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• Overview of ACID

• Concurrency 

• Logging and recovery

Today’s focus
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Q. Why is transaction management really important?



Multiple concurrent requests to DBMS
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→ Concurrency control and recovery 

components permeate throughout DBMS 

design

Transaction management is important across layers
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1. Concurrent database access (concurrency control)

2. Resilience to system failures (recovery) Query planning
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1. Why concurrency becomes an issue?
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update account
set balance=balance-20
where accid=101 

update account
set balance=balance+10
where accid=101 
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Arbitrary interleaving can lead to inconsistencies



1. Goal of concurrency control … 
Execute a sequence of SQL statements so they appear to be running in isolation

• Strawman approach: Execute each query one-by-one (i.e, serial order) as they arrive 

at the DBMS 

● One and only query runs simultaneously in the DBMS

• Before a query starts, copy the entire database to a new file and make all changes 

to that file

● If the operation completes successfully, overwrite the original file with the new one

● If the operation fails, just remove the dirty copy
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Q. What is the issue with this approach?



1. Goal of concurrency control … 
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(Potentially) better approach: Allow concurrent execution of independent set of queries

● Why do we want?
○ Better utilization / throughput
○ Increased response time 

● But we would also like:
○ Correctness
○ Fairness

Multiprocessor
Multithreaded

Asynchronous I/O



update account set 
balance=balance-50 where accid=101 
update account set 
balance=balance+50 where accid=102

2. Resilience to system failures
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2. Goal of handling system failures



Solution to both problems
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• Concurrent database access

• Resilience to system failures

Transactions

● A sequence of one or more SQL operations treated as a unit

○ Transactions appear to run in isolation

○ If the system fails, the DBMS will either reflect the changes of the transaction or 
not at all



Using transactions efficiently and correctly
• (Potentially) better approach: Concurrently execute independent transactions

• Arbitrary interleaving of operations can lead to:

● Temporary inconsistencies (ok, unavoidable)

● Permanent inconsistency (bad!)

• The DBMS is only concerned about what data is read/written from/to the database 

● Changes to the “outside world” are beyond the scope of the DBMS

• We need a formal correctness criteria to determine whether an interleaving is valid!
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Definitions 
• A program may carry out many operations on the data retrieved from the database

• The DBMS is only concerned about what data is read/written from/to the database

● Changes to the “outside world” are beyond the scope of the DBMS

Formal definition

• Database: A fixed set of named objects (e.g., A, B, C, …)

• Transaction: A sequence of read and write operations (R(A), W(B), …)
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Transactions in SQL

• A new transaction starts with the BEGIN command

• The transaction stops with either COMMIT or ABORT:

● If commit, the DBMS saves all the transaction’s changes or aborts it

● If abort, all changes are undone → seems like transactions never executed at all 

• Aborts can be either self-inflicted or caused by the DBMS
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Correctness criteria: The ACID properties

• Atomicity:  All actions in the transaction happen, or none happen (“All or nothing”)

• Consistency:  If each transaction is consistent, and the DB starts consistent, it ends 

up consistent (“It looks correct to me”)

• Isolation:  Execution of one transaction is isolated from that of other transactions 

(“All by myself ”)

• Durability:  If a transaction commits, its effects persist (“I will survive”)
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Atomicity of transactions 
• Two possible outcomes of executing a transaction:

● Commit after completing all its actions

● Abort (or be aborted by the DBMS) after executing some actions 

• DBMS guarantees that transactions are atomic

● From the user’s point of view: transaction always either executes all its 

actions or executes no actions at all
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Atomicity of transactions 
Scenario #1: 

• We take CHF100 out of an account, but then the DBMS aborts the 

transaction before we transfer it

Scenario #2:

• We take CHF100 out of an account, but there is a power failure before 

we transfer it

Q. What should be the correct state of the account after both transactions 

abort?
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Mechanisms for ensuring atomicity
Approach #1: Logging

