CS5-300: Data-Intensive Systems

Query Processing with Relational Operations

(Chapters 15.3, 15.5.1-15.5.2, 15.6.1-15.6.2, 15.7)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pi-L

The big picture

Want to Relational
store data Model
Logica
| > 5 ,
esign

ERto
Relational

ER
Models

Relational
Algebra, SQL

SQL

Result

N\ 7
@
& '

=
I

Want tc; access data

Query Optimization
and Execution

T\ Query processing
|

Relational Operators

Access Methods

T\ ===

Buffer Management

Disk Space Management

MK

> ([Database’
tora

—

Disk Storage,
Files

Today’s focus

e (Qverview
e Selections
e Projections

e Joins

Steps in query processing

Query
optimization

—~

SQL query

!

Parse & Rewrite Query

I

Select logical plan

I

Select physical plan

[—

l

Query execution

!
J—

e

Logical plan
(generates parse tree;
nodes looks like relational
algebra operations)

Physical plan
(similar to logical plan but
also includes
implementation details)

Physical query plan

¢ Processing model for operators (scheduling decisions)
® Pipelined execution (iterator model)

® Intermediate tuple materialization (materialization model)

e Access path selection for each relation
o File scan
o Index lookup with a predicate
¢ |Implementation choice for each operator

e Several algorithms exist

Iterator model

Each query plan operator implements Next () function
e On each invocation, the operator returns
® Single tuple (single row of data)
® An end-of-file (EOF) marker if there are no more tuples

e The operator implements a loop that calls Next () on its children to retrieve their

tuples and then process them

e Each operator also implements Open() and Close() functions

® Analogous to constructors and destructors, but for operators

Also called pipelined or volcano model

Iterator model

SELECT R.id, S.cdate

Next() | for t in child.Next(): FROM R JOIN S
emit(projection(t)) < ~ o ON R.id = S.id
S~ - WHERE S.value > 100
Next() @ for t, in left.Next(): T~ -
buildHashTable(t,) Ts<_
for t, in right.Next(): <=~ -_ =~ \'ﬁ-R.id, S.cdate
if probe(t,): emit(t xt)) T~ o T
Next() | for t in child.Next(): ~Dq R.ad = 5.d

Next() for t in S:
emit(t)

Next() for t in R:
emit(t)

if evalPred(t): emit(t) - -
- - = value > 100

Iterator model

1

for t in child.Next():

emit(pr&ﬁg&iion(t))

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t xt,)

for t in child.Next():
if evalPred(t): emit(t)

for t in R: for t in S:

emit(t) emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

'ﬁ'R.id, S.cdate

ﬁxa R.id = S.id

%value > 100

R S

Iterator model

o for t in child.Next():
emit(projection(t))

@ for t. ip~left.Next():
HashTable(t,)

, in right.Next():
iff probe(t,): emit(t xt,)

for t in child.Next():
if evalPred(t): emit(t)

@ for t in R: for t in S:

emit(t) emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

ﬁxa R.id = S.id

%value > 100

R S

Iterator model

o for t in child.Next():

emit(projection(t))

9 for t, in-left.Next():
buildHashTabl@(t,)

for %, in right|Next():
emit(t xt,)

if/ probe(t,):

Single tuple

@ for t in R:
emit(t)

for t in child.Next():
if evalPred(t): emit(t)

for t in S:

emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

'ﬁ'R.id, S.cdate

ﬁxa R.id = S.id

%value > 100

R S

10

Iterator model

o for t in child.Next():
emit(projection(t))

@ for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t<_emit(t xt,)

@ for t in child.Next():
if eval (t): emit(t)

@ for t in R: 6 for t in S:
emit(t) emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

ﬁxa R.id = S.id

%value > 100

R S

11

Iterator model

SELECT R.id, S.cdate
o for t in child.Next(): FROM R JOIN S
emit(projection(t)) ON R.id = S.id
WHERE S.value > 100

@ for t, in left.Next():

buildHashTable(t,)
for t, in right.Next(): 'ﬁ-R.id, S.cdate
if probe(t;): emit(t xt,) T
@ for t in child.Next(): M R.id = S.id
if evalPred(t)™~emit(t)
value > 100
@ for t in R: 6 for t in S: \
emit(t) emit(t)

