
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Tree-Structured Indexing

(Chapter 14.1-14.4)

DBMS bigger picture

2

next

Queries

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Support DBMS execution engine to

read/write data from pages!

Two types of data structures:

1. Trees (ordered)

2. Hash tables (unordered)

• B+ Tree overview

• Operations on B+ Tree

Today’s focus

3

• Recall: 3 alternatives for data entries k*:

● Data record with key value k

● <k, rid of data record with search key value k>

● <k, list of rids of data records with search key k>

• Data is often indexed:

● Speeds up lookup

● Mandatory for primary keys

● Useful for selective queries

• Choice is orthogonal to the indexing technique used to locate data entries k*

• Tree-structured indexing techniques support both range searches and equality

searches

Index structures

4

Example: range search

Let’s run a query: “Find all students with gpa > 3.0”

• If data is in a sorted file, do binary search to

find first such student, then scan to find others

• Cost of maintaining sorted file + performing

binary search in a database can be quite high!

5

page 1 page 2 page 3 page N

Data file

Example: range search

Let’s run a query: “Find all students with gpa > 3.0”

• If data is in a sorted file, do binary search to

find first such student, then scan to find others

• Cost of maintaining sorted file + performing

binary search in a database can be quite high!

Simple idea: Create an ‘index’ file

• Can do binary search on (smaller) index file

6

page 1 page 2 page 3 page N

Data file

Index file

k1 k2 kN

Basic idea of B+ Tree!

• B-trees (including variants) are the preferred data

structure for external storage

• Class of balanced tree data structures:

● B-Tree

● B+ Tree

● B* Tree

● Blink Tree

● Bε Tree

B+ Trees: The most widely-used index structure

7

20

10 35

Data entries

Index entries

• A self-balancing (height balanced), ordered tree data

structure that allows searches, sequential access,

insertions, and deletions in O(logFN)

● N: Number of leaf nodes

● F: Fanout

• Generalization of a binary search tree, since a

node can have more than one children

• Optimized for systems that read and write large

blocks of data

What is a B+ Tree?

8

20

10 35

Data entries

Index entries

• A B+ Tree is an d-way search tree with the following

properties:

● Perfectly balanced

○ Every leaf node is at the same depth in the tree

● Every node other than root is at least half-full

○ d ≤ #keys ≤ 2d

– d is also called order of the tree

● Nodes are of three types: root, inner, and leaf

● Every inner node with k keys has k+1 non-null children

B+ Tree properties

9

20

10 35

Data entries

Index entries

<20 ≥20

B+ Tree example

10

20

10 35 Inner nodes

Root node

6

≥35<35≥10<10

10 20 31 38 44 Leaf nodes

<node *> | <key>

<value> | <key>

Sibling pointers

B+ Tree another example

11

13 17 24 30

2 3 5 7 14 16 19 20 22 24 27 29 33 34 38 39

•Search begins at root, and key comparisons direct it to a leaf.
•Search for 5, 15, all data entries >= 24 ...

Based on the search for 15, we know it is not in the tree!

B+ Tree: Lookup/search operation

Looks for a search key v within the tree:

• Start by setting C to the root node

• While the current node (C) is not a leaf node:

a. Identify the smallest index i where v is less than or equal to the key of i​.

b. If no such index exists, set C to the last non-null pointer in C.

c. If v equal to the key of i​, move to the right child pointer

d. Otherwise, move to the left child pointer

• If the leaf node contains an entry with key equal to v return it

• Otherwise, return null → no record with key v exists

Lookup can return the concrete entry or just the position of the appropriate leaf page

12
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B+ Tree: Insert operation

• Find the correct leaf node L

• Insert data entry into L in sorted order

● If L has enough space, done!

