CS5-300: Data-Intensive Systems

Query Processing with Relational Operations (part 2)

(Chapters 15.5.3 - 15.5.6 & 15.6.3 & 15.6.5)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pi-L

Recap

Simple selection:

Operation of choosing or filtering rows from a relation based on specific criterion

e Oftheform: 0O (R)

R.attr op value

e Best approach to implement depends on:
e Available index / access paths

e Expected size of the result (# tuples / # pages)

e Size of result approximated as

size of R * reduction factor
e “Reduction factor” also known as selectivity

e Selectivity estimate is based on statistics

SELECT *
FROM Reserves R
WHERE R.rname <

CC%J

General selection conditions

Selection condition is a combination of conditions using AND / OR
(day < 8/9/94 AND rname=" Paul’) OR bid=5 OR sid=3

1. First convert to conjunctive normal form (CNF) (collection of ANDs) —
(day < 8/9/94 OR bid=5 OR sid=3) AND (rname="Paul’ OR bid=5 OR sid=3)

1. Match conditions to indexes

e A B+Tree index works best for prefix (start) of the indexed attributes
e |Indexon<a, b, c> matches a=5 AND b=3, but not b=3

e Hash index must have all attributes in search keys; only helpful in super-fast

equality lookups

Selection: 1% approach: Example

e Consider: (day < 8/9/94 AND rname="Paul’) OR bid=5 OR sid=3
Questions: What happens if we have indexes with different attributes orders
e aB+Tree on<rname, day>?
e First sort by rname and then day
® Good choice as equality on rname, and then range scan on day using B+tree index
e AB+Tree on <day, rname>?

e First range scan on day

e Cannot do equality lookup on rname (scan all tuples for day and then filter rname)
e Ahashindexon <day, rname>?

® A bad choice here as we have to generate all possible rnames

Selection: 1% approach: Example

e Consider: (day < 8/9/94 AND rname="Paul’) OR bid=5 OR sid=3
Questions: What happens if we have indexes with different attributes orders
e CNF: (day < 8/9/94 OR bid=5 OR sid=3) AND (rname="Paul’ OR bid=5 OR sid=3)

Q. a B+Tree on <rname, day>?

Selection: 1% approach: Example

e Consider: (day < 8/9/94 AND rname="Paul’) OR bid=5 OR sid=3
Questions: What happens if we have indexes with different attributes orders
e CNF: (day < 8/9/94 OR bid=5 OR sid=3) AND (rname="Paul’ OR bid=5 OR sid=3)
Q. a B+Tree on <rname, day>?
e (Clause 1: day < 8/9/94 OR bid=5 OR sid=3
e No condition on rname for first clause

® Index scans all rname values
e (Clause 2: rname="Paul’ OR bid=5 OR sid=3

® index can find all entries where rname=Paul

Selection: 1% approach: Example

e Consider: (day < 8/9/94 AND rname="Paul’) OR bid=5 OR sid=3

Questions: What happens if we have indexes with different attributes orders

e CNF: (day < 8/9/94 OR bid=5 OR sid=3) AND (rname="Paul’ OR bid=5 OR sid=3)
Q. a B+Tree on <day, rname>?

e Range scan on day in first clause but not helpful for the second clause

Today’s focus

e Joins
e Avoid enumeration using index/partition
o Index nested loop
o Hash join
o Sort-merge join

e General joins and aggregates

Joins

e Combines two relations: R>S
e Combine multi-joins using a pair-wise joins from left to right
e At a high-level: combination of relation product followed by a selection
e Inefficient as large intermediate results
e Join operator algorithms:
® One pass algorithms
® Index-based algorithms
® Two-pass algorithms
e Join techniques:

e Nested-loop joins, sort-merge join, hash join

10

Simple nested loops join

For each tuple in the outer relation R, scan the entire | foreach tuple r in R do

foreach tuple s in S do

inner relation S if r;==s, then add<r,s> to result

If we assume:

® MpagesinR, Py tuples per page
® Npagesins, p, tuples per page
10 (read) cost: M + ((M * p_) * N)

(Assume: No CPU cost and output writing cost)

An index on the join column on one relation (inner S) can now exploit the index

— |0 (read) cost: M + ((M * p_) * cost of finding matching S tuples)
R

11

Simple nested loops join

* 10 (read) cost: M + ((M * p_) * cost of finding matching S tuples)

® For each R tuple, cost of probing S index is about 1.2 for hash index, 2-4 for B+ tree

® Clustering determines S tuples cost (asume Alt. (2) or (3) for data entries):

