CS5-300: Data-Intensive Systems

The Relational Model & Relational Algebra

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

Dr. Antonio Boffa

AIAS cPrL

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Simplified DBMS architecture

Relational

Want to
store data

ERto
Relational

ER
Models

Relational
Model

Algebra, SQL

SQL Result

Query Optimization
and Execution

A

Relational Operators

Access Methods

Buffer Management

Disk Space Management

N\ 7
%
& '

i
i

Want to access
data

Outline
. Relational Model (Chapter 2)

« Basics
« SQL overview
e Keys & Integrity Constraints

. Relational Algebra (Chapter 3.1-3.7)

Background about data models

e Data model: a collection of conceptual tools for describing data, data relationships,

data semantics, and consistency constraints

e Edgar Codd’s seminal paper “A Relational Model of Data for Large Shared Data
Banks” CACM 1970 [J Turing award

e Other models (1960, Legacy): Hierarchical, Network

e Other models (Recent): “*~ RocksDB ‘ redis .
“NoSQL” (Key-value, Document) "
R"a °
Array (Vector, Matrix, Tensor) DR Pinecone mongoDb

Weaviate

Why should we study the Relational Model?

- Relational: Most widely used model
* |IBM, Microsoft, Oracle, DuckDB, etc...

amazon
REDSHIFT

Simple, yet expressive

f\ Google
Ny, BigQuery

Great for use with a high-level query language

Efficient implementations

Object-oriented concepts have merged into the @
« Object-relational model: 1BM DB2, Oracle 11i

ORACLE"

Relational model: basics

e Database = set of named relations (or tables)
e Each relation has a set of named attributes (or columns)
e Each tuple (or row) has a value for each attribute

e Each attribute has a type (or domain)
® integer, real, string, file formats (jpeg,...), enumerated and many more

Students Colleges

i Luame loin Lo Lo [l o cicn Lo
50000 Dave dave@cs 19 10000
53666 Jones jones@cs 18 3.4 Oxford UK 22000
53688 Smith smit@ee 18 3.2 EPFL CH 9000

e Can think of a relation as a set of rows or tuples

® i.e, all rows are distinct, no order among rows

Relational model: basics

e Schema: structural description of relations in database
e Students(sid: string, name: string, login: string, age: integer, gpa: real)
e [nstance: actual contents at a given point in time

e Cardinality: # rows
® Arity or degree: # attributes

Students Colleges
mmm mmm
50000 Dave dave@cs 19 10000
53666 Jones jones@cs 18 3.4 Oxford UK 22000

53688 Smith smit@ee 18 3.2 EPFL CH 9000

Relational model: basics

e What if a student does not have any grades yet, what is the value for GPA?
e Null value: special value for “unknown” or “undefined”

Students Colleges
mmm MMM
50000 Dave dave@cs 19 10000
53666 Jones jones@cs 18 3.4 Oxford UK 22000

53688 Smith smit@ee 18 (NULL EPFL CH 9000

Outline
. Relational Model (Chapter 2)

« Basics
« SQL overview
o Keys & Integrity Constraints

. Relational Algebra (Chapter 3.1-3.7)

SQL: A language for relational DBs

e SQL* (a.k.a. “Sequel”), standard language

e Data Definition Language (DDL)
e Create, modify, delete relations
® Specify constraints
® Administer users, security, etc.

e Data Manipulation Language (DML)

e Specify queries to find tuples that satisfy
criteria

e Add, modify, remove tuples

* Structured Query Language

Top Programming Languages 2024

Click a button to see a differently weighted ranking

Spectrum Trending H

SQL

Python

TypeScript

SAS
0.4975
0.4271

JavaScript

o
E=3

jol

HTML 0.2934
Shell 0.2909
0.2299

o
+
+

Kotlin 0.2133
0.1223

(%2}
o
iy

G 0.1205
0.1189

[}
o

https://spectrum.ieee.org/top-programming-languages-2024
10

SQL overview

e CREATE TABLE <name> (<field> <domain>,

e INSERT INTO <name> (<field names>)
VALUES (<field values>)

e DELETE FROM <name>
WHERE <condition>

e UPDATE <name>
SET <field name> = <value>
WHERE <condition>

e SELECT <fields>
FROM <name>
WHERE <condition>

11

Creating relations in SQL

e Creates the Students relation

® Note: the type (domain) of each field is specified
and enforced by the DBMS whenever tuples are
added or modified

e Another example: the Enrolled table holds
information about courses students take

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(19),
age INTEGER,
gpa FLOAT)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

12

Adding and deleting tuples

e Caninsert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (°53688°, ‘Smith’, ‘smith@cs’, 18, 3.2)

e Can delete all tuples satisfying some condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Powerful variants of these commands are available; more later!

13

Outline
. Relational Model (Chapter 2)

« Basics
« SQL overview
o Keys & Integrity Constraints

. Relational Algebra

14

Relational models: Keys

e Attribute whose value is unique in each tuple
e Or set of attributes whose combined values are unique

e |dentify tuples by its key
e Special indexes on key attributes for efficiency

® One relation referring to tuple of another relation: Foreign Key (more later)
Students Colleges

mm { name |location m
50000 Dave dave@cs MIT USA 10000
53666 Jones jones@cs 18 34 Oxford UK 22000
53688 Smith smit@ee 18 3.2 EPFL CH 9000
Oxford USA 12000

e |ntegrity Constraint

15

Relational models: Keys

e Superkey
e Set of attributes for which no two distinct tuples

can have same values in all superkey fields
* Key
e Set of attributes for which
e It is a superkey
« No subset of the fields is a
superkey (minimal superkey)

e Candidate Keys

e |f there are multiple keys each of them is referred
to as a candidate key

e Primary Key
® One of the candidate keys is chosen (by DBA)

DBA: Database administrator

mmm

50000 Dave dave@cs 19
53666 Jones jones@cs 18 3.4

53688 Smith smit@ee 18 3.2

*sid, name *sid, name, login *sid, login, gpa

*sid, login *sid, name, age *sid, name, login,
*sid, age *sid, name, gpa age
*sid, gpa *sid, login, age °...

