SQL — part 2

9 PF
" E L

SQL — up to now

e The simplest SQL query: SELECT *
FROM Students S

* Projection: SELECT S.name, S.login
FROM Students S

e Selection: SgLECT *

FROM Students S
WHERE S.age=18

* Join: SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade="B'

SQL — up to now

e Aggregation:

— COUNT(*) / COUNT([DISTINCT] A)

— SUM([DISTINCT] A)
— AVG([DISTINCT] A)
— MAX(A)
— MIN(A)

Examples:

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (S.age)
FROM Sailors S

WHERE

S.rating=10

SELECT COUNT (DISTINCT
S.rating)

FROM Sailors S

WHERE S shame='Bob’

Nested Queries

e Powerful feature of SQL: A SQL query can itself
contain a SQL query!

e Find the name and age of the oldest sailor(s)

SELECT S.shame, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX
(S2.age)

FROM Sailors S2)

e Useful keywords: IN and EXISTS

Nested Queries — IN & EXISTS

e Names of sailors who have reserved boat #103

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

SELECT S.sname

FROM Sailors S
WHERE EXISTS (SELECT"\
FROM Reserves R

WHERE R.bid=103 AND S.sid=R.sid)

Nested Queries — IN & EXISTS

e To find sailors who’'ve not reserved #103
— NOT IN or NOT EXISTS

e To understand semantics of IN and EXISTS:

— think of a nested loop evaluation: For each Sailor tuple, check the
qualification by computing the subquery.

Expressions

e Can use arithmetic expressions in SELECT clause (plus
other operations we’ll discuss later)

e Use AS to provide column names

SELECT S.age, S.age-5 AS ageT, 2*S.age AS age?2
FROM Sailors S
WHERE S.sname = ‘dustin’

e Can also have expressions in WHERE clause:

SELECT S1.sname AS name1, S2.sname AS name?2

FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating - 1

String operations

e SQL also supports some string operations
o"LIKE" is used for string matching.

SELECT S.age, age1=S.age-5, 2*S.age AS age’
FROM Sailors S
WHERE S.sname LIKE ‘B_%b’

" " stands for any one character
"%’ stands for 0 or more arbitrary characters.

More Operations

e SQL queries produce new tables

e If the results of two queries are
set-compatible (same # and types of columns)

then we can apply logical operations
— UNION

— INTERSECTION

— SET DIFFERENCE (called EXCEPT or MINUS)

Find sid’s of sailors who’ve reserved a red or a green boat

e UNION: Can be used to compute the union of any two
union-compatible sets of tuples (which are themselves
the result of SQL queries).

SELECT R.sid

FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color="red'OR B.color="green’)

Vs.

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color="red” UNION
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND
B.color="green’

Find sid’s of sailors who’ve reserved a red and a green boat

e |[f we simply replace OR by AND in the previous query, we
get the wrong answer. (Why?)

e |nstead, could use a self-join:

SELECT R1.sid
FROM Boats B1, Reserves R1,
Boats B2, Reserves R2
WHERE R1.sid=R2.sid
AND R1.bid=B1.bid
AND R2.bid=B2.bid
AND (B1.color="red" AND B2.color="green’)

AND Continued...

e [NTERSECT: discussed in
the book. Can be used to
compute the intersection
of any two union-
compatible sets of tuples.

e Alsoin text: EXCEPT
(sometimes called MINUS)

e |ncluded in the SQL/92
standard, but some
systems don’t support
them.

Kevy field!
s

SELECT S.sid
FROM Sailors S, Boats B,
Reserves R

WHERE S.sid=R.sid
AND R.bid=B.bid
AND B.color="red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B,
Reserves R
WHERE S.sid=R.sid
AND R.bid=B.bid
AND B.color="green’

Your turn ...

. Find (the names of) all sailors who are over
50 years old

. Find (the names of) all boats that have
peen reserved at least once

. Find all sailors who have not reserved a
red boat (hint: use “EXCEPT”)

. Find all pairs of same-color boats

. Find all pairs of sailors in which the older
sailor has a lower rating

Answers ...

1. Find (the names of) all sailors who are over
50 years old

SELECT S.sname
FROM Sailors S
WHERE S.age > 50

Answers ...

2. Find (the names of) all boats that have
been reserved at least once

SELECT DISTINCT B.bname
FROM Boats B, Reserves R
WHERE R.bid=B.bid

Answers ...

3. Find all sailors who have not reserved a
red boat

SELECT S.sid
FROM Sailors S
EXCEPT
SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid
AND B.color="red’

Answers ...

4. Find all pairs of same-color boats

SELECT B1.bname, B2.bname

FROM Boats B1, Boats B2

WHERE B1.color = B2.color
AND B1.bid < B2.bid

Answers ...

