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DBMS bigger picture
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Today’s focus

e B*Tree overview

e OQOperations on B* Tree



Index structures

e Recall: 3 alternatives for data entries k*:
e Data record with key value k
e <Kk, rid of data record with search key value k>
e <k, list of rids of data records with search key k>

e Datais often indexed:
® Speeds up lookup
e Mandatory for primary keys

e Useful for selective queries

e Choice is orthogonal to the indexing technique used to locate data entries k*
e Tree-structured indexing techniques support both range searches and equality

searches



Example: range search

Let’s run a query: “Find all students with gpa > 3.0”

e |f dataisin a sorted file, do binary search to
find first such student, then scan to find others
e Cost of maintaining sorted file + performing

binary search in a database can be quite high!
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Example: range search

Let’s run a query: “Find all students with gpa > 3.0”

If data is in a sorted file, do binary search to | k2

find first such student, then scan to find others

Cost of maintaining sorted file + performing .

binary search in a database can be quite high!
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Simple idea: Create an ‘index’ file

Can do binary search on (smaller) index file

Basic idea of B™ Tree!
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B™ Trees: The most widely-used index structure

B-trees (including variants) are the preferred data

structure for external storage

Class of balanced tree data structures:

B-Tree
B* Tree
B Tree
Blink Tree

B Tree

Index entries
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What is a B™ Tree?

e A self-balancing (height balanced), ordered tree data
structure that allows searches, sequential access,

insertions, and deletions in O(loggN) Index entries

® N: Number of leaf nodes -

e F:Fanout / \

e Generalization of a binary search tree, since a 10 ) 35

node can have more than one children Data entries

e Optimized for systems that read and write large
blocks of data



B™ Tree properties

e AB*Treeis an d-way search tree with the following

properties:
e Perfectly balanced

O Every leaf node is at the same depth in the tree
® Every node other than root is at least half-full

o d < #keys < 2d

— disalso called order of the tree

e Nodes are of three types: root, inner, and leaf

® Everyinner node with k keys has k+1 non-null children

Index entries
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B™ Tree example

<node *> | <key>
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Sibling pointers

A

\ 4

10

<value> | <key>

AN

AN

Root node
220
’I| 35 Inner nodes
<35 >35
20 | 31 | >|| 38 | 44 || Leaf nodes

10



B™ Tree another example

eSearch begins at root, and key comparisons direct it to a leaf.
eSearch for 5, 15, all data entries >= 24 ...
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B™ Tree: Lookup/search operation

Looks for a search key v within the tree:

e Start by setting C to the root node

e While the current node (C) is not a leaf node:
a. ldentify the smallest index i where v is less than or equal to the key of i.
b. If no such index exists, set C to the last non-null pointer in C.
c. If vequal to the key of i, move to the right child pointer
d. Otherwise, move to the left child pointer
e |f the leaf node contains an entry with key equal to v return it
e Otherwise, return null = no record with key v exists

Lookup can return the concrete entry or just the position of the appropriate leaf page

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
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B™ Tree: Insert operation

e Find the correct leaf node L

e |Insert data entryinto L in sorted order
e If L has enough space, done!
® Else, splitLinto L and a new node L2
O Redistribute entries evenly, copy up middle key
O Insert index entry pointing to L2 into parent of L
e This can happen recursively
® To splitindex node, redistribute entries evenly, but push up middle key
e Splits “grow” tree; root split increases height

® Tree growth: gets wider or one level taller at top

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
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B Tree example: Insert 8

e Node for 8 will be present in the first leaf node

e Node is already full
e Allocate a new node
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B™ Tree example: Insert 8

Node for 8 will be present in the first leaf node
Node is already full

Allocate a new node

Redistribute evenly
Insert 5 into the parent of the leaf node
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B™ Tree example: Insert 8

Node for 8 will be present in the first leaf node

Node is already full
Allocate a new node
Redistribute evenly

Insert 5 into the parent of the leaf node
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B™ Tree example: Insert 21 now

e Allocate a new node as the leaf node is full

e Split the node with values 19-23 evenly
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B™ Tree example: Insert 21 now

® Allocate a new node as the leaf node is full
e Split the node with values 19-23 evenly

