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• Processing model for operators (scheduling decisions)

● Pipelined execution (iterator model)

● Intermediate tuple materialization (materialization model)

• Access path selection for each relation

○ File scan

○ Index lookup with a predicate

• Implementation choice for each operator

● Several algorithms exist

Physical query plan
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Each query plan operator implements Next() function 

• On each invocation, the operator returns 

● Single tuple (single row of data)

● An end-of-file (EOF) marker if there are no more tuples

• The operator implements a loop that calls Next() on its children to retrieve their 

tuples and then process them

• Each operator also implements Open() and Close() functions

● Analogous to constructors and destructors, but for operators

Also called pipelined or volcano model

Iterator model 
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• Tuples generated by an operator are immediately sent to the parent

● Tuples are pipelined

Benefits:

• Pull-based: No operator synchronization issues

• Can save cost of writing intermediate data to disk

• Can save cost of reading intermediate date from disk

• Used by almost every DBMS

• Many operators must block until their children emit all their tuples:

• Joins, aggregates, subqueries, order by

Iterator model 
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Each operator processes its input all at once and then emits output all at once

• The operator “materializes” its output as a single result

• DBMS can push down hints (e.g., LIMITS) to avoid scanning too many tuples

• Can send either a materialized row or a single column

DBMS output can be either whole tuples or subsets of columns

Materialization model 
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Better for transaction processing workloads because queries only access a small 

number of tuples at a time

• Lower execution / coordination overhead

• Fewer function calls

Not good for analytical queries with large intermediate results

• Requires memory and sometimes it won’t be enough

Materialization model 
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Approach #1: Top-to-Bottom (Pull)

• Start with the root and “pull” date up from its children

• Tuples are always passed with function calls

• Overhead: Next() call implemented as virtual functions; CPU branching cost

Approach #2: Bottom-to-Top (Push)

• Start with leaf nodes and push data to their parents

• Allows for tighter control of caches / registers in pipelines

• More amenable to dynamic query re-optimization

• Difficult to control the size of intermediate result sizes and some operators too

Plan processing direction
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• Processing model for operators (scheduling decisions)

● Pipelined execution (iterator model)

● Intermediate tuple materialization (materialization model)

• Access path selection for each relation

○ File scan

○ Index lookup with a predicate

• Implementation choice for each operator

● Several algorithms exist

Physical query plan
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• An access method is the approach how a DBMS accesses 

the data stored in a table

● Not part of relational algebra

● Required for generating physical plan

• Three-basic approaches:

● Sequential scan: reading the whole table

● Index scan: Scan existing indexes to access table

● Multi-index scan: Use multiples of indexes on a set of 

tables 

Access methods

28

SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

  R    S

R.id, S.cdate

R.id = S.id

value > 100



• Processing model for operators (scheduling decisions)

● Pipelined execution (iterator model)

● Intermediate tuple materialization (materialization model)

• Access path selection for each relation

○ File scan
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• Implementation choice for each operator
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Considering their implementation:

• Selection (σ): Selects a subset of rows from relation

• Projection (π): Deletes unwanted columns from relation

• Join (⋈): Allows us to combine two relations

• Set-difference (−): Tuples in relation 1, but not in relation 2

• Union (∪): Tuples in relation 1 and in relation 2

• Aggregation (SUM, MIN, etc.): and GROUP BY

Implementing relational operators
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Simple selection:

SELECT *
  FROM Reserves R
  WHERE R.rname < ‘C%’

Operation of choosing or filtering rows from a relation based on specific criterion

• Of the form: σ
R.attr op value

 (R)

• Best approach to implement depends on:

● Available index / access paths

● Expected size of the result (# tuples / # pages)

• Size of result approximated as

size of R * reduction factor

• “Reduction factor” also known as selectivity

• Selectivity estimate is based on statistics



Alternatives to simple selections
• With no index, unsorted

● Must scan the whole relation

● Cost is M (# pages in R); for Reserves = 1000 IOs

• With no index, sorted:

● Cost of binary search + number of pages containing results

● For reserves = ~10 IO + [selectivity * # pages]

● This is rare; most likely an index will definitely exist 

• With an index on selection attribute:

● Use index to find qualifying data entries

● Then retrieve corresponding data records

33

SELECT *
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Selections using an index: Example
• If 10% of tuples qualify

● 10,000 (out of 100K) tuples, 100 (out of 1K) pages

● Clustered index: a bit more than 100 IOs

● Unclustered index: Can go up to 10,000 IOs

34
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Optimization for unclustered index
• Find qualifying data entries

• Sort the rids of the data records to be retrieved by 

their page-id component

• Fetch rids in order

● Ensure that each data page is accessed only once

35
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General selection conditions
Selection condition is a combination of conditions using AND / OR

(day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

1. First convert to conjunctive normal form (CNF) (collection of ANDs) →
(day < 8/9/94 OR bid=5 OR sid=3) AND (rnam=`Paul’ OR bid=5 OR sid=3)

2. Match conditions to indexes

• A B+Tree index works best for prefix (start) of the indexed attributes

● Index on <a, b, c> matches a=5 AND b=3, but not b=3

• Hash index must have all attributes in search keys
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Selection: 1st approach
Similar to using index for simple selection

1. Pick a set of conjuncts that match an index

2. Retrieve tuples using it

3. Apply the conjuncts that do not match the index (if any)

37



Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

• Simplest approach: Scan and check each tuple

• Another approach:

● Use B+Tree on day

i. Retrieve all tuples matching day < 8/9/94

ii. Filter the results using rname=`Paul’

iii. Get results from (bid=5 OR sid=3)

● A hash index on <bid> and another hash index on <sid> 

i. Retrieve all tuples matching bid=3 OR sid=3

ii. For each retrieved tuple, check day<8/9/94 AND rname=`Paul’
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Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

Questions: What happens if we have indexes with different attributes orders

• a B+Tree on <rname, day>?

● First sort by rname and then day

● Good choice as equality on rname, and then range scan on day using B+tree index

• A B+Tree on <day, rname>?

● First range scan on day

● Cannot do equality lookup on rname (scan all tuples for day and then filter rname)

• A hash index on <day, rname>?

● A bad choice here as we have to generate all possible rnames

39



Selection: 2nd approach: Intersecting RIDs
• If we have two or more matching indexes

a. Retrieve a set of rids of data records using each matching index

b. Then intersect these sets of collected rids

c. Retrieve the records and apply any remaining terms

Consider: day < 8/9/94 AND bid=5 OR sid=3

• With a B+Tree index on day and an hash index on sid:

a. Retrieve rids of records satisfying day<8/9/94

b. Retrieve rids of records satisfying sid=3

c. Intersection of the output of the above two

d. Retrieve records and check bid=5
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Selection: Summary
• Simple selections on one condition

● On sorted or unsorted data, with and without index

• General selections

● Use conjunctive normal form to express them

● Retrieve tuples and then filter them through conditions

● Intersect rids of matching tuples for non-clustered indexes

• Choice depends on selectives

41
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The projection operation
SELECT DISTINCT
  R.sid, R.bid
  From Reserves R

Remove duplicates (which is challenging)

• Basic approach is to use sorting

a. Scan R, extract only needed attributes

b. Sort the resulting set 

c. Remove adjacent duplicates



To sort a file with N pages using B buffer pages:

Pass #0

• Produce ⌈N/B⌉ sorted runs of size B

Pass #1,2,3 …
• Merge B-1 runs (i.e., k-way merge)

Number of passes = 1 + ⌈log
B-1
⌈N/B⌉⌉

Total IO cost = 2N*(1 + ⌈log
B-1
⌈N/B⌉⌉)

General external merge sort: Recap

44
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The projection operation SELECT DISTINCT
  R.sid, R.bid
  From Reserves R

