
CS302 – Spring 2025 Lec.14.1 - Slide 1

CS302

Scaling Trends

Spring 2025
Babak Falsafi, Arkaprava Basu
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi and Moshovos
from EPFL/CMU and Toronto
Copyright 2025

Inside Google’s Datacenter

CS302 – Spring 2025 Lec.14.1 - Slide 2

Where are we?

u Scaling Trends
o Single processor performance
o Power limitations
o Future: Scaling up & out

u Thursday (29th May) is a holiday

u This Friday
o Final Exam
o Covers all course material excluding this

lecture

M T W T F
17.Feb 18.Feb 19.Feb 20.Feb 21.Feb
24.Feb 25.Feb 26.Feb 27.Feb 28.Feb
03.Mar 04.Mar 05.Mar 06.Mar 07.Mar
10.Mar 11.Mar 12.Mar 13.Mar 14.Mar
17.Mar 18.Mar 19.Mar 20.Mar 21.Mar
24.Mar 25.Mar 26.Mar 27.Mar 28.Mar
31.Mar 01.Apr 02.Apr 03.Apr 04.Apr
07.Apr 08.Apr 09.Apr 10.Apr 11.Apr
14.Apr 15.Apr 16.Apr 17.Apr 18.Apr
21.Apr 22.Apr 23.Apr 24.Apr 25.Apr
28.Apr 29.Apr 30.Apr 01.May 02.May
05.May 06.May 07.May 08.May 09.May
12.May 13.May 14.May 15.May 16.May
19.May 20.May 21.May 22.May 23.May
26.May 27.May 28.May 29.May 30.May

CS302 – Spring 2025 Lec.14.1 - Slide 3

Review: What We’ve Covered So Far

u Making use of hardware units → parallelism

u Example mechanisms:
o Intel SSE/AVX → for SIMD programming
o Language frameworks → OpenMP

u Three critical principles of parallel computing
o Finding enough parallelism
o Work division and balance
o Communication and synchronization

CS302 – Spring 2025 Lec.14.1 - Slide 4

Hardware Supporting Parallelism

u Cache coherence and memory models
o Communicating data in shared memory

u Synchronization & TM
o Synchronization and data access control

u Multithreading and GPUs
o Specifically designed for parallel execution

CS302 – Spring 2025 Lec.14.1 - Slide 5

In this Lecture

u Why parallel hardware exists in the first place…
o Moore’s Law
o Dennard Scaling and its demise
o Increasing compute without drawing too much power

u And, where the field is going in the future…
o Programming/orchestrating many multiprocessors
o Datacenters

CS302 – Spring 2025 Lec.14.1 - Slide 6

Introduction: What is a Transistor?

u For our purposes, it works like a switch
o Either on → current flowing
o Or off → no current

u The gate controls whether it is on or off
o Applying a voltage at the input, turns transistor on
o Otherwise, it is off

u Simple, right?

CS302 – Spring 2025 Lec.14.1 - Slide 7

How Transistors Work

u How to get current to flow?
o Think of it like needing a “wire” between D & S
o Add a voltage on G, making an N-region

§This only occurs above a “threshold” Vth
o Connects D&S, voltage difference makes current flow

P
N N

GS D

Body

+
-

Vgs

Ids

+
-

Vdd

CS302 – Spring 2025 Lec.14.1 - Slide 8

Moore’s Prediction Law

u Started with very few data points, but predicted over 50 years of IC
manufacturing
o Number of transistors doubles every 2 years

Original Graph
… Over 50 years

CS302 – Spring 2025 Lec.14.1 - Slide 9

Dennard Scaling Recipe

u Reduce channel length every 2 years by factor 𝜅	~	0.7
o Increase frequency by 𝜅, reduce capacitance and voltage by 𝜅
o P ≃ 𝐶𝑉!𝑓
o Power per transistor ≃ (⁄" #)(⁄" #!) k = ⁄" #!

u The same transistors take up ⁄! "! area
o Importantly, power density stays constant

CS302 – Spring 2025 Lec.14.1 - Slide 10

Dennard Scaling Implications

u Benefits of reducing voltage as we scale down
o More transistors to build better processors
o Faster switching frequency for better performance
o … And, relatively constant power

u For approximately 40 years this trend continued
o Drove clock frequencies from KHz to ~3GHz
o Everyone’s code became faster nearly for free

