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Where are we?

19.Feb ¢ Scaling Trends
20.Feb o Single processor performance

05.Mar o .
12 Mar o Power limitations

19 Mar o Future: Scaling up & out
26.Mar
02.Apr

09 Apr ¢ Thursday (29th May) is a holiday

16.Apr
22.Apr_|23.Apr ¢ This Friday

0.Apr ]
07.May o Final Exam

14.May o Covers all course material excluding this

21 May lecture
28.May [29.May
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Review: What We've Covered So Far

¢ Making use of hardware units — parallelism

¢ Example mechanisms:
o Intel SSE/AVX — for SIMD programming

o Language frameworks — OpenMP

¢ Three critical principles of parallel computing
o Finding enough parallelism

o Work division and balance
o Communication and synchronization
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Hardware Supporting Parallelism

¢ Cache coherence and memory models
o Communicating data in shared memory

¢ Synchronization & TM
o Synchronization and data access control

¢ Multithreading and GPUs

o Specifically designed for parallel execution
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In this Lecture

¢ Why parallel hardware exists in the first place...
o Moore’s Law
o Dennard Scaling and its demise
o Increasing compute without drawing too much power

¢ And, where the field is going in the future...
o Programming/orchestrating many multiprocessors
o Datacenters
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Introduction: What is a Transistor?

¢ For our purposes, it works like a switch
o Either on — current flowing
o Or off — no current

¢ The gate controls whether it is on or off
o Applying a voltage at the input, turns transistor on
o Otherwise, it is off

¢ Simple, right?
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How Transistors Work

¢ How to get current to flow?
o Think of it like needing a “wire” between D & S
o Add a voltage on G, making an N-region
" This only occurs above a “threshold” Vi,
o Connects D&S, voltage difference makes current flow

Vdd

Body
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Moore’s Prediction Law

¢ Started with very few data points, but predicted over 50 years of IC

manufacturing

o Number of transistors doubles every 2 years

Log? of the Number of Components
Per Integrated Function
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Dennard Scaling Recipe

¢ Reduce channel length every 2 years by factor k ~ 0.7
o Increase frequency by k, reduce capacitance and voltage by «

o P = CV2f
o Power per transistor = (1/;, )(1/,z) k= 1/,

¢ The same transistors take up '/, . area
o Importantly, power density stays constant
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Dennard Scaling Implications

¢ Benefits of reducing voltage as we scale down
o More transistors to build better processors
o Faster switching frequency for better performance
o ... And, relatively constant power

¢ For approximately 40 years this trend continued
o Drove clock frequencies from KHz to ~3GHz
o Everyone’s code became faster nearly for free
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Oops! The 00s’ Power Problem

10,000,000

¢ In 2004, it all ended

o Plateaus in:

1,000,000

" Clock speed 00000
" Single chip power
" ILP extracted from programs 10000

o But Moore’s Law still
continued on (green)

1,000

100

¢ Real problem is power 0
o Limitations of CMOS

® Sub-threshold current
" Gate tunneling

0

1970
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Subthreshold Current: Breakdown of Dennard Scaling

¢ Recall:

o Below V4, the transistor should be “off”
" No channel for current to flow, supposedly

¢ As channel gets shorter, current starts to leak
o Due to “depletion regions” of charge that form around the N areas
o Exponential increase with temperature (runaway)

G G
S D S % D
P |
leak
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The Death of Dennard Scaling

¢ Leaky transistors ended Dennard scaling
o Reminder, power density no longer constant

¢ Intel ultra-perf. Tejas CPU targets (real!)

o GHz+ clock frequency, 180W
o 40-50 stage pipeline

¢ Actually released CPUs (Core)
o 2.8GHz, ~80W
o 10-12 stages
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Common Choice: Parallelism

¢ Idea #1: Use increasing transistor count to add more cores

o More transistors = larger cache, smarter OoO logic, smarter branch predictor,

etc.

o Simpler cores: each core is slower than original “fat” core (e.g., 25% slower)
o Butthere are nowtwo: 2 X 0.75=1.5
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(potential for speedup!)
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Examples We Saw: Multi-Core CPU

- ¢ Intel 4-core CPU (2006)

o Instead of a single fast core
o Higher throughput overall
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Examples We Saw: NVIDIA Tesla V100
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Moore’s Law Slowed Down: Not Cost-Effective Anymore

