
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Transaction Management
(Chapters 17, 18)

• Overview of ACID

• Concurrency

• Logging and recovery

Today’s focus

2

Want to
store data

Conceptual
Design

Logical
Design

Physical
Design Database

Storage

Want to access data

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Result

ER
Models

Relational
Model

ER to
Relational

Relational
Algebra, SQL

SQL

3

The big picture

Disk Storage,
Files

Query processing

Transaction
management

Concurrency
control

Recovery

Q. Why is transaction management really important?

Multiple concurrent requests to DBMS

4

Data

DBMS

More
software

Even more
software

Select
Insert
Delete
Update
Drop
Alter
…

CRASH

→ Concurrency control and recovery

components permeate throughout DBMS

design

Transaction management is important across layers

5

Query planning

Operator execution

Access methods

Buffer management

Disk manager

→ Concurrency control and recovery

components permeate throughout DBMS

design

Transaction management is important across layers

6

Query planning

Operator execution

Access methods

Buffer management

Disk manager

Concurrency Control

Recovery

Tr
an

sa
ct

io
n

 m
an

ag
er

7

1. Concurrent database access (concurrency control)

2. Resilience to system failures (recovery) Query planning

Operator execution

Access methods

Buffer management

Disk manager

Concurrency Control

Recovery

Tr
an

sa
ct

io
n

 m
an

ag
er

Transaction management ensures …

1. Why concurrency becomes an issue?

8

update account
set balance=balance-20
where accid=101

update account
set balance=balance+10
where accid=101

Two concurrently executing queries
Accid balance

101 100

102 1000

104 1000

X

Read; modify; write

R(X)
X=X-20
W(X)

R(X)
X=X+10
W(X)

R
1
(X)

X=X-20
W
1
(X)

R
2
(X)

X=X+10
W
2
(X)

R
1
(X)

X=X-20
W
1
(X)

R
2
(X)

X=X+10
W
2
(X)

t0:
t1:
t2:
t3:
t4:
t5:

X=90

R
1
(X)

X=X-20
W
1
(X)

R
2
(X)

X=X+10
W
2
(X)

t0:
t1:
t2:
t3:
t4:
t5:

X=90

R
1
(X)

X=X-20

W
1
(X)

R
2
(X)

X=X+10

W
2
(X)

t0:
t1:
t2:
t3:
t4:
t5:

X=110

Arbitrary interleaving can lead to inconsistencies

1. Goal of concurrency control …
Execute a sequence of SQL statements so they appear to be running in isolation

• Strawman approach: Execute each query one-by-one (i.e, serial order) as they arrive

at the DBMS

● One and only query runs simultaneously in the DBMS

• Before a query starts, copy the entire database to a new file and make all changes

to that file

● If the operation completes successfully, overwrite the original file with the new one

● If the operation fails, just remove the dirty copy

9

Q. What is the issue with this approach?

1. Goal of concurrency control …

10

(Potentially) better approach: Allow concurrent execution of independent set of queries

● Why do we want?
○ Better utilization / throughput
○ Increased response time

● But we would also like:
○ Correctness
○ Fairness

Multiprocessor
Multithreaded

Asynchronous I/O

update account set
balance=balance-50 where accid=101
update account set
balance=balance+50 where accid=102

2. Resilience to system failures

11

Data

DBMS

Bulk Load

CRASH

Data

DBMS

CRASH

Data

DBMS

CRASH

Lots of updates
buffered in memory

Buffer

12

Data

DBMS

Something

Guarantee all-or-nothing execution,
regardless of failures

2. Goal of handling system failures

Solution to both problems

13

• Concurrent database access

• Resilience to system failures

Transactions

● A sequence of one or more SQL operations treated as a unit

○ Transactions appear to run in isolation

○ If the system fails, the DBMS will either reflect the changes of the transaction or
not at all

Using transactions efficiently and correctly
• (Potentially) better approach: Concurrently execute independent transactions

• Arbitrary interleaving of operations can lead to:

● Temporary inconsistencies (ok, unavoidable)

● Permanent inconsistency (bad!)

