
CS302 – Spring 2025 Lec.10.1 - Slide 1

CS302

gRPC

Spring 2025

Arkaprava Basu & Babak Falsafi

parsa.epfl.ch/course-info/cs302
Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch of CMU, Michigan

Copyright 2025

CS302 – Spring 2025 Lec.10.1 - Slide 2

Where are We?

◆ RPC + gRPC

o Basics

o Example with “Hello World”

◆ Thursday
o Lecture: HW Multithreading

o Exercise session: Coroutines and
RPC examples

◆ Next Tuesday:
o Intro to GPUs

CS302 – Spring 2025 Lec.10.1 - Slide 3

Midterm Scores

Average = 68

Maximum = 92

Std Dev = 14.2

CS302 – Spring 2025 Lec.10.1 - Slide 4

Midterm Exam Sheet Viewing Sessions

◆ There are two exam sheet viewing sessions

o Tuesday April 29th 5 pm - 6 pm in BC 229 (Today)

o Wednesday April 30th 5 pm - 6 pm in BC 229

◆ Exam regrading request deadline: April 30th 11:59 pm
o Let us know in-person at one of the exam viewing sessions or send an email

o Must have a valid reason

◆ Exam solutions are on Moodle

◆ April 10th exercise session also went over the exam solutions
o Recording link available on Moodle

◆ A1 grading will be done by end of the day today

CS302 – Spring 2025 Lec.10.1 - Slide 5

Heads Up

◆ Assignment 2 deadline is on May 4th 11:59 pm

◆ FAQs:

o B1 and B2 are not used for progD (collectives do not transmit data in chunks)

o If you have time limitations for experiments, you can measure the time taken for
5 iterations and multiply by 4 to estimate the time for 20 iterations and report it

o Keep regular backups of your code!

◆ HW 6 is now available on Moodle
o Deadline to submit: Monday May 5th 11:59pm

CS302 – Spring 2025 Lec.10.1 - Slide 6

Recap: Microservices

Auth

service

Hash

service

File

service

Payment

service

Logging

service

◆ Microservice architecture: a set of small (micro), independent services

o Isolated services

o Scale services based on their needs

o Heterogenous tech stack

CS302 – Spring 2025 Lec.10.1 - Slide 7

Recap: File & Hash Services

File service

hash_file

◆ File service

o Serving file-handling related requests

o hash_file: Hashes the content of a file

.

.

.

CS302 – Spring 2025 Lec.10.1 - Slide 8

Recap: File & Hash Services

◆ Hash service

o Serving hashing requests

o sha: Computes hash

File service

hash_file

.

.

.

Hash service

sha

.

.

.

CS302 – Spring 2025 Lec.10.1 - Slide 9

Recap: File & Hash Services

◆ Want to reuse sha in hash_file

o Both file and hash service need sha‘s definition

o Need a common interface definition language (IDL)

File service

hash_file

.

.

.

Hash service

sha

.

.

.

CS302 – Spring 2025 Lec.10.1 - Slide 10

Why IDL?

◆ Services can be in various languages

◆ Languages define functions differently

◆ Define using IDL once, generate code in different languages

Python client

def sha(input: str)->str:

...

// C++ server

char* sha(char* input){

...

CS302 – Spring 2025 Lec.10.1 - Slide 11

RPC Overview

◆ RPC generates code from interface definition language (IDL)

o Client stub: Code generated for the service calling a function (client)

o Server stub: Code generated for the service serving a function (server)

o Client and server stub can be in different languages

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub

.

.

.

sha

CS302 – Spring 2025 Lec.10.1 - Slide 12

RPC Overview

◆ Can we transfer data directly between stubs?

o memcpy the input and the output

o Needs data to be in the same format in memory, for all languages

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub

.

.

.

sha

CS302 – Spring 2025 Lec.10.1 - Slide 13

Data Memory Representation

◆ Languages store types in various formats in memory
o Let’s consider the variable “input” which is a string

o Python has a hierarchical structure to define a string

Python str

class str:

data: PyASCIIObject

...

class PyASCIIObject:

char *utf8;

...