MOORE’S LAW SLOWS WHILE COSTS CONTINUE TO INCREASE
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Chip sizes Reaching Lithographic Limit

Die Size Increases Over Time in Server CPUs and GPUs
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From Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product.
ISCA 2021
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Solution: Chiplets — Multi-chip Module (MCM) Processors
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Group of Small Chips (Chiplets) != Large Chip

- - - - Chiplets allow
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Challenge of MCM Designs
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¢ Logically a single processor to the software
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ISA: Integration, Specialization, Approximation

¢ Integration
o Avoid going off-chip to reduce energy consumption

¢ Specialization
o Trade off generality for efficiency

¢ Approximation
o Trade off precision for efficiency
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Integration: Bring more On-Chip

¢ “l/O” (refers to pins) is expensive
o Need Digital — Analog converters to send data off-chip
" e.g., To access memory, disk, PCI-Express
o Every connection needs dedicated pins, limited supply

¢ With more transistors, bring external units on-chip
o Reduces the number of I/Os in system
o Frees up pins which have reached their physical limits
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Example (Integration): Where did the Northbridge go?

¢ CPUs had a separate chip called a “Northbridge”

o Between the CPU and memory devices

P

¢ Northbridge moved on-chip in ~2011
o All memory controllers now closer to CPU
o Lower latency to memory devices

P 4—>
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Specialization: Optimized Computing Units

¢ Build execution units for different applications
o Reformulate the hardware to reduce needed work
o Can improve energy efficiency for a class of applications

¢ Stream / Vector processing is a current example

o Exploit the fact that data appears in regular streams
o No need for many registers or complex control flow
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Example (Specialization): Google TPU

¢ Specialized ASIC for DNNs

o Massive matrix multiplication unit

¢ Even more specialized than GPUs
o Cheaper arithmetic (fixed-point, fp16)
o Better usage of on chip storage
o In Google servers today

¢ Allof I, S and A
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TPU’'s Computational Unit: Systolic Arrays

¢ Replace a pipeline structure with an array of processing elements
(PEs) that can be programmed to perform a common operation

¢ Data is propagated between PEs - Lots of data reuse
o Improves memory bandwidth and energy consumption

¢ Simple and regular design
¢ High concurrency
¢ Balanced computation and memory bandwidth
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Systolic arrays

¢ H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

INSTEAD OF:

{ MEMORY €™

R

100 ns

WE HAVE:
{ MEMORY l¢

100 ns
-’[ PE PEJPE J PE I PE IPE]—

THE SYSTOLIC ARRAY

5 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

£8302 - Spring 2025 Figure 1. Basic principle of a systolic system.

Memory: heart
PEs: cells

Memory pulses
data through
cells
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Systolic arrays in DNNs

Core operation: matrix-matrix multiplication
¢ Spatially distributed processing elements (PE)

¢ Connect PEs in a mesh

¢ Use mesh links to communicate weights and activations (DNN

parameters)
o Activations are transferred by horizontal links

o Weights are transferred by vertical links
o PEs receive partial sums from vertical links
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Pros & Cons of Systolic Arrays

v/ Data movement: between adjacent PEs
o Energy consumption for data movement — 0

o Short connections — Scalable design .
Unutilized

columns

X Low utilization )
o Matrix size # Array size w

Unutilized {
rows
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Example (Specialization): Apple M1 Chip

(1 Ko 101

S

¢ Apple 8-core CPU (2020)

o Big-little architecture
" Firestorm vs. Icestorm cores

o ARM [SA
o 5 nm fabrication process
o Integrated GPU, neural engine

¢ Allofl, Sand A
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Approximation: Less Work, Similar Results

¢ Emerging applications are statistical
o €e.g., filtering data, compression, machine learning

¢ Savings possible by returning worse output
o e.g., Doing 8-bit multiplication rather than 32-bit

¢ Tradeoff output quality for performance or energy
o Ongoing research — when can users see difference?

