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Where are We?

CS302 - Spring 2025

¢ HW Multithreading

o Motivation
o Various forms

¢ Next Tuesday:
o Intro to GPUs
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Hardware Multithreading

¢ Arithmetic units in CPUs are often not busy
o Pipeline bubbles
o Long-latency memory accesses
o Exceptions due to I/O or syscalls

¢ We often switch threads a lot
o Threaded programming is popular
o Mobile apps heavily use threading to overlap compute with I/O
o Google claims there are 10,000 threads per socket across workloads

¢ Can we keep thread context around in hardware?
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Reminder: Basic Scalar Pipeline
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Reminder: Basic Superscalar Pipeline
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Review: Why Pipeline?

¢ First CPUs were "multi-cycle”
¢ Executed 1 instruction at a time, varied # of cycles

¢ Pipeline allows multiple instructions to be in-flight
¢ Perfect case reduces instructions per cycle (IPC) to 1

¢ Assuming 5 stages (F, D, X, M, W):
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How does Superscalar Affect IPC?

¢ Assuming a perfect pipeline, scalar IPC = 1
Ine halves it, IPC =2

¢ Duplicating the pipe
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Pipeline Bubbles Decrease IPC

& Reason 1: structural hazards

¢ Not enough resources are available
¢ Instructions queue, waiting for resources to free up

¢ For example
¢ 2-way in-order superscalar processor
¢ One cache port (one load or store per cycle)
¢ If two loads align in same cycle, second must wait
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; a[]l]=2r2 , b[]=2r3

Structural Hazards Ex. ; c[12r4 , &a[N]->r8
-, 5, r6, r7, r8, r9 temp
loop:

1w r5 , 0(r2)

lw r6 , 0(xr3)

1w r7 , 0(r4)

for (1 =0; 1 < N; i++)
af[i] += (b[1] + c[1]);

¢ The loop iterates N times add r35 , r3 , ré6
¢ Increments each element add r> , r5 , r7
ofal[i],byb[iland c[1i] sw r5 , 0(r2)

addi r2 , r2 , 4

addi r3 , r3 ,

sub r9, r8, r2 ; iter count
addi r4 , r4 , 4
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Structural Hazards Ex.

' |-Cache’ Alloc ' Queue ' Reg.Rd. Exec

w r5
w 6 Iw r5

w 6 Iw r5

lw r6 e
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W r6
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Pipeline View: Retire Stage Tp—
~ Youngerlnstrucons = 1w 5 , 0(r2)

(N increasing) 1w ré , 0(r3)
1w r7 , 0(r4)
add r5 , r5 , re6

add r5 , 5 , r7
. . . SW r5 , 0(r2)
w r5 addi addi swr5 add Iw r7 Iw r6 Iw r5 addi r2 , r2 ,

bne sub addi -- add .
addi r3 , r3 ,
¢ Bubbles caused by 1w r5, 1w r6 and sub r9, r8, r2

add propagate
o 1w bubbles are due to a single cache port
o sw waits for add

—

addi r4 , r4 , 4
bne r9, loop
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Exercise: IPC Reduction w. Bubbles

¢ What is the average IPC when running this
loop on our 2-way in-order superscalar?
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loop:
1w
1w
1w
add
add
SW
addi
addi
sub
addi

bne

r5
ré6
r/
r5
r5
r5
r2
r3
r9,
r4

’

(4

0(r2)
0(xr3)
0(r4)
r5 , r6
rS5 , r’
0(r2)
r2 ,
r3 ,

r8, r2

rd , 4

r9, loop
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Exercise: IPC Reduction w. Bubbles Tp—

lw r5 , 0(r2)
1w r6 , 0(xr3)
1w r7 , 0(r4)
add r5 , r5 , re6

¢ What is the average IPC when running this add r5
loop on our 2-way in-order superscalar? S g

, r5 , r7

, 0(r2)
addi r2 , r2 ,
addi r3 , r3 ,

et sub r9, r8, r2

11
¢ IPC=———= —=16 addi r4 , r4 , 4

¢ Needs 7 cycles because: first two loads are bne r9, loop
serialized, second add is serialized
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Pipeline Bubbles Continued

