3

—

hello pb2.py hello_pb2 grpc.py

-

_

| /

SayHello
server stub <—

SayHello

~

L

gRPC server

8

greeter_server.py

Lec.10.1 - Slide 58

gRPC Hello World Server

¢ add GreeterServicer to server
o is generated by gRPC in the same file as the abstract class (GreeterServicer)
o accepts any instance of a class that inherits and implements the abstract class

rest of hello pb2 grpc.py

takes in servicer and registers it to server

related requests will now go to this servicer

def add GreeterServicer to server (servicer, server):

CS302 - Spring 2025 Lec.10.1 - Slide 59

gRPC Hello World Server

¢ Make an instance of the implemented service

greeter server.py
service implementation = GreeterServiceImpl ()

CS302 - Spring 2025 Lec.10.1 - Slide 60

gRPC Hello World Server

¢ Make an instance of the implemented service
¢ Add an instance of the service to the server

greeter server.py
service implementation = GreeterServiceImpl ()

from hello pb2 grpc import add GreeterServicer to server
add GreeterServicer to server (service implementation, server)

CS302 - Spring 2025 Lec.10.1 - Slide 61

gRPC Hello World Server

¢ Start the gRPC server and listen for requests
o We listen on the local network for this example

greeter server.py

Only use insecure port for testing
server.add insecure port('[::]:50051")
server.start ()

print ("Server started on port 50051...")
server.wait for termination ()

CS302 - Spring 2025 Lec.10.1 - Slide 62

gRPC Hello World Client

proto3

*””//5\\‘\\‘$

_ _ hello pb2. hello pb2 grpc.
¢ The client imports the same —PPepY —PPe_9IPe-by

classes and uses gRPC to ‘
communicate 4)

main SayHello
« client stub

. J
hello_world client.py

CS302 - Spring 2025 Lec.10.1 - Slide 63

gRPC Hello World Client

¢ Import classes in client
o The client stub
o Input and output classes

hello world client.py
from hello pb2 grpc import (
GreeterStub,

)

from hello pb2 import (
HelloRequest,
HelloReply

)

CS302 - Spring 2025 Lec.10.1 - Slide 64

gRPC Hello World Client

¢ The client needs a way to reach other services
¢ gRPC uses channels

o Channel: is an endpoint you can send and receive messages from

o Can be an IP address

main

SayHello
S ——
) client stub

(,» SayHello
—p
server stub «—

~

SayHello

hello_world_client.py

CS302 — Spring 2025

L

gRPC server [/

greeter_server.py

Lec.10.1 - Slide 65

gRPC Hello World Client

¢ Create a channel (can be encrypted or insecure)

hello world client.py
Where to send requests to
channel = grpc.insecure channel ('localhost:50051")

CS302 - Spring 2025 Lec.10.1 - Slide 66

gRPC Hello World Client

¢ Send a request by creating an instance of client stub
o The instance handles communication

hello world client.py

Where to send requests to

channel = grpc.insecure channel('localhost:50051")
stub = GreeterStub (channel)

CS302 - Spring 2025 Lec.10.1 - Slide 67

gRPC Hello World Client

¢ Send a request by creating an instance of client stub
o The instance handles communication

o The GreeterStub acts the same as the service we implemented
(GreeterServiceImpl)

hello world client.py

Where to send requests to

channel = grpc.insecure channel('localhost:50051")
stub = GreeterStub (channel)

request = HelloRequest (name="World")

response: HelloReply = stub.SayHello (request)
print ("Client received: " + response.message)

CS302 - Spring 2025 Lec.10.1 - Slide 68

gRPC Hello World Client

¢ Send a request by creating an instance of client stub
o The instance handles communication

o The GreeterStub acts the same as the service we implemented
(GreeterServiceImpl)

hello world client.py

Where to send requests to

channel = grpc.insecure channel('localhost:50051")
stub = GreeterStub (channel)

request = HelloRequest (name="World")

response: HelloReply = stub.SayHello (request)
print ("Client received: " + response.message)

