C5-300: Data-Intensive Systems

Tree-Structured Indexing

(Chapter 14.1-14.4)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=PiL

DBMS bigger picture

r

Queries Query Optimization
Support DBMS execution engine to and Execution

read/write data from pages! Relational Operators

hext Files and Access Methods
Two types of data structures:

Buffer Management
1. Trees (ordered)

isk \Y
2. Hash tables (unordered) Disk Space Management

Today’s focus

e B*Tree overview

e OQOperations on B* Tree

Index structures

e Recall: 3 alternatives for data entries k*:
e Data record with key value k
e <Kk, rid of data record with search key value k>
e <k, list of rids of data records with search key k>

e Datais often indexed:
® Speeds up lookup
e Mandatory for primary keys

e Useful for selective queries

e Choice is orthogonal to the indexing technique used to locate data entries k*
e Tree-structured indexing techniques support both range searches and equality

searches

Example: range search

Let’s run a query: “Find all students with gpa > 3.0”

e |f dataisin a sorted file, do binary search to
find first such student, then scan to find others
e Cost of maintaining sorted file + performing

binary search in a database can be quite high!

pagel page 2

page 3

page N

Data file

Example: range search

Let’s run a query: “Find all students with gpa > 3.0”

If data is in a sorted file, do binary search to | k2

find first such student, then scan to find others

Cost of maintaining sorted file + performing .

binary search in a database can be quite high!

page 1

Simple idea: Create an ‘index’ file

Can do binary search on (smaller) index file

Basic idea of B™ Tree!

page 2

page 3

\ Index file
\

page N

Data file

B™ Trees: The most widely-used index structure

B-trees (including variants) are the preferred data

structure for external storage

Class of balanced tree data structures:

B-Tree
B* Tree
B Tree
Blink Tree

B Tree

Index entries

20

N

10] |l 35

Data entries

What is a B™ Tree?

e A self-balancing (height balanced), ordered tree data
structure that allows searches, sequential access,

insertions, and deletions in O(loggN) Index entries

® N: Number of leaf nodes -

e F:Fanout / \

e Generalization of a binary search tree, since a 10) 35

node can have more than one children Data entries

e Optimized for systems that read and write large
blocks of data

B™ Tree properties

e AB*Treeis an d-way search tree with the following

properties:
e Perfectly balanced

O Every leaf node is at the same depth in the tree
® Every node other than root is at least half-full

o d < #keys < 2d

— disalso called order of the tree

e Nodes are of three types: root, inner, and leaf

® Everyinner node with k keys has k+1 non-null children

Index entries

20

AN

10] |l 35

Data entries

B™ Tree example

<node *> | <key>

10

Sibling pointers

A

\ 4

10

<value> | <key>

AN

AN

Root node
220
’I| 35 Inner nodes
<35 >35
20 | 31 | >|| 38 | 44 || Leaf nodes

10

B™ Tree another example

eSearch begins at root, and key comparisons direct it to a leaf.
eSearch for 5, 15, all data entries >= 24 ...

1

24

/

16

3 17
| 19 || 20 || 22

30
€ > 2

4

27

29

Based on the search for 15, we know it is not in the tree!

33

34

38

39

11

B™ Tree: Lookup/search operation

Looks for a search key v within the tree:

e Start by setting C to the root node

e While the current node (C) is not a leaf node:
a. ldentify the smallest index i where v is less than or equal to the key of i.
b. If no such index exists, set C to the last non-null pointer in C.
c. If vequal to the key of i, move to the right child pointer
d. Otherwise, move to the left child pointer
e |f the leaf node contains an entry with key equal to v return it
e Otherwise, return null = no record with key v exists

Lookup can return the concrete entry or just the position of the appropriate leaf page

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

12

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B™ Tree: Insert operation

e Find the correct leaf node L

e |Insert data entryinto L in sorted order
e If L has enough space, done!
® Else, splitLinto L and a new node L2
O Redistribute entries evenly, copy up middle key
O Insert index entry pointing to L2 into parent of L
e This can happen recursively
® To splitindex node, redistribute entries evenly, but push up middle key
e Splits “grow” tree; root split increases height

