CS5-300: Data-Intensive Systems

Transaction Management
(Chapters 17, 18)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pi-L

Today’s focus

e Overview of ACID
e (Concurrency

e Logging and recovery

The big picture

Want to Relational
store data Model
Conceptual Logica
esign | % esign
T ER to @
Relational
Models — .

Q. Why is transaction management really important?

o~

Relational

Algebra, SQL

SQL

Result

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

@\’/'@D\’/
%\ \\
|
e e
%\ %\

Want tc; access data

Query processing

\y

O

Transaction
management
)
control

A © S 4

Files

Multiple concurrent requests to DBMS_

Even more
software

More

software

DBMS

|

-

Data

-

G

\%

Select
Insert
Delete
Update
Drop
Alter

Transaction management is important across layers

— Concurrency control and recovery

components permeate throughout DBMS Query planning

design Operator execution

Access methods

Buffer management

Disk manager

Transaction management is important across layers

— Concurrency control and recovery

components permeate throughout DBMS Query planning

T N

Concurrency Control

Operator execution

design

Access methods

Recovery

Buffer management

Transaction manager
AL

Disk manager

Transaction management ensures ...

1. Concurrent database access (concurrency control)

2. Resilience to system failures (recovery) Query planning

N

o Concurrency Control

Operator execution

Access methods

Recovery

Buffer management

Transaction manager
AL

Disk manager

1. Why concurrency becomes an issue?

Two concurrently executing queries

X balance
update account update account
set balance=balance-20 set balance=balance+10 10 @
where accid=101 where accid=101 102 1000
Read; modify; write 104 1000
R, (X) R, (X)
X=X-20 X=X+10
W, (X) W, (X)
to: R (X) to: R,(X) | te: R(X)
t1: X=X-20 t1: X=X+10 | t1: R, (X)
t2: W (X) t2: W, (X) t2: X=X-20
t3: R,(X) t3: R (X) t3: X=X+10
1+A4- X=X+10 +A. V_V_IIN Y I N AYA

Arbitrary interleaving can lead to inconsistencies
X=90 | X=90 | X=110

1. Goal of concurrency control ...

Execute a sequence of SQL statements so they appear to be running in isolation

e Strawman approach: Execute each query one-by-one (i.e, serial order) as they arrive
at the DBMS

® One and only query runs simultaneously in the DBMS
e Before a query starts, copy the entire database to a new file and make all changes

to that file
e If the operation completes successfully, overwrite the original file with the new one
e If the operation fails, just remove the dirty copy

Q. What is the issue with this approach?

1. Goal of concurrency control ...

(Potentially) better approach: Allow concurrent execution of independent set of queries
e Why do we want?

o Better utilization / throughput ‘
o Increased response time Multiprocessor

Multithreaded
Asynchronous I/O

e But we would also like:
o Correctness
o Fairness

10

2. Resilience to system failures

update account set
balance=balance-50 where accid=101 Lots of updates

update account set . buffered in memory
Bulk Load balance=balance+50 where accid=102

|3

DBMS

11

2. Goal of handling system failures

Guarantee all-or-nothing execution,
regardless of failures

12

Solution to both problems

e Concurrent database access
e Resilience to system failures

N\ C v 4
- C - Transactions
v 4 - 8

® A sequence of one or more SQL operations treated as a unit
o Transactions appear to run in isolation

o If the system fails, the DBMS will either reflect the changes of the transaction or
not at all

13

Using transactions efficiently and correctly

(Potentially) better approach: Concurrently execute independent transactions

Arbitrary interleaving of operations can lead to:
e Temporary inconsistencies (ok, unavoidable)
® Permanent inconsistency (bad!)

The DBMS is only concerned about what data is read/written from/to the database
e Changes to the “outside world” are beyond the scope of the DBMS

We need a formal correctness criteria to determine whether an interleaving is valid!

14

Definitions

e A program may carry out many operations on the data retrieved from the database
e The DBMS is only concerned about what data is read/written from/to the database

e Changes to the “outside world” are beyond the scope of the DBMS

Formal definition

e Database: A fixed set of named objects (e.g., A, B, C, ...)
e Transaction: A sequence of read and write operations (R(A), W(B), ...)