● Else, split L into L and a new node L2

○ Redistribute entries evenly, copy up middle key

○ Insert index entry pointing to L2 into parent of L

• This can happen recursively

● To split index node, redistribute entries evenly, but push up middle key

• Splits “grow” tree; root split increases height

● Tree growth: gets wider or one level taller at top

13
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B+ Tree example: Insert 8

14

13 17 24

2 3 5 7 14 16 19 20 22 23 24 27 29

● Node for 8 will be present in the first leaf node
● Node is already full
● Allocate a new node

B+ Tree example: Insert 8

15

13 17 24

2 3 14 16 19 20 22 23 24 27 295 7 8

● Node for 8 will be present in the first leaf node
● Node is already full
● Allocate a new node
● Redistribute evenly
● Insert 5 into the parent of the leaf node

B+ Tree example: Insert 8

16

5 13 17 24

2 3 14 16 19 20 22 23 24 27 295 7 8

● Node for 8 will be present in the first leaf node
● Node is already full
● Allocate a new node
● Redistribute evenly
● Insert 5 into the parent of the leaf node

B+ Tree example: Insert 21 now

17

5 13 17 24

2 3 14 16 19 20 22 23 24 27 295 7 8

● Allocate a new node as the leaf node is full
● Split the node with values 19–23 evenly

B+ Tree example: Insert 21 now

18

5 13 17 24

2 3

14 16

19 20 22 23

24 27 29

5 7 8

● Allocate a new node as the leaf node is full
● Split the node with values 19–23 evenly

B+ Tree example: Insert 21 now

19

2 3

14 16

5 13 17 24

19 20

24 27 29

5 7 8

21 22 23

● Allocate a new node as the leaf node is full
● Split the node with values 19–23 evenly
● Move 21 to the parent as well
● Since parent is also full, allocate and redistribute

B+ Tree example: Insert 21 now

20

21 24

2 3

14 16

19 20

24 27 29

5 7 8

21 22 23

5 13

17
● Allocate a new node as the leaf node is full
● Split the node with values 19–23 evenly
● Move 21 to the parent as well
● Since parent is also full, allocate and redistribute
● Need to allocate one more at the root

B+ Tree root splitting

21

21 24

2 3

14 16

19 20

24 27 29

5 7 8

21 22 23

5 13

17
● Node split leads to increase in height
● Can avoid splitting by redistributing,

but not done in practice

• Observe how minimum

occupancy is

guaranteed in both leaf

and index page splits

• Note difference

between copy-up and

push-up; be sure you

understand the reasons

for this.

Entry to be inserted in parent node
(Note that 5 is copied up and continues to
appear in the leaf.)

Data page split

Index page split

Data vs index page split

Entry to be inserted in parent node
(Note that 17 is pushed up and only appears once
in the index. Contrast this with a leaf split.)

5 13 17 30

21 245 13

17

22

2 3 5 7

5 13 17 24

2 3 5 7 8

21

B+ Tree: Before inserting 28, 6, and 25

23

2 3

14 16

21 22 235 7 8 11

5 13 20

30

B+ Tree: After inserting 28, 6

24

2 3

7 8 11

14 165 6

5 7 13 20

30

21 22 23 28

B+ Tree: After inserting 28, 6, 25

25

2 3

7 8 11

14 165 6

5 7

13 30

23 25 28

21 22

20 23

B+ Tree: Delete operation

• Start at root, find leaf L where entry belongs

• Remove the entry

● If L is at least half-full, done!

● If L has only d-1 entries,

○ Try to redistribute, borrowing from sibling (adjacent node with same

parent as L)

○ If redistribution fails, merge L and sibling

• On merge, delete entry from parent of L

● Either the entry pointing to L, or the one pointing to sibling

• Propagate merge to root, as needed

● Height decreases

26
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B+ Tree example: Delete 19 and 20

