
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Query Processing with Relational Operations (part 2)
(Chapters 15.5.3 - 15.5.6 & 15.6.3 & 15.6.5)

2

Recap

3

Simple selection:

SELECT *
 FROM Reserves R
 WHERE R.rname < ‘C%’

Operation of choosing or filtering rows from a relation based on specific criterion

• Of the form: σ
R.attr op value

 (R)

• Best approach to implement depends on:

● Available index / access paths

● Expected size of the result (# tuples / # pages)

• Size of result approximated as

size of R * reduction factor

• “Reduction factor” also known as selectivity

• Selectivity estimate is based on statistics

General selection conditions
Selection condition is a combination of conditions using AND / OR

(day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

1. First convert to conjunctive normal form (CNF) (collection of ANDs) →
(day < 8/9/94 OR bid=5 OR sid=3) AND (rname=`Paul’ OR bid=5 OR sid=3)

1. Match conditions to indexes

• A B+Tree index works best for prefix (start) of the indexed attributes

● Index on <a, b, c> matches a=5 AND b=3, but not b=3

• Hash index must have all attributes in search keys; only helpful in super-fast

equality lookups

4

Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

Questions: What happens if we have indexes with different attributes orders

• a B+Tree on <rname, day>?

● First sort by rname and then day

● Good choice as equality on rname, and then range scan on day using B+tree index

• A B+Tree on <day, rname>?

● First range scan on day

● Cannot do equality lookup on rname (scan all tuples for day and then filter rname)

• A hash index on <day, rname>?

● A bad choice here as we have to generate all possible rnames

5

Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

Questions: What happens if we have indexes with different attributes orders

• CNF: (day < 8/9/94 OR bid=5 OR sid=3) AND (rname=`Paul’ OR bid=5 OR sid=3)

Q. a B+Tree on <rname, day>?

6

Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

Questions: What happens if we have indexes with different attributes orders

• CNF: (day < 8/9/94 OR bid=5 OR sid=3) AND (rname=`Paul’ OR bid=5 OR sid=3)

Q. a B+Tree on <rname, day>?

• Clause 1: day < 8/9/94 OR bid=5 OR sid=3

● No condition on rname for first clause

● Index scans all rname values

• Clause 2: rname=`Paul’ OR bid=5 OR sid=3

● index can find all entries where rname=Paul

7

Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

Questions: What happens if we have indexes with different attributes orders

• CNF: (day < 8/9/94 OR bid=5 OR sid=3) AND (rname=`Paul’ OR bid=5 OR sid=3)

Q. a B+Tree on <day, rname>?

• Range scan on day in first clause but not helpful for the second clause

8

• Joins

● Avoid enumeration using index/partition

○ Index nested loop

○ Hash join

○ Sort-merge join

• General joins and aggregates

Today’s focus

9

Joins
• Combines two relations: R⋈S

• Combine multi-joins using a pair-wise joins from left to right

• At a high-level: combination of relation product followed by a selection

● Inefficient as large intermediate results

• Join operator algorithms:

● One pass algorithms

● Index-based algorithms

● Two-pass algorithms

• Join techniques:

● Nested-loop joins, sort-merge join, hash join

10

11

Simple nested loops join
foreach tuple r in R do
 foreach tuple s in S do
 if r

i
==s

j
 then add<r,s> to result

• For each tuple in the outer relation R, scan the entire

inner relation S

• If we assume:

● M pages in R, p
R
 tuples per page

● N pages in S, p
S
 tuples per page

• IO (read) cost: M + ((M * p
R
) * N)

(Assume: No CPU cost and output writing cost)

• An index on the join column on one relation (inner S) can now exploit the index

→ IO (read) cost: M + ((M * p
R
) * cost of finding matching S tuples)

12

Simple nested loops join
• IO (read) cost: M + ((M * p

R
) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree

• Clustering determines S tuples cost (asume Alt. (2) or (3) for data entries):

→ Clustered index: 1 I/O per page of matching S tuples

→ Unclustered: can be as high as 1 I/O per matching S tuple

• Similar to old schema; rname added for variations.