R S

12

Iterator model

SELECT R.id, S.cdate
o for t in child.Next(): FROM R JOIN S

emit(projection(t)) ON R.id = S.id
WHERE S.value > 100
@ for t, in left.Next():
buildHashTable(t,)
for t, in right.Next(): 'ﬁ-R.id, S.cdate

if probe(t;): emit(t xt,)) T

M R.id = S.id

%value > 100

@ for t in R: 6 for t in S: \

emit(t) emit(t) R S

@ for t in child.Next():
if evalPred(t)~emit(t)

13

Iterator model

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

o for t in child.Next()+
emit(projection(t))

@ for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t;): emit(t xt,

@ for t in child.Next(): M R.id = S.id
if evalPred(t)~emit(t)
value > 100
@ for t in R: 6 for t in S: \
emit(t) emit(t) R S

14

Iterator model

e Tuples generated by an operator are immediately sent to the parent
® Tuples are pipelined

Benefits:

e Pull-based: No operator synchronization issues

e (Can save cost of writing intermediate data to disk

e (Can save cost of reading intermediate date from disk

e Used by almost every DBMS
e Many operators must block until their children emit all their tuples:

e Joins, aggregates, subqueries, order by

Materialization model

Each operator processes its input all at once and then emits output all at once
e The operator “materializes” its output as a single result
e DBMS can push down hints (e.g., LIMITS) to avoid scanning too many tuples

e (Can send either a materialized row or a single column

DBMS output can be either whole tuples or subsets of columns

16

Materialization model

1

out = []

for t in child.Output():
out.add(projection(t))

return out

out = []
for t, in left.Output():
buildHashTable(t,)
for t, in right.Output():
if probe(t,): out.add(t xt,)
return out

out = []
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = [] out = []
for t in R: for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

17

Materialization model

1
2,

out = []

for t in child.Output():
out.add(projection(t))

return out

out = []
for t, in left.Output():
buildHashTable(t,)
for t, in right.Output():
if probe(t,): out.add(t xt,)
return out

out = []
for t in child.Output():

if evalPred(t): out.add(t)
return out

out = [] out = []
for t in R: for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

18

Materialization model

out = []
o for t in child.Output():
out.add(projection(t))

return out

out = []
@ for t, in left.Output():
buildHashTable(t,)

for t, in right.Outppt():
if probe(t,): out/add(t xt,)
return out

out = []
for t in child.Output():
if evalPred(t): out.add(t)

All tuples return out

out = [] out = []
8 for t in R: for t in S:
out.add(t) out.add(t)
return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

19

Materialization model

1
2,

out = []

for t in child.Output():
out.add(projection(t))

return out

out = []

for t, in left.Output():
buildHashTable(t,)

for t, in right.Output():

if probe(t,): out.add(t xt,)
return out

out = []
@ for t in child.Output():
if evalPred(t): out.add(t)

return out

out = [] out = []
for t in R: for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

20

Materialization model

1
2,

out = []

for t in child.Output():
out.add(projection(t))

return out

out = []

for t, in left.Output():
buildHashTable(t,)

for t, in right.Output():
if probe(t,): out.add(t xt,)

return out
out = []
@ for t in child.Output():

if evalPred(t): out.add(t)
out

out = [] out = []

for t in R: @ for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

21

Materialization model

1
2,

out = []

for t in child.Output():
out.add(projection(t))

return out

out = []

for t, in left.Output():
buildHashTable(t,)

for t, in right.Output():
if probe(t,): out.add(t xt,)

return out
out = []
@ for t in child.Output():

if evalPred(t):/out.add(t)
return out

out = [] out = []

for t in R: @ for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

22

Materialization model

1
2,

out = []

for t in child.Output():
out.add(projection(t))

return out

out = []

for t, in left.Output():
buildHashTable(t,)

for t, in right;Qutput():
if probe(t,): out.add(t xt,)

return out
@ for t in child.Output():
if evalPreg(t):/out.add(t)

