CS302

Multi-threaded
Processors

Spring 2025
Arkaprava Basu & Babak Falsafi
parsa.epfl.ch/course-info/cs302

Adapted from slides originally developed by Profs. Falsafi, Fatahalian, Mowry, Wenisch, Etsion and Weiser of CMU,
Michigan and Technion
Copyright 2023

CS302 - Spring 2025 Lec.10.2 - Slide 1

Where are We?

CS302 - Spring 2025

¢ HW Multithreading

o Motivation
o Various forms

¢ Next Tuesday:
o Intro to GPUs

Lec.10.2 - Slide 2

Hardware Multithreading

¢ Arithmetic units in CPUs are often not busy
o Pipeline bubbles
o Long-latency memory accesses
o Exceptions due to I/O or syscalls

¢ We often switch threads a lot
o Threaded programming is popular
o Mobile apps heavily use threading to overlap compute with I/O
o Google claims there are 10,000 threads per socket across workloads

¢ Can we keep thread context around in hardware?

CS302 — Spring 2025 Lec.10.2 - Slide 3

Reminder: Basic Scalar Pipeline

Fetch Decode Execute D-Cache Reg.

Reg. Read Store Write

Buffer

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
» H
g -
H
H
H
H
H
H

D-Cache

Regs Regs

|-Cache

CS302 - Spring 2025 Lec.10.2 - Slide 4

Reminder: Basic Superscalar Pipeline

Decode
Reg. Reg.
| Fetch | Alloc. :Queue: Read Exec. p-Cachg Write Retire |

H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H

o H

» -
H H
H H
H H
H H
: H

D-Cache

Regs

|-Cache

CS302 - Spring 2025 Lec.10.2 - Slide 5

Review: Why Pipeline?

¢ First CPUs were "multi-cycle”
¢ Executed 1 instruction at a time, varied # of cycles

¢ Pipeline allows multiple instructions to be in-flight
¢ Perfect case reduces instructions per cycle (IPC) to 1

¢ Assuming 5 stages (F, D, X, M, W):

CS302 - Spring 2025

F

D

X

W

F

D X||M||W
F D x| M w

Lec.10.2 - Slide 6

How does Superscalar Affect IPC?

¢ Assuming a perfect pipeline, scalar IPC = 1
Ine halves it, IPC =2

¢ Duplicating the pipe

CS302 - Spring 2025

F DI X||M||W
F || D

F

F

X

D

D
F
F

M

X

X
Ll
Ll

W
M
M

W
W
™|
™|

Lec.10.2 - Slide 7

Pipeline Bubbles Decrease IPC

& Reason 1: structural hazards

¢ Not enough resources are available
¢ Instructions queue, waiting for resources to free up

¢ For example
¢ 2-way in-order superscalar processor
¢ One cache port (one load or store per cycle)
¢ If two loads align in same cycle, second must wait

CS302 - Spring 2025 Lec.10.2 - Slide 8

; a[]l]=2r2 , b[]=2r3

Structural Hazards Ex. ; c[12r4 , &a[N]->r8
-, 5, r6, r7, r8, r9 temp
loop:

1w r5 , 0(r2)

lw r6 , 0(xr3)

1w r7 , 0(r4)

for (1 =0; 1 < N; i++)
af[i] += (b[1] + c[1]);

¢ The loop iterates N times add r35 , r3 , ré6
¢ Increments each element add r> , r5 , r7
ofal[i],byb[iland c[1i] sw r5 , 0(r2)

addi r2 , r2 , 4

addi r3 , r3 ,

sub r9, r8, r2 ; iter count
addi r4 , r4 , 4

CS302 — Spring 2025 bne r 9 lOOp
’

Structural Hazards Ex.

' |-Cache’ Alloc ' Queue ' Reg.Rd. Exec

w r5
w 6 Iw r5

w 6 Iw r5

lw r6 e

W r6
W r5

W r6

CS302 - Spring 2025

‘D-Cache' Regs

w 5

bUbee
W r6

bUbee

" Refire

Lec.10.2 - Slide 10

Pipeline View: Retire Stage Tp—
~ Youngerlnstrucons = 1w 5 , 0(r2)

(N increasing) 1w ré , 0(r3)
1w r7 , 0(r4)
add r5 , r5 , re6

add r5 , 5 , r7
. . . SW r5 , 0(r2)
w r5 addi addi swr5 add Iw r7 Iw r6 Iw r5 addi r2 , r2 ,

bne sub addi -- add .
addi r3 , r3 ,
¢ Bubbles caused by 1w r5, 1w r6 and sub r9, r8, r2

add propagate
o 1w bubbles are due to a single cache port
o sw waits for add

—

addi r4 , r4 , 4
bne r9, loop

CS302 - Spring 2025 Lec.10.2 - Slide 11

Exercise: IPC Reduction w. Bubbles

¢ What is the average IPC when running this
loop on our 2-way in-order superscalar?

