
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Query Processing with Relational Operations
(Chapters 15.3, 15.5.1-15.5.2, 15.6.1-15.6.2, 15.7)

Want to
store data

Conceptual
Design

Logical
Design

Physical
Design Database

Storage

Want to access data

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Result

ER
Models

Relational
Model

ER to
Relational

Relational
Algebra, SQL

SQL

2

The big picture

Disk Storage,
Files

Query processing

• Overview

• Selections

• Projections

• Joins

Today’s focus

3

Logical plan
(generates parse tree;

nodes looks like relational
algebra operations)

4

Physical plan
(similar to logical plan but

also includes
implementation details)

Select logical plan

Select physical plan

Query execution

Disk

SQL query

Query

optimization

Steps in query processing

Parse & Rewrite Query

• Processing model for operators (scheduling decisions)

● Pipelined execution (iterator model)

● Intermediate tuple materialization (materialization model)

• Access path selection for each relation

○ File scan

○ Index lookup with a predicate

• Implementation choice for each operator

● Several algorithms exist

Physical query plan

5

Each query plan operator implements Next() function

• On each invocation, the operator returns

● Single tuple (single row of data)

● An end-of-file (EOF) marker if there are no more tuples

• The operator implements a loop that calls Next() on its children to retrieve their

tuples and then process them

• Each operator also implements Open() and Close() functions

● Analogous to constructors and destructors, but for operators

Also called pipelined or volcano model

Iterator model

6

Iterator model

7

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in R:
 emit(t)

Next()

Next()

Next()

Next()

Next()

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

Iterator model

8

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

➊

Iterator model

9

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

➊

❷

❸

Iterator model

10

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

➊

❷

❸

Single tuple

Iterator model

11

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

➊

❷

❸

❹

❺

Iterator model

12

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

➊

❷

❸

❹

❺

Iterator model

13

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

➊

❷

❸

❹

❺

Iterator model

14

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

for t in child.Next():
 emit(projection(t))

for t
1
 in left.Next():

 buildHashTable(t
1
)

for t
2
 in right.Next():

 if probe(t
2
): emit(t

1
⨝t

2
)

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

for t in R:
 emit(t)

➊

❷

❸

❹

❺

• Tuples generated by an operator are immediately sent to the parent

● Tuples are pipelined

Benefits:

• Pull-based: No operator synchronization issues

• Can save cost of writing intermediate data to disk

• Can save cost of reading intermediate date from disk

• Used by almost every DBMS

• Many operators must block until their children emit all their tuples:

• Joins, aggregates, subqueries, order by

Iterator model

15

Each operator processes its input all at once and then emits output all at once

• The operator “materializes” its output as a single result

• DBMS can push down hints (e.g., LIMITS) to avoid scanning too many tuples

• Can send either a materialized row or a single column

DBMS output can be either whole tuples or subsets of columns

Materialization model

16

Materialization model

17

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

Materialization model

18

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

❷

❸

Materialization model

19

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

❷

❸

All tuples

Materialization model

20

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

❷

❸

❹

Materialization model

21

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

❷

❸

❹

❺

Materialization model

22

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

❷

❸

❹

❺

Materialization model

23

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

❷

❸

❹

❺

Materialization model

24

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t

1
 in left.Output():

 buildHashTable(t
1
)

for t
2
 in right.Output():

 if probe(t
2
): out.add(t

1
⨝t

2
)

return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in R:
 out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

➊

❷

❸

❹

❺

Better for transaction processing workloads because queries only access a small

number of tuples at a time

• Lower execution / coordination overhead

• Fewer function calls

Not good for analytical queries with large intermediate results

• Requires memory and sometimes it won’t be enough

Materialization model

25

Approach #1: Top-to-Bottom (Pull)

• Start with the root and “pull” date up from its children

• Tuples are always passed with function calls

• Overhead: Next() call implemented as virtual functions; CPU branching cost

Approach #2: Bottom-to-Top (Push)

• Start with leaf nodes and push data to their parents

• Allows for tighter control of caches / registers in pipelines

• More amenable to dynamic query re-optimization

• Difficult to control the size of intermediate result sizes and some operators too

Plan processing direction

26

• Processing model for operators (scheduling decisions)

● Pipelined execution (iterator model)

● Intermediate tuple materialization (materialization model)

• Access path selection for each relation

○ File scan

○ Index lookup with a predicate

• Implementation choice for each operator

● Several algorithms exist

Physical query plan

27

• An access method is the approach how a DBMS accesses

the data stored in a table

● Not part of relational algebra

● Required for generating physical plan

• Three-basic approaches:

● Sequential scan: reading the whole table

● Index scan: Scan existing indexes to access table

● Multi-index scan: Use multiples of indexes on a set of

tables

Access methods

28

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

π

⨝
 σ

 R S

R.id, S.cdate

R.id = S.id

value > 100

• Processing model for operators (scheduling decisions)

● Pipelined execution (iterator model)

● Intermediate tuple materialization (materialization model)

• Access path selection for each relation

○ File scan

○ Index lookup with a predicate

• Implementation choice for each operator

● Several algorithms exist

Physical query plan

29

Considering their implementation:

• Selection (σ): Selects a subset of rows from relation

• Projection (π): Deletes unwanted columns from relation

• Join (⋈): Allows us to combine two relations

• Set-difference (−): Tuples in relation 1, but not in relation 2

• Union (∪): Tuples in relation 1 and in relation 2

• Aggregation (SUM, MIN, etc.): and GROUP BY

Implementing relational operators

30

• Overview

• Selections

• Projections

• Joins

Today’s focus

31

32

Simple selection:

SELECT *
 FROM Reserves R
 WHERE R.rname < ‘C%’

Operation of choosing or filtering rows from a relation based on specific criterion

• Of the form: σ
R.attr op value

 (R)

• Best approach to implement depends on:

● Available index / access paths

● Expected size of the result (# tuples / # pages)

• Size of result approximated as

size of R * reduction factor

• “Reduction factor” also known as selectivity

• Selectivity estimate is based on statistics

Alternatives to simple selections
• With no index, unsorted

● Must scan the whole relation

● Cost is M (# pages in R); for Reserves = 1000 IOs

• With no index, sorted:

● Cost of binary search + number of pages containing results

● For reserves = ~10 IO + [selectivity * # pages]

● This is rare; most likely an index will definitely exist

• With an index on selection attribute:

● Use index to find qualifying data entries

● Then retrieve corresponding data records

33

SELECT *
 FROM Reserves R
 WHERE R.rname < ‘C%’

Selections using an index: Example
• If 10% of tuples qualify

● 10,000 (out of 100K) tuples, 100 (out of 1K) pages

● Clustered index: a bit more than 100 IOs

● Unclustered index: Can go up to 10,000 IOs

34

SELECT *
 FROM Reserves R
 WHERE R.rname < ‘C%’

101 102 103 104 101 102 103 104

Data recordsData records

Clustered Unclustered

Optimization for unclustered index
• Find qualifying data entries

• Sort the rids of the data records to be retrieved by

their page-id component

• Fetch rids in order

● Ensure that each data page is accessed only once

35

SELECT *
 FROM Reserves R
 WHERE R.rname < ‘C%’

101 102 103 104

Data records

Unclustered

General selection conditions
Selection condition is a combination of conditions using AND / OR

(day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

1. First convert to conjunctive normal form (CNF) (collection of ANDs) →
(day < 8/9/94 OR bid=5 OR sid=3) AND (rnam=`Paul’ OR bid=5 OR sid=3)

2. Match conditions to indexes

• A B+Tree index works best for prefix (start) of the indexed attributes

● Index on <a, b, c> matches a=5 AND b=3, but not b=3

• Hash index must have all attributes in search keys

36

Selection: 1st approach
Similar to using index for simple selection

1. Pick a set of conjuncts that match an index

2. Retrieve tuples using it

3. Apply the conjuncts that do not match the index (if any)

37

Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

• Simplest approach: Scan and check each tuple

• Another approach:

● Use B+Tree on day

i. Retrieve all tuples matching day < 8/9/94

ii. Filter the results using rname=`Paul’

iii. Get results from (bid=5 OR sid=3)

● A hash index on <bid> and another hash index on <sid>

i. Retrieve all tuples matching bid=3 OR sid=3

ii. For each retrieved tuple, check day<8/9/94 AND rname=`Paul’

38

Selection: 1st approach: Example
• Consider: (day < 8/9/94 AND rname=`Paul’) OR bid=5 OR sid=3

Questions: What happens if we have indexes with different attributes orders

• a B+Tree on <rname, day>?

● First sort by rname and then day

● Good choice as equality on rname, and then range scan on day using B+tree index

• A B+Tree on <day, rname>?

● First range scan on day

● Cannot do equality lookup on rname (scan all tuples for day and then filter rname)

• A hash index on <day, rname>?

