CS302

Exercise Session 1

Intro to course structure & Amdahl’s law examples

Copyright 2025

CS302 — Spring 2025 Ex.01 - Slide 1



A reminder on who’s who

¢ Professors:

¢ TAS:

¢ SAs:

? {
Simon

CS302 — Spring 2025 . : & - . ' . Ex.01 - Slide 2
o Patrick Rayan William



A reminder on who’s who

¢ Course offered by PARSA lab @ EPFL IC
¢ If you are interested in any topics for projects, come talk to us!

CS302 — Spring 2025 Ex.01 - Slide 3



What are exercise sessions?

¢ Held in the same classroom after lecture on Thursdays

¢ Exercise sessions have three purposes:
& Practical demo of concepts taught in class
€ Solving example problems
€ Time for you to work on homeworks and assignments

¢ Will be conducted by either a professor or TA

¢ TAs and SAs will be around for you to ask for help
@ If there is time remaining after main content of the exercise session
& Lab sessions are the primary sessions for this purpose

CS302 — Spring 2025

Ex.01 - Slide 4



What are lab sessions?

¢ Held every friday 10:15 am-12:00 pm in CM 011 & CM 012
¢ First lab session NEXT Friday

¢ Free time for you to work on assignments and homeworks

¢ Ask questions about the assignment/homework/course content

CS302 — Spring 2025 Ex.01 - Slide 5



Evaluation Components

¢ Programming assignments (30%)
@® Three assignments: 1x OpenMP, 1x MPI, 1x GPU

¢ Homeworks (20%)
@ Lecture-based take home exercises
® Given on Tuesdays, solutions to be submitted by Sunday
@ Total eight exercises over the whole semester
@® 1st homework is a sample (non-graded)
@ Best 6 out of 7 exercises will be used for final grade
® Usually biweekly, sometimes weekly, will be announced on Moodle

¢ Midterm (20%) and Final exam (30%)

CS302 — Spring 2025 Ex.01 - Slide 6



Course Readings

¢ Available here:
¢
€ \Will also be posted on moodle

¢ Taken from textbooks, research papers, online resources
€ Meant to expand material taught in lecture
€ Highly recommended, but not mandatory

¢ This week:
& Culler and Singh, Parallel Computer Architecture, Ch.1

¢ Some readings are lengthy, so you are encouraged to start early

CS302 — Spring 2025 Ex.01 - Slide 7


https://parsa.epfl.ch/course-info/cs302/index.php?page=readings.php

Assignment and Exercise Submissions

¢ Exercise and assignment solutions to be submitted on Moodle

¢ Each assignment must be submitted with a report
& Format will be mentioned on the assignment PDF

¢ No late submissions or deadline exceptions!

¢ Take the opportunity to improve your writing skills
€ Not specific to English grammar!
& Learn how to write precisely
¥ No need to write long answers to questions

CS302 — Spring 2025 Ex.01 - Slide 8



Groups for Assignments

¢ Assignments have to be done in groups of two
& Shares the load while building cooperation/collaboration

¢ Single student groups are not encouraged
€ Unless you are the last person remaining
€ Your partner leaves the course, and you cannot find anyone else

¢ Group form available on Moodle already
& Please fill before next Monday
¥ People who have not filled the form will be paired randomly

¢ Notify us if your partner leaves the course

CS302 — Spring 2025 Ex.01 - Slide 9



Examples of Amdahl's Law

CS302 — Spring 2025 Ex.01 - Slide 10



Problem 1

¢ Assume a program takes 100 secs to run on a single core

¢ The program has two parts:
@ Serial part (10 secs)
@ Parallel part (90 secs)

¢ What is the speedup when the program is executed on 5 cores?

CS302 — Spring 2025 Ex.01 - Slide 11



Problem 1

¢ Serial part (10 secs) remains unchanged

¢ Parallel part can now be distributed amongst 5 cores
@® New execution time = (90 / 5) secs = 18 secs

¢ S0, new total execution time = 10 + 18 secs = 28 secs
¢ Speedup = 100 secs / 28 secs = 3.5x

CS302 — Spring 2025 Ex.01 - Slide 12



Problem 2

¢ For the same problem as before, how many cores would you need for
5x speedup?

CS302 — Spring 2025 Ex.01 - Slide 13



Problem 2

¢ For the same problem as before, how many cores would you need for
5x speedup?

¢ Old execution time = 100 secs

¢ New execution time = Old execution time / speedup
=100/ 5 = 20 secs

¢ Serial phase takes 10 secs (remains unchanged)

¢ Time for parallel phase = (20 — 10) secs = 10 secs

CS302 — Spring 2025 Ex.01 - Slide 14



Problem 2

¢ For the same problem as before, how many cores would you need for
5x speedup?