¢ Reason 2: Branch control flow
¢ Predict branch direction to keep fetching instructions

¢ Waiting for the real direction introduces bubbles

¢ 2 cycles at a minimum, with a shallow pipeline
¢ Real pipelines are much deeper (14+ cycles)

¢ Branch prediction accuracy paramount
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Pipeline Bubbles Continued

¢ Reason 2: Front-end hazards
¢ Branch target address resolved after decode
¢ Target addresses cached in Branch Target Buffer (BTB)
¢ But BTB hit rate is not perfect (bubbles when BTB misses)
¢ Branch direction (for conditionals) resolved in Execute
¢ Branch directions are predicted

¢ Latest predictors are quite advanced (perceptron, multi-length history,
multi-level tables)

¢ Branch prediction is not 100%
¢ When mispredicted there are bubbles
¢ Instruction cache misses freeze the pipeline
¢ Next-line prefetchers capture only 50% of misses
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Pipeline Bubbles Continued

¢ Reason 3: Data dependences
¢ Data flows from one instruction to another
¢ Dependent instructions can’t execute in the same cycle
¢ Data cache misses lengthen pipeline stall time
¢ Misses can completely empty the pipeline
¢ €.9. An LLC miss costs 70+ CPU cycles
¢ Cache prefetching only useful for trivial patterns
¢ Modern processors have strided prefetchers
¢ Roughly 30% of accesses on average in integer code
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Pipeline Draining in In-order Core

¢ Load miss stalls all pipeline stages
¢ Worst case for hardware usage

Younger Instructions

—

lw r5
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Reminder: OoO Execution (Lec. 2.1)

¢ Fetch instructions in-order, execute out of order, reconstruct order
when retiring
¢ Why? Expose parallelism for long-latency events

U
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/
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loop:

Oo00 Pipeline Handles Cache Misses -
1w
¢ Finds subsequent loads and 1w
executes them 2dd
¢ Note: can’t do entire loop trips
add
¢ Because of 1d —» add — st
SW
Younger Instructions addi
EEEEE sur
addi
EEENEEN

addi Iw r7lw r6lw r5 addi lw r7Iw r6 Ilw r5 Misses do not

bne sub addi addi
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bne sub addi addi

block pipeline!

r5 0(r2)
r6 0(xr3)
r7 0(r4d)
r5 r5 , r6
r5 r5 , rl
r5 0(xr2)
r2 r2 ,

r3 r3 , 4
r9, r8, r2
r4 rd , 4
r9, loop
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Oo0 With Wider Pipelines Tp—

lw r5 , 0(r2)
1w r6 , 0(xr3)
1w r7 , 0(r4)
add r5 , r5 , re6

_ add r5 , r5 , r7
Younger Instructions

— SW r5 ’ O(r2)

T TTTTT1 | By
T [ [ | B

ub r9, r8, r2
BR ] S ;8
addi r4 , r4 , 4

bne r9, loop

¢ Limited number of independent instructions

¢ Making the pipeline 4-wide has limited benefit
with this program

FPU

swrblwr5 wr7lwre lwrb5 Iwr7 Iw relw rb5
addi add add addi addi sub addi addi
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Realistic Pipeline Utilization

¢ In previous example, IPC ~ 2

¢ Product of a very trivial program
¢ O00 core easily traverses loops and issues loads

¢ Real programs are not so simple
¢ Many cycles where nothing can be issued
¢ More realistic IPC is between 0.5 and 1
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Classifications of Hardware Waste

¢ Two categories: horizontal and vertical

¢ Vertical: whole cycle empty, nothing issued
¢ Most common after long latency events

¢ Horizontal: unable to use full issue width

¢ Software not exposing enough ILP for hardware
Vertical Waste

o5t [ H .
o ] .
o [

FPU
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HW Multithreading

¢ Find ready instructions from many threads

¢ Requires having thread context in hardware
¢ Context entails: PC, SP, register file, interrupt descriptors

¢ Give the issue slot (each cycle) to another thread
¢ Assuming multiple context this is easy
¢ What type of waste does this target?

¢ Mix instructions from multiple threads per issue slot
¢ Problems:
¢ Scheduling policy, i.e., which thread to choose from?
¢ Fairness?

