
ER – Relational Model

Week 3

The BIG picture

2

Want to
store data

Conceptual
Design

Logical
Design

Physical
Design Database

Storage

Want to
access data

SQL
Query Optimization

and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Result

Schema
Refinement

ER
Models

Relational
Model

ER to
Relational

Relational
Algebra, SQL

Read the textbook for a more
detailed architecture description

ER Model

• High level, conceptual representation of how to describe the user needs and data

• Capture the practical requirements and constraints of the given use-case

• Conceptual design – entities, attributes, relations, and the constraints between them

• More complex relations with constraints:
– Key constraints

– Participation constraints

– ISA hierarchy

– Weak entities

• Revise and learn: week 2

Relational Model

• Logical database design, based on high level conceptual design

• Translating ER model to relational model
– Lowering the level of abstraction - concretization based on the requirements

• Schema – structural, more concrete description of relations in a database

• Integrity constraints enforce the data present/inserted follow the rules of schema

• Each attribute has assigned domain/type, and eventual value constraints
– Null value, unique constraints

• Key constraints (minimal unique descriptor of the row – based on use-case)

• Referential integrity constraints (references to keys in other tables)

• Relational model provides schema – description of relations/table – maps to DBMS

• Revise and learn: week 3

SQL Overview (DDL, DML, Query)

• CREATE TABLE <name> (<field> <domain>,<constraints> …)

• INSERT INTO <name> (<field names>)
 VALUES (<field values>)

• DELETE FROM <name>
 WHERE <condition>

• UPDATE <name>
 SET <field name> = <value>
 WHERE <condition>

• SELECT <fields>
 FROM <name>
 WHERE <condition>

Revise and learn: week 3

Create the table based on schema

Populate/modify/delete the data in the table

Query the data

Translating ER to Relational Model

• ER model is at higher level and more expressive than relational model

• Some constraints cannot be captured directly by relational model constraints

– In these cases more complex methods to check validity of the data are used:
Check/Assert constraints, Triggers, disabling constraints until transaction ends

• Rules exist how to translate ER to Relational Model, often there is no single solution

• The goal is to eliminate redundancy as much as possible
– Also called schema normalization

• The rules, their consequences, reasoning and limitations of some rules – in the book

• It is easier to reason and translate binary relations (observing relations 2 by 2)

– This is why aggregates are useful, as they conceptually observe a relation as entity

• Upcoming: an overview of most common translation rules (NON-EXHAUSTIVE LIST)

• OFTEN THERE IS NO SINGLE WAY TO TRANSLATE THE ER TO RELATIONAL MODEL

Translating Entity Sets

• Create a table for every entity set

• Attributes become columns

• Specify appropriate types

• Designate Primary Key

• Specify other integrity constraints

Employees

ssn
name

lot

CREATE TABLE Employees (
 ssn CHAR(11),
 name CHAR(30),
 lot INTEGER,
 PRIMARY KEY (ssn)
);

Translating Relationship Sets (General Case)

• Create table for the relationship set

– Sometimes we merge relationship with some entity (more details later)

• Add primary keys of participating entities as columns

– Add foreign key constraints to the respective tables

• Add attributes of the relationship set as columns

• Capture as many constraints as possible

– Some constraints may be lost (participation)

• Primary key of the relation depends on the key constraints

– Always a subset of the primary keys of the entities

Translating N:M Key Constraints

• Possible connection between many tuples from A with B
– (at most cartesian prod.)

– if the tuples don’t map, they won’t be present in R

• Handle all 3 cases similarly

• Create separate table for R as described earlier

• Primary key of R is (pk(A),pk(B))

• Cannot capture participations constraints directly
– Use assertions if necessary (expensive)

A BR

A BR

A BR

Example

Employees

ssn
name

lot

Department

did dname budget

Works_In

since CREATE TABLE Works_In(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn) REFERENCES Employees,
 FOREIGN KEY (did) REFERENCES Department
);

Translating 1:N Key Constraints

• Pk(B) uniquely identifies the relationship
– (Pk(A), Pk(B)) not primary key because it is not minimal

• Possible to create table for R as in general case

• Another idea : merging R and B into a single table
– Add attributes of R and primary key of A as columns in B

