CS5-300: Data-Intensive Systems

Storage, Files, and Indexing

(Chapters 13.1-13.4 14.1 14.2)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pi-L

The big picture

Want to Relational
store data Model
Logica
| > 5 ,
esign

ERto
Relational

ER
Models

N\ 7
@
& '

@\'/‘@\’/
g%\ %\

Relational “l%
Algebra, SQL S
Want to access data
SQL Result

Query Optimization A

and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

\y

: Disk Storage,
) Emz% Files
Storage/‘
.

File and access layer
Database as a “file of records”

* The database is stored as a collection of files
* Files are maintained by the underlying OS

® Operations:
* Create/delete files
* |Insert/delete/modify record
* Retrieve one particular record (point access) Specified using record id
e Retrieve range of records (range access) Satisfying some conditions
e Retrieve all records (scan)

File and access methods layer

e File Organization
e How is data organized in files?

e Indexing
e How to make data access efficient?

e Storage
e How is data physically stored on disk?

File organization and indexing

e File Organization
e Heap & Sorted Files
e |ndexing

e Meta-data
e System Catalog

File organization
age / Block

instructor Each file is made of pages record 0 [10101 | Srinivasan | Comp. Sci. | 65000
record 1 12121 Wu Finance 90000
| ID ‘ name | deptname | salary | record 2 15151 | Mozart Music 40000
. record 3 | 22222 | Einstein Physics 95000
22222 | Einstein | Physics | 95000 Each page is made of records record ¢ | 32343 | EiSaid | History | 60000
12121 | Wu Finance 90000 record 5 | 33456 | Gold Physics 87000
32343 | El Said History 60000 record 6 | 45565 | Katz Comp. Sci. | 75000
2 i . . record 7 58583 Califieri History 62000
ol gl B A record is a sequence of fields eeord8 | 76593 | Sigh | Finance | 50000
76766 | Crick | Biology | 72000 Y-~~~
10101 | Srinivasan | Comp. Sci. | 65000 wcord 11 NOEEEE TG, éng_' 20000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000 -
33456 | Gold Physics 87000 |
76543 | Singh Finance goooo [e : Records

....................

~—
N~

\

'\

Storage Pages / Block

Page format (N-ary storage model)

e Nowadays: Row store
e Page = collection of slots

e FEach slot stores one record

e Page format should support

e Page format depends on record format

Record identifier: <page id, slot_number>
Option 2: <unig> -> <page_id, slot_number>

Fast searching, insertion, deletion

Fixed-Length
Variable-Length

RH1 0962 Jane 30
RH2 7658 John 45
RH3 3589 Jim 20
RH4 5523 Susan 52
S s
PAGE HEADER RHI1| 0962
Jane | 30 | RH2 | 7658 | John
45 JRH3 | 3589 |Jim| 20 | RH4
552F | Susan '52 f
S Y /'
N\ \ /
< N i
\
\ \/
\
\ /\
NN
TR,

L)

Record formats: fixed length

Schema is stored in system catalog

e Number of fields is fixed for all records of a table

e Domain is fixed for all records of a table

Each field has fixed length
Finding i" field is done via arithmetic

Simple: 53 bytes each!

record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

type instructor = record

ID varchar (5);

name varchar(20);

dept_name varchar (20);
salary numeric (8,2);

end

20 bytes each
(eventual padding)

5 bytes I I 8 bytes
—— \(\——
10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22227 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim FElec. Eng. 80000

Page format: fixed-length records

Packed Unpacked, Bitmap
Slot 1 Slot 1
Slot 3
Free
c e Space © e
Slot N {/{ L
Slot M
N Page 1 | O| 1| M
JA \5\ Header /Z/ M 3 2 1

Number of records Number of slots

e Record id = <page id, slot #>

e |n the packed case, moving records for free space management changes rid
(maybe unacceptable)