5 13 17 24

/ 5 | 7| 8 19 || 20 || 22 || 23
3 g / 24 || 27
14 || 16 %




B™ Tree example: Insert 21 now

Allocate a new node as the leaf node is full
Split the node with values 19-23 evenly

Move 21 to the parent as well

Since parent is also full, allocate and redistribute
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B™ Tree example: Insert 21 now

Allocate a new node as the leaf node is full
Split the node with values 19-23 evenly

Move 21 to the parent as well
Since parent is also full, allocate and redistribute

Need to allocate one more at the root
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B™ Tree root splitting

e Node split leads to increase in height
e Can avoid splitting by redistributing,

but not done in practice
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Data vs index page split

e Observe how minimum Data page split 2 | 3 I‘ 5 i 7
occupancy is Entry to be ir?serte.d in parent nodc?
(Note that 5 is copied up and continues to
guaranteed in both leaf 5 || 13 || 17 || 24 appear in the leaf.)
and index page splits /
2 | 3 —Il 51| 7 || 8
e Note difference ] s || 13 ‘ 17 I\ 21 || 30
Index page split
between copy-up and Entry to be inserted in parent node
(Note that 17 is pushed up and only appears once
pUSh'uP; be sure you 17 in the index. Contrast this with a leaf split.)

understand the reasons

for this. 5 || 13 21 24
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B™ Tree: Before inserting 28, 6, and 25
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B™ Tree: After inserting 28, 6
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B™ Tree: After inserting 28, 6, 25
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B™ Tree: Delete operation

e Start atroot, find leaf L where entry belongs

e Remove the entry

® |[fLis at least half-full, done!

e |If L hasonly d-1 entries,

o Try to redistribute, borrowing from sibling (adjacent node with same
parent as L)

o If redistribution fails, merge L and sibling
e On merge, delete entry from parent of L
e Either the entry pointing to L, or the one pointing to sibling

* Propagate merge to root, as needed

® Height decreases
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
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B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward
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B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward
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B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward

® Deleting 20 requires redistribution
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B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward

® Deleting 20 requires redistribution

o Middle key gets copied up

17

13

G

16

27

30

22

24

38

39

27

33 || 34

30




B™ Tree example: Delete 24 now

e Remove 24 and merge two nodes and

update the parent
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B™ Tree example: Delete 24 now

e Remove 24 and merge two nodes and

update the parent
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B™ Tree example: Delete 24 now

Remove 24 and merge two nodes and

update the parent
Now, we can further merge inner leaf
nodes and shrink the tree
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B™ Tree example: Delete 24 now

Remove 24 and merge two nodes and

update the parent
Now, we can further merge inner leaf
nodes and shrink the tree

13

17

30

/ 5 7 8
3 8
14 || 16

22

27

29

34

38

39

34




Another take at non-leaf redistribution

e |[nitial tree
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Another take at non-leaf redistribution

® Tree during deletion of 24

e Can distribute an entry from the left

child of the root to the right child
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Another take at non-leaf redistribution

® Entries are redistributed by ‘pushing
through’ the splitting entries in the

parent node
e Redistribution is enough: 20
Also redistributed 17
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Clustered indexes

e The table is physically stored in the sort order specified by the primary key

® (Can be either heap- or index-organized storage

e Some DBMSs always use a clustered index
e If a table does not contain the primary key, the DBMS will automatically make

a hidden primary key

e Meanwhile, other DBMSs do not support them!
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B* Tree traversal

Clustered:

e Traverse to the leftmost leaf page and then
retrieve tuples from all leaf pages

e This will always be better than sorting data for
each query

Non-clustered:

e For non-clustered index, retrieving records in
the order they appear in the leaves causes
redundant page reads

e Better approach: Find all pages the query needs

and then sort them based on their page ID

/ ¢

101 102 103 104

Table pages
/ ¢

101 102 103

Table pages

104
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B™ Tree design choices

e Node size
e Merge threshold
e Variable-length keys

e |Intro-node search

40



Node size

e The slower the storage device, the larger the optimal node size for the tree:
e HDD:~1MB
e SSD: ~10KB

