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Today’s focus

e Phantom and predicate locking for dynamic database
Readings: Chapter 17.10 and 18.4



Today’s world: Dynamic databases

e Until now, we only consider the scenario in which transactions perform read and

update operations on existing objects in the databases

e However, data keeps evolving all the time

e That is transactions perform insertions, updates, and deletions of tuples ....

e Thisis a critical problem as data may change while transactions are executing



The Phantom problem with an example

e Let’s consider that a DB is not fixed size, i.e., data is growing
e Then ensuring serializability is not possible with Strict2PL (on individual items)
* Consider T,: “Find oldest sailor”

® T, locks all records and finds oldest sailor (age = 71)

® Next, T, inserts a new sailor, age = 96, and commits

e T, (within the same txn) checks for oldest sailor again and finds sailor aged 96!
* The sailor with age 96 is a “phantom tuple” from T_’s point of view
e First, it was not present and now it is there

* No serial execution exists where T_’s result can be produced



The Phantom problem with another example

* Consider T,: “Find the oldest sailor for each rating”
® T, locks all pages containing sailors records with rating=1, and find oldest sailor (age=71)
® Next, T, inserts a new sailor, rating=1 and age=96
® T, also deletes oldest sailor with rating=2 and age=80 and commits
® T, now locks all pages containing sailor records with rating=2 and finds oldest (age=63)

e T,onlysaw part of T,’s effects

* No serial execution where T, execution could happen



Why this problem occurs?

e T,andT, implicitly assumes that they had locked the set of all sailor records
satisfying a predicate
e T andT, locked only existing records and not the ones underway

e Assumption only holds if no sailor records are added while they were executed

e Examples show that conflict serializability on reads and writes of individual items

guarantees serializability only if the set of objects is fixed



The Phantom problem with visualization
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Approach to handling the phantom problem

Approach #1: Re-execute scans

e Run queries again at commit to see whether they produce a different result to

identify missed changes

Approach #2: Predicate locking

e Logically determine the overlap of predicates before queries start running

Approach #3: Index locking

e Use keys in indexes to protect ranges



Re-execute scans

e The DBMS tracks the WHERE clause for all queries that the transaction executes

® Retain the scan set for every range query in a transaction

e Upon commit, re-execute just the scan portion of each query and check whether it

generates the same result

e Example: Run the scan for an UPDATE query but do not modify matching tuples



Predicate locking

e Proposed locking scheme in System R

e Grants lock on all records that satisfy some logical predicates
e Shared lock on the predicate WHERE clause of a SELECT query
® Exclusive lock on the predicate in a WHERE clause of any UPDATE, INSERT, and DELETE

query

e Rarely used in today’s systems

10



Predicate locking
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Index locking

e Use keys in indexes to protect ranges

e Types of schemes:
e Key-value locks
® Gap locks
e Key-range locks

e Hierarchical locks
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Key value locks

e Locks that cover a single key-value in an index

e Need “virtual keys” for non-existent values

B+Tree leaf node

Key
[14, 14]

10 12 14

16
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Gap locks

e Each transaction acquires a key-value lock on the single key that it wants to access

e Also gets a gap lock on the next key gap

B+Tree leaf node

10 {gap} 12 {gap} 14 {gap} 16
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Gap locks

e Each transaction acquires a key-value lock on the single key that it wants to access

e Also gets a gap lock on the next key gap

B+Tree leaf node

Gap
(14, 16)

10 {gap} 12 {gap} 14 {gap} 16
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Key-range locks

e A transaction takes locks on ranges in the key space
® Each range is from one key that appears in the relation, to the next that appears
e Define lock modes so conflict table will capture commutativity of the operations

available
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Key-range locks

e Locks that cover a key value and the gap to the next key value in a single index

e Need “virtual keys” for artificial values (infinity)

B+Tree leaf node

10 {gap} 12 {gap} 14 {gap} 16
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Key-range locks

e Locks that cover a key value and the gap to the next key value in a single index

e Need “virtual keys” for artificial values (infinity)