Variable-Length Records

e \Variable-length records arise in database systems in several ways:

e Storage of multiple record types in a file

e Record types that allow variable lengths for one or more fields such as

strings (varchar)

e Attributes are stored in order

Variable length attributes represented by fixed size (offset, length),

with actual data stored after all fixed length attributes

e Null values represented by null-value bitmap D _| name depname | salary |
10101 I Srinivasan | Comp. Sci. | 65000 |
Null bitmap (stored in 1 byte)
0000
21,51 26, 10| 36,10 | 65000 10101 | Srinivasan |Comp. Sci.
Bytes 0 4 8 12 20 21 26 36 45

. AT

10

Variable-Length Records: Slotted Page Structure

e Slotted page header contains:
 number of record entries
* end of free space in the block
* |ocation and size of each record

e Records can be moved around within a page to keep them contiguous
with no empty space between them

Block Header Records

Size # Entries
Location

= Free Space =i

End of Free Space

Variable-length records: Issues

e |f afield grows and no longer fits?
e Shift all subsequent fields

e Ifrecord no longer fits in page?
® [Move a record to another page after modification

e What if record size > page size?
e SQL Server record size = 8KB
e DB2 record size = page size

12

Row store (N-ary storage model): Summary

Advantages

* Fast inserts, updates, and deletes.

* Good for queries that need the entire tuple (OLTP)

e Can use index-oriented physical storage for clustering.

Disadvantages

* Not good for scanning large portions of the table and/or a
subset of the attributes

* Not ideal for compression because of multiple value domains
within a single page

What about storing an entire column contiguously in a
block of data?

Decomposition Storage Model (DSM)

ColB

ColC

Row #0
Row #1
Row #2
Row #3
Row #4
Row #5

Col A
| a0
a1
=2l
a3
a4
=1

O
ocflcicic o o
SN S N SN = —
w

ColC

~2

13

Columnar Representation

® Benefits:
* Reduced IO if only some attributes are accessed
* Improved CPU cache performance

10101

* Improved compression 12121
® Vector processing on modern CPU architectures ,'33',
® Drawbacks 32343
33456

* Cost of tuple reconstruction from columnar 45565
representation 58583

. 76543

* Cost of tuple deletion and update 16766
* Cost of decompression 83821
98345

® Columnar representation found to be more efficient for
decision support than row-oriented representation

® Traditional row-oriented representation preferable for
transaction processing

® Some databases support both representations
* Called hybrid row/column stores

Srinivasan

Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt
Kim

' Comp. Sci.

Finance
Music

Physics
History
Physics

Comp. Sci.

History
Finance
Biology

Comp. Sci.

Elec. Eng.

65000 |
90000
40000
95000
60000
87000
75000
62000
80000
72000
92000
80000

14

Partition Attributes Across (PAX)

Horizontally partition rows into groups
Then vertically partition their attributes into columns

Global header contains directory with the offsets to the
file's row groups

Each row group contains its own meta-data header
about its contents

VLDB 2001 paper by Ailamaki et al.
First adopted by Oracle 9i
Now used at Google, Showflake, Microsoft, etc.

Row #0
Row #1
Row #2
Row #3
Row #4
Row #5

header

PAX File

=
8
a0 [allla2 [bo b1 02 HR

..

header Eg
a3 a4 a5 § b3 b4 b5 [Ha
- _ E

15

File Representation based on PAX

Index Data
e Optimized Row Columnar (ORC) and Row group 1 Row Data Coll Index
. . Col2 Index
Parquet: file formats with columnar e
- ol3 Index
storage inside file Stripe Footer ot Indox
e \ery popular for big-data applications Index Data | cois index
e ORC file format shown on right: Row group 2 _
Row Data Coll Data
Col2 Data
Stripe Footer Col3 Data
Col4 Data
Col5 Data
IndexlData
Row group n Row Data

Stripe Footer

File Footer

File organization and indexing

e File Organization
e Heap & Sorted Files
e Indexing

e Meta-data
e System Catalog

17

Alternative file organizations

Many alternatives exist, each good for some situations, and not so good in others:

e Heap files: Suitable when typical access is a file scan retrieving all records

e Sorted (Sequential) Files: Best for retrieval in some order, or for retrieving a range

of records

e Index File Organizations: (will cover shortly..)

