
SQL – part 2

SQL – up to now
• The simplest SQL query:

• Projection:

• Selection:

• Join:

SELECT *

FROM Students S

SELECT *

FROM Students S

WHERE S.age=18

SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade=‘B'

SELECT S.name, S.login

FROM Students S

SQL – up to now
• Aggregation:

– COUNT(*) / COUNT([DISTINCT] A)

– SUM([DISTINCT] A)

– AVG([DISTINCT] A)

– MAX(A)

– MIN(A)

SELECT AVG (S.age)
FROM Sailors S
WHERE

S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT COUNT (DISTINCT

S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Examples:

Nested Queries
• Powerful feature of SQL: A SQL query can itself

contain a SQL query!

• Find the name and age of the oldest sailor(s)

• Useful keywords: IN and EXISTS

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX

(S2.age)
FROM Sailors S2)

Nested Queries – IN & EXISTS
• Names of sailors who have reserved boat #103

SELECT S.sname

FROM Sailors S

WHERE S.sid IN (SELECT R.sid

FROM Reserves R

WHERE R.bid=103)

SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT *

FROM Reserves R

WHERE R.bid=103 AND S.sid=R.sid)

Nested Queries – IN & EXISTS
• To find sailors who’ve not reserved #103

– NOT IN or NOT EXISTS

• To understand semantics of IN and EXISTS:
– think of a nested loop evaluation: For each Sailor tuple, check the

qualification by computing the subquery.

Expressions

• Can use arithmetic expressions in SELECT clause (plus
other operations we’ll discuss later)

• Use AS to provide column names

• Can also have expressions in WHERE clause:

SELECT S.age, S.age-5 AS age1, 2*S.age AS age2

FROM Sailors S

WHERE S.sname = ‘dustin’

SELECT S1.sname AS name1, S2.sname AS name2

FROM Sailors S1, Sailors S2

WHERE 2*S1.rating = S2.rating - 1

String operations

`_’ stands for any one character

`%’ stands for 0 or more arbitrary characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2

FROM Sailors S

WHERE S.sname LIKE ‘B_%b’

• SQL also supports some string operations

•“LIKE” is used for string matching.

More Operations

• SQL queries produce new tables

• If the results of two queries are
set-compatible (same # and types of columns)
then we can apply logical operations
– UNION

– INTERSECTION

– SET DIFFERENCE (called EXCEPT or MINUS)

Find sid’s of sailors who’ve reserved a red or a green boat

• UNION: Can be used to compute the union of any two
union-compatible sets of tuples (which are themselves
the result of SQL queries).

SELECT R.sid

FROM Boats B,Reserves R

WHERE R.bid=B.bid AND

(B.color=‘red’OR B.color=‘green’)

SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bid=B.bid AND B.color=‘red’ UNION

SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bid=B.bid AND

B.color=‘green’

Vs.

Find sid’s of sailors who’ve reserved a red and a green boat

• If we simply replace OR by AND in the previous query, we
get the wrong answer. (Why?)

• Instead, could use a self-join:

SELECT R.sid

FROM Boats B,Reserves R

WHERE R.bid=B.bid AND

(B.color=‘red’ AND B.color=‘green’)

SELECT R1.sid

FROM Boats B1, Reserves R1,

Boats B2, Reserves R2

WHERE R1.sid=R2.sid

AND R1.bid=B1.bid

AND R2.bid=B2.bid

AND (B1.color=‘red’ AND B2.color=‘green’)

AND Continued…

• INTERSECT: discussed in
the book. Can be used to
compute the intersection
of any two union-
compatible sets of tuples.

• Also in text: EXCEPT
(sometimes called MINUS)

• Included in the SQL/92
standard, but some
systems don’t support
them.

SELECT S.sid

FROM Sailors S, Boats B,

Reserves R

WHERE S.sid=R.sid

AND R.bid=B.bid

AND B.color=‘red’

INTERSECT

SELECT S.sid

FROM Sailors S, Boats B,

Reserves R

WHERE S.sid=R.sid

AND R.bid=B.bid

AND B.color=‘green’

Key field!

