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• Hash-based indexes

• Sorting

Today’s focus
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DBMS big picture 
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Queries

DB

Query Optimization 
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Support DBMS execution engine to 

read/write data from pages!

Two types of data structures:

1. Trees (ordered)

2. Hash tables (unordered)



• A hash table implements an unordered associative array that maps keys to values

• It uses a hash function to compute an offset into this array for a given key, from 

which the desired value can be found

• Space complexity: O(n)

• Time complexity:

● Average: O(1)

● Worst: O(n)

• Why study hashing?

● Beneficial if you have only equality selections

● Very useful in join implementations

Hash tables
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• Hash file is a collection of buckets

• Bucket is a collection of pages

● 1 primary page and possible one or more overflow pages

• hash(key) % n → bucket to which data entry with key key belongs (n → # of 

buckets)

Static hash table
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• N is fixed, primary pages allocated sequentially, never de-allocated; overflow pages 
if needed.

•  Long overflow chains can develop and degrade performance.  
●  Extendible and Linear Hashing fix this problem.

Static hash table
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• Assumption #1: Number of elements is known ahead of time and fixed

• Assumption #2: Each key is unique

• Assumption #3: Perfect hash function guarantees no collision

● If key1 != key2 then

hash (key1) != hash (key2)

Unrealistic assumptions
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• Design decision #1: Hash function

● Accepts a (fixed- or variable-length) value as input and produces a fixed-sized value 

output which (ideally) uniquely represents the input

● Objective: map a large key space into a smaller domain

● Trade-off between being fast vs. collision rate

• Design decision #2: Hashing scheme

● How to handle key collisions after hashing

● Trade-off between allocating a large hash table vs.

additional instructions to get/put keys

Hash tables
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• Hash functions

• Static hashing schemes

• Dynamic hashing schemes

Hashing
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• For any input key, return an integer representation of the key

● Hash function works on search key field of record r

● % n distributes values over range 0 .. n - 1

● hash(key) = (a * key + b) usually works well; a and b are constants 

• Hashing should be fast and have a low collision rate

• Known hash functions:

● CRC-64: Used in networking for error detection

● MurmurHash: fast, general-purpose hash function 

● CityHash: for strings, faster for short keys (<64 bytes)

● XXHash: very fast parallel hashing

Hash functions
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• Approach #1: Linear probe hashing

• Several other schemes exist:

● Cuckoo hashing

● Hopscotch hashing

● Robin hood hashing

● Swiss tables

Static hashing schemes
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• A method of open addressing (aka closed hashing) collision resolution

● Search through alternative locations in the array (the probe sequence) until either the 
target or an unused array slot is found (search key does not exist), 

• Quadratic probing: interval between probes increases linearly (eg a quadratic 
function)

• Double hashing: fixed search interval but computed by another hash function.
• Linear probing: search in fixed intervals (eg =1): Single giant table of slots

• Resolve collisions by linearly searching for the next free slot in the table

● To determine presence of an element, hash to a location in the index and scan for it

● Must store the key in the index to know when to stop scanning

● Insertions and deletions are generalizations of lookup

Linear probe hashing
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Linear probe hashing
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Linear probe hashing
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Linear probe hashing

15

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

C | val

page 1

page 2

page 3

page 5

page 6

page 7

hash(key) % n

A

B

C

D

E

F



Linear probe hashing
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Linear probe hashing
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Linear probe hashing: DELETE
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Linear probe hashing: DELETE

19

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

B | val

A | val

page 1

page 2

page 3

page 5

page 6

page 7

D | val

E | val

hash(key) % n

A

B

C

D

E

F

Delete

Approach: Tombstone
● Set a marker to indicate that 

the entry in the slot is 
logically deleted

● Reuse the slot for new keys
● May need periodic garbage 

collection



Linear probe hashing: DELETE
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Linear probe hashing: DELETE
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Linear probe hashing: INSERT
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• Approach #1: Separate linked list