CS302 – Spring 2025 Lec.10.1 - Slide 14

Data Memory Representation

◆ Languages store types in various formats in memory
o Let’s consider the variable “input” which is a string

o Python has a hierarchical structure to define a string

o C++ has a flat structure

◆ Therefore, we can not do a memcpy

Python str

class str:

data: PyASCIIObject

...

class PyASCIIObject:

char *utf8;

...

// C++ std::string

class basic_string {

size_t size;

size_t capacity;

char* data;

}

CS302 – Spring 2025 Lec.10.1 - Slide 15

Marshalling/Unmarshalling

◆ Marshalling: Turn data from a memory representation into a

representation that can be sent over the network

◆ RPC unifies marshalling data for all services
o Once received, RPC needs to be able to save it to memory again

Python

input: str

RPC

representation

010......010

Marshalling

CS302 – Spring 2025 Lec.10.1 - Slide 16

Marshalling/Unmarshalling

◆ Marshalling: Turn data from a memory representation of one

language into an IDL representation sent over the network

◆ RPC unifies marshalling data for all services

◆ Unmarshalling: Turn data received from the network in an IDL

representation into a memory representation of the receiving language

Python

input: str

// C++

std::string input;

RPC

representation

010......010

Marshalling Unmarshalling

CS302 – Spring 2025 Lec.10.1 - Slide 17

Marshalling/Unmarshalling

◆ Marshalling: Turn data from a memory representation of one

language into an IDL representation sent over the network

◆ RPC unifies marshalling data for all services

◆ Unmarshalling: Turn data received from the network in an IDL

representation into a memory representation of the receiving language

◆ We will see how RPC uses this

Python

input: str

RPC

representation

010......010

Marshalling Unmarshalling

// C++

std::string input;

CS302 – Spring 2025 Lec.10.1 - Slide 18

RPC

◆ Color coding for the following slides (red remains as before)

o Client code

o IDL and RPC generated code

o Server code

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub

.

.

.

sha

CS302 – Spring 2025 Lec.10.1 - Slide 19

RPC Function Call

Function

call

Run

function

Prepare

return

Receive return

and continue

Function

definition

◆ File service calls the client stub

CS302 – Spring 2025 Lec.10.1 - Slide 20

RPC Function Call

◆ hash_file calls the client stub’s sha function with its inputs

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub

.

.

.

sha

CS302 – Spring 2025 Lec.10.1 - Slide 21

RPC Function Call

generated client stub by rpc

library for file service

class HashService:

sha(self, input):

req = marshall(input)

resp = send(req)

...

◆ Client stub’s sha function takes the input

CS302 – Spring 2025 Lec.10.1 - Slide 22

RPC Function Call

generated client stub by rpc

library for file service

class HashService:

sha(self, input):

req = marshall(input)

resp = send(req)

...

◆ Client stub’s sha function takes the input

◆ It marshalls data from memory into a representation that can be sent

over the network

CS302 – Spring 2025 Lec.10.1 - Slide 23

RPC Function Call

generated client stub by rpc

library for file service

class HashService:

sha(self, input):

req = marshall(input)

resp = send(req)

...

◆ Client stub’s sha function takes the input

◆ It marshalls data from memory into a representation that can be sent

over the network

◆ RPC provides the send function to send marshalled data

CS302 – Spring 2025 Lec.10.1 - Slide 24

RPC Function Call

◆ Marshalled data is sent to hash service

◆ RPC libraries include a built-in server that listens for RPC requests

coming in from the network

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub
.

.

sha

RPC server

CS302 – Spring 2025 Lec.10.1 - Slide 25

RPC Running Function

Function

call

Run

function

Prepare

return

Receive return

and continue

Function

definition

◆ RPC server runs the server stub

CS302 – Spring 2025 Lec.10.1 - Slide 26

RPC Running Function

◆ Server stub’s sha function takes the input

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub
.

.

sha

RPC server

CS302 – Spring 2025 Lec.10.1 - Slide 27

RPC Running Function

◆ Server stub’s sha function takes the input

◆ It unmarshalls the data into variables that can be used by functions

◆ It calls the function sha

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub
.