CS302 – Spring 2025 Lec.14.1 - Slide 11

Oops! The 00s’ Power Problem

u In 2004, it all ended
o Plateaus in:

§ Clock speed
§ Single chip power
§ ILP extracted from programs

o But Moore’s Law still
continued on (green)

u Real problem is power
o Limitations of CMOS

§ Sub-threshold current
§ Gate tunneling

CS302 – Spring 2025 Lec.14.1 - Slide 12

P
N NN

G
S D

NN N

G

Body

NN

Subthreshold Current: Breakdown of Dennard Scaling

u Recall:
o Below Vth the transistor should be “off”

§ No channel for current to flow, supposedly

u As channel gets shorter, current starts to leak
o Due to “depletion regions” of charge that form around the N areas
o Exponential increase with temperature (runaway)

S D

Ileak

CS302 – Spring 2025 Lec.14.1 - Slide 13

The Death of Dennard Scaling

u Leaky transistors ended Dennard scaling
o Reminder, power density no longer constant

u Intel ultra-perf. Tejas CPU targets (real!)
o 7GHz+ clock frequency, 180W
o 40-50 stage pipeline

u Actually released CPUs (Core)
o 2.8GHz, ~80W
o 10-12 stages

CS302 – Spring 2025 Lec.14.1 - Slide 14

Common Choice: Parallelism

u Idea #1: Use increasing transistor count to add more cores
o More transistors = larger cache, smarter OoO logic, smarter branch predictor,

etc.
o Simpler cores: each core is slower than original “fat” core (e.g., 25% slower)
o But there are now two: 2 × 0.75 = 1.5 (potential for speedup!)

CS302 – Spring 2025 Lec.14.1 - Slide 15

Examples We Saw: Multi-Core CPU

u Intel 4-core CPU (2006)
o Instead of a single fast core
o Higher throughput overall

CS302 – Spring 2025 Lec.14.1 - Slide 16

Examples We Saw: NVIDIA Tesla V100

> 5000 CUDA cores (ALUs)!

…

CS302 – Spring 2025 Lec.14.1 - Slide 17

Moore’s Law Slowed Down: Not Cost-Effective Anymore

Picture
from AMD

CS302 – Spring 2025 Lec.14.1 - Slide 18

Chip sizes Reaching Lithographic Limit

From Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product.
ISCA 2021

CS302 – Spring 2025 Lec.14.1 - Slide 19

Solution: Chiplets – Multi-chip Module (MCM) Processors

From Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product.
ISCA 2021

CS302 – Spring 2025 Lec.14.1 - Slide 20

Group of Small Chips (Chiplets) != Large Chip

From Pioneering Chiplet Technology and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial Product.
ISCA 2021

Chiplets allow
processors to scale
even with slowing
Moore’s law

More cores à
More Chiplets

CS302 – Spring 2025 Lec.14.1 - Slide 21

Challenge of MCM Designs

u Logically a single processor to the software
u But, physically distributed resources à non-uniform latencies

CS302 – Spring 2025 Lec.14.1 - Slide 22

ISA: Integration, Specialization, Approximation

u Integration
o Avoid going off-chip to reduce energy consumption

u Specialization
o Trade off generality for efficiency

u Approximation
o Trade off precision for efficiency

CS302 – Spring 2025 Lec.14.1 - Slide 23

Integration: Bring more On-Chip

u “I/O” (refers to pins) is expensive
o Need Digital → Analog converters to send data off-chip

§e.g., To access memory, disk, PCI-Express
o Every connection needs dedicated pins, limited supply

u With more transistors, bring external units on-chip
o Reduces the number of I/Os in system
o Frees up pins which have reached their physical limits

CS302 – Spring 2025 Lec.14.1 - Slide 24

Example (Integration): Where did the Northbridge go?

u CPUs had a separate chip called a “Northbridge”
o Between the CPU and memory devices

u Northbridge moved on-chip in ~2011
o All memory controllers now closer to CPU
o Lower latency to memory devices

NB.P

D
R

AM

M
CP

D
R

AM

CS302 – Spring 2025 Lec.14.1 - Slide 25

Specialization: Optimized Computing Units

u Build execution units for different applications
o Reformulate the hardware to reduce needed work
o Can improve energy efficiency for a class of applications

u Stream / Vector processing is a current example
o Exploit the fact that data appears in regular streams
o No need for many registers or complex control flow

