
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Storage, Files, and Indexing
(Chapters 13.1-13.4 14.1 14.2)

Want to
store data

Conceptual
Design

Logical
Design

Physical
Design Database

Storage

Want to access data

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Result

ER
Models

Relational
Model

ER to
Relational

Relational
Algebra, SQL

SQL

2

The big picture

Disk Storage,
Files

File and access layer
Database as a “file of records”

• The database is stored as a collection of files
• Files are maintained by the underlying OS

• Operations:
• Create/delete files

• Insert/delete/modify record

• Retrieve one particular record (point access) Specified using record id

• Retrieve range of records (range access) Satisfying some conditions

• Retrieve all records (scan)

3

• File Organization

● How is data organized in files?

• Indexing

● How to make data access efficient?

• Storage

● How is data physically stored on disk?

4

File and access methods layer

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

5

File organization and indexing

6

Storage

…

Files
…

…

Pages / Block

Records

File

Page / Block
Fields

File organization
instructor Each file is made of pages

Each page is made of records

A record is a sequence of fields

• Nowadays: Row store

• Page = collection of slots

• Each slot stores one record

• Record identifier: <page_id, slot_number>

• Option 2: <uniq> -> <page_id, slot_number>

• Page format should support

● Fast searching, insertion, deletion

• Page format depends on record format

● Fixed-Length

● Variable-Length

7

Page format (N-ary storage model)
RH1 0962 Jane 30

RH2 7658 John 45

RH3 3589 Jim 20

RH4 5523 Susan 52

• Schema is stored in system catalog

• Number of fields is fixed for all records of a table

• Domain is fixed for all records of a table

• Each field has fixed length

• Finding ith field is done via arithmetic

8

Record formats: fixed length

5 bytes

20 bytes each
(eventual padding)

8 bytes

Simple: 53 bytes each!

• Record id = <page id, slot #>

• In the packed case, moving records for free space management changes rid

(maybe unacceptable)

9

Page format: fixed-length records

10

Variable-Length Records
• Variable-length records arise in database systems in several ways:

● Storage of multiple record types in a file
● Record types that allow variable lengths for one or more fields such as

strings (varchar)

• Attributes are stored in order
• Variable length attributes represented by fixed size (offset, length),

with actual data stored after all fixed length attributes
• Null values represented by null-value bitmap

11

Variable-Length Records: Slotted Page Structure
• Slotted page header contains:

• number of record entries
• end of free space in the block
• location and size of each record

• Records can be moved around within a page to keep them contiguous
with no empty space between them

• If a field grows and no longer fits?

● Shift all subsequent fields

• If record no longer fits in page?

● Move a record to another page after modification

• What if record size > page size?

● SQL Server record size = 8KB

● DB2 record size = page size

12

Variable-length records: Issues

13

Row store (N-ary storage model): Summary
Advantages
• Fast inserts, updates, and deletes.
• Good for queries that need the entire tuple (OLTP)
• Can use index-oriented physical storage for clustering.
Disadvantages
• Not good for scanning large portions of the table and/or a

subset of the attributes
• Not ideal for compression because of multiple value domains

within a single page

What about storing an entire column contiguously in a
block of data?

Decomposition Storage Model (DSM)

• Benefits:

• Reduced IO if only some attributes are accessed

• Improved CPU cache performance

• Improved compression

• Vector processing on modern CPU architectures

• Drawbacks

• Cost of tuple reconstruction from columnar
representation

• Cost of tuple deletion and update

• Cost of decompression

• Columnar representation found to be more efficient for
decision support than row-oriented representation

• Traditional row-oriented representation preferable for
transaction processing

• Some databases support both representations

• Called hybrid row/column stores 14

Columnar Representation

15

Partition Attributes Across (PAX)
Horizontally partition rows into groups

Then vertically partition their attributes into columns

Global header contains directory with the offsets to the

file's row groups

Each row group contains its own meta-data header

about its contents

VLDB 2001 paper by Ailamaki et al.

First adopted by Oracle 9i

Now used at Google, Snowflake, Microsoft, etc.

16

File Representation based on PAX

• Optimized Row Columnar (ORC) and
Parquet: file formats with columnar
storage inside file

• Very popular for big-data applications
• ORC file format shown on right:

Row group 1

Row group 2

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

17

File organization and indexing

Many alternatives exist, each good for some situations, and not so good in others:

• Heap files: Suitable when typical access is a file scan retrieving all records

• Sorted (Sequential) Files: Best for retrieval in some order, or for retrieving a range

of records

• Index File Organizations: (will cover shortly..)