*sid

Person (ssn, name, age, licence#)
*ssn
licence#

Person (ssn, name, age, licence#)

°SSN 4

elicence#t

16

Relational models: Keys

e Superkey

e Set of attributes for which no two distinct tuples
can have same values in all key fields

* Key

e Set of attributes for which
e It is a superkey

« No subset of the fields is a
superkey (minimal superkey)

e Candidate Keys

e |f there are multiple keys each of them is referred
to as a candidate key

Primary Key

® One of the candidate keys is chosen (by DBA)

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa FLOAT,
PRIMARY KEY(sid))

CREATE TABLE Person
(ssn CHAR(9),
name CHAR(20),
licence# CHAR(10),
PRIMARY KEY(ssn),
UNIQUE(licence#))

17

Primary and candidate keys in SQL

e Possibly many candidate keys (specified using UNIQUE), one of which is chosen as
the primary key.

Keys must be used carefully!

e E.g., “For agiven student and course, there is a single grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20), VS.
grade CHAR(2),
PRIMARY KEY (sid,cid))

CREATE RRBLE Enrolg
(sid CHARg20) 4%

Sas”

UNIQ (cid, grade))

® “Students can take only one course, and no two students in a course receive the same
grade”

18

Relational model: Foreign keys

e Set of fields in one relation that is used to refer’ to a tuple in another relation.
® Must correspond to the primary key of the other relation
e Like a ‘logical pointer’

e If all foreign key constraints are enforced: achieves referential integrity (i.e., no
dangling references)

Students Enrolled
mmm cid __|sid|grade_
50000 Dave dave@cs 19 Carnaticl101 __.53666 C
53666 Jones jones@cs 18 3.4
53688 Smith smit@ee 18 3.2 Topology 53666 A

19

Enforcing referential integrity

Consider Students and Enrolled: sid in Enrolled is a foreign key that references
Students

What should the DBMS do if we insert an Enrolled tuple with a non-existent student

id? (Reject it!)

What should the DBMS do if a Students tuple is deleted?

® Also delete all Enrolled tuples that refer to it?

e Disallow deletion of a Students tuple that is referred to?

e Setsid in Enrolled tuples that refer to it to a default sid?

e (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value null, denoting
‘unknown’ or ‘inapplicable’)

Similar issues arise if we update primary key of Students tuple

20

Integrity constraints (IC)

e |C: condition that must be true for any instance of the database; e.g., domain

constraints
® |Cs are specified when schema is defined
® |Cs are checked when relations are modified

e A legal instance of a relation is one that satisfies all specified ICs
e DBMS should not allow illegal instances

e |f the DBMS checks ICs, stored data is more faithful to real-world meaning
® Avoids data entry errors, too!

21

Relational model: Summary

e A tabular representation of data

e Simple and intuitive, currently the most widely used
® Object-relational variant gaining ground

e |ntegrity constraints can be specified by the DBA, based on application semantics
DBMS checks for violations

e Two important ICs: primary and foreign keys
e [n addition, we always have domain constraints

e Mapping from ER to Relational is (fairly) straightforward

22

Outline

. Relational Model
. Relational Algebra (Chapter 3.1-3.7)

 Relational Query Languages

« Selection & Projection

« Union, Set Difference & Intersection
 Cross product & Joins

e Intro to query optimization

e Division

23

Relational query languages

e Query languages: Allow manipulation and retrieval of data from a database

e Relational model supports simple, powerful QLs:
e Strong formal foundation based on logic

e Allows for much optimization

e Query Languages = Programming Languages!
e QLs not expected to be “Turing complete”
® QLs not intended to be used for complex calculations

e QLs support easy, efficient access to large data sets

24

Formal relational query languages

Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and
for implementation:

e Relational Algebra: More operational, very useful for representing execution plans

e Relational Calculus: Lets users describe what they want, rather than how to
compute it

e Non-procedural, declarative

Understanding Algebra & Calculus is key to understanding SQL, query processing!

25

Importance of relational algebra

e Relational algebra is a simple language
e 5 operators/language primitives
e Yet captures many queries

e Codd’s Theorem: relational calculus = relational algebra

® For every query in relational calculus, there is an equivalent query in relational algebra,

and vice versa

e Relational algebra is an imperative language, yet still close to declarative languages
like relational calculus and SQL

e Useful as internal representation of queries inside database engines

e Used as intermediate representation for query optimization

26

Preliminaries

e A query is applied to relation instances, and the result of a query is also a relation
instance

® Schemas of input relations for a query are fixed (but query will run over any legal
instance)

® The schema for the result of a given query is also fixed

e Determined by the definitions of the query language constructs

e Positional vs. named-field notation:

® Positional notation easier for formal definitions; named-field notation is more readable
e Both used in SQL