● Store values in separate storage area for each key

● Value lists can overflow to multiple pages if the 

number of duplicate pages is large

Non-unique keys
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• Approach #1: Separate linked list

● Store values in separate storage area for each key

● Value lists can overflow to multiple pages if the 

number of duplicate pages is large

• Approach #2: Redundant keys

● Store duplicate keys entries together in the hash 

table

● Several systems use this approach

Non-unique keys
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• Requires the DBMS to know the number of elements it wants to store

● Otherwise, it must rebuild the table to grow/shrink it in size

● This process is costly: Index is blocked and reading/writing all pages is expensive

• Dynamic hash tables incrementally resize themselves when needed

● Chained hashing

● Extendible hashing

● Linear hashing

Issues with static hash table
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• Maintain a linked list of buckets for each slot in the hash table 

• Maintain a directory of pointers to buckets

• Resolve collision by placing all elements with the same hash key into the same 

bucket

● To determine whether an element is present, hash to its bucket and scan for it

● Insertions and deletions are generalizations of lookups

Chained hashing
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Chained hashing
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Chained hashing
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Chained hashing
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Chained hashing
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Extendible hashing
• Issues with chained-hashing:

● Linked list can grow forever (not space efficient + pointer chasing)

● Cannot have constant time lookups

• Extendible hashing is a variant of chained-hashing approach that splits 

buckets incrementally instead of letting the linked list grow forever

• Use directory of pointers to buckets

● Double the number of buckets by doubling the directory, splitting only the 

bucket that overflowed

● Data movement is localized to just the split chain
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Extendible hashing: Example
• Bucket for record r has an entry with index =

      `global depth`-least significant bits of hash(r)

• E.g. directory is array of size 4 (global depth=2)

• If hash(r) = 5 ⇒ 101 in binary

● It is in bucket pointed to by 01

• If hash(r) = 7 ⇒ 111 in binary

● It is in bucket pointed by 11
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Extendible hashing: Example (contd.)
• Assume Hash(x) = x for simplicity

• The location of the hash table corresponds to 

the least significant bits (LSB) to point to a bin in 

the directory table

● Global depth of 2: use 2 LSB of the hash function

• Each bucket has a local depth: LSB shared by all 

bucket members, i.e., keys duplicate on at least n 

bits

● Bucket A: All keys duplicate on the least 

significant 2 bits

● Bucket B: All keys duplicate on the least 

significant 1 bit 33

Directory

2

00

01

10

11

4

2

12 32 16

1

1

5 7 13

10

2

Bucket A

Bucket B

Bucket C

Global 
depth

Local 
depth



Extendible hashing: Inserts
• Find the bucket where record belongs

• If there is room, put the record there

• Else, if the bucket is full, split it:

● Increment the local depth of the original page

● Allocate a new page with new local depth

● Add entry for the new page to the directory

● Re-distribute records from the original page

• If the local depth > global depth:

● double the hash table size

● Remap pointers from the hash table to their respective bins based on the local depth 

value 
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Extendible hashing: Insert 21 (10101)
• 21 (10101) goes to slot 01 pointing to bucket B

• Bucket B is full, increment the local depth by 1

• Allocate a new page (bucket D) with new local 

depth

• Both 01 and 11 point to bucket B, we can move 

key 7 (111) to Bucket D and update the hash 

table pointer for 11 to point to bucket D

• Add 21 to bucket B

• Nothing to balance as all elements are already 

distributed according to the global depth bits
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Extendible hashing: Insert 19 (10011), 15 (01111)
• Both 19 and 15 will go to bucket D which has 

enough space to accommodate
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Extendible hashing: Insert 20 (10100)
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Directory doubling
Can double directory size based on least or most-significant bits (LSB or MSB)

• LSB: directly append a new copy to the original page

• MSB: requires updating pointers for the earlier bins

→ Look at the colors of the bins
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Linear hashing: Overflow chains without directory
• The hash table maintains a pointer that tracks the next bucket to split

● When any bucket overflows, split the bucket the pointer points to!

