C5-300: Data-Intensive Systems

Concurrency Control
(Chapter 17 and 18)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pi-L

Concurrency control

e Serializability
Readings: Chapter from 17.1to 17.6
e Two phase locking
e Lock management and deadlocks

e Locking granularity

e Phantoms and predicate locking

Transactions & Schedules: Definitions

e A program may carry out many operations on the data retrieved from
the database

e The DBMS is only concerned about what data is read/written from/to
the database

e Database
— a fixed set of named data objects (A, B, C, ...)

e Transaction

—a sequence of actions (read(A), write(B),commit, abort ...)

e Schedule

— an interleaving of actions from various transactions

Formal properties of schedules

e Serial schedule: Schedule that does not interleave the actions of
different transactions

T1: R, (X) T2: R, (X)

X=X-20 X=X+10

W, (X) W, (X)
te: R, (X) to: R, (X)
tl: X=X-20 t1: X=X+10
t2: W, (X) t2: W, (X)
t3: R,(X) t3: R (X)
t4: X=X+10 t4: X=X-20
t5: W, (X) t5: W, (X)

Formal properties of schedules

e Fquivalent schedules: For any database state, the effect of executing the
first schedule is identical to the effect of executing the second schedule

e Serializable schedule: A schedule that is equivalent to some serial
execution of the transactions

— Note: If each transaction preserves consistency, every serializable schedule
preserves consistency.

Conflicting operations

e \We need a formal notion of equivalence that can be implemented
efficiently
— Base it on the notion of “conflicting” operations

Examples:
R,(A), W,(A)
W_(A), R,(A)

e Definition: Two operations conflict if:
—They are done by different transactions,
— And they are done on the same object,
— And at least one of them is a write W_ (A), W,(A)

R, (B), W_(B)
W, (B), R (B)
W, (B), W, (B)

Conflict serializable schedules

e Definition: Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions,
— And every pair of conflicting actions is ordered the same way

T,:R,(A), A=A-100, W (A), R (B), B=B+100, W (B) =3,
T,: R (A), A=1.06*A, W (A), R (B), B=1.06*B, W._(B) S, =S,77
[=3,
S1: T1 Tz S?_: T1 TZ S3: Tl T2
Rl(A) Rl(A) RI(A)
o W (A) R,(A)
RZ(A) Rz(A) Wl(A)
WZ(A) Rl(B) WZ(A)
Rl(B) Wz(A) RZ(B)
W, (B) Wi (B) R,(B) e
R,(B) R,(B) W, (8)
W,(B) W,(B) 1

Conflict serializable schedules

e Definition: Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule

T,:R,(A), A=A-100, W (A), R (B), B=B+100, W (B)
T:R,(A), A=1.06*A, W_(A), R (B), B=1.06*B, W, (B)

S1 : T1 Tz Sz: T1 Tz
R,(A) R,(A)
W_(A) W (A)
R,(A) R,(B)
W_(A) W, (8)
R,(B) R,(A)
W, (B) W (A)
R,(B) R,(B)
W,(B) W,(B)

3: T1 Tz

R,(A)
W, (A)
R,(B)
W,(B)

R,(A)

W.(A)

R,(B)

W, (B)

Conflict serializability: Definition

e A schedule S is conflict serializable if:

—You are able to transform S into a serial schedule by swapping
consecutive non-conflicting operations of different transactions

e Example:

Conflict serializability (cont.)

e Here’s another example:

e Conflict serializable or not?

NOT!

10

Testing for conflict serializability

e Precedence graph:
— One node per transaction @ @
— Edge from T; to T; if:

* An operation O; of T; conflicts with an operation O; of T; and

* Oi appears earlier in the schedule than 0

e Theorem: Schedule is conflict serializable if and only if its precedence
graph is acyclic

11

T.:R,(A), A=A-100, W, (A), R (B), B=B+100, W, (B)
T:R,(A), A=1.06*A, W_(A), R (B), B=1.06*B, W, (B)

Precedence graph

S1 : T1 Tz
R,(A)
W, (A)
R,(A)
W, (A)
R,(B)
W, (B)
R,(B)
W,(B)

Examples:

R,(A), W, (A)
W, (A), R (A)
W, (A), W, (A)
Rl(B), WZ(B)
W1(B), RZ(B)
W (B), W,(B)

12

Precedence graph Examples:

R,(A), W,(A)
. A _ W, (A), R,(A)
T,:R (A), A=A 103, W_(A), R,(B), B B+10i), W, (B) W (), W(A)
T,:R,(A), A=1.06*A, W_(A), R (B), B=1.06*B, W._(B) R (B), W, (B)
W, (B), R,(B)
51: T, T W _(B), W,(B)
R,(A)
W (A) A
W,(A) B
R,(B) . .
W_(B) NOT conflict serializable:
R (B) * The cycle in the graph reveals the problem.
' * The output of T; depends on T,, and vice-versa

W, (B)

Conflict serializable schedules

e Note, some “serializable” schedules are NOT conflict serializable
— A price we pay to achieve efficient enforcement

> All Schedules

\ > Serializable

\ > Conflict Serializable

> Serial

14

More equivalences of schedules

e View Equivalence
e Result Equivalence
e Most commonly used is Conflict Equivalence

15

Concurrency control

 Serializability

« Two phase locking FReadings: Chapter 18.1

« Lock management and deadlocks
e Locking granularity

« Phantoms and predicate locking

16

Two-Phase Locking (2PL)

e Locking protocol
e Each transaction must obtain an S (shared) lock on object before reading, and an
X (exclusive) lock on object before writing
e A transaction cannot request additional locks once it releases any locks
e Thus, there is a “growing phase” followed by a “shrinking phase”

« Lock compatibility matrix:

true false

X | false | false

17

Two-Phase Locking (2PL)

A
acquisition release phase

phase

locks held

time

2PL on its own is sufficient to guarantee conflict serializability (i.e.,
schedules whose precedence graph is acyclic),
BUT it is subject to Cascading Aborts!

18

Strict 2PL

Problem: Cascading Aborts
Example: Rollback of T1 requires rollback of T2!

T1: R (A), W,(A), R,(B), W,(B), Abort
T2: R,(A), W,(A)

To avoid Cascading Aborts, use Strict 2PL

Strict Two-Phase Locking (Strict 2PL) Protocol:

e Same as 2PL, except:

e Alllocks held by a transaction are released only when the transaction
completes

19

Non-2PL, A=100, B=200, output =?

Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A)
Read(A)
Unlock(A)
Lock_S(B)

Lock_X(B)
Read(B)
Unlock(B)
PRINT(A+B)

Read(B)

B:=B +50

Write(B)

Unlock(B)

mmp A=50

mm)p 250

s B=250

20

2PL, A=100, B=200, output =?

Lock_X(A)

Read(A) Lock S(A)

A: = A-50

Write(A)

Lock_X(B)

Unlock(A)
Read(A)
Lock_S(B)

Read(B)

B:=B +50

Write(B)

Unlock(B) Unlock(
Read(
Unlogi(B)

ABORT PRINT(A+B)

mmmp A=50

mmm)p B=250

21

Strict 2PL, A= 100, B=200, output =?

Lock_X(A)

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)

Read(B)

B:=B +50

Write(B)

Unlock(A)

Unlock(B)
Read(A)
Lock_S(B)
Read(B)
PRINT(A+B)
Unlock(A)
Unlock(B)

mmp A=50

s B=250

=) 300

22

Strict 2PL (cont.)
A

acquisition
phase
locks held release all locks
at end of xact
>
time

e Allows only conflict serializable schedules, but it is actually stronger
than needed for that purpose

e |n effect, “shrinking phase” is delayed until
a) Transaction has committed (commit log record on disk), or
b) Decision has been made to abort the transaction (locks can be released after

rollback)

Two phase locking: Summary

e Locks implement the notions of conflict directly
e 2PL has:

e Growing phase where locks are acquired and no lock is released
e Shrinking phase where locks are released and no lock is acquired

o Strict 2PL requires all locks to be released at once, when transaction
ends

24

Concurrency control

« Lock management and deadlocks Readings: chapters 18.2

25

Lock management

Loc
Loc

Lock table entry:
Pointer to list of transactions currently holding the lock

Type of lock held (shared or exclusive)

Pointer to queue of lock requests

< and unlock requests handled by the Lock Manager
K Manager contains an entry for each currently held lock

= 47

T43 T2F¥ T18 T

167

123 T13 granted

15 - waiting

26

T47

Lock management (cont.)

e Basic operation: when lock request arrives see if any other transaction

holds a conflicting lock
e If not, create an entry and grant the lock
e Else, put the requestor on the wait queue

e Lock upgrade: transaction that holds a shared lock can be upgraded to
hold an exclusive lock
e Two-phase locking is simple enough, right?