CS302 - Spring 2025
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Cost of Storing Multiple Contexts

¢ Each thread needs architectural state

¢ Registers, PC, stack, interrupt tables
¢ Costs ~ KB of SRAM
¢ Can impact area especially for small cores

¢ Threads share the memory hierarchy
¢ Potential contention in data cache
¢ Contention in instruction cache (problem in servers)
¢ Will affect single thread performance (better throughput but worse latency)
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Multithreading Trade-off

¢ Fundamental:

¢ Multithreading always increases single-threaded latency. Why?
¢ But increases pipeline utilization, higher throughput

¢ Likely an acceptable sacrifice
¢ If the program can’t use the hardware anyway...
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Blocked (Coarse Grain) Multithreading

Thread Swap
—

— {0 Nger INstructions

¢ Switch to a new thread on a long latency event
¢ Pay a small cost to switch in a new context
¢ Addresses purely vertical waste

CS302 - Spring 2025
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Blocked (Coarse Grain) Multithreading

Thread Swap
—

— {0 Nger INstructions

¢ May increase utilization
¢ But, required to swap on long latency events
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Blocked (Coarse Grain) Multithreading

I
How is this different from

user-level or OS context switching?
]

Thread Swap
—

— {0 Nger INstructions

¢ May increase utilization
¢ But, required to swap on long latency events
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Comparison to Multicore (narrower pipelines)
Younger Instructions

—

Core 1

Core 2

¢ Multiple narrow pipes have less horizontal waste
¢ But would suffer from more vertical on long latency

CS302 - Spring 2025 Lec.10.2 - Slide 29



CGMT Implementation

Fetch Decode Execute D-Cache Reg.

Reg. Read Store Write

D-Cache Regs

|-Cache

'One thread
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CGMT Performance

¢ Critical decision: when to switch threads i
¢ \When current thread’s utilization is about to drop L
(e.g. L2 cache miss) [

¢ Requirements for improving throughput:
¢ (Thread switch) + (pipe fill time) << blocking latency
¢ Need useful work to be done before other thread comes back
¢ Fast thread-switch: multiple register banks
¢ Fast pipe fill: short pipe

¢ Advantage: small changes to existing hardware
¢ Drawback: single-thread performance suffers
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Examples

¢ Macro-dataflow machine
¢ MIT Alewife/SPARCle
¢ |IBM Northstar
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Exercise

¢ Assume |IPC=1 per thread, switch time of zero
¢ Sharing results in single-thread performance dropping by 10%
¢ What is the average IPC with two threads?
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Exercise

¢ Assume |IPC=1 per thread, switch time of zero
¢ Sharing results in single-thread performance dropping by 10%
¢ What is the average IPC with two threads?

¢ Answer: 0.9
¢ Each thread is 10% worse, and no overhead of switching between them

¢ Note: do not multiply by two, since they are not running at the same time (they
are multithreaded)
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Fine Grained Multithreading (FGMT)

¢ Cycle between multiple threads periodically
¢ Eliminate “switch time” by keeping all thread state hot
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FGMT Implementation
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FGMT Design Points

¢ Critical decision: none?

¢ Requirements for improving throughput:
¢ Enough threads to eliminate vertical waste

¢ e.g., Pipeline depth of 8, using 8 threads not enough

¢ Compensate for hardware cost in other areas
¢ e.g., Bypass network may not be needed

l4
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FGMT vs. CGMT

¢ Thread switch policy:
¢ Most historical designs of FGMT are round robin
¢ CGMT swaps on long latency events

& FGMT addresses much shorter latencies
¢ Hardware costs to keep all contexts immediately ready

¢ For threads with abundant parallelism, FGMT could suffer
¢ Can introduce “flexible interleaving” to solve
¢ One thread could remain scheduled for many cycles
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How well does FGMT do?

¢ Advantages:

¢ With flexible interleave:

¢ Reasonable single thread performance

¢ High processor utilization (esp. in case of many thread)
¢ Without:

¢ Suits “regular” applications with repetitive latencies

¢ Drawbacks:
¢ More complicated hardware to track dependences
¢ Many more contexts means we need many registers
¢ Without flex. interleaving, limited single thread perf.

