
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

Dr. Antonio Boffa

CS-300: Data-Intensive Systems

The Relational Model & Relational Algebra

Want to
store data

Conceptual
Design

Logical
Design

Physical
Design Database

Storage

Want to access
data

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Result

ER
Models

Relational
Model

ER to
Relational

Relational
Algebra, SQL

SQL

2

Simplified DBMS architecture

• Relational Model (Chapter 2)
• Basics
• SQL overview
• Keys & Integrity Constraints

• Relational Algebra (Chapter 3.1-3.7)

3

Outline

• Data model: a collection of conceptual tools for describing data, data relationships,

data semantics, and consistency constraints

• Edgar Codd’s seminal paper “A Relational Model of Data for Large Shared Data

Banks” CACM 1970 🡪 Turing award

• Other models (1960, Legacy): Hierarchical, Network

• Other models (Recent):

“NoSQL” (Key-value, Document)

Array (Vector, Matrix, Tensor)

4

Background about data models

• Relational: Most widely used model
• IBM, Microsoft, Oracle, DuckDB, etc…

• Simple, yet expressive

• Great for use with a high-level query language

• Efficient implementations

• Object-oriented concepts have merged into the

• Object-relational model: IBM DB2, Oracle 11i

5

Why should we study the Relational Model?

• Database = set of named relations (or tables)

• Each relation has a set of named attributes (or columns)

• Each tuple (or row) has a value for each attribute

• Each attribute has a type (or domain)
● integer, real, string, file formats (jpeg,…), enumerated and many more

• Can think of a relation as a set of rows or tuples
● i.e., all rows are distinct, no order among rows

6

Students Colleges

sid name login age gpa name location strengthsid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

… … … … …

name location strength

MIT USA 10000

Oxford UK 22000

EPFL CH 9000

… … …

Relational model: basics

• Schema: structural description of relations in database
● Students(sid: string, name: string, login: string, age: integer, gpa: real)

• Instance: actual contents at a given point in time
● Cardinality: # rows

● Arity or degree: # attributes

7

Students

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

… … … … …

name location strength

MIT USA 10000

Oxford UK 22000

EPFL CH 9000

… … …

Colleges

Relational model: basics

• What if a student does not have any grades yet, what is the value for GPA?
• Null value: special value for “unknown” or “undefined”

8

Students

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 ???

… … … … …

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 NULL

… … … … …

name location strength

MIT USA 10000

Oxford UK 22000

EPFL CH 9000

… … …

Colleges

Relational model: basics

• Relational Model (Chapter 2)
• Basics
• SQL overview
• Keys & Integrity Constraints

• Relational Algebra (Chapter 3.1-3.7)

9

Outline

• SQL* (a.k.a. “Sequel”), standard language

• Data Definition Language (DDL)
● Create, modify, delete relations

● Specify constraints

● Administer users, security, etc.

• Data Manipulation Language (DML)
● Specify queries to find tuples that satisfy

criteria

● Add, modify, remove tuples

10
* Structured Query Language

SQL: A language for relational DBs

https://spectrum.ieee.org/top-programming-languages-2024

• CREATE TABLE <name> (<field> <domain>, …)

• INSERT INTO <name> (<field names>)
 VALUES (<field values>)

• DELETE FROM <name>
 WHERE <condition>

• UPDATE <name>
 SET <field name> = <value>
 WHERE <condition>

• SELECT <fields>
 FROM <name>
 WHERE <condition>

11

SQL overview

• Creates the Students relation
● Note: the type (domain) of each field is specified

and enforced by the DBMS whenever tuples are
added or modified

12

CREATE TABLE Students
(sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT)

Creating relations in SQL

• Another example: the Enrolled table holds
information about courses students take

CREATE TABLE Enrolled
(sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2))

• Can insert a single tuple using:

• Can delete all tuples satisfying some condition (e.g., name = Smith):

13

INSERT INTO Students (sid, name, login, age, gpa)
 VALUES (‘53688’, ‘Smith’, ‘smith@cs’, 18, 3.2)

DELETE
 FROM Students S
 WHERE S.name = ‘Smith’

Powerful variants of these commands are available; more later!