18

Heap (unordered) File Organization

Simplest file structure

Contains records in no particular order
Need to be able to scan, search based on rid

e The DBMS can locate a page on disk given by using

1.

2.

Linked List: Header page holds pointers to a list of free pages
and a list of data pages

Page Directory: DBMS maintains special pages that track
locations of data pages along with the amount of free space
on each page

As file grows and shrinks, disk pages are allocated and

de-allocated

Need to manage free space

Page0

Data

Directory

Pagel

Data

Page100

Data

19

Sorted (Sequential) File Organization

e Suitable for applications that require sequential processing of the entire file
e The records in the file are ordered by a search-key

10101 |Srinivasan | Comp. Sci. | 65000 ~7
12121 [Wu Finance 90000 -

15151 |Mozart Music 40000 -7
22222 | Einstein Physics 95000 ~7
32343 |El Said History 60000 _7
33456 |Gold Physics 87000 —7
45565 |Katz Comp. Sci. | 75000 _7
58583 | Califieri History 62000 —‘7
76543 | Singh Finance 80000 _7
76766 | Crick Biology 72000 -‘7
83821 |Brandt Comp. Sci. | 92000 —7
98345 |Kim Elec. Eng. | 80000 _7

L

Sequential File Organization (Cont.)

e Deletion — use pointer chains
e Insertion —locate the position where the
record is to be inserted
e if there is free space insert there
e if nofree space, insert the record in an
overflow block
® |n either case, pointer chain must be
updated

e Need to reorganize the file
from time to time to restore
sequential order

J \N\N\J\y NN

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000
32222 | Verdi | Music | 48000

21

Heap file vs. sorted file

e Which is better?
® Let us design a cost model to find out

e Simplified cost model:
® Based only on IO cost

O 10 is the dominating cost
o Ignore CPU and other overheads
o Ignore effect of prefetching and sequential access

e Consider only average case

22

More assumptions...

e Single record insert and delete

e Equality search: exactly one match (e.g., search on key)
® (Question: what if more or fewer?

e Heap Files:

® Insert always appends at the end of the file

e Sorted Files:
® Files compacted after deletions
® Search done on file-ordering attribute

23

Cost of operations (in # of I/O’s)

B: Number of data pages

Heap File Sorted File notes...
Scan all records B B
Equality Search 0.5B log, B assumeni;ta;‘c!tly one
Range Search B (log, B) + (#match pages)
Insert 2 (log,B) + 2*(B/2) must R & W
Delete 0.5B+1 (log,B) + 2*(B/2) must R & W

24

File indexing and organization

e File Organization
e Heap & Sorted Files

e Indexing (entire lecture 5 will be about indexing)

e Meta-data
e System Catalog

25

Indexing

e |nstructor with ID =222227
e |nstructor with ID = 334567
e |nstructor with ID = 838217
e Updates?

e Salary >=90K?

e Indexing
e Multiple efficient access paths

Index
\ onlID
ins trfuctor' \ /
ID name dept_nam\e salafv
1 J
record 0 \ 10101 Srinivasan Comp. Sci.\ 650
record 1 \ 12121 | Wu Finance \ 90000
record 2 _&1515 Mozart Music \ 40000
record 3 2222p Einstein Physics \ 95000
record 4 323? El Said History \ 60000
record 5 33456 Gold Physics 87000
record 6 45565 Katz Comp. Sci. 75000
record 7 58583 Califieri History \ 62000
record 8 76543 Singh Finance \ 80000
record 9 7676 Crick Biology ‘»72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000