CS302 - Spring 2025

loop:
1w
1w
1w
add
add
SW
addi
addi
sub
addi

bne

r5
ré6
r/
r5
r5
r5
r2
r3
r9,
r4

’

(4

0(r2)
0(xr3)
0(r4)
r5 , r6
rS5 , r’
0(r2)
r2 ,
r3 ,

r8, r2

rd , 4

r9, loop

Lec.10.2 - Slide 12

Exercise: IPC Reduction w. Bubbles Tp—

lw r5 , 0(r2)
1w r6 , 0(xr3)
1w r7 , 0(r4)
add r5 , r5 , re6

¢ What is the average IPC when running this add r5
loop on our 2-way in-order superscalar? S g

, r5 , r7

, 0(r2)
addi r2 , r2 ,
addi r3 , r3 ,

et sub r9, r8, r2

11
¢ IPC=———= —=16 addi r4 , r4 , 4

¢ Needs 7 cycles because: first two loads are bne r9, loop
serialized, second add is serialized

CS302 - Spring 2025 Lec.10.2 - Slide 13

¢ Answer: 1.6

Pipeline Bubbles Continued

¢ Reason 2: Branch control flow
¢ Predict branch direction to keep fetching instructions

¢ Waiting for the real direction introduces bubbles

¢ 2 cycles at a minimum, with a shallow pipeline
¢ Real pipelines are much deeper (14+ cycles)

¢ Branch prediction accuracy paramount

CS302 — Spring 2025

F

D

X

W

beq rl, r2, TARGET

F

D

X

W

add ..

Lec.10.2 - Slide 14

Pipeline Bubbles Continued

¢ Reason 2: Front-end hazards
¢ Branch target address resolved after decode
¢ Target addresses cached in Branch Target Buffer (BTB)
¢ But BTB hit rate is not perfect (bubbles when BTB misses)
¢ Branch direction (for conditionals) resolved in Execute
¢ Branch directions are predicted

¢ Latest predictors are quite advanced (perceptron, multi-length history,
multi-level tables)

¢ Branch prediction is not 100%
¢ When mispredicted there are bubbles
¢ Instruction cache misses freeze the pipeline
¢ Next-line prefetchers capture only 50% of misses

CS302 — Spring 2025 Lec.10.2 - Slide 15

Pipeline Bubbles Continued

¢ Reason 3: Data dependences
¢ Data flows from one instruction to another
¢ Dependent instructions can’t execute in the same cycle
¢ Data cache misses lengthen pipeline stall time
¢ Misses can completely empty the pipeline
¢ €.9. An LLC miss costs 70+ CPU cycles
¢ Cache prefetching only useful for trivial patterns
¢ Modern processors have strided prefetchers
¢ Roughly 30% of accesses on average in integer code

CS302 — Spring 2025 Lec.10.2 - Slide 16

Pipeline Draining in In-order Core

¢ Load miss stalls all pipeline stages
¢ Worst case for hardware usage

Younger Instructions

—

lw r5

CS302 - Spring 2025 Lec.10.2 - Slide 17

Reminder: OoO Execution (Lec. 2.1)

¢ Fetch instructions in-order, execute out of order, reconstruct order
when retiring
¢ Why? Expose parallelism for long-latency events

U
U
U
U

Simplified CPU /

/

(Lec.21) [/

/
/
ALU
(Execute)

H

CS302 - Spring 2025 S

In Order

)

Execute

—/
O
c
[
o
=y
o
1
Q.
o
q

In Order

Lec.10.2 - Slide 18

loop:

Oo00 Pipeline Handles Cache Misses -
1w
¢ Finds subsequent loads and 1w
executes them 2dd
¢ Note: can’t do entire loop trips
add
¢ Because of 1d —» add — st
SW
Younger Instructions addi
EEEEE sur
addi
EEENEEN

addi Iw r7lw r6lw r5 addi lw r7Iw r6 Ilw r5 Misses do not

bne sub addi addi

CS302 - Spring 2025

bne sub addi addi

block pipeline!