B+Tree leaf node

Next key
[14, 16)

10 {gap} 12 {gap} o 14 ﬁ{gap} 16
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Key-range locks

e Locks that cover a key value and the gap to the next key value in a single index

e Need “virtual keys” for artificial values (infinity)

B+Tree leaf node

Prev key
(12, 14]

10 {gap} 12 a{gap} o 14 {gap} 16
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Hierarchical locks

e Allow for a transaction to hold wider key-range locks with different locking modes

e Reduces the number of visits to the lock manager

n B+Tree leaf node

[10, 16)
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Locking without an index

e If there is no suitable index, then a transaction must obtain the following to avoid
phantoms:

e Alock on every page in the table to prevent a record’s status=¢1it’ from being

changed to 1it

e The lock for the table itself to prevent records with status=c1it”’ from being added

or deleted
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Weaker levels of isolation

e Serializability is useful because it allows programmers to ignore concurrency issues

e But enforcing it may allow too little concurrency and limit performance
® Ex: Suppose a DB wants to read all data to build statistics for the optimizer (such as
building a histogram)
o  You do not want to hold S lock on that to do that.

e We may want to use a weaker level of consistency to improve scalability
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Isolation levels

e Controls the extent that a transaction is exposed to the actions of other concurrent

transactions

 Provides for greater concurrency at the expense of exposing transactions to
uncommitted changes

e Dirty reads: A transaction reads data that has not been committed yet
e Unrepeatable reads: A transaction reads the same row twice and gets different data

e Phantom reads: A row that matches a search criteria that was not initially seen
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Isolation levels

SERIALIZABLE: No phantoms, all reads repeatable, no dirty reads
REPEATABLE READS: Phantoms may happen

READ COMMITTED: Phantoms and repeatable reads may happen

READ UNCOMMITTED: All of them may happen

(YSiH« mo1) uonejosj
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Isolation levels
SERIALIZABLE: Obtain all locks first; plus index locks, plus strong strict 2PL
REPEATABLE READS: Same as above, but no index locks
READ COMMITTED: Same as above, but S locks are released immediately

READ UNCOMMITTED: Same as above but allow dirty reads (no S locks)
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More on isolation levels

e Transaction levels are set before executing a transaction

e Not all DBMS support all isolation levels in all execution scenarios
e Replicated environment

e The default depends on the implementation

e Lot of well-known databases support READ COMMITTED isolation level

e Current description of isolation levels is based on phenomena (DIRTY READS,
NON-REPEATABLE READS, and PHANTOMS)
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Today’s focus

e Phantom and predicate locking for dynamic database
Readings: Chapter 17.10 and 18.4

e Eventual consistency

Readings: Chapter 21.4 and 23.6
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Eventual consistency

Replicas

Replicas

\,~.~
Same Systeni‘w..__.
at Different

(C) http://blog.sqlauthority.com

Ly
\. ’\Reqd
N i
IWrite\_A KN Replicas
> —

-~

28



The problem: server failures

e What to do when a server crashes?
® Servers continuously fail in large-scale systems
e Wait for recovery can be too long ...
e Use replication
e Keep several copies of data, i.e., replica, in other servers
e If a server fails, another server takes over
® Also applicable in the case of load balancing
e Until now: strong consistency

® All copies have to have the same value
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CAP theorem

e Consistency: Possible answers to read requests: newest value or error
e Availability: Possible answers to read requests: a value, not necessarily the newest
e Partition tolerance: System still works if some of the nodes are unreachable
e CAP theorem: Can’t have all three at once in a distributed key-value store
® In areal network that can fail, we can’t have both consistency and availability
e Can have a combination of two of C, A, and P
® Choose C+P: strongly consistent systems (e.g., ACID DBMS)

® Choose A+P: eventually consistent systems (e.g., NOSQL systems, DynamoDB)