• DBMS logs all actions so that it can undo the actions of aborted transactions 

• Maintain undo records both in memory and on disk

• Think of this like the black box in airplanes…

Logging is used by almost every DBMS 

• Audit trails

• Efficiency reasons

Widely used approach!
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Mechanisms for ensuring atomicity
Approach #2: Shadow paging 

• DBMS makes copies of pages, and transactions makes changes to those copies

● Only when the transaction commits, then page is made visible to others

● Pros: Leads to instant recovery

● Cons: Introduces memory fragmentation 

• Originally from IBM System R

• Not prevalent in use; few systems still implement it:

● CouchDB

● Tokyo Cabinet

● LMDB
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Understanding transaction abort (i.e., rollback)
• If a transaction is aborted, all of its actions must be undone 

• To undo actions of an aborted transaction, the DBMS maintains a log that records 

every write operation

• Log is used to recover DBMS from system crashes:

● All active transactions at the time of crash are aborted when the system comes back up
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The log
• Log consists of “records” that are written sequentially

→ Every change (insert, delete, update) becomes a log record  appended to a file written in 

order

• Typically chained together by transaction id

→ Each record stores the ID of the previous record for the same txn for crash recovery by 

undoing operations backward

• Log is often archived on stable storage

• Records table, row information, also contain old and new data

→ Stores page-ID, offset, length, before-image for UNDO log and after-image for REDO log
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The log
• Write-ahead-logging (WAL) protocol follows two rules

1. Ordering: Log record must go to disk before updating the page

○ Implemented via a handshake between the log manager and the buffer manager

2. Commit boundary: All log records for a transaction (including its commit record) must 

be written to disk before the transaction is considered “committed”

• DBMS handles all logging and concurrency control related protocols
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Transaction consistency
• The DBMS accurately models the real world 

• It also follows the integrity constraints (IC)

● SQL has methods to define these constraints (e.g., key definitions, CHECK and ADD 

CONSTRAINT) and the DBMS enforces them

● Applications must define these constraints

○ DBMS does not understand the semantics of data, relies on the application

○ Eg. it does not understand how to compute interest on a bank account

● On failure of these constraints, the transaction rolls back (i.e., aborted)

● DBMS ensures that all ICs are true before and after the transaction ends
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Isolation of transactions
• Users submit transactions, and each transaction ensures as it were running by itself

● Easier programming model to reason about

• The DBMS achieves concurrency by interleaving the actions (reads/writes of DB 

objects) of transactions

• We need a way to interleave transactions but still make it appear as if they ran 

one-at-a-time
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Mechanisms for ensuring isolation
A concurrency control protocol is how the DBMS decides the proper interleaving of 

operations from multiple transactions

Two categories of protocols:

• Pessimistic: Don’t let problems arise in the first place

• Optimistic: Assume conflicts are rare; deal with them after they happen
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Example
• Assume at first A and B each have CHF 1000

• T
1
 transfers CHF 100 from A’s account to B’s

• T
2
 credits both accounts with 6% interest
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Example
• Assume at first A and B each have CHF 1000

What are the possible outcomes of running T
1
 and T

2
?
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Example
• Assume at first A and B each have CHF 1000

What are the possible outcomes of running T
1
 and T

2
?

Many! But A+B should be: 

• CHF 2000 * 1.06 = CHF 2120

• There is no guarantee that T
1
 will execute before T

2
 or vice-versa, 

if both are submitted together

• But the net effect must be equivalent to these two transactions 

running serially in some order
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Example
Legal outcomes:

• A = 954, B = 1166 → A+B = 2120

• A = 960, B = 1160 → A+B = 2120

The outcome depends on whether T
1
 executes before T

2
 or vice versa
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Serial execution example
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BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT
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Interleaving transactions
• We interleave transactions to maximize concurrency

● Slow disk/network IOs

● Multi-core CPUs

• When a transaction stalls because of a resource (e.g., page fault), another 

transaction can continue executing and make forward progress 
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Interleaving example (good)
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Interleaving example (bad)
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BEGIN
A = A - 100

B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
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Interleaving example (bad)
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Interleaving example (bad)
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How do we judge whether a 
schedule is correct?