27

Example schema and instances

instructor course
| ID ‘ name | dept_name | salary | course_id title deptname | credits
22222 | Einstein Physics 95000 BIO-101 | Intro. to Biology Biology 4
12121 | Wu Finance 90000 BIO-301 | Genetics Biology 4
» A7 . ” . 1y : : BIO-399 | Computational Biology Biology 3
classroom(M room_number, capacity) igggg Elafzald (lecl)srt;);ySci 2(5)838 it il B s o |- iy I
" of 1+ : 5 i CS-190 Game Design Comp. Sci. 4
department(dept-name, building, budget) 3222 ?mk E!CT' Fing: ggggg o |l eyl
s e 8 N PR L TIC lology CS-319 | Image Processing Comp. Sci. 3
course (M title, de pl_name, cre dits) 10101 | Srinivasan | Comp. Sci. | 65000 CS-347 Database System Concepts | Comp. Sci. 3
instructor(ID, name, dept_-name, salary) 58583 | Califieri | History | 62000 HE L [SRl ¢
— - 83821 | Brandt Comp. Sci. | 92000 FIN-201 | Investment Banking Finance 3
section(course_id, sec_id, semester, year, building, room_number, time_slot_id) 15151 | Mozart | Music 40000 HIs331 | WordHislory History 3
: : ARSI . 33456 | Gold Physics 87000 MU-199 Musl.c Vlde.o Pfoductlon Musn.c 3
teaches(ID, course_id, sec_id, semester, year) 76543 | Singh Pinance 80000 PHY-101 | Physical Principles Physics 4
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID) teaches
time_slot(time_slot_id, day, start_time, end_time) | [courseid _secid | semester | year |
I ;T 10101 | CS-101 1 | Fall 2017
prereq(course_id, prereq_d) 10101 | CS315 | 1 | Spring | 2018
T — 10101 | CS-347 | Fall 2017
12121 | FIN-201 | Spring 2018
15151 | MU-199 | Spring 2018
22222 | PHY-101 1 Fall 2017
- . . 32343 | HIS-351 1 Spring 2018
Figure 2.8 Schema of the university database. 45565 [cs-101 | 1| Spring | 2018
45565 | CS-319 1 Spring 2018
76766 | BIO-101 | Summer | 2017
76766 | BIO-301 1 Summer | 2018
83821 | CS-190 | Spring 2017
83821 | CS-190 2 Spring 2017
83821 [CS-319 2 Spring 2018
98345 | EE-181 1 Spring 2017

28

Simplest relational algebra expression

e The name of the relation, without any operator

SELECT *
FROM instructor

e No operator is applied

instructor Output

ID name dept_name salary D e deptname salary
22222 Einstein Physics 95000 22222 | Einstein Physics 95000
12121 Wu Finance 90000 12121 Wu Finance 90000
32343 | El Said History 60000 . 32343 | Bl Said Hi 60000

. nstructor ; o Isiory

45565 | Katz Comp. Sci. | 75000 tnstructo 45565 | Katz Comp. Sci. | 75000
98345 | Kim Elcc. Eng. | 80000 | se— | 93345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000 76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000 10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000 58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000 83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000 15151 | Mozart Music 40000
33456 | Gold Physics 87000 33456 | Gold Physics 87000
76543 | Singh Finance 80000 76543 | Singh Finance 80000

29

Relational algebra: Five basic operations

a ~ O D=~

Selection (0): Selects a subset of rows from relation (horizontal) -

Project (1T): Retains only wanted columns from relation (vertical) ~ Unary operators

|

Cross-product(X): Allows us to combine two relations

J

Set-difference (-): Tuplesin R, but notin S | Binary operators

Union(U): Tuples in R and/orin S

Since each operation retains a relation, operations can be composed!

30

Outline

. Relational Model
. Relational Algebra (Chapter 3.1-3.7)

« Relational Query Languages

« Selection & Projection

« Union, Set Difference & Intersection
e Cross product & Joins

e Intro to query optimization
 Division

31

Selection operator (o) - Examples 1

® Selects rows that satisfy selection condition
e Output schema of result is same as that of the input relation

instructor

ID name dept_name salary o (I n St ru Cto r)

22222 | Einstein | Physics 95000 dept_name = "Physics”

T 5 sl W5 FROM instructor

Sl e | Saae |G WHERE dept_name = “Physics”

O ISl il IDseee: Output

] o gl . P Y

o o =TTt ID name dept_name | salary
33436 22222 | Einstein | Physics 95000
| o o T 33456 | Gold Physics 87000

Selection operator (o) - Examples 2

® Selects rows that satisfy selection condition
e Output schema of result is same as that of the input relation

instructor
ID name deptname salary G (l 1S t FUC t 0 r)
22222 | Einstein | Physics 95000 dept_name = “Physics” A salary>90000
T[T mTee 5000)
Sl T I O SELECT
e [S | e | B FROM 1nstructor
e | amey [see [Sade WHERE dept name = “Physics”
Al e i M54 AND
m i e o 62004 salary > 90000
B A e il B Output
G _m“ ID name dept_name | salary
PSS ISl D vvee: 22222 | Einstein | Physics | 95000

33

© 00 N O Uuu B W N, O

[
= O

Projection operator (1)

® Retains only attributes that are in the projection list

e Output schema is exactly the fields in the projection list, with the same names that

they had in the input relation

instructor

ID name salary
22222 | Einstein 95000
12121 | Wu 90000
32343 | El Said 60000
45565 | Katz 75000
08345 | Kim 80000
76766 | Crick 72000
10101 | Srinivasan 65000
58583 | Califieri 62000
83821 | Brandt 92000
15151 | Mozart 40000
33456 | Gold 87000
76543 | Singh 80000

HID, name, salary(mszr uctor)

——

SELECT ID, name, salary
FROM instructor

Output

ID name salary
0 10101 | Srinivasan | 65000
1 12121 | Wu 90000
2 15151 | Mozart 40000
3 22222 | Einstein 95000
p 32343 | El Said 60000
5 33456 | Gold 87000
6 45565 | Katz 75000
7 58583 | Califieri 62000
. 76543 | Singh 80000
9 76766 | Crick 72000
10 83821 | Brandt 92000
1 98345 | Kim 80000

54

© o0 N o u B~ W N = O

N
= O

Projection operator (m)

* Projection operator has to eliminate duplicates

* Relation [] SET of tuples, dept_name contains duplicate

* Set semantics and multiset (“bag”) semantics (like S(%g_l_ DISTINCT dept. FROM 1instructor
ept_name

Why remove them?