Adding and deleting tuples

• Relational Model (Chapter 2)
• Basics
• SQL overview
• Keys & Integrity Constraints

• Relational Algebra

14

Outline

• Attribute whose value is unique in each tuple

• Or set of attributes whose combined values are unique
● Identify tuples by its key

● Special indexes on key attributes for efficiency

● One relation referring to tuple of another relation: Foreign Key (more later)

• Integrity Constraint

15

Students Colleges

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

… … … … …

name location strength

MIT USA 10000

Oxford UK 22000

EPFL CH 9000

Oxford USA 12000

… …. …

Relational models: Keys

• Superkey
● Set of attributes for which no two distinct tuples

can have same values in all superkey fields

• Key
● Set of attributes for which

• It is a superkey

• No subset of the fields is a
superkey (minimal superkey)

• Candidate Keys
● If there are multiple keys each of them is referred

to as a candidate key

• Primary Key
● One of the candidate keys is chosen (by DBA)

16

•sid, name

•sid, login

•sid, age

•sid, gpa

•sid, name, login

•sid, name, age

•sid, name, gpa

•sid, login, age

•sid, login, gpa

•sid, name, login,
age

•…

•sid

Person (ssn, name, age, licence#)

•ssn

•licence#

Person (ssn, name, age, licence#)

•ssn

•licence#

Relational models: Keys
sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

… … … … …

DBA: Database administrator

• Superkey
● Set of attributes for which no two distinct tuples

can have same values in all key fields

• Key
● Set of attributes for which

• It is a superkey

• No subset of the fields is a
superkey (minimal superkey)

• Candidate Keys
● If there are multiple keys each of them is referred

to as a candidate key

• Primary Key
● One of the candidate keys is chosen (by DBA)

17

CREATE TABLE Students
(sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT,

 PRIMARY KEY(sid))

CREATE TABLE Person
(ssn CHAR(9),
 name CHAR(20),
 licence# CHAR(10),

 PRIMARY KEY(ssn),
 UNIQUE(licence#))

Relational models: Keys

• Possibly many candidate keys (specified using UNIQUE), one of which is chosen as
the primary key.

• Keys must be used carefully!

● E.g., “For a given student and course, there is a single grade.”

● “Students can take only one course, and no two students in a course receive the same
grade”

18

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

 vs.

Primary and candidate keys in SQL

• Set of fields in one relation that is used to `refer’ to a tuple in another relation.
● Must correspond to the primary key of the other relation

● Like a ‘logical pointer’

• If all foreign key constraints are enforced: achieves referential integrity (i.e., no
dangling references)

19

Students

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

… … … … …

Enrolled

cid sid grade

Carnatic101 53666 C

Raggae203 50000 B

Topology112 53666 A

… … …

Relational model: Foreign keys

• Consider Students and Enrolled: sid in Enrolled is a foreign key that references
Students

• What should the DBMS do if we insert an Enrolled tuple with a non-existent student
id? (Reject it!)

• What should the DBMS do if a Students tuple is deleted?
● Also delete all Enrolled tuples that refer to it?

● Disallow deletion of a Students tuple that is referred to?

● Set sid in Enrolled tuples that refer to it to a default sid?

● (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value null, denoting
`unknown’ or `inapplicable’)

• Similar issues arise if we update primary key of Students tuple

20

Enforcing referential integrity

• IC: condition that must be true for any instance of the database; e.g., domain
constraints
● ICs are specified when schema is defined

● ICs are checked when relations are modified

• A legal instance of a relation is one that satisfies all specified ICs
● DBMS should not allow illegal instances

• If the DBMS checks ICs, stored data is more faithful to real-world meaning
● Avoids data entry errors, too!

21

Integrity constraints (IC)

Relational model: Summary
• A tabular representation of data

• Simple and intuitive, currently the most widely used
● Object-relational variant gaining ground

• Integrity constraints can be specified by the DBA, based on application semantics
DBMS checks for violations
● Two important ICs: primary and foreign keys

● In addition, we always have domain constraints

• Mapping from ER to Relational is (fairly) straightforward

22

• Relational Model
• Relational Algebra (Chapter 3.1-3.7)

• Relational Query Languages
• Selection & Projection
• Union, Set Difference & Intersection
• Cross product & Joins
• Intro to query optimization
• Division

23

Outline

• Query languages: Allow manipulation and retrieval of data from a database

• Relational model supports simple, powerful QLs:

● Strong formal foundation based on logic

● Allows for much optimization

• Query Languages != Programming Languages!