r5 0(r2)
r6 0(xr3)
r7 0(r4d)
r5 r5 , r6
r5 r5 , rl
r5 0(xr2)
r2 r2 ,

r3 r3 , 4
r9, r8, r2
r4 rd , 4
r9, loop

Lec.10.2 - Slide 19

Oo0 With Wider Pipelines Tp—

lw r5 , 0(r2)
1w r6 , 0(xr3)
1w r7 , 0(r4)
add r5 , r5 , re6

_ add r5 , r5 , r7
Younger Instructions

— SW r5 ’ O(r2)

T TTTTT1 | By
T [[| B

ub r9, r8, r2
BR] S ;8
addi r4 , r4 , 4

bne r9, loop

¢ Limited number of independent instructions

¢ Making the pipeline 4-wide has limited benefit
with this program

FPU

swrblwr5 wr7lwre lwrb5 Iwr7 Iw relw rb5
addi add add addi addi sub addi addi

Lec.10.2 - Slide 20
bne

CS302 - Spring 2025

Realistic Pipeline Utilization

¢ In previous example, IPC ~ 2

¢ Product of a very trivial program
¢ O00 core easily traverses loops and issues loads

¢ Real programs are not so simple
¢ Many cycles where nothing can be issued
¢ More realistic IPC is between 0.5 and 1

CS302 - Spring 2025 Lec.10.2 - Slide 21

Classifications of Hardware Waste

¢ Two categories: horizontal and vertical

¢ Vertical: whole cycle empty, nothing issued
¢ Most common after long latency events

¢ Horizontal: unable to use full issue width

¢ Software not exposing enough ILP for hardware
Vertical Waste

o5t [H .
o] .
o [

FPU

CS302 - Spring 2025 Lec.10.2 - Slide 22

Horizontal Waste

HW Multithreading

¢ Find ready instructions from many threads

¢ Requires having thread context in hardware
¢ Context entails: PC, SP, register file, interrupt descriptors

¢ Give the issue slot (each cycle) to another thread
¢ Assuming multiple context this is easy
¢ What type of waste does this target?

¢ Mix instructions from multiple threads per issue slot
¢ Problems:
¢ Scheduling policy, i.e., which thread to choose from?
¢ Fairness?

CS302 - Spring 2025

Lec.10.2 - Slide 23

Cost of Storing Multiple Contexts

¢ Each thread needs architectural state

¢ Registers, PC, stack, interrupt tables
¢ Costs ~ KB of SRAM
¢ Can impact area especially for small cores

¢ Threads share the memory hierarchy
¢ Potential contention in data cache
¢ Contention in instruction cache (problem in servers)
¢ Will affect single thread performance (better throughput but worse latency)

CS302 — Spring 2025 Lec.10.2 - Slide 24

Multithreading Trade-off

¢ Fundamental:

¢ Multithreading always increases single-threaded latency. Why?
¢ But increases pipeline utilization, higher throughput

¢ Likely an acceptable sacrifice
¢ If the program can’t use the hardware anyway...

CS302 - Spring 2025 Lec.10.2 - Slide 25

Blocked (Coarse Grain) Multithreading

Thread Swap
—

— {0 Nger INstructions

¢ Switch to a new thread on a long latency event
¢ Pay a small cost to switch in a new context
¢ Addresses purely vertical waste

CS302 - Spring 2025

Lec.10.2 - Slide 26

Blocked (Coarse Grain) Multithreading

Thread Swap
—

— {0 Nger INstructions

¢ May increase utilization
¢ But, required to swap on long latency events

CS302 - Spring 2025 Lec.10.2 - Slide 27

Blocked (Coarse Grain) Multithreading

I
How is this different from

user-level or OS context switching?
]

Thread Swap
—

— {0 Nger INstructions

¢ May increase utilization
¢ But, required to swap on long latency events

CS302 — Spring 2025 Lec.10.2 - Slide 28

Comparison to Multicore (narrower pipelines)
Younger Instructions

—

Core 1

Core 2

¢ Multiple narrow pipes have less horizontal waste
¢ But would suffer from more vertical on long latency

CS302 - Spring 2025 Lec.10.2 - Slide 29

CGMT Implementation

Fetch Decode Execute D-Cache Reg.