● A bad choice here as we have to generate all possible rnames

39

Selection: 2nd approach: Intersecting RIDs
• If we have two or more matching indexes

a. Retrieve a set of rids of data records using each matching index

b. Then intersect these sets of collected rids

c. Retrieve the records and apply any remaining terms

Consider: day < 8/9/94 AND bid=5 OR sid=3

• With a B+Tree index on day and an hash index on sid:

a. Retrieve rids of records satisfying day<8/9/94

b. Retrieve rids of records satisfying sid=3

c. Intersection of the output of the above two

d. Retrieve records and check bid=5

40

Selection: Summary
• Simple selections on one condition

● On sorted or unsorted data, with and without index

• General selections

● Use conjunctive normal form to express them

● Retrieve tuples and then filter them through conditions

● Intersect rids of matching tuples for non-clustered indexes

• Choice depends on selectives

41

• Overview

• Selections

• Projections

• Joins

Today’s focus

42

43

The projection operation
SELECT DISTINCT
 R.sid, R.bid
 From Reserves R

Remove duplicates (which is challenging)

• Basic approach is to use sorting

a. Scan R, extract only needed attributes

b. Sort the resulting set

c. Remove adjacent duplicates

To sort a file with N pages using B buffer pages:

Pass #0

• Produce ⌈N/B⌉ sorted runs of size B

Pass #1,2,3 …
• Merge B-1 runs (i.e., k-way merge)

Number of passes = 1 + ⌈log
B-1
⌈N/B⌉⌉

Total IO cost = 2N*(1 + ⌈log
B-1
⌈N/B⌉⌉)

General external merge sort: Recap

44

45

The projection operation SELECT DISTINCT
 R.sid, R.bid
 From Reserves R

Example cost calculation scenario

• Original table size: 1000 pages

• Size ratio = .25 (sid and bid)

• Buffer pages for sorting = 20; 2 pass sorting can be done

Steps:

1. Extract relevant attributes: 1000 reads; write smaller set: 250 pages

2. Sort the smaller set (250 pages): 2 * 2 * 250 = 1000 IO operations

3. Remove duplicates by reading all 250 pages = 250 IO operations

Total: 2500 IO operations

46

The projection operation: more optimization
• Modify external sort algorithm and apply projections on the fly:

1. Modify pass #0 of external sort to eliminate unwanted fields

2. Modify merging passes to eliminate duplicates

• Cost:

● With 20 buffer pages, Reserves (table) with ratio .25 = 250 pages

● Read 1000 pages: 1000 IOs

● Write out 250 page in ~13 runs of 19 pages each with projections: 250 IOs

○ 13 sorted groups

● Merge 13 runs: 250 IOs (reads)

● Total: M + T + T = 1500 pages

47

Projection using hashing
Good candidate if ample amount of buffer is available

2 phase: partitioning and duplicate elimination

• Partitioning phase:

● Read R using one input buffer

● For each tuple:

○ Discard unwanted fields

○ Apply hash function h1 to choose one of B-1 output buffers

● Result is B-1 partitions (of tuples with no unwanted fields)

○ Tuples in different partitions are guaranteed not to be duplicates

48

Projection using hashing
• 2 phase: partitioning and duplicate elimination

• Duplicate elimination phase:

● For each partition:

○ Read it and build an in-memory hash table

○ Use hash function h2 (!= h1) on all fields

○ Discard duplicates during this phase

● If partition does not fit in memory:

○ Apply hash-based projection algorithm recursively to this partition

• Assume:

● h1 distributes tuples uniformly, T is # pages after projection

● # pages per partition = T / (B - 1)

● B >= T / (B - 1) or B > √T

Projection using hashing: Memory

Input

h1
hash

function

1

2

B-1

1

2

B-1

B main memory buffers

Output

Original
relations

Partitions

49

50

Projection using hashing: Cost
• Assume partitions fit in memory (i.e., B > √T)

● Read pages: 1000 IOs

● Write partitions of projected tuples: 250 IOs

● Do duplicate elimination on each partition: 250 IOs

● Total: M + T + T = 1500 IOs

51

Understanding projection
• Sort-based approach is standard

● Handles skewed data efficiently

● Produces sorted result (can be used by subsequent joins or grouping)

• If there are more buffers, both have the same IO cost: M + 2T

● M: # pages in R

● T: # pages of R with unneeded attributes removed

• If all relevant attributes are indexed

● Use index-only scan

• Overview

• Selections

• Projections

• Joins

Today’s focus

52

Joins
• Combines two relations: R⋈S

• Combine multi-joins using a pair-wise joins from left to right

• At a high-level: combination of relation product followed by a selection

● Inefficient as large intermediate results

• Join operator algorithms:

● One pass algorithms (this lecture)

● Index-based algorithms (next lecture)

● Two-pass algorithms (next lecture)

• Join techniques:

● Nested-loop joins, sort-merge join, hash join

53

54

Simple nested loops join
foreach tuple r in R do
 foreach tuple s in S do
 if r

i
==s

j
 then add<r,s> to result

• For each tuple in the outer relation R, scan the entire

inner relation S

• If we assume:

● M pages in R, p
R
 tuples per page

● N pages in S, p
S
 tuples per page

• IO (read) cost: M + ((M * p
R
) * N)

We process every tuple of R, and for every tuple of R, we read N

• Ignore CPU and writing output cost

55

Simple nested loops join: Cost
foreach tuple r in R do
 foreach tuple s in S do
 if r

i
==s

j
 then add<r,s> to result

• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

● Cost: M + (p
R
 * M) * N = 1K + 100*1K*500 = 50,001,000

● At 10ms/IO, total: 140 hours
SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

56

Simple nested loops join: Cost
foreach tuple r in R do
 foreach tuple s in S do
 if r

i
==s

j
 then add<r,s> to result

• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

● Cost: M + (p
R
 * M) * N = 1K + 100*1K*500 = 50,001,000

● At 10ms/IO, total: 140 hours

OR

• R(outer) is Sailors and S(inner) is Reserves

• IO Cost: 500 + 80*500*1K = 40,000,500

• At 10ms/IO, total = 111 hours

Choice of inner/outer matters in join!

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

57

Page-oriented nested loops join
foreach page b

R
 in R do

 foreach page b
S
in S do

 foreach tuple r in b
R
 do

 foreach tuple s in b
S
 do

 if r
i
==s

j
 then add<r,s> to result

• Process data page-by-page than tuple-by-tuple

• For each page of outer R

● Scan all the pages of inner S

● For each pair of pages (one from R and one from S), match tuples

● If tuples match (<r,s>: r is in R-page and s is in S-page), output them

• IO Cost: M + M * N

● M: Reading each page from R exactly once

● M*N: Reading all pages from S for every page of R

58

Nested loops: Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

• Page-oriented nested loop

● IO Cost: M + M * N = 1K + 1K * 500 = 501,000

● At 10 ms/IO, total = 501,000 * 10 = 1.5 hours

• Simple nested loop

● IO Cost: M + (p
R
 * M) * N = 1K + 100*1K*500 = 50,001,000

● At 10 ms/IO, total: 111 hours

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

59

Block nested loop joins: use available buffers
• Page-oriented nested loop does not use extra buffers

• Buffer allocation: 1 page for S(inner), 1 for output

and the remaining for R(outer)(block
R
)

• Steps:

● Read multiple pages of R into memory

● For this block R, scan each page of S and find matching

tuples

● Output matched tuple

• IO Cost = M + (# outer blocks * N (inner scan))

● # outer blocks = ⌈# outer pages / blocksize⌉

foreach block block
R
 in R do

 foreach page b
S
in S do

 foreach tuple r in block
R
 do

 foreach tuple s in b
S
 do

 if r
i
==s

j
 then add<r,s> to result

60

Nested loops: IO Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100

● N = 500, p
S
 = 80

• Block nested loop with block size = 100:

● IO cost of scanning R is 1000 IOs, a total of 10 blocks

● For each block of R, we scan Sailors: 500 * 10 = 5000 IOs

● total IO cost: 6000 IOs; 1 minute

• Page-oriented nested loop → total: 1.5 hours

• Simple nested loop → total: 111 hours of IO time

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

Hash join
• Hash join: R⋈S

● Scan R, build buckets in main memory

● Then scan S, probe and join

• Cost: M (outer scan) + N (inner scan)

• One-pass assumption:

● Enough memory to store M + hashtable

61

62

Nested loops: Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100; N = 500, p

S
 = 80

• Hash join

● IO Cost: M + N = 1K + 500 = 1500, 15 secs

• Block nested loop → total: 1 minute

• Page-oriented nested loop → total: 1.5 hours

• Simple nested loop → total: 111 hours of IO time

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

Sort-merge join
• Hash join: R⋈S

● Scan R and sort in main memory

● Scan S and sort in main memory

● Merge R and S

• IO Cost: M (outer scan) + N (inner scan)

● Same as hash join

• One-pass assumption:

● Enough memory to store M + N

• Usually not a one-pass algorithm

63

64

Nested loops: Cost
• R(outer) is Reserves and S(inner) is Sailors

● M = 1000, p
R
 = 100; N = 500, p

S
 = 80

• Sort-merge join

● IO Cost: M + N = 1K + 500 = 1500, 15 secs

• Hash join → total: 15 secs

• Block nested loop → total: 1 minute

• Page-oriented nested loop → total: 1.5 hours

• Simple nested loop → total: 111 hours of IO time

SELECT *
FROM Reserves R
WHERE R1.sid=S1.sid

Summary
• SQL query transformed into physical plan

● Scheduling decisions for operators

● Implementation choice for each operator

● Access path selection for each relation

• Two scheduling types / processing model:

● Iterator vs materialization

• Many relative implementations for each operator

● Huge difference in cost

65