● QLs not expected to be “Turing complete”

● QLs not intended to be used for complex calculations

● QLs support easy, efficient access to large data sets

24

Relational query languages

Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and
for implementation:

• Relational Algebra: More operational, very useful for representing execution plans

• Relational Calculus: Lets users describe what they want, rather than how to
compute it

● Non-procedural, declarative

25

Understanding Algebra & Calculus is key to understanding SQL, query processing!

Formal relational query languages

• Relational algebra is a simple language

● 5 operators/language primitives

• Yet captures many queries

• Codd’s Theorem: relational calculus = relational algebra

● For every query in relational calculus, there is an equivalent query in relational algebra,

and vice versa

• Relational algebra is an imperative language, yet still close to declarative languages

like relational calculus and SQL

• Useful as internal representation of queries inside database engines

● Used as intermediate representation for query optimization

26

Importance of relational algebra

• A query is applied to relation instances, and the result of a query is also a relation

instance

● Schemas of input relations for a query are fixed (but query will run over any legal

instance)

● The schema for the result of a given query is also fixed

• Determined by the definitions of the query language constructs

• Positional vs. named-field notation:

● Positional notation easier for formal definitions; named-field notation is more readable

● Both used in SQL

27

Preliminaries

28

Example schema and instances
instructor course

teaches

instructor courseteaches

29

Simplest relational algebra expression

SELECT *
FROM instructor

• The name of the relation, without any operator

• No operator is applied

instructor

instructor

30

Relational algebra: Five basic operations
1. Selection (σ): Selects a subset of rows from relation (horizontal)

2. Project (π): Retains only wanted columns from relation (vertical)

3. Cross-product(✕): Allows us to combine two relations

4. Set-difference (–): Tuples in R, but not in S

5. Union(∪): Tuples in R and/or in S

Since each operation retains a relation, operations can be composed!

Unary operators

Binary operators

• Relational Model
• Relational Algebra (Chapter 3.1-3.7)

• Relational Query Languages
• Selection & Projection
• Union, Set Difference & Intersection
• Cross product & Joins
• Intro to query optimization
• Division

31

Outline

Selection operator (σ) – Examples 1
● Selects rows that satisfy selection condition
● Output schema of result is same as that of the input relation

32

SELECT *
FROM instructor
WHERE dept_name = “Physics”

instructor

Selection operator (σ) – Examples 2
● Selects rows that satisfy selection condition
● Output schema of result is same as that of the input relation

33

SELECT *
FROM instructor
WHERE dept_name = “Physics”

AND
salary > 90000

instructor

Projection operator (π)
● Retains only attributes that are in the projection list

● Output schema is exactly the fields in the projection list, with the same names that

they had in the input relation

34

SELECT ID, name, salary
FROM instructor

instructor

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

Projection operator (π)
• Projection operator has to eliminate duplicates

• Relation 🡪 SET of tuples, dept_name contains duplicate

• Why remove them?

• Set semantics and multiset (“bag”) semantics (like SQL)

35

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

SELECT dept_name
FROM instructor

SELECT DISTINCT dept_name
FROM instructor

Why 7 rows and not 12???

Composing multiple operators
• Output of one operator can become input to another operator

36

SELECT name
FROM instructor
WHERE dept_name = “Physics”

• Relational Model
• Relational Algebra

• Relational Query Languages
• Selection & Projection
• Union, Set Difference & Intersection
• Cross product & Joins
• Intro to query optimization
• Division

37

Outline

38

● Renames the list of attributes specified in the form of
oldname → newname or position → newname

● Can also be used to rename the name of the output relation
● Output schema is same as input except for the renamed

attributes
● Returns same tuples as input

Rename operator (ρ)

instructor

ρi (instructor)

ρID -> instructor.ID (instructor)

i

instructor

SELECT i.name
FROM instructor AS i
WHERE i.ID = …

39

Union operator (∪)
(SELECT * FROM c1)

 UNION

(SELECT * FROM c2)

c1 =

c2 =

c1 ∪ c2

• All these operations take two input relations, which

must be union-compatible:

• Same number of fields

• “Corresponding” fields have the same type

• Is duplicate elimination required?

