
Solutions

Answer 5.1

1. The daa enry wih key 9 is insered on he second lea page. The resulng ree is

shown in gure 10.2.

2. The daa enry wih key 3 goes on he rs lea page F. Since F can accommodae a

mos our daa enries (d = 2), F splis. The lowes daa enry o he new lea is given

up o he ancesor which also splis. The resul can be seen in gure 10.3.

NOTE: Anoher valid soluon is o move he key 3 o he new lea page creaed by

he spli. In his case, he value 3 will also be copied up o he inernal, ancesor

node.

Regarding he inseron cos, one needs o 1) read he roo, 2) read he lemos

child C o he roo, 3) read he lemos lea F, 4) allocae and wrie a new lea node

F* due o lack o space, 5) updae F, 6) read and updae he righ sibling o he newly

creaed lea F*, 7) allocae and wrie a new inernal node due o lack o space, 8)

updae C, 9) updae he roo. In oal, he inseron process involved 4 reads and 6

wries.



NOTE: This exercise assumes enough memory space o keep all read pages; once a

page is read rom disk or he rs me, subsequen accesses o he page incur no

addional I/O.

3. The daa enry wih key 8 is deleed, resulng in a lea page N wih less han wo

daa enries. The le sibling L is checked or redisribuon. Since L has more han

wo daa enries, he remaining keys are redisribued beween L and N, resulng in

he ree in gure 10.4.

4. As is par 3, he daa enry wih key 8 is deleed rom he lea page N. N’s righ

sibling R is checked or redisribuon, bu R has he minimum number o keys.

Thereore he wo siblings merge. The key in he ancesor which disnguished

beween he newly merged leaves is deleed. The resulng ree is shown in gure

10.5.

5. The daa enry wih key 46 can be insered wihou any srucural changes in he

ree. Bu he removal o he daa enry wih key 52 causes is lea page L o merge

wih a sibling (we chose he righ sibling). This resuls in he removal o a key in he

ancesor A o L and hereby lowering he number o keys on A below he minimum

number o keys. Since he le sibling B o A has more han he minimum number o

keys, redisribuon beween A and B akes place. The nal ree is depiced in gure

10.6.



6. Deleng he daa enry wih key 91 causes a scenario similar o par 5. The resul can

be seen in gure 10.7.

7. The daa enry wih key 59 can be insered wihou any srucural changes in he

ree. No sibling o he lea page wih he daa enry wih key 91 is aeced by he

inser. Thereore, deleng he daa enry wih key 91 changes he ree in a way

similar o par 6. The resul is depiced in gure 10.8.

8. Considering checking he righ sibling or possible merging rs, he successive

deleon o he daa enries wih keys 32, 39, 41, 45 and 73 resuls in he ree shown

in gure 10.9.



Answer 5.2 The answer o each queson is given below.

1. By he denion o a B+ ree, each index page, excep or he roo, has a leas d and

a mos 2d key enries. Thereore—wih he excepon o he roo—he minimum

space ulizaon guaraneed by a B+ ree index is 50 percen.

2. A sac index wihou overow pages is aser han a dynamic index on insers and

delees, since index pages are only read and never writen. I he se o keys ha will

be insered ino he ree is known in advance, hen i is possible o build a sac

index which reserves enough space or all possible uure insers. Also, i he sysem

goes periodically ofine, sac indices can be rebuil and scaled o he curren

occupancy o he index. Inrequen or scheduled updaes hin or a sac index

srucure.