I deptname safary
22122 Physics 95p00
1211 Finance 9000
3243 History 60P00
45365 Comp. Sci. | 7500
O8¢5 Elec. Eng. 80P00
71676 Biology 72D00
10101 Comp. Sci. | 65P00
58383 History 6200
33921 Comp. Sci. | 92D00
15161 Music 40000
33456 Physics 87P00
T6 3 Finance S0P00

FROM instructor Output

SELECT dept _name

dept_name

——————————>

(instructor)

Finance
Music
Physics
History
Biology
Elec. Eng.

1 dept_name

a o A W N - O

Comp. Sci.

© 00 N o u B W N -, O

Why 7 rows and not 12???

10

dept_name

Comp. Sci.

Finance
Music

Physics
History
Physics

Comp. Sci.

History
Finance
Biology

Comp. Sci.

Elec. Eng.

35

Composing multiple operators

e Qutput of one operator can become input to another operator

name (Gdep[_name = “PhYSiCS” (lnSlrUCZOI’))

name H

Einstein

SELECT name
FROM 1instructor
WHERE dept _name = “Physics”

Output

name

Einstein
Gold

36

Outline

. Relational Model

. Relational Algebra

 Relational Query Languages
 Selection & Projection

« Union, Set Difference & Intersection
e Cross product & Joins

e Intro to query optimization
 Division

37

Rename operator (p)

® Renames the list of attributes specified in the form of

oldname — newname or position — newname
e (Can also be used to rename the name of the output relation
® Output schema is same as input except for the renamed

attributes
® Returns same tuples as input
instructor
ID name deptname salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000

SELECT 1.name
FROM 1instructor AS 1
WHERE 1.ID =

. t t Ou t u t ID name dept_name salary
pl (I nsStructor) p 22222 | Einstein | Physics 95000
12121 | Wu Finance 90000
— 32343 | ElSaid | History | 60000
45565 | Katz Comp. Sci. | 75000
Output instructor

. instructor.ID | name dept_name | salary
pID -> jnstructor.ID (Instructor) 22222 | Einstein Physics 95000
——————> et |3 | s
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000

38

Union operator (U)

All these operations take two input relations, which

must be union-compatible:

e Same number of fields

* “Corresponding” fields have the same type

Is duplicate elimination required?

cl

c2

course_id

Cs-101
CS-347
PHY-101

course_id

CS-101
CS-315
CS-319
FIN-201
HIS-351
MU-199

cl U c2
——

(SELECT *

FROM c1)

UNION

(SELECT *

Output

course_id

CS-101
CS-315
CS-319
CS-347
FIN-201
HIS-351
MU-199
PHY-101

FROM c2)

39

Set-difference operator (-) (SELECT * FROM c1)

EXCEPT
e Two input relations, which must be union-compatible (SELECT * FROM c2)
e Set difference is not commutative
; Output
course_id
Cs-101 cl - c2 course_id
b= |osw CS-347
PHY-101 e 4
course_id
CS-101
CS-315 Output
c2 = CS-319 course_id
5P
e Cs313
MU-199 E‘ls\;.??lgl
IN=4
C2 Cl HIS-351
MU-199

40

Compound operator: Intersection

e Alongside the five basic operators, there are several additional Compound operators
® These add no computational power to the language, but are useful shorthands
e Can be expressed solely with the basic operations

e [ntersection takes two input relations, which must be union-compatible
Q: How to express it using basic operators?

RNS =R — (R — S)

41

Intersection operator (N)

cl

c2

course_id

Cs-101
CS-347
PHY-101

course_id

CS-101
CS-315

CS-319
FIN-201

HIS-351
MU-199

cl N c2

cl - (c1 - c2)

(SELECT * FROM c1)
INTERSECT
(SELECT * FROM c2)
Output
course_id
CS-101

42

Outline

. Relational Model
. Relational Algebra (Chapter 3.1-3.7)

« Relational Query Languages
 Selection & Projection

« Union, Set Difference & Intersection
« Cross product & Joins

e Intro to query optimization
 Division

43

Cross-product operator (X)

® S x R: Each row of S paired with each row of R

Q: How many rows in the result?
® Result schema has one field per field of S and R, with field names “inherited” if possible

e May have a naming conflict: Both S and R have a field with the same name
® In this case, can use the renaming operator (p)

4

Cross-product example

instructor
| ID | name | dept_name | salary]
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000
teaches
ID courseid sec.id | semester | year
10101 | CS-101 1 Fall 2017
10101 | CS-315 1 Spring 2018
10101 | CS-347 1 Fall 2017
12121 | FIN-201 1 Spring 2018
15151 | MU-199 1 Spring 2018
22222 | PHY-101 1 Fall 2017
32343 | HIS-351 1 Spring 2018
45565 | CS-101 1 Spring 2018
45565 | CS-319 1 Spring 2018
76766 | BIO-101 1 Summer | 2017
76766 | BIO-301 1 Summer | 2018
83821 [CS-190 1 Spring 2017
83821 [CS-190 2 Spring 2017
83821 [CS-319 2 Spring 2018
98345 | EE-181 1 Spring 2017

instructor X teaches

I

Output

Rename operator (p) applied,
not shown in the formula

‘ instructor.ID | name

| deptname ‘ salary ‘ teaches.ID ‘ course_id ‘ sec_id ‘ seimester ‘ vear |

10101
10101
10101
10101
10101
10101

12121
12121
12121
12121
12121
12121

Srinivasan
Srinivasan
Srinivasan
Srinivasan
Srinivasan
Srinivasan

Mozart
Mozart
Mozart
Mozart
Mozart
Mozart

Einstein
Einstein
Einstein
Einstein
Einstein
Einstein

Comp. Sci.
Comp. Sci.
Comp. Sci.
Comp. Sci.
Comp. Sci.
Comp. Sci.