27

2 3

14 16

19 20 225 7 8

5 13

17

33 34 38

24 27 29

24 30

39

● Deleting 19 is straightforward

B+ Tree example: Delete 19 and 20

28

2 3

14 16

20 225 7 8

5 13

17

33 34 38

24 27 29

24 30

39

● Deleting 19 is straightforward

B+ Tree example: Delete 19 and 20

29

2 3

14 16

20 225 7 8

5 13

17

33 34 38

24 27 29

24 30

39

● Deleting 19 is straightforward
● Deleting 20 requires redistribution

B+ Tree example: Delete 19 and 20

30

2 3

14 16

22 245 7 8

5 13

17

33 34 38

27 29

27 30

39

● Deleting 19 is straightforward
● Deleting 20 requires redistribution

○ Middle key gets copied up

B+ Tree example: Delete 24 now

31

2 3

14 16

22 245 7 8

5 13

17

33 34 38

27 29

27 30

39

● Remove 24 and merge two nodes and
update the parent

B+ Tree example: Delete 24 now

32

2 3

14 16

22 27 295 7 8

5 13

17

33 34 38

27 29

27 30

39

● Remove 24 and merge two nodes and
update the parent

B+ Tree example: Delete 24 now

33

2 3

14 16

22 27 295 7 8

5 13

17

33 34 38

30

39

● Remove 24 and merge two nodes and
update the parent

● Now, we can further merge inner leaf
nodes and shrink the tree

B+ Tree example: Delete 24 now

34

2 3

14 16

22 27 295 7 8

5 13 17 30

33 34 38 39

● Remove 24 and merge two nodes and
update the parent

● Now, we can further merge inner leaf
nodes and shrink the tree

Another take at non-leaf redistribution

35

2 3 14 16

17 185 7 8

5 13 17 20

22

33 34 38

20 21

27 30

3922 24

● Initial tree

27 29

Another take at non-leaf redistribution

36

2 3 14 16

17 185 7 8

5 13 17 20

22

33 34 3820 21

30

39

22 27 29

● Tree during deletion of 24
● Can distribute an entry from the left

child of the root to the right child

Another take at non-leaf redistribution

37

2 3 14 16

17 185 7 8

5 13

17

33 34 3820 21

20 22 30

39

22 27 29

● Entries are redistributed by ‘pushing
through’ the splitting entries in the
parent node

● Redistribution is enough: 20
Also redistributed 17

Clustered indexes

• The table is physically stored in the sort order specified by the primary key

● Can be either heap- or index-organized storage

• Some DBMSs always use a clustered index

● If a table does not contain the primary key, the DBMS will automatically make

a hidden primary key

• Meanwhile, other DBMSs do not support them!

38

B+ Tree traversal

Clustered:

• Traverse to the leftmost leaf page and then

retrieve tuples from all leaf pages

• This will always be better than sorting data for

each query

Non-clustered:

• For non-clustered index, retrieving records in

the order they appear in the leaves causes

redundant page reads

• Better approach: Find all pages the query needs

and then sort them based on their page ID
39

101 102 103 104

Scan direction

Table pages

101 102 103 104

Scan direction

Table pages

B+ Tree design choices

• Node size

• Merge threshold

• Variable-length keys

• Intro-node search

40

Node size

• The slower the storage device, the larger the optimal node size for the tree:

● HDD: ~1MB

● SSD: ~10KB

● In-memory: ~512B

• Optimal sizes can vary depending on the workload

● Leaf node scans vs root-to-leaf traversals

41

Merge threshold

• Some DBMS do not always merge nodes when they are half full

● (data sizes are growing, we expect more insertions than deletions)

● Average occupancy rate for nodes is around 67%

• Delaying a merge operation may reduce the amount of reorganization

• Sometimes, it is better to just let smaller nodes exist and then periodically rebuild entire