.

sha

RPC server

CS302 – Spring 2025 Lec.10.1 - Slide 28

RPC Preparing Result

Function

call

Run

function

Prepare

return

Receive return

and continue

Function

definition

◆ Server stub prepares the result to return

CS302 – Spring 2025 Lec.10.1 - Slide 29

RPC Preparing Result

◆ Server stub marshalls the result

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub
.

.

sha

RPC server

CS302 – Spring 2025 Lec.10.1 - Slide 30

RPC Preparing Result

◆ Server stub marshalls the result

◆ Sends it back to the caller

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub
.

.

sha

RPC server

CS302 – Spring 2025 Lec.10.1 - Slide 31

RPC Processing Returned Result

Function

call

Run

function

Prepare

return

Receive return

and continue

Function

definition

◆ Client receives the marshalled result

CS302 – Spring 2025 Lec.10.1 - Slide 32

RPC Processing Returned Result

◆ Client stub unmarshalls the result and returns it to hash_file

File service

hash_file

.

.

.

sha client

stub

Hash service

sha server

stub
.

.

sha

RPC server

CS302 – Spring 2025 Lec.10.1 - Slide 33

RPC Processing Returned Result

generated client stub by rpc library for file service

class HashService:

sha(self, input):

req = marshall(input)

resp = send(req)

return unmarshall(resp)

◆ Client stub unmarshalls the result and returns it to hash_file

◆ All these steps are generated by RPC

CS302 – Spring 2025 Lec.10.1 - Slide 34

RPC Basics Summary

◆ RPC abstracts away the complexities of remote procedure calls

◆ On the client side
o client only needs to call the client stub

o stub marshalls and sends the inputs, waits for and unmarshalls the result

◆ On the server side

o server only needs to start the RPC server

o stub listens to requests, unmarshalls the input, calls the function, marshalls and
sends the result back

CS302 – Spring 2025 Lec.10.1 - Slide 35

RPC Implementation

◆ Various libraries implement RPC

o Apache Thrift: uses Thrift as IDL (Facebook)

o gRPC: uses protobuf as IDL (Google)

◆ When choosing an RPC library consider:

o Interface definition language (IDL)

o Supported programming languages

o Performance

o Community and project backers

◆ We focus on gRPC

CS302 – Spring 2025 Lec.10.1 - Slide 36

gRPC Hello World

◆ Imagine a simple “greeter” adds “Hello,” to the input it receives

o E.g., service called with “World” returns “Hello, World”

◆ How can a client Python script use this service to get “Hello World”?

greeter_server.pyhello_world_client.py

CS302 – Spring 2025 Lec.10.1 - Slide 37

gRPC Hello World

◆ It’s time to create the stubs

◆ gRPC uses protobuf 3.0 or proto3 as the IDL

hello_world_client.py

main
SayHello

client stub

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 38

gRPC Hello World Protobuf

◆ Define the service

o Similar to creating an entry in a header file

// hello.proto

syntax = "proto3";

service Greeter {

 rpc SayHello (HelloRequest) returns (HelloReply);

}

CS302 – Spring 2025 Lec.10.1 - Slide 39

gRPC Hello World Protobuf

◆ Define the service

o Then define the functions of the service

// hello.proto

syntax = "proto3";

service Greeter {

 rpc SayHello (HelloRequest) returns (HelloReply);

}

CS302 – Spring 2025 Lec.10.1 - Slide 40

gRPC Hello World Protobuf

◆ Define the inputs and outputs needed for the functions

// hello.proto

message HelloRequest {

 string name = 1;

}

message HelloReply {

string message = 1;

}

CS302 – Spring 2025 Lec.10.1 - Slide 41

gRPC Hello World Protobuf

◆ Define the inputs and outputs needed for the functions

o Define the attributes of the input and the output

o To keep marshalling consistent each attribute is given a field number

// hello.proto

message HelloRequest {

 string name = 1;

}

message HelloReply {

string message = 1;

}

CS302 – Spring 2025 Lec.10.1 - Slide 42

gRPC Hello World Protobuf

◆ Define the inputs and outputs needed for the functions

o Define the attributes of the input and the output

o To keep marshalling consistent each attribute is given a field number

o Numbers are assigned to parameters in numerical order

// hello.proto

message HelloRequest {

 string name = 1;

