
Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

CS-300: Data-Intensive Systems

Hashing & Sorting
(Chapters 14.5, 15.4, 24.5)

• Hash-based indexes

• Sorting

Today’s focus

2

DBMS big picture

3

next

Queries

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Support DBMS execution engine to

read/write data from pages!

Two types of data structures:

1. Trees (ordered)

2. Hash tables (unordered)

• A hash table implements an unordered associative array that maps keys to values

• It uses a hash function to compute an offset into this array for a given key, from

which the desired value can be found

• Space complexity: O(n)

• Time complexity:

● Average: O(1)

● Worst: O(n)

• Why study hashing?

● Beneficial if you have only equality selections

● Very useful in join implementations

Hash tables

4

• Hash file is a collection of buckets

• Bucket is a collection of pages

● 1 primary page and possible one or more overflow pages

• hash(key) % n → bucket to which data entry with key key belongs (n → # of

buckets)

Static hash table

5

hash(key) mod N

h
key

Primary bucket pages Overflow pages

1
0

N-1

• N is fixed, primary pages allocated sequentially, never de-allocated; overflow pages
if needed.

• Long overflow chains can develop and degrade performance.
● Extendible and Linear Hashing fix this problem.

Static hash table

6

hash(key) mod N

h
key

Primary bucket pages Overflow pages

1
0

N-1

• Assumption #1: Number of elements is known ahead of time and fixed

• Assumption #2: Each key is unique

• Assumption #3: Perfect hash function guarantees no collision

● If key1 != key2 then

hash (key1) != hash (key2)

Unrealistic assumptions

7

• Design decision #1: Hash function

● Accepts a (fixed- or variable-length) value as input and produces a fixed-sized value

output which (ideally) uniquely represents the input

● Objective: map a large key space into a smaller domain

● Trade-off between being fast vs. collision rate

• Design decision #2: Hashing scheme

● How to handle key collisions after hashing

● Trade-off between allocating a large hash table vs.

additional instructions to get/put keys

Hash tables

8

• Hash functions

• Static hashing schemes

• Dynamic hashing schemes

Hashing

9

• For any input key, return an integer representation of the key

● Hash function works on search key field of record r

● % n distributes values over range 0 .. n - 1

● hash(key) = (a * key + b) usually works well; a and b are constants

• Hashing should be fast and have a low collision rate

• Known hash functions:

● CRC-64: Used in networking for error detection

● MurmurHash: fast, general-purpose hash function

● CityHash: for strings, faster for short keys (<64 bytes)

● XXHash: very fast parallel hashing

Hash functions

10

• Approach #1: Linear probe hashing

• Several other schemes exist:

● Cuckoo hashing

● Hopscotch hashing

● Robin hood hashing

● Swiss tables

Static hashing schemes

11

• A method of open addressing (aka closed hashing) collision resolution

● Search through alternative locations in the array (the probe sequence) until either the
target or an unused array slot is found (search key does not exist),

• Quadratic probing: interval between probes increases linearly (eg a quadratic
function)

• Double hashing: fixed search interval but computed by another hash function.
• Linear probing: search in fixed intervals (eg =1): Single giant table of slots

• Resolve collisions by linearly searching for the next free slot in the table

● To determine presence of an element, hash to a location in the index and scan for it

