CS5-300: Data-Intensive Systems

Hashing & Sorting

(Chapters 14.5, 15.4, 24.5)

Prof. Anastasia Ailamaki, Prof. Sanidhya Kashyap

=Pi-L

Today’s focus

e Hash-based indexes

e Sorting

DBMS big picture

r

Queries Query Optimization
and Execution

Support DBMS execution engine to

read/write data from pages! ,
/ Pdg Relational Operators

next Files and Access Methods
Two types of data structures:

Buffer Management

1. Trees (ordered)
2. Hash tables (unordered) Disk Space Management

Hash tables

A hash table implements an unordered associative array that maps keys to values
It uses a hash function to compute an offset into this array for a given key, from
which the desired value can be found
Space complexity: O(n)

Hash Mechanism

Time complexity:

® Average: O(1) »f(X)->

Hash Function

e Worst: O(n) Hash Table

Why study hashing?

e Beneficial if you have only equality selections

N | AW N |- O

e Very useful in join implementations

Static hash table

e Hash file is a collection of buckets

e Bucket is a collection of pages
e 1 primary page and possible one or more overflow pages

e hash(key) % n — bucket to which data entry with key key belongs (n — # of
buckets)

hash(key) mod N

key _ s e e e
L¥G

N-1 |

Primary bucket pages Overflow pages

e © o

Static hash table

e N is fixed, primary pages allocated sequentially, never de-allocated; overflow pages
if needed.

e |ong overflow chains can develop and degrade performance.
e [xtendible and Linear Hashing fix this problem.

hash(key) mod N

key] y e s s
—(®)

N-1 .

Primary bucket pages Overflow pages

© o © o

Unrealistic assumptions

e Assumption #1: Number of elements is known ahead of time and fixed
e Assumption #2: Each key is unique

e Assumption #3: Perfect hash function guarantees no collision
e If keyl !=key2 then
hash (key1) != hash (key2)

Hash tables

e Design decision #1: Hash function

® Accepts a (fixed- or variable-length) value as input and produces a fixed-sized value
output which (ideally) uniquely represents the input
® Objective: map a large key space into a smaller domain

e Trade-off between being fast vs. collision rate

e Design decision #2: Hashing scheme
e How to handle key collisions after hashing
e Trade-off between allocating a large hash table vs.

additional instructions to get/put keys

Hashing

e Hash functions
e Static hashing schemes

e Dynamic hashing schemes

Hash functions

e For any input key, return an integer representation of the key

Hash function works on search key field of record r
% n distributes values over range0..n-1

hash(key) =(a * key + b) usually works well; a and b are constants

e Hashing should be fast and have a low collision rate

e Known hash functions:

CRC-64: Used in networking for error detection
MurmurHash: fast, general-purpose hash function
CityHash: for strings, faster for short keys (<64 bytes)
XXHash: very fast parallel hashing

10

Static hashing schemes

e Approach #1: Linear probe hashing

e Several other schemes exist:

Cuckoo hashing
Hopscotch hashing
Robin hood hashing

Swiss tables

11

Linear probe hashing

A method of open addressing (aka closed hashing) collision resolution

Search through alternative locations in the array (the probe sequence) until either the
target or an unused array slot is found (search key does not exist),

Quadratic probing: interval between probes increases linearly (eg a quadratic
function)

Double hashing: fixed search interval but computed by another hash function.
Linear probing: search in fixed intervals (eg =1): Single giant table of slots

Resolve collisions by linearly searching for the next free slot in the table
To determine presence of an element, hash to a location in the index and scan for it
Must store the key in the index to know when to stop scanning

Insertions and deletions are generalizations of lookup

12

Linear probe hashing

hash(key) % n

-

A | val

- m O O

<key> | <value>

13

Linear probe hashing

hash(key) % n

B | val

S

A | val

- m O O

14

Linear probe hashing

hash(key) % n
B | val
A
L > A val
C | val

- m O O

15

Linear probe hashing

hash(key) % n

B | val

A
A | val

C
- —> C | val

D
D | val

E

F

Linear probe hashing

hash(key) % n

B | val
A

A | val
C

C | val
D

D | val
E

E | val
F

Linear probe hashing: DELETE

hash(key) % n Approach: Tombstone

B | val ® Seta marl-<er to |nd|c.ate that
the entry in the slot is
logically deleted