• Sailors:

● Each tuple is 50 bytes long, 80 tuples per page, 500 pages

● N=500, p
S
=80

• Reserves:

● Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

● M=1000, p
R
=100

13

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Schema for examples

foreach tuple r in R do
 foreach tuple s in S do
 if r

i
==s

j
 then add<r,s> to result

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

• Hash-index (Alt. 2) on sid of Sailors (inner):

● Scan Reserves: 1000 page I/Os, 100*1000 tuples

● For each Reserves tuple:

• 1.2 I/Os to get data entry in index (hash index overhead)

• plus 1 I/O to get (the exactly one) matching Sailors tuple (data page retrieval)

• Cost = M + ((M*p
R
) * cost of finding S tuples)

● Cost: 1000 + 1000 * 100 * 2.2 = 221,000 I/Os

● At 10 msec/IO: 36 mins

14

Examples of index-nested loops (1/2)
SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

• Hash-index (Alt. 2) on sid of Reserves (inner):

● Scan Sailors: 500 page I/Os, 80*500 tuples

● For each Sailors tuple:

• 1.2 I/Os to find index page with data entries (hash lookup overhead)

• Plus cost of retrieving matching Reserves tuples

• Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000).

• Retrieval cost: 1 I/O (clustered) or 2.5 I/Os (unclustered)

• Cost = M + ((M*p
S
) * cost of finding R tuples)

● Cost: 500 + 500 * 80 * (1.2 + 2.5) = 148,500 I/Os

● At 10 msec/IO: 24 mins 15

Examples of index-nested loops (2/2)
SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

16

Page-oriented nested loops join
foreach page b

R
 in R do

 foreach page b
S
in S do

 foreach tuple r in b
R
 do

 foreach tuple s in b
S
 do

 if r
i
==s

j
 then add<r,s> to result

• Process data page-by-page than tuple-by-tuple

• For each page of outer R

● Scan all the pages of inner S

● For each pair of pages (one from R and one from S), match tuples

● If tuples match (<r,s>: r is in R-page and s is in S-page), output them

• IO Cost: M + M * N

● M: Reading each page from R exactly once

● M*N: Reading all pages from S for every page of R

17

Block nested loop joins: use available buffers
• Page-oriented nested loop does not use extra buffers

• Buffer allocation: 1 page for S(inner), 1 for output

and the remaining for R(outer)(block
R
)

• Steps:

● Read multiple pages of R into memory

● For this block R, scan each page of S and find matching

tuples

● Output matched tuple

• IO Cost = M + (# outer blocks * N (inner scan))

● # outer blocks = ⌈# outer pages / blocksize⌉

foreach block block
R
 in R do

 foreach page b
S
in S do

 foreach tuple r in block
R
 do

 foreach tuple s in b
S
 do

 if r
i
==s

j
 then add<r,s> to result

18

Nested loops: IO Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

• Indexed nested loop (does not use extra pages)
Cost = M + ((M*p

R
) * cost of finding S tuples)

Cost: 500 + 500 * 80 * (1.2 + 2.5) = 148,500 I/Os, 24 mins
• Blocked nested loop with blocksize = 100:

Cost of scanning R is 1000 I/Os; a total of 10 blocks
Per block of R, we scan Sailors (S); 10*500 = 5000 I/Os
Total cost: 6000 I/Os, 1 minute!

• Page-oriented nested loop
Cost = M + M * N = 501,000 I/Os, 1.5 hours!!

• Simple nested loop
Cost = M + (p

R
 * M) * N = 40,000,500 I/Os, 111 hours!!

• Great for queries with highly selective predicates

select * from sailors, reserves

where sailors.sid = reserves.sid and sailors.sid = 100

• Looking only for one SID => Scan filters out most tuples

• Assume unsorted Sailors table, hash index on Reserves.sid

• Index nested loop = 503.7 I/Os (5s)

500 (scan Sailors – worst case) + 1.2 (index lookup) + 2.5 (Reserves lookup) = 503.7 I/Os

• Blocked nested loop (bsize = 100): 1500 I/Os (55s)

500 (scan Sailors – worst case) + 1 (#matching blocks)*1000 = 1500 I/Os

19

When to use index nested loop?

