
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Concurrency Control (Part II)
(Chapters 18)

• Phantom and predicate locking for dynamic database

Readings: Chapter 17.10 and 18.4

• Eventual consistency

Readings: Chapter 21.4 and 23.6

Today’s focus

2

• Until now, we only consider the scenario in which transactions perform read and

update operations on existing objects in the databases

• However, data keeps evolving all the time

• That is transactions perform insertions, updates, and deletions of tuples ….

• This is a critical problem as data may change while transactions are executing

Today’s world: Dynamic databases

3

The Phantom problem with an example

4

• Let’s consider that a DB is not fixed size, i.e., data is growing

• Then ensuring serializability is not possible with Strict2PL (on individual items)

• Consider T
1
: “Find oldest sailor”

● T
1
 locks all records and finds oldest sailor (age = 71)

● Next, T
2
 inserts a new sailor, age = 96, and commits

● T
1
 (within the same txn) checks for oldest sailor again and finds sailor aged 96!

• The sailor with age 96 is a “phantom tuple” from T
1
’s point of view

● First, it was not present and now it is there

• No serial execution exists where T
1
’s result can be produced

The Phantom problem with another example

5

• Consider T
3
: “Find the oldest sailor for each rating”

● T
3
 locks all pages containing sailors records with rating=1, and find oldest sailor (age=71)

● Next, T
4
 inserts a new sailor, rating=1 and age=96

● T
4
 also deletes oldest sailor with rating=2 and age=80 and commits

● T
3
 now locks all pages containing sailor records with rating=2 and finds oldest (age=63)

• T
3
 only saw part of T

4
’s effects

• No serial execution where T
3
 execution could happen

Why this problem occurs?

6

• T
1
 and T

3
 implicitly assumes that they had locked the set of all sailor records

satisfying a predicate

● T
1
 and T

3
 locked only existing records and not the ones underway

● Assumption only holds if no sailor records are added while they were executed

• Examples show that conflict serializability on reads and writes of individual items

guarantees serializability only if the set of objects is fixed

The Phantom problem with visualization

7

CREATE TABLE people (
 id SERIAL,
 name VARCHAR,
 age INT,
 status VARCHAR
);

T
5

T
6

Schedule

TI
M

E

SELECT COUNT(age)
 FROM people
 WHERE status=‘lit’

INSERT INTO people
(age=30, status=‘lit’

SELECT COUNT(age)
 FROM people
 WHERE status=‘lit’

BEGIN BEGIN

COMMIT

COMMIT

99

100

Approach to handling the phantom problem
Approach #1: Re-execute scans

• Run queries again at commit to see whether they produce a different result to

identify missed changes

Approach #2: Predicate locking

• Logically determine the overlap of predicates before queries start running

Approach #3: Index locking

• Use keys in indexes to protect ranges

8

Re-execute scans
• The DBMS tracks the WHERE clause for all queries that the transaction executes

● Retain the scan set for every range query in a transaction

• Upon commit, re-execute just the scan portion of each query and check whether it

generates the same result

● Example: Run the scan for an UPDATE query but do not modify matching tuples

9

Predicate locking
• Proposed locking scheme in System R

• Grants lock on all records that satisfy some logical predicates

● Shared lock on the predicate WHERE clause of a SELECT query

● Exclusive lock on the predicate in a WHERE clause of any UPDATE, INSERT, and DELETE

query

• Rarely used in today’s systems

10

Predicate locking

11

SELECT COUNT(age)
 FROM people
 WHERE status=‘lit’

INSERT INTO people VALUES
(age=30, status=‘lit’)

Records in Table “people”

status=‘lit’

age=30 ^
status=‘lit’

Index locking
• Use keys in indexes to protect ranges

• Types of schemes:

● Key-value locks

● Gap locks

● Key-range locks

● Hierarchical locks

12

Key value locks
• Locks that cover a single key-value in an index

• Need “virtual keys” for non-existent values

13

10

Key
[14, 14]

12

B+Tree leaf node

12 1614

Gap locks
• Each transaction acquires a key-value lock on the single key that it wants to access

• Also gets a gap lock on the next key gap

14

10 12

B+Tree leaf node

12 1614{gap} {gap} {gap}

Gap locks
• Each transaction acquires a key-value lock on the single key that it wants to access