Finance
Finance
Finance
Finance
Finance
Finance

Music
Music
Music
Music
Music
Music

Physics
Physics
Physics
Physics
Physics
Physics

65000
65000
65000
65000
65000
65000

90000
90000
90000
90000
90000
90000

40000
40000
40000
40000
40000
40000

95000
95000
95000
95000
95000
95000

10101
10101
10101
12121
15151
22272

CS-101
CS-315
CS-347
FIN-201
MU-199
PHY-101

CS-101
CS-315
CS-347
FIN-201
MU-199
PHY-101

CS-101
CS-315
CS-347
FIN-201
MU-199
PHY-101

CS-101
CS-315
CS-347
FIN-201
MU-199
PHY-101

1
1
1
1
1
1

[y S S

[T S S G

Pt et i o

Fall
Spring
Fall
Spring
Spring
Fall

Fall
Spring
Fall
Spring
Spring
Fall

Fall
Spring
Fall
Spring
Spring
Fall

Fall
Spring
Fall
Spring
Spring
Fall

2017
2018
2017
2018
2018
2017

2017
2018
2017
2018
2018
2017

2017
2018
2017
2018
2018
2017

2017
2018
2017
2018
2018
2017

45

Compound operator: Join X

* The Cartesian-Product instructor X teaches associates every tuple of
instructor with every tuple of teaches

* Most of the resulting rows have information about instructors who did NOT
teach a particular course.

* To get only those tuples of instructors and the courses that they taught

O instructor.id = teaches.id (instr uctor x teaches))

If the columns have the same
name, condition can be omitted

* JOIN OPERATOR: (NATURAL JOIN)
instructor v Instructor.id = teaches.id teaches

instructor = teaches
46

Join example

instructor Output
‘ ID | name | dept_name | salaryl SE LECT *

22222 | Einstein Physics 95000

o1 | wa i ince 90000 F ROM _i n St ru Ct or J OIN .t eac h es ‘ instructor.ID ‘ name ‘ dept_name ‘ salary ‘ teaches.ID | course_id ‘ sec_id ‘ seiester ‘ vear |
32343 | El Said History 60000 10101 Srinivasan i

45565 | Katz Comp. Sci. | 75000 10101 Srinivasan

32_.;»22 gim Ele?- Eng. ?_3/(2)888 WHERE 10101 Srinivasan
rick iology * — |

10101 | Srinivasan | Comp. Sci. | 65000 ins tr‘uc-tor‘ ° ID - 'l.'eCICheS o ID 7

58583 [Califieri History 62000

83821 | Brandt Comp. Sci. | 92000

15151 | Mozart Music 40000

33456 | Gold Physics 87000

76543 | Singh Finance 80000

] D4 i 2 i
teaches instructor x teaches i i

ID courseid sec-id | semester | year m
10101 | CS-101 1 Fall 2017
10101 | CS-315 1 Spring 2018

10101 | CS-347 1 Fall 2017

12121 | FIN-201 1 Spring 2018 P

15151 | MU-199 | 1 | Spring | 2018))) ())

0 | Prvior | 1 | Fa | 200 O instructor.id = teaches.id (INStructor X teaches

32343 | HIS-351 1 Spring 2018

45565 | CS-101 1 Spring 2018

45565 | CS-319 1 Spring 2018

76766 | BIO-101 1 Summer | 2017

76766 | BIO-301 1 Summer | 2018

83821 | CS-190 1 Spring 2017

83821 | CS-190 2 Spring 2017

83821 | CS-319 2 Spring 2018

98345 | EE-181 1 Spring 2017

47

Outline

. Relational Model
. Relational Algebra (Chapter 3.1-3.7)

« Relational Query Languages

« Selection & Projection

« Union, Set Difference & Intersection
 Cross product & Joins

e Intro to query optimization

e Division

48

. course
instructor
1 [| D ‘ name | dept_name ‘ salary | course_id title dept_name credits
Comp €X queries 2002 [Emsein | Physios [95000 | | PIOTOL [o o Bios bon |
12121 | Wu Finance 90000 BIO-399 | Computational Biology Biology 3
32343 | El Said History . 60000 CS-101 Intro. to Computer Science | Comp. Sci. 4
ggzgg Elatz EompESCI- ;(5)838 CS-190 | Game Design Comp. Sci. | 4
- . . 5 im lec. Eng. CS-315 Robotics Comp. Sci. 3
Find the names of all instructors in the 76766 | Crick | Biokogy | 72000 | | CS319 | lmage Processing oA
10101 | Srinivasan | Comp. Sci. | 65000 E]?lg :)atabaseDS.yste?SConcepts glomPéSCL ;
: : : : : - ntro. to Digital Systems ec. Eng.
MUSIC depa rtment together Wlth the ;8223‘: gahﬁ;trl glstorys : ggggg FIN-201 Investment Banking Finance 3
i N;S;‘m M?l’;‘ig' ok okt HIS-351 | World History History 3
H MU-199 | Music Video Producti Musi 3
course title of all the courses that the 33456 | Gold | Physics | 87000 | | Diivrol | Dresiat brnaimer - | Brvses | 4
) 76543 | Singh Finance 80000
instructors teach.
teaches
| ID | courseid sec-id I semester | year |
: 10101 | Cs-101 1| Fan 2017
1- Hname,n‘r/e (Gdepr_jzame=“Music” (ll’ISﬂ'LlCZOI’ X ([eaCheS X Hcourse_id,rir/e(Course)))) 10101 | CS:315 1| Spring | 2018
10101 | CS-347 1| Fan 2017
12121 | FIN201 1| Spring | 2018
15151 | MU-199 1| Spring | 2018
22222 | PHY-101 | 1 | Fall 2017
. 32343 | HIS-351 1| Spring | 2018
2. lealne,lille ((Gdepr_/za/nez“Music” (II”ISII” uctor)) X (leaCheS X Hcourse_id,rir/e(cour Se))) 45565 | CS-101 I | Spring | 2018
45565 | CS-319 1| Spring | 2018
76766 | BIO-101 1| Summer | 2017
76766 | BIO-301 1 Summer | 2018
83821 | CS-190 1| Spring | 2017
83821 | CS-190 2 | Spring | 2017
83821 | CS-319 2 | Spring | 2018
98345 | EE-181 1| spring | 2017

Equivalent in relational algebra! But...