● Must store the key in the index to know when to stop scanning

● Insertions and deletions are generalizations of lookup

Linear probe hashing

12

Linear probe hashing

13

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

A | val

page 1

page 2

page 3

page 5

page 6

page 7

hash(key) % n

A

B

C

D

E

F

<key> | <value>

Linear probe hashing

14

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

page 1

page 2

page 3

page 5

page 6

page 7

hash(key) % n

A

B

C

D

E

F

Linear probe hashing

15

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

C | val

page 1

page 2

page 3

page 5

page 6

page 7

hash(key) % n

A

B

C

D

E

F

Linear probe hashing

16

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

C | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

hash(key) % n

A

B

C

D

E

F

Linear probe hashing

17

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

C | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

E | val

hash(key) % n

A

B

C

D

E

F

Linear probe hashing: DELETE

18

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

E | val

hash(key) % n

A

B

C

D

E

F

Delete
C | val

Approach: Tombstone
● Set a marker to indicate that

the entry in the slot is
logically deleted

● Reuse the slot for new keys
● May need periodic garbage

collection

Linear probe hashing: DELETE

19

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

E | val

hash(key) % n

A

B

C

D

E

F

Delete

Approach: Tombstone
● Set a marker to indicate that

the entry in the slot is
logically deleted

● Reuse the slot for new keys
● May need periodic garbage

collection

Linear probe hashing: DELETE

20

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

E | val

hash(key) % n

A

B

C

D

E

F

Get

Approach: Tombstone
● Set a marker to indicate that

the entry in the slot is
logically deleted

● Reuse the slot for new keys
● May need periodic garbage

collection

Linear probe hashing: DELETE

21

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

E | val

hash(key) % n

A

B

C

D

E

F

Approach: Tombstone
● Set a marker to indicate that

the entry in the slot is
logically deleted

● Reuse the slot for new keys
● May need periodic garbage

collection

Insert

Linear probe hashing: INSERT

22

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

E | val

hash(key) % n

A

B

C

D

E

F

F | val

Approach: Tombstone
● Set a marker to indicate that

the entry in the slot is
logically deleted

● Reuse the slot for new keys
● May need periodic garbage

collection

Insert

• Approach #1: Separate linked list

● Store values in separate storage area for each key

● Value lists can overflow to multiple pages if the

number of duplicate pages is large

Non-unique keys

23

X Y Z

A B C

value 1

value 2

value 3

value 1

value 2

• Approach #1: Separate linked list

● Store values in separate storage area for each key

● Value lists can overflow to multiple pages if the

number of duplicate pages is large

• Approach #2: Redundant keys

● Store duplicate keys entries together in the hash

table

● Several systems use this approach

Non-unique keys

24

X Y Z

A B C

value 1

value 2

value 3

value 1

value 2

XYZ | value2

ABC | value 1

XYZ | value 3

XYZ | value 1

ABC | value 2

• Requires the DBMS to know the number of elements it wants to store

● Otherwise, it must rebuild the table to grow/shrink it in size

● This process is costly: Index is blocked and reading/writing all pages is expensive

• Dynamic hash tables incrementally resize themselves when needed

● Chained hashing

● Extendible hashing

● Linear hashing

Issues with static hash table

25

• Maintain a linked list of buckets for each slot in the hash table

• Maintain a directory of pointers to buckets

• Resolve collision by placing all elements with the same hash key into the same

bucket

● To determine whether an element is present, hash to its bucket and scan for it

● Insertions and deletions are generalizations of lookups

Chained hashing

26

Chained hashing

27

hash(key) % n

A | val
Buckets

Bucket
pointers

Insert A

Chained hashing

28

hash(key) % n B | val

A | val
Buckets

Bucket
pointers

Insert A

Insert B

Chained hashing

29

hash(key) % n B | val

A | val

C | val
Buckets

Bucket
pointers

Insert A

Insert B

Insert C

Chained hashing

30

hash(key) % n B | val

A | val

C | val

Bucket
pointers

Insert A

Insert B

Insert C

Insert D
D | val

Extendible hashing
• Issues with chained-hashing:

● Linked list can grow forever (not space efficient + pointer chasing)

● Cannot have constant time lookups

• Extendible hashing is a variant of chained-hashing approach that splits

buckets incrementally instead of letting the linked list grow forever

• Use directory of pointers to buckets

● Double the number of buckets by doubling the directory, splitting only the

bucket that overflowed

● Data movement is localized to just the split chain

31

Extendible hashing: Example
• Bucket for record r has an entry with index =

 `global depth`-least significant bits of hash(r)

• E.g. directory is array of size 4 (global depth=2)

• If hash(r) = 5 ⇒ 101 in binary

● It is in bucket pointed to by 01

• If hash(r) = 7 ⇒ 111 in binary

● It is in bucket pointed by 11

32

Directory

2

00

01

10

11

4

2

12 32 16

1

1

5 7 13

10

2

Bucket A

Bucket B

Bucket C

Global
depth

Local
depth

Extendible hashing: Example (contd.)
• Assume Hash(x) = x for simplicity

• The location of the hash table corresponds to

the least significant bits (LSB) to point to a bin in

the directory table

● Global depth of 2: use 2 LSB of the hash function

• Each bucket has a local depth: LSB shared by all

bucket members, i.e., keys duplicate on at least n

bits

● Bucket A: All keys duplicate on the least

significant 2 bits

● Bucket B: All keys duplicate on the least

significant 1 bit 33

Directory

2

00

01

10

11

4

2

12 32 16

1

1

5 7 13

10

2

Bucket A

Bucket B

Bucket C

Global
depth

Local
depth

Extendible hashing: Inserts
• Find the bucket where record belongs

• If there is room, put the record there

• Else, if the bucket is full, split it:

● Increment the local depth of the original page

● Allocate a new page with new local depth

● Add entry for the new page to the directory

● Re-distribute records from the original page

• If the local depth > global depth:

● double the hash table size

● Remap pointers from the hash table to their respective bins based on the local depth

value

34

Extendible hashing: Insert 21 (10101)
• 21 (10101) goes to slot 01 pointing to bucket B

• Bucket B is full, increment the local depth by 1

• Allocate a new page (bucket D) with new local

depth

• Both 01 and 11 point to bucket B, we can move

key 7 (111) to Bucket D and update the hash

table pointer for 11 to point to bucket D

• Add 21 to bucket B

• Nothing to balance as all elements are already

distributed according to the global depth bits

35

Directory

2

00

01

10

11

4

2

12 32 16

1

1

5 7 13

10

2

Bucket A

Bucket B

Bucket C

Global
depth

Local
depth

2 Bucket D

7

21

2

Extendible hashing: Insert 19 (10011), 15 (01111)
• Both 19 and 15 will go to bucket D which has

enough space to accommodate

36

Directory

2

00

01

10

11

4

2

12 32 16

1

2

5 7 13

10

2

Bucket A

Bucket B

Bucket C

Global
depth

Local
depth

2 Bucket D

7

21

19 15

Extendible hashing: Insert 20 (10100)

37

Directory

2

00

01

10

11

4

2

12 32 16

1

2

5 7 13

10

2

Bucket A

Bucket B

Bucket C

2 Bucket D

7

21

19 15

Directory

3

000

001

010

011

4

3

12 32 16

1

2

5 7 13

10

2

Bucket A

Bucket B

Bucket C

2 Bucket D

7

21

19 15

100

101

110

111

3

2 Bucket A23Split image
of Bucket A 4 12 20

2 Bucket A23

4 12 20

Directory doubling
Can double directory size based on least or most-significant bits (LSB or MSB)

• LSB: directly append a new copy to the original page

• MSB: requires updating pointers for the earlier bins

→ Look at the colors of the bins

38

2

00

01

10

11

0

1

2

1

1

3

2

0

1

0

1

2

1

1

3

2

00

01

10

11

0

1

2

1

1

3

2

0

1

0

1

2

1

1

3

Least significant bits Most significant bits

Linear hashing: Overflow chains without directory
• The hash table maintains a pointer that tracks the next bucket to split

● When any bucket overflows, split the bucket the pointer points to!

• Avoids directory by using temporary overflow pages

• Avoids long overflow chains by choosing the bucket to split in a

round-robin fashion

• Seamlessly handles duplicates and collision

• Flexible in trading off performance for space usage

39

Linear hashing: Main idea
• Uses a family of hash functions h

0
,h

1
,h

2
,h

3
 … to find the right bucket for

a given key

● h
i+1

 doubles the range of h
i

• h
i
(key) = h(key)mod(2iN)

● N → Initial # buckets, h is a hash function

● Apply hash function h and look at the last d
i
 bits

• Example: N = 4

● h
0
(key) = h(key)mod(4)

● h
1
(key) = h(key)mod(8)

● h
2
(key) = h(key)mod(16)

40

Linear hashing: algorithm
The algorithm proceeds in rounds.

Current round number is the hashing level ("i" in previous slide)

• There are N
level

 (= N * 2level) buckets at the beginning of the round

• next is the bucket that will be split

● When any bucket overflows, split the next bucket and then increment next

• Buckets 0 to next-1 have been split; Buckets next to N
level

have not been split yet in this

round

• Rounds end when all initial buckets have been split, i.e., next = N
level

• To start the next round: increment level by 1 and reset the next to 0

41

Linear hashing: search algorithm
• To find a bucket for data entry r, find h

level
(r):

● If h
level

(r) >= next (i.e., h
level

(r) is a bucket that has not been involved in a split

(in this round) then r belongs in that bucket for sure

● Else, r could belong to bucket h
level

(r) OR bucket h
level

(r) + N
level

○ Must also apply h
level+1

(r) to find out

42

Linear hashing: insert algorithm
• First find the appropriate bucket

• If that bucket is full:

● Add overflow page and insert data entry

● Split next bucket and increment next

○ Note: This is likely NOT the bucket where the insertion happens

● To split a bucket, create a new bucket and use h
level+1

 to re-distribute entries

• Since buckets are split in a round-robin fashion, long overflow chains do not occur

43

Linear hashing illustration

44

8
20

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Linear hashing illustration

45

8
20

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Linear hashing illustration

46

8
20

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1

Linear hashing illustration

47

8
20

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 117

overflow

Linear hashing illustration

48

8
20

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 117

overflow

hash(key) = key % 2n

Linear hashing illustration

49

8
20

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 117

overflow

hash(key) = key % 2n

4

Linear hashing illustration

50

20
8

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0

17

overflow

hash(key) = key % 2n

4

Linear hashing illustration

51

8

next

0

1

2

3

5
9

13

6

7
11

20

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

17

overflow

hash(key) = key % 2n

4

Linear hashing illustration

52

8

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

17

overflow

hash(key) = key % 2n

4

20

Linear hashing illustration

53

8

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

17

overflow

hash(key) = key % 2n

4

20

Linear hashing illustration

54

8

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

17

overflow

hash(key) = key % 2n

4

20

Search for 20
hash(20) = 20 % 4 = 0

Linear hashing illustration

55

8

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

17

overflow

hash(key) = key % 2n

4

20

Search for 20
hash(20) = 20 % 4 = 0
hash(20) = 20 % 8 = 4

Linear hashing illustration

56

8

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

17

overflow

hash(key) = key % 2n

4

20

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

Search for 20
hash(20) = 20 % 4 = 0
hash(20) = 20 % 8 = 4

Search for 9
hash(9) = 9 % 4 = 1

Linear hashing illustration

57

8

next

0

1

2

3

5
9

13

6

7
11

hash(key) = key % n

17

overflow

hash(key) = key % 2n

4

20

Search for 6
hash(6) = 6 % 4 = 2

Insert 17
hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

Search for 20
hash(20) = 20 % 4 = 0
hash(20) = 20 % 8 = 4

Search for 9
hash(9) = 9 % 4 = 1

Linear hashing: Resizing
• The splitting bucket strategy (based on the split pointer) will eventually reach all

overflowed buckets

● When the next pointer reaches the last slot, remove the old hash function and move

assign the pointer back to the first bucket

58

Linear hashing: why do we need it?
• Handles data insertion in a more gradual and controlled fashion

• Spreads the rehashing across insertions (more concurrency)

● Only one bin/page is rehashed at a time…
● …while other threads can access other parts of the table

● Better than extendible hashing: it needs to rehash only when the global-depth changes

• Good for cases where dataset size changes over time

• But:

● Needs a good hash function

● Increased access time due to overflow tables

59

Summary of hash table indexes
• Hash-based indexes are best for equality searches but do not support range

searches

• Static hashing can lead to long overflow chains

• Extendible hashing

● Avoids overflow pages by splitting a full bucket when a new data entry is to be added

to it

● Directory can keep track of buckets, doubles periodically

● Can get large with skewed data; additional IO if the table does not fit in main memory

60

• Hash-based indexes

• Sorting

Today’s focus

61

DBMS bigger picture

62

How DBMS executes queries using

the DBMS components, when data

can be unsorted
next

Queries

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

• A DBMS does not assume that a table fits entirely in main memory, a disk-oriented

DBMS cannot assume that a query result can fit in memory

• We use the buffer pool to implement algorithms that need to spill to disk

• We prefer algorithms that maximize the amount of sequential IO

● Better utilization of disk (sequential IO > random IO)

Disk-oriented DBMS

63

• Relational model/SQL is unsorted

• Queries may request that tuples are sorted in a specific way (ORDER BY)

• But even if a query does not specify an order, we may still want to sort to do other

things:

● Remove duplicates (DISTINCT)

● Bulk sorted tuples into B+-tree index is faster

● Aggregations (GROUP BY)

• Sorting in memory: well-studied problem (quicksort, heapsort)

