
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Concurrency Control
(Chapter 17 and 18)

Concurrency control
• Serializability

• Two phase locking

• Lock management and deadlocks

• Locking granularity

• Phantoms and predicate locking

2

Readings: Chapter from 17.1 to 17.6

Transactions & Schedules: Definitions
• A program may carry out many operations on the data retrieved from

the database

• The DBMS is only concerned about what data is read/written from/to
the database

• Database
– a fixed set of named data objects (A, B, C, …)

• Transaction
– a sequence of actions (read(A), write(B),commit, abort …)

• Schedule
– an interleaving of actions from various transactions

3

Formal properties of schedules
• Serial schedule: Schedule that does not interleave the actions of

different transactions

4

R
1
(X)

X=X-20
W
1
(X)

R
2
(X)

X=X+10
W
2
(X)

R
1
(X)

X=X-20
W
1
(X)

R
2
(X)

X=X+10
W
2
(X)

t0:
t1:
t2:
t3:
t4:
t5:

R
1
(X)

X=X-20
W
1
(X)

R
2
(X)

X=X+10
W
2
(X)

t0:
t1:
t2:
t3:
t4:
t5:

T
1
: T

2
:

T
1
, T

2 T
2
, T

1

Formal properties of schedules
• Equivalent schedules: For any database state, the effect of executing the

first schedule is identical to the effect of executing the second schedule

• Serializable schedule: A schedule that is equivalent to some serial
execution of the transactions
– Note: If each transaction preserves consistency, every serializable schedule

preserves consistency.

5

Conflicting operations

• We need a formal notion of equivalence that can be implemented
efficiently
– Base it on the notion of “conflicting” operations

• Definition: Two operations conflict if:
– They are done by different transactions,
– And they are done on the same object,
– And at least one of them is a write

6

R
1
(A), W

2
(A)

W
1
(A), R

2
(A)

W
1
(A), W

2
(A)

R
1
(B), W

2
(B)

W
1
(B), R

2
(B)

W
1
(B), W

2
(B)

Examples:

Conflict serializable schedules
• Definition: Two schedules are conflict equivalent iff:

– They involve the same actions of the same transactions,
– And every pair of conflicting actions is ordered the same way

7

T
1
: R

1
(A), A=A-100, W

1
(A), R

1
(B), B=B+100, W

1
(B)

T
2
: R

2
(A), A=1.06*A, W

2
(A), R

2
(B), B=1.06*B, W

2
(B)

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

T
2

T
1

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

T
2

T
1

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

T
2

T
1

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

S
1
: S

2
: S

3
:

S
1

S
2

S
1

S
3
??

Conflict serializable schedules
• Definition: Schedule S is conflict serializable if:

– S is conflict equivalent to some serial schedule

8

T
1
: R

1
(A), A=A-100, W

1
(A), R

1
(B), B=B+100, W

1
(B)

T
2
: R

2
(A), A=1.06*A, W

2
(A), R

2
(B), B=1.06*B, W

2
(B)

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

T
2

T
1

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

T
2

T
1

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

T
2

T
1

S
1
: S

2
: S

3
:

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

Conflict serializability: Definition
• A schedule S is conflict serializable if:

– You are able to transform S into a serial schedule by swapping
consecutive non-conflicting operations of different transactions

• Example:

9

R(A) R(B)W(A) W(B)

R(A) W(A) R(B) W(B) W(A)

 R(B)R(B)

 R(A) W(A)

W(B)

 R(A)

W(B)

R(A) R(B)W(A) W(B)

R(A) W(A) R(B) W(B)

Conflict serializability (cont.)

• Here’s another example:

• Conflict serializable or not?

10

R(A) W(A)
R(A) W(A)

NOT!

