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• Phantom and predicate locking for dynamic database 

Readings: Chapter 17.10 and 18.4

• Eventual consistency

Readings: Chapter 21.4 and 23.6

Today’s focus
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• Until now, we only consider the scenario in which transactions perform read and 

update operations on existing objects in the databases

• However, data keeps evolving all the time

• That is transactions perform insertions, updates, and deletions of tuples ….

• This is a critical problem as data may change while transactions are executing

Today’s world: Dynamic databases 
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The Phantom problem with an example
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• Let’s consider that a DB is not fixed size, i.e., data is growing

• Then ensuring serializability is not possible with Strict2PL (on individual items)

• Consider T
1
: “Find oldest sailor”

● T
1
 locks all records and finds oldest sailor (age = 71)

● Next, T
2
 inserts a new sailor, age = 96, and commits

● T
1
 (within the same txn) checks for oldest sailor again and finds sailor aged 96!

• The sailor with age 96 is a “phantom tuple” from T
1
’s point of view

● First, it was not present and now it is there

• No serial execution exists where T
1
’s result can be produced



The Phantom problem with another example
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• Consider T
3
: “Find the oldest sailor for each rating”

● T
3
 locks all pages containing sailors records with rating=1, and find oldest sailor (age=71)

● Next, T
4
 inserts a new sailor, rating=1 and age=96

● T
4
 also deletes oldest sailor with rating=2 and age=80 and commits

● T
3
 now locks all pages containing sailor records with rating=2 and finds oldest (age=63)

• T
3
 only saw part of T

4
’s effects

• No serial execution where T
3
 execution could happen



Why this problem occurs?

6

• T
1
 and T

3
 implicitly assumes that they had locked the set of all sailor records 

satisfying a predicate

● T
1
 and T

3
 locked only existing records and not the ones underway

● Assumption only holds if no sailor records are added while they were executed

• Examples show that conflict serializability on reads and writes of individual items  

guarantees serializability only if the set of objects is fixed



The Phantom problem with visualization
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CREATE TABLE people (
  id SERIAL,
  name VARCHAR,
  age INT,
  status VARCHAR
);

T
5

T
6

Schedule

TI
M

E

SELECT COUNT(age)
  FROM people
 WHERE status=‘lit’

INSERT INTO people
(age=30, status=‘lit’

SELECT COUNT(age)
  FROM people
 WHERE status=‘lit’

BEGIN BEGIN

COMMIT

COMMIT
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Approach to handling the phantom problem
Approach #1: Re-execute scans

• Run queries again at commit to see whether they produce a different result to 

identify missed changes

Approach #2: Predicate locking

• Logically determine the overlap of predicates before queries start running

Approach #3: Index locking

• Use keys in indexes to protect ranges
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Re-execute scans
• The DBMS tracks the WHERE clause for all queries that the transaction executes

● Retain the scan set for every range query in a transaction

• Upon commit, re-execute just the scan portion of each query and check whether it 

generates the same result

● Example: Run the scan for an UPDATE query but do not modify matching tuples
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Predicate locking
• Proposed locking scheme in System R

• Grants lock on all records  that satisfy some logical predicates 

● Shared lock on the predicate WHERE clause of a SELECT query

● Exclusive lock on the predicate in a WHERE  clause of any UPDATE, INSERT, and DELETE 

query

• Rarely used in today’s systems
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Predicate locking
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SELECT COUNT(age)
  FROM people
 WHERE status=‘lit’

INSERT INTO people VALUES
(age=30, status=‘lit’)

Records in Table “people”

status=‘lit’

age=30 ^
status=‘lit’



Index locking
• Use keys in indexes to protect ranges

• Types of schemes:

● Key-value locks

● Gap locks

● Key-range locks

● Hierarchical locks
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Key value locks
• Locks that cover a single key-value in an index

• Need “virtual keys” for non-existent values
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Gap locks
• Each transaction acquires a key-value lock on the single key that it wants to access

