ER — Relational Model

Week 3

DATA-INTENSIVE APPLICATIONS AND SYSTEMS



Want to
store data

Conceptual
Design

ER to
Relational

\Yi[eYe[)

Logical
Design

Schema
Refinement

Physical

Design

Read the textbook for a more

T h e B I G p I Ctu re det?iled architecture description

Relational Relational

Algebra, SQL

J _ L Result

Query Optimization
and Execution

A\

Relational Operators

Access Methods

Buffer Management

Disk Space Management

atzﬂ)ase
Storage

Want to
access data



ER Model

e High level, conceptual representation of how to describe the user needs and data

e Capture the practical requirements and constraints of the given use-case
e Conceptual design — entities, attributes, relations, and the constraints between them

e More complex relations with constraints:
— Key constraints
— Participation constraints
— ISA hierarchy
— Weak entities

e Revise and learn: week 2



Relational Model

e Logical database design, based on high level conceptual design

e Translating ER model to relational model
— Lowering the level of abstraction - concretization based on the requirements

e Schema — structural, more concrete description of relations in a database
* |ntegrity constraints enforce the data present/inserted follow the rules of schema

e Each attribute has assighed domain/type, and eventual value constraints
— Null value, unique constraints

e Key constraints (minimal unique descriptor of the row — based on use-case)
e Referential integrity constraints (references to keys in other tables)
e Relational model provides schema — description of relations/table — maps to DBMS

e Revise and learn: week 3



SQL Overview (DDL, DML, Query)

CREATE TABLE <name> ( <field> <domain>,<constraints> .. )
Create the table based on schema

INSERT INTO <name> (<field names>)
VALUES (<field values>)

DELETE FROM <name>
WHERE <condition> Populate/modify/delete the data in the table

UPDATE <name>
SET <field name> = <value>
WHERE <condition>

SELECT <fields>
FROM <nhame> Query the data

WHERE <condition>

Revise and learn: week 3



Translating ER to Relational Model

e ER model is at higher level and more expressive than relational model
e Some constraints cannot be captured directly by relational model constraints

—In these cases more complex methods to check validity of the data are used:
Check/Assert constraints, Triggers, disabling constraints until transaction ends

e Rules exist how to translate ER to Relational Model, often there is no single solution

e The goal is to eliminate redundancy as much as possible
— Also called schema normalization

e The rules, their consequences, reasoning and limitations of some rules —in the book
e |t is easier to reason and translate binary relations (observing relations 2 by 2)

—This is why aggregates are useful, as they conceptually observe a relation as entity
e Upcoming: an overview of most common translation rules (NON-EXHAUSTIVE LIST)
e OFTEN THERE IS NO SINGLE WAY TO TRANSLATE THE ER TO RELATIONAL MODEL



Translating Entity Sets

e Create a table for every entity set @@P)

e Attributes become columns Employees

° Spec|fy appropriate types CREATE TABLE Employees (
ssn CHAR(11),
name CHAR(30),

e Designate Primary Key lot INTEGER
0 :

| | | | PRIMARY KEY (ssn)
e Specify other integrity constraints )



Translating Relationship Sets (General Case)

e Create table for the relationship set

— Sometimes we merge relationship with some entity (more details later)

e Add primary keys of participating entities as columns

— Add foreign key constraints to the respective tables

e Add attributes of the relationship set as columns
e Capture as many constraints as possible
— Some constraints may be lost (participation)

e Primary key of the relation depends on the key constraints

— Always a subset of the primary keys of the entities



Translating N:M Key Constraints

e Possible connection between many tuples from A with B

— (at most cartesian prod.)

— if the tuples don’t map, they won’t be present in R m

e Handle all 3 cases similarly

e Create separate table for R as described earlier
e Primary key of R is (pk(A),pk(B)) m

e Cannot capture participations constraints directly

— Use assertions if necessary (expensive) “_<>_ﬂ




Example

Employees |

Department

CREATE TABLE Works_In(

’

ssn CHAR(11),

did INTEGER,

since DATE,

PRIMARY KEY (ssn, did),

FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Department




Translating 1:N Key Constraints

e Pk(B) uniquely identifies the relationship A
— (Pk(A), Pk(B)) not primary key because it is not minimal

e Possible to create table for R as in general case A

e Anotheridea : merging R and B into a single table
— Add attributes of R and primary key of A as columnsin B
— Add Foreign Key constraints to A
— Merged RB table makes it possible to capture participation constraint on B
e |f B has total participation constraint, make pk(A) NOT NULL in B
e Otherwise pk(A) can be NULL in B

