
SQL: The Query Language

Today’s course

• Database Management Systems (DBMS) store and
manage large quantities of data

• We want an intuitive way to ask questions to it!
– For this course: questions → queries

• You have been taught procedural languages (C, java)
– which specify how to solve a problem (or answer a question)

• Today we will talk about SQL

• SQL is a declarative query language
– We ask what we want and the DBMS is going to deliver!

Introduction to SQL

• SQL is a relational query language

• Supports simple yet powerful querying of data

• It has two parts:

– DDL: Data Definition Language (define and modify schema)
• More about that in the next lecture

– DML: Data Manipulation Language (intuitively query data)

Let’s agree on some terminology

• Relation (or table)

• Row (or tuple)

• Column (or attribute)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

Let’s agree on some terminology

• Primary Key (PK)

• The PK of a relation is the column (or the group
of columns) that can uniquely define a row.

• In other words:

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

Two rows cannot have the same PK

The simplest SQL query

• “Find all contents of a table”

• In this example: “Find all info for all students”

SELECT *
FROM Students S

• To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53777 White white@cs 19 4.0

Show specific columns

• “Find name and login for all students”

SELECT S.name, S.login
FROM Students S

name login

Jones jones@cs

Smith smith@ee

White white@cs

This is called: “Project name and login
from table Students”

Show specific rows

• “Find all 18 year old students”

SELECT *
FROM Students S
WHERE S.age=18

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

This is called: “Select students with age
18.”

Clauses of a SQL query
• Conceptually, a SQL query can be computed:

1. FROM : compute cross-product of tables
(e.g., Students and Enrolled).

2. WHERE : Check conditions, discard tuples that fail.
(called “selection”).

3. SELECT : Delete unwanted fields.
(called “projection”).

4. If DISTINCT specified, eliminate duplicate rows.

SQL Vocabulary

• relation-list : A list of relation names

– possibly with a range-variable after each name

• qualification : Comparisons combined using AND, OR, and
NOT.

– Comparisons are of the form: Attr op Const or Attr1 op Attr2,
where op is one of AND, OR, and NOT

• target-list : A list of attributes of tables in relation-list

• DISTINCT: optional keyword indicating that the answer

should not contain duplicates.

– In SQL SELECT, the default is that duplicates are not
eliminated! (Result is called a “multiset”)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

Querying Multiple Relations

• Can specify a join over two tables as follows:

– Find all students with grade “B”

SELECT S.name, E.cid
 FROM Students S, Enrolled E
 WHERE S.sid=E.sid AND E.grade=‘B'

result =

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

S.name E.cid
 Jones History105

(Naïve) query evaluation in steps

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=‘B'

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53650 Topology112 A

53666 History105 B

Step 1 – Cross Product

SELECT S.name, E.cid
 FROM Students S, Enrolled E
 WHERE S.sid=E.sid AND E.grade=‘B'

Combine with cross-product all tables of the FROM clause.

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade

53666 Jones jones@cs 18 3.4 53831 Carnatic101 C

53666 Jones jones@cs 18 3.4 53832 Reggae203 B

53666 Jones jones@cs 18 3.4 53650 Topology112 A

53666 Jones jones@cs 18 3.4 53666 History105 B

53688 Smith smith@ee 18 3.2 53831 Carnatic101 C

53688 Smith smith@ee 18 3.2 53831 Reggae203 B

53688 Smith smith@ee 18 3.2 53650 Topology112 A

53688 Smith smith@ee 18 3.2 53666 History105 B

Step 2 - Discard tuples that fail predicate

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade

53666 Jones jones@cs 18 3.4 53831 Carnatic101 C

53666 Jones jones@cs 18 3.4 53832 Reggae203 B

53666 Jones jones@cs 18 3.4 53650 Topology112 A

53666 Jones jones@cs 18 3.4 53666 History105 B

53688 Smith smith@ee 18 3.2 53831 Carnatic101 C

53688 Smith smith@ee 18 3.2 53831 Reggae203 B

53688 Smith smith@ee 18 3.2 53650 Topology112 A

53688 Smith smith@ee 18 3.2 53666 History105 B

SELECT S.name, E.cid
 FROM Students S, Enrolled E
 WHERE S.sid=E.sid AND E.grade=‘B'

Make sure the WHERE clause is true!

Step 3 - Discard Unwanted Columns

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade

53666 Jones jones@cs 18 3.4 53831 Carnatic101 C

53666 Jones jones@cs 18 3.4 53832 Reggae203 B

53666 Jones jones@cs 18 3.4 53650 Topology112 A

53666 Jones jones@cs 18 3.4 53666 History105 B

53688 Smith smith@ee 18 3.2 53831 Carnatic101 C

53688 Smith smith@ee 18 3.2 53831 Reggae203 B

53688 Smith smith@ee 18 3.2 53650 Topology112 A

53688 Smith smith@ee 18 3.2 53666 History105 B

SELECT S.name, E.cid
 FROM Students S, Enrolled E
 WHERE S.sid=E.sid AND E.grade=‘B'

Show only what is on the SELECT clause.

