
CS302 – Spring 2025 Lec.10.2 - Slide 1

CS302

Multi-threaded

Processors

Spring 2025

Arkaprava Basu & Babak Falsafi

parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch, Etsion and Weiser of CMU,

Michigan and Technion

Copyright 2023

CS302 – Spring 2025 Lec.10.2 - Slide 2

Where are We?

◆ HW Multithreading

o Motivation

o Various forms

◆ Next Tuesday:
o Intro to GPUs

CS302 – Spring 2025 Lec.10.2 - Slide 3

◆ Arithmetic units in CPUs are often not busy

o Pipeline bubbles

o Long-latency memory accesses

o Exceptions due to I/O or syscalls

◆ We often switch threads a lot

o Threaded programming is popular

o Mobile apps heavily use threading to overlap compute with I/O

o Google claims there are 10,000 threads per socket across workloads

◆ Can we keep thread context around in hardware?

Hardware Multithreading

CS302 – Spring 2025 Lec.10.2 - Slide 4

Reminder: Basic Scalar Pipeline

Fetch Decode

Reg. Read

Execute D-Cache

Store

Buffer

Reg.

Write

PC

I-Cache

D-Cache
Regs Regs

CS302 – Spring 2025 Lec.10.2 - Slide 5

Reminder: Basic Superscalar Pipeline

Fetch

Decode

Alloc. Queue
Reg.

Read Exec. D-Cache
Reg.

Write Retire

PC

I-Cache

Reg

Map

D-Cache
Regs Regs

CS302 – Spring 2025 Lec.10.2 - Slide 6

Review: Why Pipeline?

◆ First CPUs were “multi-cycle”

◆ Executed 1 instruction at a time, varied # of cycles

◆ Pipeline allows multiple instructions to be in-flight

◆ Perfect case reduces instructions per cycle (IPC) to 1

◆ Assuming 5 stages (F, D, X, M, W):

M WD XF

M WD XF

M WD XF

CS302 – Spring 2025 Lec.10.2 - Slide 7

How does Superscalar Affect IPC?

◆ Assuming a perfect pipeline, scalar IPC = 1

◆ Duplicating the pipeline halves it, IPC = 2

M WD XF

M WD XF

M WD XF

M WD XF

M WD XF

M WD XF

CS302 – Spring 2025 Lec.10.2 - Slide 8

Pipeline Bubbles Decrease IPC

◆ Reason 1: structural hazards

◆ Not enough resources are available

◆ Instructions queue, waiting for resources to free up

◆ For example

◆ 2-way in-order superscalar processor

◆ One cache port (one load or store per cycle)

◆ If two loads align in same cycle, second must wait

CS302 – Spring 2025 Lec.10.2 - Slide 9

Structural Hazards Ex.

for (i =0; i < N; i++)

 a[i] += (b[i] + c[i]);

; a[]➔r2 , b[]➔r3

; c[]➔r4 , &a[N]->r8

; r5, r6, r7, r8, r9 temp

loop:

 lw r5 , 0(r2)

 lw r6 , 0(r3)

 lw r7 , 0(r4)

 add r5 , r5 , r6

 add r5 , r5 , r7

 sw r5 , 0(r2)

 addi r2 , r2 , 4

 addi r3 , r3 , 4

 sub r9, r8, r2 ; iter count

 addi r4 , r4 , 4

 bne r9, loop

◆ The loop iterates N times

◆ Increments each element
of a[i], by b[i]and c[i]

CS302 – Spring 2025 Lec.10.2 - Slide 10

lw r5

lw r6

Structural Hazards Ex.

PC

I-Cache

Map

D-CacheReg. Rd. Regs

lw r6

bubble

lw r5

lw r6 lw r5

lw r6 lw r5

lw r6
lw r5

lw r6
lw r5

bubble

Queue Exec RetireAlloc

CS302 – Spring 2025 Lec.10.2 - Slide 11

Pipeline View: Retire Stage

◆ Bubbles caused by lw r5, lw r6 and

add propagate

o lw bubbles are due to a single cache port

o sw waits for add

Younger Instructions

(N increasing)

lw r5

lw r6

addi

sub

addi

bne

lw r5

lw r7

add

add

sw r5

addi

loop:

 lw r5 , 0(r2)

 lw r6 , 0(r3)

 lw r7 , 0(r4)

 add r5 , r5 , r6

 add r5 , r5 , r7

 sw r5 , 0(r2)

 addi r2 , r2 , 4

 addi r3 , r3 , 4

 sub r9, r8, r2

 addi r4 , r4 , 4

 bne r9, loop

CS302 – Spring 2025 Lec.10.2 - Slide 12

Exercise: IPC Reduction w. Bubbles

◆ What is the average IPC when running this

loop on our 2-way in-order superscalar?