18

Alternative file organizations

19

Heap (unordered) File Organization
• Simplest file structure

• Contains records in no particular order

• Need to be able to scan, search based on rid

• The DBMS can locate a page on disk given by using
1. Linked List: Header page holds pointers to a list of free pages

and a list of data pages
2. Page Directory: DBMS maintains special pages that track

locations of data pages along with the amount of free space
on each page

• As file grows and shrinks, disk pages are allocated and

de-allocated

● Need to manage free space

20

Sorted (Sequential) File Organization

• Suitable for applications that require sequential processing of the entire file
• The records in the file are ordered by a search-key

21

Sequential File Organization (Cont.)

• Deletion – use pointer chains
• Insertion –locate the position where the

record is to be inserted
● if there is free space insert there
● if no free space, insert the record in an

overflow block
● In either case, pointer chain must be

updated
• Need to reorganize the file

 from time to time to restore
 sequential order

• Which is better?

● Let us design a cost model to find out

• Simplified cost model:

● Based only on IO cost

○ IO is the dominating cost

○ Ignore CPU and other overheads

○ Ignore effect of prefetching and sequential access

● Consider only average case

22

Heap file vs. sorted file

• Single record insert and delete

• Equality search: exactly one match (e.g., search on key)

● Question: what if more or fewer?

• Heap Files:

● Insert always appends at the end of the file

• Sorted Files:

● Files compacted after deletions

● Search done on file-ordering attribute

23

More assumptions…

Heap File Sorted File notes…

Scan all
records

Equality
Search

Range
Search

Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

Range
Search

Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

0.5B log2 B assumes exactly one
match!

Range
Search

Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

0.5B log2 B assumes exactly one
match!

Range
Search

B (log2 B) + (#match
pages)

Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

0.5B log2 B assumes exactly one
match!

Range
Search

B (log2 B) + (#match
pages)

Insert 2 (log2B) + 2*(B/2) must R & W

Delete

Heap File Sorted File notes…

Scan all records B B

Equality Search 0.5B log
2
 B

assumes exactly one
match!

Range Search B (log
2
 B) + (#match pages)

Insert 2 (log
2
B) + 2*(B/2) must R & W

Delete 0.5B + 1 (log
2
B) + 2*(B/2) must R & W

24

B: Number of data pages

Cost of operations (in # of I/O’s)

• File Organization

• Heap & Sorted Files

• Indexing (entire lecture 5 will be about indexing)

• Meta-data
● System Catalog

25

File indexing and organization

• Instructor with ID = 22222?
• Instructor with ID = 33456?
• Instructor with ID = 83821?

• Updates?

• Salary >= 90K?

• Indexing
● Multiple efficient access paths

26Sorted File on ID

Index
on Salary

Index
on ID

Indexing

instructor

• Sometimes, we want to retrieve records by specifying the values in one or more

fields, e.g.,

● Find all students in the "CS" department

● Find all students with a gpa > 3

• An index on a file speeds up selections on the search key fields for the index

● The search key is NOT necessarily a key (e.g., no need to be unique)

• Index and keys

● Any subset of the fields in a relation can be the search key for an index on the relation

● Can have multiple indices on any number of fields

27

Indexing

• Search condition =

<search key, comparison operator>

Examples…
 (1) Condition: Department = "CS"

• Search key: Department

• Comparison operator: equality (=)

 (2) Condition: GPA > 3

• Search key: GPA

• Comparison operator: greater-than (>)

28

Index search conditions

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

29

• Index Classification

• Clustered/Unclustered

• Sparse/Dense

• Types of Indexes

• Primary

• Clustering

• Secondary Key

• Secondary Non-Key

• Indexing techniques

• Hash vs tree

• Choosing search key

File organization and indexing

• Clustered vs Unclustered
• Dense vs Sparse
• Indexing field

● Key
● Non-Key

• Physical ordering of the file
● Ordered on indexing field
● Not ordered on indexing field

30

2

2

2 X 2 = 4

Physical Ordering on Indexing Field

Ordered Not Ordered

Indexing
Field

Key Primary Index Secondary Index (Key)

Non Key Clustering Index Secondary Index (Non Key)

Some of the material for this topic is taken from "Database Systems", Elmasri, Navathe.

