SQL: The Query Language

AIANS cPrL

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Today’s course

Database Management Systems (DBMS) store and
manage large quantities of data

We want an intuitive way to ask questions to it!

— For this course: questions = queries

You have been taught procedural languages (C, java)

— which specify how to solve a problem (or answer a question)

Today we will talk about SQL

SQL is a declarative query language
— We ask what we want and the DBMS is going to deliver!

Introduction to SQL

e SQL is a relational query language
e Supports simple yet powerful guerying of data
e |t has two parts:

— DDL: Data Definition Language (define and modify schema)

e More about that in the next lecture

— DML: Data Manipulation Language (intuitively query data)

Let’s agree on some terminology

e Relation (or table)

e Row (or tuple)

e Column (or attribute)

sid |name | login |age gpa
53666 |Jones |jones@cs |18 |3.4
53688 |Smith |smith@ee | 18 |3.2
sid |name | login |age gpa
53688 |Smith |[smith@ee | 18 | 3.2
name | login |age |gpa
Jones |jones@cs |18 |3.4
Smith |smith@ee | 18 |3.2

Let’s agree on some terminology

e Primary Key (PK) sid |name | login |age|gpa
53666 |Jones |jones@cs |18 |3.4
53688 |Smith |smith@ee | 18 |3.2

e The PK of a relation is the column (or the group
of columns) that can uniquely define a row.

e |n other words:

Two rows cannot have the same PK

The simplest SQL query

e “Find all contents of a table”

e |n this example: “Find all info for all students”

sid |name | login |age |gpa

SELECT * 53666 |Jones |jones@cs |18 |3.4
FROM Students S [53688 |Smith |smith@ee | 18 |3.2
53777 |White |white@cs | 19 4.0

e To find just names and logins, replace the first line:

SELECT S.name, S.login

Show specific columns

e “Find name and login for all students”

SELECT S.name, S.login
FROM Students S

name

login

Jones
Smith
White

jones@cs

smith@ee
white@cs

This is called: “Project name and login
from table Students”

Show specific rows

e “Find all 18 year old students”

SELECT ~
FROM Students S
WHERE S.age=18

sid

name

login

age

gpa

53666
53688

Jones
Smith

jones@cs

smith@ee

18
18

3.4
3.2

This is called: “Select students with age

18

Clauses of a SQL query

e Conceptually, a SQL query can be computed:

1. FROM : compute cross-product of tables
(e.g., Students and Enrolled).

2. WHERE : Check conditions, discard tuples that fail.
(called “selection”).

3. SELECT : Delete unwanted fields.
(called “projection”).

4. If DISTINCT specified, eliminate duplicate rows.

SELECT [DISTINCT] target-list

SQL Voca b u |a ry FROM relation-list

WHERE qualification

o relation-list : A list of relation names

— possibly with a range-variable after each name

e qualification : Comparisons combined using AND, OR, and
NOT.

— Comparisons are of the form: Attr op Const or Attrl op Attr2,
where op is one of AND, OR, and NOT

o target-list : A list of attributes of tables in relation-list

e DISTINCT: optional keyword indicating that the answer

should not contain duplicates.

— In SQL SELECT, the default is that duplicates are not
eliminated! (Result is called a “multiset”)

Querying Multiple Relations

e Can specify a join over two tables as follows:
— Find all students with grade “B”

sid cid grade
53831 |Carnaticl01 C
53831 |Reggae203 B
53650 |Topologyl1l2 | A
53666 |Historyl05 B
SELECT S.name, E.cid

FROM Students S,

sid name

login

age

apa

53666 Jones |jones@cs

53688 Smith

smith@ee

18
18

3.4
3.2

Enrolled E

WHERE S.s1d=E.s1d AND E.grade=‘B’

result =

S.name

E.cid

Jones

History105

(Naive) query evaluation in steps

SELECT S.name,

FROM Students S,

E.cid

Enrolled E

WHERE S.s1d=E.s1d AND E.grade=‘B'

sid cid grade
53831 |Carnatic101 C
53831 |Reggae203 B
53650 |Topologyll2 | A
53666 |History105 B

sid

name

login

age

apPa

53666
53688

Jones
Smith

jones@cs

smith@ee

18
18

3.4
3.2

Step 1 — Cross Product

Combine with cross-product all tables of the FROM clause.