loop:

 lw r5 , 0(r2)

 lw r6 , 0(r3)

 lw r7 , 0(r4)

 add r5 , r5 , r6

 add r5 , r5 , r7

 sw r5 , 0(r2)

 addi r2 , r2 , 4

 addi r3 , r3 , 4

 sub r9, r8, r2

 addi r4 , r4 , 4

 bne r9, loop

CS302 – Spring 2025 Lec.10.2 - Slide 13

Exercise: IPC Reduction w. Bubbles

◆ What is the average IPC when running this

loop on our 2-way in-order superscalar?

◆ Answer: 1.6

◆ IPC =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑐𝑦𝑐𝑙𝑒𝑠
=

11

7
= 1.6

◆ Needs 7 cycles because: first two loads are
serialized, second add is serialized

loop:

 lw r5 , 0(r2)

 lw r6 , 0(r3)

 lw r7 , 0(r4)

 add r5 , r5 , r6

 add r5 , r5 , r7

 sw r5 , 0(r2)

 addi r2 , r2 , 4

 addi r3 , r3 , 4

 sub r9, r8, r2

 addi r4 , r4 , 4

 bne r9, loop

CS302 – Spring 2025 Lec.10.2 - Slide 14

Pipeline Bubbles Continued

◆ Reason 2: Branch control flow

◆ Predict branch direction to keep fetching instructions

◆ Waiting for the real direction introduces bubbles
◆ 2 cycles at a minimum, with a shallow pipeline

◆ Real pipelines are much deeper (14+ cycles)

◆ Branch prediction accuracy paramount

add …

M WD XF

M WD XF

beq r1, r2, TARGET

CS302 – Spring 2025 Lec.10.2 - Slide 15

Pipeline Bubbles Continued

◆ Reason 2: Front-end hazards

◆ Branch target address resolved after decode

◆ Target addresses cached in Branch Target Buffer (BTB)

◆ But BTB hit rate is not perfect (bubbles when BTB misses)

◆ Branch direction (for conditionals) resolved in Execute

◆ Branch directions are predicted

◆ Latest predictors are quite advanced (perceptron, multi-length history,
multi-level tables)

◆ Branch prediction is not 100%

◆ When mispredicted there are bubbles

◆ Instruction cache misses freeze the pipeline

◆ Next-line prefetchers capture only 50% of misses

CS302 – Spring 2025 Lec.10.2 - Slide 16

Pipeline Bubbles Continued

◆ Reason 3: Data dependences

◆ Data flows from one instruction to another

◆ Dependent instructions can’t execute in the same cycle

◆ Data cache misses lengthen pipeline stall time

◆ Misses can completely empty the pipeline

◆ e.g. An LLC miss costs 70+ CPU cycles

◆ Cache prefetching only useful for trivial patterns

◆ Modern processors have strided prefetchers

◆ Roughly 30% of accesses on average in integer code

CS302 – Spring 2025 Lec.10.2 - Slide 17

Pipeline Draining in In-order Core

◆ Load miss stalls all pipeline stages

◆ Worst case for hardware usage

lw r5

Younger Instructions

CS302 – Spring 2025 Lec.10.2 - Slide 18

◆ Fetch instructions in-order, execute out of order, reconstruct order

when retiring

◆ Why? Expose parallelism for long-latency events

Reminder: OoO Execution (Lec. 2.1)

Simplified CPU

(Lec. 2.1)

Fetch/
Decode

Rename

Execute

Memory

Retire

In Order

In Order

Out of Order

CS302 – Spring 2025 Lec.10.2 - Slide 19

OoO Pipeline Handles Cache Misses

◆ Finds subsequent loads and

executes them

◆ Note: can’t do entire loop trips

◆ Because of ld → add → st

lw r7

sub
Misses do not

block pipeline!