}

message HelloReply {

string message = 1;

}

CS302 – Spring 2025 Lec.10.1 - Slide 43

gRPC Hello World Protobuf Compilation

◆ Use Protocol Buffers compiler

o Called protoc

o grpc_tools comes with protoc for compiling to Python

python -m grpc_tools.protoc \

-I . --pyi_out=. \

--python_out=. \

--grpc_python_out=. \

hello.proto

CS302 – Spring 2025 Lec.10.1 - Slide 44

gRPC Hello World Protobuf Compilation

◆ Protoc generates file containing:

o the classes for both client and server stub

proto3

hello_pb2_grpc.py

CS302 – Spring 2025 Lec.10.1 - Slide 45

gRPC Hello World Protobuf Compilation

◆ Protoc generates file containing:

o the classes for both client and server stub

o all the messages and how to marshall and unmarshall them

◆ Note: _pb.py is a popular ending for Python files so they use _pb2.py

proto3

hello_pb2.py hello_pb2_grpc.py

CS302 – Spring 2025 Lec.10.1 - Slide 46

gRPC Hello World Protobuf Compilation

◆ Protoc generated stubs include:

o Python class defining the service

o GreeterServicer with a to-be-implemented service

rest of hello_pb2_grpc.py

class GreeterServicer(object):

def SayHello(self, request, context):

 context.set_code(grpc.StatusCode.UNIMPLEMENTED)

 context.set_details('Method not implemented!’)

 raise NotImplementedError('Method not implemented!')

CS302 – Spring 2025 Lec.10.1 - Slide 47

Take a break!

CS302 – Spring 2025 Lec.10.1 - Slide 48

gRPC Hello World Server

◆ Inherit and implement the abstract

class (GreeterServicer) generated

by protoc

proto3

hello_pb2.py hello_pb2_grpc.py

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 49

gRPC Hello World Server

◆ Inherit and implement the abstract

class (GreeterServicer) generated

by protoc

◆ Import

o the class defining the service

proto3

hello_pb2.py hello_pb2_grpc.py

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 50

gRPC Hello World Server

◆ Inherit and implement the abstract

class (GreeterServicer) generated

by protoc

◆ Import

o the class defining the service

o input and output definition

proto3

hello_pb2.py hello_pb2_grpc.py

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 51

gRPC Hello World Server

◆ Inherit and implement the abstract

class (GreeterServicer) generated

by protoc

◆ Import

o the class defining the service

o input and output definition

◆ Implement the abstract class and

connect it to the server

proto3

hello_pb2.py hello_pb2_grpc.py

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 52

gRPC Hello World Server

◆ Import the code generated by protoc

o The class that defines the service

o The input and output definition

greeter_server.py

from hello_pb2_grpc import (

 GreeterServicer

)

from hello_pb2 import (

 HelloRequest,

 HelloReply

)

CS302 – Spring 2025 Lec.10.1 - Slide 53

gRPC Hello World Server

◆ Implement the service

greeter_server.py

class GreeterServiceImpl(GreeterServicer):

def SayHello(self, request: HelloRequest, context):

response = HelloReply()

response.message = f"Hello, {request.name}!"

return response

CS302 – Spring 2025 Lec.10.1 - Slide 54

gRPC Hello World Server

◆ Create a gRPC server

proto3

hello_pb2.py hello_pb2_grpc.py

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 55

gRPC Hello World Server

◆ Create a gRPC server
o The server listens for requests while

the stub is running

o We saw in L8.2 and L9.2 this can be
done with spawning new threads

o This is called a thread pool in
Python

proto3

hello_pb2.py hello_pb2_grpc.py

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 56

gRPC Hello World Server

◆ Create a thread pool

greeter_server.py

from concurrent import futures

requests_thread_pool =

futures.ThreadPoolExecutor(max_workers=10)