15

Transactions in SQL

e A new transaction starts with the BEGIN command

e The transaction stops with either COMMIT or ABORT:

e If commit, the DBMS saves all the transaction’s changes or aborts it

e If abort, all changes are undone — seems like transactions never executed at all

e Aborts can be either self-inflicted or caused by the DBMS

16

Correctness criteria: The ACID properties

e Atomicity: All actions in the transaction happen, or none happen (“All or nothing”)

e Consistency: If each transaction is consistent, and the DB starts consistent, it ends

up consistent (“It looks correct to me”)

e |solation: Execution of one transaction is isolated from that of other transactions

(“All by myself”)

e Durability: If a transaction commits, its effects persist (“/ will survive”)

17

Atomicity of transactions

e Two possible outcomes of executing a transaction:
e Commit after completing all its actions

e Abort (or be aborted by the DBMS) after executing some actions

e DBMS guarantees that transactions are atomic

e From the user’s point of view: transaction always either executes all its

actions or executes no actions at all

18

Atomicity of transactions

Scenario #1.:
e We take CHF100 out of an account, but then the DBMS aborts the

transaction before we transfer it

Scenario #2:
e We take CHF100 out of an account, but there is a power failure before

we transfer it

Q. What should be the correct state of the account after both transactions

abort?

19

Mechanisms for ensuring atomicity

Approach #1: Logging
e DBMS logs all actions so that it can undo the actions of aborted transactions
e Maintain undo records both in memory and on disk

e Think of this like the black box in airplanes...
Logging is used by almost every DBMS
e Audit trails

e Efficiency reasons

Widely used approach!

20

Mechanisms for ensuring atomicity

Approach #2: Shadow paging

e DBMS makes copies of pages, and transactions makes changes to those copies
e Only when the transaction commits, then page is made visible to others
® Pros: Leads to instant recovery

® Cons: Introduces memory fragmentation

e Originally from IBM System R

e Not prevalent in use; few systems still implement it:
e CouchDB
e Tokyo Cabinet
e LMDB

21

Understanding transaction abort (i.e., rollback)

e |f atransaction is aborted, all of its actions must be undone

e To undo actions of an aborted transaction, the DBMS maintains a log that records

every write operation

e Logis used to recover DBMS from system crashes:

e All active transactions at the time of crash are aborted when the system comes back up

22

The log

Log consists of “records” that are written sequentially
— Every change (insert, delete, update) becomes a log record appended to a file written in
order

Typically chained together by transaction id

— Each record stores the ID of the previous record for the same txn for crash recovery by
undoing operations backward

Log is often archived on stable storage

Records table, row information, also contain old and new data

— Stores page-ID, offset, length, before-image for UNDO log and after-image for REDO log

23

The log

e Write-ahead-logging (WAL) protocol follows two rules
1. Ordering: Log record must go to disk before updating the page
o Implemented via a handshake between the log manager and the buffer manager

2. Commit boundary: All log records for a transaction (including its commit record) must
be written to disk before the transaction is considered “committed”

e DBMS handles all logging and concurrency control related protocols

24

Transaction consistency

e The DBMS accurately models the real world

e |t also follows the integrity constraints (IC)
e SQL has methods to define these constraints (e.g., key definitions, CHECK and ADD
CONSTRAINT) and the DBMS enforces them
® Applications must define these constraints
o DBMS does not understand the semantics of data, relies on the application
o Eg. it does not understand how to compute interest on a bank account
e On failure of these constraints, the transaction rolls back (i.e., aborted)

e DBMS ensures that all ICs are true before and after the transaction ends

consistent
database S2

consistent

transaction T >
database S1

25

Isolation of transactions

e Users submit transactions, and each transaction ensures as it were running by itself
® Easier programming model to reason about

e The DBMS achieves concurrency by interleaving the actions (reads/writes of DB
objects) of transactions

e We need a way to interleave transactions but still make it appear as if they ran
one-at-a-time