CS302 – Spring 2025 Lec.14.1 - Slide 26

Example (Specialization): Google TPU

u Specialized ASIC for DNNs
o Massive matrix multiplication unit

u Even more specialized than GPUs
o Cheaper arithmetic (fixed-point, fp16)
o Better usage of on chip storage
o In Google servers today

u All of I, S and A

CS302 – Spring 2025 Lec.14.1 - Slide 27

TPU’s Computational Unit: Systolic Arrays

u Replace a pipeline structure with an array of processing elements
(PEs) that can be programmed to perform a common operation

u Data is propagated between PEs à Lots of data reuse
o Improves memory bandwidth and energy consumption

u Simple and regular design
u High concurrency
u Balanced computation and memory bandwidth

CS302 – Spring 2025 Lec.14.1 - Slide 28

Systolic arrays

u H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

28

Memory: heart
PEs: cells

Memory pulses
data through
cells

CS302 – Spring 2025 Lec.14.1 - Slide 29

Systolic arrays in DNNs

Core operation: matrix-matrix multiplication
u Spatially distributed processing elements (PE)

u Connect PEs in a mesh

u Use mesh links to communicate weights and activations (DNN
parameters)
o Activations are transferred by horizontal links
o Weights are transferred by vertical links
o PEs receive partial sums from vertical links

𝑃𝐸 𝑃𝐸

𝑃𝐸 𝑃𝐸

CS302 – Spring 2025 Lec.14.1 - Slide 30

Pros & Cons of Systolic Arrays

u Data movement: between adjacent PEs
o Energy consumption for data movement → 0
o Short connections → Scalable design

u Low utilization
o Matrix size ≠ Array size

𝑊

Unutilized
columns

𝑊

Unutilized
rows

CS302 – Spring 2025 Lec.14.1 - Slide 31

Example (Specialization): Apple M1 Chip

u Apple 8-core CPU (2020)
o Big-little architecture

§ Firestorm vs. Icestorm cores
o ARM ISA
o 5 nm fabrication process
o Integrated GPU, neural engine

u All of I, S and A

CS302 – Spring 2025 Lec.14.1 - Slide 32

Approximation: Less Work, Similar Results

u Emerging applications are statistical
o e.g., filtering data, compression, machine learning

u Savings possible by returning worse output
o e.g., Doing 8-bit multiplication rather than 32-bit

u Tradeoff output quality for performance or energy
o Ongoing research → when can users see difference?

u Example: ML Inference can tolerate lower precision than training

CS302 – Spring 2025 Lec.14.1 - Slide 33

Example (Approximation): Numerical Encoding for DNNs

u High memory footprint, communication and computation requirements
o Increase in the importance of the arithmetic density

u Floating-point format (FP)
o Mantissa + exponent

o Wide representable range

u Fixed-point format
o Mantissa

o Narrow representable range

Wide representable
 range

log2(magnitude)

Pc
t.

of
 v

al
ue

s

log2(magnitude)
Pc

t.
of

 v
al

ue
s Narrow representable

 range

CS302 – Spring 2025 Lec.14.1 - Slide 34

Example (Approximation): Numerical Encoding for DNNs

u Floating point (FP)
o Complex exponent management

u Fixed point
o No exponent management

ALU_E
ALU_M

Control

Ex MxEy My

>>

>>

Rounding

Ez Mz

xy

ALU

z

Rounding

ALU Hardware

CS302 – Spring 2025 Lec.14.1 - Slide 35

Approximation: Less Work, Similar Results

u Newer floating point format for ML workloads

u NVIDIA’s Tensor cores support many format
o FP64, TF32, BF16, FP16, FP8, INT8

CS302 – Spring 2025 Lec.14.1 - Slide 36

Rise of Big Data

u Amount of data to process didn’t stop scaling!
o All of us are generating data every day

§e.g., your phone, your bus schedule, your shopping list

u Growth of data industry is still super-exponential
o By end of 2020, we generate 40 ZB (trillion GB) of data
o For perspective:

§1 ZB corresponds to 8 million years of ultra-HD 8K video!
§Theoretically, we could have videotaped 352 million years of Earth’s

history and put it in a data storage facility!!