CS302 - Spring 2025 Lec.10.1 - Slide 69

gRPC File & Hash Service

¢ Similar to Hello World
¢ Use gRPC to:

o Create hash service’s server stubs in C++
o Create file service’s client stubs in Python

- e)

hash file sha client sha server <ha
— —| stub stub —

]

\ / \ RPC server D /

file_service.py hash_service.cpp
CS302 - Spring 2025 (F||e SerV|Ce) (HaSh SerV|Ce) Lec.10.1 - Slide 70

Summary

¢ RPC abstracts away the complexities of a remote call

o Client only needs to call the client stubs with its input
o Server only needs to implement the service and start the RPC server

¢ gRPC is an implementation of RPC

o Originally created by Google but is now open source
o Uses protobuf 3.0 or proto3
o Supports many languages including Python, C++, Golang, etc.

CS302 — Spring 2025 Lec.10.1 - Slide 71

	Default Section
	Slide 1
	Slide 2: Where are We?
	Slide 3: Midterm Scores
	Slide 4: Midterm Exam Sheet Viewing Sessions
	Slide 5: Heads Up
	Slide 6: Recap: Microservices
	Slide 7: Recap: File & Hash Services
	Slide 8: Recap: File & Hash Services
	Slide 9: Recap: File & Hash Services
	Slide 10: Why IDL?
	Slide 11: RPC Overview
	Slide 12: RPC Overview
	Slide 13: Data Memory Representation
	Slide 14: Data Memory Representation
	Slide 15: Marshalling/Unmarshalling
	Slide 16: Marshalling/Unmarshalling
	Slide 17: Marshalling/Unmarshalling
	Slide 18: RPC
	Slide 19: RPC Function Call
	Slide 20: RPC Function Call
	Slide 21: RPC Function Call
	Slide 22: RPC Function Call
	Slide 23: RPC Function Call
	Slide 24: RPC Function Call
	Slide 25: RPC Running Function
	Slide 26: RPC Running Function
	Slide 27: RPC Running Function
	Slide 28: RPC Preparing Result
	Slide 29: RPC Preparing Result
	Slide 30: RPC Preparing Result
	Slide 31: RPC Processing Returned Result
	Slide 32: RPC Processing Returned Result
	Slide 33: RPC Processing Returned Result
	Slide 34: RPC Basics Summary
	Slide 35: RPC Implementation
	Slide 36: gRPC Hello World
	Slide 37: gRPC Hello World
	Slide 38: gRPC Hello World Protobuf
	Slide 39: gRPC Hello World Protobuf
	Slide 40: gRPC Hello World Protobuf
	Slide 41: gRPC Hello World Protobuf
	Slide 42: gRPC Hello World Protobuf
	Slide 43: gRPC Hello World Protobuf Compilation
	Slide 44: gRPC Hello World Protobuf Compilation
	Slide 45: gRPC Hello World Protobuf Compilation
	Slide 46: gRPC Hello World Protobuf Compilation
	Slide 47: Take a break!
	Slide 48: gRPC Hello World Server
	Slide 49: gRPC Hello World Server
	Slide 50: gRPC Hello World Server
	Slide 51: gRPC Hello World Server
	Slide 52: gRPC Hello World Server
	Slide 53: gRPC Hello World Server
	Slide 54: gRPC Hello World Server
	Slide 55: gRPC Hello World Server
	Slide 56: gRPC Hello World Server
	Slide 57: gRPC Hello World Server
	Slide 58: gRPC Hello World Server
	Slide 59: gRPC Hello World Server
	Slide 60: gRPC Hello World Server
	Slide 61: gRPC Hello World Server
	Slide 62: gRPC Hello World Server
	Slide 63: gRPC Hello World Client
	Slide 64: gRPC Hello World Client
	Slide 65: gRPC Hello World Client
	Slide 66: gRPC Hello World Client
	Slide 67: gRPC Hello World Client
	Slide 68: gRPC Hello World Client
	Slide 69: gRPC Hello World Client
	Slide 70: gRPC File & Hash Service
	Slide 71: Summary