¢ Example: ML Inference can tolerate lower precision than training
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Example (Approximation): Numerical Encoding for DNNs

¢ High memory footprint, communication and computation requirements
o Increase in the importance of the arithmetic density

¢ Floating-point format (FP) ¢ Fixed-point format
o Mantissa + exponent o Mantissa
[TTT]
o Wide representable range o Narrow representable range
o 4 Wide representable % 4Narrow representable
= -
g « range . c_g <Erlge
© ©
g g

log,(magnitude) log,(magnitude)
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Example (Approximation): Numerical Encoding for DNNs

¢ Floating point (FP)

o Complex exponent management

Ey

M

Ex

Mx
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¢ Fixed point
o No exponent management

ALU Hardware

Rounding

4
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Approximation: Less Work, Similar Results

¢ Newer floating point format for ML workloads

FP32
TF32

FP16
BF16

¢ NVIDIA's Tensor cores support many format
o FP64, TF32, BF16, FP16, FP8, INT8
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Rise of Big Data

¢ Amount of data to process didn’t stop scaling!
o All of us are generating data every day
" e.g., your phone, your bus schedule, your shopping list

¢ Growth of data industry is still super-exponential
o By end of 2020, we generate 40 ZB (trillion GB) of data
o For perspective:
" 1 ZB corresponds to 8 million years of ultra-HD 8K video!

" Theoretically, we could have videotaped 352 million years of Earth’s
history and put it in a data storage facility!!
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Examples: Facebook w/ 2.7 billion active users

Number of monthly active Facebook users worldwide as of 3rd quarter 2020 (in
millions)

3 500
3 000
2500

2 000

of users in millions

1500

Number

1 000

500

Additional Information:

Worldwide; Facebook; Q3 2008 to Q3 2020
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Examples: YouTube! 500 hrs of video uploaded/min
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Simple Solution: Bigger Computers

¢ Big problems need larger computers

¢ Buy more processors, connect them with cables

and it should all work?
o Fortunately it's not that easy (or we'd all have no job!)
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Main Workload Classes

¢ These “big problems” are subdivided into:

1. Compute intensive or “embarrassingly parallel”
" Complex and intensive algorithms

2. Memory intensive
" The problem set size does not fit into a single node

3. High throughput

" Many unrelated problems executed concurrently

¢ High Performance Computing (HPC) generally looks like #1 and #2
¢ Modern Internet services look more like #3

CS302 - Spring 2025 Lec.14.1 - Slide 40



Characteristics of HPC Applications

¢ Often embarrassingly parallel, recursive
o e.d., simulating an aircraft wing

¢ Divide wing into a grid of small cells
o Compute forces and air speeds on each cell
o Simple to split over parallel processors

¢ Each cell can be divided into new grid
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General Approach

¢ Distribute the single big problem over processors to reduce
execution time

o Requires “parallelization” — you have experience now!
o A well parallelized program will use all the processors

¢ At the end of the parallel stage, all sub-processes communicate with
each other, and restart
o Similar to OMP fork/join!

CS302 - Spring 2025 Lec.14.1 - Slide 42



Scale-Up Machines Today

¢ Collection of many cores
o E.g., AMD Zen3 (2020)
o 64 cores (8 cores per chiplet)

¢ Or Intel Sapphire Rapids (2023)

o 56 cores (14 cores per chiplet)

o Still cache-coherent!
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Programming on Scale-Up System

¢ This course assumed a shared address space for threads

o All of your OMP threads communicated through one of:
" Memory locations with reads/writes
" Locks & Barriers

o Typical commercial scale-up machines for databases:

" CC-NUMA hardware, programmed with C and beyond
" Oracle/HPE/Huawei multi-socket x86/SPARC, TB memory
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In Contrast... Modern Internet Service

¢ Recall:

1. Compute Intensive or Embarrassingly Parallel
2. Memory Intensive
3. High Throughput

¢ Internet services (Facebook) look more like #3
o All of your messages, are small tasks
o ... but there are a huge number of them!
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Characteristics of Applications

¢ The whole Internet service appears like one app.
o Cannot be run on a single machine due to user count

¢ Request- or user-level parallelism (concurrency)
o Each task is small but they all run together
o Therefore, most designs prioritize high throughput
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Example Internet Scale Request

¢ E.g., POLYTwitter post “CS302... Awesome! ©”

o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers

@POLYEtudlant e:

C3302
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Example Internet Scale Request

¢ E.g., POLYTwitter post “CS302... Awesome! ©”

o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers
2. Store the text of your post on disks (~140B)

@POLYEtudlant e:

C3302
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Example Internet Scale Request

¢ E.g., POLYTwitter post “CS302... Awesome! ©”

o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers
2. Store the text of your post on disks (~140B)
3. Possibly notify your followers

@POLYEtudiant-e:
“CS302...

