Computer Systems Lab, lISc

Profiling CUDA kernels using
Nsight developer tools

Shweta Pandey
PhD student,

Indian Institute of Science

Computer Systems Lab, lISc

Executive summary

* Overview of a CUDA program

* Debugging performance of a CUDA program
* Overview of Nvidia Nsight profiling tools

* Tutorial

Computer Systems Lab, lISc

Overview of a CUDA program

matmul_naive<<<grid, block>>>(dA, dB, dC, N);

1. Allocate data on GPU

global__ void matmul_naive(const floatx A, const
2. Copyinput data from Floats C, int N)
CPU to GPU int row = h"lm‘kTrh(.\/~ *ﬁ hlackDim.v +>fhrpadex>-v:_
cudaFree(dA); cudaFree(dB); cudaFree(dC);
3. Launch the CUDA kernel R L ol e
for (int k = 0; k < N; ++k
4. Copy OUtpUt I’eSLIltS from sum += Alrow * N + k] % B[k * N + coll;

GPU tO CPU Clrow * N + col]l = sum;
5. Free allocated memory

Computer Systems Lab, lISc

Debugging perf. of CUDA programs

__global__ void matmul_naive(const floatx A, const floatx B,
floatkx C, int N)

{

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x; i IS the GPU under-utlllzed?
if (row < N & col < N) {
loat sum = 0.f; * |sthe kernel bound by compute or memory?
for (int k = @0; k < N; ++k

T = A 25 [@ 1) 2 DR 23 [& @l e Howisthe L1/L2 cache utilization?

Clrow x N + coll = sum;

1t main(int argc, cha

oat *xdA, xdB, *dC;
cudaMalloc(&dA, bytes); cudaMalloc(&dB, bytes); cudaMalloc(&dC, bytes);

dim3 block(32, 32);
dim3 grid((N + block.x - 1) / block.x, (N + block.y - 1) / block.y);

cudaMemcpy(dA, hA, bytes, cudaMemcpyHostToDevice);
cudaMemcpy (dB, hB, bytes, cudaMemcpyHostToDevice);

matmul_naive<<<grid, block>>>(dA, dB, dC, N); I Are kernel launch overheads killing the performance?

Is the program spending too much time in memory copying?

cudaMemcpy (hC, dC, bytes, cudaMemcpyDeviceToHost);

cudaFree(dA); cudaFree(dB); cudaFree(dC);

return 0;

Computer Systems Lab, lISc

Nvidia’s performance debugging toolbox

Nsight systems (Nsys)

Provides comprehensive application-level performance

Deep dive into top CUDA kernels and understand their resource utilization

Nsight compute (Ncu)
Detailed CUDA kernel level performance

Nvidia Tool Extension (NVTX)

Annotating events, code ranges, and resources in your applications

Computer Systems Lab, lISc

Nsight systems: system level profiler

* System-wide tracing
> One capture spans CPU, GPU, OS runtime, libraries, NVTX—see the entire
application, not just kernels.
> Works seamlessly across multiple GPUs, processes and containers.

* Locate optimisation opportunities
> Pinpoint where execution time is spent.
> Visualise every GPU kernel alongside copies and host work.
> Spot idle gaps or serialisation to guide overlap and tuning.

* Fast, low-overhead collection
> Generating an nsys report typically takes about the same time as the
application run itself.

Computer Systems Lab, lISc

Collect a profile with Nsight systems

$ nvcc -lineinfo -1nvToolsExt
my application.cu -o my application

$ nsys profile -0 report --stats=true ./my_ application

Generated file: report.nsys-rep

$ nsys stats report.nsys-rep # Open in CLI

Alternatively: we can open the file in nsys-ui

Computer Systems Lab, lISc

Nsight compute: kernel profiling tool

* Microscopic kernel insight
> Quantify compute-vs-memory utilisation, SM occupancy and warp efficiency.
> Inspect registers, shared memory, and L1/L2 traffic; expose scheduler stalls.

* Roofline & heat-map visualisation
> Creates a roofline plot plus per-source-line heat-map for every kernel.

* Deeper detail, higher overhead
> Multiple metric passes may be required—profiling takes longer than
application execution.

Computer Systems Lab, lISc

Collect a profile with Nsight compute

$ sudo ncu --set full --target-processes application
./my_application

Generated: report.ncu-rep

$ ncu --import report.ncu-rep --page raw --csv >
raw_report.csv

Alternatively: one can open it using ncu-ui

Computer Systems Lab, lISc

Debugging perf. of a GPU program

__global__ void matmul_naive(const floatx A, const floatx B,
floatkx C, int N)

{

int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (row < N & col < N) {
loat sum = 0.f;
for (int k = 0; k < N; ++k
sum += Alrow x N + k] * B[k * N + coll;
Clrow *x N + col]l = sum;

1t main(int argc, cha

oat *xdA, xdB, *dC;

cudaMalloc(&dA, bytes); cudaMalloc(&dB, bytes); cudaMalloc(&dC, bytes);

dim3 block(32, 32);

dim3 grid((N + block.x - 1) / block.x, (N + block.y - 1) / block.y);

cudaMemcpy(dA, hA, bytes, cudaMemcpyHostToDevice)
cudaMemcpy(dB, hB, bytes, cudaMemcpyHostToDevice)

matmul_naive<<<grid, block>>>(dA, dB, dC, N);

cudaMemcpy (hC, dC, bytes, cudaMemcpyDeviceToHost);

cudaFree(dA); cudaFree(dB); cudaFree(dC);

return 0;

Is the GPU under-utilized?
Is the kernel compute or memory bound?
How is the L1/L2 cache utilization?

Is the program spending too much time in
I memory copying?

I Are kernel launch overheads killing the
performance?

Nsight
Compute

Nsight
System

Computer Systems Lab, lISc

Summary

* Nsysis asystem wide profiling tool — use it first to locate opportunities
for performance improvement

* Ncu provides a microscopic view of a kernel - use it to identify the
performance improvement opportunities within a kernel

Resources:

* Nsys documentation: https://docs.nvidia.com/nsight-
systems/UserGuide/index.html

* Ncudocumentation: https://docs.nvidia.com/nsight-
compute/NsightComputeCli/index.html

* Tutorial: https://github.com/csl-iisc/gpu-profiling-tutorial.git

https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://github.com/csl-iisc/gpu-profiling-tutorial.git