27

Which locks are granted?

Lock_X(A)
Lock_S(B)
Read(B)
Lock_S(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)

28

Deadlocks

e Deadlock: Cycle of transactions waiting for locks to be released by each
other

e Two ways of dealing with deadlocks:
e Deadlock prevention
e Deadlock detection

« Many systems just ‘punt’ and use Timeouts
e What are the dangers with this approach?

29

Deadlock Detection

¢ Create a waits-for graph:
e Nodes are transactions
o Edge from T; to T; if T; is waiting for T; to release a lock

e Periodically check for cycles in waits-for graph

30

Deadlock Detection (Continued)

Example:

T1: S(A), S(D), S(B)

T2: X(B) X(C)

T3: S(D), S(C), X(A)
T4: X(B)

&%

31

Deadlock Prevention

s Assign priorities based on timestamp
o TS;>TS; <= priority(i) > priority(j)

 Say T; wants a lock that T; holds, two policies are possible:

Wait-Die: If T; has higher priority than T}, T; waits;

else T; aborts
Wound-Wait: If T; has higher priority than T}, T; aborts;
else T; waits

These schemes guarantee deadlock freedom. Why?
Important detail: If txn restarts, it must be assigned the

timestamp. Why?

original

32

Deadlocks: summary
« The Lock Manager keeps track of the locks issued

e Deadlock is a cycle of transactions waiting for locks to be released to
each other

e Deadlocks may arise and can be:
e Prevented, e.g., using timestamps
e Detected, e.g., using waits-for graphs

33

Concurrency control

 Serializability

« Two phase locking

« Lock management and deadlocks
« Locking granularity readings: chapter 18.3

34

Multiple-granularity locks

e Hard to decide what granularity to lock (tuples vs. pages vs. tables)
e Shouldn’t have to make same decision for all transactions!
e Data “containers” are nested:

Database

. Tables
contains

Pages

Tuples

35

Solution: New lock modes, protocol

e Allow transaction to lock at each level, but with a special

protocol using new “intention” locks:

e Still need S and X locks, but before locking an item,
transaction must have proper intension locks on all its

ancestors in the granularity hierarchy

IS — Intent to get S lock(s) at finer granularity
IX — Intent to get X lock(s) at finer granularity
SIX mode: Like S & IX at the same time. Why is it useful?

Goal: more concurrent transactions

Database
Tables

Pages

Tuples

36

Multiple-granularity lock protocol Database

e Each transaction starts from the root of the hierarchy Tables

e TogetSorlSlock onanode, must hold IS or IX on parent node
e What if transaction holds SIX on parent? S on parent?

e To get X or IX or SIX on a node, must hold IX or SIX on parent
node
e Must release locks in bottom-up order

Pages

Tuples

Protocol is equivalent to directly setting
locks at the leaf levels of the hierarchy.

37

Lock compatibility matrix

IS [IxsIX|s | X

v |V V|-
\/---

- - \/ -
X - - - - -

N
x
< | << <

IS — Intent to get S lock(s) at finer granularity
IX — Intent to get X lock(s) at finer granularity
SIX mode: S & IX at the same time

Database
Tables

Pages

Tuples

38

¢ T, scans R, and updates a few tuples:
e T, getsan SIXlock on R, then X lock on tuples that are updated

e T, uses an index to read only part of R:
e T, getsanlISlock on R, and repeatedly gets an S lock on tuples of R

Example - 2 level of hierarchy

e T3 reads all of R:

T5 getsan S lock on R

OR, T35 could behave like T,

We can use lock escalation to decide
Lock escalation dynamically asks for
coarser-grained locks when too many
low level locks acquired

IS | IX SIX
s [V |V |V
X |V |V
SIX |V
s |V
X

Tables

Tuples

39

Example (for review)
DB

Pl P12 P1n P P P

R R ‘7& A) A

- R......R R
111 11] 121 12] 1n1"'R1nj R211"'R21j R221"'R22j R2n1---R2nj

¢ T, :update records R,;; and R, 4
e T, :update all records in page P,
 T;:readrecord Ry;; and read entire file F,

How do these concurrent transactions acquire locks?

40

Example (cont.)
T1 12

T3

41

Multiple-granularity locking: Summary

Allows flexibility for each transaction to choose locking granularity
independently

Introduces hierarchy of objects

Introduces intention locks

42