26

Mechanisms for ensuring isolation

A concurrency control protocol is how the DBMS decides the proper interleaving of
operations from multiple transactions

Two categories of protocols:

e Pessimistic: Don’t let problems arise in the first place
e Optimistic: Assume conflicts are rare; deal with them after they happen

27

Example

e Assume at first A and B each have CHF 1000
° T1 transfers CHF 100 from A’s account to B’s
° T2 credits both accounts with 6% interest

Tl
BEGIN
A=A - 100
B =B + 100

COMMIT

T2
BEGIN
A=A%*1.06
B=B* 1.06
COMMIT

(ve)

balance

100

28

Example

e Assume at first A and B each have CHF 1000

What are the possible outcomes of running T and T,?

T1
BEGIN
A=A - 100
B =B + 100

COMMIT

T2
BEGIN
A=A%*1.06
B=B* 1.06
COMMIT

(ve)

balance

100

29

Example

e Assume at first A and B each have CHF 1000

What are the possible outcomes of running T and T,?

Many! But A+B should be:
e CHF 2000 * 1.06 = CHF 2120

* There is no guarantee that T, will execute before T, or vice-versa,
if both are submitted together

e But the net effect must be equivalent to these two transactions
running serially in some order

30

Example
Legal outcomes:
e A =954, B = 1166 — A+B = 2120
e A =960, B = 1160 — A+B = 2120

The outcome depends on whether T, executes before T, or vice versa

31

TIME

Serial execution example

Schedule
Tl TZ

BEGIN

A=A - 100

B =B + 100

COMMIT
BEGIN
A=A* 1.06
B=B* 1.06
COMMIT

A = 954, B = 1166

A + B

Schedule
Tl T2

BEGIN
A=A*1.06
B=B* 1.06
COMMIT

BEGIN

A=A - 100

B =B+ 100

COMMIT

A = 960, B = 1160

2120

32

Interleaving transactions

e We interleave transactions to maximize concurrency
e Slow disk/network IOs
e Multi-core CPUs

e When a transaction stalls because of a resource (e.g., page fault), another
transaction can continue executing and make forward progress

33

BEGIN
A=A - 100

B + 100
COMMIT

TIME

Interleaving example (good)
Schedule

TZ

BEGIN
A=A%*1.06

B=B* 1.06
COMMIT

954, B = 1166

A + B

Schedule
Tl T2

BEGIN

A=A - 100

B =B+ 100

COMMIT
BEGIN
A=A*1.06
B=B* 1.06
COMMIT

A = 954, B = 1166

2120

34

TIME

Schedule
Tl TZ

BEGIN

A=A - 100
BEGIN
A=A* 1.06
B=B* 1.06
COMMIT

B =B + 100

COMMIT

A = 954, B = 1166

A + B

Interleaving example (bad)

= 2114<<:[

Off by 6!

954, B
or
960, B

1166

1160

35

Interleaving example (bad)

Schedule DBMS view

T, T, T,

BEGIN BEGIN

A=A%*1.06 .
B=B* 1.06\,
COMMIT \
B =B + 100
COMMIT R(B)
W(B)

A = 954, B = 1166 COMMIT

TIME

A+ B = 2114

BEGIN

COMMIT

36

TIME

Interleaving example (bad)

Schedule
Tl TZ

BEGIN

A=A - 100
BEGIN
A=A* 1.06
B=B* 1.06
COMMIT

B =B + 100

COMMIT

A = 954, B = 1166

A+ B = 2114

How do we judge whether a
schedule is correct?