• Avoids directory by using temporary overflow pages

• Avoids long overflow chains by choosing the bucket to split in a 

round-robin  fashion

• Seamlessly handles duplicates and collision

• Flexible in trading off performance for space usage
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Linear hashing: Main idea
• Uses a family of hash functions h

0
,h

1
,h

2
,h

3
 … to find the right bucket for 

a given key

● h
i+1

 doubles the range of h
i 

• h
i
(key) = h(key)mod(2iN)

● N → Initial # buckets, h is a hash function

● Apply hash function h and look at the last d
i
 bits

• Example: N = 4

● h
0
(key) = h(key)mod(4)

● h
1
(key) = h(key)mod(8)

● h
2
(key) = h(key)mod(16)
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Linear hashing: algorithm
The algorithm proceeds in rounds. 

Current round number is the hashing level ("i" in previous slide)

• There are N
level

 (= N * 2level) buckets at the beginning of the round

• next is the bucket that will be split

● When any bucket overflows, split the next bucket and then increment next

• Buckets 0 to next-1 have been split; Buckets next to N
level 

have not been split yet in this 

round 

• Rounds end when all initial buckets have been split, i.e., next = N
level

• To start the next round: increment level by 1 and reset the next to 0
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Linear hashing: search algorithm
• To find a bucket for data entry r, find h

level
(r):

● If h
level

(r) >= next (i.e., h
level

(r) is a bucket that has not been involved in a split 

(in this round) then r belongs in that bucket for sure

● Else, r could belong to bucket h
level

(r) OR bucket h
level

(r) + N
level

○ Must also apply h
level+1

(r) to find out
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Linear hashing: insert algorithm
• First find the appropriate bucket 

• If that bucket is full:

● Add overflow page and insert data entry

● Split next bucket and increment next

○ Note: This is likely NOT the bucket where the insertion happens

● To split a bucket, create a new bucket and use h
level+1

 to re-distribute entries

• Since buckets are split in a round-robin fashion, long overflow chains do not occur
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing illustration
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Linear hashing: Resizing
• The splitting bucket strategy (based on the split pointer) will eventually reach all 

overflowed buckets

● When the next pointer reaches the last slot, remove the old hash function and move 

assign the pointer back to the first bucket
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Linear hashing: why do we need it?
• Handles data insertion in a more gradual and controlled fashion

• Spreads the rehashing across insertions (more concurrency)

● Only one bin/page is rehashed at a time…
● …while other threads can access other parts of the table

● Better than extendible hashing: it needs to rehash only when the global-depth changes

• Good for cases where dataset size changes over time

• But:

● Needs a good hash function

● Increased access time due to overflow tables
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Summary of hash table indexes
• Hash-based indexes are best for equality searches but do not support range 

searches

• Static hashing can lead to long overflow chains

• Extendible hashing

● Avoids overflow pages by splitting a full bucket when a new data entry is to be added 

to it

● Directory can keep track of buckets, doubles periodically

● Can get large with skewed data; additional IO if the table does not fit in main memory
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• Hash-based indexes

• Sorting

Today’s focus
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DBMS bigger picture 
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• A DBMS does not assume that a table fits entirely in main memory, a disk-oriented 

DBMS cannot assume that a query result can fit in memory

• We use the buffer pool to implement algorithms that need to spill to disk

• We prefer algorithms that maximize the amount of sequential IO

● Better utilization of disk (sequential IO > random IO)

Disk-oriented DBMS
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• Relational model/SQL is unsorted

• Queries may request that tuples are sorted in a specific way (ORDER BY)

• But even if a query does not specify an order, we may still want to sort to do other 

things:

● Remove duplicates (DISTINCT)

● Bulk sorted tuples into B+-tree index is faster

● Aggregations (GROUP BY)