If the schedule is equivalent to 
some serial execution



Formal properties of schedules
Serial schedule

• A schedule that does not interleave the actions of different transactions

Equivalent schedule

• For any database state, the effect of executing the first schedule is identical to the 

effect of executing the second schedule 
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Formal properties of schedules
Serializable schedule

• A schedule that is equivalent to some serial execution of the transactions

• If each transaction preserves consistency, every serializable schedule preserves 

consistency

Serializability is a less intuitive notion of correctness compared to transaction initiation 

time or commit order, but it provides the DBMS with more flexibility in scheduling 

operations

• More flexibility means more parallelism
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Conflicting operations
Need a formal notion of equivalence that can be implemented efficiently based on the 

notion of “conflicting” operations:

• Two operations conflict if:

● They are by different transactions

● They are on the same object and one of them is a write operation

Interleaved execution anomalies:

• Unrepeatable read (read-write)

• Dirty read (write-read)

• Lost update (write-write)

• Phantom reads (scan-write)

• Write skew (read-write)
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Read-write conflicts
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R(A)
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COMMIT
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T
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Unrepeatable read: Transaction gets different values when reading the same object 

multiple times

Violates isolation, not alone in the system



Write-read conflicts

42

BEGIN
R(A)
W(A)

ROLLBACK
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T
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Dirty read: One transaction reads data written by another transaction that has not 

committed yet

Can read garbage value & not isolated



Write-write conflicts
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lost update: One transaction overwrites uncommitted data from other uncommitted 

transaction 



Addressing anomalies with lock-based CC
• Using locks is one of the simple ways to avoid such anomalies

Strict two-phase locking (S2PL) protocol

• Each transaction must obtain an S (shared) lock on the object before reading, 

and X (exclusive) lock on the object before writing

• System can obtain these locks automatically

• Must avoid deadlock situations by acquiring locks in a canonical order
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Addressing anomalies with lock-based CC
• Lock rules:

● If a transaction holds an X lock on an object, no other transaction can acquire a lock (S 

or X) on that object

● If a transaction holds an S lock, no other transaction can get an X lock on that object

• Two phases: acquiring locks and releasing them

● No lock is ever acquired after one has been released

● All locks held by a transaction are released when the transaction completes

• S2PL avoids cascading aborts:  

● A situation in which the abort of one transaction forces the abort of another 

transaction to prevent the second transaction from reading invalid (uncommitted) data
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Durability: Recovering from a crash
• All the changes of committed transaction should be persistent

● No torn updates 

● No changes from failed transactions

• The DBMS can use either logging or shadow paging to ensure that all changes are 

durable
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Durability: Recovering from a crash
• Three phases:

● Analysis: Scan the log (forward from the most recent checkpoint) to identify all 

transactions that were active at the time of the crash

● Redo: Redo updates as needed to ensure that all logged updates are in fact carried out 

and written to the disk 

● Undo: Undo writes of all transactions that were active at the time of the crash, 

working backwards in the log

• At the end: all committed updates and only those updates are reflected in the 

database

• Some care must be taken to handle the case of crash occurring during the recovery 

process
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Correctness criteria: The ACID properties

• Atomicity:  All actions in the transaction happen, or none happen (“All or nothing”)

• Consistency:  If each transaction is consistent, and the DB starts consistent, it ends 

up consistent (“It looks correct to me…”)

• Isolation:  Execution of one transaction is isolated from that of other transactions 

(“All by myself …”)

• Durability:  If a transaction commits, its effects persist (“I will survive…”)
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Redo/Undo mechanism

Integrity constraint

Concurrency control

Redo/Undo mechanism



Summary 
• Concurrency control and recovery are among the most important functions by a 

DBMS

• Concurrency control is automatic

● System automatically inserts lock/unlock requests and scheduled actions of different 

transactions

● Property ensured: Resulting execution is equivalent to executing transactions one after 

the other in some order

• Write-ahead-log (WAL) and the recovery protocol are used to:

● Undo the actions of aborted transactions, and

● Restore the system to a consistent state after a crash
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