— Clustered index: 1 1/0 per page of matching S tuples

— Unclustered: can be as high as 1 1/0 per matching S tuple

12

Schema for examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

® Similar to old schema; rname added for variations. foreach tuple r in R do

foreach tuple s in S do
if r;==s, then add<r,s> to result

® Sailors:

e Each tuple is 50 bytes long, 80 tuples per page, 500 pages | ggLEcT *

e N=500, p.=80 FROM Reseryes R .
5 WHERE R1.sid=S1.sid

® Reserves:

e Each tuple is 40 bytes long, 100 tuples per page, 1000 pages

e M=1000, p,=100
13

Examples of index-nested loops (1/2)

e Hash-index (Alt. 2) on sid of Sailors (inner): SELECT *
FROM Reserves R
® Scan Reserves: 1000 page I/Os, 100%1000 tuples WHERE R1.sid=S1.sid

® For each Reserves tuple:

e 1.21/0s to get data entry in index (hash index overhead)

e plus11/0 to get (the exactly one) matching Sailors tuple (data page retrieval)

® Cost=M+((M*p_) * cost of finding S tuples)

e Cost: 1000 + 1000 * 100 * 2.2 =221,000 I/Os
e At 10 msec/IO: 36 mins

14

Examples of index-nested loops (2/2)

Hash-index (Alt. 2) on sid of Reserves (inner): SELECT *
FROM Reserves R
e Scan Sailors: 500 page I/Os, 80*500 tuples WHERE R1.sid=S1.sid

e For each Sailors tuple:
e 1.21/0sto find index page with data entries (hash lookup overhead)
e Plus cost of retrieving matching Reserves tuples
e Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000).

e Retrieval cost: 1 1/0 (clustered) or 2.5 1/Os (unclustered)

Cost =M + ((M*p,) * cost of finding R tuples)
e Cost: 500+ 500 * 80 * (1.2 + 2.5) = 148,500 1/0Os

e At 10 msec/IO: 24 mins

15

Page-oriented nested loops join

* Process data page-by-page than tuple-by-tuple foreach page b_ in R do
foreach page b, in S do

foreach tuple r in b, do

foreach tuple s in b, do

e For each page Of outer R if r;==s, then add<r,s> to result

® Scan all the pages of inner S
® For each pair of pages (one from R and one from S), match tuples

e |If tuples match (<r,s>:risin R-page and s is in S-page), output them

e [OCost: M+M *N
e M: Reading each page from R exactly once

e M*N: Reading all pages from S for every page of R

16

Block nested loop joins: use available buffers

e Page-oriented nested loop does not use extra buffers | foreach block block, in R do

foreach page b, in S do

e Buffer allocation: 1 page for S(inner), 1 for output foreach tuple r in block, do

foreach tuple s in b, do
if r;==s, then add<r,s> to result

and the remaining for R(outer)(block,)
e Steps:
e Read multiple pages of R into memory
e For this block R, scan each page of S and find matching

tuples

e Output matched tuple

e |0 Cost =M + (# outer blocks * N (inner scan))
e #outer blocks=# outer pages / blocksizel

17

Nested loops: 10 Cost

e R(outer) is Reserves and S(inner) is Sailors
e M=1000,p, =100

e N=500,p, =80
* |ndexed nested loop (does not use extra pages)

Cost =M+ ((M*p_) * cost of finding S tuples)

Cost: 500 + 500 * 80 * (1.2 + 2.5) = 148,500 |/Os, 24 mins
* Blocked nested loop with blocksize = 100:

Cost of scanning R is 1000 1/Os; a total of 10 blocks

Per block of R, we scan Sailors (S); 10*500 = 5000 1/Os

Total cost: 6000 |/Os, 1 minute!
 Page-oriented nested loop

Cost=M+M * N =501,0001/0s, 1.5 hours!!
 Simple nested loop
Cost=M + (p, * M) * N = 40,000,500 1/Os, 111 hours!!

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

18

When to use index nested loop?

e Great for queries with highly selective predicates

select * from sailors, reserves

where sailors.sid = reserves.sid and sailors.sid = 100

e Looking only for one SID => Scan filters out most tuples
e Assume unsorted Sailors table, hash index on Reserves.sid

e Index nested loop = 503.7 I/Os (5s)
500 (scan Sailors — worst case) + 1.2 (index lookup) + 2.5 (Reserves lookup) = 503.7 |/Os

e Blocked nested loop (bsize = 100): 1500 I/Os (55s)
500 (scan Sailors — worst case) + 1 (#matching blocks)*1000 = 1500 I/Os

19

Today’s focus

e Joins
e Avoid enumeration using index/partition
o Index nested loop
o Hash join
o Sort-merge join

e General joins and aggregates

20

Hash join
e Hash join: R<S

Read S in memory and build a hash index on it
foreach tuple r in R do
Use the hash index on S to find tuples (S.a = r.a)

e Cost: M (outer scan) + N (inner scan)

e Assumptions:

® Enough memory to hold S (N pages) + hashtable
e Smaller relation used to build the hash table for lower memory usage

What if we do not have enough memory?