– Add Foreign Key constraints to A

– Merged RB table makes it possible to capture participation constraint on B

• If B has total participation constraint, make pk(A) NOT NULL in B

• Otherwise pk(A) can be NULL in B

– Trade-off between storing NULLs in merged table
or creating table for R with fewer rows

A BR

A BR

A BR

A BR

Takeaway: key and attribute migration to other tables used to enforce the key constraints
Think of reducing the redundancy, not having tuples with many NULL values

Example

Employees

ssn
name

lot

Department

did dname budget

Manages

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 since DATE,
 ssn CHAR(11) NOT NULL,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees
);

since

Translating 1:1 Key Constraints

• Case 1: Both entity sets have total participation
– Only possible when both have the same number of entities

– Merge both entities and the relation into a single table

– Choose either pk(A) or pk(B) as the primary key

• Set the other one as UNIQUE

• Case 2: One entity set has total participation
– Merge R and B as in previous slide

– Pk(A) is foreign key in B and NOT NULL and UNIQUE

– Mirror case handled similarly

• Case 3: both have partial participation
– Either create new table for R or merge R with one of the entities

– One of pk(A) or pk(B) is designated primary key

• Other one UNIQUE

– Trade off between storing NULLs in merged table vs new table with fewer rows

A BR

A BR

A BR

Takeaway: NOT NULL controls participation; Key selection and UNIQUE control upper bound

Translating Aggregations

• Translate the binary relation captured by aggregation

• Then observe how the overall relation was translated (key, attributes) to a table

• Finally, using that table continue in same way, as with any other binary relation

• Sometimes possibility of merging two relationships

Translating Hierarchies

• Generally, create separate table for all entities involved
– Add attributes of each entity to respective table

– Also add primary key of the superclass as primary key of each of the subclass tables

– Add foreign key constraint to superclass table

• Any deletion of superclass must be cascaded to subclasses

• If the hierarchy is non-overlapping and covering, merge superclass entity with each
subclass entity individually
– Attributes of superclass added to each subclass

– No table for the superclass

Example

Contract_Emps

name
ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked

CREATE TABLE Hourly_Emps (
 ssn CHAR(11),
 hours_worked REAL,
 hourly_wages REAL,
 PRIMARY KEY (ssn),
 FOREIGN KEY (ssn) REFERENCES Employees
 ON DELETE CASCADE
);

Translating Weak Entities

• Weak entities exist while the parent exist, and are uniquely identified by
the parent

• Identifying relationship has key constraint as well as participation
constraint on the side of the weak entity set
– Merge R with the weak entity

– Primary key is the combination of the owner entity pk and the weak key

• Add foreign key constraint to the table of the owner entity

– On deletion of owner , CASCADE the delete to all children

Example

lot

name

agepname

Dependents

Employees

ssn

Policy

cost

CREATE TABLE Dept_Policy(
 pname CHAR(20),
 age INTEGER,
 cost REAL,
 ssn CHAR(11),
 PRIMARY KEY (pname, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees
 ON DELETE CASCADE
);

Final remarks

• Further discussion and descriptions in the book/lecture slides

• More possible cases, for example IS-A hierarchy

• Revise the book/materials/online for SQL DDL/DML

• Understand the necessity for constraints and how to express them

• Understand the required integrity constraint – is it expressible in relational model

• Keep in mind the minimality of data duplication and reducing many NULL values in
table rows

• Reminder: queries return (multi)sets, careful when you are allowed to use “=“ in
WHERE clause

• Reminder: if you are using set operations (UNION…), queries must be set
compatible == same attributes (including compatible domain)

	Slide 1: ER – Relational Model
	Slide 2: The BIG picture
	Slide 3: ER Model
	Slide 4: Relational Model
	Slide 5: SQL Overview (DDL, DML, Query)
	Slide 6: Translating ER to Relational Model
	Slide 7: Translating Entity Sets
	Slide 8: Translating Relationship Sets (General Case)
	Slide 9: Translating N:M Key Constraints
	Slide 10: Example
	Slide 11: Translating 1:N Key Constraints
	Slide 12: Example
	Slide 13: Translating 1:1 Key Constraints
	Slide 14: Translating Aggregations
	Slide 15: Translating Hierarchies
	Slide 16: Example
	Slide 17: Translating Weak Entities
	Slide 18: Example
	Slide 19: Final remarks

