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Where are we?

u Scaling Trends
o Single processor performance
o Power limitations
o Future: Scaling up & out

u Thursday (29th May) is a holiday

u This Friday
o Final Exam
o Covers all course material excluding this 

lecture
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Review: What We’ve Covered So Far

u Making use of hardware units → parallelism

u Example mechanisms:
o Intel SSE/AVX → for SIMD programming
o Language frameworks → OpenMP

u Three critical principles of parallel computing
o Finding enough parallelism
o Work division and balance
o Communication and synchronization
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Hardware Supporting Parallelism

u Cache coherence and memory models
o Communicating data in shared memory

u Synchronization & TM
o Synchronization and data access control

u Multithreading and GPUs
o Specifically designed for parallel execution
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In this Lecture

u Why parallel hardware exists in the first place…
o Moore’s Law
o Dennard Scaling and its demise
o Increasing compute without drawing too much power

u And, where the field is going in the future…
o Programming/orchestrating many multiprocessors
o Datacenters
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Introduction: What is a Transistor?

u For our purposes, it works like a switch
o Either on → current flowing
o Or off → no current

u The gate controls whether it is on or off
o Applying a voltage at the input, turns transistor on
o Otherwise, it is off

u Simple, right? 
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How Transistors Work

u How to get current to flow?
o Think of it like needing a “wire” between D & S
o Add a voltage on G, making an N-region

§This only occurs above a “threshold” Vth
o Connects D&S, voltage difference makes current flow
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Moore’s Prediction Law

u Started with very few data points, but predicted over 50 years of IC 
manufacturing
o Number of transistors doubles every 2 years

Original Graph
… Over 50 years
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Dennard Scaling Recipe

u Reduce channel length every 2 years by factor 𝜅	~	0.7
o Increase frequency by 𝜅, reduce capacitance and voltage by 𝜅
o P ≃ 𝐶𝑉!𝑓
o Power per transistor ≃ ( ⁄" # )( ⁄" #!) k = ⁄" #! 

u The same transistors take up ⁄! "! area
o Importantly, power density stays constant
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Dennard Scaling Implications

u Benefits of reducing voltage as we scale down
o More transistors to build better processors
o Faster switching frequency for better performance
o … And, relatively constant power

u For approximately 40 years this trend continued
o Drove clock frequencies from KHz to ~3GHz
o Everyone’s code became faster nearly for free
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Oops! The 00s’ Power Problem

u In 2004, it all ended
o Plateaus in:

§ Clock speed
§ Single chip power
§ ILP extracted from programs

o But Moore’s Law still 
continued on (green)

u Real problem is power
o Limitations of CMOS

§ Sub-threshold current
§ Gate tunneling
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Subthreshold Current: Breakdown of Dennard Scaling

u Recall:
o Below Vth the transistor should be “off”

§ No channel for current to flow, supposedly

u As channel gets shorter, current starts to leak
o Due to “depletion regions” of charge that form around the N areas
o Exponential increase with temperature (runaway)
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The Death of Dennard Scaling

u Leaky transistors ended Dennard scaling
o Reminder, power density no longer constant

u Intel ultra-perf. Tejas CPU targets (real!)
o 7GHz+ clock frequency, 180W
o 40-50 stage pipeline

u Actually released CPUs (Core)
o 2.8GHz, ~80W
o 10-12 stages
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Common Choice: Parallelism 

u Idea #1: Use increasing transistor count to add more cores
o More transistors = larger cache, smarter OoO logic, smarter branch predictor, 

etc.
o Simpler cores: each core is slower than original “fat” core (e.g., 25% slower)
o But there are now two:  2 × 0.75 = 1.5        (potential for speedup!) 
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Examples We Saw: Multi-Core CPU 

u Intel 4-core CPU (2006)
o Instead of a single fast core
o Higher throughput overall
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Examples We Saw: NVIDIA Tesla V100

> 5000 CUDA cores (ALUs)!