tree

● Example: PostgreSQL calls their implementation as a “non-balanced” B+ Tree

42

Variable-length keys

• Pointers

● Store the keys as pointers to the tuple’s attribute

• Variable-length nodes

● The size of each node in the index may vary

● Requires careful memory management

• Padding

● Always pad the key to be max length of the key type

• Key Map / Indirection

● Embed an array of pointers that map to the key + value list within the node

43

Intra-node search

• Linear search

● Scan node keys from beginning to end

● High performance using SIMD instructions

44

8 94 5 6 107

Find key 8

Intra-node search

• Linear search

● Scan node keys from beginning to end

● High performance using SIMD instructions

45

8 94 5 6 107

Find key 8

Intra-node search

• Linear search

● Scan node keys from beginning to end

● High performance using SIMD instructions

• Binary search

● Jump to middle key, pivot left/right depending

on comparison

46

8 94 5 6 107

Find key 8

Intra-node search

• Linear search

● Scan node keys from beginning to end

● High performance using SIMD instructions

• Binary search

● Jump to middle key, pivot left/right depending

on comparison

47

8 94 5 6 107

Find key 8

Intra-node search

• Linear search

● Scan node keys from beginning to end

● High performance using SIMD instructions

• Binary search

● Jump to middle key, pivot left/right depending

on comparison

48

8 94 5 6 107

Find key 8

Intra-node search

• Linear search

● Scan node keys from beginning to end

● High performance using SIMD instructions

• Binary search

● Jump to middle key, pivot left/right depending on comparison

• Interpolation

● Approximate the location of desired key based on known distribution of keys

49

8 94 5 6 107
x: search key

arr[]: array where elements

need to be searched

low: starting index in arr[]

high: ending index in arr[]

Concurrently accessing B+ Tree

• Handling concurrent access for the tree is not straightforward:

● Simple page locking/latching is not enough

● Will protect against “simple” (single page) changes

● However, pages depend on each other

• Classical technique is lock coupling

● A thread latches both the page and its parent page

● i.e., latch the root first, latch the first level, release the root, latch the

second level etc.

● Prevents conflicts, as pages can only be split when the parent is latched

● No deadlocks, as the latches are ordered (canonical)

50

Concurrently accessing B+ Tree

• Handling inserts:

● When a leaf is split, the entry is propagated up

● Might go up all the way to the root

● But we only have locked one parent

• Naive lock coupling can result in deadlocks

51

Concurrently accessing B+ Tree

Alternative approach: Use restart or optimistic coupling

1. First try to insert using simple lock coupling

2. If we do not split the inner node, everything is fine

3. Otherwise, release all latches

4. Restart the operation, but now hold all the latches

all the way to the root

5. All operations can now be executed safely

• Greatly reduces concurrency

• A rare scenario

• Simple to implement
52

B+ Tree in practice (cool facts!)

• Typical order: 100. Typical fill-factor: 67%.

● Average fanout = 2*100*0.67 = 134

• Typical capacities:

● Height 4: 1344 = 322,417,936 entries

● Height 3: 1343 = 2,406,104 entries

• Top levels can always be in memory:

● Level 1 = 1 page = 8 KB

● Level 2 = 134 pages = 1 MB

● Level 3 = 17,956 pages = 140 MB

53

Summary

• Tree indexes are ideal for range-searches

● Also good for equality search

• B+ Tree is a versatile, dynamic data structure

● Inserts/deletes leave tree height-balanced

● High fanout means depth rarely more than 3 or 4

● Almost always better than maintaining a sorted file

● 67% occupancy on an average

• Most widely-used index in database systems

● One of the most optimized component of a DBMS

54

	Slide 1: Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap
	Slide 2: DBMS bigger picture
	Slide 3
	Slide 4
	Slide 5: Example: range search
	Slide 6: Example: range search
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: B+ Tree: Lookup/search operation
	Slide 13: B+ Tree: Insert operation
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: B+ Tree: Delete operation
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Clustered indexes
	Slide 39: B+ Tree traversal
	Slide 40: B+ Tree design choices
	Slide 41: Node size
	Slide 42: Merge threshold
	Slide 43: Variable-length keys
	Slide 44: Intra-node search
	Slide 45: Intra-node search
	Slide 46: Intra-node search
	Slide 47: Intra-node search
	Slide 48: Intra-node search
	Slide 49: Intra-node search
	Slide 50: Concurrently accessing B+ Tree
	Slide 51: Concurrently accessing B+ Tree
	Slide 52: Concurrently accessing B+ Tree
	Slide 53: B+ Tree in practice (cool facts!)
	Slide 54: Summary