Example cost calculation scenario

• Original table size: 1000 pages

• Size ratio = .25 (sid and bid)

• Buffer pages for sorting = 20; 2 pass sorting can be done

Steps:

1. Extract relevant attributes: 1000 reads; write smaller set: 250 pages

2. Sort the smaller set (250 pages): 2 * 2 * 250 = 1000 IO operations

3. Remove duplicates by reading all 250 pages = 250 IO operations

Total: 2500 IO operations
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The projection operation: more optimization
• Modify external sort algorithm and apply projections on the fly:

1. Modify pass #0 of external sort to eliminate unwanted fields

2.   Modify merging passes to eliminate duplicates

• Cost: 

● With 20 buffer pages, Reserves (table) with ratio .25 = 250 pages

● Read 1000 pages: 1000 IOs

● Write out 250 page in ~13 runs of 19 pages each with projections: 250 IOs

○ 13 sorted groups

● Merge 13 runs: 250 IOs (reads)

● Total: M + T + T = 1500 pages
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Projection using hashing
Good candidate if ample amount of buffer is available 

2 phase: partitioning and duplicate elimination

• Partitioning phase:

● Read R using one input buffer

● For each tuple:

○ Discard unwanted fields

○ Apply hash function h1 to choose one of B-1 output buffers

● Result is B-1 partitions (of tuples with no unwanted fields)

○ Tuples in different partitions are guaranteed not to be duplicates
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Projection using hashing
• 2 phase: partitioning and duplicate elimination

• Duplicate elimination phase:

● For each partition:

○ Read it and build an in-memory hash table

○ Use hash function h2 (!= h1) on all fields

○ Discard duplicates during this phase

● If partition does not fit in memory:

○ Apply hash-based projection algorithm recursively to this partition



• Assume:

● h1 distributes tuples uniformly, T is # pages after projection

● # pages per partition = T / (B - 1)

● B >= T / (B - 1) or B > √T

Projection using hashing: Memory

Input

h1
hash 

function

1

2

B-1

1

2

B-1

B main memory buffers

Output

Original 
relations

Partitions

49



50

Projection using hashing: Cost
• Assume partitions fit in memory (i.e., B > √T)

● Read pages: 1000 IOs

● Write partitions of projected tuples: 250 IOs

● Do duplicate elimination on each partition: 250 IOs

● Total: M + T + T = 1500 IOs
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Understanding projection
• Sort-based approach is standard

● Handles skewed data efficiently

● Produces sorted result (can be used by subsequent joins or grouping)

• If there are more buffers, both have the same IO cost: M + 2T

● M: # pages in R

● T: # pages of R with unneeded attributes removed

• If all relevant attributes are indexed

● Use index-only scan
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Joins
• Combines two relations: R⋈S

• Combine multi-joins using a pair-wise joins from left to right

• At a high-level: combination of relation product followed by a selection

● Inefficient as large intermediate results

• Join operator algorithms:

● One pass algorithms (this lecture)

● Index-based algorithms (next lecture)

● Two-pass algorithms (next lecture)

• Join techniques:

● Nested-loop joins, sort-merge join, hash join
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Simple nested loops join
foreach tuple r in R do
  foreach tuple s in S do
    if r

i
==s

j
 then add<r,s> to result

• For each tuple in the outer relation R, scan the entire 

inner relation S

• If we assume:

● M pages in R, p
R
 tuples per page

● N pages in S, p
S
 tuples per page

• IO (read) cost: M + ((M * p
R
) * N)

We process every tuple of R, and for every tuple of R, we read N

• Ignore CPU and writing output cost
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Simple nested loops join: Cost
foreach tuple r in R do
  foreach tuple s in S do
    if r

i
==s

j
 then add<r,s> to result

• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

● Cost: M + (p
R
 * M) * N = 1K + 100*1K*500 = 50,001,000

● At 10ms/IO, total: 140 hours
SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid
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Simple nested loops join: Cost
foreach tuple r in R do
  foreach tuple s in S do
    if r

i
==s

j
 then add<r,s> to result

• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

● Cost: M + (p
R
 * M) * N = 1K + 100*1K*500 = 50,001,000

● At 10ms/IO, total: 140 hours

OR

• R(outer) is Sailors and S(inner) is Reserves

• IO Cost: 500 + 80*500*1K = 40,000,500

• At 10ms/IO, total = 111 hours

Choice of inner/outer matters in join!