® Choose C+A: single node systems
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Consistency vs latency (PACELC) theorem

e Latency is similar to a partition

e Follows from the CAP theorem if you consider every network partition temporary
® A request may block if a node cannot be reached

e Even in case of no partitions, contacting other machines for consensus takes time,
like a network partition

e Consistency-latency tradeoff
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Consensus does not scale

e No consensus without at least a communication of round-trip to each node

e Round-trip latency can’t be zero

e Transaction throughput upper-bounded by 1/latency

e Example: If consensus takes 1 ms, we cannot do more than 1000 X actions/sec

e |dea: Some applications are fine with weaker consistency models
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Eventual consistency

e Updates and replication
e Eventual consistency protocol

e Dynamo
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How to deal with updates?

e How to keep different copies of the data consistent?

l x<-7
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How to deal with updates?

e How to keep different copies of the data consistent?

X="7
Process A
1
x<-7

:




Client view

e Definition: if there are no further changes, eventually all the copies will
have the same value

Process A

X="7

Process B

}

l x<-7




Client view

e Definition: if there are no further changes, eventually all the copies will
have the same value

Xx=5
x<-7

f
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Client view

e Definition: if there are no further changes, eventually all the copies will
have the same value

x=7

Data is eventually consistent
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Eventual consistency

e Updates and replication
e Eventual consistency protocol

e Dynamo
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Server view

e How do updates flow through the system?

Process A

l X <-7

When to return the write as successful?
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Server view

e Return the read(write) as successful only if a predetermined number of servers

agree on the same value

e Assume:
e N =# of servers storing the copies of data

® R =# of servers that needs to agree on a value for a read operation
e W =# of servers that needs to agree on a value for a write operation

e If R(W)-many servers agree on the same value, return the read(write) as successful
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Server view

e fW=1andR=1

Process A

l X<-7

Process B

|
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Server view

e fW=1andR=1

Process A

je=

W = 1, success

A

4 A\

Process B

I

R = 1, success

——

(
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Server view

e fW=2andR=1

Process A

l X<-7

Process B

|
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Server view

e fW=2andR=1

Process A

=
W = 2, success I

A

4 \R =1, success

l -

Write needs to wait for two servers
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How to set R and W?

e R=1orW =1 provides the fastest response

e R=NorW =N provides the slowest response

e Sacrifice consistency for faster response-time by tuning R and W parameters
e If read(write)-optimized, set R(W) =1

e R+W>N

e Strong consistency: at least one server overlaps
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Eventual consistency

e Updates and replication
e Eventual consistency protocol

e Dynamo
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Example system: Dynamo

e Amazon’s e-commerce platform
e Simple key-value data model
e Simple geet()/put() interface

e Eventually consistent

e Serves tens of millions of customers using tens of thousands of servers located in

many data centers around the world
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Dynamo’s eventual consistency algorithm

e Keep updates as separate versions of the data
e Return all the versions in case of conflict

R — 2 Process A Process B

W=1 o> je=

R = 2, success R = 2, success
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Dynamo’s eventual consistency algorithm

e Keep updates as separate versions of the data
e Return all the versions in case of conflict

W = 1, success W = 1, success
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Dynamo’s eventual consistency algorithm

e Keep updates as separate versions of the data
e Return all the versions in case of conflict

W=1 I

R = 2, conflict!
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Dynamo’s eventual consistency algorithm

e Keep updates as separate versions of the data
e Return all the versions in case of conflict

Process C
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Dynamo’s eventual consistency algorithm

e Keep updates as separate versions of the data
e Return all the versions in case of conflict

Process C
R =) | processC

W = 1, success

53



Dynamo’s eventual consistency algorithm

e Keep updates as separate versions of the data
e Return all the versions in case of conflict

Updates propagate later on internally
Eventually, data become consistent
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An example use-case: Shopping cart

e (Closed the web-browser and
re-opened it

Shopping cart

* Pair of shoes
Sunglasses

* A book

* Atowel

Stale Stale

Pair of shoes * Pair of shoes
Sunglasses * A book

* Atowel
A book
A towel




An example use-case: Shopping cart

Shopping cart * Closed the web-browser and

* Pair of shoes re-opened it

* Abook

* Atowel e Re-accessed shopping cart (assume
Reconcile R=2)

Result is still meaningful
Application category can tolerate inconsistency
I~ | |=—=——] I~ ]
Can all application categories tolerate inconsistency?