• Joins

● Avoid enumeration using index/partition

○ Index nested loop

○ Hash join

○ Sort-merge join

• General joins and aggregates

Today’s focus

20

Hash join
• Hash join: R⋈S

• Cost: M (outer scan) + N (inner scan)

• Assumptions:

● Enough memory to hold S (N pages) + hashtable

● Smaller relation used to build the hash table for lower memory usage

21

Read S in memory and build a hash index on it
 foreach tuple r in R do
 Use the hash index on S to find tuples (S.a = r.a)

What if we do not have enough memory?

• Read the relation R block by block, partition it with h
1
(a)

● Create one partition for each possible value of h
1
(a)

● Write the partitions to disk

● R gets partitioned into R
1
, R

2
, …, R

k
where k = B - 1

• Similarly, read and partition S

22

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h1 B-1

Partitions

1

2

B-1

. .

.

Two-pass hash join: Phase 1

• Read whole R1, and build a hash index on it with h
2
(a)

• Read S1 page by page, and use the hash index to find matches.

• Repeat for R2, S2, and so on.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (m < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

m:in-memory pages
processed by partition Ri

Two-pass hash join: Phase 2

23

• First pass creates B-1 partitions, each of size R
i
 = M/(B-1)

• Need each R
i
 < B-1 in order to fit in memory for 2nd pass

● 1 page for S
i
, 1 page for output, B-2 pages for R

i

→ Need f * M/(B-1) ≤ B-2
 … or, roughly: B >
 where f is fudge factor → accounts for uneven distribution (data skew)

• IO Cost: 3 (M + N)
● In partitioning phase, read+write both relns; 2(M+N)
● In matching phase, read both relns; M+N I/Os

24

Two-pass hash join: Cost

25

Nested loops: IO Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100; N = 500, p

S
 = 80

• Two-pass hash join (also called Grace Join)

● Cost = 3 (M+N) = 3 * 1500 = 4500 I/Os = 45 secs!!!

• Simple nested loop

● Cost = M + (p
R
 * M) * N = 40,000,500 I/Os, 111 hours!!

• Page-oriented nested loop

● Cost = M + M * N = 501,000 I/Os, 1.5 hours!!

• Indexed nested loop (does not use extra pages)

● Cost = M + ((M*p
R
) * cost(index lookup)) = 148,500 I/Os, 24 mins

• Blocked nested loop with block size = 100:

● Total cost: 6000 I/Os, 1 minute!

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

• Requires R partition to fit in memory: B >

• Not enough memory?

● Recursive Partitioning

● Rarely used, but can be done

• Hash function is bad?

● Assume h1(a) = a % 100; And all values of a are multiple of 100

○ So h1(a) is always = 0

→ Called hash-table overflow

● Overflow avoidance: Use a good hash function

● Overflow resolution: Repartition using a different hash function

Hash join issues

26

● Two phase hash join partitions both relations and writes them directly to disk

● Hybrid hash join minimizes the reads/writes to disk

● Idea: If extra memory available, keep one partition in memory during Phase 1

○ Hybrid of one-pass hash join (for one partition) and two-pass hash join for the

remaining partitions

27

Hybrid hash join algorithm

Suppose
… B > f * M / k

• Create k partitions of S
• During partitioning process, B – (k + 1) pages not in use

 (k pages for partitions, 1 extra page for input)

… and B – (k + 1) > f * M / k
• Enough memory to hold one whole partition

Phase 1 (partitioning phase)
• Partition S, but do not write out first partition
• Partition R, directly join first partition R1 with S1

Phase 2 (probing phase)
• Join remaining k -1 partitions

28

Hybrid hash join algorithm

Generalize:
1. Partition S into k buckets

• t buckets S
1

, …, S
t

stay in memory

• Rest k-t buckets S
t+1

, …, S
k

to disk

3. Finally, join k-t pairs of buckets:
• (R

t+1
,S

t+1
), (R

t+2
,S

t+2
), …, (R

k
,S

k
)

29

Hybrid hash join algorithm

2. Partition R into k buckets
• First t buckets join immediately with S

• Rest k-t buckets go to disk

Step What Happens? Benefit

1 Partition S (smaller relation) Keep t buckets in memory

2 Partition R (larger relation) Join t buckets immediately

3 Join remaining (k-t) buckets from disk Fewer disk operations overall

B main memory buffers DiskDisk

Original
Relation

2

INPUT

1

h

k

Partitions

t+1. . .
t

t+1

How to choose k and t?

k

30

Hybrid hash join algorithm

31

Hybrid hash join algorithm

• How to choose k and t?