lw r5

addi

lw r6

addi

addi

bne

Younger Instructions

loop:

 lw r5 , 0(r2)

 lw r6 , 0(r3)

 lw r7 , 0(r4)

 add r5 , r5 , r6

 add r5 , r5 , r7

 sw r5 , 0(r2)

 addi r2 , r2 , 4

 addi r3 , r3 , 4

 sub r9, r8, r2

 addi r4 , r4 , 4

 bne r9, loop

lw r7

sub

lw r5

addi

lw r6

addi

addi

bne

CS302 – Spring 2025 Lec.10.2 - Slide 20

OoO With Wider Pipelines

◆ Limited number of independent instructions

◆ Making the pipeline 4-wide has limited benefit
with this program

Younger Instructions

Ld/St

ALU

BR

FPU

lw r7

add

lw r5

add

sw r5

addi

lw r7

sub

lw r5

addi

lw r6

addi

bne

lw r5

addi

lw r6

addi

loop:

 lw r5 , 0(r2)

 lw r6 , 0(r3)

 lw r7 , 0(r4)

 add r5 , r5 , r6

 add r5 , r5 , r7

 sw r5 , 0(r2)

 addi r2 , r2 , 4

 addi r3 , r3 , 4

 sub r9, r8, r2

 addi r4 , r4 , 4

 bne r9, loop

CS302 – Spring 2025 Lec.10.2 - Slide 21

Realistic Pipeline Utilization

◆ In previous example, IPC ~ 2

◆ Product of a very trivial program

◆ OoO core easily traverses loops and issues loads

◆ Real programs are not so simple
◆ Many cycles where nothing can be issued

◆ More realistic IPC is between 0.5 and 1

Ld/St

ALU 0

ALU 1

FPU

CS302 – Spring 2025 Lec.10.2 - Slide 22

Classifications of Hardware Waste

◆ Two categories: horizontal and vertical

◆ Vertical: whole cycle empty, nothing issued

◆ Most common after long latency events

◆ Horizontal: unable to use full issue width

◆ Software not exposing enough ILP for hardware

Ld/St

ALU

BR

FPU

Vertical Waste

Horizontal Waste

CS302 – Spring 2025 Lec.10.2 - Slide 23

HW Multithreading

◆ Find ready instructions from many threads

◆ Requires having thread context in hardware

◆ Context entails: PC, SP, register file, interrupt descriptors

◆ Give the issue slot (each cycle) to another thread
◆ Assuming multiple context this is easy

◆ What type of waste does this target?

◆ Mix instructions from multiple threads per issue slot

◆ Problems:

◆ Scheduling policy, i.e., which thread to choose from?

◆ Fairness?

CS302 – Spring 2025 Lec.10.2 - Slide 24

Cost of Storing Multiple Contexts

◆ Each thread needs architectural state

◆ Registers, PC, stack, interrupt tables

◆ Costs ~ KB of SRAM

◆ Can impact area especially for small cores

◆ Threads share the memory hierarchy
◆ Potential contention in data cache

◆ Contention in instruction cache (problem in servers)

◆ Will affect single thread performance (better throughput but worse latency)

CS302 – Spring 2025 Lec.10.2 - Slide 25

Multithreading Trade-off

◆ Fundamental:

◆ Multithreading always increases single-threaded latency. Why?

◆ But increases pipeline utilization, higher throughput

◆ Likely an acceptable sacrifice
◆ If the program can’t use the hardware anyway…

CS302 – Spring 2025 Lec.10.2 - Slide 26

Blocked (Coarse Grain) Multithreading

◆ Switch to a new thread on a long latency event

◆ Pay a small cost to switch in a new context

◆ Addresses purely vertical waste

Thread Swap

Younger Instructions

CS302 – Spring 2025 Lec.10.2 - Slide 27

Blocked (Coarse Grain) Multithreading

◆ May increase utilization

◆ But, required to swap on long latency events

Thread Swap

Younger Instructions

CS302 – Spring 2025 Lec.10.2 - Slide 28

Blocked (Coarse Grain) Multithreading

◆ May increase utilization

◆ But, required to swap on long latency events

Thread Swap

Younger Instructions

How is this different from

user-level or OS context switching?