• Also gets a gap lock on the next key gap
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Gap locks
• Each transaction acquires a key-value lock on the single key that it wants to access

• Also gets a gap lock on the next key gap
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• A transaction takes locks on ranges in the key space

● Each range is from one key that appears in the relation, to the next that appears

● Define lock modes so conflict table will capture commutativity of the operations 

available

Key-range locks
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Key-range locks
• Locks that cover a key value and the gap to the next key value in a single index

● Need “virtual keys” for artificial values (infinity)
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Key-range locks
• Locks that cover a key value and the gap to the next key value in a single index

● Need “virtual keys” for artificial values (infinity)
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Key-range locks
• Locks that cover a key value and the gap to the next key value in a single index

● Need “virtual keys” for artificial values (infinity)
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Hierarchical locks
• Allow for a transaction to hold wider key-range locks with different locking modes

● Reduces the number of visits to the lock manager
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• If there is no suitable index, then a transaction must obtain the following to avoid 

phantoms:

● A lock on every page in the table to prevent a record’s status=‘lit’ from being 

changed to lit

● The lock for the table itself to prevent records with status=‘lit’ from being added 

or deleted

Locking without an index
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• Serializability is useful because it allows programmers to ignore concurrency issues

• But enforcing it may allow too little concurrency and limit performance

● Ex: Suppose a DB wants to read all data to build statistics for the optimizer (such as 

building a histogram)

○ You do not want to hold S lock on that to do that. 

• We may want to use a weaker level of consistency to improve scalability

Weaker levels of isolation
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• Controls the extent that a transaction is exposed to the actions of other concurrent 

transactions

• Provides for greater concurrency at the expense of exposing transactions to 

uncommitted changes

● Dirty reads: A transaction reads data that has not been committed yet

● Unrepeatable reads: A transaction reads the same row twice and gets different data

● Phantom reads: A row that matches a search criteria that was not initially seen

Isolation levels 
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SERIALIZABLE: No phantoms, all reads repeatable, no dirty reads

REPEATABLE READS: Phantoms may happen

READ COMMITTED: Phantoms and repeatable reads may happen

READ UNCOMMITTED: All of them may happen

Isolation levels 
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SERIALIZABLE: Obtain all locks first; plus index locks, plus strong strict 2PL

REPEATABLE READS: Same as above, but no index locks

READ COMMITTED: Same as above, but S locks are released immediately

READ UNCOMMITTED: Same as above but allow dirty reads (no S locks)

Isolation levels 
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• Transaction levels are set before executing a transaction

• Not all DBMS support all isolation levels in all execution scenarios

● Replicated environment

• The default depends on the implementation

• Lot of well-known databases support READ COMMITTED isolation level 

• Current description of isolation levels is based on phenomena (DIRTY READS, 

NON-REPEATABLE READS, and PHANTOMS)

More on isolation levels
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• Phantom and predicate locking for dynamic database 

Readings: Chapter 17.10 and 18.4

• Eventual consistency

Readings: Chapter 21.4 and 23.6

Today’s focus
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Eventual consistency
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The problem: server failures
• What to do when a server crashes?

● Servers continuously fail in large-scale systems

● Wait for recovery can be too long …
• Use replication

● Keep several copies of data, i.e., replica, in other servers

● If a server fails, another server takes over

● Also applicable in the case of load balancing

• Until now: strong consistency

● All copies have to have the same value  
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CAP theorem
• Consistency: Possible answers to read requests: newest value or error

• Availability: Possible answers to read requests: a value, not necessarily the newest

• Partition tolerance: System still works if some of the nodes are unreachable

• CAP theorem: Can’t have all three at once in a distributed key-value store

● In a real network that can fail, we can’t have both consistency and availability

• Can have a combination of two of C, A, and P

● Choose C+P: strongly consistent systems (e.g., ACID DBMS)

● Choose A+P: eventually consistent systems (e.g., NOSQL systems, DynamoDB)

● Choose C+A: single node systems
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Consistency vs latency (PACELC) theorem
• Latency is similar to a partition