return out

out = [] out = []

for t in R: @ for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

23

Materialization model

1

out = []
for t in child.Qutput():
out.add(proje¢tion(t))

return out

out = []
for t, in left.Oujput():
buildHashTableft.)
for t, in right Output():
if probe(t,)y out.add(t xt,)

return out
out—=-I]
@ for t in child.Output():

if evalPred(t):/out.add(t)
return out

out = [] out = []

for t in R: @ for t in S:
out.add(t) out.add(t)

return out return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

i i R.id, S.cdate

Exa R.id = S.id

%value > 100

R S

24

Materialization model

Better for transaction processing workloads because queries only access a small

number of tuples at a time

e Lower execution / coordination overhead

e Fewer function calls

Not good for analytical queries with large intermediate results

e Requires memory and sometimes it won’t be enough

25

Plan processing direction

Approach #1: Top-to-Bottom (Pull)
e Start with the root and “pull” date up from its children
e Tuples are always passed with function calls

e Overhead: Next() call implemented as virtual functions; CPU branching cost

Approach #2: Bottom-to-Top (Push)

e Start with leaf nodes and push data to their parents

e Allows for tighter control of caches / registers in pipelines
e More amenable to dynamic query re-optimization

e Difficult to control the size of intermediate result sizes and some operators too

26

Physical query plan

e Processing model for operators (scheduling decisions)
e Pipelined execution (iterator model)

® Intermediate tuple materialization (materialization model)

e Access path selection for each relation
o File scan
o Index lookup with a predicate
¢ |Implementation choice for each operator

e Several algorithms exist

27

Access methods

e An access method is the approach how a DBMS accesses SELECT R.1id, S.cdate

- FROM R JOIN S
the data stored in a table ON R.id = S.id

e Not part of relational algebra WHERE S.value > 100

e Required for generating physical plan
.ﬁ-R.id, S.cdate

e Three-basic approaches: T
e Sequential scan: reading the whole table Dq .id - s.id
® Index scan: Scan existing indexes to access table %
e Multi-index scan: Use multiples of indexes on a set of value > 100

tables

28

Physical query plan

¢ Processing model for operators (scheduling decisions)

® Pipelined execution (iterator model)

e Intermediate tuple materialization (materialization model)

e Access path selection for each relation
o File scan
o Index lookup with a predicate
¢ |Implementation choice for each operator

® Several algorithms exist

29

Implementing relational operators

Considering their implementation:

Selection (0): Selects a subset of rows from relation
Projection (17): Deletes unwanted columns from relation
Join (~): Allows us to combine two relations

Set-difference (—): Tuples in relation 1, but not in relation 2
Union (U): Tuples in relation 1 and in relation 2

Aggregation (SUM, MIN, etc.): and GROUP BY

30

Today’s focus

e (Qverview
e Selections
e Projections

e Joins

31

Simple selection:

Operation of choosing or filtering rows from a relation based on specific criterion

e Oftheform: 0O (R)

R.attr op value

e Best approach to implement depends on:
e Available index / access paths

e Expected size of the result (# tuples / # pages)

e Size of result approximated as

size of R * reduction factor
e “Reduction factor” also known as selectivity

e Selectivity estimate is based on statistics

SELECT *
FROM Reserves R
WHERE R.rname <

CC%J

32

Alternatives to simple selections

e With no index, unsorted SELECT *

e Must scan the whole relation
® Costis M (# pagesin R); for Reserves = 1000 IOs
e With no index, sorted:
® Cost of binary search + number of pages containing results
® Forreserves =~10 10 + [selectivity * # pages]
® Thisis rare; most likely an index will definitely exist
e With an index on selection attribute:
e Use index to find qualifying data entries

® Then retrieve corresponding data records

FROM Reserves R
WHERE R.rname <

('CO/OJ

33

Selections using an index: Example

e |f 10% of tuples qualify SELECT *
e 10,000 (out of 100K) tuples, 100 (out of 1K) pages FROM Reserves R
WHERE R.rname < ‘C%’
® Clustered index: a bit more than 100 IOs
® Unclustered index: Can go up to 10,000 IOs