Sorted File on ID

26

Indexing

e Sometimes, we want to retrieve records by specifying the values in one or more
fields, e.g.,
e Find all students in the "CS" department
e Find all students with a gpa >3

e Anindex on a file speeds up selections on the search key fields for the index
® The search key is NOT necessarily a key (e.g., no need to be unique)

e |Index and keys
® Any subset of the fields in a relation can be the search key for an index on the relation
e Can have multiple indices on any number of fields

27

Index search conditions

e Search condition =
<search key, comparison operator>
Examples...
(1) Condition: Department = "CS"
e Search key: Department
e Comparison operator: equality (=)

(2) Condition: GPA >3
e Search key: GPA
e Comparison operator: greater-than (>)

28

File organization and indexing

e Index Classification
e (Clustered/Unclustered
e Sparse/Dense

e Types of Indexes
e (lustering

e Secondary Key

e Indexing

e Secondary Non-Key
e |ndexing techniques

e Hash vs tree
e Choosing search key

29

Index classification

¢ (lustered vs Unclustered
e Dense vs Sparse
e Indexing field

e Key } 2
® Non-Key

e Physical ordering of the file

® Ordered on indexing field 5
e Not ordered on indexing field

—2X2=4

Physical Ordering on Indexing Field

Ordered

Indexing Primary Index

Not Ordered
Secondary Index (Key)

Field Clustering Index

Secondary Index (Non Key)

Some of the material for this topic is taken from "Database Systems", EImasri, Navathe.

30

File organization and indexing

e Indexing

\

e Index Classification
e (Clustered/Unclustered
e Sparse/Dense

31

Index classification: Clustering

e Clustered vs. unclustered: If the order of the data records is similar to the order of
the index data entries, then the index is clustered

Index entries UNCLUSTERED
CLUSTERED direct search for

data entries

/ | \ Data Data / \

= p—— = -

/A AN S ontries (IndexFile) entries
78 L\ W (Data file) __

Data Records Data Records

32

Clustered vs unclustered index

Assuming Alternative 2 for data entries and data records stored in a Heap file:

e To build clustered index, first sort the Heap file
e Keeping some free space on each page for future inserts
e QOverflow pages may be needed for inserts

® The order of data records is similar—but not identical to—the sort order

Index entries
CLUSTERED direct search for UNCLUSTERED
data entries

4 _ . AN Data Data / L. . \
Y4 I entries (Index File) entries ha ey
78 L\ \\¥ (Data file) //)@/ WM
Data Records Data Records

33

Clustered vs unclustered index

e Cost of retrieving records found in range scan:
e Clustered: cost = # pages in file w/matching records
e Unclustered: cost = # of matching index data entries

e What are the tradeoffs?
e C(Clustered Pros:
o Efficient for range searches
e C(Clustered Cons:
o Expensive to maintain (on the fly or sloppy with reorganization)

34

Dense Index Files

Dense index — Index record appears for every
search-key value in the file.
E.g. index on ID attribute of instructor relation

10101

\ 4

12121

Y

10101

Srinivasan

Comp. Sci.

65000

15151

22222

Y

32343

Y

Y

33456

45565

v

Y

58583

76543

Y

76766

Y

Y

83821

98345

Y

4

12121 |Wu Finance 90000
15151 |Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 |Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. | 80000

J AVAVAVAVAVAVAVAVAVAVAY

35

Dense Index Files (Cont.)

Dense index on dept_name, with instructor file sorted

on dept_name

Biology

Comp. Sci.

Elec. Eng.