Index classification

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

31

• Index Classification

• Clustered/Unclustered

• Sparse/Dense

• Types of Indexes

• Primary

• Clustering

• Secondary Key

• Secondary Non-Key

• Indexing techniques

• Hash vs tree

• Choosing search key

File organization and indexing

• Clustered vs. unclustered: If the order of the data records is similar to the order of
the index data entries, then the index is clustered

Index entries

Data
entries

direct search for

(Index File)

(Data file)

Data Records

data entries
CLUSTERED

UNCLUSTERED

Index classification: Clustering

32

Data
entries

Data Records

Assuming Alternative 2 for data entries and data records stored in a Heap file:

• To build clustered index, first sort the Heap file

● Keeping some free space on each page for future inserts

• Overflow pages may be needed for inserts

● The order of data records is similar—but not identical to—the sort order

Index entries

Data
entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data
entries

Data Records

CLUSTERED UNCLUSTERED

33

Clustered vs unclustered index

• Cost of retrieving records found in range scan:

● Clustered: cost = # pages in file w/matching records

● Unclustered: cost ≈ # of matching index data entries

• What are the tradeoffs?

● Clustered Pros:

○ Efficient for range searches

● Clustered Cons:

○ Expensive to maintain (on the fly or sloppy with reorganization)

34

Clustered vs unclustered index

35

Dense Index Files

• Dense index — Index record appears for every
search-key value in the file.

• E.g. index on ID attribute of instructor relation

36

Dense Index Files (Cont.)

• Dense index on dept_name, with instructor file sorted
on dept_name

37

Sparse Index Files

• Sparse Index: contains index records for
only some search-key values.
● Applicable when records are sequentially

ordered on search-key
• To locate a record with search-key value K

we:
● Find index record with largest search-key

value < K
● Search file sequentially starting at the

record to which the index record points

38

Multilevel Index
• If index does not fit in memory, access

becomes expensive.
• Solution: treat index kept on disk as a

sequential file and construct a sparse
index on it.
• outer index – a sparse index of the basic

index
• inner index – the basic index file

• If even outer index is too large to fit in
main memory, yet another level of index
can be created, and so on.

• Indices at all levels must be updated on
insertion or deletion from the file.

39

Secondary Index Example

• Secondary index on salary
field of instructor

• Index record points to a
bucket that contains pointers
to all the actual records with
that particular search-key
value.

• Secondary indices on
unsorted columns have to be
dense

B+-Tree Index Files

40

• B+-tree is a rooted tree satisfying the following properties:
• All paths from root to leaf are of the same length
• Each node that is not a root or a leaf has between ⎡n/2⎤ and n

children.
• A leaf node has between ⎡(n–1)/2⎤ and n–1 values
• Special cases:

• If the root is not a leaf, it has at least 2 children.
• If the root is a leaf (that is, there are no other nodes in the

tree), it can have between 0 and (n–1) values

• General structure

41

42

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

43

• Index Classification

• Clustered/Unclustered

• Sparse/Dense

• Types of Indexes

• Primary

• Clustering

• Secondary Key

• Secondary Non-Key

• Indexing techniques

• Hash vs tree

• Choosing search key

File organization and indexing

• Indexing Field = Key

• File is physically sorted on indexing field

• One index entry per block

• Index pointers can be block pointers (anchors)

• Sparse Index

44

Primary index

• Indexing Field = Non-Key

• File is physically sorted on indexing field

• One index entry per distinct value

• Index pointer is block pointer to first

block with the value

• Sparse Index

45

Clustered index

46

Type of Index
Indexing

Field

File physically
sorted on

indexing field?

Index
Entries

Index Pointers
Sparse or
Dense?

Primary Key Yes
One per

block
Block anchor Sparse

Clustering Non-Key Yes
One per

value
Block pointer Sparse

Secondary Key Key No
One per
record

Record pointer Dense

Secondary
Non-Key

Non-Key No
One per
record/
value

Record pointer/
Variable length/

indirection
Dense

Index classification: Summary

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

47

• Index Classification

• Clustered/Unclustered

• Sparse/Dense

• Types of Indexes

• Primary

• Clustering

• Secondary Key

• Secondary Non-Key

• Indexing techniques

• Hash vs tree

• Choosing search key

File organization and indexing

48

• Good for equality selections

● File = a collection of buckets

○ Bucket = primary page plus 0 or more overflow pages

● Hash function h: h(r.search_key) = bucket for record r

Hash-based index

• Good for range selections
● Leaves contain data entries sorted by search key value

● B+ tree: all root->leaf paths have equal length (height)

49

Tree-based index

Select E.dno
From Employees E
Where E.age > 40

Indexing decisions are driven by queries

• Would you build a b+tree index or hash index?