Your turn …

1. Find (the names of) all sailors who are over
50 years old

2. Find (the names of) all boats that have
been reserved at least once

3. Find all sailors who have not reserved a
red boat (hint: use “EXCEPT”)

4. Find all pairs of same-color boats

5. Find all pairs of sailors in which the older
sailor has a lower rating

Answers …

1. Find (the names of) all sailors who are over
50 years old

SELECT S.sname

FROM Sailors S

WHERE S.age > 50

Answers …

2. Find (the names of) all boats that have
been reserved at least once

SELECT DISTINCT B.bname

FROM Boats B, Reserves R

WHERE R.bid=B.bid

Answers …

3. Find all sailors who have not reserved a
red boat

SELECT S.sid

FROM Sailors S

EXCEPT

SELECT R.sid

FROM Boats B,Reserves R

WHERE R.bid=B.bid

AND B.color=‘red’

Answers …

4. Find all pairs of same-color boats

SELECT B1.bname, B2.bname

FROM Boats B1, Boats B2

WHERE B1.color = B2.color

AND B1.bid < B2.bid

Answers …

5. Find all pairs of sailors in which the older
sailor has a lower rating

SELECT S1.sname, S2.sname

FROM Sailors S1, Sailors S2

WHERE S1.age > S2.age

AND S1.rating < S2.rating

More on Set-Comparison
Operators

• Other operators: ANY, ALL

• Find sailors whose rating is greater than that of
some sailor called Horatio:

SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.sname=‘Horatio’)

Rewriting INTERSECT Queries Using IN

• Similarly, EXCEPT queries can be re-written using NOT IN.

• How would you change this to find names (not sid’s) of
Sailors who’ve reserved both red and green boats?

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bid=B.bid

AND B.color=‘red’

AND R.sid IN (SELECT R2.sid

FROM Boats B2, Reserves R2

WHERE R2.bid=B2.bid

AND B2.color=‘green’)

Query #3 revisited …

3. Find all sailors who have not reserved a
red boat (this time, without using
“EXCEPT”)

Answer …

3. Find all sailors who have not reserved a
red boat

SELECT S.sid

FROM Sailors S

WHERE S.sid NOT IN

(SELECT R.sid

FROM Reserves R, Boats B

WHERE R.bid = B.bid

AND B.color = ‘red’)

Another correct answer …

3. Find all sailors who have not reserved a
red boat

SELECT S.sid

FROM Sailors S

WHERE NOT EXISTS

(SELECT *

FROM Reserves R, Boats B

WHERE R.sid = S.sid

AND R.bid = B.bid

AND B.color = ‘red’)

Division in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

Examples of Division A/B

Examples of Division A/B

Examples of Division A/B

Expressing A/B:

28

Expressing A/B:

29

T1

Expressing A/B:

30

T2

The end!

	Slide 1: SQL – part 2
	Slide 2: SQL – up to now
	Slide 3: SQL – up to now
	Slide 4: Nested Queries
	Slide 5: Nested Queries – IN & EXISTS
	Slide 6: Nested Queries – IN & EXISTS
	Slide 7: Expressions
	Slide 8: String operations
	Slide 9: More Operations
	Slide 10: Find sid’s of sailors who’ve reserved a red or a green boat
	Slide 11: Find sid’s of sailors who’ve reserved a red and a green boat
	Slide 12: AND Continued…
	Slide 13: Your turn …
	Slide 14: Answers …
	Slide 15: Answers …
	Slide 16: Answers …
	Slide 17: Answers …
	Slide 18: Answers …
	Slide 19: More on Set-Comparison Operators
	Slide 20: Rewriting INTERSECT Queries Using IN
	Slide 21: Query #3 revisited …
	Slide 22: Answer …
	Slide 23: Another correct answer …
	Slide 24: Division in SQL
	Slide 25: Examples of Division A/B
	Slide 26: Examples of Division A/B
	Slide 27: Examples of Division A/B
	Slide 28: Expressing A/B:
	Slide 29: Expressing A/B:
	Slide 30: Expressing A/B:
	Slide 31: The end!