Finance

History

Music

Physics

a/al

76766 | Crick Biology 72000
10101 | Srinivasan| Comp. Sci. | 65000
45565 | Katz Comp. Sci. | 75000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri | History 62000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
33465 | Gold Physics 87000

JRRRRRRRRARN

36

Sparse Index Files

10101

32343

76766

Sparse Index: contains index records for

only some search-key values.

e Applicable when records are sequentially
ordered on search-key

To locate a record with search-key value K

we:

e Find index record with largest search-key
value < K

e Search file sequentially starting at the
record to which the index record points

/]

10101 |Srinivasan| Comp. Sci.| 65000 -
12121 |Wu Finance 90000 .
15151 |Mozart Music 40000 .
22222 |Einstein | Physics 95000 -
32343 | El Said History 60000 -
33456 |Gold Physics 87000 -
45565 |Katz Comp. Sci.| 75000

58583 |Calitieri | History 62000 -
76543 |Singh Finance 80000 -
76766 | Crick Biology 72000 -
83821 |Brandt Comp. Sci.| 92000 =
98345 |Kim Elec. Eng. | 80000 _

JVVVVVVVVVVV

37

Multilevel Index

If index does not fit in memory, access
becomes expensive.

Solution: treat index kept on disk as a
sequential file and construct a sparse

index on it.
e outer index — a sparse index of the basic
index
* inner index — the basic index file

If even outer index is too large to fit in
main memory, yet another level of index
can be created, and so on.

Indices at all levels must be updated on
insertion or deletion from the file.

outer index

>

index

| block O

\\\

index
block 1

>

inner index

data
block O

N\
\\

\
\
\\

N

data ¥
L

\block 1

Secondary Index Example

e Secondary index on salary
field of instructor

* Index record points to a
bucket that contains pointers
to all the actual records with
that particular search-key
value.

e Secondary indices on
unsorted columns have to be
dense

40000

60000

62000

65000

AN NN

72000

75000

|

30000

37000

90000

/

92000

/

95000

10101 | Srinivasan | Comp. Sci. | 65000
12121 |Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri | History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000

AR

39

B*-Tree Index Files

e B'-treeis a rooted tree satisfying the following properties:
* All paths from root to leaf are of the same length
* Each node that is not a root or a leaf has between [n/2]and n
children.
* Aleaf node has between [(n-1)/2] and n-1 values
* Special cases:
* Ifthe rootis not a leaf, it has at least 2 children.
* |ftherootis aleaf (that is, there are no other nodes in the
tree), it can have between 0 and (n-1) values

* General structure

‘Pl‘Kl ‘ P, ‘ ‘Pn_l‘Kn_l‘ P,

40

Example of a B*-Tree (n = 4)

.y

|.| .\/Iozxartlll | | I |~< --- Root node
LIEinsteinl I Gold ||| —ﬂ ‘_Il—S?inivasa.nl .l | I | I ;“-“' Internal nodes
Leaf nodes-»
Y
Brandt| [Califieri]) | Crick[{>{ [Finstein| [F1Said] | [4»|] Gold || Kate || Kim|[4»] [Mozart[[Singh [| [4»{ [Srinivason]| [Wu [|

7=

Y YYYYY YYY YYY

10101 | Srinivasan | Comp. Sci. | 65000
12121 Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 | Calificri History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. 5ci. | 92000
08345 | Kim Elec. Eng: 80000

41

Example of a B*-Tree (n = 6)

; El Said | Mozart

|
Brandt | | Califieri Crick | | Einstein »| | El Said Gold Katz Kim >

Mozart

Singh

Srinivasan

42

File organization and indexing

e Indexing

\

e Types of Indexes

Primary

Clustering
Secondary Key
Secondary Non-Key

43

Primary index

e Indexing Field = Key

e Fileis physically sorted on indexing field

e Oneindex entry per block

e Index pointers can be block pointers (anchors)
e Sparse Index

Index file
(<K(i), P(i)> entries)

Block anchor
primary key Block
value pointer

(Primary
key field)