• Follows from the CAP theorem if you consider every network partition temporary

● A request may block if a node cannot be reached

• Even in case of no partitions, contacting other machines for consensus takes time, 

like a network partition

• Consistency-latency tradeoff
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Consensus does not scale
• No consensus without at least a communication of round-trip to each node

• Round-trip latency can’t be zero

• Transaction throughput upper-bounded by 1/latency

• Example: If consensus takes 1 ms, we cannot do more than 1000 X actions/sec

• Idea: Some applications are fine with weaker consistency models

32



• Updates and replication

• Eventual consistency protocol

• Dynamo

Eventual consistency
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How to deal with updates?

• How to keep different copies of the data consistent?
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x = 5

x = 5 x = 5

x = 5

Process A

x <- 7 



• How to keep different copies of the data consistent?
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Process A

x <- 7 
Process B

x = ? 

x = 7

x = 5 x = 5

x = 5

How to deal with updates?



Client view

• Definition: if there are no further changes, eventually all the copies will 
have the same value
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Process A

x <- 7 
Process B

x = ? 

x = 7

x = 5 x = 5
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• Definition: if there are no further changes, eventually all the copies will 
have the same value
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Process A

x <- 7 
Process B

x = 5 

x = 7

x = 5 x = 5

x = 5

Client view



• Definition: if there are no further changes, eventually all the copies will 
have the same value
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Process C

x = 7

Data is eventually consistent

x = 7

x = 7 x = 7

x = 7

Client view



• Updates and replication

• Eventual consistency protocol

• Dynamo

Eventual consistency
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Server view

• How do updates flow through the system?

40When to return the write as successful?

Process A

x <- 7 

x = 7

x = 5 x = 5

x = 5



• Return the read(write) as successful only if a predetermined number of servers 

agree on the same value

• Assume: 

● N = # of servers storing the copies of data 

● R = # of servers that needs to agree on a value for a read operation

● W = # of servers that needs to agree on a value for a write operation

• If R(W)-many servers agree on the same value, return the read(write) as successful

Server view
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Server view

• If W = 1 and R = 1
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x = 5

x = 5 x = 5
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Process A

x <- 7 

Process B



• If W = 1 and R = 1
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x = 7

x = 5 x = 5

x = 5

Process A

x <- 7 

Process B

x = 5

R = 1, success

W = 1, success

Server view



• If W = 2 and R = 1
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x = 5

x = 5 x = 5

x = 5

Process A

x <- 7 

Process B

Server view



• If W = 2 and R = 1
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x = 7

x = 7 x = 5

x = 5

Process A

x <- 7 

Process B

x = 5

R = 1, success

W = 2, success

Write needs to wait for two servers

Server view



• R = 1 or W = 1 provides the fastest response

• R = N or W = N provides the slowest response

• Sacrifice consistency for faster response-time by tuning R and W parameters

● If read(write)-optimized, set R(W) = 1

• R + W > N

● Strong consistency: at least one server overlaps

How to set R and W?
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• Updates and replication

• Eventual consistency protocol

• Dynamo

Eventual consistency
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• Amazon’s e-commerce platform

● Simple key-value data model 

● Simple geet()/put() interface

● Eventually consistent

• Serves tens of millions of customers using tens of thousands of servers located in 

many data centers around the world

Example system: Dynamo
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Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict
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x
0
 = 5 x

0
 = 5

Process B

W = 1, success W = 1, success

Process A

x
A
 = 7 x

B
 = 9

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict
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x
0
 = 5 x

0
 = 5

Process C

R = 2, conflict!

x
A
 = 7 x

B
 = 9

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict
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x
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x
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B
 = 9

x
C
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Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict
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x
A
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Process C

x
A
 = 7 x

B
 = 9

W = 1, success

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict
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x
C
 = 11 x

0
 = 5

x
B
 = 9

x
A
 = 7

x
A
 = 7 x

B
 = 9

Updates propagate later on internally 
Eventually, data become consistent

Dynamo’s eventual consistency algorithm
• Keep updates as separate versions of the data
• Return all the versions in case of conflict
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• Pair of shoes
• Sunglasses
• A book
• A towel