49

Intro to query optimization

1' Hname,n’r/e (Gdepr_name:“Music” (il’lSll’LlClOl" X (Z‘ECIC/IQS X Hcourse_id,rit/e(Course))))

2' Hname,tft/e ((Gdepr_name:“Music” ([I’ISZI’LICZOT)) X ([eaCheS X Hcourse_id,rir/e(Course)))

A query engine applying these operators following the
exact order of the expression

”/mm(title
w 1. and 2. will have very different performance!
X

[l name, title

WINNER
immw{ \N * 2. Generates way fewer intermediate results, so more
A / efficient! (Due to selection pushdown)
e [I—— instructor teaches]] T
COlllSe COlIl.Sé’
(a) Initial expression tree (b) Transformed expression tree The Query Optimizer SEIeCt the beSt way to execute a

query! (Next lessons)

50

Outline

. Relational Model

. Relational Algebra

« Relational Query Languages
 Selection & Projection

« Union, Set Difference & Intersection
e Cross product & Joins

e Intro to query optimization
 Division

51

Last compound operator: Division

e Useful for expressing “for all” queries like:

Find the instructors teaching courses FOR ALL
number of credits

For A/B attributes of B are subset of attributes of A.
e May need to “project” to make this happen.

e Example: Let A have 2 fields, x and y; let B have
only field y

A/B= {<x>“v’<y> e B(3(x,y) € A)}

A/B contains all x tuples such that
for every y tuple in B, there is an xy tuple in A

course
course_id title deptname | credits
BIO-101 Intro. to Biology Biology 4
BIO-301 Genetics Biology 4
BIO-399 | Computational Biology Biology 3
CS-101 Intro. to Computer Science | Comp. Sci. 4
CS-190 Game Design Comp. Sci. 4
CS-315 Robotics Comp. Sci. 3
CS-319 Image Processing Comp. Sci. 3
CS-347 Database System Concepts [Comp. Sci. 3
EE-181 Intro. to Digital Systems Elec. Eng. 3
FIN-201 | Investment Banking Finance 3
HIS-351 World History History 3
MU-199 | Music Video Production Music 3
J PHY-101 | Physical Principles Physics 4
instructor :
‘ ID | name I deptname | salary |
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
08345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000 teaCh es
58583 [Califieri History 62000
83821 | Brandt Comp. Sci. | 92000 ID | courseid sec.id | semester | year
15151 Mozart Music 40000 10101 | CS-101 1 Fall 2017
33456 | Gold Physics 87000 10101 | CS-315 1 Spring | 2018
76543 | Singh Finance 80000 10101 | CS-347 1 Fall 2017
12121 | FIN-201 1 Spring 2018
15151 | MU-199 1 Spring 2018
22222 | PHY-101 1 Fall 2017
32343 | HIS-351 1 Spring 2018
45565 | CS-101 1 Spring 2018
45565 | CS-319 1 Spring 2018
76766 | BIO-101 1 Summer | 2017
76766 | BIO-301 1 Summer | 2018
83821 | CS-190 1 Spring 2017
83821 | CS-190 2 Spring 2017
83821 | CS-319 2 Spring 2018
98345 | EE-181 1 Spring 2017

52

Examples of division A/B

pno

DNO

P2

B1

N2

N4

DNO

SNO

B2

ol
N2
N4

B3

53

Examples of division A/B

sno |pno pno DNo ONOo
ST 1 P2 D2 o)
1 »(’E? 21 04 H2
ST N4
sl —)@ b2

B3
s2 |p sno
s2 |p2 ST
s3 |p2 s2 sno
s4__ [P s3 sl
s4_)<\94 s4 s4

A A/B1 A/B2

Examples of division A/B

pno

P2

B1

sno
ST
S2

A/B1

DNO

N2
N4

B2

sno
ST
s4

A/B2

olgle
ol
N2

D4
B3

sSno
ST

A/B3

55

Expressing A/B using basic operators

e Division is not essential op; just a useful shorthand

® (Also true for joins, but joins are so common that systems implement joins
specially)

e /dea: For A/B, compute all x values that are not “disqualified” by some y value in B

® x value is disqualified if by attaching y value from B, we obtain an xy tuple that is
notin A

Disqualified x values: 7 .. ((7 ,.(4)xB)—A)

A/B: ﬂx(A) — Disqualified x values

56

Expressing A/B

SN0 (pNoO

sl ol

sl oY
sno_|pno sl |p4
sl |p1 s2 |pT
sl |p2 s?2 |p2
sl |p3 2 |p4
sl |p4 s3 |[p1
s2 |p1 s3 [p2
s2 |p2 s3 |p4
s3 |p2 4 |pT
4 (p2 4 |p2
4 |p4 s4 |p4

lensno

(A)xB

SI”lO

(A)—r

sno
s DNO
S2 ol
s3 N2
| s4 D4
7-[STLO (A) B

57

Expressing A/B
Subtraction\ z?o E?O
-5—1pZ2—
sno |pno -4
sl |pl 62— p1—
sl |p2 S22
sl |p3 s2 |p4
sl |p4 s3 |pl
s2 |pl 8—152—
s3 |p2 s4 |pT
s4 |p2 A—p2—
4 |p4 sl nd
Tl=r, (A)xB