• Also gets a gap lock on the next key gap

15

10 12

B+Tree leaf node

12 1614{gap} {gap} {gap}

Gap
(14, 16)

• A transaction takes locks on ranges in the key space

● Each range is from one key that appears in the relation, to the next that appears

● Define lock modes so conflict table will capture commutativity of the operations

available

Key-range locks

16

Key-range locks
• Locks that cover a key value and the gap to the next key value in a single index

● Need “virtual keys” for artificial values (infinity)

17

10 12

B+Tree leaf node

12 1614{gap} {gap} {gap}

Key-range locks
• Locks that cover a key value and the gap to the next key value in a single index

● Need “virtual keys” for artificial values (infinity)

18

10 12

B+Tree leaf node

12 1614{gap} {gap} {gap}

Next key
[14, 16)

Key-range locks
• Locks that cover a key value and the gap to the next key value in a single index

● Need “virtual keys” for artificial values (infinity)

19

10 12

B+Tree leaf node

12 1614{gap} {gap} {gap}

Prev key
(12, 14]

Hierarchical locks
• Allow for a transaction to hold wider key-range locks with different locking modes

● Reduces the number of visits to the lock manager

20

10 12

B+Tree leaf node

12 1614{gap} {gap} {gap}

[10, 16)

IX

[14, 16)

X

[12, 12]

X
IX

• If there is no suitable index, then a transaction must obtain the following to avoid

phantoms:

● A lock on every page in the table to prevent a record’s status=‘lit’ from being

changed to lit

● The lock for the table itself to prevent records with status=‘lit’ from being added

or deleted

Locking without an index

21

• Serializability is useful because it allows programmers to ignore concurrency issues

• But enforcing it may allow too little concurrency and limit performance

● Ex: Suppose a DB wants to read all data to build statistics for the optimizer (such as

building a histogram)

○ You do not want to hold S lock on that to do that.

• We may want to use a weaker level of consistency to improve scalability

Weaker levels of isolation

22

• Controls the extent that a transaction is exposed to the actions of other concurrent

transactions

• Provides for greater concurrency at the expense of exposing transactions to

uncommitted changes

● Dirty reads: A transaction reads data that has not been committed yet

● Unrepeatable reads: A transaction reads the same row twice and gets different data

● Phantom reads: A row that matches a search criteria that was not initially seen

Isolation levels

23

SERIALIZABLE: No phantoms, all reads repeatable, no dirty reads

REPEATABLE READS: Phantoms may happen

READ COMMITTED: Phantoms and repeatable reads may happen

READ UNCOMMITTED: All of them may happen

Isolation levels

24

Iso
latio

n
 (Lo

w
 →

H
igh

)

SERIALIZABLE: Obtain all locks first; plus index locks, plus strong strict 2PL

REPEATABLE READS: Same as above, but no index locks

READ COMMITTED: Same as above, but S locks are released immediately

READ UNCOMMITTED: Same as above but allow dirty reads (no S locks)

Isolation levels

25

• Transaction levels are set before executing a transaction

• Not all DBMS support all isolation levels in all execution scenarios

● Replicated environment

• The default depends on the implementation

• Lot of well-known databases support READ COMMITTED isolation level

• Current description of isolation levels is based on phenomena (DIRTY READS,

NON-REPEATABLE READS, and PHANTOMS)

More on isolation levels

26

• Phantom and predicate locking for dynamic database

Readings: Chapter 17.10 and 18.4

• Eventual consistency

Readings: Chapter 21.4 and 23.6

Today’s focus

27

Eventual consistency

28

The problem: server failures
• What to do when a server crashes?

● Servers continuously fail in large-scale systems

● Wait for recovery can be too long …
• Use replication

● Keep several copies of data, i.e., replica, in other servers

● If a server fails, another server takes over

● Also applicable in the case of load balancing

• Until now: strong consistency

● All copies have to have the same value

29

CAP theorem
• Consistency: Possible answers to read requests: newest value or error

• Availability: Possible answers to read requests: a value, not necessarily the newest

• Partition tolerance: System still works if some of the nodes are unreachable

• CAP theorem: Can’t have all three at once in a distributed key-value store

● In a real network that can fail, we can’t have both consistency and availability

• Can have a combination of two of C, A, and P

● Choose C+P: strongly consistent systems (e.g., ACID DBMS)

● Choose A+P: eventually consistent systems (e.g., NOSQL systems, DynamoDB)