CIustered/\ Unclustere‘j/\

\’
101 102 103 104 101 102 103 104

Data records Data records
34

Optimization for unclustered index

e Find qualifying data entries SELECT *

e Sortthe rids of the data records to be retrieved by el meservEs 1
WHERE R.rname < ‘C%’

their page-id component

e Fetch rids in order

® Ensure that each data page is accessed only once
Unclustered/\

101 102 103 104

Data records
35

General selection conditions

Selection condition is a combination of conditions using AND / OR
(day < 8/9/94 AND rname=" Paul’) OR bid=5 OR sid=3

1. First convert to conjunctive normal form (CNF) (collection of ANDs) —
(day < 8/9/94 OR bid=5 OR sid=3) AND (rnam="Paul’ OR bid=5 OR sid=3)

2. Match conditions to indexes
e A B+Tree index works best for prefix (start) of the indexed attributes
e Indexon<a, b, ¢> matches a=5 AND b=3, but not b=3

e Hash index must have all attributes in search keys

36

Selection: 1% approach

Similar to using index for simple selection
1. Pick a set of conjuncts that match an index
2. Retrieve tuples using it

3. Apply the conjuncts that do not match the index (if any)

37

Selection: 1% approach: Example

e Consider: (day < 8/9/94 AND rname="Paul’) OR bid=5 OR sid=3

e Simplest approach: Scan and check each tuple

e Another approach:
e Use B+Tree on day
i. Retrieve all tuples matching day < 8/9/94
ii. Filter the results using rname="Paul’
iii. Get results from (bid=5 OR sid=3)
e Ahashindex on <bid> and another hash index on <sid>
i. Retrieve all tuples matching bid=3 OR sid=3
ii. For each retrieved tuple, check day<8/9/94 AND rname="Paul’

38

Selection: 1% approach: Example

e Consider: (day < 8/9/94 AND rname="Paul’) OR bid=5 OR sid=3
Questions: What happens if we have indexes with different attributes orders
e aB+Tree on <rname, day>?
e First sort by rname and then day
® Good choice as equality on rname, and then range scan on day using B+tree index
e AB+Tree on <day, rname>?

e First range scan on day

e Cannot do equality lookup on rname (scan all tuples for day and then filter rname)
e Ahashindexon<day, rname>?

® A bad choice here as we have to generate all possible rnames

39

Selection: 2" approach: Intersecting RIDs

e If we have two or more matching indexes

d.

Retrieve a set of rids of data records using each matching index

b. Then intersect these sets of collected rids

C.

Retrieve the records and apply any remaining terms

Consider: day < 8/9/94 AND bid=5 OR sid=3

e With a B+Tree index on day and an hash index on sid:

a.
b.

C.

o

Retrieve rids of records satisfying day<8/9/94
Retrieve rids of records satisfying sid=3
Intersection of the output of the above two

Retrieve records and check bid=5

40

Selection: Summary

e Simple selections on one condition
® On sorted or unsorted data, with and without index
e General selections
® Use conjunctive normal form to express them
e Retrieve tuples and then filter them through conditions
® Intersect rids of matching tuples for non-clustered indexes

e Choice depends on selectives

41

Today’s focus

e (Qverview
e Selections
e Projections

e Joins

42

The projection operation

Remove duplicates (which is challenging)
e Basic approach is to use sorting

a. Scan R, extract only needed attributes

b. Sort the resulting set

c. Remove adjacent duplicates

SELECT DISTINCT

R.sid, R.bid
From Reserves R

43

General external merge sort: Recap

To sort a file with N pages using B buffer pages:
Pass #0

e Produce N/BT1 sorted runs of size B

Pass #1,2,3 ...

e Merge B-1runs (i.e., k-way merge)

Number of passes=1 + [log ,[N/BTI
Total 10 cost =2N*(1 + [log_ .[N/B11)

4

. : - SELECT DISTINCT
The projection operation R.sid. R.bid

From Reserves R
Example cost calculation scenario

e Original table size: 1000 pages

e Size ratio =.25 (sid and bid)

e Buffer pages for sorting = 20; 2 pass sorting can be done

Steps:

1. Extract relevant attributes: 1000 reads; write smaller set: 250 pages
2. Sort the smaller set (250 pages): 2 * 2 * 250 = 1000 10 operations
3. Remove duplicates by reading all 250 pages = 250 10 operations

Total: 2500 10 operations

45

The projection operation: more optimization

e Modify external sort algorithm and apply projections on the fly:

1. Modify pass #0 of external sort to eliminate unwanted fields
2. Modify merging passes to eliminate duplicates
e (ost:
e With 20 buffer pages, Reserves (table) with ratio .25 = 250 pages
e Read 1000 pages: 1000 IOs
e \Write out 250 page in ~13 runs of 19 pages each with projections: 250 10s
o 13 sorted groups
e Merge 13 runs: 250 IOs (reads)
e Total: M+ T+ T=1500 pages

46

Projection using hashing

Good candidate if ample amount of buffer is available

2 phase: partitioning and duplicate elimination

e Partitioning phase:
e Read R using one input buffer
e For each tuple:
o Discard unwanted fields
o Apply hash function hl to choose one of B-1 output buffers
e Resultis B-1 partitions (of tuples with no unwanted fields)

o Tuples in different partitions are guaranteed not to be duplicates

47

Projection using hashing

e 2 phase: partitioning and duplicate elimination

e Duplicate elimination phase:
® For each partition:
o Read it and build an in-memory hash table
o Use hash function h2 (!= h1) on all fields

o Discard duplicates during this phase

e |If partition does not fit in memory:

o Apply hash-based projection algorithm recursively to this partition

48

Projection using hashing: Memory

e Assume:
e hl distributes tuples uniformly, T is # pages after projection
e # pages per partition=T/(B-1)

e B>=T/(B-1)orB>\T
Original

. Partitions
relations
Output
1
> [
> hl
hash
function B-1
B main memory buffers

1

2

B-1

49

Projection using hashing: Cost

e Assume partitions fit in memory (i.e., B > \T)
e Read pages: 1000 I10s
e \Write partitions of projected tuples: 250 I10s
® Do duplicate elimination on each partition: 250 IOs
e Total: M+ T+T=1500I0s

50

Understanding projection

e Sort-based approach is standard
e Handles skewed data efficiently

® Produces sorted result (can be used by subsequent joins or grouping)

e |f there are more buffers, both have the same 10 cost: M + 2T
® M: #pagesinR

e T: # pages of R with unneeded attributes removed

e |f all relevant attributes are indexed

e Use index-only scan

51

Today’s focus

e (Qverview
e Selections
e Projections

e Joins

52

Joins

e Combines two relations: R>S

e Combine multi-joins using a pair-wise joins from left to right

e At a high-level: combination of relation product followed by a selection
e Inefficient as large intermediate results

e Join operator algorithms:

® One pass algorithms (this lecture)

® Index-based algorithms (next lecture)
® Two-pass algorithms (next lecture)
e Join techniques:

e Nested-loop joins, sort-merge join, hash join

53

Simple nested loops join

e For each tuple in the outer relation R, scan the entire

inner relation S

e |f we assume:
® MpagesinR, Py tuples per page
® Npagesins, p, tuples per page

* 10 (read) cost: M+ ((M * p_) * N)
We process every tuple of R, and for every tuple of R, we read N

e |gnore CPU and writing output cost

foreach tuple r in R do
foreach tuple s in S do
if r;==s, then add<r,s> to result

54

Simple nested loops join: Cost

e R(outer) is Reserves and S(inner) is Sailors

M =1000, p, = 100

N =500, p, = 80

Cost: M + (pR *M) *N=1K+ 100*1K*500 = 50,001,000
At 10ms/10, total: 140 hours

foreach tuple r in R do
foreach tuple s in S do
if r;==s, then add<r,s> to result

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

55

Simple nested loops join: Cost

foreach tuple r in R do
foreach tuple s in S do
if r;==s, then add<r,s> to result

SELECT *
FROM Reserves R
OR WHERE R1.sid=S1.sid

e R(outer) isSailorsand S(inner) is Reserves
e |O Cost: 500 + 80*500*1K = 40,000,500
e At 10ms/IO, total = 111 hours

Choice of inner/outer matters in join!