¢ Still cannot address horizontal waste!
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Simultaneous Multithreading (SMT)

Younger Instructions

—

¢ Instructions from multiple threads in same cycle

¢ First design that can reduce horizontal waste

¢ Foundational papers: (fun reads if you are enjoying this topic!)
SMT [ISCA'95], “Exploiting Choice” [ISCA96]

CS302 - Spring 2025
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SMT Shares Pipeline Structures

¢ Previously, only caches and predictors shared

¢ With SMT, instructions from diff. threads are interleaved cycle by cycle
¢ Do we need to resolve all potential dependences?

¢ e€.J. Both T, and T, execute add r1, r2, r3
¢ No! Register allocation takes care of that

¢ Recall: once registers become physically mapped, the instructions
can be issued freely

¢ T, add rl1l, r2, r3becomes:add p4, p2, p3
T,: add rl, r2, r3 add p9, p8, pS5
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SMT Implementation

¢ After allocation, scheduler is thread agnostic

¢ Stages that duplicate their state:
¢ Fetch, Decode, Allocate (one map table per thread)
¢ Retire stage needs to know which registers to free

¢ Policies to share the pipeline structures:
¢ Static partitioning i.e., each thread gets %2 the structures
¢ First generation Intel Pentium 4
¢ Dynamic sharing i.e., every entry is tagged
¢ Current Intel and AMD processors (Kaby Lake, Ryzen)

CS302 - Spring 2025
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SMT Implementation

Decode

Reg.
. Fetch: Alloc..Queue: Read ; Exec

p-Cache

Reg.

I-Cache

Regs

. Write; Retire:

D-Cache

Regs

——
Thread Aware
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SMT Design Points

¢ Critical decision: fetch-interleaving policy = .=.. L]
¢ Requirements for throughput: T W
& Enough threads to utilize resources N m
¢ Fewer than needed to stretch dependences
¢ Examples:

¢ Compaqg Alpha EV8 (cancelled)

¢ Intel Hyper-Threading/AMD SMT Technology (x86)
¢ Marvell/Cavium Thunder X2, X3 (ARM)

¢ |IBM POWER9 (POWER ISA)
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Fetch Interleaving Policies

¢ How to decide which threads fetch instructions?

¢ Some may bring in useful instructions
¢ Others may fetch instructions that are stalled

¢ Fundamental goals:
¢ Maximize active use of issue width
¢ Guarantee forward progress
¢ Can’t stop a blocked thread forever, e.g., on synchronization
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Fetch Interleaving Policies

¢ Common Policy: ICOUNT

¢ Thread with fewest instructions in pipe has priority

¢ Adapts to all sources of stalls (cache, FP units, etc...

¢ Increased mem. latency, ICOUNT does worse
¢ Thread’s rare fetch opportunities can still fill pipeline

¢ Holding resources adversely affects other thread(s)
e.g., if red thread is blocked, but it holds 72 resources

Queue ﬁ
—

o
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Regs :B%
_7)_'

).

Exec

j
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Conditions for Good SMT Performance

¢ When threads do not thrash each other’s state
¢ Important structures: branch predictor, ROB, caches

& SMT performs better with ample HW resources
¢ Without horizontal slots to fill, extra context is wasted
¢ Natural fit for wide-issue OoO cores
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Example SPARC T5

¢ 8 threads per core, 16 cores per processor
¢ Out of order, superscalar pipeline
¢ Private L1 and L2
¢ 3.6 GHz Frequency

¢ 2 of out 8 can execute simultaneously

¢ “Modified least recently used” thread selection algorithm
¢ Also known as “round robin”
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Example x86, ARM and IBM CPUs

¢ X86 cores have 2 threads/core

o Intel calls it “Hyperthreading”
o AMD calls it Simultaneous Multithreading

¢ There are also ARM cores with SMT
o Cortex A65-E, Neoverse E1, Cavium Thunder X2, 2 threads/core
o Cavium Thunder X3, 4 threads/core

¢ IBM's POWER CPUs are highly threaded
o POWER 7 had 4 threads/core
o POWER 8 and POWER 10 have 8 threads/core
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SMT Case Study: Alpha EV8

¢ 8-issue OOOQ processor (wide machine)

¢ SMT Support

¢ Multiple sequencers (PC): 4
¢ Alternate fetch from multiple threads
¢ Separate register renaming for each thread
¢ More (4x) physical registers
¢ Thread tags on all shared resources
¢ ROB, LSQ, BTB, etc.
¢ Allow per thread flush/trap/retirement

¢ Process tags on address resources: caches, TLB's, ...