40

Set-difference operator (–) (SELECT * FROM c1)
EXCEPT

(SELECT * FROM c2)

c1 =

c2 =

c1 – c2

c2 – c1

• Two input relations, which must be union-compatible

• Set difference is not commutative

Compound operator: Intersection

41

• Alongside the five basic operators, there are several additional Compound operators

● These add no computational power to the language, but are useful shorthands

● Can be expressed solely with the basic operations

• Intersection takes two input relations, which must be union-compatible

Q: How to express it using basic operators?

R

 R S R-S

42

Intersection operator (⋂) (SELECT * FROM c1)
 INTERSECT

(SELECT * FROM c2)

c1 =

c2 =

c1 ⋂ c2

c1 – (c1 – c2)

• Relational Model
• Relational Algebra (Chapter 3.1-3.7)

• Relational Query Languages
• Selection & Projection
• Union, Set Difference & Intersection
• Cross product & Joins
• Intro to query optimization
• Division

43

Outline

44

● S x R: Each row of S paired with each row of R

Q: How many rows in the result?

● Result schema has one field per field of S and R, with field names “inherited” if possible

● May have a naming conflict: Both S and R have a field with the same name

● In this case, can use the renaming operator (ρ)

Cross-product operator (X)

Cross-product example

45

instructor

teaches

Rename operator (ρ) applied,
not shown in the formula

Compound operator: Join

46

• The Cartesian-Product associates every tuple of
instructor with every tuple of teaches

• Most of the resulting rows have information about instructors who did NOT
teach a particular course.

• To get only those tuples of instructors and the courses that they taught

• JOIN OPERATOR:

If the columns have the same
name, condition can be omitted
(NATURAL JOIN)

Join example

47

SELECT *

FROM instructor JOIN teaches

WHERE
instructor.ID = teaches.ID

instructor

teaches

• Relational Model
• Relational Algebra (Chapter 3.1-3.7)

• Relational Query Languages
• Selection & Projection
• Union, Set Difference & Intersection
• Cross product & Joins
• Intro to query optimization
• Division

48

Outline

Complex queries

49

“Find the names of all instructors in the
Music department together with the
course title of all the courses that the
instructors teach.”

instructor course

teaches

1.

2.

Equivalent in relational algebra! But…

Intro to query optimization

50

1.

2.

A query engine applying these operators following the
exact order of the expression

1. and 2. will have very different performance!

2. Generates way fewer intermediate results, so more
efficient! (Due to selection pushdown)

The Query Optimizer select the best way to execute a
query! (Next lessons)

• Relational Model
• Relational Algebra

• Relational Query Languages
• Selection & Projection
• Union, Set Difference & Intersection
• Cross product & Joins
• Intro to query optimization
• Division

51

Outline

Last compound operator: Division

52

• Useful for expressing “for all” queries like:

Find the instructors teaching courses FOR ALL
number of credits

For A/B attributes of B are subset of attributes of A.

● May need to “project” to make this happen.

• Example: Let A have 2 fields, x and y; let B have
only field y

A/B contains all x tuples such that

for every y tuple in B, there is an xy tuple in A

instructor

course

teaches

Examples of division A/B

53

54

Examples of division A/B

55

Examples of division A/B

Expressing A/B using basic operators

56

• Division is not essential op; just a useful shorthand

● (Also true for joins, but joins are so common that systems implement joins
specially)

• Idea: For A/B, compute all x values that are not “disqualified” by some y value in B

● x value is disqualified if by attaching y value from B, we obtain an xy tuple that is
not in A

Disqualified x values:

 Disqualified x values

57

Expressing A/B

58

T1Expressing A/B
Projection

Duplicate elimination

Subtraction

59

T2Expressing A/B

• Relational model is ubiquitous
● Reasoning about information in tables was not always the case!

● …but it can be restrictive for specific applications

• Formal foundation for real query languages

● Helps represent and reason about execution plans

• Five basic operators forming a robust, well-balanced language

● Selection, projection, cross-product, union, set difference

• Compound operators

● Useful shorthands like join and division

● Can be expressed with basic operators

● But enable faster query execution

60

Summary

Backup Slides

62table from http://readwrite.com

Relational Database Key/Value Database

Defined table schema (database contains tables,
tables contain rows, and rows are made up of column
values)

No defined domain schema (A domain is basically a
bucket with items that can have differing schemas)

Strongly typed schema with constraints and
relationships that enforce data integrity

Items are identified by keys, and a given item can
have a dynamic set of attributes attached to it.