• The DBMS is only concerned about what data is read/written from/to the database

● Changes to the “outside world” are beyond the scope of the DBMS

• We need a formal correctness criteria to determine whether an interleaving is valid!

14

Definitions
• A program may carry out many operations on the data retrieved from the database

• The DBMS is only concerned about what data is read/written from/to the database

● Changes to the “outside world” are beyond the scope of the DBMS

Formal definition

• Database: A fixed set of named objects (e.g., A, B, C, …)

• Transaction: A sequence of read and write operations (R(A), W(B), …)

15

Transactions in SQL

• A new transaction starts with the BEGIN command

• The transaction stops with either COMMIT or ABORT:

● If commit, the DBMS saves all the transaction’s changes or aborts it

● If abort, all changes are undone → seems like transactions never executed at all

• Aborts can be either self-inflicted or caused by the DBMS

16

Correctness criteria: The ACID properties

• Atomicity: All actions in the transaction happen, or none happen (“All or nothing”)

• Consistency: If each transaction is consistent, and the DB starts consistent, it ends

up consistent (“It looks correct to me”)

• Isolation: Execution of one transaction is isolated from that of other transactions

(“All by myself ”)

• Durability: If a transaction commits, its effects persist (“I will survive”)

17

Atomicity of transactions
• Two possible outcomes of executing a transaction:

● Commit after completing all its actions

● Abort (or be aborted by the DBMS) after executing some actions

• DBMS guarantees that transactions are atomic

● From the user’s point of view: transaction always either executes all its

actions or executes no actions at all

18

A

Atomicity of transactions
Scenario #1:

• We take CHF100 out of an account, but then the DBMS aborts the

transaction before we transfer it

Scenario #2:

• We take CHF100 out of an account, but there is a power failure before

we transfer it

Q. What should be the correct state of the account after both transactions

abort?

19

A

Mechanisms for ensuring atomicity
Approach #1: Logging

• DBMS logs all actions so that it can undo the actions of aborted transactions

• Maintain undo records both in memory and on disk

• Think of this like the black box in airplanes…

Logging is used by almost every DBMS

• Audit trails

• Efficiency reasons

Widely used approach!

20

A

Mechanisms for ensuring atomicity
Approach #2: Shadow paging

• DBMS makes copies of pages, and transactions makes changes to those copies

● Only when the transaction commits, then page is made visible to others

● Pros: Leads to instant recovery

● Cons: Introduces memory fragmentation

• Originally from IBM System R

• Not prevalent in use; few systems still implement it:

● CouchDB

● Tokyo Cabinet

● LMDB

21

A

Understanding transaction abort (i.e., rollback)
• If a transaction is aborted, all of its actions must be undone

• To undo actions of an aborted transaction, the DBMS maintains a log that records

every write operation

• Log is used to recover DBMS from system crashes:

● All active transactions at the time of crash are aborted when the system comes back up

22

A

The log
• Log consists of “records” that are written sequentially

→ Every change (insert, delete, update) becomes a log record appended to a file written in

order

• Typically chained together by transaction id

→ Each record stores the ID of the previous record for the same txn for crash recovery by

undoing operations backward

• Log is often archived on stable storage

• Records table, row information, also contain old and new data

→ Stores page-ID, offset, length, before-image for UNDO log and after-image for REDO log

23

A

The log
• Write-ahead-logging (WAL) protocol follows two rules

1. Ordering: Log record must go to disk before updating the page

○ Implemented via a handshake between the log manager and the buffer manager

2. Commit boundary: All log records for a transaction (including its commit record) must

be written to disk before the transaction is considered “committed”

• DBMS handles all logging and concurrency control related protocols

24

A

Transaction consistency
• The DBMS accurately models the real world

• It also follows the integrity constraints (IC)

● SQL has methods to define these constraints (e.g., key definitions, CHECK and ADD