® Reuse the slot for new keys

B
—> A | val
Delete » C — e May need periodic garbage
5 collection

18

Linear probe hashing: DELETE

hash(key) % n

B | val

A

B
P —> A val

D
D | val

E
E | val

Approach: Tombstone

® Set a marker to indicate that
the entry in the slot is
logically deleted

® Reuse the slot for new keys

e May need periodic garbage
collection

19

Linear probe hashing: DELETE

hash(key) % n Approach: Tombstone
B | val ® Set a marker to indicate that
A the entry in the slot is
logically deleted
A | val ® Reuse the slot for new keys
C e May need periodic garbage
collection
Get W D — _
D | val
E
E | val

20

Linear probe hashing: DELETE

hash(key) % n Approach: Tombstone
B | val ® Set a marker to indicate that
A the entry in the slot is
logically deleted
A | val ® Reuse the slot for new keys
C e May need periodic garbage
Q collection
D
D | val
E

E | val
Insert » F |

21

Linear probe hashing: INSERT

hash(key) % n Approach: Tombstone
B | val ® Set a marker to indicate that
A the entry in the slot is
logically deleted
Al val ® Reuse the slot for new keys
C e May need periodic garbage
F | val collection
D
D | val
E

E | val
Insert » F

22

Non-unique keys

e Approach #1: Separate linked list
e Store values in separate storage area for each key
e Value lists can overflow to multiple pages if the

number of duplicate pages is large

value 1
XYZ @—

value 2
ABC value 3

value 1

value 2

23

Non-unique keys

e Approach #1: Separate linked list
e Store values in separate storage area for each key
e Value lists can overflow to multiple pages if the

number of duplicate pages is large

e Approach #2: Redundant keys

e Store duplicate keys entries together in the hash
table

® Several systems use this approach

XYZ
ABC

XYZ | value2
ABC | value 1
XYZ | value 3
XYZ | value 1
ABC | value 2

value 1
value 2
value 3

value 1

value 2

24

Issues with static hash table

e Requires the DBMS to know the number of elements it wants to store
e Otherwise, it must rebuild the table to grow/shrink it in size

e This process is costly: Index is blocked and reading/writing all pages is expensive

e Dynamic hash tables incrementally resize themselves when needed
® Chained hashing
e Extendible hashing

® Linear hashing

25

Chained hashing

e Maintain a linked list of buckets for each slot in the hash table

e Maintain a directory of pointers to buckets

e Resolve collision by placing all elements with the same hash key into the same
bucket

e To determine whether an element is present, hash to its bucket and scan for it

® Insertions and deletions are generalizations of lookups

26

Chained hashing

hash(key) % n

Insert A

Bucket
pointers

—

A | val

Buckets

27

Chained hashing

hash(key) % n
Insert A Bl.leet
pointers

Insert B Q\

B | val

A | val

Buckets

28

Chained hashing

hash(key) % n B | val
Insert A Bl.leet
Insert B pointers

A | val

Insert C 0\

—

C | val

) Buckets

29

Chained hashing

hash(key) % n B [val
Insert A Blkaet
Insert B pointers
Insert C A | val

InsertD @—>

—

C | val

D | val

30

Extendible hashing

e |ssues with chained-hashing:

® Linked list can grow forever (not space efficient + pointer chasing)

® Cannot have constant time lookups

e Extendible hashing is a variant of chained-hashing approach that splits
buckets incrementally instead of letting the linked list grow forever

e Use directory of pointers to buckets

e Double the number of buckets by doubling the directory, splitting only the
bucket that overflowed

e Data movement is localized to just the split chain

31

Extendible hashing: Example

e Bucket for record r has an entry with index =
‘global depth’-least significant bits of hash(r)
e E.g.directory is array of size 4 (global depth=2)

If hash(r) =5 = 101 in binary

It is in bucket pointed to by 01

If hash(r) =7 = 111 in binary

It is in bucket pointed by 11

00
01
10
11

Global
depth

Directory

2

depth

(2 Bucket A

4

1

1

2

10

Local

12

5

32

Bucket B

7

Bucket C

16

13

32

Extendible hashing: Example (contd.)