– Choose k large so that

One page/bucket in memory

k <= B

32

Hybrid hash join algorithm

• How to choose k and t?

– Choose k large so that

– Choose t/k large so that

One page per bucket in memory

k <= B

First t buckets in memory

t/k * N <= B

33

Hybrid hash join algorithm

• How to choose k and t?

– Choose k large so that

– Choose t/k large so that

– Together:

One page per bucket in memory

k <= B

First t buckets in memory

t/k * N <= B

One page per disk partition

t/k * N + k –t <= B

34

Hybrid hash join algorithm

One page per bucket in memory

k <= B

First t buckets in memory

t/k * N <= B

One page per disk partition

t/k * N + k –t <= B

• How to choose k and t?

– Choose k large so that

– Choose t/k large so that

– Together:
– Assuming t/k *N >> k – t:

t/k = B/N

• Even better: adjust t dynamically

• Start with t = k: all buckets are in main memory

• Read blocks from S, insert tuples into buckets

• When out of memory:

• Send one bucket to disk

• t := t-1

• Worst case:

• All buckets are sent to disk (t=0)

• Hybrid Join becomes Grace Join

Hybrid hash join algorithm

35

• Cost of Hybrid Join:

• Grace Join: 3M + 3N

• Hybrid Join:
• Saves 2 I/Os for t/k fraction of buckets
• Total 2t/k(M+N) I/O
• Cost:

• (3-2t/k)(M+N) = (3-2B/N)(M+N)

Hybrid hash join: Cost

36

• It degrades gracefully when S larger than B:

• When N <= B

• Main memory hash-join has cost M + N

• When N > B

• Grace-join has cost 3M + 3N

• Hybrid join has cost (3-2t/k)(M + N)

Hybrid hash join: Benefit

37

Example: Assume B = 300
• Sailors (N)= 500, Reserves (M) = 1000

• Phase 1
• Partition Sailors into S1, S2. Keep S1 in memory

• Cost = 500 + 250 = 750
• Partition Reserves into R1, R2. Probe with R1. Write R2.

• Cost = 1000 + 500 = 1500
• Phase 2:

• S1, R1 join is done
• Scan S2, R2 and join
• Cost: 250 + 500 = 750

• Hybrid hash join cost = 750 + 1500 + 750 = 3000 I/Os
• Hash join cost = 3 (1500 + 750) = 4500 I/Os

Hybrid hash join: Example

38

• Joins

● Avoid enumeration using index/partition

○ Index nested loop

○ Hash join

○ Sort-merge join

• General joins and aggregates

Today’s focus

39

• Sort-merge join: R ⋈ S

● Scan R and sort

● Scan S and sort

● Merge R and S

• Useful if

● one or both inputs are already sorted on join attribute(s)

● output is required to be sorted on join attributes(s)

40

Sort-merge join

• Merge Steps:
● Scan relation looking for qualifying/matching tuples

● Join R and S tuples in partition

● Advance scan to next partition & repeat

41

One-pass sort-merge join

• Sort-merge join: R ⋈ S

● Scan R and sort in main memory

● Scan S and sort in main memory

● Merge R and S

• Cost: M (outer scan) + N (inner scan)

• One-pass assumption
● Enough memory to store M + N

• But, this is typically NOT a one pass algorithm

● Available memory usually < M + N

•Use external merge sort for sorting
42

One-pass sort-merge join: Cost

• To sort a file with N pages using B buffer pages:
● Pass 0: use B buffer pages. Produce sorted runs of B pages each.
● Pass 1, 2, …, etc.: merge B-1 runs.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

Number of passes:
Cost = 2N * (# of passes)

General external merge-sort: Recap

43

• With 100 buffer pages

● Can sort both Reserves and Sailors in 2 passes

● Cost of sorting Reserves = 2M * 2 = 2 * 2 * 1000 = 4000

● Cost of sorting Sailors = 2N * 2 = 2 * 2 * 500 = 2000

● Cost of merging = 1000 (read sorted Reserves) + 500 (read sorted Sailors) = M + N

● Total cost = 5 (M + N) = 7500 I/Os

• Note: cost of merge could be as bad as M * N

● All tuples in R and S have same value of join attribute (unlikely)