CONSTRAINT) and the DBMS enforces them

● Applications must define these constraints

○ DBMS does not understand the semantics of data, relies on the application

○ Eg. it does not understand how to compute interest on a bank account

● On failure of these constraints, the transaction rolls back (i.e., aborted)

● DBMS ensures that all ICs are true before and after the transaction ends

25

consistent
database S1

consistent
database S2

transaction T

C

Isolation of transactions
• Users submit transactions, and each transaction ensures as it were running by itself

● Easier programming model to reason about

• The DBMS achieves concurrency by interleaving the actions (reads/writes of DB

objects) of transactions

• We need a way to interleave transactions but still make it appear as if they ran

one-at-a-time

26

I

Mechanisms for ensuring isolation
A concurrency control protocol is how the DBMS decides the proper interleaving of

operations from multiple transactions

Two categories of protocols:

• Pessimistic: Don’t let problems arise in the first place

• Optimistic: Assume conflicts are rare; deal with them after they happen

27

I

Example
• Assume at first A and B each have CHF 1000

• T
1
 transfers CHF 100 from A’s account to B’s

• T
2
 credits both accounts with 6% interest

28

Accid balance

101 100

102 1000

104 1000

A

B

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

I

Example
• Assume at first A and B each have CHF 1000

What are the possible outcomes of running T
1
 and T

2
?

29

Accid balance

101 100

102 1000

104 1000

A

B

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

I

Example
• Assume at first A and B each have CHF 1000

What are the possible outcomes of running T
1
 and T

2
?

Many! But A+B should be:

• CHF 2000 * 1.06 = CHF 2120

• There is no guarantee that T
1
 will execute before T

2
 or vice-versa,

if both are submitted together

• But the net effect must be equivalent to these two transactions

running serially in some order
30

Accid balance

101 100

102 1000

104 1000

A

B

I

Example
Legal outcomes:

• A = 954, B = 1166 → A+B = 2120

• A = 960, B = 1160 → A+B = 2120

The outcome depends on whether T
1
 executes before T

2
 or vice versa

31

Accid balance

101 100

102 1000

104 1000

A

B

I

Serial execution example

32

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

A = 954, B = 1166

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

A = 960, B = 1160

A + B = 2120

Schedule Schedule

☰

TI
M

E
I

Interleaving transactions
• We interleave transactions to maximize concurrency

● Slow disk/network IOs

● Multi-core CPUs

• When a transaction stalls because of a resource (e.g., page fault), another

transaction can continue executing and make forward progress

33

I

Interleaving example (good)

34

BEGIN
A = A - 100

B = B + 100
COMMIT

BEGIN
A = A * 1.06

B = B * 1.06
COMMIT

T
1

T
2

A = 954, B = 1166

BEGIN
A = A - 100
B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

A = 954, B = 1166

A + B = 2120

Schedule Schedule

☰

TI
M

E
I

Interleaving example (bad)

35

BEGIN
A = A - 100

B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

A = 954, B = 1166

A = 954, B = 1166
or

A = 960, B = 1160

A + B = 2114

Schedule

≢

TI
M

E

Off by 6!

I

Interleaving example (bad)

36

BEGIN
A = A - 100

B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

A = 954, B = 1166

A + B = 2114

Schedule

TI
M

E

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

T
1

T
2

DBMS view

I

Interleaving example (bad)

37

BEGIN
A = A - 100

B = B + 100
COMMIT

BEGIN
A = A * 1.06
B = B * 1.06
COMMIT

T
1

T
2

A = 954, B = 1166

A + B = 2114

Schedule

TI
M

E
I

How do we judge whether a
schedule is correct?