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

95 Bob 3 63.5

sid bid day

22 101 10/10/96

95 103 11/12/96

Now the Details…

We will use these instances
of relations in our examples.

Reserves

SailorsBoats

Insert Into Table

• Insert a row into a table

INSERT
INTO Students
VALUES (53777, White, white@cs, 19, 4.0)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53777 White white@cs 19 4.0

INSERT
INTO Students
(sid, name, login, age, gpa)
VALUES (53777, White, white@cs, 19, 4.0)

Insert Into Table

• Insert a row into a table

INSERT
INTO Students
VALUES (53777, White, white@cs, 19, 4.0)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53777 White white@cs 19 4.0

INSERT
INTO Students
(sid, name, login, age, gpa)
VALUES (53777, White, white@cs, 19, 4.0)

Delete From Table

DELETE
FROM Students S
WHERE sid=53777

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53777 White white@cs 19 4.0

• Delete a row from a table

Delete From Table

DELETE
FROM Students S
WHERE sid=53777

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53777 White white@cs 19 4.0

• Delete a row from a table

Delete From Table

• Delete a row from a table

DELETE
FROM Students S
WHERE sid=53777

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53777 White white@cs 19 4.0

Aggregate Operators

• Significant extension of

 relational algebra.

• Find the number of sailors

• Find average age of sailors whose rating is 10

• Count unique ratings of sailors whose name is Bob

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Find name and age of the oldest sailor(s)

• The first query is
incorrect!
– Max returns a single value

over the specified column.

– How to combine it with
appropriate sname?

• Third query equivalent
to second query

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

GROUP BY

• So far, we’ve applied aggregate operators to all
(qualifying) tuples.
– Sometimes, we want to apply them to each of several

groups of tuples.

• Consider: Find the age of the youngest sailor
for each rating level.
– In general, we don’t know how many rating levels exist, and

what the rating values for these levels are!

– Suppose we know that rating values go from 1 to 10; we
can write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

GROUP BY
• Consider: Find the age of the youngest sailor

for each rating level

SELECT MIN (S.age), S.rating
FROM Sailors S
GROUP BY S.rating

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

95

52

68

81

Bob

Smith

John

Ana

3

3

7

7

63.5

74.5

56.5

71.5

sid sname rating age

22 Dustin 7 45.0

68 John 7 56.5

81

31

95

52

Ana

Lubber

Bob

Smith

7

8

3

3

71.5

55.5

63.5

74.5

sid sname rating age

22 Dustin 7 45.0

31

95

Lubber

Bob

8

3

55.5

63.5

Not
aggregated

GROUP BY – HAVING
• Consider: Find the age of the youngest sailor

for each rating level with at least two sailors

SELECT MIN (S.age), S.rating
FROM Sailors S
GROUP BY S.rating
HAVING COUNT(*) > 1

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

95

52

68

81

Bob

Smith

John

Ana

3

3

7

7

63.5

74.5

56.5

71.5

sid sname rating age

22 Dustin 7 45.0

68 John 7 56.5

81

31

95

52

Ana

Lubber

Bob

Smith

7

8

3

3

71.5

55.5

63.5

74.5

sid sname rating age

22 Dustin 7 45.0

31 Lubber 3 55.5

Not
aggregated

Summary
• An advantage of the relational model is its well-

defined query semantics.

• SQL provides functionality close to that of the basic
relational model.

– some differences in duplicate handling, null values,
set operators, etc.

• Typically, many ways to write a query

– the system is responsible for figuring a fast way to
actually execute a query regardless of how it is
written.

• Lots more functionality beyond these basic features.

Architecture of a (typical) DBMS

Database Storage

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space
Management

Result

Relational
Algebra, SQL

Disk Storage, Files

Query
Processing

Query
Optimization

Transaction
Management

Concurrency
Control

SQL Commands

DBMS

Web Forms Application Frontends SQL Interface (terminal, IDE)

SQL Developer,
DBeaver,

DataGrip ...

Frontend

Oracle, MS SQL Server,
MySQL, Postgres ...

	Slide 1: SQL: The Query Language
	Slide 2: Today’s course
	Slide 3: Introduction to SQL
	Slide 4: Let’s agree on some terminology
	Slide 5: Let’s agree on some terminology
	Slide 6: The simplest SQL query
	Slide 7: Show specific columns
	Slide 8: Show specific rows
	Slide 9: Clauses of a SQL query
	Slide 10: SQL Vocabulary
	Slide 11: Querying Multiple Relations
	Slide 12: (Naïve) query evaluation in steps
	Slide 13: Step 1 – Cross Product
	Slide 14: Step 2 - Discard tuples that fail predicate
	Slide 15: Step 3 - Discard Unwanted Columns
	Slide 16: Now the Details…
	Slide 17: Insert Into Table
	Slide 18: Insert Into Table
	Slide 19: Delete From Table
	Slide 20: Delete From Table
	Slide 21: Delete From Table
	Slide 22: Aggregate Operators
	Slide 23: Find name and age of the oldest sailor(s)
	Slide 24: GROUP BY
	Slide 25: GROUP BY
	Slide 26: GROUP BY – HAVING
	Slide 27: Summary
	Slide 28: Architecture of a (typical) DBMS