CS302 – Spring 2025 Lec.10.2 - Slide 29

Comparison to Multicore (narrower pipelines)

◆ Multiple narrow pipes have less horizontal waste

◆ But would suffer from more vertical on long latency

Younger Instructions

Core 1

Core 2

CS302 – Spring 2025 Lec.10.2 - Slide 30

CGMT Implementation

I-Cache Regs

PC

D-Cache Regs

One thread

running

Fetch Decode

Reg. Read

Execute D-Cache

Store

Buffer

Reg.

Write

CS302 – Spring 2025 Lec.10.2 - Slide 31

CGMT Performance

◆ Critical decision: when to switch threads

◆ When current thread’s utilization is about to drop
(e.g. L2 cache miss)

◆ Requirements for improving throughput:
◆ (Thread switch) + (pipe fill time) << blocking latency

◆ Need useful work to be done before other thread comes back

◆ Fast thread-switch: multiple register banks

◆ Fast pipe fill: short pipe

◆ Advantage: small changes to existing hardware

◆ Drawback: single-thread performance suffers

CS302 – Spring 2025 Lec.10.2 - Slide 32

Examples

◆ Macro-dataflow machine

◆ MIT Alewife/SPARCle

◆ IBM Northstar

CS302 – Spring 2025 Lec.10.2 - Slide 33

Exercise

◆ Assume IPC=1 per thread, switch time of zero

◆ Sharing results in single-thread performance dropping by 10%

◆ What is the average IPC with two threads?

CS302 – Spring 2025 Lec.10.2 - Slide 34

Exercise

◆ Assume IPC=1 per thread, switch time of zero

◆ Sharing results in single-thread performance dropping by 10%

◆ What is the average IPC with two threads?

◆ Answer: 0.9
◆ Each thread is 10% worse, and no overhead of switching between them

◆ Note: do not multiply by two, since they are not running at the same time (they
are multithreaded)

CS302 – Spring 2025 Lec.10.2 - Slide 35

Fine Grained Multithreading (FGMT)

◆ Cycle between multiple threads periodically

◆ Eliminate “switch time” by keeping all thread state hot

CS302 – Spring 2025 Lec.10.2 - Slide 36

FGMT Implementation

I-Cache Regs

PC

D-Cache Regs

Fetch Decode

Reg. Read

Execute D-Cache

Store

Buffer

Reg.

Write

Many threads

running

CS302 – Spring 2025 Lec.10.2 - Slide 37

FGMT Design Points

◆ Critical decision: none?

◆ Requirements for improving throughput:

◆ Enough threads to eliminate vertical waste

◆ e.g., Pipeline depth of 8, using 8 threads not enough

◆ Compensate for hardware cost in other areas

◆ e.g., Bypass network may not be needed

F D X M W

F D X M W

F D X M W

F D X M W F D X M W

I1 of T1

F D X M W

Superscalar pipeline Multithreaded pipeline

I1

I2

I1 of T2

I2 of T1

CS302 – Spring 2025 Lec.10.2 - Slide 38

FGMT vs. CGMT

◆ Thread switch policy:

◆ Most historical designs of FGMT are round robin

◆ CGMT swaps on long latency events

◆ FGMT addresses much shorter latencies

◆ Hardware costs to keep all contexts immediately ready

◆ For threads with abundant parallelism, FGMT could suffer
◆ Can introduce “flexible interleaving” to solve

◆ One thread could remain scheduled for many cycles

CS302 – Spring 2025 Lec.10.2 - Slide 39

How well does FGMT do?

◆ Advantages:

◆ With flexible interleave:

◆ Reasonable single thread performance

◆ High processor utilization (esp. in case of many thread)

◆ Without:

◆ Suits “regular” applications with repetitive latencies

◆ Drawbacks:

◆ More complicated hardware to track dependences

◆ Many more contexts means we need many registers

◆ Without flex. interleaving, limited single thread perf.

◆ Still cannot address horizontal waste!