Reg. Read Store Write

D-Cache Regs

|-Cache

'One thread
CS302 - Spring 2025 ru n n i ng Lec.10.2 - Slide 30

CGMT Performance

¢ Critical decision: when to switch threads i
¢ \When current thread’s utilization is about to drop L
(e.g. L2 cache miss) [

¢ Requirements for improving throughput:
¢ (Thread switch) + (pipe fill time) << blocking latency
¢ Need useful work to be done before other thread comes back
¢ Fast thread-switch: multiple register banks
¢ Fast pipe fill: short pipe

¢ Advantage: small changes to existing hardware
¢ Drawback: single-thread performance suffers

CS302 — Spring 2025 Lec.10.2 - Slide 31

Examples

¢ Macro-dataflow machine
¢ MIT Alewife/SPARCle
¢ |IBM Northstar

CS302 - Spring 2025 Lec.10.2 - Slide 32

Exercise

¢ Assume |IPC=1 per thread, switch time of zero
¢ Sharing results in single-thread performance dropping by 10%
¢ What is the average IPC with two threads?

CS302 — Spring 2025 Lec.10.2 - Slide 33

Exercise

¢ Assume |IPC=1 per thread, switch time of zero
¢ Sharing results in single-thread performance dropping by 10%
¢ What is the average IPC with two threads?

¢ Answer: 0.9
¢ Each thread is 10% worse, and no overhead of switching between them

¢ Note: do not multiply by two, since they are not running at the same time (they
are multithreaded)

CS302 - Spring 2025 Lec.10.2 - Slide 34

Fine Grained Multithreading (FGMT)

¢ Cycle between multiple threads periodically
¢ Eliminate “switch time” by keeping all thread state hot

CS302 - Spring 2025 Lec.10.2 - Slide 35

FGMT Implementation

CS302 - Spring 2025

Fetch

Decode

Reg. Read

Execute D-Cache Reg.

Store

Write

|-Cache

Regs

Buffer

Regs

;! * i D-Cache ‘i

Mahy threads

running

Lec.10.2 - Slide 36

FGMT Design Points

¢ Critical decision: none?

¢ Requirements for improving throughput:
¢ Enough threads to eliminate vertical waste

¢ e.g., Pipeline depth of 8, using 8 threads not enough

¢ Compensate for hardware cost in other areas
¢ e.g., Bypass network may not be needed

l4

CS302 — Spring 2025

F

D

X

W

Superscalar pipeline

D

=X

N W

I,

F

D

X

W

|1 of T1

Lof T{(F|D| XMW

FIDI XMW

— — —— — —— — — — —— — —

| IS) K —_— R — | IR) R —_—

Multithreaded pipeline

Lec.10.2 - Slide 37

FGMT vs. CGMT

¢ Thread switch policy:
¢ Most historical designs of FGMT are round robin
¢ CGMT swaps on long latency events

& FGMT addresses much shorter latencies
¢ Hardware costs to keep all contexts immediately ready

¢ For threads with abundant parallelism, FGMT could suffer
¢ Can introduce “flexible interleaving” to solve
¢ One thread could remain scheduled for many cycles

CS302 - Spring 2025 Lec.10.2 - Slide 38

How well does FGMT do?

¢ Advantages:

¢ With flexible interleave:

¢ Reasonable single thread performance

¢ High processor utilization (esp. in case of many thread)
¢ Without:

¢ Suits “regular” applications with repetitive latencies

¢ Drawbacks:
¢ More complicated hardware to track dependences
¢ Many more contexts means we need many registers
¢ Without flex. interleaving, limited single thread perf.

¢ Still cannot address horizontal waste!

CS302 — Spring 2025 Lec.10.2 - Slide 39

Simultaneous Multithreading (SMT)

Younger Instructions

—

¢ Instructions from multiple threads in same cycle

¢ First design that can reduce horizontal waste

¢ Foundational papers: (fun reads if you are enjoying this topic!)
SMT [ISCA'95], “Exploiting Choice” [ISCA96]

CS302 - Spring 2025

Lec.10.2 - Slide 40

SMT Shares Pipeline Structures

¢ Previously, only caches and predictors shared

¢ With SMT, instructions from diff. threads are interleaved cycle by cycle
¢ Do we need to resolve all potential dependences?