CS302 – Spring 2025 Lec.14.1 - Slide 37

Examples: Facebook w/ 2.7 billion active users

CS302 – Spring 2025 Lec.14.1 - Slide 38

Examples: YouTube! 500 hrs of video uploaded/min

CS302 – Spring 2025 Lec.14.1 - Slide 39

Simple Solution: Bigger Computers

u Big problems need larger computers

u Buy more processors, connect them with cables
and it should all work?
o Fortunately it’s not that easy (or we’d all have no job!)

CS302 – Spring 2025 Lec.14.1 - Slide 40

Main Workload Classes

u These “big problems” are subdivided into:
1. Compute intensive or “embarrassingly parallel”

§ Complex and intensive algorithms
2. Memory intensive

§ The problem set size does not fit into a single node
3. High throughput

§ Many unrelated problems executed concurrently

u High Performance Computing (HPC) generally looks like #1 and #2
u Modern Internet services look more like #3

CS302 – Spring 2025 Lec.14.1 - Slide 41

Characteristics of HPC Applications

u Often embarrassingly parallel, recursive
o e.g., simulating an aircraft wing

u Divide wing into a grid of small cells
o Compute forces and air speeds on each cell
o Simple to split over parallel processors

u Each cell can be divided into new grid

CS302 – Spring 2025 Lec.14.1 - Slide 42

General Approach

u Distribute the single big problem over processors to reduce
execution time
o Requires “parallelization” → you have experience now!
o A well parallelized program will use all the processors

u At the end of the parallel stage, all sub-processes communicate with
each other, and restart
o Similar to OMP fork/join!

CS302 – Spring 2025 Lec.14.1 - Slide 43

Scale-Up Machines Today

u Collection of many cores
o E.g., AMD Zen3 (2020)
o 64 cores (8 cores per chiplet)

u Or Intel Sapphire Rapids (2023)
o 56 cores (14 cores per chiplet)

o Still cache-coherent!

CS302 – Spring 2025 Lec.14.1 - Slide 44

Programming on Scale-Up System

u This course assumed a shared address space for threads
o All of your OMP threads communicated through one of:

§ Memory locations with reads/writes
§ Locks & Barriers

o Typical commercial scale-up machines for databases:
§ CC-NUMA hardware, programmed with C and beyond
§ Oracle/HPE/Huawei multi-socket x86/SPARC, TB memory

CS302 – Spring 2025 Lec.14.1 - Slide 45

In Contrast… Modern Internet Service

u Recall:
1. Compute Intensive or Embarrassingly Parallel
2. Memory Intensive
3. High Throughput

u Internet services (Facebook) look more like #3
o All of your messages, are small tasks
o … but there are a huge number of them!

CS302 – Spring 2025 Lec.14.1 - Slide 46

Characteristics of Applications

u The whole Internet service appears like one app.
o Cannot be run on a single machine due to user count

u Request- or user-level parallelism (concurrency)
o Each task is small but they all run together
o Therefore, most designs prioritize high throughput

CS302 – Spring 2025 Lec.14.1 - Slide 47

Example Internet Scale Request

u E.g., POLYTwitter post “CS302… Awesome! J”
o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers

@POLYÉtudiant-e:
“CS302…

Awesome! J”
1

CS302 – Spring 2025 Lec.14.1 - Slide 48

Example Internet Scale Request

u E.g., POLYTwitter post “CS302… Awesome! J”
o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers
2. Store the text of your post on disks (~140B)

@POLYÉtudiant-e:
“CS302…

Awesome! J”
1

2

CS302 – Spring 2025 Lec.14.1 - Slide 49

Example Internet Scale Request

u E.g., POLYTwitter post “CS302… Awesome! J”
o Each user post needs to do all of these things:
1. Connect to POLYTwitter servers
2. Store the text of your post on disks (~140B)
3. Possibly notify your followers

@POLYÉtudiant-e:
“CS302…

Awesome! J”
1

2

3

CS302 – Spring 2025 Lec.14.1 - Slide 50

Scaling Up POLYTwitter?

u Now we have 50k users (say all of ETH joins too)
o Clearly won’t fit onto one server

u Does it make sense to scale up our service?
o Buy super expensive HPE machines with 200 CPUs

§ Use shared memory (up to 48TB!)