¢ Notice: none of these between allocate and retire

CS302 — Spring 2025
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Scalability of SMT

-~ Decomposed SPEC95 Applications Scientific Applications

300%

200% 250%

H1T| 200%
@27
Oo3T
E4T| 100% -

150%

m1T
@maT
4T

150%

100% -

50% - 50% |

0% -
Turb3d Swm256 Tomcatv Barnes Chess Sort TP

0% -

¢ SPEC benefits less from MT than scientific apps
¢ 4T gives 200% boost in sort/TP, only 125% in turb3d

¢ Although most of the pipeline is SMT-agnostic, cycle time limits
scalability for map table, registers
¢ Beyond 2-4 threads, program dependences limit benefit
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Cache Sharing Amongst Threads

¢ Private caches

¢ Easier to implement — use existing MP like protocol

¢ Shared Caches

¢ Faster to communicate among threads

¢ No coherence overhead
¢ Flexibility in allocating resources

iz

L,
0 Wk

Way 0 Way 1
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Performance Variability in EV8 SMT

1.6

SMT Speedup
(@) — —
o = N

O
o

o
™

I /

0 3 10 15 20 25
Mcycles

EV8 simulation R. Espasa
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Cache and Memory Contention

¢ Apps. may use different sets in a
shared cache
¢ e.g., 3 from SPEC2k6

¢ Blue = few references
red/yellow = many refs.

¢ Running parser and bzip2 on co-
ocated SMT threads will have much
ess contention than parser and
ammp
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Source: “Contention on L2 Caches May Limit the Effectiveness of SMT”, Hily & Seznec, JILP'05 SdM ple (tl me)
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Adjusting SMT Scheduling

¢ Add a cache-usage counter (Hily & Seznec, 2005),

to each L2 cache set

¢ Ticks on requests to same set from each SMT thread
¢ Serves as a proxy for conflicts

¢ OS can read this counter and adjust scheduling

¢ Reduces overall cache miss rate by ~10%
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Constructive Sharing?

¢ Instruction cache behavior can be the opposite
¢ If SMT threads are executing similar code
¢ Very common in database applications or servers

¢ Database workloads are intrinsically multithreaded
¢ Natural fit for using FGMT or SMT

¢ Data from Oracle database apps. shows...

¢ Apx. 35% less instruction cache misses using SMT
(Lo, ISCA'98)

¢ Using smart OS policy, can achieve same miss rates in data cache as a
single thread, with 8-way SMT
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Reminder: Taking Parallelism Further (Lec. 2)

¢ Start with a single instruction CPU....

¢ Add ALUs to make it SIMD, then go to extreme
¢ Making one instruction control hundreds of ALUs
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Reminder: Taking Parallelism Further (Lec. 2.1)

¢ Works great for embarrassingly parallel programs

¢ The problem”? Memory and long latency ops.

¢ Solution: Use huge degree of multithreading
¢ Every clock cycle should have a thread ready to execute
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GPUs

¢ Make cores simple

¢ In order pipelines
¢ No branch prediction

¢ Put many cores in the die
¢ Simple cores are smaller

¢ Take throughput-latency trade-off to extreme
¢ Trillions of integer operations per second
¢ ... but, huge single-thread latency
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GPUs: Two Levels of Multithreading

¢ Vector lane threading

¢ Assign threads to a vector lane (as in SIMD/Vector)
¢ Each lane has one PC

¢ Group threads called “Warp” to run together

¢ Multithreading across pipeline width

¢ Multiple warps can share the pipeline
¢ Multithreading across pipeline depth

CS302 — Spring 2025
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Summary

¢ Need to keep pipeline utilization high

¢ Solution: Multithreading
¢ Blocked multithreading
¢ Fine-grained multithreading
¢ Simultaneous multithreading

¢ Taking multithreading to the limit: GPUs
¢ Next week, will discuss in detail!

CS302 - Spring 2025
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