® [n-memory: “512B

e Optimal sizes can vary depending on the workload

® Leaf node scans vs root-to-leaf traversals

41



Merge threshold

e Some DBMS do not always merge nodes when they are half full
e (data sizes are growing, we expect more insertions than deletions)

® Average occupancy rate for nodes is around 67%

e Delaying a merge operation may reduce the amount of reorganization
e Sometimes, it is better to just let smaller nodes exist and then periodically rebuild entire
tree

e Example: PostgreSQL calls their implementation as a “non-balanced” B* Tree
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Variable-length keys

e Pointers
e Store the keys as pointers to the tuple’s attribute
e Variable-length nodes

® The size of each node in the index may vary

e Requires careful memory management
e Padding

e Always pad the key to be max length of the key type
e Key Map / Indirection

e Embed an array of pointers that map to the key + value list within the node
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Intra-node search

e Linear search
® Scan node keys from beginning to end

e High performance using SIMD instructions

Find key 8

6 7 8

9

10

e



Intra-node search

e Linear search
® Scan node keys from beginning to end

e High performance using SIMD instructions

Find key 8

*

10
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Intra-node search

e Linear search
® Scan node keys from beginning to end
® High performance using SIMD instructions
e Binary search
e Jump to middle key, pivot left/right depending

on comparison

Find key 8

10
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Intra-node search

Linear search

® Scan node keys from beginning to end

® High performance using SIMD instructions
Binary search

e Jump to middle key, pivot left/right depending

on comparison

4

5

Find key 8

6 7|8

9

o)

+
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Intra-node search

e Linear search
® Scan node keys from beginning to end
e High performance using SIMD instructions
e Binary search
e Jump to middle key, pivot left/right depending

on comparison

Find key 8

4 5 6 79 10
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Intra-node search

e Linear search
® Scan node keys from beginning to end
e High performance using SIMD instructions
e Binary search
e Jump to middle key, pivot left/right depending on comparison

e Interpolation

e Approximate the location of desired key based on known distribution of keys

_ 4 /56 7 8| 9| 10
X: search key P
arr[]: array where elements

need to be searched (x—arr[low])*(high—low) (8—4)*(6—0)
low: starting index in arr[] Index of x: low + arr[high] —arr[low] =0+ 10—4

high: ending index in arr(]

=4
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Concurrently accessing B™ Tree

e Handling concurrent access for the tree is not straightforward:

e Simple page locking/latching is not enough

e Will protect against “simple” (single page) changes EP

e However, pages depend on each other

e C(lassical technique is lock coupling {r)

e A thread latches both the page and its parent page

® j.e., latch the root first, latch the first level, release the root, latch the
second level etc.

® Prevents conflicts, as pages can only be split when the parent is latched

e No deadlocks, as the latches are ordered (canonical)
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Concurrently accessing B* Tree

e Handling inserts:
e When a leaf is split, the entry is propagated up
e Might go up all the way to the root

e But we only have locked one parent

e Naive lock coupling can result in deadlocks
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Concurrently accessing B™ Tree

Alternative approach: Use restart or optimistic coupling

1.

2
3.
4

First try to insert using simple lock coupling

. If we do not split the inner node, everything is fine | |
Otherwise, release all latches gp | | |
. Restart the operation, but now hold all the latches
all the way to the root |8 I | | I

All operations can now be executed safely

Greatly reduces concurrency
A rare scenario

Simple to implement
52



B™ Tree in practice (cool facts!)

e Typical order: 100. Typical fill-factor: 67%.
® Average fanout =2%*100*0.67 =134

e Typical capacities:

e Height 4:134%=322,417,936 entries A

e Height 3: 1343 = 2,406,104 entries
e Top levels can always be in memory:

® levell-= 1 page = 8 KB

® level2= 134pages= 1MB

® level3= 17,956 pages =140 MB
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Summary

e Tree indexes are ideal for range-searches

Also good for equality search

e B*Treeis a versatile, dynamic data structure

Inserts/deletes leave tree height-balanced
High fanout means depth rarely more than 3 or 4
Almost always better than maintaining a sorted file

67% occupancy on an average

e Most widely-used index in database systems

One of the most optimized component of a DBMS
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