CS302 – Spring 2025 Lec.10.1 - Slide 57

gRPC Hello World Server

◆ Create a thread pool

◆ Create a gRPC server with access to the thread pool

greeter_server.py

from concurrent import futures

requests_thread_pool =

futures.ThreadPoolExecutor(max_workers=10)

import grpc

Server implemented by gRPC

server = grpc.server(requests_thread_pool)

CS302 – Spring 2025 Lec.10.1 - Slide 58

gRPC Hello World Server

◆ gRPC server calls the service

we implemented
(GreeterServiceImpl)

◆ gRPC generates a function to

connect implemented services

to the server

proto3

hello_pb2.py hello_pb2_grpc.py

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 59

gRPC Hello World Server

◆ add_GreeterServicer_to_server

o is generated by gRPC in the same file as the abstract class (GreeterServicer)

o accepts any instance of a class that inherits and implements the abstract class

rest of hello_pb2_grpc.py

takes in servicer and registers it to server

related requests will now go to this servicer

def add_GreeterServicer_to_server(servicer, server):

...

CS302 – Spring 2025 Lec.10.1 - Slide 60

gRPC Hello World Server

◆ Make an instance of the implemented service

greeter_server.py

service_implementation = GreeterServiceImpl()

CS302 – Spring 2025 Lec.10.1 - Slide 61

gRPC Hello World Server

◆ Make an instance of the implemented service

◆ Add an instance of the service to the server

greeter_server.py

service_implementation = GreeterServiceImpl()

from hello_pb2_grpc import add_GreeterServicer_to_server

add_GreeterServicer_to_server(service_implementation, server)

CS302 – Spring 2025 Lec.10.1 - Slide 62

gRPC Hello World Server

◆ Start the gRPC server and listen for requests

o We listen on the local network for this example

greeter_server.py

Only use insecure port for testing

server.add_insecure_port('[::]:50051')

server.start()

print("Server started on port 50051...")

server.wait_for_termination()

CS302 – Spring 2025 Lec.10.1 - Slide 63

gRPC Hello World Client

◆ The client imports the same

classes and uses gRPC to

communicate

proto3

hello_pb2.py hello_pb2_grpc.py

hello_world_client.py

main
SayHello

client stub

CS302 – Spring 2025 Lec.10.1 - Slide 64

gRPC Hello World Client

◆ Import classes in client

o The client stub

o Input and output classes

hello_world_client.py

from hello_pb2_grpc import (

 GreeterStub,

)

from hello_pb2 import (

 HelloRequest,

 HelloReply

)

CS302 – Spring 2025 Lec.10.1 - Slide 65

gRPC Hello World Client

◆ The client needs a way to reach other services

◆ gRPC uses channels

o Channel: is an endpoint you can send and receive messages from

o Can be an IP address

hello_world_client.py

main
SayHello

client stub

SayHello

server stub
SayHello

gRPC server

greeter_server.py

CS302 – Spring 2025 Lec.10.1 - Slide 66

gRPC Hello World Client

◆ Create a channel (can be encrypted or insecure)

hello_world_client.py

Where to send requests to

channel = grpc.insecure_channel('localhost:50051’)

CS302 – Spring 2025 Lec.10.1 - Slide 67

gRPC Hello World Client

◆ Send a request by creating an instance of client stub

o The instance handles communication

hello_world_client.py

Where to send requests to

channel = grpc.insecure_channel('localhost:50051’)

stub = GreeterStub(channel)

CS302 – Spring 2025 Lec.10.1 - Slide 68

gRPC Hello World Client

◆ Send a request by creating an instance of client stub

o The instance handles communication

o The GreeterStub acts the same as the service we implemented
(GreeterServiceImpl)

hello_world_client.py

Where to send requests to

channel = grpc.insecure_channel('localhost:50051’)

stub = GreeterStub(channel)

request = HelloRequest(name="World")

response: HelloReply = stub.SayHello(request)

print("Client received: " + response.message)

CS302 – Spring 2025 Lec.10.1 - Slide 69

gRPC Hello World Client

◆ Send a request by creating an instance of client stub

o The instance handles communication

o The GreeterStub acts the same as the service we implemented
(GreeterServiceImpl)

hello_world_client.py

Where to send requests to

channel = grpc.insecure_channel('localhost:50051’)

stub = GreeterStub(channel)

request = HelloRequest(name="World")

response: HelloReply = stub.SayHello(request)

print("Client received: " + response.message)

CS302 – Spring 2025 Lec.10.1 - Slide 70

gRPC File & Hash Service

◆ Similar to Hello World

◆ Use gRPC to:

o Create hash service’s server stubs in C++

o Create file service’s client stubs in Python

file_service.py

(File service)

hash_file

.