What about your bank account?
— ~— ~—
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Stronger than eventual: Causal consistency

e Enforces the logical order of events that modify (write) in a distributed system

e The strongest achievable consistency model in the presence of partitions

e A system provides causal consistency if (potentially causally related) read/write
memory operations are seen by every node of the system in the same order that

reflects their causality
e \Writes that are potentially causally related must be read by all nodes in the same order
e Concurrent writes may be seen in a different order on different nodes

® Reads are fresh wrt the writes they causally depend on
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Stronger than eventual: Causal consistency

e Why it could be important? Imagine the following consequence:

® User A posts on Moodle message M: “I think value of pi is 3”

® User A then quickly corrects the post to M*: “| think value of pi is roughly
approximated with 3.14”

® User B then sees the post M* and responds to the post with message R: “Yes, we can
use this approximation”
o If causality was not respected, user C could perceive effects before their causes: If

user C observes M and R, but not M*, she could be misled to think pi=3 is

acceptable approximation
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Causal consistency example

e P1, ... P4: concurrent processes/servers/nodes

e W(x)a: write object’s x’a attribute a; R(x)a: read object x’s attribute a

W(x)a : W(x)c -
P1 . .
\ R(x)a = W(x)b :

P2 a ——P= Wb
03 R(x)a R(x)c R(x)b
o4 R(x)a R(x)b R(x)c

e W(x)b and W(x)c are concurrent (no causality): nodes don’t need to see them in the
same order

e P2,P3,and P4 read aandb inthe order of writing as they are potentially causally
related (through P2 W(x)b

e Execution order value under causal consistency rules: all nodes first read aand b
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Causal consistency example

p1 —Wk)a \ i
R(x)a P \W(x)b
P2
; w‘ R(x)a
» R(x)a R(x)b

P4
® Violation of causal consistency: P2 write W(x)b is potentially causally related to preceding write W(x)a

® Therefore, a and b must be read in the same order in nodes P3 and P4 as they are causally related (P3
error)

o1 W(x)a

PR — Wix)b

b3 R(x)b R(x)a
o4 R(x)a R(x)b

® Causally consistent: W(x)a and W(x)b are concurrent (non-causal), therefore there is no limitation in
read order 60



Eventual consistency: Summary

e Data will eventually be consistent if no further updates are made
e Reads and writes need to agree on a value over a set of servers
e Example eventual consistency system: Dynamo

e Keep every update as a separate version

e Merge all versions in the case of conflicts
e Consistency models: design spectrum between strong and eventual
® Strong > Causal > Eventual
e (Causal consistency keeps track of which nodes have seen which writes

® Stronger guarantees than eventual consistency, better performance than strong

® Less popularinindustry due to more complex communication, state maintenance
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Who uses eventual consistency?

e Large-scale systems

e Facebook, Google, Amazon, etc.
e Simple key-value data model
e Simple get()/put() interface

. mongo

Google
BigTable

cassandra

[P

5
X
sl
<ﬁmazon DynamoDB>
A

)
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What is the downside?

e Programming eventually consistent systems is very hard and error-prone
® Programmers need to reconcile all the corner cases in the application to ensure
correctness
e Many companies go back to strong consistency

Spanner /’span-er/, v:

Google

| MEGASTORE database s
BigTable s NP
Eventuall Consistency within Stron
uatly rency ong SQL RDBMS
consistent entity groups consistency
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