Testing for conflict serializability
•

11

Precedence graph

12

T
1
: R

1
(A), A=A-100, W

1
(A), R

1
(B), B=B+100, W

1
(B)

T
2
: R

2
(A), A=1.06*A, W

2
(A), R

2
(B), B=1.06*B, W

2
(B)

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

T
2

T
1

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

S
1
:

R
1
(A), W

2
(A)

W
1
(A), R

2
(A)

W
1
(A), W

2
(A)

R
1
(B), W

2
(B)

W
1
(B), R

2
(B)

W
1
(B), W

2
(B)

A , B

Examples:

Precedence graph

13

T
1
: R

1
(A), A=A-100, W

1
(A), R

1
(B), B=B+100, W

1
(B)

T
2
: R

2
(A), A=1.06*A, W

2
(A), R

2
(B), B=1.06*B, W

2
(B)

R
1
(A)

W
1
(A)

R
1
(B)

W
1
(B)

T
2

T
1

R
2
(A)

W
2
(A)

R
2
(B)

W
2
(B)

S
1
:

R
1
(A), W

2
(A)

W
1
(A), R

2
(A)

W
1
(A), W

2
(A)

R
1
(B), W

2
(B)

W
1
(B), R

2
(B)

W
1
(B), W

2
(B)

A

B

Examples:

Conflict serializable schedules
• Note, some “serializable” schedules are NOT conflict serializable

– A price we pay to achieve efficient enforcement

14

Serial

Conflict Serializable

Serializable

All Schedules

More equivalences of schedules
• View Equivalence

• Result Equivalence

• Most commonly used is Conflict Equivalence

15

Concurrency control
• Serializability
• Two phase locking
• Lock management and deadlocks
• Locking granularity
• Phantoms and predicate locking

16

Readings: Chapter 18.1

Two-Phase Locking (2PL)
• Locking protocol

● Each transaction must obtain an S (shared) lock on object before reading, and an
X (exclusive) lock on object before writing

● A transaction cannot request additional locks once it releases any locks
● Thus, there is a “growing phase” followed by a “shrinking phase”

• Lock compatibility matrix:

17

Two-Phase Locking (2PL)

2PL on its own is sufficient to guarantee conflict serializability (i.e.,
schedules whose precedence graph is acyclic),

BUT it is subject to Cascading Aborts!

18

time

locks held

release phaseacquisition
phase

 Strict 2PL

• Problem: Cascading Aborts
• Example: Rollback of T1 requires rollback of T2!

• To avoid Cascading Aborts, use Strict 2PL
• Strict Two-Phase Locking (Strict 2PL) Protocol:

● Same as 2PL, except:
● All locks held by a transaction are released only when the transaction

completes

19

T1: R1(A), W1(A), R1(B), W1(B), Abort
T2: R2(A), W2(A)

Non-2PL, A= 100, B=200, output =?
Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A)

Read(A)

Unlock(A)

Lock_S(B)

Lock_X(B)

Read(B)

Unlock(B)

PRINT(A+B)

Read(B)

B := B +50

Write(B)

Unlock(B) 20

A=50

250

B=250

2PL, A= 100, B=200, output =?

21

Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)

Unlock(A)

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

A=50

B=250

300ABORT

Strict 2PL, A= 100, B=200, output =?

22

Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)

Read(B)

B := B +50

Write(B)

Unlock(A)

Unlock(B)

Read(A)

Lock_S(B)

Read(B)

PRINT(A+B)

Unlock(A)

Unlock(B)

A=50

B=250

300

 Strict 2PL (cont.)

• Allows only conflict serializable schedules, but it is actually stronger
than needed for that purpose

• In effect, “shrinking phase” is delayed until
a) Transaction has committed (commit log record on disk), or
b) Decision has been made to abort the transaction (locks can be released after

rollback)
23

locks held

acquisition
phase

time

release all locks
at end of xact

Two phase locking: Summary
• Locks implement the notions of conflict directly
• 2PL has:

● Growing phase where locks are acquired and no lock is released
● Shrinking phase where locks are released and no lock is acquired

• Strict 2PL requires all locks to be released at once, when transaction
ends

24

Concurrency control
• Serializability
• Two phase locking
• Lock management and deadlocks
• Locking granularity
• Phantoms and predicate locking

25

Readings: Chapters 18.2

Lock management
• Lock and unlock requests handled by the Lock Manager
• Lock Manager contains an entry for each currently held lock
• Lock table entry:

● Pointer to list of transactions currently holding the lock
● Type of lock held (shared or exclusive)
● Pointer to queue of lock requests

26

Lock management (cont.)
• Basic operation: when lock request arrives see if any other transaction

holds a conflicting lock
● If not, create an entry and grant the lock
● Else, put the requestor on the wait queue

• Lock upgrade: transaction that holds a shared lock can be upgraded to
hold an exclusive lock

• Two-phase locking is simple enough, right?