21

Two-pass hash join: Phase 1

* Read the relation R block by block, partition it with h_(a)

e Create one partition for each possible value of h_(a)
e \Write the partitions to disk

® R gets partitioned intoR,, R ..» R wherek = B - 1

2)
e Similarly, read and partition S

Original
Relation OUTPUT Partitions
1
[EE S 1
INPUT 2
hash] 2
function
e o h ¢ o0 o O o
1 B-1
I B-1
[]
—d
Disk B main memory buffers Disk

22

Two-pass hash join: Phase 2

* Read whole R1, and build a hash index on it with h,(a)

e Read S1 page by page, and use the hash index to find matches.

e RepeatforR2, S2, and so on.

Partitions
of R& S

hash

Hash table for partition
Ri (m < B-1 pages)

o O O

[%]

=,

Disk

Join Result

2 []
Input buffer Output
for Si buffer

B main memory buffers

m:in-memory pages
processed by partition Ri

23

Two-pass hash join: Cost

e First pass creates B-1 partitions, each of size R, = M/(B-1)

* Need each R <B-1in order to fit in memory for 2" pass
® 1pageforS, 1 page for output, B-2 pages for R

— Need f * M/(B-1) < B-2
... or,roughly: B>,/ /M

where fis fudge factor — accounts for uneven distribution (data skew)

e |0 Cost:3(M+N)
® In partitioning phase, read+write both relns; 2(M+N)
® In matching phase, read both relns; M+N 1/Os

24

Nested loops: 10 Cost

e R(outer) isReserves and S(inner) is Sailors SELECT *

e M=1000, p, = 100; N = 500, p, = 80 JU RS RN
- _ WHERE R1.sid=S1.sid
e Two-pass hash join (also called Grace Join)

e Cost=3(M+N)=3*1500=45001/0s= 45secs!!!
e Simple nested loop
e Cost=M+ (pR *M) * N =40,000,500 1/0s, 111 hours!!
e Page-oriented nested loop
e Cost=M+M*N =501,0001/0s, 1.5 hours!!
* Indexed nested loop (does not use extra pages)
® Cost=M+((M*p_)* cost(index lookup)) = 148,500 1/Os, 24 mins
e Blocked nested loop with block size = 100:
e Total cost: 6000 I/Os, 1 minute!

25

Hash join issues

e Requires R partition to fit in memory: B>/ * M
e Not enough memory?

® Recursive Partitioning

e Rarely used, but can be done

e Hash function is bad?
® Assume hl({a)=a % 100; And all values of a are multiple of 100
o So hl(a)is always =0
— Called hash-table overflow

e Overflow avoidance: Use a good hash function

® Overflow resolution: Repartition using a different hash function

26

Hybrid hash join algorithm
e Two phase hash join partitions both relations and writes them directly to disk

e Hybrid hash join minimizes the reads/writes to disk

e |dea: If extra memory available, keep one partition in memory during Phase 1
o Hybrid of one-pass hash join (for one partition) and two-pass hash join for the

remaining partitions

27

Hybrid hash join algorithm

Suppose

..B>f *M/ k

e Create k partitions of S
e During partitioning process, B — (k + 1) pages not in use
(k pages for partitions, 1 extra page for input)

...andB - (k + 1) > f *M / k

e Enough memory to hold one whole partition

Phase 1 (partitioning phase)
e Partition S, but do not write out first partition
e Partition R, directly join first partition R1 with S1

Phase 2 (probing phase)
e Join remaining k -1 partitions

28

Hybrid hash join algorithm

Generalize:

1. Partition S into k buckets 2. Partition R into k buckets
e t buckets S1 e, St stay in memory e First t buckets join immediately with S
* Restk-tbucketsS_, ..., S, todisk e Rest k-t buckets go to disk

3. Finally, join k-t pairs of buckets:
° (Rt+1’st+1)’ (Rt+2’St+2)’ T (Rk’Sk)

Step What Happens? Benefit

1 Partition S (smaller relation) Keep t buckets in memory

2 Partition R (larger relation) Join t buckets immediately

3 Join remaining (k-t) buckets from disk Fewer disk operations overall

29

Hybrid hash join algorithm

Original
Relation
S——

INPUT

Disk

t+1

—

k<)<)<)

B main memory buffers

T T

Partitions
S —

Disk

How to choose k and t?

t+1

30

Hybrid hash join algorithm

* How to choose k and t?