…
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Moore’s Law Slowed Down: Not Cost-Effective Anymore

Picture 
from AMD 
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Chip sizes Reaching Lithographic Limit

From Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product. 
ISCA 2021
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Solution: Chiplets – Multi-chip Module (MCM) Processors

From Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product. 
ISCA 2021
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Group of Small Chips (Chiplets) != Large Chip

From Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product. 
ISCA 2021

Chiplets allow 
processors to scale 
even with slowing 
Moore’s law

More cores à 
More Chiplets
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Challenge of MCM Designs

u Logically a single processor to the software
u But, physically distributed resources à non-uniform latencies
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ISA: Integration, Specialization, Approximation

u Integration
o Avoid going off-chip to reduce energy consumption

u Specialization
o Trade off generality for efficiency

u Approximation
o Trade off precision for efficiency
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Integration: Bring more On-Chip

u “I/O” (refers to pins) is expensive
o Need Digital → Analog converters to send data off-chip

§e.g., To access memory, disk, PCI-Express
o Every connection needs dedicated pins, limited supply

u With more transistors, bring external units on-chip
o Reduces the number of I/Os in system
o Frees up pins which have reached their physical limits
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Example (Integration): Where did the Northbridge go?

u CPUs had a separate chip called a “Northbridge”
o Between the CPU and memory devices

u Northbridge moved on-chip in ~2011
o All memory controllers now closer to CPU
o Lower latency to memory devices
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Specialization: Optimized Computing Units

u Build execution units for different applications
o Reformulate the hardware to reduce needed work
o Can improve energy efficiency for a class of applications

u Stream / Vector processing is a current example
o Exploit the fact that data appears in regular streams
o No need for many registers or complex control flow
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Example (Specialization): Google TPU

u Specialized ASIC for DNNs
o Massive matrix multiplication unit

u Even more specialized than GPUs
o Cheaper arithmetic (fixed-point, fp16)
o Better usage of on chip storage
o In Google servers today

u All of I, S and A 
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TPU’s Computational Unit: Systolic Arrays

u Replace a pipeline structure with an array of processing elements 
(PEs) that can be programmed to perform a common operation

u Data is propagated between PEs à Lots of data reuse
o Improves memory bandwidth and energy consumption

u Simple and regular design
u High concurrency
u Balanced computation and memory bandwidth
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Systolic arrays

u H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

28

Memory: heart
PEs: cells

Memory pulses 
data through 
cells
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Systolic arrays in DNNs

Core operation: matrix-matrix multiplication
u Spatially distributed processing elements (PE)

u Connect PEs in a mesh

u Use mesh links to communicate weights and activations (DNN 
parameters)
o Activations are transferred by horizontal links
o Weights are transferred by vertical links
o PEs receive partial sums from vertical links

𝑃𝐸 𝑃𝐸

𝑃𝐸 𝑃𝐸
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Pros & Cons of Systolic Arrays

u    Data movement: between adjacent PEs
o Energy consumption for data movement → 0
o Short connections → Scalable design

u    Low utilization
o Matrix size ≠ Array size

𝑊

Unutilized 
columns

𝑊

Unutilized
rows
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Example (Specialization): Apple M1 Chip

u Apple 8-core CPU (2020)
o Big-little architecture

§ Firestorm vs. Icestorm cores
o ARM ISA
o 5 nm fabrication process
o Integrated GPU, neural engine

u All of I, S and A 
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Approximation: Less Work, Similar Results

u Emerging applications are statistical
o e.g., filtering data, compression, machine learning

u Savings possible by returning worse output
o e.g., Doing 8-bit multiplication rather than 32-bit

u Tradeoff output quality for performance or energy
o Ongoing research → when can users see difference?