— Trade-off between storing NULLs in merged table
or creating table for R with fewer rows

Takeaway: key and attribute migration to other tables used to enforce the key constraints
Think of reducing the redundancy, not having tuples with many NULL values



=P-L

Example

Employees '

Department

CREATE TABLE Dept_Mgr(

did INTEGER,

dname CHAR(20),
budget REAL,

since DATE,

ssn CHAR(11) NOT NULL,
PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees




Translating 1:1 Key Constraints

e Case 1: Both entity sets have total participation m

— Only possible when both have the same number of entities

— Merge both entities and the relation into a single table
— Choose either pk(A) or pk(B) as the primary key
e Set the other one as UNIQUE

e Case 2: One entity set has total participation
— Merge Rand B asin previous slide
— PK(A) is foreign key in B and NOT NULL and UNIQUE m
— Mirror case handled similarly

e Case 3: both have partial participation

— Either create new table for R or merge R with one of the entities

— One of pk(A) or pk(B) is designated primary key m
e Other one UNIQUE

— Trade off between storing NULLs in merged table vs new table with fewer rows

Takeaway: NOT NULL controls participation; Key selection and UNIQUE control upper bound



Translating Aggregations

e Translate the binary relation captured by aggregation

 Then observe how the overall relation was translated (key, attributes) to a table

e Finally, using that table continue in same way, as with any other binary relation

e Sometimes possibility of merging two relationships



Translating Hierarchies

e Generally, create separate table for all entities involved

— Add attributes of each entity to respective table
— Also add primary key of the superclass as primary key of each of the subclass tables
— Add foreign key constraint to superclass table

e Any deletion of superclass must be cascaded to subclasses

e |f the hierarchy is non-overlapping and covering, merge superclass entity with each
subclass entity individually

— Attributes of superclass added to each subclass
— No table for the superclass



Example

name

lot

Employees

hourly_wages @

£

Hourly_Emps

Contract_Emps

CREATE TABLE Hourly _Emps (

);

ssn CHAR(11),
hours_worked REAL,
hourly _wages REAL,
PRIMARY KEY (ssn),

FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE



Translating Weak Entities

e Weak entities exist while the parent exist, and are uniquely identified by
the parent

e |dentifying relationship has key constraint as well as participation
constraint on the side of the weak entity set

— Merge R with the weak entity
— Primary key is the combination of the owner entity pk and the weak key

e Add foreign key constraint to the table of the owner entity
— On deletion of owner , CASCADE the delete to all children



Example

CREATE TABLE Dept_Policy(
pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11),
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE

);



JAXTAS=

Final remarks

e Further discussion and descriptions in the book/lecture slides

e More possible cases, for example IS-A hierarchy

e Revise the book/materials/online for SQL DDL/DML

e Understand the necessity for constraints and how to express them

e Understand the required integrity constraint —is it expressible in relational model

e Keep in mind the minimality of data duplication and reducing many NULL valuesin
table rows

“_u

e Reminder: queries return (multi)sets, careful when you are allowed to use “=“in
WHERE clause

e Reminder: if you are using set operations (UNION...), queries must be set
compatible == same attributes (including compatible domain)



	Slide 1: ER – Relational Model
	Slide 2: The BIG picture
	Slide 3: ER Model
	Slide 4: Relational Model
	Slide 5: SQL Overview (DDL, DML, Query)
	Slide 6: Translating ER to Relational Model
	Slide 7: Translating Entity Sets
	Slide 8: Translating Relationship Sets (General Case)
	Slide 9: Translating N:M Key Constraints
	Slide 10: Example
	Slide 11: Translating 1:N Key Constraints
	Slide 12: Example
	Slide 13: Translating 1:1 Key Constraints
	Slide 14: Translating Aggregations
	Slide 15: Translating Hierarchies
	Slide 16: Example
	Slide 17: Translating Weak Entities
	Slide 18: Example
	Slide 19: Final remarks