If the schedule is equivalent to
some serial execution

Formal properties of schedules
Serial schedule

• A schedule that does not interleave the actions of different transactions

Equivalent schedule

• For any database state, the effect of executing the first schedule is identical to the

effect of executing the second schedule

38

I

Formal properties of schedules
Serializable schedule

• A schedule that is equivalent to some serial execution of the transactions

• If each transaction preserves consistency, every serializable schedule preserves

consistency

Serializability is a less intuitive notion of correctness compared to transaction initiation

time or commit order, but it provides the DBMS with more flexibility in scheduling

operations

• More flexibility means more parallelism

39

I

Conflicting operations
Need a formal notion of equivalence that can be implemented efficiently based on the

notion of “conflicting” operations:

• Two operations conflict if:

● They are by different transactions

● They are on the same object and one of them is a write operation

Interleaved execution anomalies:

• Unrepeatable read (read-write)

• Dirty read (write-read)

• Lost update (write-write)

• Phantom reads (scan-write)

• Write skew (read-write)
40

I

Read-write conflicts

41

BEGIN
R(A)

R(A)
W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

T
1

T
2

DBMS view

I

$10

$10
$19

$19

Unrepeatable read: Transaction gets different values when reading the same object

multiple times

Violates isolation, not alone in the system

Write-read conflicts

42

BEGIN
R(A)
W(A)

ROLLBACK

BEGIN
R(A)
W(A)
COMMIT

T
1

T
2

DBMS view

I

$10

$12
$19

$12

Dirty read: One transaction reads data written by another transaction that has not

committed yet

Can read garbage value & not isolated

Write-write conflicts

43

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

T
1

T
2

DBMS view

I

$10

$12
Bob

Alice

lost update: One transaction overwrites uncommitted data from other uncommitted

transaction

Addressing anomalies with lock-based CC
• Using locks is one of the simple ways to avoid such anomalies

Strict two-phase locking (S2PL) protocol

• Each transaction must obtain an S (shared) lock on the object before reading,

and X (exclusive) lock on the object before writing

• System can obtain these locks automatically

• Must avoid deadlock situations by acquiring locks in a canonical order

44

I

Addressing anomalies with lock-based CC
• Lock rules:

● If a transaction holds an X lock on an object, no other transaction can acquire a lock (S

or X) on that object

● If a transaction holds an S lock, no other transaction can get an X lock on that object

• Two phases: acquiring locks and releasing them

● No lock is ever acquired after one has been released

● All locks held by a transaction are released when the transaction completes

• S2PL avoids cascading aborts:

● A situation in which the abort of one transaction forces the abort of another

transaction to prevent the second transaction from reading invalid (uncommitted) data

45

I

Durability: Recovering from a crash
• All the changes of committed transaction should be persistent

● No torn updates

● No changes from failed transactions

• The DBMS can use either logging or shadow paging to ensure that all changes are

durable

46

D

Durability: Recovering from a crash
• Three phases:

● Analysis: Scan the log (forward from the most recent checkpoint) to identify all

transactions that were active at the time of the crash

● Redo: Redo updates as needed to ensure that all logged updates are in fact carried out

and written to the disk

● Undo: Undo writes of all transactions that were active at the time of the crash,

working backwards in the log

• At the end: all committed updates and only those updates are reflected in the

database

• Some care must be taken to handle the case of crash occurring during the recovery

process

47

D

Correctness criteria: The ACID properties

• Atomicity: All actions in the transaction happen, or none happen (“All or nothing”)

• Consistency: If each transaction is consistent, and the DB starts consistent, it ends

up consistent (“It looks correct to me…”)

• Isolation: Execution of one transaction is isolated from that of other transactions

(“All by myself …”)

• Durability: If a transaction commits, its effects persist (“I will survive…”)

48

Redo/Undo mechanism

Integrity constraint

Concurrency control

Redo/Undo mechanism

Summary
• Concurrency control and recovery are among the most important functions by a

DBMS

• Concurrency control is automatic

● System automatically inserts lock/unlock requests and scheduled actions of different

transactions

● Property ensured: Resulting execution is equivalent to executing transactions one after

the other in some order

• Write-ahead-log (WAL) and the recovery protocol are used to:

● Undo the actions of aborted transactions, and

● Restore the system to a consistent state after a crash

49