(A)_ﬂsna T1 _A)
sno |pno
32 __Projection
8 &~ Duplicate elimination
s3 4
sA 1 ONOo
| 1
T1-A ’
D2
04
B
SNo
S2
s3
A
T2=n, (T1-A)

Expressing A/B 7T snolA)— T2

sNo |pno SNo |pno
51 5] s2 4
7P 53—

Sno |pno ST—p4— s3 4

sl |pT §2—pI— s4 1 ONO

ST P2 2 p2. T1— 4 ol

ST p3 s2 |p4 N2

sl |p4 s3 |pT 7 snolA) oY

s2 |pT 83— sno B

s2 |p2 s3 |p4 ST sSho

3 |p2 s4 |p1 2. | |82 _ sno

s4 |p2 SA—p2— S3 S3 B N

4 |p4 sd—pd— 4 s4 A/B =

A T1=7'L'S”0(A)><B T2=7Z'S”O(T1—A) Moo (A) =T2

Summary

Relational model is ubiquitous
® Reasoning about information in tables was not always the case!
e ...butitcan be restrictive for specific applications

Formal foundation for real query languages

® Helps represent and reason about execution plans

Five basic operators forming a robust, well-balanced language
® Selection, projection, cross-product, union, set difference

Compound operators

e Useful shorthands like join and division
e Can be expressed with basic operators
e But enable faster query execution

60

Backup Slides

AIAS cPrL

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Relational Database

Key/Value Database

Defined table schema (database contains tables,
tables contain rows, and rows are made up of column
values)

No defined domain schema (A domain is basically a
bucket with items that can have differing schemas)

Strongly typed schema with constraints and
relationships that enforce data integrity

ltems are identified by keys, and a given item can
have a dynamic set of attributes attached to it.

The data model is based on a “natural”
representation of the data it contains, not on an
application’s functionality.

In some implementations, attributes are all of a string
type. In other implementations, attributes have
simple types that reflect code types, such as ints,
string arrays, and lists.

Normalization of the data model:

* Remove data duplication.

e Establish table relationships to associate data
between tables.

No relationships are explicitly defined between
domains or within a given domain.

62

Data models

e ER to Relational

63

Logical DB design: ER to relational model

e Entity sets to tables

= P

Employees

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))

ssn name lot
123-22-3666 |Attishoo |48
231-31-5368 |Smiley 22
131-24-3650 |Smethurst |35

64

Relation sets to tables

Our favorite example

@ dname
©
Employees Departments

\

ssn name lot
ssh did since

123-22-3666 | Attishoo 48 123.22.3666 151 11/1/91

231-31-5368 |Smiley 22 123-22-3666 56 |3/3/93
231-31-5368 |51 |2/2/92

131-24-3650 |Smethurst |35

Relation sets to tables

e |n translating a many-to-many
relationship set to a relation, attributes
of the relation must include:

1) Keys for each participating entity
set (as foreign keys): Such a set of
attributes forms a superkey for the
relation

2) All descriptive attributes

CREATE TABLE Manages(

ssn CHAR(1),

did INTEGER,

since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,

FOREIGN KEY (did)
REFERENCES Departments)

ssn did |since

123-22-3666 |51 |1/1/91
123-22-3666 |56 |3/3/93

231-31-5368 |51 [2/2/92

66

Review: Key constraints in ER

e Each dept has at most one manager, according to the key constraint on Manages

@ CREATE TABLE Manages(
@ @ ssn CHAR(1),
@ @ d}d INTEGER,
since DATE,
PRIMARY KEY (did),
Employees Manages Departments FOREIGN KEY (ssn)REFERENCES Employees,
FOREIGN KEY (did)REFERENCES Departments)

67

Translating ER with key constraints

=T T el

Employees Manages Departments

e Since each department has a unique manager, could combine Manages and Departments

CREATE TABLE Manages(CREATE TABLE Dept Mgr(

ssn CHAR(11), did INTEGER,

did INTEGER, dname CHAR(20),

since DATE, \ budget REAL,

PRIMARY KEY (did), (vs.>ssn CHAR(11),

FOREIGN KEY (ssn) —_/ since DATE,
REFERENCES Employees, PRIMARY KEY (did),

FOREIGN KEY (did) REFERENCES FOREIGN KEY (ssn)
Departments) REFERENCES Employees)

Review: Participation constraints

e Does every department have a manager?

® |f so, thisis a participation constraint: the participation of Departments in Manages is
said to be total (vs. partial)

« Every did value in Departments table must appear in a row of the Manages
table (with a non-null ssn value!)

G

Employees Departments

Participation constraints in SQL

e (Can capture participation constraints involving one entity set in a binary relationship
e But little else (without resorting to CHECK constraints)

CREATE TABLE Dept Mgr(

did INTEGER,

dname CHAR(20),

budget REAL,

ssn CHAR(11) NOT NULL,

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees,
ON DELETE NO ACTION)

e |SA to Relational

Data Models

71

Translating ISA hierarchy to relations

e General approach:

e 3 relations: Employees, Hourly Emps and
Contract_Emps.

name

e Hourly Emps: Every employee is recorded in @
Employees. For hourly emps, extra info recorded in
Hourly Emps (hourly_wages, hours_worked, ssn); must Employees
delete Hourly_Emps tuple if referenced Employees tuple

is deleted) @ /\
e Queries involving all employees easy, those involving ISA

just Hourly_Emps require a join to get some attributes

Contract Emps

e Alternative: Just Hourly _Emps and Contract_ Emps Hourly_Emps

e Hourly Emps: ssn, name, lot, hourly wages,
hours worked

e Each employee must be in one of these two subclasses

72

Relational model: Foreign keys — SQL

e Example: Only students listed in the Students relation should be allowed to enroll
for courses.