u Example: ML Inference can tolerate lower precision than training
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Example (Approximation): Numerical Encoding for DNNs

u High memory footprint, communication and computation requirements
o Increase in the importance of the arithmetic density

u Floating-point format (FP)
o Mantissa + exponent

o Wide representable range

u Fixed-point format
o Mantissa

o Narrow representable range
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Example (Approximation): Numerical Encoding for DNNs

u Floating point (FP)
o Complex exponent management

u Fixed point
o No exponent management
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Approximation: Less Work, Similar Results

u Newer floating point format for ML workloads

u NVIDIA’s Tensor cores support many format 
o FP64, TF32, BF16, FP16, FP8, INT8
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Rise of Big Data

u Amount of data to process didn’t stop scaling!
o All of us are generating data every day

§e.g., your phone, your bus schedule, your shopping list

u Growth of data industry is still super-exponential
o By end of 2020, we generate 40 ZB (trillion GB) of data
o For perspective:

§1 ZB corresponds to 8 million years of ultra-HD 8K video!
§Theoretically, we could have videotaped 352 million years of Earth’s 

history and put it in a data storage facility!!
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Examples: Facebook w/ 2.7 billion active users
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Examples: YouTube! 500 hrs of video uploaded/min



CS302 – Spring 2025 Lec.14.1 -  Slide 39

Simple Solution: Bigger Computers

u Big problems need larger computers

u Buy more processors, connect them with cables
and it should all work?
o Fortunately it’s not that easy (or we’d all have no job!)
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Main Workload Classes

u These “big problems” are subdivided into:
1. Compute intensive or “embarrassingly parallel”

§ Complex and intensive algorithms
2. Memory intensive

§ The problem set size does not fit into a single node
3. High throughput

§ Many unrelated problems executed concurrently

u High Performance Computing (HPC) generally looks like #1 and #2
u Modern Internet services look more like #3
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Characteristics of HPC Applications

u Often embarrassingly parallel, recursive
o e.g., simulating an aircraft wing

u Divide wing into a grid of small cells
o Compute forces and air speeds on each cell
o Simple to split over parallel processors

u Each cell can be divided into new grid
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General Approach

u Distribute the single big problem over processors to reduce 
execution time 
o Requires “parallelization” → you have experience now!
o A well parallelized program will use all the processors

u At the end of the parallel stage, all sub-processes communicate with 
each other, and restart
o Similar to OMP fork/join!
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Scale-Up Machines Today 

u Collection of many cores
o E.g., AMD Zen3 (2020)
o 64 cores (8 cores per chiplet)

u Or Intel Sapphire Rapids (2023)
o 56 cores (14 cores per chiplet)

o Still cache-coherent!
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Programming on Scale-Up System

u This course assumed a shared address space for threads
o All of your OMP threads communicated through one of:

§ Memory locations with reads/writes
§ Locks & Barriers

o Typical commercial scale-up machines for databases:
§ CC-NUMA hardware, programmed with C and beyond
§ Oracle/HPE/Huawei multi-socket x86/SPARC, TB memory
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In Contrast… Modern Internet Service

u Recall:
1. Compute Intensive or Embarrassingly Parallel
2. Memory Intensive
3. High Throughput

u Internet services (Facebook) look more like #3
o All of your messages, are small tasks
o … but there are a huge number of them!
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Characteristics of Applications

u The whole Internet service appears like one app.
o Cannot be run on a single machine due to user count

u Request- or user-level parallelism (concurrency)
o Each task is small but they all run together
o Therefore, most designs prioritize high throughput



CS302 – Spring 2025 Lec.14.1 -  Slide 47

Example Internet Scale Request

u E.g., POLYTwitter post “CS302… Awesome! J”
o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers

@POLYÉtudiant-e:
“CS302… 

Awesome! J”
1
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Example Internet Scale Request

u E.g., POLYTwitter post “CS302… Awesome! J”
o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers
2. Store the text of your post on disks (~140B)

@POLYÉtudiant-e:
“CS302… 

Awesome! J”
1

2
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Example Internet Scale Request

u E.g., POLYTwitter post “CS302… Awesome! J”
o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers
2. Store the text of your post on disks (~140B)
3. Possibly notify your followers