5. Find all pairs of sailors in which the older
sailor has a lower rating

SELECT S1.sname, S2.sname

FROM Sailors S1, Sailors S2

WHERE S1.age > S2.age
AND S1.rating < S2.rating

More on Set-Comparison
Operators

e Other operators: ANY, ALL

e Find sailors whose rating is greater than that of
some sailor called Horatio:

SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname="Horatio’)

Rewriting INTERSECT Queries Using IN

Find sid’s of sailors who've reserved both a red and a green boat:

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
AND B.color="red’
AND R.sid IN (SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid=B2.bid
AND B2.color="green’)

e Similarly, EXCEPT queries can be re-written using NOT IN.

e How would you change this to find names (not sid’s) of
Sailors who’ve reserved both red and green boats?

Query #3 revisited ...

3. Find all sailors who have not reserved a
red boat (this time, without using
“EXCEPT”)

Answer ...

3. Find all sailors who have not reserved a
red boat

SELECT S.sid
FROM Sailors S
WHERE S.sid NOT IN
(SELECT R.sid
FROM Reserves R, Boats B
WHERE R.bid = B.bid
AND B.color = 'red’)

Another correct answer ...

3. Find all sailors who have not reserved a
red boat

SELECT S.sid
FROM Sailors S
WHERE NOT EXISTS
(SELECT *
FROM Reserves R, Boats B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = ‘red’)

Division in SQL

Find sailors who’ve reserved all boats.

SELECT S.sname
FROM Sailors S Sailors S such that ...

WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

a Reserves tuple showing S reserved B FROM Rese1.rves R .
WHERE R.bid=B.bid

AND R.sid=S.sid))

there is no boat B without ...

Examples of Division A/B

pno pno pno

p2 p2 o}

B1 p4 p2
B2 p4

B3

SNO

s

s2

s3

s4

Examples of Division A/B

pno pno Pno

p2 p2 p1

B1 Sk P2
B2 p4

B3

SNO

N

s2 SNo

s3 s1

s4 s4

A/B1 A/B?2

A/B1

Sno
ST
s4

A/B2

Examples of Division A/B

sSno
sl
A/B3

Expressing A/B;, -, (=

SHO(A)XB) 4)

SNO |pPNno

sl |pl

sl |p2
SN0 |pno sl |p4 Sl
s1 pT s2 |pT s pno
sl |p2 s2 |p2 s2 x |P]
sl |p3 s2 |p4 = s3 p2
sl p4 s3 |pl s4 p4
s2 |pl s3 |p2
- 02 - 04 Tsno (A) B
s3 |p2 4 |pT
s4 |p2 4 |p2
4 |p4 s4 |p4d

SHO

29

Expressing A/Br,m(A) ool T1 A
SNO |pno pno
51 p-! S2
S 2= 52—
sno_|pno 51—t s3
sl |pT 52— s4 |ph pNno
ST p2 2 n2. T1— A p1
sl |p3 s2 |p4 P2
sl |p4 s3 |p1 p4
s2.|p1 3—pa— B
s2 |p2 s3 |p4 sno
3 |p2 s4 |pT s2
4 |p2 S s3
4 |p4 Sh—rpd— 4
Tl=r, (A)xB 2=r, (T1-A)

30

Expressmg A/B: (1) 72

sno |pno
s2
P
s3
s4 1 pno
_ P
T1-A4 02
Teno p4
sno B
sl sno
s2 s2 sno
s3 | |[s3 sT
s4 s4 A/B =
12=

TsnoT1=A) 7y,.(A) -T2

The end!

	Slide 1: SQL – part 2
	Slide 2: SQL – up to now
	Slide 3: SQL – up to now
	Slide 4: Nested Queries
	Slide 5: Nested Queries – IN & EXISTS
	Slide 6: Nested Queries – IN & EXISTS
	Slide 7: Expressions
	Slide 8: String operations
	Slide 9: More Operations
	Slide 10: Find sid’s of sailors who’ve reserved a red or a green boat
	Slide 11: Find sid’s of sailors who’ve reserved a red and a green boat
	Slide 12: AND Continued…
	Slide 13: Your turn …
	Slide 14: Answers …
	Slide 15: Answers …
	Slide 16: Answers …
	Slide 17: Answers …
	Slide 18: Answers …
	Slide 19: More on Set-Comparison Operators
	Slide 20: Rewriting INTERSECT Queries Using IN
	Slide 21: Query #3 revisited …
	Slide 22: Answer …
	Slide 23: Another correct answer …
	Slide 24: Division in SQL
	Slide 25: Examples of Division A/B
	Slide 26: Examples of Division A/B
	Slide 27: Examples of Division A/B
	Slide 28: Expressing A/B:
	Slide 29: Expressing A/B:
	Slide 30: Expressing A/B:
	Slide 31: The end!