● Choose C+A: single node systems

30

Consistency vs latency (PACELC) theorem
• Latency is similar to a partition

• Follows from the CAP theorem if you consider every network partition temporary

● A request may block if a node cannot be reached

• Even in case of no partitions, contacting other machines for consensus takes time,

like a network partition

• Consistency-latency tradeoff

31

Consensus does not scale
• No consensus without at least a communication of round-trip to each node

• Round-trip latency can’t be zero

• Transaction throughput upper-bounded by 1/latency

• Example: If consensus takes 1 ms, we cannot do more than 1000 X actions/sec

• Idea: Some applications are fine with weaker consistency models

32

• Updates and replication

• Eventual consistency protocol

• Dynamo

Eventual consistency

33

How to deal with updates?

• How to keep different copies of the data consistent?

34

x = 5

x = 5 x = 5

x = 5

Process A

x <- 7

• How to keep different copies of the data consistent?

35

Process A

x <- 7
Process B

x = ?

x = 7

x = 5 x = 5

x = 5

How to deal with updates?

Client view

• Definition: if there are no further changes, eventually all the copies will
have the same value

36

Process A

x <- 7
Process B

x = ?

x = 7

x = 5 x = 5

x = 5

• Definition: if there are no further changes, eventually all the copies will
have the same value

37

Process A

x <- 7
Process B

x = 5

x = 7

x = 5 x = 5

x = 5

Client view

• Definition: if there are no further changes, eventually all the copies will
have the same value

38

Process C

x = 7

Data is eventually consistent

x = 7

x = 7 x = 7

x = 7

Client view

• Updates and replication

• Eventual consistency protocol

• Dynamo

Eventual consistency

39

Server view

• How do updates flow through the system?

40When to return the write as successful?

Process A

x <- 7

x = 7

x = 5 x = 5

x = 5

• Return the read(write) as successful only if a predetermined number of servers

agree on the same value

• Assume:

● N = # of servers storing the copies of data

● R = # of servers that needs to agree on a value for a read operation

● W = # of servers that needs to agree on a value for a write operation

• If R(W)-many servers agree on the same value, return the read(write) as successful

Server view

41

Server view

• If W = 1 and R = 1

42

x = 5

x = 5 x = 5

x = 5

Process A

x <- 7

Process B

• If W = 1 and R = 1

43

x = 7

x = 5 x = 5

x = 5

Process A

x <- 7

Process B

x = 5

R = 1, success

W = 1, success

Server view

• If W = 2 and R = 1

44

x = 5

x = 5 x = 5

x = 5

Process A

x <- 7

Process B

Server view

• If W = 2 and R = 1

45

x = 7

x = 7 x = 5

x = 5

Process A

x <- 7

Process B

x = 5

R = 1, success

W = 2, success

Write needs to wait for two servers

Server view

• R = 1 or W = 1 provides the fastest response

• R = N or W = N provides the slowest response

• Sacrifice consistency for faster response-time by tuning R and W parameters

● If read(write)-optimized, set R(W) = 1

• R + W > N

● Strong consistency: at least one server overlaps

How to set R and W?

46

• Updates and replication

• Eventual consistency protocol

• Dynamo

Eventual consistency

47

• Amazon’s e-commerce platform

● Simple key-value data model

● Simple geet()/put() interface

● Eventually consistent

• Serves tens of millions of customers using tens of thousands of servers located in

many data centers around the world

Example system: Dynamo

48

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict

49

x
0
 = 5

x
0
 = 5 x

0
 = 5

x
0
 = 5

Process A

x
0
 = 5

Process B

R = 2, success

x
0
 = 5

R = 2, success
x

A
 = 7 x

B
 = 9

R = 2
W = 1

x
0
 = 5 x

0
 = 5

Process B

W = 1, success W = 1, success

Process A

x
A
 = 7 x

B
 = 9

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict

50

R = 2
W = 1

x
0
 = 5 x

0
 = 5

Process C

R = 2, conflict!