Name

Birth_date

Job

Salary

Aaron, Ed

Abboat, Diane

Acosta, Marc I

Adams, John

Adams, Robin

Akers, Jan I

Alexander, Ed

Alfred, Bob

Allen, Sam |

Aaron, Ed

Adams, John

Allen, Troy

Alexander, Ed

Anders, Keith

Allen, Troy

Anderson, Zach —

Anderson, Rob |

Arnold, Mack

Anderson, Zach

Angel, Joe

Archer, Sue |

Arnold, Mack

Arnold, Steven

Atkins, Timothy |

Wong, James

Wong, James

Wood, Donald

Wright, Pam

Woods, Manny l

Wright, Pam

Wyatt, Charles

Zimmer, Byron |

-

Clustered index

* Indexing Field = Non-Key
e Fileis physically sorted on indexing field
e Oneindex entry per distinct value

Index file
(<K(i), P(i)> entries)

e Index pointer is block pointer to first
. Clustering Block
block with the value fedvalie _painter

1

(Clustering Data file
field)
Dept_number | Name | Ssn | Job |Birth_date | Salary

1

1
1
2

WIW(w|N

e Sparse Index

alaflw|w

(o3 B« >0 B B IR VRN I V)
"T | 9

[$ BN I N6)]

(>0 o> Ne >l o>}

|0 |(®|®»

45

Index classification: Summary

Indexing Al feojeiezl Index : Sparse or
Type of Index : sorted on) Index Pointers
Field : o Entries Dense?
indexing field?
. One per
Primary Key Yes block Block anchor Sparse
Clustering Non-Key Yes One per Block pointer Sparse
value
Secondary Ke Ke No One per Record pointer Dense
Y REY Y record P
One per Record pointer/
Secondary Non-Key No record/ Variable length/ Dense
Non-Key . :
value indirection

46

File organization and indexing

e File Organization

e Heap & Sorted Files

e Indexing

e System Catalog

Index Classification

e (Clustered/Unclustered

e Sparse/Dense
Types of Indexes

e Primary

e (Clustering

e Secondary Key

e Secondary Non-Key
Indexing techniques

e Hash vs tree
Choosing search key

47

Hash-based index

e Good for equality selections

e File = a collection of buckets

o Bucket = primary page plus 0 or more overflow pages

® Hash function h: h(r.search_key) = bucket for record r

h(age)=00

.
.
.
-
.
.
o
.
.
o
.
.
-
o
-

-
-
.
.,
-
.
.
.
‘e
-

.
0
-
.
-
.
.
.
.
‘e
.

-
-
o
.

e
-
e
.

Jones, 40, 6003 X g 3000

Tracy, 44, 5004 |
y < | 5004
Asby, 25, 3000 & “F~ 5004

Basu, 33, 4003 <G
Bristo, 29, 2007 <G —— 4003
Cass, 50, 5004 |~ ‘: 2007
Danil, 22,6003 jd— [] 6003
— 6003

Employee file ‘
hashed on age '

L
-

.
..
.
.0
-

.
.
-
-
-
-
-
-
-
.

. File of <sal, rid> pairs |
hashed on sal :

L2
-
-

o
-
.

Tree-based index

e Good for range selections

® |leaves contain data entries sorted by search key value
e B+ tree: all root->leaf paths have equal length (height)

Start search:

age < 12

12 <=age <78

1 7
2 8

age >= 78

8| | 9
L
|

Leaf Level
L1

L2

L

Danil, 22. 6003

Basu, 33, 4003

Smith, 44, 3000

] Asby. 25, 3000

Jones, 40, 6003

Tracy, 44, 5004 I

e

-.-ae.
J Bristo, 29, 2007

DC

-.-ae.
Cass, 50, 5004 K‘/

49

Indexing decisions are driven by queries

Select E.dno
From Employees E
Where E.age > 40

e Would you build a b+tree index or hash index?
e Hint: it’s not an equality query

e Would you build a clustered index?

e When would a B+tree be suboptimal?
e Hint: think about selectivity

50

File organization and indexing

e File Organization

e Heap & Sorted Files

e Indexing

e Meta-d ata\

e System Catalog

e |ndex Classification
e (Clustered/Unclustered
e Sparse/Dense
e Types of Indexes
e Primary
e (Clustering
e Secondary Key
e Secondary Non-Key
e |ndexing techniques
e Hash vs tree
e Choosing search key

51

Choosing a search key

Select sID
From Student
Where sName = ‘Mary’ And GPA > 3.9

e Can build an index on sname
e \What index would this be? Hash or tree?

e Can build index on GPA
e \What index would this be? Hash or tree?

e How about <sname, gpa> together?