u No… At some point we still hit the limit
o 50k users at 10 tweets/day, we have 2000y of storage (in 48TB)
o But with 200 CPUs we have a concurrency problem

§ If all of our users want to log in at the same time
(e.g., when new holidays get announced)

CS302 – Spring 2025 Lec.14.1 - Slide 51

Alternatively: “Scale-Out”

u A scale-out system adds multiple independent nodes that each can
execute the desired service
o e.g., More servers or disks for POLYTwitter

u Each node in the system can be added/removed
o Overall service improves in aggregate

CS302 – Spring 2025 Lec.14.1 - Slide 52

Main Differences from Scale-Up

u Scale-out systems better for throughput-oriented
o Any incoming task can go to any of the nodes

u Applications need to be engineered for Scale-out
o Non trivial task!
o Scale-out nodes are smaller and often shared

§ Not immediately obvious on how to improve performance
o Scaling up a node (more cores) → more threads can run

u Scale-out handles node failure much better
o The service still works as long as a single node is online

CS302 – Spring 2025 Lec.14.1 - Slide 53

Example Scale-out: Datacenters

u 1.6km x 200m
u 107 cores
u 1018 bytes
è350 MW

Scale-out node:
o 2 sockets
o 256 GB DRAM
o FLASH
o NIC
o Basic HW/OS for desktop PC

350MW

CS302 – Spring 2025 Lec.14.1 - Slide 54

Failure Tolerance in Software

u Scale-out machines fail extremely often
o Google: “If you have 1000 servers, one fails daily”
o We know Google has upwards of 1M machines…

§ So that means 1k servers fail in a day

u Service needs to be always available
o E.g., 99.99% uptime means one hour per year
o Design the system specifically for redundancy

CS302 – Spring 2025 Lec.14.1 - Slide 55

Example: Data Replication

u In POLYTwitter, if a disk fails, all tweets are gone
o Instead of trying to build a super-reliable disk…
o Replicate the data across many disks

u Real world design (e.g., Google File System)

@POLYÉtudiant-e:
“CS302…

Awesome! J”
1

2
(replicated)

CS302 – Spring 2025 Lec.14.1 - Slide 56

Example: Request Duplication

u If a server fails, your tweet may not be recorded
o Instead of trying to build a server that never crashes...
o Assume long latency requests went to failed servers

§ Retry those requests on other servers
o Also real world (e.g., Amazon Dynamo key-value store)

@POLYÉtudiant-e:
“CS302…

Awesome! J” 1
……

1
(retry)

CS302 – Spring 2025 Lec.14.1 - Slide 57

Programming on Scale-Out System

u Fundamentally, Scale-out systems are distributed
o Requests can touch many nodes during lifetime

§ e.g., Frontend, web server, disk, and logging nodes

u Complex (fun) algorithms to orchestrate nodes
o Example: how to know if a node failed, or if it is compromised and pretending

to be offline?

u Programmers who know this field are valuable!

CS302 – Spring 2025 Lec.14.1 - Slide 58

Convergence of Scale Up/Out

u Most scale-out systems use commodity parts
o Highest cost efficiency with use of distributed software

u But, problem sizes in datacenters are growing
o Starting to resemble “Memory Intensive” applications,

#2 on our list that was more HPC-like
o Want one node to access memory from other nodes

u Scale out the processors, scale up the memory?

CS302 – Spring 2025 Lec.14.1 - Slide 59

Example: Use of Infiniband Network Gear

u High bandwidth IB networks normally for scale-up
o Fine-grain and frequent communication

u IB making inroads into scale-out datacenters
o Allows nodes to directly access remote memory

(RDMA) as if it was their own

u Brings back fault tolerance challenges
o If local node fails, both program and data both lost
o But if remote node fails… Other programs’ data lost

CS302 – Spring 2025 Lec.14.1 - Slide 60

Summary

u Why parallel hardware exists
o Moore’s Law let designers scale up their chips
o Eventually, Dennard scaling ended due to power
o Alternative approaches: parallelism, ISA

u Multiple node systems
o Scale-up → adding more functionality to single node
o Scale-out → replicating nodes to add capability

CS302 – Spring 2025 Lec.14.1 - Slide 61

u Material from all lectures (but this one) may be on exam
u The sample exam is released on Moodle

REMINDER: Final Exam This Week!