• In DBMS: sort 100 GB with 100 MB of memory

Need for sorting data

64

• 2-way external sorting

• General external sorting and performance analysis

• Using B+-trees for sorting

Sorting

65

• A simple example of a 2-way external (merge) sort

• “2” is the number of runs that we are going to merge into a new run for each

pass

• Data is broken up into N pages

• DBMS has a finite number of B buffer pool pages to hold input and output data

2-way external sort

66

Pass #0

• Read one page of the table into memory

• Sort the page into a “run” and write it back to disk

• Repeat until the whole table has been sorted into runs

Pass #1,2,3 …
• Recursively merge pairs of runs into runs twice as long

• Needs at least 3 buffer pages (2 for input and 1 for output)

Simplified 2-way external sort

67

Simplified 2-way external sort
• In each pass, we read and

write every page in the file

• Number of passes

= 1 + ⌈log
2
N⌉

• Total IO cost

= 2N *(1 + ⌈log
2
N⌉)

Idea: Divide and conquer: sort

subfiles and merge
68

3, 4 6, 2 9, 4 8, 7 5, 6 3, 1 2 Ø

3, 4 2, 6 4, 9 7, 8 5, 6 1, 3 2 Ø

2, 3
4, 6

4, 7
8, 9

1, 3
5, 6

2
Ø

2, 3
4, 4
6, 7
8, 9

1, 2
3, 5

6
Ø

1, 2
2, 3
3, 4
4, 5
6, 6
7, 8

9
Ø

Pass #0

Pass #1

Pass #2

Pass #3

1-page run

2-page runs

4-page runs

8-page runs

Pass #0

• Use B buffer pages

• Produce ⌈N/B⌉ sorted runs of size B

Pass #1,2,3 …
• Merge B-1 runs (i.e., k-way merge)

Number of passes = 1 + ⌈log
B-1
⌈N/B⌉⌉

Total I/O cost = 2N*(1 + ⌈log
B-1
⌈N/B⌉⌉)

General external sort

69

Determine how many passes it takes to sort 108 pages with 5 buffer pool pages

N = 108, B = 5

• Pass #0: ⌈N/B⌉ = ⌈108/5⌉ = 22 sorted runs of 5 pages each (last run is 3

pages)

• Pass #1: ⌈N’/B-1⌉ = ⌈22/4⌉ = 6 sorted runs of 20 pages each (last run is 8

pages)

• Pass #2: ⌈N”/B-1⌉ = ⌈6/4⌉ = 2 sorted runs of 80 pages and 28 pages

• Pass #3: Sorted file of 108 pages

1 + ⌈log
B-1
⌈N/B⌉⌉ = 1 + ⌈log

4
⌈22⌉⌉ = 1 + ⌈2.229⌉ = 4 passes

General external sort: example

70

• Prefetch the next run in the background and store it in a second buffer while the

system is processing the current run

• Reduces the wait time for IO requests at each step by overlapping disk transfer

time with computation

Double buffering optimization

71

• Prefetch the next run in the background and store it in a second buffer while the

system is processing the current run

● Overlaps CPU and IO operations

• Reduces the effective “B” by half

• Reduces the response time

Double buffering optimization

72

Page

Page

Page

Page Page

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

merged page

merged page

Sorted runSorted runSorted run

Sorted runSorted runSorted run

Page

Page

Page

• If the table that must be sorted already has a B+ Tree index on the sort attribute(s),

then we can use that to accelerate sorting

• Retrieve records in desired sort order by simply traversing the leaf pages of the tree

• Consider the case:

● Clustered B+ Tree: Good idea

● Unclustered B+ Tree: Could be a very bad idea

Using B+ Tree for sorting

73

• Traverse to the left-most leaf page, and then

retrieve records from all leaf pages

• This is always better than external sorting:

● No computational cost

● All disk accesses are sequential

Sort Using a Clustered B+ Tree…

74

101 102 103 104

Record pages

• Chase each pointer to the page that contains the data

• Worst case, one I/O per data record

• Always a bad idea! Instead, sorting is a better idea

…or Sort Using an Unclustered B+ Tree

75

101 102 103 104

Record pages

External sorting: summary
• Sorting a file while optimizing for I/O is very useful for query processing

• External merge sort minimizes disk I/O cost as follows:

● # runs merged at a time depends on B and block size

● Larger block size: lower I/O cost and smaller number of runs merged

● In practise, # of runs rarely more than 2 or 3

• Choice of internal sort affects the performance

● Quicksort is better, heap is slower (2x)

• Clustered B+Tree is good for sorting

• Unclustered B+Tree is usually very bad

76

Number of passes of external sort

77

N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