52

Composite search key

e Search on field combination.
® Equality query: Every field value is equal to a
constant. E.g. wrt <sal,age> index:
e age=12 and sal =75
® Range query: Some field value is not a
constant. E.g.:
® age =12; or age=12 and sal > 20
e Data entries in index sorted by search key for
range queries

® Lexicographic order.

, 11

/12

12

// 13

<age>

10

20

N 75

N\ 80

Examples of
composite key indexes using lexicographic
order
11,80
12,10 ,b<°e &
12,20 &~ e
13,75 bob 12 10
<age, sal> cal 11 80
joe 12 20
_ 10,127 sue 13 /5
_ 20127
13} Data records
80 11 sorted by name
<sal, age>

<sal>

53

Composite search key: Tradeoffs

Select AVG(E.sal)
From Employees E

Where E.age = 25
AND E.sal BETWEEN 3000 AND 5000

e Do we build index on <age,sal>, <sal,age>?
e What index would this be? Hash or tree?
e Do we really need data file?

e “index-only evaluation” is possible

File organization and indexing

e Meta-data
e System Catalog

55

System catalogs

For each relation:

® name, file name, file structure (e.g., Heap file)
e attribute name and type, for each attribute

® index name, for each index

® integrity constraints

For each index:

® structure (e.g., B+ tree) and search key fields
For each view:

® view name and definition

Plus stats, authorization, buffer pool size, etc.

Catalogs are themselves stored as relations!

56

System catalog in Oracle

> desc user_tables
Name

TABLE_NAME
TABLESPACE_NAME
CLUSTER_NAME
IOT_NAME

STATUS

PCT_FREE
PCT_USED

> desc user_tab_columns
Name

OWNER
TABLE_NAME
COLUMN_NAME
DATA_TYPE
DATA_TYPE_MOD
DATA_TYPE_OWNER
DATA_LENGTH
DATA_PRECISION
DATA_SCALE
NULLABLE

NOT NULL

NOT NULL
NOT NULL
NOT NULL

NOT NULL

VARCHAR2(128)
VARCHAR2(30)
VARCHAR2(128)
VARCHAR2(128)
VARCHAR2(8)
NUMBER
NUMBER

VARCHAR2(128)
VARCHAR2(128)
VARCHAR2(128)
VARCHAR2(128)
VARCHAR2(3)
VARCHAR2(128)
NUMBER
NUMBER
NUMBER
VARCHAR2(1)

57

System catalog in Oracle

> select * from student;

SID NAME AGE
Al1234 John 23
Bl Xavier 24
A21341 Scott 21
C12948291 Benjamin 25
1948 Ben 29

> select table_name, num_rows, blocks, avg _row_len from user_tables;
TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN
STUDENT 5 5 20

> select table_name, column_name, data_type, data_length from user_tab_columns;

TABLE_NAME COLUMN_NAME DATA_TYPE DATA_LENGTH

STUDENT SID CHAR 10
STUDENT NAME VARCHAR2 32
STUDENT AGE NUMBER 22

58

Summary

Database organized as a collection of files

Several file organizations (heap, sorted, ...) with tradeoffs

Files are a collection of pages

Several page layouts (NSM, DSM, ...) with tradeoffs

Pages contain a collection of records

Several record formats (fixed, variable length...) with tradeoffs

Index is a quick way to find records

Several index types with tradeoffs

One size does not fit all!

59