® Tree growth: gets wider or one level taller at top

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

13

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B Tree example: Insert 8

e Node for 8 will be present in the first leaf node

e Node is already full
e Allocate a new node

A
——

> 14

16

13

17

24

> 19

20

22

23 |

24

27

29

14

B™ Tree example: Insert 8

Node for 8 will be present in the first leaf node
Node is already full

Allocate a new node

Redistribute evenly
Insert 5 into the parent of the leaf node

———
-
—-——————_
—
-
f—
-

il
0

14 || 16

B™ Tree example: Insert 8

Node for 8 will be present in the first leaf node

Node is already full
Allocate a new node
Redistribute evenly

Insert 5 into the parent of the leaf node

14

16

13

17

24

> 19

20

22

23 |

24

27

29

16

B™ Tree example: Insert 21 now

e Allocate a new node as the leaf node is full

e Split the node with values 19-23 evenly

14

16

13

17

24

-—ﬂ

A

19

20

22

23

24

27

29

17

B™ Tree example: Insert 21 now

® Allocate a new node as the leaf node is full
e Split the node with values 19-23 evenly

5 13 17 24

/ 5 | 7| 8 19 || 20 || 22 || 23
3 g / 24 || 27
14 || 16 %

B™ Tree example: Insert 21 now

Allocate a new node as the leaf node is full
Split the node with values 19-23 evenly

Move 21 to the parent as well

Since parent is also full, allocate and redistribute

13

17

24

19

20

14

16

24

27

29

23

19

B™ Tree example: Insert 21 now

Allocate a new node as the leaf node is full
Split the node with values 19-23 evenly

Move 21 to the parent as well
Since parent is also full, allocate and redistribute

Need to allocate one more at the root

14

16

19

20

24

27

29

22

23

20

B™ Tree root splitting

e Node split leads to increase in height
e Can avoid splitting by redistributing,

but not done in practice

&

16

17
13 21 24
19 || 20
/) 24 || 27 || 29
(21 22 || 23

21

Data vs index page split

e Observe how minimum Data page split 2 | 3 I‘ 5 i 7
occupancy is Entry to be ir?serte.d in parent nodc?
(Note that 5 is copied up and continues to
guaranteed in both leaf 5 || 13 || 17 || 24 appear in the leaf.)
and index page splits /
2 | 3 —Il 51| 7 || 8
e Note difference] s || 13 ‘ 17 I\ 21 || 30
Index page split
between copy-up and Entry to be inserted in parent node
(Note that 17 is pushed up and only appears once
pUSh'uP; be sure you 17 in the index. Contrast this with a leaf split.)

understand the reasons

for this. 5 || 13 21 24

22

B™ Tree: Before inserting 28, 6, and 25

30

~

13

20

/ 5 7 8 11
14

16

21

22

23

23

B™ Tree: After inserting 28, 6

30

13

20

14

16

11

&

22

23

28

24

B™ Tree: After inserting 28, 6, 25

13

30

20

23

14

16

28

23 || 25

21

22

25

B™ Tree: Delete operation

e Start atroot, find leaf L where entry belongs

e Remove the entry

® |[fLis at least half-full, done!

e |If L hasonly d-1 entries,

o Try to redistribute, borrowing from sibling (adjacent node with same
parent as L)

o If redistribution fails, merge L and sibling
e On merge, delete entry from parent of L
e Either the entry pointing to L, or the one pointing to sibling