CS302 – Spring 2025 Lec.10.2 - Slide 40

Simultaneous Multithreading (SMT)

◆ Instructions from multiple threads in same cycle

◆ First design that can reduce horizontal waste

◆ Foundational papers: (fun reads if you are enjoying this topic!)
SMT [ISCA’95], “Exploiting Choice” [ISCA’96]

Younger Instructions

CS302 – Spring 2025 Lec.10.2 - Slide 41

SMT Shares Pipeline Structures

◆ Previously, only caches and predictors shared

◆ With SMT, instructions from diff. threads are interleaved cycle by cycle

◆ Do we need to resolve all potential dependences?

◆ e.g. Both T1 and T2 execute add r1, r2, r3

◆ No! Register allocation takes care of that

◆ Recall: once registers become physically mapped, the instructions
can be issued freely
◆ T1: add r1, r2, r3 becomes: add p4, p2, p3

T2: add r1, r2, r3 add p9, p8, p5

CS302 – Spring 2025 Lec.10.2 - Slide 42

SMT Implementation

◆ After allocation, scheduler is thread agnostic

◆ Stages that duplicate their state:
◆ Fetch, Decode, Allocate (one map table per thread)

◆ Retire stage needs to know which registers to free

◆ Policies to share the pipeline structures:

◆ Static partitioning i.e., each thread gets ½ the structures

◆ First generation Intel Pentium 4

◆ Dynamic sharing i.e., every entry is tagged

◆ Current Intel and AMD processors (Kaby Lake, Ryzen)

CS302 – Spring 2025 Lec.10.2 - Slide 43

SMT Implementation

I-Cache

D-Cache

PC

Register

Map

Regs Regs

Fetch

Decode

Alloc. Queue

Reg.

Read Exec.
D-Cache

Reg.

Write Retire

Thread Aware Thread Aware

CS302 – Spring 2025 Lec.10.2 - Slide 44

SMT Design Points

◆ Critical decision: fetch-interleaving policy

◆ Requirements for throughput:

◆ Enough threads to utilize resources

◆ Fewer than needed to stretch dependences

◆ Examples:

◆ Compaq Alpha EV8 (cancelled)

◆ Intel Hyper-Threading/AMD SMT Technology (x86)

◆ Marvell/Cavium Thunder X2, X3 (ARM)

◆ IBM POWER9 (POWER ISA)

CS302 – Spring 2025 Lec.10.2 - Slide 45

Fetch Interleaving Policies

◆ How to decide which threads fetch instructions?

◆ Some may bring in useful instructions

◆ Others may fetch instructions that are stalled

◆ Fundamental goals:
◆ Maximize active use of issue width

◆ Guarantee forward progress

◆ Can’t stop a blocked thread forever, e.g., on synchronization

CS302 – Spring 2025 Lec.10.2 - Slide 46

Fetch Interleaving Policies

◆ Common Policy: ICOUNT

◆ Thread with fewest instructions in pipe has priority

◆ Adapts to all sources of stalls (cache, FP units, etc…)

◆ Increased mem. latency, ICOUNT does worse
◆ Thread’s rare fetch opportunities can still fill pipeline

◆ Holding resources adversely affects other thread(s)
e.g., if red thread is blocked, but it holds ½ resources

Regs
Queue

Exec

CS302 – Spring 2025 Lec.10.2 - Slide 47

Conditions for Good SMT Performance

◆ When threads do not thrash each other’s state

◆ Important structures: branch predictor, ROB, caches

◆ SMT performs better with ample HW resources

◆ Without horizontal slots to fill, extra context is wasted

◆ Natural fit for wide-issue OoO cores

CS302 – Spring 2025 Lec.10.2 - Slide 48

Example SPARC T5

◆ 8 threads per core, 16 cores per processor

◆ Out of order, superscalar pipeline

◆ Private L1 and L2

◆ 3.6 GHz Frequency

◆ 2 of out 8 can execute simultaneously

◆ “Modified least recently used” thread selection algorithm

◆ Also known as “round robin”