x
A
 = 7 x

B
 = 9

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict

51

R = 2
W = 1

x
0
 = 5 x

0
 = 5

R = 2, reconcile

x
B
 = 9x

A
 = 7

Process C

x
A
 = 7 x

B
 = 9

x
C
 = 11

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict

52

R = 2
W = 1

x
C
 = 11 x

0
 = 5

x
B
 = 9

x
A
 = 7

Process C

x
A
 = 7 x

B
 = 9

W = 1, success

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict

53

R = 2
W = 1

x
C
 = 11 x

0
 = 5

x
B
 = 9

x
A
 = 7

x
A
 = 7 x

B
 = 9

Updates propagate later on internally
Eventually, data become consistent

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict

54

R = 2
W = 1

• Pair of shoes
• Sunglasses
• A book
• A towel

Shopping cart

• Pair of shoes
• A book

• Pair of shoes
• A towel

Stale Stale

• Pair of shoes
• Sunglasses
• A book
• A towel

• Closed the web-browser and
re-opened it

55

An example use-case: Shopping cart

Shopping cart • Closed the web-browser and
re-opened it

• Re-accessed shopping cart (assume
R = 2)Reconcile

• Pair of shoes
• A book
• A towel

56

• Pair of shoes
• Sunglasses
• A book
• A towel

• Pair of shoes
• A book

• Pair of shoes
• A towel

Stale Stale

Result is still meaningful
Application category can tolerate inconsistency

Can all application categories tolerate inconsistency?
What about your bank account?

An example use-case: Shopping cart

Stronger than eventual: Causal consistency
• Enforces the logical order of events that modify (write) in a distributed system

• The strongest achievable consistency model in the presence of partitions

• A system provides causal consistency if (potentially causally related) read/write

memory operations are seen by every node of the system in the same order that

reflects their causality

● Writes that are potentially causally related must be read by all nodes in the same order

● Concurrent writes may be seen in a different order on different nodes

● Reads are fresh wrt the writes they causally depend on

57

Stronger than eventual: Causal consistency
• Why it could be important? Imagine the following consequence:

● User A posts on Moodle message M: “I think value of pi is 3”

● User A then quickly corrects the post to M*: “I think value of pi is roughly

approximated with 3.14”

● User B then sees the post M* and responds to the post with message R: “Yes, we can

use this approximation”

○ If causality was not respected, user C could perceive effects before their causes: If

user C observes M and R, but not M*, she could be misled to think pi=3 is

acceptable approximation

58

Causal consistency example
• P1, … P4: concurrent processes/servers/nodes

• W(x)a: write object’s x’a attribute a; R(x)a: read object x’s attribute a

• W(x)b and W(x)c are concurrent (no causality): nodes don’t need to see them in the

same order

• P2, P3, and P4 read a and b in the order of writing as they are potentially causally

related (through P2 W(x)b

• Execution order value under causal consistency rules: all nodes first read a and b
59

P1

P2

P3

P4

W(x)a

R(x)a

R(x)a

R(x)a

W(x)b

W(x)c

R(x)c

R(x)b

R(x)b

R(x)c

Concurrent writes

• Violation of causal consistency: P2 write W(x)b is potentially causally related to preceding write W(x)a

• Therefore, a and b must be read in the same order in nodes P3 and P4 as they are causally related (P3
error)

• Causally consistent: W(x)a and W(x)b are concurrent (non-causal), therefore there is no limitation in
read order 60

P1

P2

P3

P4

W(x)a

R(x)a W(x)b

R(x)b

R(x)a

R(x)a

R(x)b

P1

P2

P3

P4

W(x)a

W(x)b

R(x)b

R(x)a

R(x)a

R(x)b

Concurrent writes

Causal consistency example

Eventual consistency: Summary
• Data will eventually be consistent if no further updates are made

• Reads and writes need to agree on a value over a set of servers

• Example eventual consistency system: Dynamo

● Keep every update as a separate version

● Merge all versions in the case of conflicts

• Consistency models: design spectrum between strong and eventual

● Strong > Causal > Eventual

• Causal consistency keeps track of which nodes have seen which writes

● Stronger guarantees than eventual consistency, better performance than strong

● Less popular in industry due to more complex communication, state maintenance

61

Who uses eventual consistency?

• Large-scale systems
● Facebook, Google, Amazon, etc.

• Simple key-value data model
• Simple get()/put() interface

62

What is the downside?
• Programming eventually consistent systems is very hard and error-prone

● Programmers need to reconcile all the corner cases in the application to ensure

correctness

• Many companies go back to strong consistency

63

Eventually
consistent

Consistency within
entity groups

Strong
consistency

SQL RDBMS