.

.

sha client

stub

hash_service.cpp

(Hash service)

sha server

stub
.

.

sha

RPC server

CS302 – Spring 2025 Lec.10.1 - Slide 71

Summary

◆ RPC abstracts away the complexities of a remote call

o Client only needs to call the client stubs with its input

o Server only needs to implement the service and start the RPC server

◆ gRPC is an implementation of RPC

o Originally created by Google but is now open source

o Uses protobuf 3.0 or proto3

o Supports many languages including Python, C++, Golang, etc.

	Default Section
	Slide 1
	Slide 2: Where are We?
	Slide 3: Midterm Scores
	Slide 4: Midterm Exam Sheet Viewing Sessions
	Slide 5: Heads Up
	Slide 6: Recap: Microservices
	Slide 7: Recap: File & Hash Services
	Slide 8: Recap: File & Hash Services
	Slide 9: Recap: File & Hash Services
	Slide 10: Why IDL?
	Slide 11: RPC Overview
	Slide 12: RPC Overview
	Slide 13: Data Memory Representation
	Slide 14: Data Memory Representation
	Slide 15: Marshalling/Unmarshalling
	Slide 16: Marshalling/Unmarshalling
	Slide 17: Marshalling/Unmarshalling
	Slide 18: RPC
	Slide 19: RPC Function Call
	Slide 20: RPC Function Call
	Slide 21: RPC Function Call
	Slide 22: RPC Function Call
	Slide 23: RPC Function Call
	Slide 24: RPC Function Call
	Slide 25: RPC Running Function
	Slide 26: RPC Running Function
	Slide 27: RPC Running Function
	Slide 28: RPC Preparing Result
	Slide 29: RPC Preparing Result
	Slide 30: RPC Preparing Result
	Slide 31: RPC Processing Returned Result
	Slide 32: RPC Processing Returned Result
	Slide 33: RPC Processing Returned Result
	Slide 34: RPC Basics Summary
	Slide 35: RPC Implementation
	Slide 36: gRPC Hello World
	Slide 37: gRPC Hello World
	Slide 38: gRPC Hello World Protobuf
	Slide 39: gRPC Hello World Protobuf
	Slide 40: gRPC Hello World Protobuf
	Slide 41: gRPC Hello World Protobuf
	Slide 42: gRPC Hello World Protobuf
	Slide 43: gRPC Hello World Protobuf Compilation
	Slide 44: gRPC Hello World Protobuf Compilation
	Slide 45: gRPC Hello World Protobuf Compilation
	Slide 46: gRPC Hello World Protobuf Compilation
	Slide 47: Take a break!
	Slide 48: gRPC Hello World Server
	Slide 49: gRPC Hello World Server
	Slide 50: gRPC Hello World Server
	Slide 51: gRPC Hello World Server
	Slide 52: gRPC Hello World Server
	Slide 53: gRPC Hello World Server
	Slide 54: gRPC Hello World Server
	Slide 55: gRPC Hello World Server
	Slide 56: gRPC Hello World Server
	Slide 57: gRPC Hello World Server
	Slide 58: gRPC Hello World Server
	Slide 59: gRPC Hello World Server
	Slide 60: gRPC Hello World Server
	Slide 61: gRPC Hello World Server
	Slide 62: gRPC Hello World Server
	Slide 63: gRPC Hello World Client
	Slide 64: gRPC Hello World Client
	Slide 65: gRPC Hello World Client
	Slide 66: gRPC Hello World Client
	Slide 67: gRPC Hello World Client
	Slide 68: gRPC Hello World Client
	Slide 69: gRPC Hello World Client
	Slide 70: gRPC File & Hash Service
	Slide 71: Summary