CS302 – Spring 2025 Lec.10.2 - Slide 49

Example x86, ARM and IBM CPUs

◆ x86 cores have 2 threads/core

o Intel calls it “Hyperthreading”
o AMD calls it Simultaneous Multithreading

◆ There are also ARM cores with SMT
o Cortex A65-E, Neoverse E1, Cavium Thunder X2, 2 threads/core

o Cavium Thunder X3, 4 threads/core

◆ IBM’s POWER CPUs are highly threaded
o POWER 7 had 4 threads/core

o POWER 8 and POWER 10 have 8 threads/core

CS302 – Spring 2025 Lec.10.2 - Slide 50

SMT Case Study: Alpha EV8

◆ 8-issue OOO processor (wide machine)

◆ SMT Support

◆ Multiple sequencers (PC): 4

◆ Alternate fetch from multiple threads

◆ Separate register renaming for each thread

◆ More (4x) physical registers

◆ Thread tags on all shared resources

◆ ROB, LSQ, BTB, etc.

◆ Allow per thread flush/trap/retirement

◆ Process tags on address resources: caches, TLB’s, …

◆ Notice: none of these between allocate and retire

CS302 – Spring 2025 Lec.10.2 - Slide 51

Scalability of SMT

◆ SPEC benefits less from MT than scientific apps

◆ 4T gives 200% boost in sort/TP, only 125% in turb3d

◆ Although most of the pipeline is SMT-agnostic, cycle time limits

scalability for map table, registers

◆ Beyond 2-4 threads, program dependences limit benefit

0%

50%

100%

150%

200%

250%

Turb3d Swm256 Tomcatv

1T

2T

3T

4T

Decomposed SPEC95 Applications

0%

50%

100%

150%

200%

250%

300%

Barnes Chess Sort TP

1T

2T

4T

Scientific Applications

CS302 – Spring 2025 Lec.10.2 - Slide 52

Cache Sharing Amongst Threads

◆ Private caches

◆ Easier to implement – use existing MP like protocol

◆ Shared Caches

◆ Faster to communicate among threads

◆ No coherence overhead

◆ Flexibility in allocating resources

DataTag DataTag DataTag DataTag

Way 0 Way 1 Way 2 Way 7

CS302 – Spring 2025 Lec.10.2 - Slide 53

Performance Variability in EV8 SMT

0 5 10 15 20 25

Mcycles

0.4

0.6

0.8

1

1.2

1.4

1.6

S
M

T
 S

p
e
e
d

u
p

EV8 simulation R. Espasa

CS302 – Spring 2025 Lec.10.2 - Slide 54

Cache and Memory Contention

◆ Apps. may use different sets in a

shared cache

◆ e.g., 3 from SPEC2k6

◆ Blue = few references

red/yellow = many refs.

◆ Running parser and bzip2 on co-

located SMT threads will have much

less contention than parser and

ammp

sample (time)Source: “Contention on L2 Caches May Limit the Effectiveness of SMT”, Hily & Seznec, JILP’05

CS302 – Spring 2025 Lec.10.2 - Slide 55

Adjusting SMT Scheduling

◆ Add a cache-usage counter (Hily & Seznec, 2005),

 to each L2 cache set

◆ Ticks on requests to same set from each SMT thread

◆ Serves as a proxy for conflicts

◆ OS can read this counter and adjust scheduling

◆ Reduces overall cache miss rate by ~10%

CS302 – Spring 2025 Lec.10.2 - Slide 56

Constructive Sharing?

◆ Instruction cache behavior can be the opposite

◆ If SMT threads are executing similar code

◆ Very common in database applications or servers

◆ Database workloads are intrinsically multithreaded

◆ Natural fit for using FGMT or SMT

◆ Data from Oracle database apps. shows…
◆ Apx. 35% less instruction cache misses using SMT

(Lo, ISCA’98)

◆ Using smart OS policy, can achieve same miss rates in data cache as a
single thread, with 8-way SMT

CS302 – Spring 2025 Lec.10.2 - Slide 57

Reminder: Taking Parallelism Further (Lec. 2)

◆ Start with a single instruction CPU…

◆ Add ALUs to make it SIMD, then go to extreme

◆ Making one instruction control hundreds of ALUs

CS302 – Spring 2025 Lec.10.2 - Slide 58

Reminder: Taking Parallelism Further (Lec. 2.1)

◆ Works great for embarrassingly parallel programs

◆ The problem? Memory and long latency ops.