¢ e€.J. Both T, and T, execute add r1, r2, r3
¢ No! Register allocation takes care of that

¢ Recall: once registers become physically mapped, the instructions
can be issued freely

¢ T, add rl1l, r2, r3becomes:add p4, p2, p3
T,: add rl, r2, r3 add p9, p8, pS5

CS302 — Spring 2025 Lec.10.2 - Slide 41

SMT Implementation

¢ After allocation, scheduler is thread agnostic

¢ Stages that duplicate their state:
¢ Fetch, Decode, Allocate (one map table per thread)
¢ Retire stage needs to know which registers to free

¢ Policies to share the pipeline structures:
¢ Static partitioning i.e., each thread gets %2 the structures
¢ First generation Intel Pentium 4
¢ Dynamic sharing i.e., every entry is tagged
¢ Current Intel and AMD processors (Kaby Lake, Ryzen)

CS302 - Spring 2025

Lec.10.2 - Slide 42

SMT Implementation

Decode

Reg.
. Fetch: Alloc..Queue: Read ; Exec

p-Cache

Reg.

I-Cache

Regs

. Write; Retire:

D-Cache

Regs

——
Thread Aware

CS302 - Spring 2025

=
Thread Aware

Lec.10.2 - Slide 43

SMT Design Points

¢ Critical decision: fetch-interleaving policy = .=.. L]
¢ Requirements for throughput: T W
& Enough threads to utilize resources N m
¢ Fewer than needed to stretch dependences
¢ Examples:

¢ Compaqg Alpha EV8 (cancelled)

¢ Intel Hyper-Threading/AMD SMT Technology (x86)
¢ Marvell/Cavium Thunder X2, X3 (ARM)

¢ |IBM POWER9 (POWER ISA)

CS302 - Spring 2025 Lec.10.2 - Slide 44

Fetch Interleaving Policies

¢ How to decide which threads fetch instructions?

¢ Some may bring in useful instructions
¢ Others may fetch instructions that are stalled

¢ Fundamental goals:
¢ Maximize active use of issue width
¢ Guarantee forward progress
¢ Can’t stop a blocked thread forever, e.g., on synchronization

CS302 — Spring 2025 Lec.10.2 - Slide 45

Fetch Interleaving Policies

¢ Common Policy: ICOUNT

¢ Thread with fewest instructions in pipe has priority

¢ Adapts to all sources of stalls (cache, FP units, etc...

¢ Increased mem. latency, ICOUNT does worse
¢ Thread’s rare fetch opportunities can still fill pipeline

¢ Holding resources adversely affects other thread(s)
e.g., if red thread is blocked, but it holds 72 resources

Queue ﬁ
—

o

CS302 - Spring 2025 —>

Regs :B%
7)'

).

Exec

j

Lec.10.2 - Slide 46

Conditions for Good SMT Performance

¢ When threads do not thrash each other’s state
¢ Important structures: branch predictor, ROB, caches

& SMT performs better with ample HW resources
¢ Without horizontal slots to fill, extra context is wasted
¢ Natural fit for wide-issue OoO cores

CS302 - Spring 2025 Lec.10.2 - Slide 47

Example SPARC T5

¢ 8 threads per core, 16 cores per processor
¢ Out of order, superscalar pipeline
¢ Private L1 and L2
¢ 3.6 GHz Frequency

¢ 2 of out 8 can execute simultaneously

¢ “Modified least recently used” thread selection algorithm
¢ Also known as “round robin”

CS302 — Spring 2025 Lec.10.2 - Slide 48

Example x86, ARM and IBM CPUs

¢ X86 cores have 2 threads/core

o Intel calls it “Hyperthreading”
o AMD calls it Simultaneous Multithreading

¢ There are also ARM cores with SMT
o Cortex A65-E, Neoverse E1, Cavium Thunder X2, 2 threads/core
o Cavium Thunder X3, 4 threads/core

¢ IBM's POWER CPUs are highly threaded
o POWER 7 had 4 threads/core
o POWER 8 and POWER 10 have 8 threads/core

CS302 - Spring 2025 Lec.10.2 - Slide 49

SMT Case Study: Alpha EV8

¢ 8-issue OOOQ processor (wide machine)

¢ SMT Support

¢ Multiple sequencers (PC): 4
¢ Alternate fetch from multiple threads
¢ Separate register renaming for each thread
¢ More (4x) physical registers
¢ Thread tags on all shared resources
¢ ROB, LSQ, BTB, etc.
¢ Allow per thread flush/trap/retirement

¢ Process tags on address resources: caches, TLB's, ...