● Hint: it’s not an equality query

• Would you build a clustered index?

• When would a B+tree be suboptimal?

• Hint: think about selectivity

50

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

51

• Index Classification

• Clustered/Unclustered

• Sparse/Dense

• Types of Indexes

• Primary

• Clustering

• Secondary Key

• Secondary Non-Key

• Indexing techniques

• Hash vs tree

• Choosing search key

File organization and indexing

Select sID
From Student
Where sName = ‘Mary’ And GPA > 3.9

Choosing a search key

• Can build an index on sname

● What index would this be? Hash or tree?

• Can build index on GPA

● What index would this be? Hash or tree?

• How about <sname, gpa> together?

52

Composite search key
• Search on field combination.

● Equality query: Every field value is equal to a

constant. E.g. wrt <sal,age> index:

• age=12 and sal =75

● Range query: Some field value is not a

constant. E.g.:

• age =12; or age=12 and sal > 20

• Data entries in index sorted by search key for

range queries

● Lexicographic order.

53

sue 13 75

bob

12

10

20
8011

12

name
age sa

l

cal
joe

<age, sal>

12,20
12,10
11,80

13,75

<sal, age>

20,12
10,12

75,13
80,11

<age>

11
12
12
13

<sal>

10
20
75
80

Data records
sorted by name

Examples of
composite key indexes using lexicographic

order

Select AVG(E.sal)
From Employees E
Where E.age = 25

 AND E.sal BETWEEN 3000 AND 5000

Composite search key: Tradeoffs

• Do we build index on <age,sal>, <sal,age>?

• What index would this be? Hash or tree?

• Do we really need data file?

● “index-only evaluation” is possible

• File Organization

• Heap & Sorted Files

• Indexing

• Meta-data
● System Catalog

55

File organization and indexing

• For each relation:

● name, file name, file structure (e.g., Heap file)

● attribute name and type, for each attribute

● index name, for each index

● integrity constraints

• For each index:

● structure (e.g., B+ tree) and search key fields

• For each view:

● view name and definition

• Plus stats, authorization, buffer pool size, etc.

Catalogs are themselves stored as relations!

56

System catalogs

> desc user_tables
 Name Null? Type
 --- -------- ----------------------------
 TABLE_NAME NOT NULL VARCHAR2(128)
 TABLESPACE_NAME VARCHAR2(30)
 CLUSTER_NAME VARCHAR2(128)
 IOT_NAME VARCHAR2(128)
 STATUS VARCHAR2(8)
 PCT_FREE NUMBER
 PCT_USED NUMBER
 ...

> desc user_tab_columns
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 TABLE_NAME NOT NULL VARCHAR2(128)
 COLUMN_NAME NOT NULL VARCHAR2(128)
 DATA_TYPE VARCHAR2(128)
 DATA_TYPE_MOD VARCHAR2(3)
 DATA_TYPE_OWNER VARCHAR2(128)
 DATA_LENGTH NOT NULL NUMBER
 DATA_PRECISION NUMBER
 DATA_SCALE NUMBER
 NULLABLE VARCHAR2(1)
 ...

57

System catalog in Oracle

> select * from student;

SID NAME AGE
---------- -------------------- ----------
A1234 John 23
B1 Xavier 24
A21341 Scott 21
C12948291 Benjamin 25
1948 Ben 29

> select table_name, num_rows, blocks, avg_row_len from user_tables;

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN
-------------------- ---------- ---------- -----------
STUDENT 5 5 20

> select table_name, column_name, data_type, data_length from user_tab_columns;

TABLE_NAME COLUMN_NAME DATA_TYPE DATA_LENGTH
---------- ----------- ---------- -----------
STUDENT SID CHAR 10
STUDENT NAME VARCHAR2 32
STUDENT AGE NUMBER 22

58

System catalog in Oracle

• Database organized as a collection of files

● Several file organizations (heap, sorted, …) with tradeoffs

• Files are a collection of pages

● Several page layouts (NSM, DSM, …) with tradeoffs

• Pages contain a collection of records

● Several record formats (fixed, variable length…) with tradeoffs

• Index is a quick way to find records

● Several index types with tradeoffs

One size does not fit all!

59

Summary