Awesome! ©”
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Scaling Up POLY Twitter?

¢ Now we have 50k users (say all of ETH joins too)
o Clearly won't fit onto one server

¢ Does it make sense to scale up our service?

o Buy super expensive HPE machines with 200 CPUs
" Use shared memory (up to 48TB!)

¢ No... At some point we still hit the limit
o 50k users at 10 tweets/day, we have 2000y of storage (in 48TB)

o But with 200 CPUs we have a concurrency problem

" |f all of our users want to log in at the same time
(e.g., when new holidays get announced)
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Alternatively: “Scale-Out”

¢ A scale-out system adds multiple independent nodes that each can

execute the desired service
o e.g., More servers or disks for POLY Twitter

¢ Each node in the system can be added/removed
o Overall service improves in aggregate

(L

)
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Main Differences from Scale-Up

¢ Scale-out systems better for throughput-oriented
o Any incoming task can go to any of the nodes

¢ Applications need to be engineered for Scale-out

o Non trivial task!

o Scale-out nodes are smaller and often shared
" Not immediately obvious on how to improve performance

o Scaling up a node (more cores) — more threads can run

¢ Scale-out handles node failure much better
o The service still works as long as a single node is online
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Example Scale-out: Datacenters

¢ 1.6km x 200m
¢ 107 cores

¢ 10"8 bytes
=350 MW

\

Scale-out node:
o 2 sockets
o 256 GB DRAM
o FLASH
o NIC
o Basic HW/OS for desktop PC
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Failure Tolerance in Software

¢ Scale-out machines fail extremely often
o Google: “If you have 1000 servers, one fails daily”

o We know Google has upwards of 1M machines...
® So that means 1k servers fail in a day

¢ Service needs to be always available

o E.g., 99.99% uptime means one hour per year
o Design the system specifically for redundancy
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Example: Data Replication

¢ In POLY Twitter, if a disk fails, all tweets are gone
o Instead of trying to build a super-reliable disk...
o Replicate the data across many disks

¢ Real world design (e.g., Google File System)

@POLYEtudlant e:
“CS302..
Awesome! © /

[(repllcated)]

(LU
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Example: Request Duplication

¢ If a server fails, your tweet may not be recorded
o Instead of trying to build a server that never crashes...

o Assume long latency requests went to failed servers
" Retry those requests on other servers

o Also real world (e.g., Amazon Dynamo key-value store)

@POLYEtudiant-e:
“CS302...
Awesome! ©”
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Programming on Scale-Out System

¢ Fundamentally, Scale-out systems are distributed

o Requests can touch many nodes during lifetime
" e.g., Frontend, web server, disk, and logging nodes

¢ Complex (fun) algorithms to orchestrate nodes

o Example: how to know if a node failed, or if it is compromised and pretending
to be offline?

¢ Programmers who know this field are valuable!
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Convergence of Scale Up/Out

¢ Most scale-out systems use commodity parts
o Highest cost efficiency with use of distributed software

¢ But, problem sizes in datacenters are growing

o Starting to resemble “Memory Intensive” applications,
#2 on our list that was more HPC-like

o Want one node to access memory from other nodes

¢ Scale out the processors, scale up the memory?
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Example: Use of Infiniband Network Gear

¢ High bandwidth IB networks normally for scale-up
o Fine-grain and frequent communication

¢ |IB making inroads into scale-out datacenters

o Allows nodes to directly access remote memory
(RDMA) as if it was their own

¢ Brings back fault tolerance challenges

o If local node fails, both program and data both lost
o But if remote node fails... Other programs’ data lost
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Summary

¢ Why parallel hardware exists
o Moore’s Law let designers scale up their chips
o Eventually, Dennard scaling ended due to power
o Alternative approaches: parallelism, ISA

¢ Multiple node systems
o Scale-up — adding more functionality to single node
o Scale-out — replicating nodes to add capability
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REMINDER: Final Exam This Week!

¢ Material from all lectures (but this one) may be on exam
¢ The sample exam is released on Moodle
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