Global Local
e Assume Hash(x) = x for simplicity depth depth

e The location of the hash table corresponds to
the least significant bits (LSB) to point to a bin in Directory

16
the directory table /
. Bucket B
e Global depth of 2: use 2 LSB of the hash function 00

13
e Each bucket has a local depth: LSB shared by all 01

bucket members, i.e., keys duplicate on at least n 10 2 Bucket C
: 11 10
bits

Bucket A

e Bucket A: All keys duplicate on the least
significant 2 bits
e Bucket B: All keys duplicate on the least
significant 1 bit 33

Extendible hashing: Inserts

e Find the bucket where record belongs

e If thereisroom, put the record there

e Else, if the bucket is full, split it:
® Increment the local depth of the original page
e Allocate a new page with new local depth
e Add entry for the new page to the directory
e Re-distribute records from the original page
e If the local depth > global depth:
e double the hash table size

e Remap pointers from the hash table to their respective bins based on the local depth

value

34

Extendible hashing: Insert 21 (10101)

Global Local
e 21(10101) goes to slot 01 pointing to bucket B depth depth
e Bucket B is full, increment the local depth by 1 . (2 Sucket A
e Allocate a new page (bucket D) with new local Directory s | 2] 52 | 16
depth ; /
. 2 Bucket B
e Both 01 and 11 point to bucket B, we can move 00
s @) s
key 7 (111) to Bucket D and update the hash
table pointer for 11 to point to bucket D 10 2 Bucket €
11
e Add 21 to bucket B >
e Nothing to balance as all elements are already 5 Bucket D
distributed according to the global depth bits 7

35

Extendible hashing: Insert 19 (10011), 15 (01111)

e Both 19 and 15 will go to bucket D which has

enough space to accommodate

00
01
10

Global Local
depth depth
(z Bucket A
Directory
4 12 32 16
2
/ 2 Bucket B
-/> 1 5 | 21 | 13
\ 2 Bucket C
10
Bucket D

~ N

19

15

36

Extendible hashing: Insert 20 (10100)

3 Bucket A
Directory
32 16
2
2 Bucket B
1 | 5 | 21| 13
10 2 Bucket C
11 10
2 Bucket D
Y 7 19 | 15
Split image 3 Bucket A2
of Bucket A a | 12| 20

=)

000
001
010
011
100
101
110
111

Directory

3 Bucket A

4 12 32 16
2 Bucket B

1 5 | 21 | 13
2 Bucket C

10

2 Bucket D

7 19 15

3 Bucket A2

4 12 | 20

37

Directory doubling

Can double directory size based on least or most-significant bits (LSB or MSB)
e |SB: directly append a new copy to the original page
e MSB: requires updating pointers for the earlier bins

— Look at the colors of the bins

Least significant bits Most significant bits
1 1 1
0 | 2 00 0 | 2 0 0 | 2
01
. 10 1 1
1 3 11 1 3 1 3

38

Linear hashing: Overflow chains without directory

e The hash table maintains a pointer that tracks the next bucket to split

e When any bucket overflows, split the bucket the pointer points to!

e Avoids directory by using temporary overflow pages
e Avoids long overflow chains by choosing the bucket to split in a

round-robin fashion

e Seamlessly handles duplicates and collision

e Flexible in trading off performance for space usage

Linear hashing: Main idea

e Uses a family of hash functions h@,hl,hz,h3 ... to find the right bucket for
a given key

e h, doublestherangeof h,

e h,(key) = h(key)mod(2'N)

e N — Initial # buckets, h is a hash function

e Apply hash function h and look at the last di bits
e Example:N = 4

e h (key) = h(key)mod(4)

e h (key) = h(key)mod(8)

e h (key) = h(key)mod(16)