® sidis a foreign key referring to Students

CREATE TABLE Enrolled

(cid CHAR(20),sid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students(sid))

Students Enrolled
mmm cid _|sid |grade
50000 Dave dave@cs 19 Carnaticl101 ___.53666 C
53666 Jones jones@cs 18 3.4 50000 B
53688 Smith smit@ee 18 3.2 Topology 53666 A

73

Where do ICs come from?

e |Cs are based upon the semantics of the real-world that is being described in the
database relations

e We can check a database instance to see if an IC is violated, but we can NEVER infer
that an IC is true by looking at an instance
® An ICis a statement about all possible instances
® From example, we know name is not a key, but the assertion that sid is a key is given to
us

e Key and foreign key ICs are the most common; more general ICs supported too

74

Wake-up question

e What if the toy department has no manager (yet) ?

CREATE TABLE Dept_Mgr(
did INTEGER,

dname CHAR(20),
budget REAL,

ssn CHAR(11),

since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

75

Review: Key Constraints in ER

- -

) oo % -

111111

aaaaaaaaaaa

Review: Weak entities

e A weak entity can be identified uniquely only by considering the primary key of
another (owner) entity.

— Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many
weak entities).

— Weak entity set must have total participation in this identifying relationship set.

cost
Employees @ Dependents

77

Translating Weak Entity Sets

e Weak entity set and identifying relationship set are translated into a single table.
— When the owner entity is deleted, all owned weak entities must also be deleted.

CREATE TABLE Dep_Policy |
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,
ON DELETE CASCADE)

78

e noSQL data models

Data Models

79

Not all data fits in tables naturally

. mongo
e

1. Key-Value data model cassandra
* Object vs. Table :

*The rise of noSQL!

2. Hierarchies, Arrays

How different are SQL and noSQL?

80

Object—centric representation

@ SR
Employees Departments

*Represent as a single data block

*Center all information around a core entity
* In this case: “Employee, and all the info about him/her”

class Employee private class Department
{ {
int ssn; int did;
string name; string dname;
int lot; int budget;
list<Department> managedDepts; }
}

Anchor all information on an object type!

81

Key-value pairs

123-22-3666— Attishoo 48 [(51,IT,1000),(56,Accounting,3000)]
231-31-5368—> Smiley 22 [(51,IT,1000)]
131-24-3650— Smethurst 35 []

123-22-3666—> Binary Object 1
231-31-5368—» Binary Object 2
131-24-3650—> Binary Object 3

» Many applications prefer the 2" option!
* Pros: Schema Flexibility / less rigid constraints

&

* Cons: Queries less expressive \%;%i&
* put() |

. get() cassandra

82

Support for Hierarchies & Arrays?

e K-V model supports storing hierarchies & arrays

e But it is agnostic to them!

— “Associate any value with a key”, but that’s it!

e Do we need this support? Are there use cases?
— XML!
— JSON!

83

{

Same example, JSON representation

"id": 123223666, "name": "Attishoo",
"manages": [{"did": 51, "name": "IT",
"budget": 1000},

{"did": 56, "name": "Accounting", . mong()

"budget": 3000}]

Many systems implement it as K-V!

84

Example 3

e Find sailors who have reserved a red or a green boat.

e Hint: Can identify all red or green boats, then find sailors who have reserved one of these
boats.

p (Tempboats, (o Boats))

color=red' v color="'green'

T namelempboatsill Reservesilil Sailors)

85

Example 4

e Find names of sailors who’ve reserved a red and a green boat.
e Hint: Previous approach won’t work! Must identify sailors who've reserved red boats,

sailors who’ve reserved green boats, then find the intersection (note that sid is a key for
Sailors).

p (Tempred, ©t Boats)MN Reserves))

sid ((Gcolor —red'

p (Tempgreen, it Boats)lll Reserves))

sid ((color = green

7T iname(Tempred "Tempgreen)ll Sailors)

86

Relational Algebra

e Examples

87

Your turn...

1.

Find (the name of) all sailors whose rating is above 9.

Find all sailors who reserved a boat prior to November 1, 1996.
Find (the names of) all boats that have been reserved at least once.
Find all pairs of sailors with the same rating.

Find all pairs of sailors in which the older sailor has a lower rating.

88

Answers...

1. Find (the name of) all sailors whose rating is above 9.

o (Sailors))

T .
sname' rating>9

89

Answers...

2.

Find all sailors who reserved a boat prior to November 1, 1996.

(Sailorsli o (Reserves))

" sname day<'1 1/1/96

90

Answers...

3.

Find (the names of) all boats that have been reserved at least once.

T (Boatslll Reserves)
bname

91

Answers...

4.

Find all pairs of sailors with the same rating.

p(S1(1—sidl,2 . snamel 3__.ratingl4_agel),Sailors)

p(S2(1—sid2,2 . sname2 3__rating2,4__.age?),Sailors)

T (STXKX

snamel,sname?2

ratingl=rating2 nsidl+sid2 52)

92

Answers...

5.

Find all pairs of sailors in which the older sailor has a lower rating.

T (STXKX

snamel,sname?2 agel>age2 nratingl<rating?

S2)

93

Set semantics vs. multiset (“bag”) semantics

e Both versions of relational algebra exist.

e Database systems use bag semantics.

e Set semantics simpler and cleaner.

e Some operations require set semantics.

e Some operations “force” bag semantics, unless we eliminated duplicates.

e Under bag semantics, set-shaped databases become bag-shaped. (example?)

94

Example: Find the names of sailors who have
reserved all boats

e Uses division; schemas of the input relations to / must be carefully chosen:

o (Tempsids, (n Reserves) / (n, . , Boats))

sid,bid

T cname Lempsids ¥ Sailors)

bid

e To find sailors who have reserved all ‘Interlake’ boats:

/ Boats)

& bid (o bname= Interlake

95