Shopping cart

• Pair of shoes
• A book

• Pair of shoes
• A towel

Stale Stale

• Pair of shoes
• Sunglasses
• A book
• A towel

• Closed the web-browser and 
re-opened it
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An example use-case: Shopping cart



Shopping cart • Closed the web-browser and 
re-opened it

• Re-accessed shopping cart (assume 
R = 2)Reconcile

• Pair of shoes
• A book
• A towel
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• Pair of shoes
• Sunglasses
• A book
• A towel

• Pair of shoes
• A book

• Pair of shoes
• A towel

Stale Stale

Result is still meaningful
Application category can tolerate inconsistency

Can all application categories tolerate inconsistency?
What about your bank account?

An example use-case: Shopping cart



Stronger than eventual: Causal consistency
• Enforces the logical order of events that modify (write) in a distributed system

• The strongest achievable consistency model in the presence of partitions

• A system provides causal consistency if (potentially causally related) read/write 

memory operations are seen by every node of the system in the same order that 

reflects their causality

● Writes that are potentially causally related must be read by all nodes in the same order

● Concurrent writes may be seen in a different order on different nodes

● Reads are fresh wrt the writes they causally depend on
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Stronger than eventual: Causal consistency
• Why it could be important? Imagine the following consequence: 

● User A posts on Moodle message M: “I think value of pi is 3”

● User A then quickly corrects the post to M*: “I think value of pi is roughly 

approximated with 3.14”

● User B then sees the post M* and responds to the post with message R: “Yes, we can 

use this approximation”

○ If causality was not respected, user C could perceive effects before their causes: If 

user C observes M and R, but not M*, she could be misled to think pi=3 is 

acceptable approximation
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Causal consistency example
• P1, … P4: concurrent processes/servers/nodes

• W(x)a: write object’s x’a attribute a; R(x)a: read object x’s attribute a

• W(x)b and W(x)c are concurrent (no causality): nodes don’t need to see them in the 

same order 

• P2, P3, and P4 read a and b in the order of writing as they are potentially causally 

related (through P2 W(x)b

• Execution order value under causal consistency rules: all nodes first read a and b
59
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R(x)a

W(x)b

W(x)c

R(x)c

R(x)b

R(x)b

R(x)c

Concurrent writes



• Violation of causal consistency: P2 write W(x)b is potentially causally related to preceding write W(x)a 

• Therefore, a and b must be read in the same order in nodes P3 and P4 as they are causally related (P3 
error)

• Causally consistent: W(x)a and W(x)b are concurrent (non-causal), therefore there is no limitation in 
read order 60

P1
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P3

P4

W(x)a

R(x)a W(x)b

R(x)b

R(x)a

R(x)a

R(x)b

P1

P2

P3

P4

W(x)a

W(x)b

R(x)b

R(x)a

R(x)a

R(x)b

Concurrent writes

Causal consistency example



Eventual consistency: Summary
• Data will eventually be consistent if no further updates are made

• Reads and writes need to agree on a value over a set of servers 

• Example eventual consistency system: Dynamo

● Keep every update as a separate version

● Merge all versions in the case of conflicts

• Consistency models: design spectrum between strong and eventual

● Strong > Causal > Eventual

• Causal consistency keeps track of which nodes have seen which writes

● Stronger guarantees than eventual consistency, better performance than strong

● Less popular in industry due to more complex communication, state maintenance
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Who uses eventual consistency?

• Large-scale systems
● Facebook, Google, Amazon, etc.

• Simple key-value data model
• Simple get()/put() interface
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What is the downside?
• Programming eventually consistent systems is very hard and error-prone

● Programmers need to reconcile all the corner cases in the application to ensure 

correctness

• Many companies go back to strong consistency
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Eventually 
consistent

Consistency within 
entity groups

Strong 
consistency

SQL RDBMS