27

Which locks are granted?
Lock_X(A)

Lock_S(B)

Read(B)

Lock_S(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)

28

Deadlocks
• Deadlock: Cycle of transactions waiting for locks to be released by each

other
• Two ways of dealing with deadlocks:

● Deadlock prevention
● Deadlock detection

• Many systems just ‘punt’ and use Timeouts
● What are the dangers with this approach?

29

Deadlock Detection
•

30

Deadlock Detection (Continued)

Example:

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

31

Deadlock Prevention
•

32

Deadlocks: summary
• The Lock Manager keeps track of the locks issued

• Deadlock is a cycle of transactions waiting for locks to be released to
each other

• Deadlocks may arise and can be:
● Prevented, e.g., using timestamps
● Detected, e.g., using waits-for graphs

33

Concurrency control
• Serializability
• Two phase locking
• Lock management and deadlocks
• Locking granularity

34

Readings: Chapter 18.3

Tuples

Tables

Pages

Database

Multiple-granularity locks
• Hard to decide what granularity to lock (tuples vs. pages vs. tables)
• Shouldn’t have to make same decision for all transactions!
• Data “containers” are nested:

35

contains

Solution: New lock modes, protocol
• Allow transaction to lock at each level, but with a special

protocol using new “intention” locks:
• Still need S and X locks, but before locking an item,

transaction must have proper intension locks on all its
ancestors in the granularity hierarchy

36

• IS – Intent to get S lock(s) at finer granularity
• IX – Intent to get X lock(s) at finer granularity
• SIX mode: Like S & IX at the same time. Why is it useful?

Goal: more concurrent transactions

Tuples

Tables

Pages

Database

Multiple-granularity lock protocol
• Each transaction starts from the root of the hierarchy
• To get S or IS lock on a node, must hold IS or IX on parent node

● What if transaction holds SIX on parent? S on parent?

• To get X or IX or SIX on a node, must hold IX or SIX on parent
node

• Must release locks in bottom-up order

37

Protocol is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Tuples

Tables

Pages

Database

• IS – Intent to get S lock(s) at finer granularity
• IX – Intent to get X lock(s) at finer granularity
• SIX mode: S & IX at the same time

IS IX SIX

IS

IX

SIX

S X

S

X

√√ √ √ -

√
√
√

--

-

--

√ -

-
-

-

-

Lock compatibility matrix

38

√
- -

Tuples

Tables

Pages

Database

Example – 2 level of hierarchy

•

39

IS IX SIX

IS

IX

SIX

S X

S

X

√√ √ √
√
√
√

√

√

Tuples

Tables

Example (for review)

•

40

DB

F
1

F
2

P
11

P
12 P

1n P
21

P
22 P

2n

R
111

R
11j R

121 R
12j

R
1n1 R

1nj

… …

… … … R
211 R

21j R
221 R

22j
R

2n1 R
2nj

… … …

How do these concurrent transactions acquire locks?

Example (cont.)
IX(DB)
IX(F1)

IX(P11)
X(R11)

IX(F2)
IX(P21)
X(R211)
UNLOCK(R211)
UNLOCK(P21)
UNLOCK(F2)

IX(DB)

IX(F1)
X(P12)

IS(DB)
IS(F1)
IS(P11)

S(R11j)

S(F2)

41

UNLOCK(R111)
UNLOCK(P11)
UNLOCK(F1)
UNLOCK(DB)

UNLOCK(P12)
UNLOCK(F1)
UNLOCK(DB)

UNLOCK(R11j)
UNLOCK(P11)
UNLOCK(F1)
UNLOCK(F2)
UNLOCK(DB)

T1 T2 T3 T1 T2 T3

Multiple-granularity locking: Summary

• Allows flexibility for each transaction to choose locking granularity
independently

• Introduces hierarchy of objects

• Introduces intention locks

42