¢ Notice: none of these between allocate and retire

CS302 — Spring 2025

Lec.10.2 - Slide 50

Scalability of SMT

-~ Decomposed SPEC95 Applications Scientific Applications

300%

200% 250%

H1T| 200%
@27
Oo3T
E4T| 100% -

150%

m1T
@maT
4T

150%

100% -

50% - 50% |

0% -
Turb3d Swm256 Tomcatv Barnes Chess Sort TP

0% -

¢ SPEC benefits less from MT than scientific apps
¢ 4T gives 200% boost in sort/TP, only 125% in turb3d

¢ Although most of the pipeline is SMT-agnostic, cycle time limits
scalability for map table, registers
¢ Beyond 2-4 threads, program dependences limit benefit

CS302 - Spring 2025 Lec.10.2 - Slide 51

Cache Sharing Amongst Threads

¢ Private caches

¢ Easier to implement — use existing MP like protocol

¢ Shared Caches

¢ Faster to communicate among threads

¢ No coherence overhead
¢ Flexibility in allocating resources

iz

L,
0 Wk

Way 0 Way 1

CS302 - Spring 2025

;/////////

.

77

7

G

Way 2

7777

Way 7

Lec.10.2 - Slide 52

Performance Variability in EV8 SMT

1.6

SMT Speedup
(@) — —
o = N

O
o

o
™

I /

0 3 10 15 20 25
Mcycles

EV8 simulation R. Espasa

CS302 - Spring 2025 Lec.10.2 - Slide 53

Cache and Memory Contention

¢ Apps. may use different sets in a
shared cache
¢ e.g., 3 from SPEC2k6

¢ Blue = few references
red/yellow = many refs.

¢ Running parser and bzip2 on co-
ocated SMT threads will have much
ess contention than parser and
ammp

CS302 - Spring 2025

Source: “Contention on L2 Caches May Limit the Effectiveness of SMT”, Hily & Seznec, JILP'05 SdM ple (tl me)

197.parser

L
| . | EF i.' _
0 50 100 150 200 250 300

188.ammp

| T |
0 50 100 150 200 250 300

I wh.“‘ M“ !‘”Hw
rhh ‘\”

|

[MN

0 50 100 150 200 250 300

TE———

Lec.10.2 - Slide 54

Adjusting SMT Scheduling

¢ Add a cache-usage counter (Hily & Seznec, 2005),

to each L2 cache set

¢ Ticks on requests to same set from each SMT thread
¢ Serves as a proxy for conflicts

¢ OS can read this counter and adjust scheduling

¢ Reduces overall cache miss rate by ~10%

CS302 — Spring 2025 Lec.10.2 - Slide 55

Constructive Sharing?

¢ Instruction cache behavior can be the opposite
¢ If SMT threads are executing similar code
¢ Very common in database applications or servers

¢ Database workloads are intrinsically multithreaded
¢ Natural fit for using FGMT or SMT

¢ Data from Oracle database apps. shows...

¢ Apx. 35% less instruction cache misses using SMT
(Lo, ISCA'98)

¢ Using smart OS policy, can achieve same miss rates in data cache as a
single thread, with 8-way SMT

CS302 — Spring 2025 Lec.10.2 - Slide 56

Reminder: Taking Parallelism Further (Lec. 2)

¢ Start with a single instruction CPU....

¢ Add ALUs to make it SIMD, then go to extreme
¢ Making one instruction control hundreds of ALUs

CS302 - Spring 2025

ALU
(Execute)

==

ALU 1

ALU

ALU 3|

ALU 4

ALU 5‘

2
o

ALU 7 (ALU B‘

Shared Ctx Data

—

) o)) o o |]
Oooooodo
8] 0 o) o) |)
) o) o])

Lec.10.2 - Slide 57

Reminder: Taking Parallelism Further (Lec. 2.1)

¢ Works great for embarrassingly parallel programs

¢ The problem”? Memory and long latency ops.