Ssid |S.name| S.login S.age S.gpa E.sid E.cid E.grade
53666 |Jones |jones@cs (18 3.4 53831 | Carnatic101 C
53666 Jones |jones@cs 18 3.4 53832 Reggae203 B
53666 |Jones |jones@cs |18 |3.4 53650 |Topologyll2 | A
53666 |Jones |jones@cs 18 3.4 53666 | History105 B
53688 |Smith | smith@ee 18 [3.2 53831 Carnaticl01 C
53688 | Smith |smith@ee 18 3.2 53831 Reggae203 B
53688 | Smith |smith@ee |18 3.2 53650 |Topologyll2z | A
53688 | Smith |smith@ee 18 3.2 53666 History105 B
SELECT S.name, E.cid

FROM Students
WHERE S.sid=E

S, Enrolled E
.S1d AND E.grade=‘B'

Step 2 - Discard tuples that fail predicate

Make sure the WHERE clause is true!

Ssid |S.name S.login |S.age S.gpa E.sid E.cid E.grade
53666 |Jones |jones@cs (18 3.4 53831 | Carnatic101 C
53666 |Jones | jones@cs |18 |3.4 53832 |Reggae203 ‘
53666 Jones jones@cs 18 3.4 53650 Topologyll2 A
§53666 yJones | jones@cs |18 |3.4 (536@>History105 (B)

Smith [smith@ee [18 [3.2 53831 [Carnatic101 C
53688 | Smith |smith@ee |18 3.2 53831 |Reggae203 ’
53688 | Smith |smith@ee |18 3.2 53650 | Topologyl112
53688 | Smith |smith@ee |18 3.2 53666 |History105 ‘

SELECT S.name, E.cid
FROM Students S, Enrolled E

WHERE S.s1d=E.s1d AND E.grade=‘B'

Step 3 - Discard Unwanted Columns

Show only what is on the SELECT clause.

S.name E.cid
Jones Carnatic101
Jones Reggae203
Jones Topology112
0 JJones |jones@cs |18 3.4 (O JHistory105
Smith Carnatic101
Smith Reggae203
Smith Topology112
Smith History105

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.s1d=E.s1d AND E.grade=‘B'

Now the Details...

We will use these instances
of relations in our examples.

Boats

bid

OName

color

Reserves

sid

bid

day

22
95

101
103

10/10/96
11/12/96

Sailors

101
102
103
104

nterlake
nterlake
Clipper
Marine

blue
red
green
red

sid 'sname rating

age

22 Dustin 7
31 Lubber 8

95 Bob

3

45.0

55.5
63.5

Insert Into Table

e |nsert arow into a table

sid |name | login |age gpa
53666 |Jones |jones@cs |18 |3.4
53688 |Smith |[smith@ee 18 |3.2

INSERT
INTO Students
VALUES (53777, white, white@cs, 19, 4.0)

INSERT

INTO Students

(s1d, name, login, age, gpa)

VALUES (53777, white, white@cs, 19, 4.0)

Insert Into Table

e |nsert arow into a table

sid |name | login |age gpa
53666 |Jones |jones@cs |18 |3.4

53688 |Smith |smith@ee | 18 | 3.2

INSERT 53777 |White |white@cs | 19 4.0
INTO Students

VALUES (53777, white, white@cs, 19, 4.0)

INSERT

INTO Students

(s1d, name, login, age, gpa)

VALUES (53777, white, white@cs, 19, 4.0)

Delete From Table

e Delete arow from a table

DELETE

FROM Students S
WHERE si1d=53777

sid

name

login

age

spPa

53666
53688
53777

Jones
Smith
White

jones@cs
smith@ee

white@cs

18
18
19

3.4
3.2
4.0

Delete From Table

e Delete arow from a table

DELETE

FROM Students S
WHERE si1d=53777

sid

name

login

age

spPa

53666
53688

Jones
Smith

jones@cs

smith@ee

18
18

3.4
3.2

53777

White

white@cs

19

4.0

Delete From Table

e Delete arow from a table

DELETE
FROM Students S
WHERE si1d=53777

sid

name

login

age

spPa

53666
53688

Jones
Smith

jones@cs

smith@ee

18
18

3.4
3.2

Agoregate Operators |[COunT (¥
gg g p COUNT ([DISTINCT] A)

e Significant extension of SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
relational algebra. MAX (A)

MIN (A}

e Find the number of sailors C
SELECT COUNT (*) single column
FROM Sailors S

e Find average age of sailors whose rating is 10

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

e Count unique ratings of sailors whose name is Bob
SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname="Bob’

Find name and age of the oldest sailor(s)

e The first query is
incorrect!