40

Linear hashing: algorithm

The algorithm proceeds in rounds.
Current round number is the hashing level ("i" in previous slide)
e ThereareN _ (=N *2'**) buckets at the beginning of the round
e next is the bucket that will be split
e When any bucket overflows, split the next bucket and then increment next
* Buckets 0 to next-1 have been split; Buckets next to N, have not been split yet in this

round

e Rounds end when all initial buckets have been split, i.e., next = N .o

e To start the next round: increment level by 1 and reset the next to O

41

Linear hashing: search algorithm

e To find a bucket for data entry r, find hlevel(r):

o Ifh__[(r)>=next(ie,h _(r)isabucketthathasnotbeen involved in a split

(in this round) then r belongs in that bucket for sure

® Else, rcould belong to bucketh _(r) OR bucketh _(r)+N

el e level

o Mustalso apply h_ . (r) to find out

42

Linear hashing: insert algorithm

e First find the appropriate bucket

e |f that bucket is full:
e Add overflow page and insert data entry
e Split next bucket and increment next
o Note: This is likely NOT the bucket where the insertion happens

® To split a bucket, create a new bucket and use h,_ .. to re-distribute entries

e Since buckets are split in a round-robin fashion, long overflow chains do not occur

43

Linear hashing illustration

next

B

v

)

hash(key) = key % n

Search for 6

hash(6)

=6 %4 =2

-

Linear hashing illustration
Search for 6

8 hash(6) = 6 % 4 = 2

next

= O
Y
w °

|

|

|

|

|

|

!

|
2| e
|

| 3
|

|

|

hash(key) = key % n

Y
HN

Linear hashing illustration
Search for 6

8 hash(6) = 6 % 4 = 2
20
Insert 17
next hash(17) = 17 % 4 = 1
—> 0
2 - —>

- s

hash(key) = key % n

46

Linear hashing illustration
Search for 6

8 hash(6) = 6 % 4 = 2
20
Insert 17
next 5 17 haSh(17) =17 % 4 = 1

9 B .

/ -

—> 0
6 overflow
2 - —>

-

w
[ERY
= N

hash(key) = key % n

47

Linear hashing illustration
Search for 6

E hash(6) = 6 % 4 = 2
Insert 17

5 17 hash(17) = 17 % 4 = 1

9 - = >
/ 13
6 overflow
___J"~\\\\\\§). 7
11

hash(key) = key % n

next

v

W N B O

hash(key) = key % 2n

48

Linear hashing illustration

next

H W N = O

Search for 6
hash(6) = 6 % 4 = 2

Insert 17

\

hash(key) = key % n

hash(key) = key % 2n

- >

17 hash(17) = 17 % 4 = 1

overflow

49

Linear hashing illustration

Search for 6

next

W

v

H W N = O

hash(key) = key % n

-

hash(key) = key % 2n

hash(6) = 6 % 4 = 2
Insert 17

17 hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0

overflow

50

Linear hashing illustration

Search for 6

next

N

v

w N = O

hash(key) = key % n

J

hash(key) = key % 2n

hash(6) = 6 % 4 = 2
Insert 17

17 hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

overflow

51

Linear hashing illustration

8

Search for 6

next

W

v

w N = O

hash(key) = key % n

J

20

hash(key) = key % 2n

hash(6) = 6 % 4 = 2
Insert 17

17 hash(17) = 17 % 4 = 1
hash(8) = 8 % 8 = 0
hash(20) = 20 % 8 = 4

overflow

52

Linear hashing illustration

Search for 6

8 hash(6) = 6 % 4 = 2
Insert 17

next ! 5 17 haSh(17) =17 % 4 = 1
: 9 |--» hash(8) = 8 % 8 = ©
! o / 13 hash(20) = 20 % 8 = 4
|