◆ Solution: Use huge degree of multithreading

◆ Every clock cycle should have a thread ready to execute

CS302 – Spring 2025 Lec.10.2 - Slide 59

GPUs

◆ Make cores simple

◆ In order pipelines

◆ No branch prediction

◆ Put many cores in the die
◆ Simple cores are smaller

◆ Take throughput-latency trade-off to extreme
◆ Trillions of integer operations per second

◆ … but, huge single-thread latency

CS302 – Spring 2025 Lec.10.2 - Slide 60

GPUs: Two Levels of Multithreading

◆ Vector lane threading

◆ Assign threads to a vector lane (as in SIMD/Vector)

◆ Each lane has one PC

◆ Group threads called “Warp” to run together

◆ Multithreading across pipeline width

◆ Multiple warps can share the pipeline
◆ Multithreading across pipeline depth

CS302 – Spring 2025 Lec.10.2 - Slide 61

Summary

◆ Need to keep pipeline utilization high

◆ Solution: Multithreading

◆ Blocked multithreading

◆ Fine-grained multithreading

◆ Simultaneous multithreading

◆ Taking multithreading to the limit: GPUs
◆ Next week, will discuss in detail!

	Slide 1
	Slide 2: Where are We?
	Slide 3: Hardware Multithreading
	Slide 4: Reminder: Basic Scalar Pipeline
	Slide 5: Reminder: Basic Superscalar Pipeline
	Slide 6: Review: Why Pipeline?
	Slide 7: How does Superscalar Affect IPC?
	Slide 8: Pipeline Bubbles Decrease IPC
	Slide 9: Structural Hazards Ex.
	Slide 10: Structural Hazards Ex.
	Slide 11: Pipeline View: Retire Stage
	Slide 12: Exercise: IPC Reduction w. Bubbles
	Slide 13: Exercise: IPC Reduction w. Bubbles
	Slide 14: Pipeline Bubbles Continued
	Slide 15: Pipeline Bubbles Continued
	Slide 16: Pipeline Bubbles Continued
	Slide 17: Pipeline Draining in In-order Core
	Slide 18: Reminder: OoO Execution (Lec. 2.1)
	Slide 19: OoO Pipeline Handles Cache Misses
	Slide 20: OoO With Wider Pipelines
	Slide 21: Realistic Pipeline Utilization
	Slide 22: Classifications of Hardware Waste
	Slide 23: HW Multithreading
	Slide 24: Cost of Storing Multiple Contexts
	Slide 25: Multithreading Trade-off
	Slide 26: Blocked (Coarse Grain) Multithreading
	Slide 27: Blocked (Coarse Grain) Multithreading
	Slide 28: Blocked (Coarse Grain) Multithreading
	Slide 29: Comparison to Multicore (narrower pipelines)
	Slide 30: CGMT Implementation
	Slide 31: CGMT Performance
	Slide 32: Examples
	Slide 33: Exercise
	Slide 34: Exercise
	Slide 35: Fine Grained Multithreading (FGMT)
	Slide 36: FGMT Implementation
	Slide 37: FGMT Design Points
	Slide 38: FGMT vs. CGMT
	Slide 39: How well does FGMT do?
	Slide 40: Simultaneous Multithreading (SMT)
	Slide 41: SMT Shares Pipeline Structures
	Slide 42: SMT Implementation
	Slide 43: SMT Implementation
	Slide 44: SMT Design Points
	Slide 45: Fetch Interleaving Policies
	Slide 46: Fetch Interleaving Policies
	Slide 47: Conditions for Good SMT Performance
	Slide 48: Example SPARC T5
	Slide 49: Example x86, ARM and IBM CPUs
	Slide 50: SMT Case Study: Alpha EV8
	Slide 51: Scalability of SMT
	Slide 52: Cache Sharing Amongst Threads
	Slide 53: Performance Variability in EV8 SMT
	Slide 54: Cache and Memory Contention
	Slide 55: Adjusting SMT Scheduling
	Slide 56: Constructive Sharing?
	Slide 57: Reminder: Taking Parallelism Further (Lec. 2)
	Slide 58: Reminder: Taking Parallelism Further (Lec. 2.1)
	Slide 59: GPUs
	Slide 60: GPUs: Two Levels of Multithreading
	Slide 61: Summary