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid
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Page-oriented nested loops join
foreach page b

R
 in R do

 foreach page b
S 
in S do

  foreach tuple r in b
R
 do

   foreach tuple s in b
S
 do

    if r
i
==s

j
 then add<r,s> to result

• Process data page-by-page than tuple-by-tuple

• For each page of outer R

● Scan all the pages of inner S

● For each pair of pages (one from R and one from S), match tuples 

● If tuples match (<r,s>: r is in R-page and s is in S-page), output them

• IO Cost: M + M * N

● M: Reading each page from R exactly once

● M*N: Reading all pages from S for every page of R
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Nested loops: Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

• Page-oriented nested loop

● IO Cost: M + M * N = 1K + 1K * 500 = 501,000

● At 10 ms/IO, total = 501,000 * 10 = 1.5 hours

• Simple nested loop

● IO Cost: M + (p
R
 * M) * N = 1K + 100*1K*500 = 50,001,000

● At 10 ms/IO, total: 111 hours

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid
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Block nested loop joins: use available buffers
• Page-oriented nested loop does not use extra buffers

• Buffer allocation: 1 page for S(inner), 1 for output 

and the remaining for R(outer)(block
R
)

• Steps:

● Read multiple pages of R into memory

● For this block R, scan each page of S and find matching 

tuples

● Output matched tuple

• IO Cost = M + (# outer blocks * N (inner scan))

● # outer blocks = ⌈# outer pages / blocksize⌉

foreach block block
R
 in R do

 foreach page b
S 
in S do

  foreach tuple r in block
R
 do

   foreach tuple s in b
S
 do

    if r
i
==s

j
 then add<r,s> to result
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Nested loops: IO Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

• Block nested loop with block size = 100:

● IO cost of scanning R is 1000 IOs, a total of 10 blocks

● For each block of R, we scan Sailors: 500 * 10 = 5000 IOs

● total IO cost: 6000 IOs; 1 minute

• Page-oriented nested loop → total: 1.5 hours

• Simple nested loop → total: 111 hours of IO time

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid



Hash join
• Hash join: R⋈S

● Scan R, build buckets in main memory

● Then scan S, probe and join

• Cost: M (outer scan) + N (inner scan)

• One-pass assumption:

● Enough memory to store M + hashtable
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Nested loops: Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100; N = 500, p

S
 = 80

• Hash join

● IO Cost: M + N = 1K + 500 = 1500, 15 secs

• Block nested loop → total: 1 minute

• Page-oriented nested loop → total: 1.5 hours

• Simple nested loop → total: 111 hours of IO time

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid



Sort-merge join
• Hash join: R⋈S

● Scan R and sort in main memory

● Scan S and sort in main memory

● Merge R and S

• IO Cost: M (outer scan) + N (inner scan)

● Same as hash join

• One-pass assumption:

● Enough memory to store M + N

• Usually not a one-pass algorithm
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Nested loops: Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100; N = 500, p

S
 = 80

• Sort-merge join

● IO Cost: M + N = 1K + 500 = 1500, 15 secs

• Hash join → total: 15 secs

• Block nested loop → total: 1 minute

• Page-oriented nested loop → total: 1.5 hours

• Simple nested loop → total: 111 hours of IO time

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid



Summary 
• SQL query transformed into physical plan

● Scheduling decisions for operators

● Implementation choice for each operator

● Access path selection for each relation

• Two scheduling types / processing model:

● Iterator vs materialization

• Many relative implementations for each operator

● Huge difference in cost
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