56

Page-oriented nested loops join

 Process data page-by-page than tuple-by-tuple foreach page b_ in R do
foreach page b, in S do

foreach tuple r in b, do

foreach tuple s in b, do

e For each page Of outer R if r;==s, then add<r,s> to result

® Scan all the pages of inner S
® For each pair of pages (one from R and one from S), match tuples

e If tuples match (<r,s>:risin R-page and s is in S-page), output them

e [OCost: M+M *N
e M: Reading each page from R exactly once

e M*N: Reading all pages from S for every page of R

57

Nested loops: Cost

e R(outer) is Reserves and S(inner) is Sailors SELECT *

e M=1000,p. =100 FROM Reserves R
R WHERE R1.sid=S1.sid
e N =500, p, =80

e Page-oriented nested loop
® |OCost:M+M*N=1K+ 1K * 500 = 501,000
e At 10 ms/IO, total =501,000 * 10 = 1.5 hours
e Simple nested loop
10 Cost: M+ (p, * M) * N = 1K + 100*1K*500 = 50,001,000
e At 10 ms/IO, total: 111 hours

58

Block nested loop joins: use available buffers

e Page-oriented nested loop does not use extra buffers | foreach block block, in R do

foreach page b, in S do

e Buffer allocation: 1 page for S(inner), 1 for output foreach tuple r in block, do

foreach tuple s in b, do
if r;==s, then add<r,s> to result

and the remaining for R(outer)(block,)
e Steps:
e Read multiple pages of R into memory
e For this block R, scan each page of S and find matching

tuples

e Output matched tuple

e |0 Cost =M + (# outer blocks * N (inner scan))
e #outer blocks=# outer pages / blocksizel

59

Nested loops: 10 Cost

e R(outer) is Reserves and S(inner) is Sailors
e M=1000,p, =100
e N=500,p, =80

e Block nested loop with block size = 100:

® |0 cost of scanning R is 1000 I0s, a total of 10 blocks
® For each block of R, we scan Sailors: 500 * 10 = 5000 10s
e total IO cost: 6000 I0s; 1 minute

e Page-oriented nested loop — total: 1.5 hours

e Simple nested loop — total: 111 hours of IO time

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

60

Hash join

e Hash join: R<S
® Scan R, build buckets in main memory

® Then scan S, probe and join
e Cost: M (outer scan) + N (inner scan)

e One-pass assumption:

® Enough memory to store M + hashtable

61

Nested loops: Cost

e R(outer) isReserves and S(inner) is Sailors SELECT *

e M=1000, p, = 100; N = 500, p, = 80 JU RS RN
WHERE R1.sid=S1.sid

e Hash join
® |OCost: M+ N=1K+ 500 =1500, 15 secs

e Block nested loop — total: 1 minute

e Page-oriented nested loop — total: 1.5 hours

e Simple nested loop — total: 111 hours of IO time

62

Sort-merge join

e Hash join: R<S
® Scan R and sort in main memory
® Scan S and sort in main memory

® MergeRand$S

1O Cost: M (outer scan) + N (inner scan)

® Same as hash join

e One-pass assumption:

® Enough memory to store M + N

e Usually not a one-pass algorithm

63

Nested loops: Cost

e R(outer) isReserves and S(inner) is Sailors SELECT *

e M=1000, p, = 100; N = 500, p, = 80 JU RS RN
WHERE R1.sid=S1.sid

e Sort-merge join
® |OCost: M+ N=1K+ 500 =1500, 15 secs

e Hash join — total: 15 secs
e Block nested loop — total: 1 minute
e Page-oriented nested loop — total: 1.5 hours

e Simple nested loop — total: 111 hours of IO time

64

Summary

e SQL query transformed into physical plan
e Scheduling decisions for operators
® Implementation choice for each operator

® Access path selection for each relation

e Two scheduling types / processing model:

® Iterator vs materialization

e Many relative implementations for each operator

e Huge difference in cost

65