¢ Time for parallel phase = 10 secs
¢ S0, number of cores required = 90/10 =9

CS302 — Spring 2025 Ex.01 - Slide 15



Problem 3

¢ For the same problem as before, what is the maximum speedup you
can get?

CS302 — Spring 2025 Ex.01 - Slide 16



Problem 3

¢ For the same problem as before, what is the maximum speedup you
can get?

¢ Again, serial phase remains unchanged (10 secs)

¢ Maximum speedup occurs with infinite cores
@ Parallel phase takes (90 / infinity = 0 secs) to finish

¢ Maximum speedup =100/ 10 = 10x

CS302 — Spring 2025 Ex.01 - Slide 17



Problem 4

& Assume you now run your program on a heterogeneous system

® 2x high performance cores
@® 8x normal cores (same as in previous problems)

¢ Each high performance core is 2x as powerful as a normal core

¢ What is the maximum speedup you can get from this system?

CS302 — Spring 2025 Ex.01 - Slide 18



Problem 4

¢ Serial phase can now run on a high performance core
@ Note: it can only use one of the two high performance cores

¢ High performance core is 2x faster
¢ S0, new serial phase execution time =10/2 =5 secs

CS302 — Spring 2025 Ex.01 - Slide 19



Problem 4

¢ Parallel phase can now run on both high performance and normal
cores

¢ 2x high performance core and 8x normal cores

¢ Speedup factor =8 + 2*2 = 12
¢ New execution time of parallel phase =90/ 12 = 7.5 secs

CS302 — Spring 2025 Ex.01 - Slide 20



Problem 4

¢ Total execution time =5 + 7.5 secs = 12.5 secs
¢ Overall speedup of the program = 100/ 12.5 secs = 8x

CS302 — Spring 2025 Ex.01 - Slide 21



Problem 5

¢ Amdahl’s law is not limited to serial and parallel phases
¢ Can also be used to evaluate tradeoffs and oppurtinities

¢ Assume you have a program with:

@® 500 memory instructions
® 1000 arithmetic instructions

¢ Assume memory instructions take 5 clock cycle and arithmetic
instructions take 2 clock cycles to execute

CS302 — Spring 2025 Ex.01 - Slide 22



Problem 5

¢ Assume you have a program with:

@® 500 memory instructions
® 1000 arithmetic instructions

¢ Assume memory instructions take 6 clock cycle and arithmetic
instructions take 2 clock cycles to execute

¢ You want to design a new core such that it can either:
@® Speedup memory instructions by 2x
@® Speedup arithmetic instructions by 2x
@® Which one do you choose?

CS302 — Spring 2025 Ex.01 - Slide 23



Problem 5

¢ Memory instructions take (500 * 6) = 3000 clock cycles
¢ Arithmetic instructions take (1000 * 2) = 2000 clock cycles
¢ Total time = 5000 clock cycles

¢ Option 1: Speedup memory instructions by 2x
@® New time = 3000 / 2 + 2000 = 3500 clock cycles

¢ Option 2: Speedup arithmetic instructions by 2x
@® New time = 3000 + 2000 / 2 = 4000 clock cycles

¢ Option 1 is better!

CS302 — Spring 2025 Ex.01 - Slide 24



Problem 6

¢ Consider the same program as before:

@ Serial part (10 secs)
@ Parallel part (90 secs)

¢ What is its parallel efficiency?

CS302 — Spring 2025 Ex.01 - Slide 25



Problem 6

¢ What is its parallel efficiency?

100 1

& Speedup on n cores = _ =
P P (%+ 10) 0.1+°—7'19

¢ Parallel efficiency = Speedup / Number of cores

1

LR 1

¢ Parallel efficiency = L = 05, = TTios
n n(0.1+7) AN .

CS302 — Spring 2025

Ex.01 - Slide 26



Problem 6

¢ What is its parallel efficiency?

1.0 -

o
(o]

Parallel Efficiency
o
(o)}

o
o
1

0.2 7

0 10 20 30 40 50 60
Number of Cores
CS302 — Spring 2025 Ex.01 - Slide 27



Problem 6

¢ Parallel efficiency < 1 for all number of cores > 1
¢ This is true for many programs, not just our toy program

¢ Does this mean we should not build multi-core CPUs?

CS302 — Spring 2025 Ex.01 - Slide 28



Problem 7

¢ Calculate the costup as a function of number of cores

¢ Consider a CPU with 32MB LLC (~17mm?) and 4GB DRAM

¢ A single core is 1.4mm?

¢ Example CPU with 6 cores:

CS302 — Spring 2025

o

LLC

Core

Core

Core

Core

Core

Core

Ex.01 - Slide 29



Problem 7

¢ Calculate the costup as a function of number of cores

¢ Consider a CPU with 32MB LLC (~17mm?) and 4GB DRAM
¢ A single core is 1.4mm?