The data model is based on a “natural”
representation of the data it contains, not on an
application’s functionality.

In some implementations, attributes are all of a string
type. In other implementations, attributes have
simple types that reflect code types, such as ints,
string arrays, and lists.

Normalization of the data model:
• Remove data duplication.
• Establish table relationships to associate data

between tables.

No relationships are explicitly defined between
domains or within a given domain.

• Basics

• SQL overview

• Keys & Integrity Constraints

• ER to Relational

• ISA to Relational

63

Data models

• Entity sets to tables

64

 CREATE TABLE Employees
 (ssn CHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn))

Employees

ssn
name

lot

Logical DB design: ER to relational model

65

Our favorite example

Manages

dname

budgetdidlot

name

ssn

Employees Departments

since

Relation sets to tables

• In translating a many-to-many
relationship set to a relation, attributes
of the relation must include:

1) Keys for each participating entity
set (as foreign keys): Such a set of
attributes forms a superkey for the
relation

2) All descriptive attributes

66

CREATE TABLE Manages(
 ssn CHAR(1),
 did INTEGER,
 since DATE,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees,
 FOREIGN KEY (did)
 REFERENCES Departments)

Relation sets to tables

• Each dept has at most one manager, according to the key constraint on Manages

67

CREATE TABLE Manages(
 ssn CHAR(1),
 did INTEGER,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)REFERENCES Employees,
 FOREIGN KEY (did)REFERENCES Departments)

Manages

dname

budgetdidlot

name

ssn

Employees Departments

since

Review: Key constraints in ER

• Since each department has a unique manager, could combine Manages and Departments

68

CREATE TABLE Manages(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
REFERENCES Employees,
 FOREIGN KEY (did) REFERENCES
Departments)

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11),
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

vs.

Manages

dname

budgetdidlot
name

ssn

Employees Departments

since

Translating ER with key constraints

• Does every department have a manager?
● If so, this is a participation constraint: the participation of Departments in Manages is

said to be total (vs. partial)

• Every did value in Departments table must appear in a row of the Manages
table (with a non-null ssn value!)

69

lot
name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Review: Participation constraints

• Can capture participation constraints involving one entity set in a binary relationship
● But little else (without resorting to CHECK constraints)

70

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE NO ACTION)

Participation constraints in SQL

Data Models
• Basics

• SQL overview

• Keys & Integrity Constraints

• ER to Relational

• ISA to Relational

71

• General approach:
● 3 relations: Employees, Hourly_Emps and

Contract_Emps.
• Hourly_Emps: Every employee is recorded in

Employees. For hourly emps, extra info recorded in
Hourly_Emps (hourly_wages, hours_worked, ssn); must
delete Hourly_Emps tuple if referenced Employees tuple
is deleted)

• Queries involving all employees easy, those involving
just Hourly_Emps require a join to get some attributes

• Alternative: Just Hourly_Emps and Contract_Emps
● Hourly_Emps: ssn, name, lot, hourly_wages,

hours_worked

● Each employee must be in one of these two subclasses

72

Translating ISA hierarchy to relations

Contract_Emps

name
ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

• Example: Only students listed in the Students relation should be allowed to enroll
for courses.

● sid is a foreign key referring to Students

73

Students

sid name login age gpa

50000 Dave dave@cs 19 3.3

53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

… … … … …

Enrolled

 CREATE TABLE Enrolled
 (cid CHAR(20),sid CHAR(20),grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students(sid))

cid sid grade

Carnatic101 53666 C

Raggae203 50000 B

Topology112 53666 A

… … …

Relational model: Foreign keys—SQL

• ICs are based upon the semantics of the real-world that is being described in the
database relations

• We can check a database instance to see if an IC is violated, but we can NEVER infer
that an IC is true by looking at an instance
● An IC is a statement about all possible instances

● From example, we know name is not a key, but the assertion that sid is a key is given to
us

• Key and foreign key ICs are the most common; more general ICs supported too

74

Where do ICs come from?

Wake-up question

• What if the toy department has no manager (yet) ?