* Propagate merge to root, as needed

® Height decreases
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

26

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward

17

13

16

19

24

30

20

22

38

39

24

27

33 || 34
29

27

B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward

17

13

16

24

30

20

22

38

39

24

27

33 || 34
29

28

B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward

® Deleting 20 requires redistribution

17

13

G

16

20

24

30

22

38

39

24

27

33 || 34
29

29

B™ Tree example: Delete 19 and 20

e Deleting 19 is straightforward

® Deleting 20 requires redistribution

o Middle key gets copied up

17

13

G

16

27

30

22

24

38

39

27

33 || 34

30

B™ Tree example: Delete 24 now

e Remove 24 and merge two nodes and

update the parent

17

13

16

22

27

30

24

38

39

27

29

33 || 34

31

B™ Tree example: Delete 24 now

e Remove 24 and merge two nodes and

update the parent

17

13

16

27

30

22

27

29

33

34

38

39

27

32

B™ Tree example: Delete 24 now

Remove 24 and merge two nodes and

update the parent
Now, we can further merge inner leaf
nodes and shrink the tree

17

13

/ 5 7 8
3 8
14 || 16

30

22

27

29

34

38

39

33

B™ Tree example: Delete 24 now

Remove 24 and merge two nodes and

update the parent
Now, we can further merge inner leaf
nodes and shrink the tree

13

17

30

/ 5 7 8
3 8
14 || 16

22

27

29

34

38

39

34

Another take at non-leaf redistribution

e |[nitial tree

22

13

17

20

14

16

27

30

20

21

39

33 || 34 || 38
29

35

Another take at non-leaf redistribution

® Tree during deletion of 24

e Can distribute an entry from the left

child of the root to the right child

I
|

o=

\

22

/

~

N
\

13

20

18

16

&

N\

\
\

30

29

20 || 21

22 || 27

D

34

38

39

36

Another take at non-leaf redistribution

® Entries are redistributed by ‘pushing
through’ the splitting entries in the

parent node
e Redistribution is enough: 20
Also redistributed 17

16

17
13 20 || 22 || 30
22 || 27 || 29 >
% (’JV
20 | 21 33 || 34

38

39

37

Clustered indexes

e The table is physically stored in the sort order specified by the primary key

® (Can be either heap- or index-organized storage

e Some DBMSs always use a clustered index
e If a table does not contain the primary key, the DBMS will automatically make

a hidden primary key

e Meanwhile, other DBMSs do not support them!

38

B* Tree traversal

Clustered:

e Traverse to the leftmost leaf page and then
retrieve tuples from all leaf pages

e This will always be better than sorting data for
each query

Non-clustered:

e For non-clustered index, retrieving records in
the order they appear in the leaves causes
redundant page reads

e Better approach: Find all pages the query needs

and then sort them based on their page ID

/ ¢

101 102 103 104

Table pages
/ ¢

101 102 103

Table pages

104

39

B™ Tree design choices

e Node size
e Merge threshold
e Variable-length keys

e |Intro-node search

40

Node size

e The slower the storage device, the larger the optimal node size for the tree:
e HDD:~1MB
e SSD: ~10KB

® [n-memory: “512B

e Optimal sizes can vary depending on the workload

® Leaf node scans vs root-to-leaf traversals

41

Merge threshold

e Some DBMS do not always merge nodes when they are half full
e (data sizes are growing, we expect more insertions than deletions)

® Average occupancy rate for nodes is around 67%

e Delaying a merge operation may reduce the amount of reorganization
e Sometimes, it is better to just let smaller nodes exist and then periodically rebuild entire
tree

e Example: PostgreSQL calls their implementation as a “non-balanced” B* Tree

42

Variable-length keys

e Pointers
e Store the keys as pointers to the tuple’s attribute
e Variable-length nodes

® The size of each node in the index may vary

e Requires careful memory management
e Padding

e Always pad the key to be max length of the key type
e Key Map / Indirection

e Embed an array of pointers that map to the key + value list within the node

43

Intra-node search

e Linear search
® Scan node keys from beginning to end

e High performance using SIMD instructions

Find key 8

6 7 8

9

10

e

Intra-node search

e Linear search
® Scan node keys from beginning to end

e High performance using SIMD instructions

Find key 8

*

10

45

Intra-node search

e Linear search
® Scan node keys from beginning to end
® High performance using SIMD instructions
e Binary search
e Jump to middle key, pivot left/right depending

on comparison

Find key 8

10

46

Intra-node search

Linear search

® Scan node keys from beginning to end

® High performance using SIMD instructions
Binary search

e Jump to middle key, pivot left/right depending

on comparison

4

5

Find key 8

6 7|8

9

o)