• Sorting in memory: well-studied problem (quicksort, heapsort)

• In DBMS: sort 100 GB with 100 MB of memory

Need for sorting data
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• 2-way external sorting

• General external sorting and performance analysis

• Using B+-trees for sorting

Sorting
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• A simple example of a 2-way external (merge) sort

• “2” is the number of runs that we are going to merge into a new run for each 

pass

• Data is broken up into N pages

• DBMS has a finite number of B buffer pool pages to hold input and output data

2-way external sort

66



Pass #0

• Read one page of the table into memory

• Sort the page into a “run” and write it back to disk

• Repeat until the whole table has been sorted into runs

Pass #1,2,3 …
• Recursively merge pairs of runs into runs twice as long

• Needs at least 3 buffer pages (2 for input and 1 for output)

Simplified 2-way external sort
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Simplified 2-way external sort
• In each pass, we read and 

write every page in the file

• Number of passes

= 1 + ⌈log
2
N⌉

• Total IO cost

= 2N *(1 + ⌈log
2
N⌉)

Idea: Divide and conquer: sort 

subfiles and merge
68
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Pass #0

• Use B buffer pages

• Produce ⌈N/B⌉ sorted runs of size B

Pass #1,2,3 …
• Merge B-1 runs (i.e., k-way merge)

Number of passes = 1 + ⌈log
B-1
⌈N/B⌉⌉

Total I/O cost = 2N*(1 + ⌈log
B-1
⌈N/B⌉⌉)

General external sort
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Determine how many passes it takes to sort 108 pages with 5 buffer pool pages

N = 108, B = 5

• Pass #0: ⌈N/B⌉ = ⌈108/5⌉ = 22 sorted runs of 5 pages each (last run is 3 

pages)

• Pass #1: ⌈N’/B-1⌉ = ⌈22/4⌉ = 6 sorted runs of 20 pages each (last run is 8 

pages)

• Pass #2: ⌈N”/B-1⌉ = ⌈6/4⌉ = 2 sorted runs of 80 pages and 28 pages

• Pass #3: Sorted file of 108 pages

1 + ⌈log
B-1
⌈N/B⌉⌉ = 1 + ⌈log

4
⌈22⌉⌉ = 1 + ⌈2.229⌉ = 4 passes

General external sort: example
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• Prefetch the next run in the background and store it in a second buffer while the 

system is processing the current run

• Reduces the wait time for IO requests at each step by overlapping disk transfer 

time with computation

Double buffering optimization
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• Prefetch the next run in the background and store it in a second buffer while the 

system is processing the current run

● Overlaps CPU and IO operations

• Reduces the effective “B” by half

• Reduces the response time

Double buffering optimization
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• If the table that must be sorted already has a B+ Tree index on the sort attribute(s), 

then we can use that to accelerate sorting

• Retrieve records in desired sort order by simply traversing the leaf pages of the tree

• Consider the case:

● Clustered B+ Tree: Good idea

● Unclustered B+ Tree: Could be a very bad idea

Using B+ Tree for sorting
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• Traverse to the left-most leaf page, and then 

retrieve records from all leaf pages

• This is always better than external sorting:

● No computational cost

● All disk accesses are sequential

Sort Using a Clustered B+ Tree…
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• Chase each pointer to the page that contains the data

• Worst case, one I/O per data record

• Always a bad idea! Instead, sorting is a better idea

…or Sort Using an Unclustered B+ Tree
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External sorting: summary
• Sorting a file while optimizing for I/O is very useful for query processing

• External merge sort minimizes disk I/O cost as follows:

● # runs merged at a time depends on B and block size

● Larger block size: lower I/O cost and smaller number of runs merged

● In practise, # of runs rarely more than 2 or 3

• Choice of internal sort affects the performance

● Quicksort is better, heap is slower (2x)

• Clustered B+Tree is good for sorting

• Unclustered B+Tree is usually very bad
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Number of passes of external sort
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N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4