¢ Assume, cost of fabrication: 1 CHF/mm?2
¢ Assume, cost of DRAM: 5 CHF/GB
¢ Assume that LLC and DRAM is fixed for all core counts

@® Not always realistic but assume for this toy example

CS302 — Spring 2025 Ex.01 - Slide 30



Problem 7

¢ Cost of building a CPU with n cores = Cost of DRAM + Cost of chip

¢ Cost of DRAM =4 *5 CHF =20 CHF
& Costof LLC=17*1 CHF =17 CHF
& Costof1core=14*1CHF =14 CHF

¢ So,cost=14n+17+20=1.4n + 37
¢ Costup (n) = cost(n) / cost(1) = (1.4n + 37) / 38.4

CS302 — Spring 2025 Ex.01 - Slide 31



Problem 7

¢ Computing is cost-effective if speedup(n) > costup(n)
¢ i.e., speedup(n) / costup(n) > 1

CS302 — Spring 2025 Ex.01 - Slide 32



Problem 7

¢ Computing is cost-effective if speedup(n) > costup(n)
¢ i.e., Speedup(n) / costup(n) > 1

—&— Speedup

0 10 20 30 40 50 60
_ Number of Cores ,
CS302 — Spring 2025 Ex.01 - Slide 33



Problem 7

¢ Computing is cost-effective if speedup(n) > costup(n)
¢ i.e., Speedup(n) / costup(n) > 1

—&— Speedup
—&— Costup

0 10 20 30 40 50 60
_ Number of Cores ,
CS302 — Spring 2025 Ex.01 - Slide 34



Problem 7

¢ Computing is cost-effective if speedup(n) > costup(n)
¢ i.e., Speedup(n) / costup(n) > 1

—&— Speedup
—&— Costup
—8— Speedup/Costup

0 10 20 30 40 50 60
_ Number of Cores ,
CS302 — Spring 2025 Ex.01 - Slide 35



Problem 7

¢ Our CPU is cost-effective for all core counts
¢ Core count = 16 offers the best speedup relative to cost

—&— Speedup
—&— Costup
—8— Speedup/Costup

0 10 20 30 40 50 60
_ Number of Cores ,
CS302 — Spring 2025 Ex.01 - Slide 36



Problem 8

¢ Consider a simple matrix multiplication:
C=A4B

¢ Where A, B and C are N x N matrices

¢ Assume all elements of A, B and C are in single precision floating point
¢ The system has a peak floating-point performance of 10 GFLOPs/s

¢ The memory bandwidth is 5 GB/s

¢ Is this operation memory bound or compute bound?

CS302 — Spring 2025 Ex.01 - Slide 37



Problem 8

L] L
x

for(int 1 = 0; 1 < N; i++) {
for(int j = 0; jJ < N; j++) {
for(int k = 0; k < N; k++) {
C[i][3] += A[il[k] * B[k][3];
}

CS302 — Spring 2025 Ex.01 - Slide 38



Problem 8: Worst case analysis

for(int 1 = 0; 1 < N; i++) {
for(int j = 0; jJ < N; j++) {
for(int k = 0; k < N; k++) {
C[i][3] += A[il[k] * B[k][j];
}

}

¢ There are no registers or caches in the system

¢ For every calculation:
@® Read AJi][K], B[K][j] and CIi][j] from memory
@® Do two operations (one addition and one multiplication)
@® Write CJi][j] into memory

CS302 — Spring 2025 Ex.01 - Slide 39



Problem 8: Worst case analysis

¢ Total number of memory operations = 4
¢ Each element is 4 bytes, so data transferred =4 * 4 = 16 bytes

¢ Operational intensity (Ol) = # operations / amount of data
¢ Ol =2/16 = 0.125 floating point ops / byte (very low!)

¢ Memory bound performance = Ol * BW =0.125 * 5 = 0.625 GFLOPs/s
¢ Peak possible performance = 10 GFLOPs/s
¢ Application is severely memory bound!

CS302 — Spring 2025 Ex.01 - Slide 40



Problem 8: Best case analysis

¢ What if there is an ideal cache?
@® Matrix A and B only need to be read once, C written once
@® Maximum data reuse for the entire operation

2

& Total number of memory operations = 3N?2
¢ Each element is 4 bytes, so amount of data transferred = 12N2 bytes

CS302 — Spring 2025

Ex.01 - Slide 41



Problem 8: Best case analysis

¢ Total amount of data transferred = 12N< bytes
¢ Total number of operations = 2N3 (remains unchanged)

& Operational intensity (Ol) = 2N3/ 12N2 = N / 6 floating point ops/byte
¢ Ol is a function of N!

¢ Memory bandwidth performance = Ol * BW = 0.8N GFLOPs/s
¢ Peak possible performance = 10 GFLOPs/s

¢ Application is memory bound for N <= 12

¢ Application is compute bound for N >= 13

CS302 — Spring 2025 Ex.01 - Slide 42