If the schedule is equivalent to
some serial execution

37

Formal properties of schedules

Serial schedule

e A schedule that does not interleave the actions of different transactions

Equivalent schedule

e For any database state, the effect of executing the first schedule is identical to the
effect of executing the second schedule

38

Formal properties of schedules

Serializable schedule

e A schedule that is equivalent to some serial execution of the transactions
e If each transaction preserves consistency, every serializable schedule preserves
consistency

Serializability is a less intuitive notion of correctness compared to transaction initiation
time or commit order, but it provides the DBMS with more flexibility in scheduling
operations

e More flexibility means more parallelism

39

Conflicting operations

Need a formal notion of equivalence that can be implemented efficiently based on the
notion of “conflicting” operations:

e Two operations conflict if:
® They are by different transactions
® They are on the same object and one of them is a write operation

Interleaved execution anomalies:

e Unrepeatable read (read-write)
e Dirty read (write-read)

e Lost update (write-write)

e Phantom reads (scan-write)

e Write skew (read-write)

40

Read-write conflicts

Unrepeatable read: Transaction gets different values when reading the same object

multiple times DBMS view
T, T,
BEGIN
$10 4mm R(A)
BEGIN
R(A)) $10
W(A) <4=m $19
COMMIT
$19 4mm R(A)
W(A)
COMMIT

Violates isolation, not alone in the system

Write-read conflicts

Dirty read: One transaction reads data written by another transaction that has not

committed yet

DBMS view

T1 T2

BEGIN O am®
$10 4mm R(A) Q
$12‘W(A)&0
BEGIN

R(A) mmp $12

W(A) <4=m $19

COMMIT
ROLLBACK

Can read garbage value & not isolated

42

Write-write conflicts

lost update: One transaction overwrites uncommitted data from other uncommitted
transaction

DBMS view
T1 T2
BEGIN

$10 mmp W(A)
BEGIN
’Q’ W(A) $12
W(B) Bob
4 ’ICOMMIT ’

Alice mmp W(B)
COMMIT

Addressing anomalies with lock-based CC

Using locks is one of the simple ways to avoid such anomalies

Strict two-phase locking (S2PL) protocol

Each transaction must obtainan S (shared) lock on the object before reading,
and X (exclusive) lock on the object before writing
System can obtain these locks automatically

Must avoid deadlock situations by acquiring locks in a canonical order

4

Addressing anomalies with lock-based CC

e Lockrules:
e If a transaction holds an X lock on an object, no other transaction can acquire a lock (S
or X) on that object
e If atransaction holds an S lock, no other transaction can get an X lock on that object
e Two phases: acquiring locks and releasing them
® No lockis ever acquired after one has been released

e All locks held by a transaction are released when the transaction completes

e S2PL avoids cascading aborts:

e A situation in which the abort of one transaction forces the abort of another

transaction to prevent the second transaction from reading invalid (uncommitted) data

45

Durability: Recovering from a crash

e All the changes of committed transaction should be persistent
e No torn updates

e No changes from failed transactions

e The DBMS can use either logging or shadow paging to ensure that all changes are

durable

46

Durability: Recovering from a crash

e Three phases:
® Analysis: Scan the log (forward from the most recent checkpoint) to identify all
transactions that were active at the time of the crash

e Redo: Redo updates as needed to ensure that all logged updates are in fact carried out
and written to the disk

e Undo: Undo writes of all transactions that were active at the time of the crash,

working backwards in the log
e At the end: all committed updates and only those updates are reflected in the

database

e Some care must be taken to handle the case of crash occurring during the recovery

process

47

Correctness criteria: The ACID properties

[Redo/Undo mechanism }

¢ Atomicity: All actions in the transaction happen, or none happen (“All or nothing”)

Qte‘gr;cy constraint }
Consistency: If each transaction is consistent, and the DB starts consistent, it ends

up consistent (“It looks correct to me...”)

@ency control }
Isolation: Execution of one transaction is isolated from that of other transactions

(“All by myself ...”)

@U{ndo mechanism }
Durability: If a transaction commits, its effects persist (“I will survive...”)

48

Summary

e Concurrency control and recovery are among the most important functions by a
DBMS

e Concurrency control is automatic
e System automatically inserts lock/unlock requests and scheduled actions of different
transactions

® Property ensured: Resulting execution is equivalent to executing transactions one after

the other in some order
e Write-ahead-log (WAL) and the recovery protocol are used to:

® Undo the actions of aborted transactions, and

® Restore the system to a consistent state after a crash

49