— Choose k large so that

One page/bucket in memory

k<=B

31

Hybrid hash join algorithm

* How to choose k and t?

— Choose k large so that

— Choose t/k large so that

One page per bucket in memory

J

k<=B

First t buckets in memory

t/k * N <=B

32

Hybrid hash join algorithm

* How to choose k and t?

One page per bucket in memory]

k<=B

chets in memory]

t/k * N<=B

Wper disk partition)

t/k* N+k-t<=B

— Choose k large so that

— Choose t/k large so that

— Together:

Hybrid hash join algorithm

* How to choose k and t?

One page per bucket in memory]

k<=B

chets in memory]

t/k * N<=B

Wper disk partition)

t/k* N+k-t<=B

— Choose k large so that

— Choose t/k large so that

— Together:
— Assuming t/k *N >> k —t:
t/k = B/N

Hybrid hash join algorithm

* Even better: adjust t dynamically

Start with t = k: all buckets are in main memory

Read blocks from S, insert tuples into buckets

When out of memory:

 Send one bucket to disk
e t:=t1

Worst case:

* All buckets are sent to disk (t=0)
* Hybrid Join becomes Grace Join

35

Hybrid hash join: Cost
e (Cost of Hybrid Join:

e GracelJoin: 3M + 3N

e Hybrid Join:
e Saves 2 1/0Os for t/k fraction of buckets
e Total 2t/k(M+N) 1/O
e (ost:
o (3-2t/k)(M+N) = (3-2B/N)(M+N)

36

Hybrid hash join: Benefit

e |t degrades gracefully when S larger than B:

e WhenN<=B
e Main memory hash-join has cost M + N

e WhenN>B
e Grace-join has cost 3M + 3N
e Hybrid join has cost (3-2t/k)(M + N)

37

Hybrid hash join: Example

Example: Assume B =300

Sailors (N)= 500, Reserves (M) = 1000

Phase 1
e Partition Sailors into S1, S2. Keep S1 in memory
e (Cost=500+250=750

e Partition Reserves into R1, R2. Probe with R1. Write R2.

e (Cost=1000+ 500=1500
Phase 2:
e S1,R1joinis done
e Scan S2, R2 and join
e (Cost: 250 + 500 =750
Hybrid hash join cost = 750 + 1500 + 750 = 3000 |/Os
Hash join cost = 3 (1500 + 750) = 4500 |/Os

38

Today’s focus

e Joins
e Avoid enumeration using index/partition
o Index nested loop
o Hash join
o Sort-merge join

e General joins and aggregates

39

Sort-merge join
e Sort-mergejoin: R>= S
e Scan R and sort
® Scan S and sort

e MergeRandS

e Useful if
® one or both inputs are already sorted on join attribute(s)

® output is required to be sorted on join attributes(s)

40

One-pass sort-merge join

Merge Steps:

e Scan relation looking for qualifying/matching tuples

® Join R and S tuples in partition

® Advance scan to next partition & repeat

sid |sname |rating |age

22 |dustin 7 45.0
28 | yuppy 9 35.0
31 |lubber | 8 55.5
44 | guppy 5 35.0
58 |rusty 10 135.0

sid |bid day rname
28 |103 [12/4/96 ouppy
28 103 [11/3/96 yuppy
31 [101 |10/10/96 | dustin
31 [102 |10/12/96 | lubber
31 [101 |10/11/96 | lubber
58 103 |11/12/96 | dustin

41

One-pass sort-merge join: Cost

e Sort-merge join: R>=S
® Scan R and sort in main memory
® Scan S and sort in main memory
e MergeRandS

e Cost: M (outer scan) + N (inner scan)

e (One-pass assumption
e Enough memory to store M + N

e But, this is typically NOT a one pass algorithm

® Available memory usually <M + N

eUse external merge sort for sorting

42

General external merge-sort: Recap

e To sort a file with N pages using B buffer pages:
e Pass 0: use B buffer pages. Produce rN/BW sorted runs of B pages each.
® Passl, 2, ..., etc.: merge B-1 runs.