44

Cost: Sort R + Sort S + (M+N)

Multi-pass merge-sort join: Cost & example

• Original approach: Sort R; Sort S; Merge sorted R and S (one final pass)
• Idea: Combine final sorting pass of both R and S with the join (merge) step

• Do the join during final merging pass of sort

● Read R and write out sorted runs (pass 0)

● Read S and write out sorted runs (pass 0)

● Merge R-runs and S-runs, while finding R ⋈ S matches

• 2-pass cost = 3 * R + 3 * S = 3000 + 1500 = 4500

• Need 1-page from each R and S in memory

● Requires B >= √R + √S

45

Sort-merge join refinement

• Given a minimum amount of memory both have a cost of 3(M+N) I/Os

• Hash Join Pros:

● Superior if relation sizes differ greatly
● Shown to be highly parallelizable*

• Sort-Merge Join Pros:

● Less sensitive to data skew
● Result is sorted (may help “upstream” operators)
● Goes faster if one or both inputs already sorted

46
* Hash join parallelization is beyond the scope of this class.

Sort-merge join vs hash join

• Joins

● Avoid enumeration using index/partition

○ Index nested loop

○ Hash join

○ Sort-merge join

• General joins and aggregates

Today’s focus

47

Equality over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname):

● For Index NL, build index on <sid, sname> (if S is inner); or use existing indexes on sid or sname

● For Sort-Merge and Hash Join, sort/partition on combination of the two join columns

● Other joins unaffected

Inequality conditions (e.g., R.rname < S.sname):

● For Index NL, need (clustered!) B+ tree index
○ Range probes on inner; # matches likely to be much higher than for equality joins

● Hash Join not applicable!

● Block NL quite likely to be the best join method here

48

General join conditions

• Intersection and cross-product special cases of join

• Union (Distinct) and Difference similar; we’ll do union:

• Sorting based approach to union:

● Sort both relations (on combination of all attributes)

● Scan sorted relations and merge them

● Alternative: Merge runs from Pass 0 for both relations

• Hash based approach to union:

● Partition R and S using hash function h

● For each S-partition, build in-memory hash table (using h2), scan corresponding R-partition and

add tuples to table while discarding duplicates

49

Set operations (union/intersection/difference)

• Without grouping:

● In general, requires scanning the relation

● If index exists (search key on all attributes in the SELECT or WHERE clauses): index-only scan

• With grouping (i.e., GROUP BY clause): compute aggregate on each group separately

● Sorting-based approach:
○ Sort based on group-by attributes

○ Scan sorted data and compute aggregate for each group

○ Can improve this by combining sorting and aggregate computation

● Similar approach for hashing on group-by attributes
○ Partition relation using a hash function based on the group-by attributes

○ For each partition, compute aggregate in memory → handles groups by keeping each group

together

50

Aggregate operators (AVG, MIN …) 1/2

• Without grouping:

● In general, requires scanning the relation

● If index exists (search key on all attributes in the SELECT or WHERE clauses): index-only scan

• With grouping (i.e., GROUP BY clause): compute aggregate on each group separately

● Tree-index:

○ Given tree index whose search key includes all attributes in SELECT, WHERE and

GROUP BY clauses, we can do index-only scan

○ If group-by attributes form prefix of the search key → retrieve data entries/tuples in

group-by order

51

Aggregate operators (AVG, MIN …) 2/2

• Concurrent operations and buffer estimation:
● Estimating the number of available buffer pages is guesswork

○ Resource use is dynamic and changes with workloads

• Repeated access patterns interact with buffer replacement policy

● E.g., Inner relation is scanned repeatedly in Nested Loop Join

○ MRU is best, LRU is worst (sequential flooding)

• Implementation choice impacts buffer management

• Optimizing access path can help improve cache use

● Index nested loop can be better by sorting outer relation

52

Impact of buffering

• A virtue of relational DBMSs:
● Queries are composed of a few basic operators
● Implementation of operators can be carefully tuned

• Many alternative implementations for each operator
● No universally superior technique for most operators

• Must consider alternatives for each operation in a query and choose best
one based on system statistics…

● Part of the broader task of optimizing a query composed of several operations

53

Summary