@POLYÉtudiant-e:
“CS302… 

Awesome! J”
1

2

3
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Scaling Up POLYTwitter?

u Now we have 50k users (say all of ETH joins too)
o Clearly won’t fit onto one server

u Does it make sense to scale up our service?
o Buy super expensive HPE machines with 200 CPUs

§ Use shared memory (up to 48TB!)

u No… At some point we still hit the limit
o 50k users at 10 tweets/day, we have 2000y of storage (in 48TB)
o But with 200 CPUs we have a concurrency problem

§ If all of our users want to log in at the same time
(e.g., when new holidays get announced)
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Alternatively: “Scale-Out”

u A scale-out system adds multiple independent nodes that each can 
execute the desired service
o e.g., More servers or disks for POLYTwitter

u Each node in the system can be added/removed
o Overall service improves in aggregate
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Main Differences from Scale-Up

u Scale-out systems better for throughput-oriented
o Any incoming task can go to any of the nodes

u Applications need to be engineered for Scale-out
o Non trivial task!
o Scale-out nodes are smaller and often shared

§ Not immediately obvious on how to improve performance
o Scaling up a node (more cores) → more threads can run

u Scale-out handles node failure much better
o The service still works as long as a single node is online
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Example Scale-out: Datacenters

u 1.6km x 200m
u 107 cores
u 1018 bytes
è350 MW

Scale-out node:
o 2 sockets
o 256 GB DRAM
o FLASH
o NIC
o Basic HW/OS for desktop PC

350MW
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Failure Tolerance in Software

u Scale-out machines fail extremely often
o Google: “If you have 1000 servers, one fails daily”
o We know Google has upwards of 1M machines…

§ So that means 1k servers fail in a day

u Service needs to be always available
o E.g., 99.99% uptime means one hour per year
o Design the system specifically for redundancy
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Example: Data Replication

u In POLYTwitter, if a disk fails, all tweets are gone
o Instead of trying to build a super-reliable disk…
o Replicate the data across many disks

u Real world design (e.g., Google File System)

@POLYÉtudiant-e:
“CS302… 

Awesome! J”
1

2 
(replicated)
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Example: Request Duplication

u If a server fails, your tweet may not be recorded
o Instead of trying to build a server that never crashes...
o Assume long latency requests went to failed servers

§ Retry those requests on other servers
o Also real world (e.g., Amazon Dynamo key-value store)

@POLYÉtudiant-e:
“CS302… 

Awesome! J” 1
……

1 
(retry)
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Programming on Scale-Out System

u Fundamentally, Scale-out systems are distributed
o Requests can touch many nodes during lifetime

§ e.g., Frontend, web server, disk, and logging nodes

u Complex (fun) algorithms to orchestrate nodes
o Example: how to know if a node failed, or if it is compromised and pretending 

to be offline?

u Programmers who know this field are valuable!
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Convergence of Scale Up/Out

u Most scale-out systems use commodity parts
o Highest cost efficiency with use of distributed software

u But, problem sizes in datacenters are growing
o Starting to resemble “Memory Intensive” applications,

#2 on our list that was more HPC-like
o Want one node to access memory from other nodes

u Scale out the processors, scale up the memory?
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Example: Use of Infiniband Network Gear

u High bandwidth IB networks normally for scale-up
o Fine-grain and frequent communication

u IB making inroads into scale-out datacenters
o Allows nodes to directly access remote memory

(RDMA) as if it was their own

u Brings back fault tolerance challenges
o If local node fails, both program and data both lost
o But if remote node fails… Other programs’ data lost
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Summary

u Why parallel hardware exists
o Moore’s Law let designers scale up their chips
o Eventually, Dennard scaling ended due to power
o Alternative approaches: parallelism, ISA

u Multiple node systems
o Scale-up → adding more functionality to single node
o Scale-out → replicating nodes to add capability
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u Material from all lectures (but this one) may be on exam
u The sample exam is released on Moodle

REMINDER: Final Exam This Week!