— Max returns a single value
over the specified column.

— How to combine it with
appropriate sname?

e Third query equivalent
to second query

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age

FROM Sailors S

WHERE S.age =
(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age

FROM Sailors S

WHERE (SELECT MAX (52.age)
FROM Sailors S2)
= 5S.age

GROUP BY

e So far, we've applied aggregate operators to all
(qualifying) tuples.

— Sometimes, we want to apply them to each of several
groups of tuples.

e Consider: Find the age of the youngest sailor
for each rating level.

— In general, we don’t know how many rating levels exist, and
what the rating values for these levels are!

— Suppose we know that rating values go from 1 to 10; we
can write 10 queries that look like this (!):

- | SELECT MIN (S.age)
Fori=1,2, .., 10: FROM Sailors S
WHERE S.rating =i

GROUP BY

e Consider: Find the age of the youngest sailor
for each rating level

sid [sname |rating |age sid |sname |rating |age
22 |Dustin | 7 45.0 22 |Dustin | 7 45.0
31 |Lubber| 8 [555 j> 68 |John | 7 [56.5
95 |Bob 3 63.5 81 |Ana 7 71.5
52 |Smith 3 74.5 31 |Lubber| 8 55.5
68 |John 7 56.5 95 |Bob 3 63.5
81 |Ana 7 71.5 52 |Smith 3 /4.5
-

SELECT MIN (S.age), S.rating [sid |sname rating |age

FROM Sailors S 7 45.0
GROUP BY S.rating g |esc

3 63.5

3] !:/
2 &

e a %
7

GROUP BY — HAVING

e Consider: Find the age of the youngest sailor
for each rating level with at least two sailors

sid [sname |rating |age

22 |Dustin | 7 45.0
31 |Lubber| 8 55.5
95 |Bob 3 63.5
52 |Smith 3 74.5
68 |John 7 56.5
81 |Ana 7 71.5

=)

SELECT MIN (S.age), S.rating
FROM Sailors S
GROUP BY S.rating

HAVING COUNT(*) > 1

1k
5

_

yok Pl .

Y a ,a;,aa/

sid |sname |rating |age

22 (Dustin | 7 45.0
68 |John 7 56.5
81 |Ana 7 71.5
31 |Lubber| 8 55.5
95 |Bob 3 63.5
52 [Smith 3 74.5

~

age

45.0

Summary

An advantage of the relational model is its well-
defined query semantics.

SQL provides functionality close to that of the basic
relational model.

— some differences in duplicate handling, null values,
set operators, etc.

Typically, many ways to write a query

— the system is responsible for figuring a fast way to
actually execute a query regardless of how it is
written.

Lots more functionality beyond these basic features.

Architecture of a (typical) DBMS

Web Forms Application Frontends SQL Interface (terminal, IDE)
e——
SQL Developer,
Frontend SQL Commands Result DBeaver
1 4\ DataGrip ...
\ Query
Query Opt|m|zat|0n Processin
_ L and Execution Query
Relational :) o
Alzebra. SQL Relational Operators Optimization
oebra - — :
Access Methods Transaction
A S Management
Buffer Management
Disk Space) Concurrency
Management
DBMS v B Control
‘ Oracle, MS SQL Server,

MySQL, Postgres ...

‘ Database Storage l
Disk Storage, Files

	Slide 1: SQL: The Query Language
	Slide 2: Today’s course
	Slide 3: Introduction to SQL
	Slide 4: Let’s agree on some terminology
	Slide 5: Let’s agree on some terminology
	Slide 6: The simplest SQL query
	Slide 7: Show specific columns
	Slide 8: Show specific rows
	Slide 9: Clauses of a SQL query
	Slide 10: SQL Vocabulary
	Slide 11: Querying Multiple Relations
	Slide 12: (Naïve) query evaluation in steps
	Slide 13: Step 1 – Cross Product
	Slide 14: Step 2 - Discard tuples that fail predicate
	Slide 15: Step 3 - Discard Unwanted Columns
	Slide 16: Now the Details…
	Slide 17: Insert Into Table
	Slide 18: Insert Into Table
	Slide 19: Delete From Table
	Slide 20: Delete From Table
	Slide 21: Delete From Table
	Slide 22: Aggregate Operators
	Slide 23: Find name and age of the oldest sailor(s)
	Slide 24: GROUP BY
	Slide 25: GROUP BY
	Slide 26: GROUP BY – HAVING
	Slide 27: Summary
	Slide 28: Architecture of a (typical) DBMS