‘ : 1 6 overflow
| 2 - —>
|
| 3 .
I 4 7
: 11

hash(key) = key % n 20

hash(key) = key % 2n

53

Linear hashing illustration
Search for 6

8 hash(6) = 6 % 4
Insert 17
next | 5 17 hash(17) = 17 %
: 9 > hash(8) = 8 %
...... :.9.9 / L hash(20) = 20 %
I 1 ° overflow Search for 20

v

?

hash(20) = 20 %

hash(key) = key % n

20

/Z

hash(key) = key % 2n

N

=

(00]
V)

Linear hashing illustration
Search for 6

8 hash(6) = 6 % 4
Insert 17
next ! 5 17 hash(17) = 17 %
| 9 |--» hash(8) = 8 %
L / 13 hash(20) = 20 %
|
...... P .
) | 1 6 overflow Search for 20
| 2 o — hash(20) = 20 %
: hash(20) = 20 %
|
|
|

hash(key) = key % n

hash(key) = key % 2n

!
X/
A

N

=

(00]
V)

)

00
N

Linear hashing illustration

8

next

N

v

?

hash(key) = key % n

J

hash(key) = key % 2n

20

17

overflow

Search for 6

hash(6) = 6 %
Insert 17
hash(17) = 17
hash(8) = 8
hash(20) = 20
Search for 20
hash(20) = 20
hash(20) = 20

Search for 9
hash(9) = 9 %

R ¥ X

X X
00

N

(00]

N

AV

)

56

Linear hashing illustration

next

17

hash(key) = key % n

hash(key) = key % 2n

20

overflow

Search for 6

hash(6) = 6 %
Insert 17
hash(17) = 17
hash(8) = 8
hash(20) = 20
Search for 20
hash(20) = 20
hash(20) = 20

Search for 9
hash(9) = 9 %

R ¥ X

X X
00

N

(00]

N

AV

)

57

Linear hashing: Resizing

e The splitting bucket strategy (based on the split pointer) will eventually reach all

overflowed buckets

e \When the next pointer reaches the last slot, remove the old hash function and move

assign the pointer back to the first bucket

58

Linear hashing: why do we need it?

e Handles data insertion in a more gradual and controlled fashion

e Spreads the rehashing across insertions (more concurrency)
e Only one bin/page is rehashed at a time...
e ...while other threads can access other parts of the table

e Better than extendible hashing: it needs to rehash only when the global-depth changes
e Good for cases where dataset size changes over time
e But:

® Needs a good hash function

® Increased access time due to overflow tables

59

Summary of hash table indexes

e Hash-based indexes are best for equality searches but do not support range
searches
e Static hashing can lead to long overflow chains
e Extendible hashing
® Avoids overflow pages by splitting a full bucket when a new data entry is to be added
to it
e Directory can keep track of buckets, doubles periodically

e Can get large with skewed data; additional 10 if the table does not fit in main memory

60

Today’s focus

e Hash-based indexes

e Sorting

61

DBMS bigger picture

r

Queries Query Optimization

How DBMS executes queries using and Execution

the DBMS components, when data

Relational Operators

can be unsorted .
next Files and Access Methods

Buffer Management

Disk Space Management

62

Disk-oriented DBMS

e A DBMS does not assume that a table fits entirely in main memory, a disk-oriented

DBMS cannot assume that a query result can fit in memory
e We use the buffer pool to implement algorithms that need to spill to disk

e We prefer algorithms that maximize the amount of sequential IO

® Better utilization of disk (sequential IO > random |0O)

63

Need for sorting data

e Relational model/SQL is unsorted

e (Queries may request that tuples are sorted in a specific way (ORDER BY)

e But even if a query does not specify an order, we may still want to sort to do other
things:
e Remove duplicates (DISTINCT)

e Bulk sorted tuples into B+-tree index is faster
e Aggregations (GROUP BY)

e Sorting in memory: well-studied problem (quicksort, heapsort)
e In DBMS: sort 100 GB with 100 MB of memory