¢ Solution: Use huge degree of multithreading
¢ Every clock cycle should have a thread ready to execute

CS302 - Spring 2025

ALU
(Execute)

==

ALU1| (ALU2 |ALU 3 |ALU4

ALU 5‘ ALU 6‘ B‘

Shared Ctx Data

—

1]]]]

OO0 O
oD 00

1]]]]

1]]]]

0000
1] o]]]

(3] [m] |]]

Lec.10.2 - Slide 58

GPUs

¢ Make cores simple

¢ In order pipelines
¢ No branch prediction

¢ Put many cores in the die
¢ Simple cores are smaller

¢ Take throughput-latency trade-off to extreme
¢ Trillions of integer operations per second
¢ ... but, huge single-thread latency

CS302 — Spring 2025 Lec.10.2 - Slide 59

GPUs: Two Levels of Multithreading

¢ Vector lane threading

¢ Assign threads to a vector lane (as in SIMD/Vector)
¢ Each lane has one PC

¢ Group threads called “Warp” to run together

¢ Multithreading across pipeline width

¢ Multiple warps can share the pipeline
¢ Multithreading across pipeline depth

CS302 — Spring 2025

Lec.10.2 - Slide 60

Summary

¢ Need to keep pipeline utilization high

¢ Solution: Multithreading
¢ Blocked multithreading
¢ Fine-grained multithreading
¢ Simultaneous multithreading

¢ Taking multithreading to the limit: GPUs
¢ Next week, will discuss in detail!

CS302 - Spring 2025

Lec.10.2 - Slide 61

	Slide 1
	Slide 2: Where are We?
	Slide 3: Hardware Multithreading
	Slide 4: Reminder: Basic Scalar Pipeline
	Slide 5: Reminder: Basic Superscalar Pipeline
	Slide 6: Review: Why Pipeline?
	Slide 7: How does Superscalar Affect IPC?
	Slide 8: Pipeline Bubbles Decrease IPC
	Slide 9: Structural Hazards Ex.
	Slide 10: Structural Hazards Ex.
	Slide 11: Pipeline View: Retire Stage
	Slide 12: Exercise: IPC Reduction w. Bubbles
	Slide 13: Exercise: IPC Reduction w. Bubbles
	Slide 14: Pipeline Bubbles Continued
	Slide 15: Pipeline Bubbles Continued
	Slide 16: Pipeline Bubbles Continued
	Slide 17: Pipeline Draining in In-order Core
	Slide 18: Reminder: OoO Execution (Lec. 2.1)
	Slide 19: OoO Pipeline Handles Cache Misses
	Slide 20: OoO With Wider Pipelines
	Slide 21: Realistic Pipeline Utilization
	Slide 22: Classifications of Hardware Waste
	Slide 23: HW Multithreading
	Slide 24: Cost of Storing Multiple Contexts
	Slide 25: Multithreading Trade-off
	Slide 26: Blocked (Coarse Grain) Multithreading
	Slide 27: Blocked (Coarse Grain) Multithreading
	Slide 28: Blocked (Coarse Grain) Multithreading
	Slide 29: Comparison to Multicore (narrower pipelines)
	Slide 30: CGMT Implementation
	Slide 31: CGMT Performance
	Slide 32: Examples
	Slide 33: Exercise
	Slide 34: Exercise
	Slide 35: Fine Grained Multithreading (FGMT)
	Slide 36: FGMT Implementation
	Slide 37: FGMT Design Points
	Slide 38: FGMT vs. CGMT
	Slide 39: How well does FGMT do?
	Slide 40: Simultaneous Multithreading (SMT)
	Slide 41: SMT Shares Pipeline Structures
	Slide 42: SMT Implementation
	Slide 43: SMT Implementation
	Slide 44: SMT Design Points
	Slide 45: Fetch Interleaving Policies
	Slide 46: Fetch Interleaving Policies
	Slide 47: Conditions for Good SMT Performance
	Slide 48: Example SPARC T5
	Slide 49: Example x86, ARM and IBM CPUs
	Slide 50: SMT Case Study: Alpha EV8
	Slide 51: Scalability of SMT
	Slide 52: Cache Sharing Amongst Threads
	Slide 53: Performance Variability in EV8 SMT
	Slide 54: Cache and Memory Contention
	Slide 55: Adjusting SMT Scheduling
	Slide 56: Constructive Sharing?
	Slide 57: Reminder: Taking Parallelism Further (Lec. 2)
	Slide 58: Reminder: Taking Parallelism Further (Lec. 2.1)
	Slide 59: GPUs
	Slide 60: GPUs: Two Levels of Multithreading
	Slide 61: Summary