+

47

Intra-node search

e Linear search
® Scan node keys from beginning to end
e High performance using SIMD instructions
e Binary search
e Jump to middle key, pivot left/right depending

on comparison

Find key 8

4 5 6 79 10

48

Intra-node search

e Linear search
® Scan node keys from beginning to end
e High performance using SIMD instructions
e Binary search
e Jump to middle key, pivot left/right depending on comparison

e Interpolation

e Approximate the location of desired key based on known distribution of keys

_ 4 /56 7 8| 9| 10
X: search key P
arr[]: array where elements

need to be searched (x—arr[low])*(high—low) (8—4)*(6—0)
low: starting index in arr[] Index of x: low + arr[high] —arr[low] =0+ 10—4

high: ending index in arr(]

=4

49

Concurrently accessing B™ Tree

e Handling concurrent access for the tree is not straightforward:

e Simple page locking/latching is not enough

e Will protect against “simple” (single page) changes EP

e However, pages depend on each other

e C(lassical technique is lock coupling {r)

e A thread latches both the page and its parent page

® j.e., latch the root first, latch the first level, release the root, latch the
second level etc.

® Prevents conflicts, as pages can only be split when the parent is latched

e No deadlocks, as the latches are ordered (canonical)

50

Concurrently accessing B* Tree

e Handling inserts:
e When a leaf is split, the entry is propagated up
e Might go up all the way to the root

e But we only have locked one parent

e Naive lock coupling can result in deadlocks

51

Concurrently accessing B™ Tree

Alternative approach: Use restart or optimistic coupling

1.

2
3.
4

First try to insert using simple lock coupling

. If we do not split the inner node, everything is fine | |
Otherwise, release all latches gp | | |
. Restart the operation, but now hold all the latches
all the way to the root |8 I | | I

All operations can now be executed safely

Greatly reduces concurrency
A rare scenario

Simple to implement
52

B™ Tree in practice (cool facts!)

e Typical order: 100. Typical fill-factor: 67%.
® Average fanout =2%*100*0.67 =134

e Typical capacities:

e Height 4:134%=322,417,936 entries A

e Height 3: 1343 = 2,406,104 entries
e Top levels can always be in memory:

® levell-= 1 page = 8 KB

® level2= 134pages= 1MB

® level3= 17,956 pages =140 MB

53

Summary

e Tree indexes are ideal for range-searches

Also good for equality search

e B*Treeis a versatile, dynamic data structure

Inserts/deletes leave tree height-balanced
High fanout means depth rarely more than 3 or 4
Almost always better than maintaining a sorted file

67% occupancy on an average

e Most widely-used index in database systems

One of the most optimized component of a DBMS

54

	Slide 1: Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap
	Slide 2: DBMS bigger picture
	Slide 3
	Slide 4
	Slide 5: Example: range search
	Slide 6: Example: range search
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: B+ Tree: Lookup/search operation
	Slide 13: B+ Tree: Insert operation
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: B+ Tree: Delete operation
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Clustered indexes
	Slide 39: B+ Tree traversal
	Slide 40: B+ Tree design choices
	Slide 41: Node size
	Slide 42: Merge threshold
	Slide 43: Variable-length keys
	Slide 44: Intra-node search
	Slide 45: Intra-node search
	Slide 46: Intra-node search
	Slide 47: Intra-node search
	Slide 48: Intra-node search
	Slide 49: Intra-node search
	Slide 50: Concurrently accessing B+ Tree
	Slide 51: Concurrently accessing B+ Tree
	Slide 52: Concurrently accessing B+ Tree
	Slide 53: B+ Tree in practice (cool facts!)
	Slide 54: Summary