75

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11),
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

Review: Key Constraints in ER

76

Many-to-Many

1-to-1

1-to Many

Many-to-1

• A weak entity can be identified uniquely only by considering the primary key of
another (owner) entity.

– Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many
weak entities).

– Weak entity set must have total participation in this identifying relationship set.

77

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Review: Weak entities

Translating Weak Entity Sets
• Weak entity set and identifying relationship set are translated into a single table.

– When the owner entity is deleted, all owned weak entities must also be deleted.

78

CREATE TABLE Dep_Policy (
 pname CHAR(20),
 age INTEGER,
 cost REAL,
 ssn CHAR(11) NOT NULL,
 PRIMARY KEY (pname, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees,
 ON DELETE CASCADE)

Data Models
• Basics

• SQL overview

• Keys & Integrity Constraints

• ER to Relational

• ISA to Relational

• noSQL data models

79

How different are SQL and noSQL?

Not all data fits in tables naturally

80

•The rise of noSQL!

1. Key-Value data model
•Object vs. Table

2. Hierarchies, Arrays

Anchor all information on an object type!

Object-centric representation

81

•Represent as a single data block

•Center all information around a core entity
• In this case: “Employee, and all the info about him/her”

class Employee
{
 int ssn;
 string name;
 int lot;
 list<Department> managedDepts;
}

private class Department
{
 int did;
 string dname;
 int budget;
}

Manage
s

dname

budgetdidlot

name

ss
n

Employees Departments

Key-value pairs

82

123-22-3666

231-31-5368

131-24-3650

Attishoo 48 [(51,IT,1000),(56,Accounting,3000)]

Smiley 22 [(51,IT,1000)]

Smethurst 35 []

•Many applications prefer the 2nd option!

•Pros: Schema Flexibility / less rigid constraints

•Cons: Queries less expressive
• put()
• get()

123-22-3666

231-31-5368

131-24-3650

Binary Object 1

Binary Object 2

Binary Object 3

Support for Hierarchies & Arrays?
• K-V model supports storing hierarchies & arrays

• But it is agnostic to them!
– “Associate any value with a key”, but that’s it!

• Do we need this support? Are there use cases?
– XML!

– JSON!

83

Same example, JSON representation
{

 "id": 123223666, "name": "Attishoo",

 "manages": [{"did": 51, "name": "IT",

 "budget": 1000},
 {"did": 56, "name": "Accounting",

 "budget": 3000}]

}

84

Many systems implement it as K-V!

Example 3

85

• Find sailors who have reserved a red or a green boat.

• Hint: Can identify all red or green boats, then find sailors who have reserved one of these
boats.

Example 4

86

• Find names of sailors who’ve reserved a red and a green boat.

• Hint: Previous approach won’t work! Must identify sailors who’ve reserved red boats,
sailors who’ve reserved green boats, then find the intersection (note that sid is a key for
Sailors).

Relational Algebra
• Relational Query Languages

• Selection & Projection

• Union, Set Difference & Intersection

• Cross product & Joins

• Examples

• Division

87

Your turn…

88

1. Find (the name of) all sailors whose rating is above 9.

2. Find all sailors who reserved a boat prior to November 1, 1996.

3. Find (the names of) all boats that have been reserved at least once.

4. Find all pairs of sailors with the same rating.

5. Find all pairs of sailors in which the older sailor has a lower rating.

Answers…

89

1. Find (the name of) all sailors whose rating is above 9.

90

2. Find all sailors who reserved a boat prior to November 1, 1996.

Answers…

91

3. Find (the names of) all boats that have been reserved at least once.

Answers…

92

4. Find all pairs of sailors with the same rating.

Answers…

93

5. Find all pairs of sailors in which the older sailor has a lower rating.

Answers…

Set semantics vs. multiset (“bag”) semantics
• Both versions of relational algebra exist.

• Database systems use bag semantics.

• Set semantics simpler and cleaner.

• Some operations require set semantics.

• Some operations ”force” bag semantics, unless we eliminated duplicates.

• Under bag semantics, set-shaped databases become bag-shaped. (example?)

94

Example: Find the names of sailors who have
reserved all boats

95

• Uses division; schemas of the input relations to / must be carefully chosen:

• To find sailors who have reserved all ‘Interlake’ boats:

...