4/ /'
)// INPUT 1 T
| i \ |
| I
LA 2 TT——JouTPUT I
_— |
| l\\
—— |\NPUT B ~ |
Disk B Main memory buffers

Number of passes: 1+(10gB_I(N/B—H
Cost = 2N * (# of passes)

Multi-pass merge-sort join: Cost & example
Cost: Sort R + Sort S + (M+N)

With 100 buffer pages
® Can sort both Reserves and Sailors in 2 passes
® Cost of sorting Reserves =2M * 2 =2 * 2 * 1000 = 4000
® Cost of sorting Sailors=2N *2 =2 * 2 * 500 = 2000
® Cost of merging = 1000 (read sorted Reserves) + 500 (read sorted Sailors) =M + N
e Total cost=5 (M + N)=75001/0s

Note: cost of merge could be as badas M * N

e Alltuplesin R and S have same value of join attribute (unlikely)

-

Sort-merge join refinement

Original approach: Sort R; Sort S; Merge sorted R and S (one final pass)
Idea: Combine final sorting pass of both R and S with the join (merge) step

Do the join during final merging pass of sort
e Read R and write out sorted runs (pass 0)
e Read S and write out sorted runs (pass 0)

e Merge R-runs and S-runs, while finding R >~ S matches

2-pass cost=3 *R+3*S=3000+ 1500 =4500
Need 1-page from each R and S in memory
® Requires B >= VR + S

45

Sort-merge join vs hash join

e Given a minimum amount of memory both have a cost of 3(M+N) 1/Os

e Hash Join Pros:

e Superior if relation sizes differ greatly
e Shown to be highly parallelizable*

e Sort-Merge Join Pros:

® Less sensitive to data skew
e Resultis sorted (may help “upstream” operators)
® Goes faster if one or both inputs already sorted

* Hash join parallelization is beyond the scope of this class.

46

Today’s focus

e Joins
e Avoid enumeration using index/partition
o Index nested loop
o Hash join
o Sort-merge join

¢ General joins and aggregates

47

General join conditions

Equality over several attributes (e.g., R.sid=S.sid AND R.rname=S.sname):
® For Index NL, build index on <sid, sname> (if S is inner); or use existing indexes on sid or sname
e For Sort-Merge and Hash Join, sort/partition on combination of the two join columns

® Other joins unaffected

Inequality conditions (e.g., R.rname < S.sname):
e For Index NL, need (clustered!) B+ tree index
o Range probes on inner; # matches likely to be much higher than for equality joins
e Hash Join not applicable!
e Block NL quite likely to be the best join method here

48

Set operations (union/intersection/difference)

Intersection and cross-product special cases of join
Union (Distinct) and Difference similar; we’ll do union:
Sorting based approach to union:

e Sort both relations (on combination of all attributes)
® Scan sorted relations and merge them
® Alternative: Merge runs from Pass O for both relations

Hash based approach to union:

e Partition R and S using hash function h
® For each S-partition, build in-memory hash table (using h2), scan corresponding R-partition and
add tuples to table while discarding duplicates

49

Aggregate operators (AVG, MIN ...) 1/2

Without grouping:
® |n general, requires scanning the relation
e If index exists (search key on all attributes in the SELECT or WHERE clauses): index-only scan

With grouping (i.e., GROUP BY clause): compute aggregate on each group separately

e Sorting-based approach:
o Sort based on group-by attributes
o Scan sorted data and compute aggregate for each group
o Can improve this by combining sorting and aggregate computation
e Similar approach for hashing on group-by attributes
o Partition relation using a hash function based on the group-by attributes
o For each partition, compute aggregate in memory — handles groups by keeping each group
together

50

Aggregate operators (AVG, MIN ...) 2/2

e Without grouping:
® |n general, requires scanning the relation
e If index exists (search key on all attributes in the SELECT or WHERE clauses): index-only scan

e With grouping (i.e., GROUP BY clause): compute aggregate on each group separately
® Tree-index:

©)

Given tree index whose search key includes all attributes in SELECT, WHERE and

GROUP BY clauses, we can do index-only scan
If group-by attributes form prefix of the search key — retrieve data entries/tuples in

group-by order

51

Impact of buffering

Concurrent operations and buffer estimation:
e Estimating the number of available buffer pages is guesswork
o Resource use is dynamic and changes with workloads

Repeated access patterns interact with buffer replacement policy

e E.g., Inner relation is scanned repeatedly in Nested Loop Join
o MRU is best, LRU is worst (sequential flooding)

Implementation choice impacts buffer management

Optimizing access path can help improve cache use

® Index nested loop can be better by sorting outer relation

52

Summary

® A virtue of relational DBMSs:

Queries are composed of a few basic operators
Implementation of operators can be carefully tuned

Many alternative implementations for each operator
No universally superior technique for most operators

Must consider alternatives for each operation in a query and choose best

one based on system statistics...
Part of the broader task of optimizing a query composed of several operations

53