64

Sorting

e 2-way external sorting
e General external sorting and performance analysis

e Using B+-trees for sorting

65

2-way external sort

e Asimple example of a 2-way external (merge) sort
e “2”isthe number of runs that we are going to merge into a new run for each
pass

e Datais broken up into N pages

e DBMS has a finite number of B buffer pool pages to hold input and output data

66

Simplified 2-way external sort

Pass #0
e Read one page of the table into memory
e Sort the page into a “run” and write it back to disk

e Repeat until the whole table has been sorted into runs

Pass #1,2,3 ...
e Recursively merge pairs of runs into runs twice as long

e Needs at least 3 buffer pages (2 for input and 1 for output)

67

Simplified 2-way external sort

* In each pass, we read and

write every page in the file

e Number of passes
=1 + [log, N1

e Total IO cost
= 2N*(1 + [log,NT)

Idea: Divide and conquer: sort

subfiles and merge

| 3

6,

2

8,7 |56|31 2 @

| —

Pass #0 | 3

, 4
I
, 4

2,

T3

9,4
B T T
4,9

|____

Pass #1 |

2,3

S A

4,7

3,4

8-page runs

68

General external sort

Pass #0
e Use B buffer pages

e Produce N/BT1 sorted runs of size B

Pass #1,2,3 ...

e Merge B-1runs (i.e., k-way merge)

Number of passes=1 + [log ,[N/BTI
Total I/O cost =2N*(1 + [log_ .[N/BT1I)

69

General external sort: example

N =

Determine how many passes it takes to sort 108 pages with 5 buffer pool pages

108,B=5

Pass #0: [N/B1 = [108/51 = 22 sorted runs of 5 pages each (last run is 3
pages)

Pass #1: [N’/B-11 = [22/41 = 6 sorted runs of 20 pages each (last run is 8
pages)

Pass #2: [N”/B-11 = [6/41 = 2 sorted runs of 80 pages and 28 pages
Pass #3: Sorted file of 108 pages

1+ [log, .IN/B11 = 1 + llog, 22711 = 1 + [2.2291 = 4 passes

70

Double buffering optimization

e Prefetch the next run in the background and store it in a second buffer while the

system is processing the current run

e Reduces the wait time for IO requests at each step by overlapping disk transfer

time with computation

71

Double buffering optimization

e Prefetch the next run in the background and store it in a second buffer while the
system is processing the current run
® Overlaps CPU and IO operations

e Reduces the effective “B” by half

e Reduces the response time

Buffer

Buffer -\ i
Sorted run

Buffer merged page =

Buffer merged page '
/ Sorted run [
Buffer

Buffer

Using B” Tree for sorting

e |f the table that must be sorted already has a B* Tree index on the sort attribute(s),

then we can use that to accelerate sorting
e Retrieve records in desired sort order by simply traversing the leaf pages of the tree

e Consider the case:

e Clustered B Tree: Good idea

e Unclustered B* Tree: Could be a very bad idea

73

Sort Using a Clustered B™ Tree...

e Traverse to the left-most leaf page, and then

retrieve records from all leaf pages

e This is always better than external sorting:
e No computational cost

e All disk accesses are sequential

101

PN

L

102 103

Record pages

104

74

...or Sort Using an Unclustered B Tree

e Chase each pointer to the page that contains the data /\

e \Worst case, one |/O per data record

e Always a bad idea! Instead, sorting is a better idea 101 102 103

Record pages

104

75

External sorting: summary

e Sorting a file while optimizing for I/O is very useful for query processing

e External merge sort minimizes disk I/O cost as follows:
® #runs merged at a time depends on B and block size
e Larger block size: lower I/O cost and smaller number of runs merged

® |In practise, # of runs rarely more than 2 or 3
e Choice of internal sort affects the performance
e Quicksort is better, heap is slower (2x)

e Clustered B*Tree is good for sorting

e Unclustered B*Tree is usually very bad

76

Number of passes of external sort

100
1,000

10,000
100,000
1,000,000
10,000,000
100,000, 000
1,000,000,000

13
17
20
23
26
30

N

10
12
14
15

O o0 N O

10

B=17
2
3

0 N O

B=129 B=257
1 1
2 2
2 2
3 3
3 3
4 3
4 4
5 4

77

